# UNIVERSIDAD NACIONAL DE CAJAMARCA FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA GEOLÓGICA



**TESIS PROFESIONAL:** 

# ANÁLISIS GEOTÉCNICO DE LOS TALUDES EN LA CARRETERA BAMBAMARCA - PACCHA ENTRE LOS KILÓMETROS 0 a 30, DISTRITO DE CHOTA, CAJAMARCA.

Para optar el título profesional de:

# INGENIERO GEÓLOGO

Presentado por:

Bach. ALEJANDRO ENMANUEL, FALCONÍ REYES.

# ASESOR

MCs. Ing. JOSÉ ALFREDO, SIVERONI MORALES

CAJAMARCA – PERÚ

2017

### AGRADECIMIENTO

En primer lugar, doy gracias a Dios por haberme guiado y bendecido cada día de mi vida, doy gracias a mi alma mater, la Universidad Nacional de Cajamarca por haberme acogido en sus aulas permitiéndome convertirme en un profesional con valores, así como también a cada profesor que conformo mi educación, apoyándome con sus conocimientos, experiencia y amistad, para poder desenvolverme de la mejor manera como profesional. Un especial agradecimiento al Ing. José Siveroni que, bajo su apoyo como asesor, me guío para la óptima elaboración de la presente tesis.

Finalmente quiero agradecer a todos mis compañeros de clase, por su amistad brindada durante y después de los años de carrera profesional. Gracias a su apoyo moral para siempre salir adelante.

El autor

#### DEDICATORIA

Mi tesis se la dedico con todo amor y cariño a mi madre, Lucila Reyes Solis, por su sacrificio y esfuerzo, por darme la posibilidad de tener una carrera y un futuro, por la educación que me brindo desde casa y por llevarme siempre por un camino de rectitud para cumplir mis objetivos. También a mi familia, por ser el motor para siempre seguir adelante. Además, se la dedico a todas aquellas personas que, con sus palabras de motivación, su conocimiento y experiencia, me apoyaron a la culminación de este sueño, ahora hecho una realidad. En especial a Yesenia Ortiz Fernández por su constante apoyo y amor que me impulsa a seguir adelante.

### CONTENIDO

|                                                         | Pág. |
|---------------------------------------------------------|------|
| RESUMEN                                                 | xi   |
| ABSTRACT                                                | xii  |
| CAPÍTULO I INTRODUCCIÓN                                 | 1    |
| CAPÍTULO II MARCO TEÓRICO                               | 4    |
| 2.1 ANTECEDENTES TEÓRICOS DE LA INVESTIGACIÓN.          | 4    |
| 2.2 BASES TEÓRICAS                                      | 5    |
| 2.2.1 CRITERIO DE ROTURA GENERAL                        | 5    |
| 2.2.2 CRITERIO DE ROTURA LINEAL DE MOHR-COULOMB         | 7    |
| 2.2.3 CRITERIO DE ROTURA NO LINEAL DE HOEK &BROWN       | 8    |
| 2.2.4 CLASIFICACIONES GEOMECÁNICAS: RQD, RMR, GSI Y SMR | 11   |
| 2.2.4.1 ROCK MAS RATING (RMR)                           | 11   |
| 2.2.4.2 ÍNDICE DE CALIDAD DE LAS ROCAS, RQD             | 14   |
| 2.2.4.3 GEOLOGICAL STRENGTH INDEX (GSI)                 | 15   |
| 2.2.4.4 SLOPE MASS RATING                               | 17   |
| 2.2.5 ANÁLISIS DE ESTABILIDAD DE TALUDES                | 18   |
| 2.2.6 TIPOS DE ROTURA                                   | 23   |
| 2.2.6.1 DESLIZAMIENTOS TRASLACIONALES O ROTACIONALES.   | 25   |
| 2.2.6.2 ROTURA PLANA                                    | 30   |
| 2.2.6.3 ROTURA POR CUÑA                                 | 32   |
| 2.2.6.4 ROTURA POR VUELCO                               | 33   |
| 2.2.6.5 ROTURA POR PANDEO                               | 35   |
| 2.2.6.6 DESPRENDIMIENTOS                                | 37   |
| 2.3 DEFINICIÓN DE TÉRMINOS BÁSICOS                      | 39   |
| CAPÍTULO III MATERIALES Y MÉTODOS                       | 41   |
| 3.1 UBICACIÓN DE LA INVESTIGACIÓN                       | 41   |
| 3.1.1 UBICACIÓN GEOGRÁFICA                              | 41   |
| 3.1.2 POLÍTICA                                          | 41   |
| 3.1.3 ACCESIBILIDAD                                     | 42   |

|                                                 | Pág. |
|-------------------------------------------------|------|
| 3.1.4 CLIMA                                     | 42   |
| 3.1.5 VEGETACIÓN                                | 46   |
| 3.1.6 GEOMORFOLOGÍA                             | 47   |
| 3.1.6.1 TOPOGRAFÍA                              | 47   |
| 3.1.6.2 HIDROLOGÍA Y DRENAJE                    | 48   |
| 3.1.6.3 SUPERFICIE DE EROSIÓN                   | 49   |
| 3.1.6.4 VALLES                                  | 50   |
| 3.1.6.5 TERRAZAS                                | 51   |
| 3.1.6.6 COLINA                                  | 51   |
| 3.1.6.7 LADERAS                                 | 52   |
| 3.1.7 PROCESOS MORFOLÓGICOS                     | 52   |
| 3.1.7.1 REMOCIÓN DE MASAS                       | 53   |
| 3.2 PROCEDIMIENTOS                              | 54   |
| 3.2.1 METODOLOGÍA                               | 55   |
| 3.2.2 DEFINICIÓN DE VARIABLES                   | 56   |
| VARIABLES DEPENDIENTES.                         | 56   |
| VARIABLES INDEPENDIENTES                        | 56   |
| 3.2.3 TÉCNICAS.                                 | 56   |
| 3.2.4 INSTRUMENTOS Y EQUIPOS.                   | 57   |
| 3.3.1 GEOLOGÍA LOCAL                            | 58   |
| GRUPO GOYLLARISQUIZGA (KI – G)                  | 58   |
| FORMACIÓN CHIMÚ (KI-CHIM)                       | 58   |
| FORMACION SANTA (KI– SA)                        | 59   |
| FORMACIÓN CARHUÁZ (KI – CA)                     | 59   |
| FORMACIÓN FARRAT (KI – F)                       | 60   |
| FORMACIÓN INCA (KI – IN)                        | 61   |
| GRUPO CRISNEJAS                                 | 61   |
| FORMACIÓN PARIATAMBO (KI – PA)                  | 62   |
| GRUPO PULLUICANA                                | 62   |
| FORMACIÓN YUMAGUAL (KS – YU)                    | 63   |
| GRUPO QUILQUIÑAN - FORMACIÓN MUJARRUM (KS – QM) | 63   |

|                                                                        | Pág.    |
|------------------------------------------------------------------------|---------|
| FORMACION CAJAMARCA (KS– CA)                                           | 63      |
| FORMACION CELENDIN (KS – CE)                                           | 64      |
| FORMACIÓN CHOTA (KS – CH)                                              | 64      |
| DEPÓSITOS COLUVIALES                                                   | 64      |
| DEPÓSITO ALUVIAL                                                       | 65      |
| DEPÓSITO COLUVIO – ALUVIAL                                             | 65      |
| 3.3.2 GEOLOGÍA ESTRUCTURAL                                             | 66      |
| 3.3.3 DESCRIPCIÓN LITOMINERALÓGICA                                     | 69      |
| 3.4 MODELO GEOMECÁNICO                                                 | 74      |
| 3.4.1 UBICACIÓN DE LOS TALUDES PRESENTES EN LA CARRETERA               | 74      |
| 3.4.2 DESCRIPCIÓN FÍSICA – MECÁNICA DE TALUDES EN DEPÓSITOS.           | 86      |
| 3.4.3 ESTACIONES GEOMECÁNICAS                                          | 90      |
| 3.4.3.1 ANÁLISIS DE ROCK QUALITY DESIGNATION EN LOS TALUDES            | 90      |
| 3.4.3.2 CÁLCULO DE ROCK MASS RATING Y SLOPE MASS RATING EN LOS TALUDES | 3<br>92 |
| CAPÍTULO IV ANÁLISIS Y DISCUSIÓN DE RESULTADOS                         | 105     |
| 4.1 MODELO MATEMÁTICO                                                  | 105     |
| 4.1.1 ANÁLISIS DE ESTABILIDAD DE TALUDES.                              | 105     |
| TALUD 01                                                               | 106     |
| TALUD 02                                                               | 107     |
| TALUD 03                                                               | 108     |
| TALUD 04                                                               | 109     |
| TALUD 05                                                               | 110     |
| TALUD 06                                                               | 111     |
| TALUD 07                                                               | 112     |
| TALUD 08                                                               | 113     |
| TALUD 09                                                               | 114     |
| TALUD 10                                                               | 115     |
| TALUD 11                                                               | 116     |
| TALUD 12                                                               | 117     |
| TALUD 13                                                               | 118     |

|                  |                             | Pág. |
|------------------|-----------------------------|------|
| TALUD 14         |                             | 119  |
| TALUD 15         |                             | 120  |
| TALUD 16         |                             | 121  |
| TALUD 17         |                             | 122  |
| 4.2 CONTRASTACIÓ | ÓN DE LA HIPÓTESIS          | 124  |
| CAPÍTULO V CON   | CLUSIONES Y RECOMENDACIONES | 125  |
| 5.1 CONCLUSIONES | 3                           | 125  |
| 5.2 RECOMENDACI  | ONES                        | 126  |
| REFERENCIAS BIBL | IOGRÁFICAS                  | 127  |

## ÍNDICE DE FIGURAS

|                                                                                 | Pág.   |
|---------------------------------------------------------------------------------|--------|
| Figura 1: Representación del criterio de rotura en términos bidimensionales.    |        |
| (Modificada de Melentijevic, 2005)                                              | 6      |
| Figura 2: Representación de la envolvente de Mohr-Coulomb en el espacio de      |        |
| tensiones normal y tangencial. (Modificada de según Melentijevic, 2005)         | 7      |
| Figura 3: Representación del criterio de rotura de Hoek&Brown, en el espacio de | Э      |
| tensiones normal y tangencial.                                                  | 9      |
| Figura 4: Clasificación según G.S. I                                            | 16     |
| Figura 5: Métodos de cálculo de estabilidad de taludes                          | 19     |
| Figura 6: Fuerzas actuantes sobre talud.                                        | 20     |
| Figura 7: Deslizamiento circular (IGME, 1985)                                   | 26     |
| Figura 8: Deslizamiento circular combinado (Hoek & Bray, 1981)                  | 27     |
| Figura 9: Desarrollo de deslizamiento curvilíneo (Hudson & Harrison, 1997)      | 28     |
| Figura 10: Geometría tridimensional de deslizamiento circular (Hoek & Bray, 198 | 31) 29 |
| Figura 11: Deslizamiento traslacional (IGME, 1985)                              | 30     |
| Figura 12: Tipos de rotura planar (Hoek & Bray 1981)                            | 31     |
| Figura 13: Rotura por cuña (Hoek & Bray, 1981)                                  | 32     |
| Figura 14: Rotura por vuelco (Goodman y Bray, 1976)                             | 33     |
| Figura 15: Rotura por vuelco secundario (Goodman & Bray, 1976)                  | 35     |
| Figura 16: Rotura por pandeo (IGME, 1985)                                       | 36     |
| Figura 17: Desprendimientos en roca (IGME, 1985)                                | 38     |
| Figura 18: Variaciones de precipitación                                         | 43     |
| Figura 19: Variaciones de temperatura en Bambamarca                             | 43     |
| Figura 20: Variaciones de precipitación en Paccha                               | 45     |
| Figura 21: Variaciones de temperatura en Paccha.                                | 45     |

## ÍNDICE DE FOTOS

|                                                                              | Pág. |
|------------------------------------------------------------------------------|------|
| Foto 1: Vegetación presente en el Km 04.                                     | 46   |
| Foto 2: Geomorfología del valle formado por el río Llaucano                  | 47   |
| Foto 3: Variación de pendientes a lo largo del cauce del rio LLaucano, Km 09 | 48   |
| Foto 4: Cauce del río Llaucano. Km 21                                        | 49   |
| Foto 5: Superficie de erosión entre 3200 y 3400 msnm.                        | 49   |
| Foto 6: Valle joven formado por el río Llaucano                              | 50   |
| Foto 7: Valles jóvenes tipo V                                                | 50   |
| Foto 8: Terrazas adyacentes al cauce del rio Llaucano, Km 25                 | 51   |
| Foto 9: Colinas de forma redondeada de aproximadamente                       | 51   |
| Foto 10: Laderas presentes en los flancos del río Llaucano. Km 27.           | 52   |
| Foto 11: Erosión en calizas, Km 25.                                          | 53   |
| Foto 12: Deslizamiento de material coluvio – aluvial, Km20                   | 53   |
| Foto 13: Afloramiento de Formación Chimú.                                    | 59   |
| Foto 14: Afloramiento de la Formación Carhuaz, Km 24                         | 60   |
| Foto 15: Afloramiento de Formación Farrat, Km 09.                            | 61   |
| Foto 16: Afloramiento rocoso de Grupo Crisnejas                              | 62   |
| Foto 17: Afloramiento de Grupo Pulluicana, formando un relieve escarpado     | 63   |
| Foto 18: Depósito Coluvial. Km 19.                                           | 64   |
| Foto 19: Depósito aluvial al margen derecho del río Llaucano, Km 20          | 65   |
| Foto 20: Depósito Coluvio – Aluvial, Km 21.                                  | 66   |
| Foto 21: Falla Normal sobre areniscas cuarzosas, Km 07                       | 67   |
| Foto 22: Falla inversa sobre areniscas, Km 13                                | 67   |
| Foto 23: Falla tipo Graven sobre calizas, Km 29.                             | 68   |

# ÍNDICE DE TABLAS

| Tabla 1: Parámetros y rango de valores para la clasificación geomecánica RMR8     | 9 13 |
|-----------------------------------------------------------------------------------|------|
| Tabla 2: Relación entre el valor del RQD y la calidad de la roca                  | 14   |
| Tabla 3: Determinación de parámetros para S.M.R                                   | 17   |
| Tabla 4: Valor de F4 en SMR                                                       | 18   |
| Tabla 5: Clasificaciones de SMR                                                   | 18   |
| Tabla 6: Relación de variables conocidas para resolver el factor de seguridad.    | 22   |
| Tabla 7: Relación de variables desconocidas para resolver el factor de seguridad. | . 22 |
| Tabla 8: Clasificación de tipos de movimientos (Varnes, 1978)                     | 24   |
| Tabla 9: Accesibilidad a la zona de estudio                                       | 42   |
| Tabla 10: Datos Historicos de temperatura en Bambamarca.                          | 44   |
| Tabla 11: Datos históricos de temperatura en Paccha.                              | 46   |
| Tabla 12: Tabla de resultados finales en análisis de taludes                      | 123  |

#### RESUMEN

En la actualidad, la creación de vías de transporte es una necesidad muy importante para el desarrollo de una sociedad, pero en el momento en que se aperturan estas vías, se atenta contra el equilibrio natural de los macizos rocosos, es así que se genera una inestabilidad en los taludes que conforman las carreteras y está aumenta bajo factores climáticos desfavorables como precipitaciones. La presente tesis tiene como objetivo principal realizar el análisis geotécnico de los taludes de la carretera Bambamarca – Paccha 0 – 30 Km, para así poder determinar la inestabilidad de taludes representativos, que traigan consigo un riesgo geológico contra las personas o vehículos que transitan por la carretera. Para realizar la investigación se procedió a la revisión de bibliografía y antecedentes bibliográfico que puedan ayudar a la comprensión de los procesos geotécnicos en taludes tanto en roca como en suelo, posteriormente se realizaron salidas de campo para el procesamiento de datos geológicos, geomecánicos y geotécnicos, necesarios para luego ser trabajados en gabinete. Como paso final, por medio de softwares especializados se obtuvo el factor de seguridad en cada uno de los diecisiete (17) taludes escogidos como puntos de control y estos fueron representados en un plano geotécnico final, en el cual refleja las zonas con mayor inestabilidad. Como resultado se obtuvieron taludes mayormente inestables en calizas arcillosas y areniscas cuarzosas que presentan fallas planares e inestabilidad en taludes compuestos de depósitos coluvio aluviales, no cohesivos, los cuales presentan planos de falla circulares, debido al comportamiento del material y geometría de los taludes. En algunos taludes estables compuestos por areniscas cuarzosas, se presentan caída libre de rocas.

PALABRAS CLAVES: Inestabilidad, taludes, geomecánica, geotécnia.

xi

#### ABSTRACT

At present, the creation of transport routes is a very important necessity for the development of a society, but at the moment in which these ways are opened, it is against the natural balance of rocky massifs, that is how an Instability in the slopes that make up the roads and is increased under unfavorable climatic factors such as precipitation. The main objective of this thesis is to carry out the geotechnical analysis of the slopes of the Bambamarca - Paccha road (0 - 30 km), in order to determine the instability of representative slopes, which bring a geological risk against the people or vehicles that transit This road. In order to carry out this work, we proceeded to review bibliographies and bibliographical data that could help the understanding of the geotechnical processes in slopes in both rock and soil. Later, field trips were made to obtain geological, geomechanical and geotechnical data, needed to be later worked in the cabinet. As a final step, by means of specialized software, a safety factor was obtained in each of the seventeen (17) slopes chosen as control points and these were represented in a final geotechnical plane, in which it reflects the zones with greater instability. As a result, mostly unstable slopes were obtained in mudstone limestones and guartz sandstones that presented planar faults, and instability in slopes composed of non - cohesive colluvial - alluvial deposits, which present circular failure planes, due to the behavior of the material and the geometry of the Slopes On some stable slopes composed of quartz sandstones, there is a free fall of rocks, which represents a latent danger to people passing through these areas.

**KEYWORDS:** Instability, slopes, geomechanics, geotechnic.

xii

### CAPÍTULO I

### INTRODUCCIÓN

Durante años la apertura de caminos y carreteras han originado que se perturbe la estabilidad natural de los macizos rocosos y así se genere grandes deslizamientos de roca y depósitos, los cuales son causantes de problemas como la discontinuidad vial para el transporte de vehículos y personas.

La zona de estudio se encuentra ubicada en la carretera que conecta el distrito de Bambamarca (Hualgayoc) y el distrito de Paccha (Chota), tiene una extensión total de 30 km. Es una carretera tipo trocha carrozable, que presenta grandes problemas de estabilidad de taludes al trayecto de esta, y los cuales se incrementan en épocas de lluvia. Esto es un peligro latente para la población ya que constantemente son víctimas de deslizamientos que producen la incomunicación e intransibilidad por esta vía, generando también un riego para las vidas humanas. Es así que surge la siguiente pregunta: ¿Cuáles son las zonas de mayor inestabilidad geotécnica, entre los kilómetros 0 a 30, en la carretera Bambamarca - Paccha?

La hipótesis es la siguiente: Los taludes en la carretera Bambamarca - Paccha, entre los kilómetros 0 - 30, presentan una alta inestabilidad, siendo un riesgo geológico latente, poniendo en peligro las infraestructuras antropogénicas y vidas humanas.

La importancia del presente estudio radica ya que en los últimos años ha existido una gran problemática de derrumbes y deslizamientos en la carretera Bambamarca - Paccha entre el km. 0 y km. 30; estos taludes, a lo largo de su trazo, presentan

1

diferentes problemas de estabilidad, debido a procesos de erosión, alteración de drenajes naturales y otros fenómenos que normalmente adquieren mayor impulso durante la estación lluviosa. La magnitud de los deslizamientos en ocasiones reduce el ancho de la calzada llegando a provocar la obstrucción total de la misma, dificultando o poniendo en riesgo la circulación vehicular. Los procesos mencionados, también determinan cierto grado de riesgo para las edificaciones situadas en la parte baja de las laderas. Por lo que la caracterización geotécnica de los taludes constituye un aspecto importante para su análisis de estabilidad, determinada cuantitativamente por un factor de seguridad el cual nos permitirá tomar las medidas de prevención adecuadas para evitar pérdidas humanas y materiales.

Los aportes de la presente investigación servirán de base para futuros proyectos ingenieriles que se realicen sobre la carretera, además de prevenir y salvaguardar futuros peligros geológicos.

El proyecto tiene como alcance el análisis de estabilidad de taludes en los 30km de carretera que unen los distritos de Bambamarca y Paccha, la investigación se basa en cartografiado litológico, geomorfológico, hidrológico y geotécnico para luego identificar las zonas de mayor inestabilidad de la carretera.

El objetivo de la investigación es Analizar geotécnicamente la estabilidad de taludes, entre los kilómetros 0 a 30, carretera Bambamarca – Paccha, provincia de Chota. Para lo cual se ha realizado una evaluación geotécnica a lo largo de la carretera para determinar un análisis de estabilidad de taludes determinando las sus condiciones geológicas y como la geodinámica interna y externa afecta su estabilidad. Las cuales se evidencian mediante la clasificación de Rock Mass Rating, de los macizos rocosos, y posteriormente una clasificación geotécnica de los taludes el cual se presenta en una zonificación de los tramos de carretera más inestables y/o propensos a deslizarse.

El presente trabajo de investigación contiene cinco capítulos de los cuales: Primero Capítulo, corresponde a la introducción; Segundo Capítulo, comprende marco teórico: Antecedentes teóricos, bases teóricas, definición de algunos términos

2

básicos que le dan sustento a la investigación; el Tercer Capítulo, concierne a los materiales y métodos dentro del cual se contempla la ubicación de la investigación, los procedimientos, la geomorfología y fisiografía, hidrología, geología local, geología estructural, caracterización geomecánica, determinar el modelo matemático, y determinar el tipo de rotura; el Cuarto Capítulo, tratamiento y análisis de datos y presentación de resultados; el Quinto Capítulo, incluye conclusiones y recomendaciones; finalmente se muestra la lista de referencias bibliográficas consultadas, anexos y panel fotográfico.

### **CAPÍTULO II**

### MARCO TEÓRICO

### 2.1 ANTECEDENTES TEÓRICOS DE LA INVESTIGACIÓN.

En la zona de estudio no se han realizado trabajos anteriores sobre análisis de estabilidad de taludes, sin embargo, existen investigaciones afines, tales como:

INGEMMET (2007) en el reporte zonas críticas por peligros geológicos e hidrológicos en la región Cajamarca, identifica de manera puntual, la carretera Bambamarca – Paccha como un latente peligro geológico.

INGEMMET (2011) Riesgo geológico en la región Cajamarca, Boletín N°44 serie C, Geodinámica e Ingeniería Geológica, se realiza una identificación puntual de taludes y laderas que son un potencial peligro geológico en la carretera Bambamarca – Paccha.

### 2.2 BASES TEÓRICAS

#### 2.2.1 Criterio de rotura general

Existen dos formas para definir el comportamiento de una roca en rotura: mediante el estado de tensiones o mediante el de deformaciones. Normalmente se utiliza la primera. De esta forma, se toma como resistencia de la roca la máxima tensión que ésta puede soportar. (Vallejo, 2002)

Para cualquier punto del macizo el tensor de tensiones viene definido por seis componentes, tres componentes normales, y tres componentes tangenciales,  $\sigma xi$ ,  $\sigma yi$ ,  $\sigma zi$ ,  $\tau xyi$ ,  $\tau yzi$  y  $\tau xzi$ , en un sistema de coordenadas (x, y, z). Dependiendo de la magnitud y dirección de las seis componentes del tensor, se obtienen las tres tensiones principales,  $\sigma 1i$ ,  $\sigma 2i$ ,  $\sigma 3i$ , donde  $\sigma 1i$  es la tensión mayor,  $\sigma 2i$  la tensión intermedia y  $\sigma 3i$  la tensión menor.

En el caso de un material isótropo (material que presenta las mismas características físicas en cualquier dirección), cualquier dirección es dirección principal, con lo que las tres tensiones principales se representan  $\sigma 1$ ,  $\sigma 2$ ,  $\sigma 3$ . En este caso se define como criterio de rotura a la superficie *f*, que delimita en el espacio de tensiones principales ( $\sigma 1$ ,  $\sigma 2$ ,  $\sigma 3$ ) un cierto dominio que llamamos dominio elástico viene expresado por la siguiente

$$f(\sigma_1, \sigma_2, \sigma_3) = 0$$

En general, los equipos utilizados para la obtención de resultados experimentales nos dan datos sobre las tensiones principales, si a esto le añadimos que la tensión intermedia ( $\sigma$ 2) se suele ignorar, el criterio de rotura se define bidimensionalmente en función de la tensión mayor ( $\sigma$ 1), y la tensión menor ( $\sigma$ 3), como:

$$f(\sigma_1,\sigma_3)=0$$

f es la superficie que limita el dominio elástico del material, en el espacio bidimensional de tensiones principales, y la ecuación que describe esta superficie de fluencia es el criterio de rotura.





Los puntos representados encima del dominio elástico

$$f(\sigma_1,\sigma_3)=0$$

Están en situación de rotura, por el contrario, los puntos del macizo con estado tensional en el interior del dominio elástico no están en rotura, sino que están en estado elástico. Los puntos del exterior del dominio elástico son puntos tensionales inaccesibles, es decir no se pueden obtener dichas tensiones para el macizo en cuestión. Dependiendo de cómo se defina la ecuación de la superficie de fluencia (*f*) se obtienen distintos criterios de rotura. A continuación, se hace una descripción del criterio de rotura lineal de Mohr-Coulomb, y del criterio de rotura no lineal de Hoek&Brown.

### 2.2.2 Criterio de rotura lineal de Mohr-Coulomb

El criterio de rotura de Mohr-Coulomb, introducido por primera vez por Coulomb en el año 1773, inicialmente pensado para el estudio en suelos, es un criterio de rotura lineal. Esto significa, tal y como se ha indicado anteriormente, que la ecuación que define la superficie de fluencia es una ecuación lineal. Aunque el comportamiento de la roca en un ensayo triaxial no concuerda con un modelo lineal, Mohr-Coulomb se sigue utilizando mucho por su sencillez y comodidad.

Generalmente para el caso del criterio de Mohr-Coulomb, se define el criterio de rotura en función de la tensión tangencial y la tensión normal en un plano. En este caso la superficie de fluencia es de la forma  $\tau = f(\sigma)$  Donde  $\tau$  es la tensión tangencial que actúa en el plano de rotura y  $\sigma n$  es la tensión normal que actúa en el plano de rotura y  $\sigma n$  es la tensión normal que actúa en el plano de rotura y de criterio de Mohr-Coulomb en el espacio de tensiones normal y tangencial. Se puede apreciar que la ecuación de la superficie de rotura es la ecuación de la recta tangente a todos los círculos de falla.



Figura 2: Representación de la envolvente de Mohr-Coulomb en el espacio de tensiones normal y tangencial. (Modificada por Melentijevic, 2005)

En este caso, el dominio elástico viene representado por la envolvente de Mohr. Por lo tanto, haciendo referencia a la que se ha dicho anteriormente, los puntos del macizo con estado tensional por debajo de dicha envolvente están en un estado elástico mientras que los que se sitúan encima se encuentran en rotura. La zona de estados tensionales inaccesibles para este macizo es aquella que se encuentra por encima de la envolvente de Mohr. Aunque anteriormente se ha dicho que es usual describir el criterio de Mohr-Coulomb en el espacio de tensiones tangencial y normal, éste también se expresa en el espacio de tensiones principales de la forma

$$\sigma_1 = N_{\emptyset}\sigma_3 + 2c\sqrt{N_{\emptyset}}$$

Dónde:

$$N_{\emptyset} = Tg^2 \left[\frac{\pi}{4} + \frac{\emptyset}{2}\right]$$

Donde *c* y  $\phi$  vuelven a ser cohesión y ángulo de fricción respectivamente.

### 2.2.3 Criterio de rotura no lineal de Hoek & Brown

El criterio de rotura de Hoek & Brown su versión original fue introducida en el 1980 desde entonces su uso se ha generalizado en el ámbito de la mecánica de rocas, traspasando los límites para los que fue propuesto (cálculo de la estabilidad en taludes y estados tensionales en el entorno de un túnel, para macizos rocosos duros). Debido a esto, y con el fin de mejorarlo, el criterio ha sufrido varias modificaciones, así como la introducción de nuevos parámetros para definir el estado del material, y nuevas propuestas para obtener la caracterización del macizo. (Hoek, 2002). Se trata de un criterio no lineal, puramente empírico, que permite valorar, de manera sencilla, la rotura de un medio rocoso mediante la introducción de las principales características geológicas y geotécnicas. En la figura se representa las tensiones de rotura para el criterio de rotura de Hoek & Brown. En la figura se aprecia que la función que define el dominio elástico es no lineal. Tal y como se ha indicado para el criterio de rotura de Mohr - Coulomb, los estados de tensiones

encima de la curva están en rotura, mientras que los interiores están en el dominio elástico, y los estados tensionales por encima de la curva son inaccesibles para este determinado caso.



Figura 3: Representación del criterio de rotura de Hoek&Brown, en el espacio de tensiones normal y tangencial.

A continuación, se explica el criterio de rotura original de Hoek & Brown y su última versión, esto se realiza porque será de interés en el transcurso de esta tesina. El criterio original, es un criterio empírico para el estudio de macizos rocosos duros. Su expresión es

$$\sigma_1' = \sigma'_3 + \sigma_{Ci} \left( m \frac{\sigma'_3}{\sigma_{Ci}} + s \right)^{0.5}$$

Dónde:

 $\sigma$ ' 1 y  $\sigma$  3' son las tensiones principales mayor y menor en el momento de rotura *Ci*  $\sigma$  es la resistencia a compresión uniaxial del material intacto, *m* y *s* son constantes del material, que dependen de las propiedades de la roca y del grado de fracturación de la roca antes de someterla a las tensiones de rotura. El parámetro *s* es la medida de disminución de la resistencia a compresión simple de la roca debido a la fracturación. Por su parte, *m* influye en la resistencia al corte del material. Ambos parámetros se pueden obtener a partir de la clasificación geomecánica Rock Mass Rating (RMR), introducida por Bieniawski, 1976 y que se expone apropiadamente más adelante. El uso del criterio no solo en macizos rocosos duros, sino también en macizos de rocas débiles, ha supuesto una reformulación del criterio, así como la introducción de nuevos parámetros. Su última versión se expresa

$$\sigma_1' = \sigma'_3 + \sigma_{Ci} \left( m_b \frac{\sigma'_3}{\sigma_{Ci}} + s \right)^a$$

Donde  $m_b$  es un valor reducido de la constante del material  $m_i$  y está dado por:

$$m_b = m_i \exp\left(\frac{GSI - 100}{28 - 14D}\right)$$

Geological Strength Index (GSI) es una clasificación geomecánica (Hoek, 1994; Hoek, Kaiser y Bawden, 1995), *s* y *a* son constantes del macizo rocoso dadas por las siguientes relaciones:

$$s = \exp\left(\frac{GSI - 100}{9 - 3D}\right)$$
$$a = \frac{1}{2} + \frac{1}{6}\left(e^{-GSI/15} - e^{-20/3}\right)$$

*D* es un factor que depende sobre todo del grado de alteración al que ha sido sometido el macizo rocoso por los efectos de las excavaciones (mecánicas o por voladuras) o por la relajación de esfuerzos. Varía desde 0 para macizos rocosos *in situ* inalterados hasta 1 para macizos rocosos muy alterados. Más adelante se explica detalladamente como obtener el factor de alteración *D*. Cabe destacar, que en este caso ya no se utiliza el Rock Mas Rating, sino que se adopta el Geological Strength Index (GSI).

La resistencia a la compresión uniaxial se obtiene haciendo  $\sigma' = 0$  en la ecuación, dando así:

$$\sigma_c = \sigma_{ci} \cdot s^a$$

Y siendo la resistencia a tracción:

$$\sigma_t = -\frac{s\sigma_{Ci}}{m_b}$$

La ecuación se obtiene haciendo  $\sigma_1 = \sigma_3 = \sigma_t$  en la ecuación. Esto representa una condición de tensión biaxial

#### 2.2.4 Clasificaciones Geomecánicas: RQD, RMR, GSI y SMR

Las clasificaciones geomecánicas tienen como objetivo el de proporcionar una evaluación geomecánica del macizo rocoso que se estudia a partir de ensayos simples, y observaciones de campo.

#### 2.2.4.1 Rock Mas Rating (RMR)

El RMR, introducido por Bieniawski 1976, es posiblemente la clasificación geomecánica más usada, inicialmente pensado para valorar la estabilidad i los soportes requeridos en túneles, ha resultado ser apto también para la valoración de la estabilidad en taludes. El RMR permite la obtención de la cohesión y ángulo de fricción, parámetros resistentes del criterio de Mohr-Coulomb. En las siguientes ecuaciones se muestran las relaciones entre RMR y los parámetros resistentes.

$$c = 5 RMR (KPa)$$
  
 $\phi = = 5 + \frac{RMR}{2} (deg)$ 

Donde

- c es la cohesión y
- $\blacktriangleright$   $\Phi$  es el ángulo de fricción.

El RMR es una clasificación geomecánica, en la que se tienen en cuenta los siguientes parámetros del macizo rocoso

(1) Resistencia del material intacto que se obtiene mediante ensayo de carga puntual o compresión simple

(2) RQD (detallado más adelante en este mismo apartado)

(3) Espaciado de las discontinuidades, hace referencia a la longitud entre discontinuidades dentro de la zona a estudio

(4) Condición de las discontinuidades, que incluye:

- i. Longitud de la discontinuidad
- ii. Abertura
- iii. Rugosidad
- iv. Relleno
- v. Alteración
- (5) Presencia de agua subterránea

A cada uno de los parámetros anteriores se le asigna un valor, el RMR se obtiene como la suma de todos ellos.

$$RMR = (1) + (2) + (3) + (4) + (5)$$

Hay que tener en cuenta que existen dos versiones para la obtención del RMR, el RMR76, del año 1976, y el RMR89, del año 1989. La diferencia reside en los valores que se asignan a los parámetros de: presencia de agua subterránea, condición de las discontinuidades, y RQD. Conjuntamente con el espaciado de las discontinuidades. En la Tabla 1 se muestra la diferencia entre valores que se le dan a los parámetros según el criterio.

En la Tabla 1, se muestran los valores que se le asignan a cada parámetro, para el cálculo del RMR 89

| Parámetro |                                 |                                      | Rango de valores        |                         |                           |                          |             |                 |            |
|-----------|---------------------------------|--------------------------------------|-------------------------|-------------------------|---------------------------|--------------------------|-------------|-----------------|------------|
| 1         | Resis<br>ncia (                 | te Ensayo carga<br>le puntual        | > 10 MPa                | 4-10 MPa                | 2-4 MPa                   | 1-2 MPa                  |             |                 |            |
|           | la<br>roca<br>intaci            | Compresión<br>simple<br>a            | > 250 MPa               | 100-250 MPa             | 50-100 MPa                | 25-50 MPa                | 5-25<br>MPa | 1-5<br>MP       | < 1<br>MPa |
|           |                                 | valor                                | 15                      | 12                      | 7                         | 4                        | 2           | 2 1 0           |            |
| 2         |                                 | RQD                                  | 90-100%                 | 75-90%                  | 50-75%                    | 25-50%                   | <25%        |                 |            |
| 2         |                                 | valor                                | 20                      | 17                      | 13                        | 8                        |             | 3               |            |
| 3         |                                 | Espaciado de las<br>discontinuidades | > 2 m                   | 0,6-2 m                 | 0,2-0,6 m                 | 6-20 cm                  | <           | < 6 cm          |            |
|           |                                 | valor                                | 20                      | 15                      | 10                        | 8                        |             | 5               |            |
|           |                                 | Longitud de la<br>discontinuidad     | < 1 m                   | 1 – 3 m                 | 3 – 10 m                  | 10 – 20 m                | >           | > 20 m          | L          |
|           |                                 | Valor                                | 6                       | 4                       | 2                         | 1                        |             | 0               |            |
|           | des                             | Abertura                             | Nada                    | < 0.1 mm                | 0.1 – 1.0 mm              | 1 – 5 mm                 | >           | 5 mm            | 1          |
|           | mida                            | Valor                                | 6                       | 5                       | 3                         | 1                        |             | 0               |            |
| 4         | iscontir                        | Rugosidad                            | Muy rugosa              | Rugosa                  | Ligeramente<br>rugosa     | Ondulada                 | :           | Suave           |            |
| Т         | as d                            | Valor                                | 6                       | 5                       | 3                         | 1                        |             | 0               |            |
|           | do de l                         | Relleno                              | Ninguno                 | Relleno duro<br>< 5 mm  | Relleno duro<br>> 5 mm    | Relleno blando<br>< 5 mm | Relle<br>>  | eno bla<br>5 mm | ando<br>1  |
|           | Esta                            | Valor                                | 6                       | 4                       | 2                         | 2                        |             | 0               |            |
|           |                                 | Alteración                           | Inalterada              | Ligeramente<br>alterada | Moderadamente<br>alterada | Muy alterada             | Desc        | ompu            | esta       |
|           |                                 | valor                                | 6                       | 5                       | 3                         | 1                        |             | 0               |            |
|           | Flujo<br>de                     | Relación<br>Pagua / Pprinc           | 0                       | 0-0,1                   | 0,1-0,2                   | 0,2-0,5                  |             | > 0,5           |            |
| 5         | agua<br>en<br>las<br>junta<br>s | Condiciones<br>Generales             | Completament<br>e secas | Ligeramente<br>húmedas  | Húmedas                   | Goteando                 | Agu         | a fluye         | endo       |
|           |                                 | valor                                | 15                      | 10                      | 7                         | 4                        |             | 0               |            |

Tabla 1: Parámetros y rango de valores para la clasificación geomecánica RMR89

Una vez obtenido el RMR para el macizo, se pueden obtener los parámetros resistentes, cohesión y el ángulo de fricción, mediante las ecuaciones anteriores.

### 2.2.4.2 Índice de calidad de las rocas, RQD

El RQD (Rock quality designation index) fue desarrollado por Deere et al. (1967), para estimar cuantitativamente la cualidad del macizo rocoso basándose en la recuperación de un testigo. Depende indirectamente del número de fracturas y del grado de alteración del macizo.

El diámetro del testigo tiene que ser igual o superior a 57.4 mm, y tiene que ser perforado con un doble tubo de extracción de testigo. El RQD es el porcentaje de fragmentos de longitud superior a 10 cm, sobre la longitud total del testigo. Su expresión es:

$$RQD = \frac{\sum \text{longitud de fragmentos} > 10 \text{ cm}}{\text{longitud total perforación}} . 100$$

Si no se disponen de sondeos, una alternativa para el cálculo del RQD es a partir de las ecuaciones:

$$RQD = 115 - 3.3 Jv$$
  $Jv > 4.5$ 

$$RQD = 100 \quad Jv \leq 4.5$$

Donde Jv es el número de juntas identificadas en el macizo rocoso por m3. Una vez obtenido el valor de RQD, la calidad de la roca viene dada según la Tabla 3.

| Calidad de roca | RQD (%)  |
|-----------------|----------|
| muy mala        | < 25     |
| mala            | 25 - 50  |
| regular         | 50 - 75  |
| buena           | 75 - 90  |
| excelente       | 90 - 100 |

Tabla 2: Relación entre el valor del RQD y la calidad de la roca

### 2.2.4.3 Geological Strength Index (GSI)

Con la aparición del criterio de rotura de Hoek & Brown el uso del RMR ya no es adecuado, sobre todo para el caso de rocas débiles, y se introduce de esta forma la clasificación geomecánica GSI (Hoek, 1994; Hoek et al. 1995)

El GSI es un sistema para la estimación de las propiedades geomecánicas del macizo rocoso a partir de observaciones geológicas de campo.

Las observaciones se basan en la apariencia del macizo a nivel de estructura y a nivel de condición de la superficie. A nivel de estructura se tiene en cuenta el nivel de alteración que sufren las rocas, la unión que existe entre ellas, que viene dada por las formas y aristas que presentan, así como de su cohesión. Para las condiciones de la superficie, se tiene en cuenta si ésta esta alterada, si ha sufrido erosión o qué tipo de textura presenta, y el tipo de recubrimiento existente. Una vez realizadas las observaciones se escoge en la tabla la situación que más se acerca a la realidad del macizo a estudio, obteniendo de esta forma, el valor del GSI.

Tal y como se observa los valores del GSI varían desde 1 hasta 100. Los valores cercanos al 1 corresponden a las situaciones del macizo rocoso de menor calidad, es decir con la superficie muy erosionada, con arcilla blanda en las juntas, y con una estructura poco resistente debido a las formas redondas, y a la gran cantidad de fragmentación que sufre el macizo. Por el contrario, valores de GSI cercanos a 100, implican macizos de gran calidad, ya que significa una estructura marcada por una pequeña fragmentación en la que abundan las formas prismáticas y superficies rugosas sin erosión.



Figura 4: Clasificación según G.S. I

### 2.2.4.4 Slope Mass Rating

La clasificación Slope Mass Rating (SMR) se basa en una corrección del RMR, propuesta por Romana en 1985, para poder predecir el comportamiento de los taludes en roca con mayor precisión. En esta clasificación se utilizan datos como la dirección de buzamiento y el buzamiento de cada familia de juntas ( $\alpha$ j,  $\beta$ j) y del talud a estudiar ( $\alpha$ s,  $\beta$ s), así como el método empleado en la excavación del talud. La expresión del SMR es la siguiente:

$$SMR = RMR + (F1 \cdot F2 \cdot F3) + F4$$

El factor F1 depende del paralelismo entre las direcciones de las juntas y del talud, el factor F2 del buzamiento de la familia de juntas y el factor F3 de La diferencia de buzamientos entre la familia de juntas y el talud. El producto de estos tres factores (F1  $\cdot$  F2  $\cdot$  F3) se denomina factor de ajuste.

| Tabla 3: Determinación de | parámetros para S.M.R |
|---------------------------|-----------------------|
|---------------------------|-----------------------|

| С   | aso                              | Muy       | Favorable   | Normal    | Desfavorable | Muy          |
|-----|----------------------------------|-----------|-------------|-----------|--------------|--------------|
|     |                                  | favorable |             |           |              | desfavorable |
|     |                                  | > 30°     | 30º - 20º   | 20º - 10º | 10º - 5º     | < 5º         |
| Р   | a <sub>j</sub> -a <sub>s</sub>   |           |             |           |              |              |
| т   | a <sub>j</sub> -b <sub>s</sub> - |           |             |           |              |              |
|     | 180º                             |           |             |           |              |              |
| P/T | F <sub>1</sub>                   | 0,15      | 0,40        | 0,70      | 0,85         | 1,00         |
| Р   | b <sub>j</sub>                   | < 20°     | 20º - 30º   | 30º - 35º | 35° - 45°    | > 45°        |
|     | F <sub>2</sub>                   | 0,15      | 0,40        | 0,70      | 0,85         | 1,00         |
| Т   | F <sub>2</sub>                   | 1         | 1           | 1         | 1            | 1            |
| Ρ   | b <sub>j</sub> -                 | > 10º     | 10º - 0º    | 0°        | 0º - (-10º)  | < -10º       |
| т   | b <sub>s</sub>                   | < 110º    | 110º - 120º | > 120º    |              |              |
|     | b <sub>j</sub> +                 |           |             |           |              |              |
|     | bs                               |           |             |           |              |              |
| P/T | F <sub>3</sub>                   | 0         | -6          | -25       | -50          | -60          |

El método de ejecución empleado en la excavación del talud también es tenido en cuenta por esta clasificación mediante el factor F4. Este factor tomará valores entre 15 y -8 dependiendo de si el talud es natural o ha sido excavado mediante precorte, voladura suave, voladura normal, excavación mecánica o voladura deficiente.

Tabla 4: Valor de F4 en SMR

| Método         | Talud<br>natural | Precorte | Voladura<br>suave | Voladura<br>o | Voladura deficiente |
|----------------|------------------|----------|-------------------|---------------|---------------------|
|                |                  |          |                   | mecánico      |                     |
| F <sub>4</sub> | +15              | +10      | +8                | 0             | -8                  |

Las rocas se agrupan en cinco clases dependiendo del valor del índice SMR designándolas como muy buenas, buenas, regulares, malas y muy malas.

Tabla 5: Clasificaciones de SMR

| CLASE       | V                                                     | IV                           | II                               | II               | I                     |
|-------------|-------------------------------------------------------|------------------------------|----------------------------------|------------------|-----------------------|
| ROCA        | Muy mala                                              | Mala                         | Regular                          | Buena            | Muy buena             |
| SMR         | 0 – 20                                                | 21 - 40                      | 41 – 60                          | 61 - 80          | 81 - 100              |
| Estabilidad | Totalmente                                            | Inestable                    | Parcialmente estable             | Estable          | Totalmente<br>estable |
| Roturas     | Grandes roturas por<br>planos continuos o por<br>masa | Juntas o<br>grandes<br>cuñas | Algunas juntas o<br>muchas cuñas | Algunas<br>cuñas | Ninguna               |

### 2.2.5 ANÁLISIS DE ESTABILIDAD DE TALUDES

En la mayor parte de los casos la geometría de la superficie de rotura no permite obtener una solución exacta del problema mediante la única aplicación de las leyes de la estática. El problema es "hiperestático" y ha de hacerse alguna simplificación o hipótesis previa que permita su resolución. Se pueden considerar así los métodos que consideran el equilibrio global de la masa deslizante, hoy en desuso, y los métodos de las dovelas o rebanadas, que consideran a la masa deslizante dividida en una serie de fajas verticales. Los métodos de las dovelas o rebanas pueden clasificarse en dos grupos:

• Métodos aproximados: no cumplen todas las ecuaciones de la estática. Se pueden citar por ejemplo los métodos de Fellenius, Janbu y Bishop simplificado.

• Métodos precisos o completos: cumplen todas las ecuaciones de la estática. Los más conocidos son los de Morgenstern-Price, Spencer y Bishop riguroso. En la

siguiente figura, se muestra un gráfico en el que se recogen los diferentes métodos de cálculo.





Existen varios métodos de cálculo para establecer el factor de seguridad de un talud en suelos, estos son:

- Equilibrio límite de fuerzas.
- Equilibrio límite de momentos.

En el análisis de esfuerzos efectivos, la resistencia al corte de un suelo se define como:

$$\tau = c' + (\sigma_n - u)tan\emptyset'$$

Dónde:

 $\tau$  = resistencia al corte.

c'= cohesión efectiva.

 $\sigma n$  = esfuerzo normal total.

u = presión hidrostática.

 $\emptyset'$  = ángulo friccional efectivo.

La formulación de equilibrio límite asume lo siguiente: 1. El factor de seguridad de la componente cohesiva y la parte friccional de la resistencia al corte de un suelo es la misma para todos los suelos involucrados. 2. El factor de seguridad es el mismo para todas las rebanadas. En las figuras siguientes se muestran todas las fuerzas actuantes sobre una rotura circular y compuesta respectivamente.



Figura 6: Fuerzas actuantes sobre talud.

Las variables definidas se describen a continuación:

- W = peso total de la rebanada, de ancho b y altura h.
- N = fuerza total normal a la base de la rebanada.
- S = fuerza de corte movilizada en la base de la rebanada.

E = fuerza normal horizontal entre rebanadas. Subíndices D "derecha" e I "izquierda" según el lado de la rebanada en el que actúa.

X = fuerza vertical de corte entre rebanadas. Subíndices D "derecha" e I "izquierda" según el lado de la rebanada en el que actúa.

D = línea externa de carga.

kW= carga sísmica horizontal aplicada en el centroide de cada rebanada.

R = radio de la superficie de deslizamiento.

f = perpendicular a la fuerza normal desde el centro de rotación o desde el centro de momentos.

x = distancia horizontal desde el centro de cada rebanada al centro de rotación o centro de momentos.

e = distancia vertical desde el centro de cada rebanada al centro de rotación o centro de momentos.

d = distancia perpendicular desde la línea de carga al centro de rotación o centro de momentos.

h = distancia vertical desde el centro de la base de cada rebanada a la línea más superior geométricamente (generalmente la superficie topográfica).

 a = distancia perpendicular desde la resultante externa de la fuerza hidrostática al centro de rotación o centro de momentos. Subíndices D "derecha" e l "izquierda" según el lado del talud.

A = resultante externa de la fuerza hidrostática. Subíndices D "derecha" e l "izquierda" según el lado del talud.

 $\omega$  = ángulo de la línea de carga con la horizontal. Este ángulo se mide según las agujas del reloj desde el eje X positivo.

 $\alpha$  = ángulo entre la tangente del centro de cada rebanada y la horizontal.

La magnitud de la fuerza de corte movilizada para satisfacer las condiciones de equilibrio límite son:

$$S_m = \frac{s \cdot \beta}{F} = \frac{\beta [c' + (\sigma_n - u) \tan \phi']}{F}$$

Dónde:

 $\sigma$  n = N /  $\beta$  esfuerzo normal medio en la base de cada rebanada.

F = factor de seguridad.

 $\beta$  = longitud de la base de cada rebanada.

Para resolver el factor de seguridad mediante el equilibrio límite se realiza el sumatorio de fuerzas en dos direcciones (horizontal y vertical) y el sumatorio de momentos.

En las tablas se muestran las variables conocidas y no conocidas en el cálculo de estabilidad de taludes. Relación de variables conocidas para resolver el factor de seguridad.

| N° de variables<br>conocidas | Descripción                          |  |  |
|------------------------------|--------------------------------------|--|--|
| n                            | Sumatoria de fuerzas horizontales    |  |  |
| n                            | Sumatoria de fuerzas en la vertical  |  |  |
| n Sumatoria de momentos      |                                      |  |  |
| n                            | Criterio de rotura de Mohr - Coulomb |  |  |
| 4n                           | N° total de ecuaciones               |  |  |

Tabla 6: Relación de variables conocidas para resolver el factor de seguridad.

Tabla 7: Relación de variables desconocidas para resolver el factor de seguridad.

| N° de variables<br>conocidas | Descripción                                                       |  |  |
|------------------------------|-------------------------------------------------------------------|--|--|
| n                            | Magnitud de la fuerza normal a la base rebanada, N                |  |  |
| n                            | Punto de aplicación de la fuerza normal en la base de la          |  |  |
| []                           | rebanada                                                          |  |  |
| n - 1                        | n - 1 Magnitud de la fuerza normal a las caras entre rebanadas, E |  |  |
| n 1                          | Punto de aplicación de la fuerza normal a las caras entre         |  |  |
| 11 - 1                       | rebanadas, X                                                      |  |  |
| n – 1                        | n – 1 Magnitud de la fuerza de corte en las caras entre rebanadas |  |  |
| n                            | Fuerza de corte en la base de cada rebanada, Sm                   |  |  |
| n Factor de seguridad, F     |                                                                   |  |  |
| n                            | Valor de Lambda                                                   |  |  |
| 6n - 1                       | N° total de incógnitas                                            |  |  |

Como el número de incógnitas excede el número de ecuaciones, el problema es indeterminado. Asumiendo una serie de convenios: direcciones, magnitudes, puntos de aplicación de las mismas fuerzas, podemos convertir el problema en determinado.

La mayoría de los métodos asumen que el punto de aplicación de la fuerza normal en la base de la rebanada actúa a través de la línea central de la misma. Otro convenio comúnmente utilizado hace referencia a la magnitud, la dirección y el punto de aplicación de las fuerzas entre rebanadas. En general, los métodos de rebanadas se pueden clasificar en: (Vames, 1978)

• Los que usan la estática para obtener el factor de seguridad.

• Los que asumen hipótesis sobre las fuerzas entre rebanadas para convertir el problema en determinado.

### 2.2.6 Tipos de rotura

El macizo rocoso puede presentar distintos modos de rotura dependiendo de los siguientes factores:

Presencia o ausencia de las discontinuidades.

Orientación de los planos de discontinuidades en relación con la cara exterior del talud.

Espaciamiento de las discontinuidades en una, dos y tres dimensiones.

La resistencia al corte de las paredes de discontinuidades.

La continuidad de sus discontinuidades.

La influencia del agua.

Los movimientos que se desarrollan en un talud en un macizo rocoso poco fracturado o con sistemas de discontinuidades muy marcados, se distinguen de los movimientos en suelos por intervenir como factor principal de su inestabilidad la presencia de discontinuidades naturales (fallas, diaclasas, juntas de estratificación, esquistosidad) antes de producirse un movimiento. En este sentido, los medios rocosos son medios discontinuos compuestos por bloques sólidos separados entre sí por discontinuidades, cuyas propiedades tensodeformacionales son de naturaleza anisótropa, donde la rotura se produce a lo largo de superficies preexistentes. Por otra parte en macizos rocosos fuertemente fracturados, en los que puede distribución espacial isótropa de múltiples considerarse que existe una discontinuidades, la rotura se puede desarrollar a lo largo de múltiples micro superficies de corte y puede ser muy similar a la que se produce en un suelo y en ese caso el macizo rocoso puede considerarse como un medio continuo isótropo.

En un talud, la inestabilidad se produce cuando una parte del macizo rocoso se mueve significativamente en relación a otra que permanece estable. Ello quiere decir que las masas inestables están delimitadas por superficies que llamamos superficies de deslizamiento. Sobre las superficies de deslizamiento las tensiones están en la condición límite, es decir que en ellas se verifica el criterio de rotura. En los medios rocosos las superficies de contorno son debidas unas veces a discontinuidades estructurales preexistentes. En otros casos cuando la roca está intensamente fracturada la rotura se produce a lo largo de una superficie que atraviesa el macizo. Una de las clasificaciones más utilizadas para identificar los mecanismos de rotura es la elaborada por Vames (1978). Establece seis tipos de movimientos básicos. Se presentan resumidos en la Tabla 8.

| TIPOS DE MOVIMIENTOS     |                |                   |                               |  |  |  |  |
|--------------------------|----------------|-------------------|-------------------------------|--|--|--|--|
|                          | Traslacionales | Planos            | Superficie de rotura singular |  |  |  |  |
|                          |                |                   | Superficie de rotura          |  |  |  |  |
| 1. Deslizamientos        |                |                   | poligonal                     |  |  |  |  |
|                          |                | Cuñas             |                               |  |  |  |  |
|                          | Rotacionales   | Bloques           |                               |  |  |  |  |
|                          |                | Masas fracturadas |                               |  |  |  |  |
| 2. Extensiones laterales |                |                   |                               |  |  |  |  |
| 3. Vuelcos               |                |                   |                               |  |  |  |  |
| 4. Pandeos               |                |                   |                               |  |  |  |  |
| 5. Desprendimientos      |                |                   |                               |  |  |  |  |
| 6. Movimientos complejos |                |                   |                               |  |  |  |  |

Tabla 8: Clasificación de tipos de movimientos (Varnes, 1978)
Cada uno de los diferentes tipos de los movimientos citados ocurre con distinta frecuencia. Por ejemplo, el denominado como "deslizamiento" ocurre más a menudo que el correspondiente al vuelco o al pandeo. Cada uno de los tipos de movimientos se analiza aplicando distintos métodos de análisis bajo distintas condiciones de equilibrio. En los movimientos de tipo rotura plana, rotura por cuña y vuelco, que dependen de la orientación de las discontinuidades, orientación de la cara exterior del talud y resistencia al corte, los factores geométricos tienen gran influencia en su estabilidad. En este trabajo, de entre todos estos distintos tipos de movimientos, solo los deslizamientos traslacionales planos y rotacionales son los que se van a analizar y cuantificar su seguridad. Sin embargo y como complemento se va a efectuar una breve descripción del resto de mecanismos

#### 2.2.6.1 Deslizamientos traslacionales o rotacionales.

Se producen al superar la resistencia al corte a lo largo de la superficie de deslizamiento predeterminada. Los deslizamientos traslacionales se producen a través de superficies que tienen formas aproximadamente planas o curvas.

Según Hoek & Bray (1981), el deslizamiento circular en taludes en macizos rocosos ocurre cuando (1) no hay ninguna singularidad estructural dominante dentro de la masa deslizante (por ejemplo, un macizo rocoso extremadamente fracturado con ninguna orientación de discontinuidades predominante), (2) las partículas individuales son muy pequeñas en comparación con el tamaño del talud, y (3) las partículas individuales dentro de la masa rocosa no están conectadas entre sí como consecuencia de su forma. Cuando el macizo rocoso se encuentra extremadamente fracturado o meteorizado, o cuando, además, se presentan capas menos resistentes próximas al pie del talud, la superficie de deslizamiento es muy similar a la que se produce en suelos, es decir se produce el deslizamiento rotacional. Geométricamente la forma de deslizamiento se acerca más a la superficie casi circular o cóncava que a cualquier otra. Los movimientos rotacionales a lo largo de las superficies circulares se desarrollan si hay discontinuidades preexistentes de características resistentes pobres, o cuando el talud es suficiente alto o abrupto, o

ambas cosas a la vez para que las tensiones cortantes producidas por la excavación excedan la resistencia de la masa rocosa.



Figura 7: Deslizamiento circular (IGME, 1985)

La superficie de deslizamiento circular es el clásico deslizamiento por corte típico para suelos. En medios rocosos, la razón predominante para que se produzca la rotura es la disminución de resistencia al esfuerzo cortante a lo largo de las juntas. Las superficies de deslizamiento en medios rocosos se desarrollan en parte a lo largo de juntas, y en parte cortando la roca matriz. Suele ocurrir en macizos muy diaclasados con tamaño de bloques muy pequeños respecto al talud, pero también es muy frecuente en rocas muy blandas, blandas o muy meteorizadas. Los tipos de roca que generan este tipo de rotura son también ricos en partículas arcillosas, o reblandecidos por descompresión y por influencia del agua cuando la presión intersticial es suficientemente alta como para producir la inestabilidad rotacional. Como consecuencia de este tipo de movimiento aparecen las grietas de tracción en la parte superior del deslizamiento y hacia la dirección del movimiento. Estos deslizamientos pueden estar también condicionados por la rotura a través de discontinuidades preexistentes. Por ejemplo, a través de grietas de tracción, en combinación con deslizamientos planos, o formando la superficie circular por las diaclasas existentes.



Figura 8: Deslizamiento circular combinado (Hoek & Bray, 1981)

En estos casos de deslizamiento rotacional se pueden y se suelen aplicar los métodos de cálculo de rebanadas típicos y válidos para suelos (Janbu, Bishop, Spencer, Morgenstem & Price, etc.), en donde incluso las superficies deslizantes se pueden forzar para que pasen por las zonas más débiles del terreno. Cuando se presentan grietas de tracción en cabeza del talud, (por meteorización o liberación de tensiones iniciales), no se pueden aplicar directamente los programas de cálculo que habitualmente utilizan esas bases teóricas. Se puede hacer un análisis similar al realizado por Hoek & Bray (1981), utilizando el método de Bishop con posible presencia de agua en la grieta de tracción.

También se pueden presentar tipos de deslizamiento circular combinado tales como los representados en la Figura y cuyo deslizamiento se puede asemejar de manera simplificada a un círculo. Estos son:

- A Deslizamiento circular por cortante
- B Deslizamiento circular por cortante en combinación con deslizamiento plano

C - Deslizamiento circular por cortante en combinación con la grieta de tracción en la parte superior del talud

D - Deslizamiento circular a través del macizo rocoso y a lo largo de discontinuidades.

El término "deslizamiento curvilíneo" (Hudson & Harrison, 1997) se utiliza para describir un grupo de inestabilidades tales como los mostrados en la figura, que es complementaria a las figuras anteriores. Este término, en términos coloquiales, se considera sinónimo al término más usual de deslizamiento circular que a su vez se considera que también tiene en cuenta un deslizamiento no circular.



Figura 9: Desarrollo de deslizamiento curvilíneo (Hudson & Harrison, 1997)

En la Figura se presentan cinco diagramas de condiciones geológicas diferentes bajo cuales los deslizamientos curvilíneos se pueden desarrollar: (a) Para material rocoso isótropo, la forma de superficie de deslizamiento tiende a tener una sección circular. Ocurre en la roca fuertemente diaclasada, la roca fragmentada, la roca alterada y meteorizada, en rocas blandas. (b) Para material rocoso anisótropo, tal como los que poseen una estructura laminada, donde la superficie de deslizamiento

tiende a alargarse en la dirección paralela a la estructura laminada. Ocurre en las rocas laminadas como pizarras, esquistos, lutitas. (c) Para material rocoso con una discontinuidad muy marcada donde el deslizamiento tiende a seguir esta misma discontinuidad lo más posible. Ocurre en cualquier tipo de roca que contiene juntas, fallas. (d) En los materiales rocosos con una resistencia poco cohesiva y de naturaleza granular, la curvatura de deslizamiento es menos marcada y tiende a ser plana y la grieta de tracción casi no existe. Ocurre en la roca fuertemente fracturada, residual y adopta formas superficiales. (e) En los materiales rocosos heterogéneos donde la diferencia entre dos materiales es muy marcada, siendo el material de abajo más resistente. Basándose en datos tomados de la experiencia, en estos materiales se produce una superficie de deslizamiento de tipo curvilínea y normalmente termina con una grieta de tracción en la parte superior del mismo. La forma y la posición de la superficie de deslizamiento dependen de las características resistentes del macizo rocoso, es decir de sus características estructurales. En las Figuras vienen presentadas las superficies de deslizamiento bidimensionales. En realidad la superficie de deslizamiento circular es un fenómeno tridimensional, pero como simplificación, y del lado de la seguridad, se analizará en dos dimensiones.



Figura 10: Geometría tridimensional de deslizamiento circular (Hoek & Bray, 1981)

La Figura representa el deslizamiento traslacional sobre una superficie preexistente. La masa del terreno que se moviliza se mueve a lo largo de una superficie casi plana o suavemente ondulada, por discontinuidades bien marcadas con menor resistencia al corte; por ejemplo en el contacto de calizas y margas, o por ejemplo sobre una superficie de esquistosidad con arcilla.



Figura 11: Deslizamiento traslacional (IGME, 1985)

Los casos particulares del deslizamiento traslacional desde un punto de vista práctico son rotura plana y rotura por cufias.

### 2.2.6.2 Rotura plana

Cuando el deslizamiento corresponde a uno o varios bloques a favor de planos de deslizamiento, las roturas se llaman planas. El deslizamiento plano suele producirse cuando la masa no esté confinada lateralmente. Normalmente ocurre en taludes naturales o en desmontes cuando las discontinuidades tienen casi la misma dirección del buzamiento que la superficie natural del talud. La tipología de rotura plana es muy frecuente y puede ser de máxima peligrosidad. La rotura plana en un macizo rocoso representa uno de los mecanismos más simples de rotura. Los mecanismos básicos de deslizamientos traslacionales planos se pueden subdividir en (Kovari & Fritz, 1984:

- (a) Rotura por un plano singular;
- (b) Rotura por un plano singular con grieta de tracción;
- (c) Rotura por plano escalonado y con puentes de roca matriz;
- (d) Rotura por una superficie poligonal formada por varios planos.



Figura 12: Tipos de rotura planar (Hoek & Bray 1981)

El caso más elemental corresponde a un mecanismo simple, con una superficie de rotura plana singular, cuyo tratamiento matemático es muy sencillo. Para que ocurra la rotura plana a lo largo de una única superficie plana, han de cumplirse las siguientes condiciones cinemáticas y mecánicas descritas por Hoek & Bray (1981):

La superficie de rotura es un plano continuo que ha de tener el rumbo paralelo o casi paralelo a la superficie del talud (aproximadamente  $\pm 20^{\circ}$ ).

La superficie de rotura debe buzar hacia el exterior del talud y salir por la superficie vista del desmonte (el buzamiento de superficie de rotura ( $\Psi$ ) es menor que el buzamiento de la superficie del talud ( $\delta$ ).

El buzamiento de la superficie de rotura ( $\Psi$ ) debe de ser mayor que el ángulo de rozamiento ( $\phi$ ) de este plano. En el caso de que exista agua, la rotura plana se puede producir con  $\Psi < \phi$ 

Las superficies laterales que separan el plano deslizante han de tener una resistencia despreciable diferente al conjunto.

El caso de rotura plana se puede estudiar mediante métodos analíticos y mediante métodos gráficos (mediante la proyección estereográfica). Se analiza como un problema bidimensional.

#### 2.2.6.3 Rotura por cuña

Cuando el bloque que desliza está limitado por dos o tres juntas se trata de una rotura por cuña. Ocurre en taludes cortados por dos superficies de discontinuidades, no paralelas, de tal manera que la línea de intersección de ambos planos aflora en el talud y buza en sentido desfavorable. Normalmente este tipo de rotura es limitado por cuatro caras, dos de planos de discontinuidades, dos de superficie de roca, y a veces incluye un plano correspondiente a la grieta de tracción. También la superficie de roca matriz.



Figura 13: Rotura por cuña (Hoek & Bray, 1981)

El caso de rotura por cuña es un caso especial de la rotura plana. La dirección resultante de rotura es la línea de intersección de superficies de discontinuidades.

#### 2.2.6.4 Rotura por vuelco

Para que se produzca en un talud el fenómeno de vuelco, también conocido como "cabeceo", o a menudo con la denominación inglesa "toppling", es necesario que exista una familia de discontinuidades que siendo paralelas tengan casi el mismo rumbo que el talud, con buzamiento alto y orientación hacia el interior del talud. El vuelco conlleva la rotación de los bloques, o columnas, en tomo de una base fija bajo la acción gravitatoria o presión de agua en las discontinuidades. Implica que un estrato tiende a quedar colgado y soportado por la resistencia pasiva de las capas de la base del talud. Goodman & Bray (1976) cifran en ±10° la diferencia máxima entre ambos para que se produzca el fenómeno. Las roturas por vuelco pueden manifestarse a cualquier escala y en casi todo tipo de roca, incluso pueden ser profundas y grandes. Pueden incluir también roca bastante sana. Ocurren tanto en taludes naturales como en taludes excavados, en desmontes en obras civiles o cortas mineras. En la Figura se presentan tres tipos de vuelcos:

A - Vuelco por flexión ("flexural toppling").

- B Vuelco de bloques rígidos ("block toppling").
- C Vuelco por flexión de bloques (mixto) ("block-flexural toppling").



Figura 14: Rotura por vuelco (Goodman y Bray, 1976)

El vuelco por flexión se produce en rocas duras con discontinuidades bien definidas y con pendientes casi verticales. Puede ser provocado por la erosión de la base del talud. Se desarrolla como un mecanismo compuesto por flexiones seudo-continuas del material, individualizado en columnas. Ello es debido a una serie de movimientos acumulados a lo largo de las discontinuidades, lo que conlleva el origen de grietas de tracción muy profundas. En este caso no existen formulaciones válidas que sean fáciles de aplicar para el cálculo. Este tipo de vuelco abarca a menudo, horizontalmente, la longitud de hasta cinco veces de altura del talud. El vuelco de bloques rígidos puede ocurrir en una roca dura con juntas ortogonales de gran espaciamiento, dando lugar a una geometría de columnas divididas en blogues. El empuje sobre los bloques inferiores origina su desplazamiento, y progresa hacia la parte superior del talud. En este caso existen distintos métodos de cálculo, como los de Goodman & Bray (1976), los abacos de Zanbak (1983), de Ayala et al. (1985). El método de Sagaseta et al. (2001) supone un avance en el tratamiento matemático y analítico de este problema. El vuelco mixto se caracteriza por una flexión seudocontinua que afecta a columnas largas de roca con juntas transversales, y representa un caso que participa de las características de los dos mecanismos antes descritos. Su análisis resulta muy complejo.

Existen también modos de rotura por vuelco de tipo secundario, es decir, provocados como consecuencia de otros modos de inestabilidad. Estos tipos de vuelco generalmente se inician por el corte del pie de talud por incidencias naturales, como erosión, o por las actividades de origen humano. En todos estos casos representados en la figura, el primer modo de rotura viene dado como un deslizamiento, y como consecuencia del mismo se produce una rotura por vuelco.

34



Figura 15: Rotura por vuelco secundario (Goodman & Bray, 1976)

Tales son, por ejemplo:

A - Vuelco en la base del talud producido por el empuje de la masa deslizada.

B - Vuelco inducido por el sobrepeso de una masa deslizada.

C - Deslizamiento y vuelco de la cabeza del talud por desplazamiento de los bloques del pie del talud.

D - Vuelco de una roca columnar por erosión de la base.

E - Vuelco desencadenado por grieta de tracción.

### 2.2.6.5 Rotura por pandeo

El fenómeno de pandeo ("buckling") se produce cuando el buzamiento de discontinuidades es igual o mayor que el buzamiento del talud natural. Es decir, cuando la estratificación es subvertical, y cuando los estratos son suficientemente

estrechos. Debe existir una gran diferencia entre dos de las tres dimensiones que definen geometría. Este tipo de rotura, bastante singular, puede darse en determinados taludes con un elevado ángulo de inclinación y con una estratificación o fracturación de la roca paralela al talud. Puede progresar hacia el interior del talud y llegar sucesivamente a estratos subyacentes. La rotura por pandeo se puede denominar también como vuelco inverso de los estratos. La rotura por pandeo se ve favorecida por la presencia de empujes sobre la placa o estrato superficial, procedentes del terreno subyacente, o por el efecto de la subpresión. También se produce por compresión de columnas de roca.



Figura 16: Rotura por pandeo (IGME, 1985)

Pueden darse los siguientes casos de rotura por pandeo:

- A Pandeo por flexión de placas continuas.
- B Pandeo por flexión de placas fracturadas en taludes con frentes planos.

C - Pandeo por flexión de placas fracturadas en taludes con frentes curvados y fracturados.

El primer caso no es muy frecuente en la realidad por exigir unas condiciones de homogeneidad en la placa potencialmente inestable. El agente causante de la inestabilidad es el peso propio de la placa. Limitando este peso, es decir, limitando la altura del talud, se puede evitar el pandeo del estrato. El segundo y el tercer caso representados en la Figura son más probables puesto que la existencia de dos familias de juntas, aproximadamente ortogonales, se presenta en la naturaleza con mayor frecuencia. Para que ocurra el segundo caso es necesaria una fuerza externa a la placa que actúa como empuje del terreno adyacente, o una presión intersticial. En este caso el peso de la placa presenta una acción estabilizadora que se opone al giro de los bloques. El tercer caso se distingue del segundo solamente por la curvatura del talud. Un caso real de ocurrencia de la rotura por pandeo y el diseño de su soporte viene dada en Wang et al. (2004). Efectúa una recopilación de los distintos métodos de cálculo desarrollados y aplicables para la rotura por pandeo. Aplica un método numérico desarrollado para la modelización de los bloques rocosos separados por juntas, el BSM (Block-Spring Model).

#### 2.2.6.6 Desprendimientos

En los desprendimientos, una masa del terreno, o bloques sueltos, de cualquier tamaño, se separan de un talud escarpado, a lo largo de una superficie sobre la que hay poco o ningún desplazamiento tangencial, y se desplazan por el terreno rodando o rebotando, o cayendo verticalmente. Estas inestabilidades afectan frecuentemente a bloques aislados, aunque también pueden abarcar a grandes masas rocosas (Halliday & McKelvey, 2004).

Frecuentemente, estos tipos de inestabilidades afectan a bloques aislados, originando movimientos de terreno, con velocidades extremadamente elevadas y con resultados catastróficos.

Las posibilidades de que ocurran estos tipos de inestabilidades vienen condicionadas por la fracturación, los buzamientos de la serie estratigráfica, la inclinación del terreno y disposición respecto al buzamiento, la resistencia de los estratos más rígidos, la potencia relativa de los estratos resistentes respecto a los estratos menos

37

competentes, etc. Suelen ocurrir en medios geológicamente compuestos por alternancias sedimentarias de capas débiles y resistentes. Las causas que llevan a este tipo de movimiento son ía meteorización de las capas más superficiales, la concentración de presiones en los bordes, la rotura por flexotracción. La Figura ilustra unas tipologías de los desprendimientos que se pueden encontrar. Estos desprendimientos vienen predeterminados por la grieta de tracción previamente originada. Caen dando lugar a trayectorias varias, donde el material puede caer libremente, saltar o rodar, dependiendo de la inclinación del talud.



Figura 17: Desprendimientos en roca (IGME, 1985)

A modo de síntesis puede considerarse que existen tres tipos distintos:

- A Caída libre;
- B Con rebote;
- C Con rodamiento de las partículas.

Los métodos de análisis de desprendimientos tienen por finalidad la determinación de las trayectorias de los bloques inestables y la energía de los bloques generada durante su caída. Posibilitan determinar las medidas adecuadas de protección. Un ejemplo del caso de desprendimiento con el método de análisis y simulación numérica tridimensional viene dado por Crosta & Agliardi (2004).

### 2.3 DEFINICIÓN DE TÉRMINOS BÁSICOS

Ángulo de fricción interna: ángulo entre el eje de esfuerzos normales y la tangente a la envolvente de Mohr en un punto que representa una condición dada de esfuerzo de ruptura de un material sólido. (Mohr-Coulomb, 1773)

Coeficiente de seguridad: es el valor numérico de la relación entre la resistencia media del suelo a lo largo de la superficie de deslizamiento potencial y la resistencia estrictamente necesaria para mantener el terreno en equilibrio. (Bishop, 1955).

Cohesión: La cohesión es una característica propia de los materiales que presentan resistencia al corte bajo un esfuerzo normal nulo (un término equivalente en mecánica de rocas es resistencia intrínseca al corte). (Mohr-Coulomb, 1773)

Suelo Coluvial: termino genérico aplicado a cualquier masa de suelo depositada por la escorrentía, que generalmente se encuentra en la base de las colinas o de las laderas de pendiente moderada. Los coluviones o depósitos coluviales están formados típicamente por arenas mal gradadas y gravas. (Patiño, 2001)

Criterio de falla: relación de esfuerzo/deformación, derivada teórica o empíricamente, que caracteriza la ocurrencia de la ruptura de un material. (Terzaghi, 1962)

Cuña: término genérico para designar una masa de terreno que se desplaza como una unidad discreta. En los taludes en roca, y en suelos residuales, bloque poliédrico cuyas caras están definidas por diaclasas u otro tipo de discontinuidad preexistente. (Taylor, 1937)

Depósito: acumulación de material térreo de cualquier tipo, consolidado o no. (Patiño, 2001)

Depósito aluvial: acumulación de material transportado y depositado por una corriente de agua. Acumulación de grava, arena, y limo transportado y sedimentado por una corriente de agua. (Patiño, 2001)

Deslizamiento: término genérico que comprende una amplia variedad de procesos de erosión en masa que incluye el transporte pendiente abajo de masas de suelo y de

roca. Normalmente el material removido se desplaza a lo largo de una superficie o de una zona restringida de cizalladura. (Sharpe, 1938)

Diaclasa: plano de discontinuidad en un cuerpo rocoso, sin movimiento perceptible paralelo a la superficie de discontinuidad. (Taylor, 1937)

Esfuerzo: fuerza por unidad de área sobre la que se aplica dicha fuerza. Los esfuerzos pueden ser normales, cortantes o torsionales. En algunos medios se prefiere utilizar el término tensión para este concepto. (Varnes, 1958)

Estabilidad: estado y condición de una estructura o de una masa de material cuando puede soportar los esfuerzos aplicados durante largo tiempo sin sufrir una deformación o movimiento apreciable que no se recupere o devuelva al retirar la carga. (Taylor, 1937)

Pendiente crítica: máximo ángulo con la horizontal que puede alcanzar un talud, de una altura dada, sin soporte lateral. (Stein, 1980)

Proyección estereográfica: representación bidimensional de direcciones tridimensionales utilizada en la solución de problemas estructurales y en el análisis de estabilidad de taludes en roca. (Sheriff, 1984)

Zona estable: expresión utilizada para calificar el terreno donde es muy baja la probabilidad de movimientos de masa o erosión lineal intensa. Corresponden a terrenos con una factor de seguridad igual a, o mayor que, 1.5. (Suárez, 1989)

Zona inestable: expresión utilizada para calificar el terreno donde la probabilidad de ocurrencia de movimientos de masa y erosión lineal intensa puede calificarse entre alta y muy alta. Corresponde a terrenos con factores de seguridad iguales a, o menores que 1.5. (Suárez, 1989)

40

# **CAPÍTULO III**

# MATERIALES Y MÉTODOS

# 3.1 UBICACIÓN DE LA INVESTIGACIÓN

# 3.1.1 UBICACIÓN GEOGRÁFICA

La zona de investigación se encuentra al NE de la ciudad de Cajamarca, la carretera consta de una extensión total de 30 km.

| Distrito / coordenadas | Norte   | Este   | Cota      |  |  |
|------------------------|---------|--------|-----------|--|--|
|                        | (m)     | (m)    | (m.s.n.m) |  |  |
| Bambamarca             | 9263500 | 775500 | 2526      |  |  |
| Paccha                 | 9280500 | 784500 | 2250      |  |  |

# 3.1.2 POLÍTICA

La zona de estudio abarca dos provincias de la región de Cajamarca; Hualgayoc y Chota.

El mapa de ubicación se muestra en el plano 01.

#### 3.1.3 ACCESIBILIDAD

Las dos principales vías de acceso son la carretera asfaltada Cajamarca – Bambamarca, y luego la carretera tipo troca Bambamarca – Paccha y/o también se puede acceder por la carretera asfaltada Chota – Bambamarca, en la siguiente tabla se detallan las diferentes vías:

Tabla 9: Accesibilidad a la zona de estudio

| TRAMO                  | TRANSPORTE | TIPO      | TIEMPO     |
|------------------------|------------|-----------|------------|
| Cajamarca - Bambamarca | Band       | Asfaltado | 2h 30 min. |
| Chota - Bambamarca     | Band       | Asfaltado | 0h 40 min. |
| Bambamarca - Paccha    | Camioneta  | Trocha    | 1h 15 min  |

#### 3.1.4 CLIMA

La zona de estudio al abarcar distritos de dos diferentes provincias de la región de Cajamarca, se debe considerar la influencia de dos diferentes tipos de climas.

### CLIMA DE BAMBAMARCA

El clima es cálido y templado en Bambamarca. Hay precipitaciones durante todo el año en Bambamarca. Hasta el mes más seco aún tiene mucha lluvia. La temperatura media anual en Bambamarca se encuentra a 14.3 °C. La precipitación es de 792 mm al año. (Climate Data, 2015)

**PRECIPITACIÓN:** El mes más seco es agosto, con 20 mm - 115 mm, mientras que la caída media en marzo. El mes en el que tiene las mayores precipitaciones del año





**TEMPERATURA:** El mes más caluroso del año con un promedio de 15.3 °C de enero. El mes más frío del año es de 13.2 °C en el medio de julio. (Climate Data, 2015)



Figura 19: Variaciones de temperatura en Bambamarca

### DATOS HISTÓRICOS DEL TIEMPO

| Meses               | 1    | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9    | 10   | 11   | 12   |
|---------------------|------|------|------|------|------|------|------|------|------|------|------|------|
| Precipitación       | 76   | 91   | 115  | 88   | 44   | 23   | 21   | 20   | 55   | 102  | 89   | 68   |
| (mm)                |      |      |      |      |      |      |      |      |      |      |      |      |
| Temperatura<br>(°C) | 15.3 | 14.7 | 14.7 | 14.7 | 14.2 | 13.4 | 13.2 | 13.5 | 14.1 | 14.8 | 14.6 | 14.6 |

Tabla 10: Datos Historicos de temperatura en Bambamarca.

(Climate-Data, 2015)

La diferencia en la precipitación entre el mes más seco y el mes más lluvioso es de 95 mm. Las temperaturas medias varían durante el año en un 2.1 °C. Los números de la primera línea de la tabla climática representar los meses siguientes: (1) enero (2) febrero (3) marzo (4) abril (5) mayo (6) junio (7) julio (8) agosto (9) septiembre (10) octubre (11) noviembre (12) diciembre.

### CLIMA PACCHA

El clima es cálido y templado en Paccha. Hay precipitaciones durante todo el año. La temperatura media anual en Paccha se encuentra a 16.4 °C. La precipitación es de 817 mm al año.

**PRECIPITACIÓN:** El mes más seco es julio, con 24 mm - 114 mm, mientras que la caída media en marzo. El mes en el que tiene las mayores precipitaciones del año.



Figura 20: Variaciones de precipitación en Paccha

**TEMPERATURA:** El mes más caluroso del año con un promedio de 17.0 °C de enero. El mes más frío del año es de 15.4 °C en el medio de julio. (Climate data.org, 2015)



Figura 21: Variaciones de temperatura en Paccha.

### DATOS HISTÓRICOS DEL TIEMPO

| Meses               | 1  | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9    | 10   | 11   | 12   |
|---------------------|----|------|------|------|------|------|------|------|------|------|------|------|
| Precipitación       | 76 | 81   | 114  | 91   | 47   | 28   | 24   | 25   | 63   | 105  | 95   | 68   |
| (mm)                |    |      |      |      |      |      |      |      |      |      |      |      |
| Temperatura<br>(°C) | 17 | 16.8 | 16.6 | 16.8 | 16.3 | 15.6 | 15.4 | 15.6 | 16.3 | 16.7 | 16.8 | 16.8 |

Tabla 11: Datos históricos de temperatura en Paccha.

(Climate-Data, 2015)

La diferencia en la precipitación entre el mes más seco y el mes más lluvioso es de 90 mm. Las temperaturas medias varían durante el año en un 1.6 °C.

### 3.1.5 VEGETACIÓN

La zona de estudio al estar ubicada en el piso altitudinal de la región Quechua (2300 hasta los 3500 m.s.n.m) la vegetación está conformada por especies como el aliso, eucalipto, tara. También destacan cultivos como la calabaza, arracacha, caihua, maíz, papa, yuca, camote, cañas de azúcar entre otros. Además al tener clima cálido presenta el cultivo de frutas como piñas, nísperos, naranjas, plátanos.



Foto 1: Vegetación presente en el Km 04, árboles de eucalipto y alisos.

### 3.1.6 GEOMORFOLOGÍA

La zona de estudio se encuentra colindante al cauce del rio LLaucano, El valle del rio LLaucano se encuentra disectado por quebradas. Presenta un relieve variado, dependiendo a la formación donde nos encontremos. Se distinguen valles en V, con laderas empinadas, y cubriendo el basamento rocoso la presencia de suelos orgánicos, es decir recubiertos por depósitos cuaternarios aluviales, productos de la erosión. Posee alturas que oscilan entre los 2300 y 3500 msnm, los cuales responden a la región natural "Quechua".



Foto 2: Geomorfología del valle formado por el río Llaucano

### 3.1.6.1 TOPOGRAFÍA

La zona de estudio presenta un relieve muy accidentado que es correspondiente a la cordillera occidental de los andes peruanos, consta al Noreste con una pendiente alta en las zonas rocosas de  $40^{\circ}$  -  $60^{\circ}$  (flanco izquierdo del rio Llaucano, aguas arriba), y pendientes bajas entre  $10 - 30^{\circ}$  en zonas de depósitos cuaternarios (flanco derecho del LLaucano, aguas arriba) , donde se observa la mayor concentración de depósitos cuaternarios como son aluviales y coluviales, indicando que los procesos de meteorización y erosión tienen un efecto medianamente importante en la zona.



Foto 3: Variación de pendientes a lo largo del cauce del rio LLaucano, Km 09

### 3.1.6.2 Hidrología y drenaje

La zona de estudio presenta una red de drenaje dentrítico, teniendo al Llaucano como río principal y quebradas como afluentes. El comportamiento del Río Llaucano tiene mayormente una dinámica fluvial representada por la sedimentación de materiales gruesos hasta arenas finas dentro de su cauce .En cambio las quebradas tributarias son mayormente erosivos tanto de fondo como lateral, transportando materiales gruesos y finos en temporadas de lluvias, transportando el material con gran velocidad hasta la unión con el río Llaucano.



Foto 4: Cauce del río Llaucano. Km 21

### 3.1.6.3 Superficie de erosión

Se considera la existencia de una sola superficie de erosión siguiendo los niveles topográficos comprendidos entre los 3200-3400 msnm, generada por procesos de flujo de las aguas de escorrentía y a su vez controlado principalmente por la composición litológica.



Foto 5: Superficie de erosión entre 3200 y 3400 msnm.

#### 3.1.6.4 Valles

La existencia de valle joven - maduro tipo V, originado por el flujo hídrico producido por el río Llaucano.



Foto 6: Valle joven formado por el río Llaucano

Valles jóvenes tipo V originados por quebradas tributarias al rio Llaucano



Foto 7: Valles jóvenes tipo V

### 3.1.6.5 Terrazas

Las terrazas encontradas en la zona de estudio son principalmente producto de la acción fluvial del rio Llaucano y de deslizamientos presentes en los flancos del rio. Con pendientes variables entre  $0 - 5^{\circ}$ , las cuales son aprovechadas para el cultivo de plantas.



Foto 8: Terrazas adyacentes al cauce del rio Llaucano, Km 25

#### 3.1.6.6 Colina

Comprendidas en los cerros colindante a las quebradas tributarias con una pendiente de 10-40°.



Foto 9: Colinas de forma redondeada de aproximadamente

#### 3.1.6.7 Laderas

Laderas de alta pendiente, aproximadamente (40 -50°), ubicadas principalmente en los flancos del río Llaucano.



Foto 10: Laderas presentes en los flancos del río Llaucano. Km 27.

### 3.1.7 PROCESOS MORFOLÓGICOS

La erosión y meteorización de los materiales preexistentes en la zona donde se realizó el trabajo de investigación no es muy intensa en rocas resistentes como las areniscas cuarzosas, debido a elevada dureza, las calizas poseen menos resistencia a la erosión y es en estas formaciones donde se evidencian la mayor cantidad de deslizamientos presentes en la zona. Además de depósitos fluviales, coluviales y aluviales en los flancos del río Llaucano, en los cuales se presentan gran número de deslizamientos.





Foto 11: Erosión en calizas, Km 25.

# 3.1.7.1 REMOCIÓN DE MASAS

Dentro del área de estudio se evidenciaron deslizamientos a lo largo principalmente en depósitos cuaternarios coluviales – aluviales. Lo que nos indica que la zona se encuentra en un alto riesgo geológico.



Foto 12: Deslizamiento de material coluvio – aluvial, Km20

#### **3.2 PROCEDIMIENTOS**

#### A. Etapa de gabinete l

Recopilación de información bibliográfica. Esta etapa consistió en la revisión de toda la información existente de trabajos realizados sobre el área de estudio. Se hizo una revisión y análisis minucioso sobre las técnicas aplicadas para el estudio del análisis de estabilidad de taludes.

Para realizar este trabajo de investigación se optó por seguir el siguiente procedimiento:

Recopilación bibliografía y tablas geotécnicas para facilitar la clasificación de los macizos rocosos presentes en los taludes.

Preparación de planos satelitales y folios de cartografiado en escala 1/10000 en la realización del cartografiado geológico y geotécnico.

División del área en 3 tramos, los cuales se estudiaron en forma sistemática.

#### B. Etapa de Campo

Reconocimiento del área de estudio.

Clasificación geomorfológica del área de estudio.

Identificación litológica del área de estudio.

Identificación estructural como fallas, fracturas, contactos, etc.

Evaluación hidrológica de la zona de estudio.

Clasificación geomecánica de los taludes.

Análisis geotécnico de los taludes.

Para la toma de datos de coordenadas se utilizó GPS tipo Garmin en el sistema WGS 84.

Toma de azimut y buzamientos, dip y dip direction, por medio de la brújula tipo brunton, por el método de la mano derecha.

Recolección de muestras de rocas sedimentarias para su análisis geotécnico correspondiente.

### C. Etapa de Gabinete II

Evaluación geomecánica en base a los resultados mediante RMR y GSI.

Elaboración de los planos Geológico, geomorfológico, hidrológico y geotécnico por medio de softwares como ArcGis 10.1, Global mapper, google earth.

Determinación de las propiedades geomecánicas utilizando el software RocLab.

Evaluación de estabilidad y determinación del factor de seguridad en taludes utilizando el software Slide.

### 3.2.1 METODOLOGÍA

#### 3.2.1.1 Tipo y nivel de investigación

Es un estudio descriptivo, que tiene por objetivo la identificación y clasificación geotécnica de los taludes inestables de la carretera Bambamarca – Paccha que podrían significar un potencial riesgo geológico.

#### 3.2.1.2 Diseño de la investigación

El estudio a realizarse corresponde a un diseño de investigación no experimental, ya que se realizará una observación, y descripción de los taludes de tal cual están en la naturaleza, para después analizarlos, sin manipular las variables.

#### 3.2.1.3 Método de la investigación

Los métodos de investigación empleados en esta investigación son los siguientes: deductivo e inductivo.

### 3.2.1.4 POBLACIÓN DE ESTUDIO

El universo de esta investigación se refiere a los taludes presentes en la carretera Bambamarca – Paccha.

#### 3.2.1.5 MUESTRA

Macizo rocos que conforma talud de carretera.

### 3.2.1.6 UNIDAD DE ANÁLISIS

Factor de seguridad de taludes.

# 3.2.2 DEFINICIÓN DE VARIABLES

#### Variables dependientes.

Estabilidad de taludes carretera Bambamarca - Paccha

#### Variables Independientes

Litología. Topografía del talud y laderas. Meteorización. Geología estructural. Geomorfología Geomecánica.

Clima.

### 3.2.3 TÉCNICAS.

Análisis Documental, para recopilar información bibliográfica anterior relacionada con la zona de investigación.

Tomas Fotográficas, para poder obtener un registro de fotos que ayuden a ilustrar la toma de datos en campo.

Cartografiado geomorfológico, para poder identificar las diferentes geoformas, con la finalidad de poder interpretar como se relacionan la litología, la estructural y los agentes erosivos de la zona de investigación

Cartografiado litológico, identificando las diferentes formaciones geológicas, y sus características mecánicas.

Caracterización geomecánica, usando las diferentes clasificaciones geomecánicas, para así realizar una clasificación de los macizos rocosos presentes.

Análisis geotécnico, determinando el factor de seguridad en cada uno de los taludes, basados en sus características geomecánicas y su análisis cinemático de las fracturas.

# 3.2.4 INSTRUMENTOS Y EQUIPOS.

Libreta de campo para toma de datos. Mapa geológico del cuadrángulo de Chota (15-f). Mapa geológico (1:10000) Mapa topográfico (escala 1/10000). Imágenes satelitales obtenidas de Google Earth. GPS eTrexR Legend C. Picota de geólogo para medir la resistencia de la roca con pruebas de campo. Rayador dureza 7. Lupa 20X. Protactor. Cámara fotográfica Canon 16 pixeles. Colores. Tablero.

Ácido clorhídrico (al 20%)

#### 3.3.1 GEOLOGÍA LOCAL

La geología local está comprendida por formaciones rocosas, pertenecientes al Cretácico inferior, teniendo rocas clásticas del Grupo Goyllarisquizga, dentro de las cuales se encuentran a la Formación Chimú, Carhuaz y Farrat, también formaciones de la fase carbonatada del Cretácico superior, como el grupo Crisnejas Crisnejas y Grupo Pulluicana. Las formaciones tienen un emplazamiento con dirección NW – SE.

### GRUPO GOYLLARISQUIZGA (Ki – g)

Consiste en areniscas cuarzosas con variación de colores blanco –grisáceo, con tonos rojizos a pardos, debido a la reacción de elementos ferruginosos y el intemperismo. En conjunto forman estratos macizos de arenisca cuarzosa intercalados con capas de limolitas y lutitas grises.

#### FORMACIÓN CHIMÚ (Ki-chim)

La formación Chimú consiste en una alternancia de areniscas cuarzosas y lutitas en la parte inferior y de una secuencia de areniscas cuarzosas, de gran espesor, en la parte superior. Las areniscas generalmente son de grano mediano a grueso. Tiene un grosor aproximado de 600 m. Presenta carbón bituminoso estratoligado aproximadamente entre 0.20 a 1.00 m de espesor, aprovechado como recurso mineral no metálico.



Foto 13: Afloramiento de Formación Chimú, aproximadamente 500 m. de espesor. Km 13.

### FORMACION SANTA (Ki- sa)

Consiste en la intercalación de lutitas y calizas margosas, y areniscas gris oscuras, con un grosor que oscila entre los 100 y 150 m. suprayace a la formación Chimú e infrayace a la formación Carhuaz, aparentemente con discordancia paralela en ambos casos.

### FORMACIÓN CARHUAZ (Ki – ca)

Consiste en la intercalación de areniscas rojizas, violetas y verdosas; características principales para diferenciarla en campo con lutitas grises. Hacia la parte superior contiene estratos de areniscas cuarzosas blancas que se intercalan con lutitas y areniscas. La Formación Carhuaz yace con suave discordancia sobre la formación Santa e infrayace concordante a la Formación Farrat. Tiene un grosor aproximado de 500m.



Foto 14: Afloramiento de la Formación Carhuaz, Km 24

# FORMACIÓN FARRAT (Ki – f)

Esta formación representa el nivel superior de la parte clástica del Cretácico inferior. Consta de areniscas cuarzosas y areniscas blancas de grano medio a grueso, tiene un grosor promedio de 500 m. aumentando en el sector suroeste. La Formación Farrat suprayace con aparente concordancia a la Formación Carhuaz y subyace, con la misma relación, a la Formación Inca. Por su similitud litológica con la formación Chimú es fácil confundirlas, siendo necesario en el campo, establecer muy bien sus relaciones estratigráficas para diferenciarlas, aunque en algunos casos solamente por la falta de mantos de carbón es posible diferenciarla de la Formación Chimú. Por sus características litológicas, es común encontrar a las formaciones Farrat y Chimú conformando escarpas y altas cumbres agudas y largas.


Foto 15: Afloramiento de Formación Farrat, Km 09.

## FORMACIÓN INCA (Ki – in)

Consta de la intercalación de areniscas calcáreas, lutitas ferruginosas dando en superficie un matiz amarillento. En los alrededores de Cajamarca es de coloración rojiza. Su grosor aproximado es de 100 m. Infrayace concordantemente a la formación Chúlec y suprayace con la misma relación a la formación Farrat.

#### **GRUPO CRISNEJAS**

Esta formación consiste en una secuencia fosilífera (cefalópodos, lamelibranquios y equinoideos) de calizas arenosas, lutitas calcáreas y margas, las que por intemperismo adquieren un color crema amarillenta. Su aspecto terroso amarillento es una característica para distinguirla en el campo. Generalmente los bancos de margas se presentan muy nodulosos y las calizas frescas muestran colores gris parduzcos.



Foto 16: Afloramiento rocoso de Grupo Crisnejas – Carretera Paccha – Bambamarca Km.28.

### FORMACIÓN PARIATAMBO (Ki – pa)

Consiste en una alternancia de lutitas con delgados estratos de calizas bituminosas negruzcas, estratos calcáreos con nódulos silíceos y dolomíticos, con un característico olor fétido al fracturarlas. Su espesor varía entre 150 a 200 m.

#### **GRUPO PULLUICANA**

Consiste de calizas nodulares, con estratificación de límites ondulados que ocurren característicamente en estratos gruesos, generalmente mayores de 50 cm de espesor. Es una unidad que se caracteriza por formar farallones escarpados y pronunciados muy resistentes a erosión, donde destacan las calizas macizas.



Foto 17: Afloramiento de Grupo Pulluicana, formando un relieve escarpado

## FORMACIÓN YUMAGUAL (Ks – yu)

Consiste en una secuencia de margas y calizas gris parduzca en estratos uniformes, presenta una topografía escarpada debido a su dureza. En algunos horizontes se observan nódulos calcáreos. Tiene un grosor aproximado de 700 m.

### GRUPO QUILQUIÑAN - FORMACIÓN MUJARRUM (Ks – qm)

Secuencia de calizas nodulares, seguida de una intercalación de margas y lutitas amarillentas con fósiles del tipo Exogyra. Continúan delgados estratos de calizas nodulares con margas de color pardo amarillento. Finalmente se encuentran estratos de calizas claras con lutitas arenosas y margas delgadas con abundantes fósiles.

### FORMACIÓN CAJAMARCA (Ks- ca)

Esta formación consiste de calizas gris oscuras, con estratos delgados de lutitas y margas. Las calizas se presentan con estratificación gruesa con escasos fósiles.

## FORMACIÓN CELENDÍN (Ks – ce)

Esta formación está constituida por margas y lutitas de color gris azulado y amarillo rojizo, en capas cuyo grosor en la base varía entre 2 y 6 m, alcanzando hasta 8 m, en la parte superior.

### FORMACIÓN CHOTA (Ks – ch)

Constituido por lutitas, lodolitas y margas, de color rojo y marrón amarillento, con intercalaciones de areniscas finas gris verdosas. Esta secuencia basal presenta una ligera discordancia angular con el miembro superior, el cual está compuesto por areniscas y conglomerados de color rojo.

### **DEPÓSITOS COLUVIALES**

Depósitos coluviales, formados de clastos de arenisca cuarzosa, subangulosos a subredondeados, con clastos aproximadamente entre 03 – 40 cm, con una matriz arenosa, de color parduzco, forman generalmente las laderas de los cerros colindantes al río Llaucano.



Foto 18: Depósito Coluvial. Km 19.

## DEPÓSITO ALUVIAL

Depósitos aluviales ubicados en los márgenes del rio Llaucano, conformados por clastos angulosos - subangulosos - subredondeados, de arenisca cuarzosa y calizas gris parduzcas. Aproximadamente de 0.05 – 1.00 m, con una matriz de arena y limos.



Foto 19: Depósito aluvial al margen derecho del río Llaucano, Km 20

### DEPÓSITO COLUVIO – ALUVIAL

Depósito coluvial – aluvial, existe una transición entre estos dos tipos de depósitos, ya que por una parte se presenta una matriz areno – limosa que transporta el sedimento por la acción del agua hacia el valle principal y por otra parte los fragmentos de roca son angulares y mal clasificados dando a entender que el transporte que dio lugar a este depósito es corto y de proveniencia local



Foto 20: Depósito Coluvio – Aluvial, Km 21.

## 3.3.2 GEOLOGÍA ESTRUCTURAL

La zona de estudio se encuentra controlada de manera estructural por la faja corrida y plegada del Marañon, localmente la carretera Bambamarca – Paccha se encuentra sobre un anticlinal con dirección NW – SE, sobre formaciones el Cretácico inferior y superior. Se encuentran las siguientes fallas.

### Falla Normal

Falla normal formada por esfuerzos distencivos en la Formación Chimú, ubicada al flanco derecho aguas abajo del río Llaucano.



Foto 21: Falla Normal sobre areniscas cuarzosas, Km 07

## Pliegue con falla inversa

Falla Inversa formada por sobre - esfuerzos compresivos, en plegamiento de areniscas cuarzosas.



Foto 22: Falla inversa sobre areniscas, Km 13

## Falla tipo Graven

Falla tipo graven ubicada en la parte alta del Km. 29, sobre calizas arcillosas de la Grupo Crisnejas.



Foto 23: Falla tipo Graven sobre calizas, Km 29.

## 3.3.3 DESCRIPCIÓN LITOMINERALÓGICA

| Clasificación de<br>roca      | Sedimentaria |
|-------------------------------|--------------|
| Tipo de roca                  | Arenisca     |
|                               | cuarzosa     |
| Color                         | Blanca       |
| Dureza (lápiz de<br>dureza)   | 7            |
| Raya                          | Blanca       |
| Reacción a HCI                | Negativa     |
| Fractura                      | Regular      |
| Contenido de<br>cuarzo (lupa) | 80-90%       |

#### Caracterización física de la muestra.



#### Características Geomecánicas

#### Analysis of Rock Strength using RocLab



Hoek-Brown Classification intact uniaxial compressive strength = 70 MPa GSI = 35 mi = 12 Disturbance factor = 0.7

Hoek-Brown Criterion mb = 0.337 s = 0.0001 a = 0.516

Mohr-Coulomb Fit cohesion = 1.803 MPa friction angle = 18.17 deg

**Rock Mass Parameters** 

tensile strength = -0.017 MPa uniaxial compressive strength = 0.542 MPa global strength = 4.978 MPa modulus of deformation = 2293.31 MPa



| Tipo de roca  | Lutitas     |
|---------------|-------------|
|               | calcáreas   |
| Color         | Gris oscuro |
| Dureza (lápiz | 2           |
| de dureza)    | 2           |
| Raya          | Gris        |
| Reacción a    | . /         |
| HCI           | +/-         |
| Fractura      | Laminar     |
| Contenido     |             |
| de cuarzo     | 0 %         |
| (lupa)        |             |



### **Características Geomecánicas**

#### Analysis of Rock Strength using RocLab



#### **Hoek-Brown Classification**

intact uniaxial compressive strength = 35 MPa GSI = 15 mi = 4 Disturbance factor = 1

#### Hoek-Brown Criterion

mb = 0.009 s = 7.04e-7 a = 0.561

#### Mohr-Coulomb Fit

cohesion = 0.121 MPa friction angle = 3.03 deg

#### **Rock Mass Parameters**

tensile strength = -0.003 MPa uniaxial compressive strength = 0.012 MPa global strength = 0.255 MPa modulus of deformation = 394.46 MPa



| Clasificación<br>de roca | Calizas     |  |
|--------------------------|-------------|--|
| Tipo de roca             | Caliza      |  |
| Color                    | Gris oscuro |  |
| Dureza (lápiz            | 3           |  |
| de dureza)               | 3           |  |
| Raya                     | Gris        |  |
| Reacción a<br>HCI        | Positiva    |  |
| Fractura                 | Concoidea   |  |
| Contenido de             | 0 - 2 %     |  |
| cuarzo (lupa)            | 0 - 2 70    |  |



#### **Características Geomecánicas**



#### Analysis of Rock Strength using RocLab

Hoek-Brown Classification

intact uniaxial compressive strength = 75 MPa GSI = 55 mi = 8 Disturbance factor = 0.7

Hoek-Brown Criterion mb = 0.675 s = 0.0015 a = 0.504

Mohr-Coulomb Fit cohesion = 2.735 MPa friction angle = 23.25 deg

Rock Mass Parameters tensile strength = -0.163 MPa uniaxial compressive strength = 2.802 MPa global strength = 8.304 MPa modulus of deformation = 7506.61 MPa



| Clasificación<br>de roca      | Sedimentaria orgánica |  |  |
|-------------------------------|-----------------------|--|--|
| Tipo de roca                  | Antracita             |  |  |
| Color                         | Negro                 |  |  |
| Dureza (lápiz<br>de dureza)   | 1.5                   |  |  |
| Raya                          | Negra                 |  |  |
| Reacción a<br>HCI             | Negativa              |  |  |
| Fractura                      | Irregular             |  |  |
| Contenido de<br>cuarzo (lupa) | 0 %                   |  |  |



#### **Caracteristicas Geomecánicas**

#### Analysis of Rock Strength using RocLab



#### **Hoek-Brown Classification**

intact uniaxial compressive strength = 20 MPa GSI = 10 mi = 2 Disturbance factor = 1

Hoek-Brown Criterion

mb = 0.003 s = 3.06e-7 a = 0.585

Mohr-Coulomb Fit

cohesion = 0.031 MPa friction angle = 1.48 deg

#### **Rock Mass Parameters**

tensile strength = -0.002 MPa uniaxial compressive strength = 0.003 MPa global strength = 0.063 MPa modulus of deformation = 223.61 MPa



| Clasificación<br>de roca      | Sedimentaria    |  |
|-------------------------------|-----------------|--|
| Tipo de roca                  | Limolita        |  |
| Color                         | Blanco grisáceo |  |
| Dureza (lápiz<br>de dureza)   | 2.0             |  |
| Raya                          | Blanca          |  |
| Reacción a<br>HCI             | Negativa        |  |
| Fractura                      | Irregular       |  |
| Contenido de<br>cuarzo (lupa) | 0 %             |  |



#### **Caracteristicas Geomecánicas**



#### Analysis of Rock Strength using RocLab

## 3.4 MODELO GEOMECÁNICO

En el subcapítulo se identifican y ubican según progresivas todos los taludes presentes en la carretera Bambamarca - Paccha, posteriormente se ha seleccionado los taludes que presentan un mayor riesgo geológico, los cuales serán analizados según sus características geomecánicas y geotécnicas, dando por último el valor del factor de seguridad en cada talud, lo cual nos permite visualizar el grado de inestabilidad.

| UB<br>CAR       | UBICACIÓN Y DESCRIPCIÓN DE TALUDES QUE CONFORMAN<br>CARRETERA BAMBAMARCA - PACCHA DE LOS 0+000 HASTA<br>30+000 Km |            |                                                                                                                                                                                   |                         |
|-----------------|-------------------------------------------------------------------------------------------------------------------|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| Progro<br>Desde | esivas<br>Hasta                                                                                                   | Fotografía | Descripción                                                                                                                                                                       | Evaluación<br>de Riesgo |
| 0+000           | 3+950                                                                                                             |            | Este tramo de<br>carretera no<br>presenta taludes<br>y/o taludes de<br>baja altura que<br>no representan<br>un peligro<br>geológico.                                              | Bajo                    |
| 3+950           | 5+520                                                                                                             |            | Talud formado<br>por caliza,<br>presenta<br>estratificación<br>subhorizontal,<br>diaclasas<br>paralelas a la<br>pendiente del<br>talud. Además<br>de presentar<br>acuifero libre. | Medio -<br>Alto         |

#### 3.4.1 Ubicación de los taludes presentes en la carretera

| Progre  | esivas | Fotografía | Descripción                                                                                                                          | Evaluación      |
|---------|--------|------------|--------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| Desde   | Hasta  |            |                                                                                                                                      | de Riesgo       |
| 5+520   | 8+700  |            | Este tramo de<br>carretera no<br>presenta taludes<br>y/o taludes de<br>baja altura que<br>no representan<br>un peligro<br>geológico. | Bajo            |
| 8+900   | 09+900 |            | Talud<br>conformado por<br>arenisca<br>cuarzosa,<br>presenta rocas<br>sueltas en la<br>cresta del talud.                             | Alto            |
| 10+ 240 | 11+380 |            | Deslizamientos<br>de depósitos<br>coluvio -<br>aluviales.                                                                            | Medio -<br>Alto |
| 11+380  | 11+580 |            | Arenisca<br>cuarzosa,<br>presenta<br>estratificación<br>subhorizontal.                                                               | Medio -<br>Bajo |

| Progr  | esivas | Fotografía | Descripción                                                                                                        | Evaluación      |
|--------|--------|------------|--------------------------------------------------------------------------------------------------------------------|-----------------|
| Desde  | Hasta  |            |                                                                                                                    | de Riesgo       |
| 11+880 | 11+900 |            | Deslizamiento<br>de depósito<br>coluvio - aluvial.                                                                 | Medio -<br>Bajo |
| 11+900 | 11+940 |            | Deslizamiento<br>en talud,<br>conformado por<br>deposito coluvio<br>- aluvial.                                     | Medio –<br>Bajo |
| 12+750 | 12+800 |            | Talud<br>conformado en<br>depósito aluvial,<br>presenta<br>bolonería de<br>arenisca<br>cuarzosa. Rocas<br>sueltas. | Medio           |
| 13+740 | 13+820 |            | Talud<br>conformado por<br>arenisca<br>cuarzosa,<br>presenta falla<br>planar.                                      | Alto            |

| Progr  | esivas<br>Hasta | Fotografía | Descripción                                                                                                                                                        | Evaluación<br>de Riesgo |
|--------|-----------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| 15+500 | 15+600          |            | Deslizamiento<br>ocasionado<br>debido a la<br>extracción de<br>carbón antracítico<br>estratoligado de<br>la Formación<br>Chimú, extraído<br>mediante<br>socavones. | Alto                    |
| 15+800 | 16+000          |            | Deslizamiento de<br>depósito aluvial,<br>aproximadamente<br>100 metros de<br>altura. Afecta<br>directamente la<br>carretera y casas<br>aledañas.                   | Alto                    |
| 16+200 | 16+280          |            | Talud<br>conformado por<br>deposito aluvial.                                                                                                                       | Alto                    |
| 17+080 | 17+020          |            | Talud<br>conformado por<br>intercalación de<br>areniscas<br>cuarzosas y<br>lutitas<br>bituminosas.                                                                 | Alto                    |

| Progresivas |        | Fotografía | Descripción                                                                                                                        | Evaluación |
|-------------|--------|------------|------------------------------------------------------------------------------------------------------------------------------------|------------|
| Desde       | Hasta  |            | •                                                                                                                                  | de Riesgo  |
| 17+400      | 17+600 |            | El talud presenta<br>intercalación de<br>areniscas<br>cuarzosas y<br>carbón<br>antracítico. (1.40<br>m) de potencia)               | Medio      |
| 18+400      | 18+440 |            | El talud presenta<br>un deslizamiento<br>conformado<br>por bolonería<br>de arenisca<br>cuarzosa (aprox.<br>20 m3)                  | Bajo       |
| 19+000      | 19+140 |            | Deslizamiento<br>en talud,<br>conformado<br>por deposito<br>coluvio - aluvial.                                                     | Medio      |
| 19+260      | 19+340 |            | Deslizamiento<br>por falla en talud<br>de carretera,<br>constante<br>deslizamiento de<br>rocas debido a<br>aguas de<br>escorrentía | Alto       |

| Progr  | esivas | Fotografía | Descripción                                                                                                                                                      | Evaluación      |
|--------|--------|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| Desde  | Hasta  |            | Talvd                                                                                                                                                            | de Riesgo       |
| 20+520 | 20+740 |            | Talud<br>conformado por<br>depósito aluvial,<br>gradación de<br>finos a gruesos,<br>se presenta<br>rocas de gran<br>tamaño sueltas<br>en la cresta del<br>talud. | Alto            |
| 20+920 | 20+960 |            | Talud<br>conformado por<br>depósito aluvial,<br>gradación de<br>finos a gruesos,<br>se presenta<br>rocas sueltas.                                                | Alto            |
| 21+000 | 21+040 |            | Talud<br>conformado por<br>depósito<br>coluvio - aluvial                                                                                                         | Medio –<br>Bajo |
| 21+540 | 21+600 |            | Talud<br>conformado por<br>depósito aluvial                                                                                                                      | Alto            |

| Progr  | esivas | Fotografía | Descripción                                              | Evaluación      |
|--------|--------|------------|----------------------------------------------------------|-----------------|
| 22+200 | 22+280 |            | Talud<br>conformado por<br>depósito aluvial              | Alto            |
| 22+480 | 22+520 |            | Talud<br>conformado por<br>depósito<br>coluvio - aluvial | Medio –<br>Alto |
| 22+620 | 22+720 |            | Talud<br>conformado por<br>depósito<br>coluvio - aluvial | Medio –<br>Alto |
| 22+740 | 22+820 |            | Talud<br>conformado por<br>depósito<br>coluvio - aluvial | Medio –<br>Alto |

| Progr  | esivas | Fotografía | Descripción                                                                                                    | Evaluación      |
|--------|--------|------------|----------------------------------------------------------------------------------------------------------------|-----------------|
| Desde  | Hasta  |            | •                                                                                                              | de Riesgo       |
| 24+100 | 25+100 |            | Tramo de<br>carretera con<br>taludes de baja<br>pendiente (10°)<br>(enrocado como<br>sistema de<br>contención) | Bajo            |
| 24+100 | 24+140 |            | Talud<br>conformado por<br>contacto entre<br>areniscas<br>cuarzosas y<br>limolitas.                            | Alto            |
| 25+100 | 25+200 |            | Talud<br>conformado por<br>depósito<br>coluvio - aluvial                                                       | Bajo –<br>Medio |
| 25+380 | 25+480 |            | Talud<br>conformado por<br>depósito<br>coluvio - aluvial                                                       | Bajo –<br>Medio |

| Progr  | esivas | Fotografía | Descripción                                                                        | Evaluación      |
|--------|--------|------------|------------------------------------------------------------------------------------|-----------------|
| Desde  | Hasta  |            | Decemperen                                                                         | de Riesgo       |
| 25+630 | 25+750 |            | Talud<br>conformado por<br>depósito<br>coluvio - aluvial                           | Bajo –<br>Medio |
| 25+850 | 26+020 |            | Talud<br>conformado por<br>depósito<br>coluvio - aluvial                           | Bajo –<br>Medio |
| 26+020 | 26+060 |            | Talud<br>conformado por<br>intercalación<br>de lutitas y<br>areniscas<br>cuarzosas | Bajo –<br>Medio |
| 26+060 | 26+200 |            | Talud<br>conformado por<br>intercalación<br>de lutitas y<br>areniscas<br>cuarzosas | Bajo –<br>Medio |

| Progr  | esivas | Fotografía | Descripción                                                                                                                           | Evaluación      |
|--------|--------|------------|---------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| Desde  | Hasta  |            |                                                                                                                                       | de Riesgo       |
| 26+210 | 26+240 |            | Depósito coluvio<br>- aluvial,<br>presenta<br>constante<br>deslizamiento de<br>rocas                                                  | Medio –<br>alto |
| 26+240 | 26+310 |            | Talud<br>conformado por<br>intercalación<br>entre areniscas<br>cuarzosas y<br>limonitas,<br>estratificación<br>subhorizontal<br>(15°) | Bajo –<br>Medio |
| 26+420 | 26+480 |            | Depósito coluvio<br>- aluvial,<br>presenta<br>constante<br>deslizamiento de<br>rocas                                                  | Alto            |
| 26+600 | 26+700 |            | Talud<br>conformado<br>por areniscas<br>cuarzosas,<br>espesor de<br>estratos de 0.5<br>m.                                             | Medio           |

| Progr  | esivas | Fotografía | Descrinción                                                                                                                                 | Evaluación |
|--------|--------|------------|---------------------------------------------------------------------------------------------------------------------------------------------|------------|
| Desde  | Hasta  |            | Description                                                                                                                                 | de Riesgo  |
| 26+720 | 26+980 |            | Talud<br>conformado por<br>arenisca<br>cuarzosa<br>presenta plano<br>de estratificación<br>a favor de<br>ángulo de talud (<br>falla planar) | Alto       |
| 26+980 | 27+020 |            | Talud<br>conformado por<br>arenisca<br>cuarzosa<br>presenta plano<br>de estratificación<br>a favor de<br>ángulo de talud<br>(falla planar)  | Bajo       |
| 27+160 | 27+200 |            | Talud<br>conformado por<br>depósito<br>coluvio- aluvial                                                                                     | Bajo       |
| 27+260 | 29+060 |            | Caliza<br>intercalada con<br>lutita,<br>plano de<br>estratificación<br>coincide<br>con ángulo de<br>talud                                   | Alto       |

| Progr  | esivas | Fotografía | Descripción                              | Evaluación |
|--------|--------|------------|------------------------------------------|------------|
| Desde  | Hasta  |            | Decemperent                              | de Riesgo  |
| 29+080 | 29+100 |            | Caliza altamente<br>erosionada           | Alto       |
| 29+130 | 29+160 |            | Deslizamiento<br>de depósito<br>aluvial. | Bajo       |
| 29+200 | 29+220 |            | Deslizamiento<br>de depósito<br>aluvial. | Bajo       |
| 29+300 | 29+560 |            | Caliza<br>intercalada<br>con lutitas     | Bajo       |

# 3.4.2 Descripción física – mecánica de taludes en depósitos.

|                | Universi                  |            |                    | Cajar              | man                 | 20                 |                  |               |                |                           |                       |                     |               |            |               |             |                 |              | D            | Des              | crij                                 | Go               | eol           | ogí<br>de (          | a<br>depósito:                       | 6           |                  |             |             |             |            |             |            |       |                                |                                 | R                                                      | levis<br>echa | ión<br>a          | :                               |                      |           | 15/                   | /10/20  | )16     |         |
|----------------|---------------------------|------------|--------------------|--------------------|---------------------|--------------------|------------------|---------------|----------------|---------------------------|-----------------------|---------------------|---------------|------------|---------------|-------------|-----------------|--------------|--------------|------------------|--------------------------------------|------------------|---------------|----------------------|--------------------------------------|-------------|------------------|-------------|-------------|-------------|------------|-------------|------------|-------|--------------------------------|---------------------------------|--------------------------------------------------------|---------------|-------------------|---------------------------------|----------------------|-----------|-----------------------|---------|---------|---------|
|                | oniversi                  |            | SIS GEO            |                    | ICO<br>ARR          | DE<br>ETE          | LOS<br>ERA       | 5 TA          | LUI            | DES                       | Eľ                    | NLA                 | -             | Re         | gisti         | rado        | o po            | r            |              |                  | A                                    | . Fal            | con           | íRe                  | yes                                  | Si          | sterr            | 1a:         |             |             |            |             |            | PS/   | ۹D -                           | - 56                            |                                                        |               | No                | orte (m                         | )                    |           |                       |         |         |         |
| Proj           | yecto                     | KIL        | Sambam<br>Ómetro   | ARCA<br>DS0a<br>C/ | P#<br>. 30,<br>AJAI | ACCI<br>DIS<br>MAR | HA<br>STRI<br>CA | EN<br>TO I    | TRE<br>DE      |                           | IS<br>DTA             | ι,                  | Fe            | echa<br>Pi | i de<br>rogr  | reg<br>esiv | jistr<br>vas    | 0            |              |                  |                                      | 15/              | 10/2          | 2016                 | 0                                    | E           | evac             | ion         | (m s<br>[   | onm<br>De C | ) <br>)+0( | 00 a        | a 30       | )+(   | 000                            | Km                              |                                                        |               | Es                | te (m)                          |                      |           |                       |         |         |         |
|                | le                        |            |                    |                    |                     | Plas               | ticid            | ad            | _              | С                         | ons<br>F              | iste<br>inos        | n cia         | à          |               | Com<br>Gra  | ipa:<br>inul    | sida<br>ares | id<br>s      | -                | Hu                                   | mec              | lad           |                      |                                      |             | E                | Estri       | ıctu        | ra          | G          | ran:<br>are | o de<br>na | e m   | a -<br>F                       | Tan<br>orm                      | n M<br>⊧a                                              | áx. d         | le Gr             | Blog<br>Bold                    | ues<br>onerí         | У<br>а    | Po                    | orcent  | tajes   | (%)     |
| N° de Registro | Progresivas. Desc<br>(Km) | Hasta (Km) | Tipo de Depósito   | Muestreo           | 1. nula IP: 0       | 2. baia IP: 1 - 7  | 3 media IP·7-14  | 4 alta IP·>14 | 4 municipal de | 1. muy pianga<br>? hlanda | 2. brundu<br>3. firme | 3. mme<br>4. rígida | 5. muv rígida | 6. dura    | 1. muy suelta | 2. suelta   | 3. medianamente | 4.densa      | 5. muy densa | 1. seca C.H: 0-5 | 2. ligeramente C.H.: 5-10<br>béreode | 3.húmeda C.H:10- | 4.muy C.H:15- | 5. saturada C.H.:>25 | Color                                | 1. olor     | 1. estratificada | 2. laminada | 3. fisurada | 4.homogénea | 1. fino    | 2 medio     | 3 drueso   |       | 1. diiyuusa<br>7 aiibaaaiilaaa | 2. subanyunusa<br>2. subandanda | <ol> <li>Subjectionedua</li> <li>rodondondo</li> </ol> | 4. regongeaga | Tamaño máximo (") | Tamaño máximo (") de<br>Bloques | Tamaño máximo (") de | Bolonería | 1.Bolonería y bloques | 2.Grava | 3.Arena | 4.Finos |
|                |                           |            | Coluvio            |                    | x                   |                    |                  |               |                |                           |                       |                     |               |            |               | x           |                 |              |              |                  | x                                    |                  |               |                      | Amarillo -<br>Pardu <i>z</i> co      | Nc          | )                |             |             | x           |            | x           | x          | :   ; | (                              |                                 |                                                        |               | 2.5               |                                 |                      | 2         | 20.0                  | 30.0    | 45.0    | ) 5.0   |
| 1.00           | 10+240                    | 11+380     | Aluvial            | Talud              | Co                  | mer                | ntari            | os:           |                |                           |                       |                     |               |            | - <i>F</i>    | Aren        | ias             | me           | dia:         | s - g            | inte                                 | sasy             | y gra         | avas                 | s subangula                          | res         | (2.5             | ō"), c      | on l        | bolo        | ner        | ia y        | /blo       | qu    | ear                            | ía, a                           | algo                                                   | det           | finos             | ; en la                         | mati                 | riz.      |                       |         |         |         |
| 2.00           | 11+880                    | 11+900     | Coluvio<br>Aluvial | Talud              | X<br>Co             | mer                | ntari            | os:           |                |                           |                       |                     |               |            |               | x<br>Are    | ena:            | s m          | edi          | as -             | x<br>gru                             | esas             | s yg          | grava                | Amarillo -<br>Parduzco<br>as subangu | N c<br>lare | s (2             | .5"),       | y bi        | x<br>olon   | ería       | x<br>a y l  | x x        | ue    | (<br>aría                      | ı, al                           | go (                                                   | de fir        | 2.5<br>nos -      | en la r                         | natri                | 2<br>z.   | 25.0                  | 25.0    | 45.0    | ) 5.0   |

|            | de                |          |             |         | F       | last      | ticida     | ad       |             | Con:<br>F | siste<br>Finos       | ncia<br>S    | l       | Coi<br>Gr   | mpa<br>anul             | sida<br>lares | ad<br>S     | ŀ                        | Hume               | edad                 |             |                        |         | E              | Estri       | uctu        | ra         | Gra<br>a | ano<br>ren | de<br>a   | ma          | - Ta<br>Forr | ım.N<br>na  | ∕láx.⊤      | de Gr     | Bloq<br>Bolo         | ues y<br>nería         | P           | orcen   | tajes   | (%)     |
|------------|-------------------|----------|-------------|---------|---------|-----------|------------|----------|-------------|-----------|----------------------|--------------|---------|-------------|-------------------------|---------------|-------------|--------------------------|--------------------|----------------------|-------------|------------------------|---------|----------------|-------------|-------------|------------|----------|------------|-----------|-------------|--------------|-------------|-------------|-----------|----------------------|------------------------|-------------|---------|---------|---------|
| e Registro | vas. Desi<br>(Km) | sta (Km) | le Depósito | uestreo | IP: 0   | IP: 1 - 7 | IP: 7 - 14 | IP: > 14 | da          |           |                      | 9            |         | ta          | mente                   |               | sa          | C.H: 0-5<br>C.H: 5-10    |                    | C.H. 10-<br>C.H. 15- | C.H: >25    | Color                  | 1. olor | ada            |             |             | ıea        |          |            |           | _           | losa         | ndeada      | ada         | áximo (") | áximo (") de         | áximo (") de           | ı y bloques |         |         |         |
| P ∘ N      | Progresi          | На       | Tipo c      | M       | 1. nula | 2. baja   | 3. media   | 4. alta  | 1. muy blan | 2. blanda | 3. tirme<br>Arríaida | 5. muy rígid | 6. dura | 1. muy suel | 2. suella<br>3. mediana | 4.densa       | 5. muy den: | 1. seca<br>2 lineramente | húmeda<br>2 húmodo | 3. numeua<br>4. muy  | 5. saturada |                        |         | 1. estratifica | 2. laminada | 3. fisurada | 4. homogér | 1. fino  | 2. medio   | 3. grueso | 1. angulosa | 2. subangu   | 3. subredor | 4. redonde: | Tamaño má | Tamaño má<br>Bloques | Tamaño má<br>Bolonería | 1.Bolonería | 2.Grava | 3.Arena | 4.Finos |
|            |                   |          | Colusio     |         | x       |           |            |          |             |           |                      |              |         | )           | <                       |               |             |                          | x                  |                      |             | Amarillo -<br>Parduzco | No      |                |             |             | х          |          | x          | x         |             | x            |             |             | 1.5       |                      |                        | 10.0        | 25.0    | 55.0    | 10.0    |
| 3.00       | 11+900            | 11+940   | Aluvial     | Talud   | Cor     | nen       | tario      | IS:      |             |           |                      |              |         | ,           | Âre                     | enas          | s m e       | edias                    | - gru              | iesa                 | s,yı        | gravas suba            | ingu    | llosa          | as (        | 1.5"        | ), alg     | jo d     | e bl       | oqu       | es          | /bol         | lone        | ería,       | algo c    | le fino              | S.                     |             |         |         | -       |
|            |                   |          |             |         | x       |           |            |          |             |           |                      |              |         | )           | <b>k</b>                |               |             |                          | )                  | <                    |             | Pardo<br>Rojizo        | No      |                |             |             | x          |          | x          | x         | x           | x            |             |             | 3         |                      |                        | 15.0        | 40.0    | 40.0    | 5.0     |
| 4.00       | 16+200            | 16+280   | Aluvial     | Talud   | Cor     | nen       | tario      | S:       |             |           |                      |              |         | G           | òra∨a                   | is ar         | ngul        | losas                    | - sul              | pang                 | ulos        | sas (3") y are         | enas    | s me           | edia        | IS - (      | grue       | sas      | , COI      | n bli     | oqu         | es y         | /bol        | one         | ría, alç  | go de '              | finos.                 |             |         |         |         |
|            |                   |          |             |         | x       |           |            |          |             |           |                      |              |         | )           | <                       |               |             |                          | )                  | <                    |             | Am arillo<br>parduzco  | No      |                |             |             | x          |          | x          | x         | x           |              |             | ;           | 2.25      |                      |                        | 15.0        | 35.0    | 40.0    | 10.0    |
| 5.00       | 18+400            | 18+440   | Aluvial     | Talud   | Cor     | nen       | tario      | S:       |             |           |                      |              |         |             |                         | Arei          | nas         | med                      | ias a              | grue                 | sas         | s ygravas su           | ibar    | igul           | osa         | s (2        | .25),      | cor      | blo        | oque      | es y        | gra          | vas         | , alg       | odefi     | nos.                 |                        |             |         |         |         |
|            |                   |          |             |         | x       |           |            |          |             |           |                      |              |         | )           | <                       |               |             |                          | )                  | <                    |             | Am arillo<br>parduzco  | No      | x              |             |             |            |          | x          | x         |             | x            |             |             | 1.5       |                      |                        | 30.0        | 20.0    | 40.0    | 10.0    |
| 6.00       | 20+520            | 20+740   | Aluvial     | Talud   | Cor     | nen       | tario      | IS:      |             |           |                      |              |         |             |                         | Aren          | nası        | medi                     | as - g             | rues                 | as,         | ybloques y             | bolo    | bner           | ía, o       | con         | grav       | as s     | uba        | angi      | ular        | es (         | 1.5"        | ), alç      | go de     | finos.               |                        |             |         |         |         |
| 7.00       | 00.000            | 20,000   | Alunial     | Tolud   | x       | ****      |            |          |             |           |                      |              |         | )           | <                       |               |             |                          | )                  | <                    |             | Pardo<br>Rojizo        | No      |                |             |             | x          |          | x          | x         |             | x            |             |             | 1.25      |                      |                        |             | 25.0    | 60.0    | 15.0    |
| 7.00       | 20+920            | 20+966   | Ашиат       | Talud   | Co      | ,<br>mei  | ntari      | os:      |             | ve        |                      | 3            | :       | *           |                         | 1             | \$          | A                        | rena               | sme                  | dias        | s - gruesas,           | y gr    | ava            | S SL        | ibar        | igulo      | sas      | : (1.      | 25)       | alg         | o di         | e fin       | os.         | 1         |                      |                        |             |         | 4       | 3       |
| 8.00       | 21+000            | 21+040   | Coluvio     | Talud   | x       |           |            |          |             |           |                      |              |         | >           |                         |               |             |                          | )                  | (                    |             | Amarillo<br>Grisaceo   | No      |                |             |             | X          |          | x          | X         |             | x            | -           |             | 1.25      |                      |                        | 10.0        | 30.0    | 50.0    | 10.0    |
|            |                   |          | Aluval      |         |         | me        | ntari      | os:      |             |           |                      |              |         |             | Are                     | nas           | me          | dias                     | a gru              | esas                 | syg         | ravas subar            | ngul    | osa            | s (1        | .00'        | '), al(    | god      | e bl       | oqu       | les         | ybo          | lone        | eria,       | algo      | ae fino              | DS.                    |             |         |         |         |

|             | de                 |           |             |          | Plasticida                       | ıd       | Co                       | nsiste<br>Fino | encia<br>s                 |          | Col<br>Gr     | mpa:<br>anul           | sida<br>ares | d           | Hu                                   | meda      | d                     |                       |         | Est                        | ructu       | ira      | Gr:<br>a     | ano<br>iren: | den<br>a | na - <sup>-</sup><br>Fo | Tam<br>orm               | i Máx<br>a | . de Gr    | Bloq<br>Bolo        | ues y<br>nería        | Р            | orcen   | tajes ( | (%)     |
|-------------|--------------------|-----------|-------------|----------|----------------------------------|----------|--------------------------|----------------|----------------------------|----------|---------------|------------------------|--------------|-------------|--------------------------------------|-----------|-----------------------|-----------------------|---------|----------------------------|-------------|----------|--------------|--------------|----------|-------------------------|--------------------------|------------|------------|---------------------|-----------------------|--------------|---------|---------|---------|
| de Registro | sivas. Des<br>(Km) | asta (Km) | de Depósito | Muestreo | IP: 0<br>IP: 1 - 7<br>IP: 7 - 14 | IP:>14   | nda                      |                | ida                        | :        | elta          | amente                 |              | nsa         | C.H:0-5<br>■ C.H:5-10                | т С.Н:10- | с.н. 19-<br>а С.Н:>25 | Color                 | 1. olor | cada<br>Ia                 | 3           | ènea     |              |              |          | 3a<br>- 1               | ulusa                    | eada       | iáximo (") | iáximo (") de       | iáximo (") de         | ía y bloques |         |         |         |
| °N          | Progres            | Н         | Tipo        |          | 1. nula<br>2. baja<br>3. media   | 4. a Ita | 1. m uy bla<br>2. blanda | 3. firm e      | 4. rigida<br>5. m u y rígi | 6.dura   | 1. m u y su ( | z. suella<br>3. median | 4.densa      | 5. m uy dei | 1. Se ca<br>2. ligeramento<br>hímeda | 3. húmeda | 4. muy<br>5. saturad  |                       |         | 1. estratifi<br>2. Iaminad | 3. fisurada | 4.homogé | 1. fino      | 2.medio      | 3.grueso | 1. angulos              | 2. subally<br>2. cubrode | 4. redonde | Tamaño m   | Tamaño m<br>Blogues | Tamaño m<br>Bolonería | 1.Boloneri   | 2.Grava | 3.Arena | 4.Finos |
| 0.00        | 04.540             |           | a           | <b>-</b> | x                                |          |                          |                |                            |          | )             | ĸ                      |              |             |                                      | X         |                       | Gris<br>Parduzco      | No      |                            |             | х        | х            | x            |          | )                       | (                        |            | 1          |                     |                       | 10.0         | 25.0    | 55.0    | 20.0    |
| 9.00        | 21+540             | 21+600    | Alumai      | Talud    | Comentari                        | os:      |                          | ***            |                            | <u> </u> | ***           | ***                    | ļ            | vren        | asme                                 | dias y    | grava                 | as subangul           | ares    | (1.00                      | "), cc      | on fin   | 0S (         | en la        | ama      | triz y                  | alg                      | o de l     | bloque     | s.                  | <u>*</u>              | <u> </u>     | ļ       | ***     |         |
| 10.00       | 22+200             | <u> </u>  | Aluvial     | Talud    | x                                |          |                          |                |                            |          | )             | ĸ                      |              |             |                                      | х         |                       | Amarillo<br>Parduzco  | No      |                            |             | х        | х            | х            |          | )                       | (                        | *****      | 0.5        |                     |                       | 5.0          | 20.0    | 60.0    | 15.0    |
| 10.00       | 221200             | 221020    |             | Talua    | Comentari                        | os:      |                          |                |                            |          |               |                        | ļ            | \ren        | ias me                               | dias - '  | finas                 | , con gravas          | sub     | angul                      | ares        | (0.5'    | "), a        | lgo (        | de fii   | nos,                    | algo                     | o de l     | oloque     | S.                  |                       |              |         |         |         |
| 11.00       | 25+100             | 251200    | Coluvio     | Talud    | x                                |          |                          |                |                            |          | )             | <                      |              |             |                                      | x         |                       | Amarrillo<br>Parduzco | No      |                            |             | х        | x            | x            |          | >                       | (                        |            | 1.5        |                     |                       | 10.0         | 20.0    | 50.0    | 20.0    |
| 11.00       | 201100             | 207200    | Aluvial     | Taluu    | Comentari                        | os:      |                          |                |                            |          |               |                        | 1            | -<br>Aren   | ias me                               | dias - '  | finas                 | , con gravas          | sub     | angul                      | ares        | (1.5'    | "), a        | lgo (        | de fii   | nos,                    | algo                     | odel       | oloque     | S.                  |                       |              | •       |         |         |
| 12.00       | 251290             | 261020    | Coluvio     | Tolud    | x                                |          |                          |                |                            |          | )             | ĸ                      |              |             |                                      | x         |                       | Pardo<br>Rojizo       | No      |                            |             | Х        | x            | X            |          | >                       | (                        |            | 1.5        |                     |                       | 5.0          | 25.0    | 50.0    | 20.0    |
| 12.00       | 20+300             | 20+020    | Aluvial     | Taluu    | Comentari                        | os:      |                          |                |                            |          |               |                        |              | Are         | enas m                               | edias     | a fin                 | as, ygravas           | sut     | bangu                      | losa        | s (1.5   | <b>o")</b> , | con .        | finos    | yal                     | go c                     | le blo     | oques.     |                     | 1                     |              |         |         | -       |
| 12.00       | 261210             | 261240    | Coluvio     | Tolud    | x                                |          |                          |                |                            |          | )             | ĸ                      |              |             |                                      | x         |                       | Amarillo<br>parduzco  | No      |                            |             | х        | x            | x            |          | )                       | (                        | *****      | 2          |                     |                       | 10.0         | 25.0    | 60.0    | 15.0    |
| 15.00       | 20+210             | 20+240    | Aluvial     | Taluu    | Comentari                        | os:      | >                        |                |                            | <u> </u> |               |                        |              | Ar          | enas m                               | redias    | i - fina              | as, y gravas          | sub     | angula                     | ares        | (2"),    | algo         | de           | fino     | s, alg                  | go d                     | e blc      | ques.      |                     |                       |              |         | 2       | i       |
| 14.00       | 28+420             | 261180    | Coluvio     | Talud    | x                                |          |                          |                |                            |          | )             | ĸ                      |              |             |                                      | x         |                       | Amarillo<br>parduzco  | No      |                            |             | х        |              | x            | x        | )                       | (                        |            | 3.5        |                     |                       | 25.0         | 30.0    | 40.0    | 5.0     |
| 14.00       | 201420             | 201400    | Aluvial     | raiuu    | Comentari                        | os:      |                          |                |                            | •        |               | •                      | Â            | rena        | as med                               | lias - g  | jrues                 | as,y gravas           | ang     | ulosa                      | s (3.5      | 5"), yl  | blo          | ques         | s yb     | olon                    | ería                     | , algc     | de fino    | os                  |                       |              |         |         |         |

|            | le                |                |            |         | PI      | astic     | idad       |          | Co                     | onsis<br>Fin | tenci<br>os | a                      | C            | Com<br>Grar | pasi<br>nulai | idad<br>res | _                        | Нι                         | um e                 | edad               | I           |                      |       | E               | Estru       | ctur        | a         | Grai<br>ar | no d<br>ena | e m      | a - Ta<br>For | am N<br>rma | Máx. d     | de Gr     | Bloqu<br>Boloi       | ies y<br>nería         | P           | orcent  | ajes (  | (%)     |
|------------|-------------------|----------------|------------|---------|---------|-----------|------------|----------|------------------------|--------------|-------------|------------------------|--------------|-------------|---------------|-------------|--------------------------|----------------------------|----------------------|--------------------|-------------|----------------------|-------|-----------------|-------------|-------------|-----------|------------|-------------|----------|---------------|-------------|------------|-----------|----------------------|------------------------|-------------|---------|---------|---------|
| e Registro | /as. Des(<br>(Km) | sta (Km)       | e Depósito | uestreo | IP: 0   | IP: 1 - 7 | IP: 7 - 14 | IP: > 14 | da                     |              |             |                        | ta           |             | nente         |             | а<br>Г <u>н - Л - </u> 5 | C.H:5-10                   | %<br>0.1.1.10        | С.Н:10-<br>С.Н:15- | C.H:>25     | Color                | Lolor | da              |             |             | ea        |            |             |          | osa           | deada       | ıda        | xim o (") | xim o (") de         | xim o (") de           | y bloques   |         |         |         |
| > N ° d€   | Progresiv         | Ha             | Tip o d    | M       | 1. nula | 2. baja   | 3. media   | 4. alta  | 1. muyblan<br>2 blanda | 3. firm e    | 4. rígida   | o.muyrigia:<br>6 diira | 1. muy suelt | 2. suelta   | 3.medianar    | 4.densa     | J. muy dens<br>1 sera    | 1. ac va<br>2. ligeramente | húmeda<br>A bión cai | 3. numeda<br>4 muv | 5. saturada |                      |       | 1. estra tifica | 2. laminada | 3. fisurada | 4.homogén | 1. fino    | 2.medio     | 3.grueso | 2. subangul   | 3. subredon | 4.redondea | Tamaño má | Tamaño má<br>Blogues | Tamaño má<br>Bolonería | 1.Bolonería | 2.Grava | 3.Arena | 4.Finos |
| 15.00      | 07.400            | 07,000         | Coluvio    | Talud   | x       |           |            |          | x                      |              |             |                        |              |             |               |             |                          |                            |                      | х                  |             | Amarillo<br>parduzco | No    |                 |             |             | х         | x          |             |          | x             |             |            | 1.5       |                      |                        | 5.0         | 20.0    | 30.0    | 45.0    |
| 10.00      | 27+100            | 27+200         | Aluvial    | Taluu   | Coi     | ment      | arios      | s:       |                        |              |             | 1                      | _1           | 2 2         |               |             | Fin                      | os y                       | / are                | enas               | med         | lias - finas,        | con   | grav            | vass        | suba        | angu      | lare       | s (1        | .5"),    | algo          | deb         | bloqu      | es.       |                      | <u>.</u>               |             | 1       | 2       | 1       |
| 16.00      | 29+130            | <u></u> 20+220 | Aluvial    | Talud   | x       |           |            |          | x                      |              |             |                        |              |             |               |             |                          |                            |                      | x                  |             | Amarillo<br>Grisaceo | No    |                 |             |             | х         | X          |             |          | x             |             |            | 1.5       |                      |                        | 5.0         | 20.0    | 30.0    | 45.0    |
| 10.00      | 201100            | 201220         | / daviar   | Tuluu   | Со      | ment      | arios      | s:       |                        |              |             |                        |              |             |               |             | Fin                      | os y                       | / are                | enas               | mec         | lias - finas,        | con   | gra             | vas s       | suba        | angı      | ılare      | s (1        | .5"),    | algo          | deb         | bloqu      | es.       |                      |                        |             |         |         |         |
| 17.00      | 20+040            | 20/050         | Aluvial    | Talud   | x       |           |            |          | x                      |              |             |                        |              |             |               |             |                          |                            |                      | x                  |             | Amarillo<br>Grisaceo | No    |                 |             |             | х         | x          |             |          | x             |             |            | 1.5       |                      |                        | 5.0         | 20.0    | 30.0    | 45.0    |
| 17.00      | 201040            | 20 300         | Πανίαι     | Tuluu   | Co      | ment      | tario      | S        |                        |              |             |                        |              |             |               |             | Fin                      | os y                       | /are                 | enas               | meo         | lias - finas,        | con   | gra             | vas s       | suba        | angu      | ılare      | s (1        | .5"),    | algo          | deb         | bloqu      | es.       |                      |                        |             |         |         |         |

#### 3.4.3 Estaciones Geomecánicas

#### 3.4.3.1 Análisis de Rock Quality Designation en los taludes

Se calcula el RQD teórico debido a que no se cuenta con testigos de sondeo para realizar la relación entre la longitud del núcleo y los fragmentos no fracturados mayores a 10 cm, por tanto de los datos tomados en campo se registró que el espaciado de las juntas promedio, permitiendo así aplicar la relación teórica para el cálculo del RQD.

RQD =  $100^{-0.1\Delta(0.1\Delta+1)}$ ; Con  $\Delta = \frac{1}{\text{espaciado en metros}}$ 

Es así que usando la formula anterior, podemos determinar el RQD en cada uno de los taludes en roca representativos.

|             | C                | CÁLCULO DE<br>BAMBA | RQD E<br>AMAC | N LOS TA<br>A - PACCH | LUDES DE LA C<br>IA (0+000 - 30+ | CARRETERA<br>+000) |
|-------------|------------------|---------------------|---------------|-----------------------|----------------------------------|--------------------|
| N° de Talud | Espaciado<br>(m) | Exponente           | RQD           | RQD<br>(%)            | Clasificación                    | Fotografía         |
| Talud 01    | 0.45             | -0.27               | 0.29          | 28.63                 | Mala                             |                    |
| Talud 02    | 1.10             | -0.10               | 0.63          | 63.34                 | Regular                          |                    |

| N° de<br>Talud | Espaciado<br>(m) | Exponente | RQD  | RQD<br>(%) | Clasificación | Fotografía |
|----------------|------------------|-----------|------|------------|---------------|------------|
| Talud 03       | 0.80             | -0.14     | 0.52 | 52.33      | Regular       |            |
| Talud 05       | 0.25             | -0.56     | 0.08 | 7.59       | Muy mala      |            |
| Talud 08       | 0.80             | -0.14     | 0.52 | 52.33      | Regular       |            |
| Talud 11       | 1.20             | -0.09     | 0.66 | 65.98      | Regular       |            |
| Talud 12       | 0.45             | -0.27     | 0.29 | 28.63      | Mala          |            |

| N° de<br>Talud | Espaciado<br>(m) | Exponente | RQD  | RQD<br>(%) | Clasificación | Fotografía |
|----------------|------------------|-----------|------|------------|---------------|------------|
| Talud 13       | 0.25             | -0.56     | 0.08 | 7.59       | Mala          |            |
| Talud 14       | 0.25             | -0.56     | 0.08 | 7.59       | Mala          |            |
| Talud 15       | 0.25             | -0.56     | 0.08 | 7.59       | Mala          |            |
| Talud 16       | 0.30             | -0.44     | 0.13 | 12.92      | Mala          |            |
| Talud 17       | 0.55             | -0.21     | 0.37 | 37.17      | Mala          |            |

3.4.3.2 Cálculo de Rock Mass Rating y Slope Mass Rating en los taludes

| А                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | nális         | sis d | le es<br>F | stab<br>Pac                                                                             | ilida<br>cha                                                                        | d de<br>de 0                                                     | talu<br>+000                            | des<br>0 a l                             | en c<br>os 3 | arre    | etera           | a Bar<br>Km                                    | nbar                             | marc              | ca -                                 |                                                                                    | F                  | REA            | HA:<br>LIZA     | ADO<br>ESIN | PO<br>/AS    | R:          |      |                |        | 04,<br>A.          | /10/2<br>Falc | 201:<br>oní<br>3+ | 3<br>Rey<br>950                                                                                                 | es                  | 5+5                 | 520                 | Km                    | 1          | -                | 6                | θE(                   | ES<br>DM      | ST.            | AC<br>CÁ | IÓ                       | N<br>CA                   | N                  | 0                                    |                                      |          |                                                 | E                                        | G                              | -1                     | )   |  | - |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------|------------|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|------------------------------------------------------------------|-----------------------------------------|------------------------------------------|--------------|---------|-----------------|------------------------------------------------|----------------------------------|-------------------|--------------------------------------|------------------------------------------------------------------------------------|--------------------|----------------|-----------------|-------------|--------------|-------------|------|----------------|--------|--------------------|---------------|-------------------|-----------------------------------------------------------------------------------------------------------------|---------------------|---------------------|---------------------|-----------------------|------------|------------------|------------------|-----------------------|---------------|----------------|----------|--------------------------|---------------------------|--------------------|--------------------------------------|--------------------------------------|----------|-------------------------------------------------|------------------------------------------|--------------------------------|------------------------|-----|--|---|
| GE<br>GE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | OM<br>OL(<br> |       | RÍA:       | Liton<br>Altu<br>Dire<br>Buz<br>Lito<br>Tipo<br>Tipo<br>C<br>C<br>C<br>C<br>C<br>S<br>S | gitua<br>ira M<br>ecciá<br>cami<br>logía<br>o de<br><b>PRIE</b><br>0<br>0<br>8<br>0 | d:<br>Máxiri<br>ento<br>ento<br>a:<br>Roc:<br>Estr<br><b>NTA</b> | ma:<br>⇒ Bu:<br>:<br>a:<br>•uctu<br>CIÓ | z. de<br>Ira:<br>DD<br>280<br>340<br>210 | el Ta        | ud:<br> | Ca<br>Se<br>Jui | 500<br>18<br>30<br>73<br>aliza<br>edim<br>ntas | 0 m<br>3 m<br>0 °<br>3 °<br>enta | aria<br>ION       | ES                                   | _                                                                                  |                    |                |                 |             |              |             |      | and the second |        |                    |               |                   | A CONTRACT OF |                     | al Part             |                     |                       | 「一小小小小小小小小 |                  |                  |                       | w-            |                |          | A A                      | n                         | TAL                | 2:33<br>UD                           | 3,32                                 | TAPAL    |                                                 |                                          |                                |                        | E   |  |   |
| SO     RESISTENCIA DE LA<br>ROCA     INDICE DE<br>CALIDAD DE LA<br>ROCA     ESPACIADO I<br>DISCONTINU       VINA XIAL (MPa)     RQD (%)     ESPACIADO (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               |       |            |                                                                                         |                                                                                     |                                                                  |                                         |                                          |              |         |                 |                                                | otogi<br>DE L<br>JIDA<br>mm)     | nafía<br>_A<br>.D | de d                                 | etalle                                                                             | e del I            | Maciz<br>AD (n | zo Ro<br>n)     | ocoso       | D.<br>AB     | Co<br>BERTI | JRA  | ICIC           | DNES   | RU                 | E LA          |                   | sco                                                                                                             | NTI                 | NUI                 |                     | ENO                   | ión e      | stere            | eográ            | fica o                | ie las        | s dis          | cont     | inuid<br>C<br>HII<br>GRA | ades<br>ON<br>DRC<br>DO D | y de<br>DIC<br>DLÓ | e la o<br>IÓN<br>GIC<br>JMED<br>1989 | A<br>A<br>DAD<br>9)                  | ORIEN    | el taluo<br>RRE<br>PO<br>IENT<br>TACIÓ<br>ONTIN | d.<br>CCIO<br>R<br>ACIO<br>N DE<br>IUIDA | ÓN<br>ÓN<br>E LAS<br>DES<br>7) |                        |     |  |   |
| RANGOS Y VALORES         1           > 250         -           > 250         100-250           50-100         50-100           50-100         50-100           5-1         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         - <th></th> <th>≥600, &lt;2000 Separadas</th> <th>≥2000 Muy separadas</th> <th>&lt;1 Baja</th> <th>≥1,&lt;3 Baja a<br/>2010<br/>2010<br/>2010</th> <th>≥3, &lt;10 Media DO<br/>DO<br/>DO<br/>DO<br/>DO<br/>DO<br/>DO<br/>DO<br/>DO<br/>DO<br/>DO<br/>DO</th> <th>≥10,&lt;20 Alta Z Z Z</th> <th>≥20 Muy Alta</th> <th>ninguna Cerrada</th> <th>&lt; 0,1 mm</th> <th>≥0,10, &lt;1 mm</th> <th>≥1, &lt;5mm</th> <th>≥5mm</th> <th>Muy Rugosa</th> <th>Rugosa</th> <th>Ligeramente Rugosa</th> <th>Suave</th> <th>Pulida</th> <th>ninno</th> <th>Rellano Duro &lt; 5 mm</th> <th>Relleno Duro &gt; 5 mm</th> <th>Relleno Blando &lt;5mm</th> <th>Relleno Blando &gt; 5 mm</th> <th>Inalterado</th> <th>Lig. Meteorizada</th> <th>Mod. Meteorizada</th> <th>Altamente Meteorizada</th> <th>Descomplicate</th> <th>nesconinpuesta</th> <th>Seco</th> <th>Ligeram húmedo</th> <th>Húmedo</th> <th>Goteando</th> <th>Agua fluyendo</th> <th><pre>k = RMRBÁSICO + (ψ*F3)+F4</pre></th> <th>Ψ<br/>F</th> <th>3 -</th> <th>.15</th> |               |       |            |                                                                                         |                                                                                     |                                                                  |                                         |                                          |              |         |                 | ≥600, <2000 Separadas                          | ≥2000 Muy separadas              | <1 Baja           | ≥1,<3 Baja a<br>2010<br>2010<br>2010 | ≥3, <10 Media DO<br>DO<br>DO<br>DO<br>DO<br>DO<br>DO<br>DO<br>DO<br>DO<br>DO<br>DO | ≥10,<20 Alta Z Z Z | ≥20 Muy Alta   | ninguna Cerrada | < 0,1 mm    | ≥0,10, <1 mm | ≥1, <5mm    | ≥5mm | Muy Rugosa     | Rugosa | Ligeramente Rugosa | Suave         | Pulida            | ninno                                                                                                           | Rellano Duro < 5 mm | Relleno Duro > 5 mm | Relleno Blando <5mm | Relleno Blando > 5 mm | Inalterado | Lig. Meteorizada | Mod. Meteorizada | Altamente Meteorizada | Descomplicate | nesconinpuesta | Seco     | Ligeram húmedo           | Húmedo                    | Goteando           | Agua fluyendo                        | <pre>k = RMRBÁSICO + (ψ*F3)+F4</pre> | Ψ<br>F   | 3 -                                             | .15                                      |                                |                        |     |  |   |
| VALORES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               |       |            |                                                                                         |                                                                                     |                                                                  |                                         |                                          |              |         |                 |                                                | 15                               | 20                | 9                                    | 4                                                                                  | 4 2                | -              | 0               | 9           | 5            | 1 3         | -    | 0              | 9      | 5                  | 5             | -                 | 0                                                                                                               | ų                   | × 4                 | 2                   | 5                     | 0          | 9                | 2<br>2           | 3                     | -             |                |          | 15                       | 10                        | 7 7                | 4                                    | 0                                    | SMF      | 9                                               | *                                        |                                |                        |     |  |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |       |            |                                                                                         |                                                                                     |                                                                  |                                         |                                          |              |         |                 |                                                |                                  |                   |                                      |                                                                                    |                    |                |                 |             |              |             |      | •              | VAL    | .OR                | то<br>v/      |                   |                                                                                                                 | 01<br>01            | BÁ<br>FAL           | SIC                 | :0=<br>IR =           | 44<br>= 50 | 4<br>D           | 05               |                       |               |                |          |                          |                           |                    |                                      |                                      |          |                                                 |                                          |                                |                        |     |  |   |
| SMR 100-81<br>DESCRIPCIÓN I Muy Buena                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |       |            |                                                                                         |                                                                                     |                                                                  |                                         |                                          |              |         |                 |                                                |                                  | 80<br>II Bu       | -61<br>Jena                          | a                                                                                  |                    |                | IIIA            | 60-<br>Re   | -51<br>gula  | ar A        |      |                | IIIB   | 50<br>Re           | -41<br>egula  | r B               |                                                                                                                 |                     |                     | 4<br>VA             | 0-3<br>Mal            | a A        |                  |                  |                       | 30<br>VB      | )-21<br>Mala   | a B      |                          |                           |                    | V                                    | 20<br>Muy                            | -0<br>Ma | la                                              |                                          | Reg                            | IIIB<br>J <u>ula</u> i | r B |  |   |

| Ar                                                                                                                                                                                                                        | nális                  | sis d       | e esta<br>Pa                                         | bilid<br>ccha                                  | ad de<br>a de (                                                 | e talı<br>0+00                    | udes<br>)0 a | en<br>los i | carro<br>30+( | etera<br>000          | a Ba<br>Km                 | mba                                                               | ama                  | rca                  | -                        |                       | FE(<br>RE<br>PR     | CHA<br>ALIZ<br>OGI | .:<br>ZADO<br>RESI      | D PC                        | DR:<br>S:        |                     |                 |                 | 04/1<br>A. F            | 0/2<br>alco | 2013<br>oní I<br>8+9 | Reyo       | es<br>- 9 | +90                | 00 K             | ſm     |         |                     | GE                            | E:<br>ON | ST<br>1E   | AC<br>CÁ         | IÓI<br>NIC       | N<br>CA                            | N                     | Ð                                      |                                       |                            | E                                                         | ĒĊ                                                          | 6-(                                  | )2                         | )             |      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-------------|------------------------------------------------------|------------------------------------------------|-----------------------------------------------------------------|-----------------------------------|--------------|-------------|---------------|-----------------------|----------------------------|-------------------------------------------------------------------|----------------------|----------------------|--------------------------|-----------------------|---------------------|--------------------|-------------------------|-----------------------------|------------------|---------------------|-----------------|-----------------|-------------------------|-------------|----------------------|------------|-----------|--------------------|------------------|--------|---------|---------------------|-------------------------------|----------|------------|------------------|------------------|------------------------------------|-----------------------|----------------------------------------|---------------------------------------|----------------------------|-----------------------------------------------------------|-------------------------------------------------------------|--------------------------------------|----------------------------|---------------|------|
| GEO<br>GEO                                                                                                                                                                                                                | DEO                    | ETR<br>OGÍ/ | ÍA: Lo<br>Alt<br>Dir<br>Bu<br>E<br>Lit<br>Tip<br>Tip | ngitu<br>ura l<br>zam<br>ologi<br>o de<br>o de | id:<br>Máxir<br>ón de<br><u>iento</u><br>ía:<br>e Roc<br>e Estr | ma:<br>e Bu:<br>:<br>:a:<br>ructu | z.de         | el Ta       | alud:         | N<br>Are<br>Se<br>Jui | 10<br>enis<br>edim<br>ntas | 00 i<br>18 i<br>60 <sup>°</sup><br>83 <sup>°</sup><br>ca (<br>ent | n<br>n<br>Sua<br>Cua | irzo                 | sa                       | -                     |                     |                    |                         |                             | Ster / U         |                     |                 |                 | 一一日日日                   | Acres and   |                      |            |           |                    |                  |        |         |                     |                               |          |            | 1                | /                |                                    |                       |                                        | · _ '                                 | 4                          |                                                           |                                                             |                                      |                            | t             |      |
| PLANO         ORIENTACIÓN         OBSERVACIONES           J-1         20         235           J-2         60         82           J-3         74         2           Caída de rocas y cuña         Caída de rocas y cuña |                        |             |                                                      |                                                |                                                                 |                                   |              |             |               |                       |                            |                                                                   | -                    |                      |                          |                       |                     |                    |                         |                             | のですると            |                     |                 |                 | あるかというという               |             |                      |            |           |                    |                  |        |         | w                   |                               | C AL     |            | 1                |                  | -                                  | Partal                |                                        | 2                                     |                            |                                                           | Ε                                                           |                                      |                            |               |      |
| RESISTENCIA DE LA<br>ROCA     ÍNDICE DE CALIDAD<br>DE LA ROCA     ESPACIADO I<br>DISCONTINU       RESISTENCIA A LA COMPRESIÓN<br>UNIA XIAL (MPa)     RQD (%)     ESPACIADO (                                              |                        |             |                                                      |                                                |                                                                 |                                   |              |             |               |                       |                            |                                                                   | Foto<br>D DE<br>NUIE | ograf<br>E LA<br>DAD | ía de                    | detal                 | le del              | Maci:<br>AD (n     | n)                      |                             | ABE              | CO<br>ERTUF<br>(mm) | NDI<br>RA       | CIO             | NES                     | DE<br>RUG   | LA I                 | DISC<br>AD | ON        | TINU               | P<br>IDAI<br>REL | oyec   | ción    | ester               | eográ<br>MET                  | fica d   | ZACK       | óN               | cont             | inuida<br>C<br>HIC<br>GRAE<br>(Bie | ondes y<br>OND<br>ROL | / de l<br>ICIĆ<br>-ÓG<br>HUN<br>ski, 1 | a orie<br>DN<br>ICA<br>(EDA I<br>989) | ntaciór<br>C<br>OR<br>DI   | in del ta<br>CORF<br>I<br>DRIEI<br>IENTA<br>SCON<br>(Roma | Alud.<br>RECC<br>POR<br>NTAC<br>CIÓN I<br>TINUIE<br>ana, 19 | IÓN<br>IÓN<br>DE LAS<br>ADES<br>197) |                            |               |      |
| RANGOS Y VALORES                                                                                                                                                                                                          | > 250                  | 100-250     | 50-25                                                | 25-5                                           | 5-1                                                             | ۲-<br>۲-                          | 90-100       | 75-90       | 50-75         | 25-50                 | <25                        |                                                                   | <60 Muy juntas       | ≥60, <200 Juntas     | ≥200, <600 Moderm.Juntas | ≥600, <2000 Separadas | ≥2000 Muy separadas | <1 Baja            | ≥1,<3 Baja Rai          | >3, <10 Media 23, <10 Media | ≥10,<20 Alta Z Z | ≥20 Muy Alta        | ninguna Cerrada | < 0,1 mm        | ≥0,10, <1 mm<br>Abierta | ≥1, <5mm    | ≥5mm                 | Muy Rugosa | Rugosa    | Ligeramente Rugosa | Suave            | Pulida | ninguno | Relleno Duro < 5 mm | Pollona Plando Juno > 3 IIIII |          | Inaltarado | Lia. Meteorizada | Mod. Meteorizada | Altamente Meteorizada              | Descompliesta         |                                        | Seco                                  | Ligerarn numeau<br>Liúmada |                                                           | Adria filiyando                                             |                                      | К = КІМКВАЗІСО + (ψ.r3)+r4 | Ψ<br>F3<br>F4 | 0.85 |
| VALORES 15<br>777777777777777777777777777777777777                                                                                                                                                                        |                        |             |                                                      |                                                |                                                                 |                                   |              |             |               |                       |                            |                                                                   | 15                   | 20                   | 9                        | 4                     | 4 2                 | -                  | 0                       | 9                           | 5                | 3                   | -               | 0               | 9                       | 5           | 5 3                  | -          | 0         | 9                  | 4                | 4<br>7 | √ ⊂     | o (4                | 22                            | 5        | -          | c                |                  | 15                                 | 10                    | 2                                      | t C                                   |                            | MO                                                        | - <mark>1</mark> -                                          |                                      |                            |               |      |
|                                                                                                                                                                                                                           | SMR 100-81 80-61 60-51 |             |                                                      |                                                |                                                                 |                                   |              |             |               |                       |                            |                                                                   |                      |                      | V                        |                       | OR                  | TO<br>VA           | TAL<br>ALO<br>CL<br>50- | . RM<br>R T<br>ASE<br>41    | IR<br>OT         | BÁS<br>AL S<br>E M/ | SICC<br>SMF     | )=<br>R =<br>ZO | 66<br>55<br>RO(<br>40-; | <b>:0S</b>  | 0                    |            |           | 3                  | )-21             |        |         |                     |                               |          | 20-0       | )                |                  |                                    | IIIA                  |                                        |                                       |                            |                                                           |                                                             |                                      |                            |               |      |

| A                                                                                                      | nálisi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | is d | e esta<br>Pa                          | abili                                       | dad<br>ha d                                          | de t<br>le 0+                         | taluc                     | des<br>) a li | en c<br>os 3 | arre<br>0+0 | etera<br>00 k         | Ban<br>(m                                     | nbar                                     | mar         | ca -     |              | I         | FEC<br>RE#<br>PRC | HA:<br>ALIZ | ADC                      | ) PC<br>VAS | DR:<br>S. |            |            |            | 04/<br>A. I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10/2<br>Falc | 2013<br>oní l                         | Rey<br>740 | es<br>— 1   | 13+8   | 320          | ) KN         | Л            |                      | G                   | EC         | ES<br>DM  | EC           | ACI<br>CÁM | 1Ò<br>VIC  | N<br>A      | N°    |         |                |               | E                | G         | -0          | 3               |               |                 |
|--------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------------------------------------|---------------------------------------------|------------------------------------------------------|---------------------------------------|---------------------------|---------------|--------------|-------------|-----------------------|-----------------------------------------------|------------------------------------------|-------------|----------|--------------|-----------|-------------------|-------------|--------------------------|-------------|-----------|------------|------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|---------------------------------------|------------|-------------|--------|--------------|--------------|--------------|----------------------|---------------------|------------|-----------|--------------|------------|------------|-------------|-------|---------|----------------|---------------|------------------|-----------|-------------|-----------------|---------------|-----------------|
| GE(                                                                                                    | DME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Gĺ   | RÍA:L<br>A<br>D<br>B<br>A:L<br>T<br>T | ong<br>litur<br>irec<br>itolo<br>ipo<br>ipo | itud<br>a M<br>ciór<br>amie<br>ogía:<br>de F<br>de E | áxim<br>n de<br>nto:<br>Roca<br>Estru | na:<br>Buz<br>a:<br>uctur | z. de<br>ra:  | el Ta        | llud:       | N<br>Are<br>Se<br>Jui | 80<br>15<br>25<br>77<br>eniso<br>dimo<br>ntas | ) m<br>5 m<br>5 °<br>7 °<br>ca (<br>enta | Cua<br>aria | rzo      | sa           |           |                   |             |                          |             |           |            |            | The second | and the second sec                                                                                                                                                                                                                                             | State State  | A A A A A A A A A A A A A A A A A A A | 「たいううん     | ない          |        |              |              |              |                      |                     |            | w         | Ĩ            |            | ~          | ~           |       |         | N              | 4             |                  |           | ł           | -<br>E          |               |                 |
| PLANO         D         DD         OBSERVACIONES           J-1         77         20         310       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |                                       |                                             |                                                      |                                       |                           |               |              |             |                       |                                               |                                          | -otor       |          | dou          | datall    |                   |             |                          |             |           | 91         | TAN        | 12 martin  | A State of the sta | The same     |                                       |            |             |        |              | Bro          |              | áp og                | toro toro           |            |           |              | C Au       | up<br>T    | S           | +     |         |                |               |                  |           |             |                 |               |                 |
| RESISTENCIA DE LA<br>ROCA<br>ROCA<br>ROCA<br>ROCA<br>ROCA<br>ROCA<br>ROCA<br>ROC                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |                                       |                                             |                                                      |                                       |                           |               |              |             |                       |                                               |                                          | DE<br>JID/  | LA<br>AD |              | Jetain    |                   | Ividu       | 20 K                     |             | ).        | СС         | ONDI       | СЮ         | NES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | DE           | LA                                    | DIS        | CON         |        | IUID         | DAD          | yecci        | ones                 | lere                | Ugrai      |           | e ids        | uisco      | F          |             |       |         | A              |               |                  | R<br>ACIÓ | N<br>N      |                 |               |                 |
| PAR/                                                                                                   | RESIS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | U    | NIA XIA                               |                                             | ЛРа)                                                 | 'REO                                  | ION                       |               | R            | QD (        | %)                    |                                               |                                          | ESF         | ACIA     | ADO (        | (mm)      | )                 | С           | ONTI                     | NUID        | AD (r     | m)         |            | ABI        | ERTL<br>(mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | JRA          |                                       |            | RUC         | GOSIE  | DAD          |              |              | R                    | ELLE                | NO         |           | I            | METE       | ORIZ       | ACIÓ        | N     | GF<br>( | ≀A DO<br>Bieni | DE H<br>aw sk | iumee<br>.i, 198 | DAD<br>9) | DISC<br>(Ro | ONTINU<br>mana, | JIDAD<br>1997 | LAS<br>IES<br>) |
| ORES                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 50   | 00                                    | 0                                           | 10                                                   |                                       |                           | 00            | 0            | 5           | 0                     |                                               | Muv iuntas                               | luntae      |          | oderm.Juntas | Separadas | uy separadas      | 3aja        | S<br>DIRE<br>BUZ<br>ejeg |             |           | iy Alta    | Cerrada    |            | Abionto                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ADIEITA      |                                       | gosa       | sa          | Rugosa | е            | а            | ou           | o < 5 mm             | o > 5 mm            | do <5mm    | lo > 5 mm | ado          | orizada    | orizada    | eteorizada  | uesta |         | úmedo          | op            | opu              | /endo     | + (µ*F3)+F4 | Ψ               | 0.            | 85              |
| NGOS Y VAI                                                                                             | NGOS Y VALL<br>> 250<br>50-100<br>50-25<br>50-25<br>50-25<br>50-75<br>5-1<br><1<br>5-1<br>5-1<br>5-1<br>5-1<br>5-10<br>25-50<br>25-50<br>25-50<br>25-50<br>25-50<br>25-50<br>1, <00 Mod                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |                                       |                                             |                                                      |                                       |                           |               |              |             |                       |                                               | 0, <600 M                                | 0, <2000    | 2000 M   | ~<br>-       | 1, <3 E   | 3, <10 N          | 0, <20      | ≥20 Mu                   | nguna       | ,1 mm     | 0, <1 mm   | <5mm       | 5mm        | Muy Ru                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Rugo         | Ligeramente                           | Suav       | Pulid       | ningu  | Relleno Duro | Relleno Duro | Relleno Blan | <b>Relleno Bland</b> | Inaltera            | Lig. Meteo | Mod. Mete | Altamente Me | Descomp    | Sec        | Ligeram hi  | Húme  | Gotear  | Agua fluy      | MRBÁSICO      | F3               | 5 -5      | 50          |                 |               |                 |
| R/                                                                                                     | RA           15         1         15         1         15         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1 <td>10 ≥20</td> <td>15 ≥60</td> <td>20</td> <td>9</td> <td>4</td> <td>2</td> <td>1</td> <td>0</td> <td>6<br/>ni</td> <td>5 &lt;(</td> <td>3 ≥0,</td> <td>1 ≥1</td> <td>&lt;</td> <td>9</td> <td>5</td> <td>3</td> <td>1</td> <td>0</td> <td>9</td> <td>4</td> <td>2</td> <td>2</td> <td>0</td> <td>9</td> <td>5</td> <td>e</td> <td>-</td> <td>0</td> <td>15</td> <td>10</td> <td>7</td> <td>4</td> <td>0</td> <td>SMR = R</td> <td>F4</td> <td>1</td> <td>0</td> |      |                                       |                                             |                                                      |                                       |                           |               |              |             |                       |                                               | 10 ≥20                                   | 15 ≥60      | 20       | 9            | 4         | 2                 | 1           | 0                        | 6<br>ni     | 5 <(      | 3 ≥0,      | 1 ≥1       | <          | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5            | 3                                     | 1          | 0           | 9      | 4            | 2            | 2            | 0                    | 9                   | 5          | e         | -            | 0          | 15         | 10          | 7     | 4       | 0              | SMR = R       | F4               | 1         | 0           |                 |               |                 |
| VALORES<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |                                       |                                             |                                                      |                                       |                           |               |              |             |                       | <u>1</u>                                      |                                          |             |          |              | -         | 1                 | 1           |                          |             | -         |            |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5            |                                       | 1          |             |        | 0            | 1            | 1            |                      | 1                   | e          | 1         | <u> </u>     |            |            | 7           |       |         |                | -33           |                  |           |             |                 |               |                 |
|                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |                                       |                                             |                                                      |                                       |                           |               |              |             |                       |                                               |                                          |             |          |              |           |                   |             |                          | VAL         | OR        | то         | TAL        | .RN        | 1R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | BÁS          | SIC                                   | 0=         | 47          |        |              |              |              |                      |                     |            |           |              |            |            |             |       |         |                |               |                  |           |             |                 |               |                 |
|                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |                                       |                                             |                                                      |                                       |                           |               |              |             |                       |                                               |                                          |             |          |              |           |                   |             |                          |             | VA        |            | R T        |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SM           | R =                                   | 15         |             | 261    |              |              |              |                      |                     |            |           |              |            |            |             |       |         |                |               |                  |           |             |                 |               |                 |
|                                                                                                        | SMR 100-81 80-61<br>DESCRIPCIÓN I Muy Buena II Buena                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                                       |                                             |                                                      |                                       |                           |               |              |             |                       |                                               | a                                        |             |          | IIIA         | 60<br>Re  | -51<br>gula       | ar A        |                          | 0           | рЩВ       | 50-<br>Reg | 41<br>gula | r B        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AU           | <u>احتر</u>                           | 40<br>/A N | -31<br>Mala |        | ,<br>        |              | I            | 30<br>VB N           | -21<br><i>N</i> ala | В          |           | E            |            | 20<br>/ Mu | )-0<br>y Ma | la    |         | Muy            | V<br>Mal      | a                |           |             |                 |               |                 |

| A                                                                                                                                                     | náli                             | sis d | de es | stab<br>Pac                                      | ilida<br>cha                                                                                                                                               | ad de<br>de 0                                                          | talu<br>)+00                | udes<br>10 a l                          | en os 3 | carre<br>30+0 | etera               | a Ba<br>Km                  | amb                                                                                     | ama                          | arca             | -                        |                       | FE<br>RE<br>PF      | CH/<br>EALI | A:<br>ZAD      | io p<br>Siva      | OR:<br>S:                |                  |                           |                  | 04,<br>A.    | /10/2<br>Falc    | 2013<br>oní | Rey                              | es                  |                    | -      | -                         |         | _                   | G                   | EC                  | ES<br>DM              | ST/<br>EC                       | AC<br>CÁI        | 1Ò<br>VIC            | N<br>CA               | N°           | •                               |                             |                                 | E        | G  | <b>)-</b>      | 05                                                    | 5       |     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-------|-------|--------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|-----------------------------|-----------------------------------------|---------|---------------|---------------------|-----------------------------|-----------------------------------------------------------------------------------------|------------------------------|------------------|--------------------------|-----------------------|---------------------|-------------|----------------|-------------------|--------------------------|------------------|---------------------------|------------------|--------------|------------------|-------------|----------------------------------|---------------------|--------------------|--------|---------------------------|---------|---------------------|---------------------|---------------------|-----------------------|---------------------------------|------------------|----------------------|-----------------------|--------------|---------------------------------|-----------------------------|---------------------------------|----------|----|----------------|-------------------------------------------------------|---------|-----|
| GE<br>GE                                                                                                                                              | OM<br>OL(<br>_AN<br>_J-1<br>_J-2 | DG    | RÍA:  | Altu<br>Dire<br>Buz<br>Lito<br>Tipo<br>Tipo<br>C | gitu<br>ura N<br>eccie<br>2am<br>logí<br>2 de<br>0 de<br>0 de<br>0 de<br>0 de<br>0 de<br>0 de<br>2 de<br>2 de<br>2 de<br>2 de<br>2 de<br>2 de<br>2 de<br>2 | id:<br>Máxin<br>ón de<br><u>iento</u><br>a:<br>e Roc<br>e Estr<br>ENTA | ma:<br>e Bu<br>:a:<br>ructi | uz. di<br>ura:<br>DN<br>DD<br>195<br>50 | el Ta   | alud:         | Ar<br>Se<br>Ju      | ہ N 3<br>بر<br>edin<br>unta | 30 i<br>4 i<br>10 <sup>°</sup><br>58 <sup>°</sup><br>58 <sup>°</sup><br>sca<br>ner<br>s | m<br>"<br>"<br>n Cu<br>ntari | Jarz<br>ia       | osa<br><b>S</b>          | a                     |                     | N & M & M   | L'a B          |                   |                          |                  |                           | A STATE OF       |              |                  |             |                                  |                     |                    |        | Contraction of the second |         |                     |                     |                     | w-                    |                                 | ×/               |                      |                       | 2:           | TALU                            | N-                          |                                 | •        |    |                | F                                                     | =       |     |
| RESISTENCIA DE LA ROCA ROCA ROCA RESISTENCIA A LA COMPRESIÓN ROCA ROCA ROCA ROCA ROCA ROCA ROCA ROCA                                                  |                                  |       |       |                                                  |                                                                                                                                                            |                                                                        |                             |                                         |         |               | Fot<br>D DI<br>NUII | ograt<br>E L A<br>DAD       | fía de                                                                                  | e deta                       | alle de          | el Mac                   | cizo I                | Rocos               | so.         | C              | OND               |                          | NES              | DE                        | E LA<br>GOSI     | DIS          | cor              |             |                                  | Pro                 | yecc               | ión es | stere                     | ográf   |                     |                     | disce               | ontii                 | s<br>nuida<br>C(<br>HID<br>BRAD |                  | de la<br>ICIÓ<br>ÓGI |                       |              | ón del<br>COR<br>ORIE<br>RIENT/ | talud.<br>REC<br>POR<br>NTA | CIÓN<br>CIÓN<br>DE LAS<br>DADES |          |    |                |                                                       |         |     |
| RANGOS Y VALORES         PA           > 250         > 250           > 250         100-250           50-100         50-25           51-5         51-50 |                                  |       |       |                                                  |                                                                                                                                                            |                                                                        | ~                           | 90-100                                  | 75-90   | 50-75         | 25-50               | 201                         | 0.22                                                                                    | <60 Muy juntas               | ≥60, <200 Juntas | ≥200, <600 Moderm.Juntas | ≥600, <2000 Separadas | ≥2000 Muy separadas | <1 Baia     | ≥1, <3 Baja Pa | ≥3. <10 Media DES | ≥10, <20 Alta Alta Zi Xi | ≥20 Muv Alta     | ninguna Cerrada           | < 0,1 mm         | ≥0,10, <1 mm | ≥1, <5mm Abierta | ≥5mm        | Muy Rugosa                       | Rugosa              | Ligeramente Rugosa | Suave  | Pulida                    | ninguno | Relleno Duro < 5 mm | Relleno Duro > 5 mm | Relleno Blando ⊲5mm | Relleno Blando > 5 mm | Inalterado                      | Lig. Meteorizada | Mod. Meteorizada     | Altamente Meteorizada | Descompuesta |                                 |                             |                                 | opueetoe |    | Agua Invertioo | = RMRBÁSICO + ( $\mu^*$ F3)+F4 $\Big $ $\frac{3}{24}$ | Ψ<br>F3 | 0.4 |
| VALORES<br>1 15<br>7 7<br>1 2<br>1 2<br>1 2<br>1 2<br>1 3<br>3 13<br>3 13<br>1 3<br>1 3<br>1 3<br>1 3<br>1                                            |                                  |       |       |                                                  |                                                                                                                                                            |                                                                        |                             |                                         |         |               |                     |                             | 15                                                                                      | 20                           | y                | 0 4                      | 4                     |                     | 0           | 9              | ى<br>VAI          | ~<br>-                   | -<br>T0          |                           | 9<br>            | ی<br>۸R      | ო<br>ო<br>BÁS    | -<br>SIC    | °                                | ω<br>38             | 4                  | 2 2    | 7                         | 0       | 9                   | ى<br>ك              | 4                   | -                     | 0                               | 15               | <u>-</u>             | 2 ~                   | . 4          |                                 |                             | SMR                             | 6        | 10 |                |                                                       |         |     |
|                                                                                                                                                       | SMR 100-81 80-61                 |       |       |                                                  |                                                                                                                                                            |                                                                        |                             |                                         |         |               |                     |                             |                                                                                         |                              |                  |                          | 60<br>A R             | D-51<br>egu         | l<br>lar A  | Ą              |                   | V                        | ALO<br>CI<br>50- | R T<br>LAS<br>-41<br>gula | OT<br>E C<br>r B | AL :<br>De N | SM<br>MAC        | R =<br>IZC  | 38<br>38<br>38<br>38<br>40<br>78 | <b>)-31</b><br>Mala | DSC<br>1 A         | )      |                           | ľ       | 30<br>VB I          | -21<br><i>N</i> ala | В                   |                       |                                 |                  | Z<br>V M             | 20-0<br>uy N          | Mala         |                                 |                             | IV<br>Mal                       | A<br>a A |    |                |                                                       |         |     |
| A              | nális             | sis d   | e est<br>P                    | abilio                                                                | dad d<br>na de                                     | e tal<br>0+0                | udes<br>00 a              | en<br>los (    | carre<br>30+0 | etera<br>)00 ł            | a Bar<br>Km                                | nbar                              | marc          | ca -                   |                 | FE<br>RE<br>PF     | CHA<br>ALIZ | :<br>ZADC      | ) PO<br>VAS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | IR:               |              |               |      | 04/1<br>A. F        | 0/20<br>alcc<br>24 | 013<br>oní F<br>4+1 | Reye              | es<br>- 24 | 4+1                | 40          | Km      |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | GI                  | I<br>EC             | ES<br>MI              | TA<br>EC   | CI<br>ÁN         | ÓN<br>NIC        | N<br>A                | N°           |            |                             |            | E                    | G                            | -0                   | 8                                              |                                                |                        |
|----------------|-------------------|---------|-------------------------------|-----------------------------------------------------------------------|----------------------------------------------------|-----------------------------|---------------------------|----------------|---------------|---------------------------|--------------------------------------------|-----------------------------------|---------------|------------------------|-----------------|--------------------|-------------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------|---------------|------|---------------------|--------------------|---------------------|-------------------|------------|--------------------|-------------|---------|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|---------------------|-----------------------|------------|------------------|------------------|-----------------------|--------------|------------|-----------------------------|------------|----------------------|------------------------------|----------------------|------------------------------------------------|------------------------------------------------|------------------------|
| GE             |                   |         | RÍA:L<br>/<br>E<br>A:L<br>1   | ongi<br>Altura<br>Direct<br>Buzat<br>itolo<br>ipo d<br>ipo d<br>ipo d | itud:<br>ción o<br>mient<br>gía:<br>de Ro<br>de Es | de B<br>to:<br>bca:<br>truc | :<br>uz. c<br>tura:<br>ÓN | lel Ti         | alud          | : N<br>Are<br>Se<br>Ju    | 4(<br>1)<br>1<br>8<br>enis<br>edim<br>ntas | 0 m<br>0 °<br>1 °<br>ca C<br>enta | Cuai<br>aria  | rzos                   | a               |                    |             |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |              |               |      |                     |                    |                     |                   |            |                    |             | THE WAY |                 | A CONTRACTOR OF THE OWNER WATCHING TO THE OWNER WA |                     |                     | w-[                   | 1          | X                | T /              | 4                     | 1            | N-<br>13 + | ALTAN                       | UD         |                      |                              |                      | E                                              |                                                |                        |
|                | J-1<br>J-2<br>J-3 |         | DIRECC                        | 210 N I<br>45<br>64<br>25                                             | DE BU                                              | Z. BU                       | 310<br>310<br>239<br>140  | ENTC<br>5<br>0 | Fa            | llas                      | Plai                                       | nare                              | es y          | cuñ                    | a               | btograf            | ía de       | detall         | e del                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Maciz             | zo B0        | 00050         |      |                     |                    |                     | A State of the    |            | and a second       |             |         | A. Martin       | and the second second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Prov                | ecció               | t t                   |            | oráfi            |                  |                       | disco        | s          |                             |            | 2:J3                 | orient                       |                      | el talu                                        | d.                                             |                        |
| PARÁMETROS     | RESK              | STEN    | STEN<br>RC<br>CIA A<br>NIA XI | ICIA<br>DCA<br>LA C<br>AL (N                                          | OMPR<br>(Pa)                                       | _A<br>ESIÓI                 | <b>(</b>                  | ÍN<br>CALI     |               | e de<br>D de<br>CA<br>(%) | LA                                         | ES<br>Di                          | SPA<br>ISC    | CIAE<br>ONT            | DO E<br>INU     | DE LA<br>IDAD      | (           | CONTI          | NUID/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | AD (m             | n)           |               | ABE  | CO<br>RTUR<br>mm)   |                    |                     | NES               | DE<br>RUG  | LA I               | DISC<br>DAD | CON     | TIN             | UIDA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>.D</b><br>_LEN   | 10                  |                       | N          | NETEC            | ORIZA            | ACIÓ                  | N            | GI         | CO<br>HIDF<br>RADC<br>(Bien | NDI<br>ROL | CIÓN<br>ÓGIO<br>HUME | <b>N</b><br>CA<br>DAD<br>39) | ORIEN<br>DISC<br>(R  | DRRE<br>PC<br>IENT<br>ITACIÓ<br>ONTIN<br>omana | CCIO<br>DR<br>ACIO<br>DN DE<br>JUIDA<br>1, 199 | ÓN<br>LAS<br>DES<br>7) |
| NGOS Y VALORES | > 250             | 100-250 | 50-100                        | 50-25<br>25 r                                                         | 25-5<br>5-1                                        | . 1                         | 90-100                    | 75-90          | 50-75         | 25-50                     | <25                                        | <60 Muy juntas                    | . <200 Juntas | 0. <600 Modern. Juntas | <2000 Sanaradas | 2000 Muy separadas | <1 Baja     | 1, <3 Baja ZOB | t, <10 Media 23<br>MBA 30<br>MBA 30 | 0, <20 Alta ☐ Z Z | ≥20 Muy Alta | ıguna Cerrada | 1 mm | 0, <1 mm<br>Abierta | <5mm               | 5mm                 | Muy Rugosa        | Rugosa     | Ligeramente Rugosa | Suave       | Pulida  | ninguno         | Relleno Duro < 5 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Relleno Duro > 5 mm | Relleno Blando <5mm | kelleno Blando > 5 mm | Inalterado | Lig. Meteorizada | Mod. Meteorizada | Altamente Meteorizada | Descompuesta | Seco       | Ligeram húmedo              | Húmedo     | Goteando             | Agua fluyendo                | ΛRBÁSICO + (ψ*F3)+F4 | F<br>F                                         | 1 0                                            | .85<br>25              |
| RA RA          | 15                | 12      | 7                             | 4 0                                                                   | ~ +                                                | . 0                         | 20                        | 17             | 13            | 80                        | 3                                          | 5                                 | 8             | 10 ≥20                 | 15 >60(         | 20 = 20            | 9           | 4              | 2 ≥(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u>۲</u>          | 0            | 6 ni          | 5 <0 | 3 ≥0,1              | 1 ⊵1,              | 0                   | 9                 | 5          | с                  | -           | 0       | 9               | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2                   | 2                   | 0                     | 9          | 5                | 3                | -                     | 0            | 15         | 10                          | 7          | 4                    | 0                            | SMR = RI             | F                                              | 4                                              | 10                     |
| VALOF          |                   |         |                               | ~                                                                     |                                                    |                             |                           |                | 13            | 5                         |                                            |                                   |               | 15                     |                 |                    |             |                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   |              | \             | /AL( | OR T                | το                 | TAL                 | RN                | IR E       | ہ<br>BÁS           | SICC        | )=      | 52              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                   |                     |                       |            |                  | S                |                       |              |            |                             | 7          |                      |                              |                      | -11                                            |                                                |                        |
|                |                   |         | SM                            | R                                                                     |                                                    |                             |                           |                | 10            | 00-8                      | 1                                          |                                   |               |                        | 80-             | 61                 |             |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 60-               | -51          |               |      |                     | VA                 | LOI<br>CL<br>50-4   | R T<br>.ASI<br>41 | OT/        | AL S<br>E M        | SMF         | R =     | 41<br>RC<br>40- | 0 <b>CO</b><br>-31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | so                  |                     |                       |            | 30-              | -21              |                       |              |            |                             | 2          | 0-0                  |                              |                      | 1                                              | VA                                             |                        |
|                | D                 | DES     | CRI                           | PCK                                                                   | ŃС                                                 |                             |                           | 1              | Muy           | / Bu                      | ena                                        |                                   |               |                        | l Bu            | ena                |             |                | IIIA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Re                | gula         | ır A          |      |                     | IIIB               | Reg                 | jular             | в          |                    |             | ١١      | ΆN              | lala .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Ą                   |                     |                       | ١v         | /B N             | /lala            | В                     |              |            | ١                           | / Mu       | y Ma                 | ala                          |                      | Ma                                             | ala /                                          | 4                      |

| A          | nális             | sis d  | e est<br>P                     | abili<br>accł                                                          | dad d<br>na de                                               | e tal<br>0+0                                     | udes<br>00 a                           | en<br>los 3 | carre<br>30+0 | etera<br>)00 I              | a Bar<br>Km                                     | nbai                              | marc              | ca -          |              | FE<br>RE<br>PF | CHA<br>ALI | A:<br>ZADO<br>RESI | ) PO<br>VAS            | )R:                       |             |           |            | 04/1<br>A. Fa      | 0/20<br>alcc<br>21 | 013<br>oní F<br>6+6 | Reye        | es<br>— 2        | 6+7           | '00        | ĸМ        |              | 0           | ΞE          | E<br>ON       | ST.<br>1E( | AC<br>CÁ    | IÓI<br>NIC   | N<br>CA        | N°        | >                                                                                                               |                            |                    | E                           | EC                         | 3-         | •1 <i>°</i>                          | 1                                               |                                           |              |
|------------|-------------------|--------|--------------------------------|------------------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------|----------------------------------------|-------------|---------------|-----------------------------|-------------------------------------------------|-----------------------------------|-------------------|---------------|--------------|----------------|------------|--------------------|------------------------|---------------------------|-------------|-----------|------------|--------------------|--------------------|---------------------|-------------|------------------|---------------|------------|-----------|--------------|-------------|-------------|---------------|------------|-------------|--------------|----------------|-----------|-----------------------------------------------------------------------------------------------------------------|----------------------------|--------------------|-----------------------------|----------------------------|------------|--------------------------------------|-------------------------------------------------|-------------------------------------------|--------------|
| GE<br>GE   |                   | DGÍ    | גוֹא: ע<br>נ<br>ב<br>א: נ<br>ח | ongi<br>Altura<br>Direc<br>Buza<br>Litolo<br>Tipo<br>Tipo<br><b>OF</b> | itud:<br>a Máx<br>ción c<br>mient<br>ogía:<br>de Ro<br>de Es | tima<br>de B<br>co:<br>ca:<br>truc<br><b>ACI</b> | :<br>uz. d<br>tura:<br><b>ÓN</b><br>DD | lel Ta      | alud:         | : N<br>Ar<br>Se<br>Ju<br>OB | 10<br>9.3<br>N 5<br>7<br>renis<br>edim<br>intas | 0 m<br>8 m<br>3 °<br>ca (<br>enta | Cua<br>aria       | rzos          | sa           |                |            |                    |                        | Crew H                    |             |           |            |                    |                    |                     |             |                  | AL AND A REAL |            |           |              |             |             | w-            | 1          | ~           |              |                |           |                                                                                                                 | · TA                       |                    |                             |                            | +          | E                                    |                                                 |                                           |              |
|            | J-1<br>J-2<br>J-3 |        |                                | 43<br>75<br>65                                                         |                                                              |                                                  | 320<br>175<br>245                      | 5           | Fa            | Illas                       | Pla                                             | nare                              | es y              | cuř           | ia<br>Fo     | otogra         | fía de     | detal              | e del                  | Maciz                     | zo Ro       | 000050.   |            |                    |                    |                     |             |                  |               |            |           |              | ■<br>Pr     | oyec        | ción e        | ester      | eográ       | fica d       | lup            | disc      | s                                                                                                               | inuida                     | des y              | y de l                      | a ori                      |            | ción de                              | el talud                                        |                                           |              |
| PARÁMETROS | RESI              | STEN   | STEN<br>RC<br>CIA A<br>INIA XI | LA C                                                                   | OMPRI<br>MPa)                                                | .A<br>ESIÓI                                      | с<br>ч                                 | ÍN<br>CALI  | RQD (         | E DE<br>D DE<br>CA<br>(%)   | E<br>E LA                                       | ES<br>D                           | SPA<br>ISC<br>ESP | CIAI          | DO E         | DE LA<br>IDAD  |            | CONT               | NUIDA                  | AD (m                     | n)          |           | ABE<br>(   | COI<br>RTUR<br>mm) |                    |                     | NES         | <b>DE</b><br>RUG | LA I          | DISC<br>AD | ON        | TINU         | RELL        | )<br>ENO    |               |            | MET         | EORIZ        | ZACIÓ          | ÓN        | c                                                                                                               | CC<br>HID<br>GRAD<br>(Bier | OND<br>ROL<br>O DE | ició<br>óg<br>Hun<br>ski, 1 | ÓN<br>ICA<br>/IEDA<br>989) | , D (      | COF<br>ORI<br>DRIENI<br>DISCC<br>(Ro | REC<br>POF<br>ENTA<br>JACIÓN<br>DNTINL<br>mana, | CIÓN<br>CIÓN<br>DE LA<br>IDA DES<br>1997) | i<br>NS<br>S |
| ' VALORES  | > 250             | 00-250 | 50-100                         | 50-25                                                                  | 25-5<br>5-1                                                  | . ⊽                                              | 90-100                                 | 75-90       | 50-75         | 25-50                       | <25                                             | Muv iuntas                        | Juntas            | Moderm luntas | Canaradae    | Muy separadas  | Baja       | Baja               | SEGÚI<br>SCCIÓ<br>AMIE | Alta OLIV<br>OLIV<br>OLIV | Muy Alta    | Cerrada   |            | r<br>Abierta       |                    |                     | y Rugosa    | tugosa           | iente Rugosa  | Suave      | Pulida    | inguno       | Duro < 5 mm | Blando Jemm | Slando > 5 mm | alterado   | Aeteorizada | Meteorizada  | te Meteorizada | compuesta | Concerned and the second se | Seco<br>am hrímado         | úmedo              |                             | oleando                    | a fluyendo | CO + (µ*F3)+F4                       | F1                                              | 0.8                                       | 5            |
| RANGOS Y   | 15                | 12 1   | 7                              | 4                                                                      | 1 2                                                          | 0                                                | 50                                     | 17          | 13            | ∞                           |                                                 | 5 <60                             | 8 ≥60.<200        | 10 >200 <600  |              | 20 22000       | 6 <1       | 4 ≥1,<3            | 2 ≥3,<10               | 1 ≥10,<20                 | 0 ≥20       | 6 ninguna | 5 < 0,1 mm | 3 ≥0,10,<1 mr      | 1 ≥1,<5mm          | 0 ≥5mm              | 6 Mu        | 5                | 3 Ligeran     | +          | 0         | 9            | 4 Kelleno   | Dallano     | 0 Relleno     |            | 5 Lig. h    | 3 Mod.       | 1 Altamen      | 0 Desc    |                                                                                                                 | 100 I                      |                    |                             | 4 4                        | 0 Agu      | SMR = RMRBÁSI                        | F3                                              | -20                                       | )            |
| VALORES    |                   |        |                                | 2                                                                      |                                                              |                                                  |                                        |             | 13            | !                           |                                                 |                                   |                   | ч<br>Т        | 2            |                |            |                    | -                      |                           |             |           | /ΔΙ (      |                    |                    | ΓΔΙ                 | RM          |                  | ۳<br>AÁS      |            |           | 53           | c           | >           |               |            |             | e            | <u> </u>       |           |                                                                                                                 |                            | 0                  | 2                           |                            |            |                                      | -11                                             |                                           |              |
|            |                   |        |                                |                                                                        |                                                              |                                                  |                                        |             |               |                             |                                                 |                                   |                   |               |              |                |            |                    |                        |                           |             | •         |            |                    | VA                 |                     |             |                  |               | SMR        | = -<br>ZO | 42<br>RO     | 205         | 0           |               |            |             |              |                |           |                                                                                                                 |                            |                    |                             |                            |            |                                      |                                                 |                                           |              |
|            | [                 | DES    | SM<br>CRI                      | R<br>PCI                                                               | ÓN                                                           |                                                  |                                        | I           | 10<br>Muy     | )0-8<br>/ Bu                | 81<br>Jena                                      |                                   |                   |               | 80-<br>II Bu | 61<br>ena      |            |                    | IIIA                   | 60-<br>Reę                | -51<br>gula | ar A      |            |                    | IIB                | 50-4<br>Reg         | 41<br>jular | В                |               |            | IV.       | 40-3<br>A Ma | ila A       | -           |               |            | 30<br>IVB   | )-21<br>Mala | аB             |           |                                                                                                                 |                            | Z<br>V M           | 20-0<br>luy l               | )<br>Mala                  | a          |                                      | ll<br>Regi                                      | IB<br>Jlar B                              | 3            |

| А                | nális      | sis c      | de es<br>F                                    | tabil<br>Pacc                                                      | idad (<br>ha de                                                                   | de ta<br>0+0                           | lude:<br>)00 a                                        | s en<br>los | carr<br>30+( | eter<br>000                    | ra Ba<br>Km                | imba                                           | ama              | arca               | -                           |                          | FEC<br>RE/<br>PR(      | CHA:<br>ALIZ<br>OGF | ADC               | ) PC<br>VAS           | DR:                |                |                   |                                         | 04/ <sup>,</sup><br>A. F  | 10/2<br>Falc | 2013<br>oní l<br>26+7   | Rey<br>720              | es<br>– 2         | 6+9                  | 980       | Kn       | n.                     |                                   | G                     | EC                    | ES                      | ΞC           | CI<br>;ÁN          | ÓN                  | N<br>A                  | N°             |         |                                             |                      | E                                       | G                                | i-1                                         | 2                                                  |                                                     |                                 |
|------------------|------------|------------|-----------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------------------------------|----------------------------------------|-------------------------------------------------------|-------------|--------------|--------------------------------|----------------------------|------------------------------------------------|------------------|--------------------|-----------------------------|--------------------------|------------------------|---------------------|-------------------|-----------------------|--------------------|----------------|-------------------|-----------------------------------------|---------------------------|--------------|-------------------------|-------------------------|-------------------|----------------------|-----------|----------|------------------------|-----------------------------------|-----------------------|-----------------------|-------------------------|--------------|--------------------|---------------------|-------------------------|----------------|---------|---------------------------------------------|----------------------|-----------------------------------------|----------------------------------|---------------------------------------------|----------------------------------------------------|-----------------------------------------------------|---------------------------------|
| GE<br>GE<br>PI   | DLC<br>DLC | DGi        | RÍA:  <br> <br> <br> <br> <br> <br> <br> <br> | Altur<br>Dire<br>Buzz<br>Litol<br>Tipo<br>Tipo<br>D<br>D<br>4<br>4 | jitud:<br>ra Má<br>cción<br>amier<br>ogía:<br>de R<br>de E<br>de E<br><b>RIEN</b> | xima<br>de E<br>tto:<br>Doca:<br>struc | a:<br>3uz. (<br>ctura:<br>(ÓN<br>01<br>35<br>17<br>33 | del 1       | -alud        | I: I<br>Ar<br>Sc<br>Ju<br>OB   | N<br>renis<br>edin<br>unta | 40 r<br>8 r<br>15 °<br>76 °<br>5ca<br>nen<br>s | n<br>Cu<br>tari  | iarzo<br>a<br>DNES | osa                         |                          |                        |                     |                   |                       |                    | The            |                   | P C C C C C C C C C C C C C C C C C C C |                           |              |                         |                         |                   | 「ちょう」という             |           |          | A THE REAL AND A       |                                   |                       |                       | W-                      |              |                    |                     |                         |                |         | N                                           | -                    | 4                                       |                                  |                                             | E                                                  | :                                                   |                                 |
| PARÁMETROS       | RESK       | STEN<br>L  | ISTEI<br>R<br>ICIA A<br>JNIAX                 |                                                                    | A DE<br>COMPI<br>MPa)                                                             |                                        |                                                       | Íľ<br>CAL   |              | Fa<br>E D<br>D DE<br>CA<br>(%) | ellas<br>DE<br>E LA        | E<br>E                                         | ESP<br>DIS       |                    |                             | Foto<br>D DE<br>IUID     | grafía<br>LA<br>AD     | a de d              | detall            | le del                | Maci               | zo Ro<br>m)    | ocosc             | D.<br>AB                                | CC<br>ERTU<br>(mm)        | IRA          |                         | NES                     | DE                | LA                   | DIS       | CON      | NTIN                   |                                   | Proy<br>AD            | vecci                 | ón es                   | terec        | ngráfi<br>VIETE    |                     | e las                   |                | ontin   | s<br>nuidao<br>CC<br>HIDI<br>GRADX<br>(Bien | les y<br>NDI<br>ROLO | de la<br>CIÓI<br>ÓGIO<br>HUME<br>ki, 19 | orien<br>N<br>CA<br>EDA D<br>89) | tación c<br>CC<br>OF<br>ORIET<br>DISC<br>(R | lel talu<br>DRRE<br>PC<br>RIENT<br>VTACK<br>XONTIN | id.<br>CCI<br>DR<br>ACI<br>ÓN DI<br>NUIDA<br>a, 199 | ÓN<br>ÓN<br>E LAS<br>DES<br>17) |
| RANGOS Y VALORES | 15 > 250   | 12 100-250 | 7 50-100                                      | 4 50-25                                                            | 2 25-5                                                                            |                                        | 20 90-100                                             | 75-90       | 13 50-75     | 8 25-50                        |                            |                                                | 5 <60 Muy juntas | 8 ≥60, <200 Juntas | 10 ≥200, <600 Moderm.Juntas | 15 ≥600, <2000 Separadas | 20 ≥2000 Muy separadas | 6 <1 Baja           | 4 ≥1,<3 Baja Raga | 2 ≥3, <10 Media OI203 | 1 ≥10,<20 Alta Z Z | 0 ≥20 Muy Alta | 6 ninguna Cerrada | 5 < 0,1 mm                              | 3 ≥0,10, <1 mm<br>Ahiarta | 1 ≥1,<5mm    | 0 ≥5mm                  | 6 Muy Rugosa            | 5 Rugosa          | 3 Ligeramente Rugosa | 1 Suave   | 0 Pulida | 6 ninguno              | 4 Relleno Duro < 5 mm             | 2 Relleno Duro > 5 mm | 2 Relleno Blando <5mm | 0 Relleno Blando > 5 mm | 6 Inalterado | 5 Lig. Meteorizada | 3 Mod. Meteorizada  | 1 Altamente Meteorizada | 0 Descompuesta | 15 Seco | 10 Liaeram húmedo                           | 7 Húmedo             | 4 Goteando                              | 0 Agua fluyendo                  | SMR = RMRBÁSICO + (\mu*F3)+F4               | F                                                  | 1 (<br>3<br>4                                       | -25                             |
| VALORES          | •          | •          |                                               | 7                                                                  |                                                                                   |                                        |                                                       |             |              | þ                              |                            |                                                |                  |                    | 10                          | [`                       |                        |                     |                   | 2                     |                    |                |                   | VAL                                     | <br>.OR                   | то           | TAL                     | R                       | IR                | ு<br>BÁ              | SIC       | 0=       | 48                     |                                   | 2                     |                       |                         |              |                    | З                   |                         |                |         |                                             | 10                   |                                         |                                  |                                             | - <del>-</del>                                     | :                                                   |                                 |
|                  | [          | DES        | SM                                            | 1R<br>IPC                                                          | IÓN                                                                               |                                        |                                                       |             | 10<br>Muy    | 00-8<br>у Ві                   | 31<br>uena                 | à                                              |                  |                    | 8<br>II E                   | 0-6 <sup>.</sup><br>Buei | 1<br>1a                |                     |                   | IIIA                  | 60-                | -51<br>gula    | ar A              |                                         |                           | V/           | ALO<br>CI<br>50-<br>Rej | RT<br>LAS<br>41<br>gula | OT.<br>E D<br>r B | AL :<br>DE N         | SM<br>MAC | R =      | 37<br>37<br>40<br>74 M | <b>)CC</b><br>-31<br><i>I</i> ala | A<br>A                | )                     |                         | 1\           | 30<br>/B N         | -21<br><i>1</i> ala | В                       |                |         |                                             | 2<br>/ Mu            | 0-0<br>Iy M                             | ala                              |                                             | M                                                  | IVA<br>ala                                          | A                               |

| A                | nális             | sis d   | e est<br>P                                                                                      | abili<br>accł                                                         | dad d<br>na de                                               | e tal<br>0+0                 | udes<br>00 a l                          | en d<br>os 3 | carre<br>80+0     | etera                       | a Bar<br>Km                            | nba                                | mar                        | rca -            |                          | F                    | FEC<br>REA          | HA:<br>LIZA | ADO<br>ESIN      | PO<br>/AS         | R:                |              |                 |          | 04/ <sup>,</sup><br>A. F<br>27+ | 10/2<br>alco                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 013<br>oní l | Rey<br>7+ 3 | es<br>350 | KM                 | 1               |                   |                  |                     | G                   | EC                  | ES                    | EC         | \CI<br>CÁľ       | ÓI               | N<br>CA               | N            |        |                            |            | E                           | EC                         | 3-            | 1:                                    | 3                                              |                                          |
|------------------|-------------------|---------|-------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------------------|------------------------------|-----------------------------------------|--------------|-------------------|-----------------------------|----------------------------------------|------------------------------------|----------------------------|------------------|--------------------------|----------------------|---------------------|-------------|------------------|-------------------|-------------------|--------------|-----------------|----------|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------|-----------|--------------------|-----------------|-------------------|------------------|---------------------|---------------------|---------------------|-----------------------|------------|------------------|------------------|-----------------------|--------------|--------|----------------------------|------------|-----------------------------|----------------------------|---------------|---------------------------------------|------------------------------------------------|------------------------------------------|
| GE<br>GE         |                   | DGÍ     | RÍA:  <br> | Long<br>Altur<br>Direc<br>Buza<br>Litolo<br>Tipo<br>Tipo<br><b>OF</b> | itud:<br>a Máx<br>ción o<br>mient<br>ogía:<br>de Ro<br>de Es | de B<br>to:<br>bca:<br>struc | :<br>suz. d<br>tura:<br><b>ÓN</b><br>DD | lel Ta       | alud              | : 1<br>Ca<br>Se<br>Ju<br>OB | 4<br>6.<br>7<br>aliza<br>edim<br>untas | 0 m<br>5 °<br>8 °<br>1 Mu<br>1 ent | n<br>idst<br>aria          | tone<br>a<br>NES | 2                        |                      |                     |             |                  |                   |                   |              |                 |          |                                 | and the second s |              |             |           |                    |                 |                   |                  |                     |                     |                     | v                     | -          | /                | X                |                       | 4            | 1      | 2-                         | TALUO      |                             | 4                          |               |                                       | Ē                                              |                                          |
|                  | J-1<br>J-2<br>J-3 |         |                                                                                                 | 35<br>42<br>85                                                        |                                                              |                              | 260<br>175<br>230                       | )<br>5<br>)  | -                 | F                           | alla                                   | Cire                               | cula                       | ar               | F                        | otoa                 | rafía               | de d        | letalle          | e del l           | Maciz             | zo Ro        |                 | ).       |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A STATE      | ***         |           |                    |                 |                   |                  |                     | Prov                | vecci               | ón es                 | tere       | paráf            | ica d            |                       | disc         | )<br>, | 2<br>ALUD<br>S             | J2         | de                          | la ori                     | entac         | ión de                                | l talud.                                       |                                          |
| PARÁMETROS       | RESI              | STEN    | STEI<br>R(<br>ICIA A<br>INIA XI                                                                 |                                                                       | X DE L<br>XOMPR<br>MPa)                                      | <b>A</b><br>ESIÓ             | C<br>N                                  | ÍN<br>ALI    | DIC<br>DAD<br>ROC | E D<br>D DE<br>CA<br>(%)    | E LA                                   | C                                  | ESF<br>DISC<br>ESF         | PACI<br>L<br>CON |                          | IDA<br>(mm)          | E<br>AD             | α           | ITINC            | NUIDA             | AD (m             | n)           |                 | ABI      | CC<br>ERTU<br>(mm)              | RA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CIO          | NES         | DE        | E LA<br>Gosi       | DIS<br>DAD      | 601               |                  | UID                 |                     | NO                  |                       |            | METE             | ORIZ             | ACIO                  | ÓN           | (      | C(<br>HID<br>GRAD<br>(Bier | OND<br>ROL | ICIÓ<br>ÓG<br>HUN<br>ski, 1 | ÓN<br>ICA<br>/IEDA<br>989) | .D C          | COF<br>ORI<br>DRIENT<br>DISCC<br>(Roi | RREC<br>POF<br>ENTA<br>ACIÓN<br>NTINU<br>mana, | CIÓN<br>CIÓN<br>DE LAS<br>DADES<br>1997) |
| RANGOS Y VALORES | > 250             | 100-250 | 50-100                                                                                          | 50-25                                                                 | 25-55<br>5-1                                                 | 5 7                          | 90-100                                  | 75-90        | 50-75             | 25-50                       | <25                                    | -en Minimuton                      | <oo invitas<="" p=""></oo> | ≥60, <200 Juntas | 2200, <600 Moderm.Juntas | 600, <2000 Separadas | ≥2000 Muy separadas | <1 Baja     | ≥1, <3 Baja Sald | ≥3, <10 Media DOC | ≥10,<20 Alta 31 A | ≥20 Muy Alta | ninguna Cerrada | < 0,1 mm | :0,10, <1 mm<br>Ahiarta         | ≥1, <5mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ≥5mm         | Muy Rugosa  | Rugosa    | Ligeramente Rugosa | Suave           | Pulida            | ninguno          | Relleno Duro < 5 mm | Relleno Duro > 5 mm | Relleno Blando <5mm | Relleno Blando > 5 mm | Inalterado | Lig. Meteorizada | Mod. Meteorizada | Altamente Meteorizada | Descompuesta |        | Seco<br>Liceram húmodo     | Himedo     | Cotocodo                    | Goteando                   | Agua fluyendo | ⊧ RMRBÁSICO + (μ*F3)+F4               | F1<br>F3                                       | 0.7<br>-6                                |
| VALORES          | 15                | 12      | 7                                                                                               | 4                                                                     | ~ ~                                                          | - c                          | 20                                      | 17           | 3 13              | 8                           | o m                                    | , u                                | ი (                        | ~                | 8<br>10                  | 15                   | 20                  | 9           | 4                | 4 2               | -                 | 0            | 9               | 5        | 1 3                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0            | 9           | S         | 3                  | +               | 0                 | g                | 4                   | 2 2                 | 2                   | 0                     | 9          | 5                | 3                | -                     | c            | , L    | <u>c</u>                   | 10         |                             | , 4                        | Ð             | SMR =                                 | F4                                             | 8                                        |
|                  |                   |         | <u>CN</u>                                                                                       | ID                                                                    |                                                              |                              |                                         |              | 10                |                             | 21                                     |                                    |                            |                  | 00                       | 61                   |                     |             |                  |                   | 60                | 51           |                 | VAL      | OR                              | то <sup>-</sup><br>v/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              | R T         | IR<br>OT  | BÁS<br>AL<br>DE N  | SIC<br>SN<br>MA | 0=<br>R =<br>CIZC | 38<br>42<br>0 R( | DC(                 | osc                 | )                   |                       |            | 20               | 1.04             |                       |              |        |                            |            | 20.0                        |                            |               |                                       |                                                | D                                        |
|                  | [                 | DES     | SIV                                                                                             | irk<br>IPCI                                                           | ÓN                                                           |                              |                                         | I            | Muy               | / Bi                        | uena                                   |                                    |                            |                  | B<br>B                   | uen                  | a                   |             |                  | IIIA              | Reg               | gula         | ar A            |          |                                 | IIIB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Re           | gula        | r B       |                    |                 | ľ                 | 40<br>A N        | -o⊤<br>∕lala        | A                   |                     |                       | ľ          | 30<br>VB N       | r-∠1<br>Mala     | аB                    |              |        |                            | V M        | ∠u-t<br>uy I                | ,<br>Mala                  | a             |                                       | III<br>Regi                                    | lar B                                    |

| A          | nális             | sis d        | e esta<br>Pa                     | abili                                                                | dad d<br>na de                                     | e tal<br>0+00                      | udes<br>00 a           | en o<br>los 3 | carre<br>30+0     | etera<br>00 k             | a Barri<br>Km                                     | barr                                     | narca       | a -                |                   | FE(<br>RE<br>PR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CHA<br>ALIZ<br>OGI                           | .:<br>ZADC<br>RESI | ) PC                   | DR:                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |            | 04/ <sup>,</sup><br>A. F | 10/2<br>Falco<br>28+ | 013<br>oní F<br>+50 | Rey<br>0 – | es<br>28+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | +35          | 0 K         | M       |            |               | G             | EC          | ES            | TA<br>EC  | CI<br>ÁN    | ÓN           | N<br>A          | N°        |               |                              |                               | E       | G                     | -1                                 | 4                                                        |                                              |
|------------|-------------------|--------------|----------------------------------|----------------------------------------------------------------------|----------------------------------------------------|------------------------------------|------------------------|---------------|-------------------|---------------------------|---------------------------------------------------|------------------------------------------|-------------|--------------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|--------------------|------------------------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|------------|--------------------------|----------------------|---------------------|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------|---------|------------|---------------|---------------|-------------|---------------|-----------|-------------|--------------|-----------------|-----------|---------------|------------------------------|-------------------------------|---------|-----------------------|------------------------------------|----------------------------------------------------------|----------------------------------------------|
| GE<br>GE   |                   |              | RÍA:L<br>A<br>D<br>A:L<br>T<br>T | ongi<br>iltura<br>iirec<br>iuza<br>itolo<br>ipo<br>ipo<br>o <b>R</b> | itud:<br>ción c<br>mient<br>gía:<br>de Ro<br>de Es | ima:<br>de B<br>o:<br>ca:<br>truct | tura:<br><b>ÓN</b>     | lel Ta        | alud:             | N<br>Ca<br>Se<br>Jui      | 150<br>1<br>330<br>60<br>aliza l<br>edime<br>ntas | ) m<br>5 m<br>) °<br>6 °<br>Mud<br>entai | stor<br>ria | ne                 |                   | ALC: NOT ALC | N. N. S. |                    |                        | and the second of the | and the second se | a las il  |            |                          | 2 All                | is all all          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |             |         |            |               |               |             |               | w-        | 7           | >            |                 |           | 2132          | NUD +                        | 32                            | 4       | /                     | >                                  | -E                                                       |                                              |
|            | J-1<br>J-2<br>J-3 |              |                                  | D<br>50<br>82<br>40                                                  |                                                    |                                    | DD<br>330<br>65<br>150 | )             | -                 | Fal                       | llas F                                            | Plan                                     | ares        | 3                  | Fot               | ograf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ía de                                        | detal              |                        | Maci                  | izo R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           | 0.         | A Strange                | and a second         |                     | Y          | and the second se |              | and a state | S.F. M. | ALL AND    |               | Prov          | ecció       | ón es         | tereo     | gráfie      | ca de        |                 | disco     | ntinu         | ŝ                            | es v d                        |         | prienta               | ación de                           | el talud                                                 |                                              |
| PARÁMETROS | RESK              | ESI:<br>STEN | STEN<br>RO<br>CIA A<br>NIA XIA   |                                                                      | OMPR                                               | .A<br>ESIÓN                        | v                      | ÍN<br>CALI    | DIC<br>DAD<br>ROC | e de<br>D de<br>CA<br>(%) | E<br>LA                                           | DI                                       | SCC<br>SCC  | ACIA<br>LA<br>DNTI | <b>DO</b><br>NUII | DE<br>DAD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (                                            |                    | INUID                  | AD (r                 | n)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           | AB         | CC<br>ERTU<br>(mm)       | P <b>NDI</b><br>RA   | CIO                 | NES        | <b>DE</b><br>RUG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | LA           | <b>DIS</b>  | CON     | ITIN       | UID           |               | 10          |               | N         | IETEC       | DRIZ         | ACIÓ            | N         | H<br>GR<br>(E | COI<br>IIDR<br>ADO<br>Bienia | NDIC<br>OLĆ<br>DE H<br>aw ski | UMEE    | <b>A</b><br>DAD<br>9) | CO<br>ORI<br>ORIEN<br>DISCO<br>(Ro | RREC<br>POI<br>ENTA<br>ENTA<br>TACIÓI<br>DNTINU<br>mana, | CIÓN<br>CIÓN<br>N DE LAS<br>IDA DES<br>1997) |
| Y VALORES  | > 250             | 100-250      | 50-100                           | cz-nc                                                                | 25-5<br>5-1                                        | 2                                  | 90-100                 | 75-90         | 50-75             | 25-50                     | <25                                               | Muy juntas                               | Juntas      | Moderm.Juntas      | ) Separadas       | Muy separadas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Baja                                         | Baja<br>Baja       | SEGÚ<br>ECCIÓ<br>ZAMIE |                       | Muy Alta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Cerrada   |            | m<br>∆hierta             | 2007                 |                     | ıy Rugosa  | Rugosa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | mente Rugosa | Suave       | Pulida  | ninguno    | o Duro < 5 mm | o Duro > 5 mm | Blando <5mm | Blando > 5 mm | nalterado | Meteorizada | Meteorizada  | nte Meteorizada | compuesta | Seco          | am húmedo                    | lúmedo                        | oteando | ua fluyendo           | ilCO + (ψ*F3)+F4                   | Ψ<br>E3                                                  | 0.85                                         |
| RANGOS     | 15                | 12           | 2                                | 4                                                                    | 1 2                                                | 0                                  | 20                     | 17            | 13                | 8                         | e                                                 | 5 <60                                    | 8 ≥60,<200  | 10 ≥200, <600      | 15 ≥600,<200      | 20 ≥2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6 <1                                         | 4 ≥1,<3            | 2 ≥3,<10               | 1 ≥10, <20            | 0 ≥20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6 ninguna | 5 < 0,1 mm | 3 ≥0,10,<1 m             | 1 ≥1,<5mm            | 0 ≥5mm              | M<br>9     | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3 Ligera     | 1           | 0       | 9          | 4 Rellen      | 2 Rellen      | 2 Rellend   | 0 Relleno     | 9         | 5 Lig.      | 3 Mod        | 1 Altame        | 0 Det     | 15            | 10 Lige                      | 7                             | 4       | 0 Ag                  | SMR = RMRBÁS                       | F4                                                       | 10                                           |
| VALORES    |                   |              |                                  | 4                                                                    |                                                    |                                    |                        |               | ო                 |                           |                                                   |                                          |             | 8                  |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                    | -                      |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           | VAL        | -<br>OR                  | то                   | TAL                 | . RN       | 1R I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ۳<br>BÁS     | SICO        | D=      | 35         |               | 2             |             |               |           |             | 3            | I               |           |               |                              | 10                            |         |                       |                                    | -11                                                      | 1                                            |
|            |                   |              | SM                               | >                                                                    |                                                    |                                    |                        |               | 10                | 0.0                       | 1                                                 |                                          |             |                    | 80.4              | \$1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                              | 1                  |                        | 60                    | -51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |            | 1                        | VA                   |                     | R T<br>_AS | OT.<br>E D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | AL :<br>E N  | SMI<br>1AC  | R =     | 24<br>RC   | 0C0           | so            | 1           |               |           | 30          | -21          |                 |           |               |                              | 20                            | -0      |                       |                                    | 4                                                        | /B                                           |
|            | C                 | DES          | CRI                              |                                                                      | ŃŇ                                                 |                                    |                        | I             | Muy               | / Bu                      | iena                                              |                                          |             |                    | Bue               | ena                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | _                                            |                    | IIIA                   | Re                    | gula                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ar A      |            | L                        | IIIB                 | Rec                 | gula       | rВ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |             | ١١      | 40<br>/A N | lala          | A             |             |               | IV        | 30-<br>B N  | -∠ı<br>⁄lala | В               |           |               | V                            | Zu<br>Muy                     | / Ma    | la                    |                                    | Ma                                                       | la B                                         |

| F          | Anális     | sis d   | e est<br>P                    | abili                                                          | dad d<br>na de                                    | e tal<br>0+0(                      | udes<br>00 a l      | en d<br>los 3 | carre<br>30+0 | etera<br>100 K            | Bam<br>(m                                        | bama                               | arca       | -                  |                                    | FEC<br>RE/<br>PR( | CHA:<br>ALIZ | ADC                     | PO<br>VAS                        | ıR:<br>::               |             |           |            | 04/1<br>A. F        | 0/2<br>alco<br>2 | 013<br>oní F<br>28+6 | Rey<br>680  | es<br>– 2  | 28+7         | 780         | ĸ          | 1          |                     | GI            | EC            | ES            | ΤΑ<br>EC  | CI<br>:ÁN   | ÓN                                     | N<br>A          | N°         |      |                              |             | E                              | G           | -1               | 5                                               |                                    |        |
|------------|------------|---------|-------------------------------|----------------------------------------------------------------|---------------------------------------------------|------------------------------------|---------------------|---------------|---------------|---------------------------|--------------------------------------------------|------------------------------------|------------|--------------------|------------------------------------|-------------------|--------------|-------------------------|----------------------------------|-------------------------|-------------|-----------|------------|---------------------|------------------|----------------------|-------------|------------|--------------|-------------|------------|------------|---------------------|---------------|---------------|---------------|-----------|-------------|----------------------------------------|-----------------|------------|------|------------------------------|-------------|--------------------------------|-------------|------------------|-------------------------------------------------|------------------------------------|--------|
| GE<br>GE   | OM         | ET F    | RÍA:L<br>/<br>E<br>A:L<br>7   | Longi<br>Altura<br>Direc<br>Buza<br>Litolo<br>Tipo (<br>Tipo ( | tud:<br>ción c<br>mient<br>gía:<br>de Ro<br>de Es | ima:<br>de B<br>o:<br>ca:<br>truct | :<br>uz. d<br>tura: | el Ta         | alud:         | N<br>Ca<br>Se<br>Jur      | 100<br>16<br>350<br>70<br>liza M<br>dime<br>ntas | ) m<br>) °<br>) °<br>/uds<br>ntari | ston       | e                  |                                    |                   |              |                         |                                  |                         |             |           |            |                     |                  |                      |             |            |              |             |            |            |                     |               |               |               | ~-        |             | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | 1               | 1          | 1    | N<br>3:724<br>+              | LUD<br>2:J2 |                                | ~           | 1                | E                                               |                                    |        |
| P          | J-1<br>J-2 | 0       |                               | D<br>70<br>78                                                  |                                                   |                                    | DD<br>350<br>90     | )             |               | Fal                       | SERV                                             | Plana                              | ares       | 5                  | Foto                               | grafi             |              | dotali                  |                                  | Macia                   |             |           |            |                     |                  |                      | の意思に        |            | 「「「「「「       |             |            |            |                     | Prov          | occi          | án os         | t         |             |                                        |                 | disco      |      | s                            |             |                                | orion       |                  |                                                 | 4                                  |        |
| PARÁMETROS | RESI       | STEN    | STEN<br>RC<br>CIA A<br>INIAXI | LA C                                                           | DE L<br>OMPRI<br>IPa)                             | .A<br>ESIÓI                        | ÍNC                 | DICE          | LA I          | CAL<br>ROC<br>(%)         | .IDAE<br>:A                                      | DIS                                | SPA<br>SCO | CIAI<br>LA<br>NTII | <b>1 OO</b><br><b>1 OO</b><br>NUIE | DE<br>DAD         | C            | ONTI                    | NUID/                            | AD (n                   | n)          |           | ABE<br>(   | CO<br>ERTUR<br>(mm) | NDI<br>RA        | CION                 | NES         | DE<br>RUG  | LA I         | <b>DIS(</b> | CON        | ITIN       | UID                 |               | 10            | JITES         | N         | /ETEC       |                                        | ACIÓ            | N          | GF   | CO<br>HIDF<br>RADC<br>(Bieni | NDI<br>ROL  | CIÓI<br>ÓGIO<br>HUME<br>ki, 19 | DAD         | ORIEN<br>(R      | RREC<br>PO<br>IENT.<br>ITACIĆ<br>ONTIN<br>omana | CCIÓ<br>R<br>ACIÓ<br>N DE<br>UIDAI | DES 7) |
| Y VALORES  | > 250      | 100-250 | 50-100                        | 50-25<br>2.7                                                   | 25-5<br>5-1                                       | <b>,</b>                           | 90-100              | 75-90         | 50-75         | 25-50                     | <25                                              | Muy juntas                         | Juntas     | Moderm.Juntas      | 0 Separadas                        | Muy separadas     | Baja         | S<br>DIRE<br>BUZ<br>BUZ | EGÚ<br>CCIÓ<br>AME<br>ME<br>QUIA | Alta<br>OLV<br>BUN<br>A | Muy Alta    | Cerrada   |            | m<br>Abierta        |                  |                      | uy Rugosa   | Rugosa     | mente Rugosa | Suave       | Pulida     | ninguno    | o Duro < 5 mm       | o Duro > 5 mm | ) Blando <5mm | Blando > 5 mm | nalterado | Meteorizada | . Meteorizada                          | nte Meteorizada | scompuesta | Seco | ram húmedo                   | Húmedo      | Soteando                       | ua fluyendo | SICO + (ψ*F3)+F4 | F1                                              | 1 0                                | .85    |
| RANGOS     | 15         | 12      | 7                             | 4 (                                                            | 7 5                                               | 0                                  | 20                  | 17            | 13            | ∞                         | 3                                                | 5 <60                              | 8 ≥60,<200 | 10 ≥200, <600      | 15 ≥600,<2001                      | 20 ≥2000          | 6 < 1        | 4 ≥1,<3                 | 2 ≥3,<10                         | 1 ≥10, <20              | 0 ≥20       | 6 ninguna | 5 < 0,1 mm | 3 ≥0,10,<1 m        | 1 ≥1, <5mm       | 0 ≥5mm               | 6<br>M      | 5          | 3 Ligera     | 1           | 0          | 9          | 4 Rellen            | 2 Rellen      | 2 Rellend     | 0 Relleno     | 9         | 5 Lig.      | 3 Mod                                  | 1 Altame        | 0 Des      | 15   | 10 Lige                      | 2 2         | 4                              | 0 Ag        | SMR = RMRBÁS     | F4                                              | -<br>1 -                           | 10     |
| VALORES    |            |         |                               | 4                                                              |                                                   |                                    |                     |               | ო             | I                         |                                                  |                                    |            | ø                  |                                    |                   |              |                         | 1                                |                         |             | v         | /AL(       |                     | то               | TAL                  | . RM        | 1R I       | ຕ<br>BÁS     | SICO        | D=         | 35         |                     | 2             |               |               |           |             | ю                                      |                 |            |      |                              | 10          |                                |             |                  | -11                                             |                                    |        |
|            |            |         |                               |                                                                |                                                   |                                    |                     |               |               |                           |                                                  |                                    |            |                    |                                    |                   |              |                         |                                  |                         |             |           |            |                     | VA               |                      | r t<br>.Asi | OT.<br>E D | AL S         | SMI         | R =<br>IZO | 24<br>RC   | oco                 | so            |               |               |           |             |                                        |                 |            |      |                              |             |                                |             |                  |                                                 |                                    |        |
|            | [          | DES     | SM<br>CRI                     | R<br>PCI                                                       | ŚN                                                |                                    |                     | I             | 10<br>Muy     | )0-8 <sup>.</sup><br>/ Bu | 1<br>ena                                         |                                    |            | 8<br>              | 30-6<br>Bue                        | 1<br>na           |              |                         | IIIA                             | 60-<br>Re               | -51<br>gula | ar A      |            |                     | IIIB             | 50-<br>Reg           | 41<br>gula  | r B        |              |             | ١١         | 40<br>/A N | -31<br><i>I</i> ala | A             |               |               | ١٨        | 30<br>/B N  | -21<br><i>1</i> ala                    | в               |            |      | V                            | 2<br>/ Mu   | 0-0<br>iy M                    | ala         |                  | N<br>Ma                                         | VB<br>ala B                        | 3      |

| An               | álisi                                  | s de    | esta<br>Pa                                           | bilio                                            | dad d<br>a de                                   | e tal<br>0+0(       | udes<br>)0 a                   | s en<br>los      | carre<br>30+0 | eter<br>)00              | a Ba<br>Km                                   | mba                                       | imai                                     | rca -            |                          |                       | FEC<br>RE#<br>PRC   | CHA:     | :<br>'ADC<br>RESI | ) PC<br>VAS                 | DR:                 | •            |                 |          | 04/′<br>A. F            | 10/2<br>Falco<br>2 | 2013<br>oní l<br>29+( | 3<br>Rey<br>080    | es<br>- 2 | 29+1                | 100        | ) KM                      | 1                       |                     | G                   | E                   | ES <sup>-</sup><br>ME | TA(<br>EC/ | CIC<br>ÁN        | ÓN<br>IC         | I<br>A I              | N°           |               | <u>.</u>                     |           | E          | G-                     | -1(                       | 6                                                |                                             |
|------------------|----------------------------------------|---------|------------------------------------------------------|--------------------------------------------------|-------------------------------------------------|---------------------|--------------------------------|------------------|---------------|--------------------------|----------------------------------------------|-------------------------------------------|------------------------------------------|------------------|--------------------------|-----------------------|---------------------|----------|-------------------|-----------------------------|---------------------|--------------|-----------------|----------|-------------------------|--------------------|-----------------------|--------------------|-----------|---------------------|------------|---------------------------|-------------------------|---------------------|---------------------|---------------------|-----------------------|------------|------------------|------------------|-----------------------|--------------|---------------|------------------------------|-----------|------------|------------------------|---------------------------|--------------------------------------------------|---------------------------------------------|
| GEC              | DLO                                    | GÍ      | <b>ÍΑ</b> : Lα<br>D<br>B<br><b>Δ:</b> Li<br>Ti<br>Ti | ongi<br>ltura<br>irec<br>uza<br>tolc<br>po<br>po | tud:<br>ción<br>mient<br>gía:<br>de Ro<br>de Es | de B<br>to:<br>truc | :<br>uz. c<br>tura:            | del T            | alud          | :<br>C<br>Ju             | 2<br>1<br>N 29<br>7<br>aliza<br>edin<br>unta | 20 n<br>0 n<br>7 °<br>7 °<br>10 n<br>10 n | n<br>uds<br>taria                        | tone             | •                        |                       |                     |          |                   |                             | Sec. 1              |              |                 | -        |                         |                    |                       |                    |           |                     |            |                           | ALL ALL                 |                     |                     |                     |                       | X          | ~                |                  |                       | 2:31         |               |                              | 4192      |            | /                      | X                         |                                                  |                                             |
| PL               | <b>ANO</b><br> -1<br> -2<br> -3<br> -4 |         |                                                      | D<br>52<br>45<br>81<br>46                        | lent                                            |                     | ÓN<br>28:<br>20:<br>29:<br>22: | 5<br>5<br>5<br>5 |               | <b>ов</b><br>Fa          | allas                                        | Pla                                       | nar                                      | res              |                          | otor                  |                     |          |                   |                             | Maci                |              |                 |          |                         |                    |                       |                    |           |                     |            | -                         |                         | -                   | Prov                |                     | n ost                 |            | ×                |                  |                       |              | tiou          | -S                           |           |            |                        |                           | Italud                                           |                                             |
| PARÁMETROS       | RE                                     | TENC    | RO<br>RO                                             | CIA<br>CA<br>_A C<br>L (N                        | OMPR<br>1Pa)                                    | _A<br>ESIÓ          | N 1                            | ÍÌ<br>CAL        | RQD           | E D<br>D DI<br>CA<br>(%) | DE<br>E LA                                   | [                                         | ES<br>DISC<br>ES                         | PAC<br>I<br>CON  | LA<br>LA<br>TINI         | O D<br>UID            | DE<br>AD            | C        | XONTI             | NUID                        | AD (n               | m)           |                 | ABI      | CO<br>ERTU<br>(mm)      | <b>NDI</b><br>RA   | ICIO                  | NES                | DE        | E LA<br>Gosie       | <b>DIS</b> | CON                       | ITIN                    | JID4<br>RE          |                     | 0                   |                       | ME         | TEO              | RIZA             |                       | N            | H<br>GR<br>(E | COI<br>IIDR<br>ADO<br>Bienia | DE Hl     | IÓN<br>GIC | <b>A</b><br>(AD<br>(9) | ORIENT<br>DISCO<br>(Ro    | RREC<br>POF<br>ENTA<br>FACIÓN<br>DNTINU<br>mana, | CIÓN<br>CIÓN<br>I DE LAS<br>IDADES<br>1997) |
| RANGOS Y VALORES | > 250                                  | 100-250 | 50-100<br>50-25                                      | 07-00                                            | 25-55<br>5-1                                    | 5 5                 | 90-100                         | 75-90            | 50-75         | 25.50                    | 20-00<br>25                                  |                                           | <ol> <li>setun ( yuny ) untas</li> </ol> | ≥60, <200 Juntas | ≥200, <600 Moderm.Juntas | ≥600, <2000 Separadas | ≥2000 Muy separadas | < 1 Baja | ≥1, <3 Baja Z∩9   | ≥3, <10 Media 23, <10 Media | ≥10, <20 Alta Z Z Z | ≥20 Muy Alta | ninguna Cerrada | < 0,1 mm | ≥0,10, <1 mm<br>Ahierta | ≥1, <5mm           | ≥5mm                  | Muy Rugosa         | Rugosa    | Ligeramente Rugosa  | Suave      | Pulida                    | ninguno                 | Relleno Duro < 5 mm | Relleno Duro > 5 mm | Relleno Blando <5mm | Relleno Blando > 5 mm | Inalterado | Lig. Meteorizada | Mod. Meteorizada | Altamente Meteorizada | Descompuesta | Seco          | Ligeram húmedo               | Húmedo    | Goteando   | Agua fluyendo          | : = RMRBÁSICO + (ψ*F3)+F4 | F1<br>F3                                         | 0.85                                        |
| VALORES          | 15                                     | 12      | 2                                                    | +                                                | ~ +                                             | · c                 | 20                             | 17               | 13            | ~<br>>                   | ~ ~                                          |                                           | n                                        | œ                | 8 10                     | 15                    | 20                  | 9        | 4                 | 1 2                         | -                   | 0            | 9               | 5        | 0 3                     | -                  | 0                     | 9                  | ى<br>ا    | 5 3                 | -          | 0                         | 9                       | 4                   | 0 2                 | 2                   | 0                     | 9          | 2                | 7                | -                     | 0            | 15            | 10                           | 7 7       | 4          | 0                      | SMF                       | - <del>-</del>                                   | 10                                          |
|                  |                                        | ES      | SMF                                                  |                                                  | ÓΝ                                              |                     |                                |                  | 1(<br>Mu)     | )0-8                     | 31                                           |                                           |                                          |                  | 80                       | )-6 <sup>-</sup>      | 1                   |          |                   |                             | 60-<br>R c          | -51          | or A            | VAL      | OR                      |                    | ALO                   | - RM<br>R T<br>LAS |           | BÁS<br>AL :<br>DE N | SIC<br>SM  | 0=<br> R =<br><u>CIZO</u> | 29<br>18<br>0 RC<br>40- | 0 <b>CO</b><br>31   | SO                  |                     |                       |            | 30-2             | 21               | B                     |              |               |                              | <u>20</u> | -0         |                        |                           | Mund                                             | /                                           |

|            | Análi             | isis  | de e                                                                                           | estat<br>Pac                                     | oilida                                      | ad de<br>a de (                                          | e talı<br>0+00                   | udes<br>)0 a l      | en o<br>os 3 | carre<br>30+0       | etera<br>00 k             | Ban<br>(m                          | ıbarr                                           | arca                | a -                |                                 | FE<br>RI<br>PI | EAL              | A:<br>IZAD<br>GRES                      | io p<br>Siva        | OR:<br>S:          |          |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 04/<br>A. I        | 10/2<br><sup>-</sup> alco<br>2 | :013<br>oní l<br>:9+3 | Rey<br>800 | es<br>– 2  | 9+5                | 560                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Kn     | n           |             | GI          | E           | ES <sup>-</sup><br>ME | TA(     | CI<br>ÁN       | ÓN           | l<br>A        | N°         |       |                                       |           | E                                       | G                              | -1                  | 7              |                                                                    |
|------------|-------------------|-------|------------------------------------------------------------------------------------------------|--------------------------------------------------|---------------------------------------------|----------------------------------------------------------|----------------------------------|---------------------|--------------|---------------------|---------------------------|------------------------------------|-------------------------------------------------|---------------------|--------------------|---------------------------------|----------------|------------------|-----------------------------------------|---------------------|--------------------|----------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------------------------|-----------------------|------------|------------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------------|-------------|-------------|-------------|-----------------------|---------|----------------|--------------|---------------|------------|-------|---------------------------------------|-----------|-----------------------------------------|--------------------------------|---------------------|----------------|--------------------------------------------------------------------|
| GI         | EON               | 00    | FRÍA                                                                                           | A: Lor<br>Alt<br>Dir<br>Bu<br>Lito<br>Tip<br>Tip | ngitu<br>ecc<br><u>zam</u><br>olog<br>oo de | ud:<br>Máxi<br>ión d<br>niento<br>jía:<br>e Roo<br>e Est | ima:<br>e Bu<br>b:<br>ca:<br>ca: | uz. d               | el Ta        | alud:               | N<br>Ca<br>Se<br>Jur      | 26<br>1<br>32<br>8<br>liza<br>dime | 0 m<br>5 m<br>0 °<br><u>2 °</u><br>Mud<br>entai | stor<br>ria         | ne                 |                                 |                | All and a little | 11 - 15 - 15 - 15 - 15 - 15 - 15 - 15 - | A A A A A A         |                    |          |         | A Contraction of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                    |                                |                       |            | August and |                    | and the second se | L'PLAN | AL AL A     |             |             |             | w                     | 1       | /              | /            | /             | 1:1        | - / - | N                                     |           | 1                                       |                                | ł                   | FE             |                                                                    |
| - F        | J-1<br>J-2<br>J-3 | 10    |                                                                                                | (<br>3<br>2<br>2                                 | DD<br>335<br>285<br>290                     | ENT                                                      |                                  | D<br>12<br>56<br>79 |              | - m                 | OBS<br>N<br>eca           | SERV<br>lo pr                      | eser                                            | one<br>nta<br>de fa | <b>s</b><br>alla.  |                                 |                |                  |                                         |                     |                    |          |         | Contraction of the second seco | 1                  |                                |                       |            |            |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        | a summer a  |             |             |             |                       | J       | X              | /            | /             | K          | 1     | •<br>•                                | 1         |                                         | •                              |                     | ţ              |                                                                    |
| PARÁMETROS | RES               | RE    | SIST<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I | ENC<br>ROC                                       | A CC                                        | DE L<br>DMPRE<br>Pa)                                     | A<br>SIÓN                        | C                   | ÍN<br>ALI    | IDIC<br>IDAE<br>ROC | e de<br>D de<br>Ca<br>(%) | LA                                 | E<br>Di                                         | SP/                 | ACIA<br>LA<br>DNTI | Fo<br>ADO<br>A<br>INUI<br>20 (n | DAL            | ofía c           | CON                                     | TINUI               | DAD (              | izo F    | Rocos   | AB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CC<br>ERTL<br>(mm) | IRA                            | CIO                   | NES        | DE         | <b>LA</b><br>Gosie | <b>DIS</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CON    | ITIN        | JID/<br>RE  |             | O           | n est                 | M       | gráfic<br>ETEC | DRIZ/        | a las         | disco<br>N | GI    | uidad<br>CO<br>HIDF<br>RADC<br>(Bieni | DE Faw sl | de la<br>CIÓI<br>ÓGIO<br>HUME<br>ki, 19 | orien<br>N<br>CA<br>DAD<br>89) | ORIEI<br>DISC<br>(F | VTACI<br>CONTI | Id.<br>ECCIÓN<br>DR<br>FACIÓN<br>ÓN DE LAS<br>NUIDADES<br>a, 1997) |
| VALORES    | - 250             | 0-250 | 0-100                                                                                          | 0-25                                             | 25-5                                        | 5-1                                                      | √                                | 0-100               | .5-90        | 0-75                | 5-50                      | <25                                | Muy juntas                                      | Juntas              | Modem.Juntas       | Separadas                       | Muv senaradas  | Boio             | DIF<br>BL<br>Baja                       | SEG<br>ECCI<br>JZAN | NÙ<br>ALTA<br>ALTA | Muy Alta | Cerrada |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Abiotto            | AUIGILA                        |                       | Rugosa     | rgosa      | ente Rugosa        | uave                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ulida  | ouno        | Juro < 5 mm | Duro > 5 mm | llando <5mm | lando > 5 mm          | lterado | eteorizada     | feteorizada  | e Meteorizada | ompuesta   | Seco  | m húmedo                              | imedo     | teando                                  | fluyendo                       | CO + (μ*F3)+F4      | ų              | h O                                                                |
| RANGOS Y   | ~                 | 10    | 2                                                                                              | 4                                                |                                             |                                                          |                                  | 5                   | 2            | L)                  |                           |                                    | <60                                             | ≥60, <200           | ≥200, <600         | ≥600. <2000                     | >2000          |                  | 21.<3                                   | ≥3. <10             | ≥10, <20           | ≥20      | ninguna | < 0,1 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ≥0,10, <1 mm       | ≥1, <5mm                       | ≥5mm                  | Muy        | Rı         | Ligerame           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6      | ni          | Relleno I   | Relleno I   | Relleno E   | Relleno B             | Ina     | Lig. M         | Mod. N       | Altamente     | Desc       | 0,    | Ligera                                | Ŧ         | ß                                       | Agua                           | IR = RMRBÁSI0       | F              | 3 0<br>4 0                                                         |
| LORES      | 15                | 12    | 7                                                                                              | 4                                                | 2                                           | -                                                        | 0                                | 20                  | 17           | 8 13                | œ                         | e                                  | 5                                               | œ                   | 20 10              | 15                              | 20             | 3 0              | 0 4                                     | 4                   | -                  | 0        | 9       | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | з<br>Э             | -                              | 0                     | 9          | 5          | 5 3                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0      | 9           | 4           | 2           | 3           | 0                     | 9       | 5              | 5 3          | -             | 0          | 15    | 10                                    | 7 7       | 4                                       | 0                              | SM                  |                | ,<br>,                                                             |
| VAL        |                   |       |                                                                                                |                                                  |                                             |                                                          |                                  |                     |              |                     |                           |                                    |                                                 |                     |                    |                                 |                |                  |                                         |                     |                    |          |         | VAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .OR                | то                             | TAL                   | RN         | IR         | вÁs                | SIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0=     | 58          |             |             |             |                       |         |                |              |               |            |       |                                       |           |                                         |                                |                     |                |                                                                    |
| -          |                   |       |                                                                                                | MÞ                                               |                                             |                                                          |                                  | 1                   |              | 10                  | 0.0                       | 1                                  |                                                 |                     |                    | 90                              | 61             |                  |                                         |                     | 60                 | ) 54     |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | VA                             |                       | R T        | OT<br>E D  | AL S               | SM<br>1AC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | R =    | 58<br>RC    | C0          | so          |             |                       |         | 20             | 24           |               |            |       |                                       | 0         | 0.0                                     |                                |                     |                | ША                                                                 |
|            |                   | DE    | SCI                                                                                            | IVIR<br>RIP(                                     | CIÓ                                         | N                                                        |                                  |                     | I            | Muy                 | / Bu                      | ı<br>ena                           |                                                 |                     | 11                 | 80-<br>Bu                       | o'i<br>ena     |                  |                                         | III                 | 60<br>A Re         | egul     | ar A    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | IIIB                           | 50-<br>Re             | gula       | r B        |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ١v     | 40-<br>/A N | ala         | A           |             |                       | IVI     | 30-<br>B N     | ·∠'i<br>1ala | В             |            |       | V                                     | ∠<br>∕Mu  | 0-0<br>ly M                             | ala                            |                     | Re             | jiiA<br>gular A                                                    |

# CAPÍTULO IV

## ANÁLISIS Y DISCUSIÓN DE RESULTADOS

### 4.1 Modelo matemático

### 4.1.1 Análisis de estabilidad de taludes.

En el presente subcapítulo, con los datos obtenidos de los anteriores capítulos, se han evaluado los taludes que poseen un mayor riesgo geológico, evaluándolos mediante el software Slide v 5.0, obteniendo el factor de seguridad de cada uno de estos para así visualizar el grado de inestabilidad de los taludes.

El método de análisis será por Bishop Simplificado, para poder visualizar los esfuerzos en las dovelas más relevantes. Además han sido analizadas condiciones pseudo – estáticas, con factor de sismicidad de 0.25 correspondiente Mapa de zonificación sísmica, (La Norma Técnica E.030 "Diseño Sismorresistente", 2016), y condiciones no drenadas, con un Hu = 1. Esto permitió obtener el F.S crítico en cada uno de los taludes.

#### Talud 01:

Progresivas: 3+950 - 5+520 Km



Progresivas: 8+900 – 9+900 Km.



Comentarios: En el presente talud se presenta un F.S de 0.1, el talud presenta parámetros geomecánicos muy favorables, pero muestra inestabilidad bajo condiciones pseudo- estáticas, no drenadas, presentando caída de rocas con rebote, debido a la topografía del talud, a las familias de diaclasas y a la filtración de agua por precipitación. Debido a tener un alto índice de blocosidad, las rocas colgadas son de gran volumen significando un alto riesgo a las personas y vehículos que transitan por la carretera.

Progresivas: 13+740 – 13+820 Km.



Comentarios: En el presente talud se presenta un F.S de 0.6, muestra inestabilidad bajo condiciones pseudo- estáticas, no drenadas, presentando falla tipo vuelco de una roca columnar por erosión de la base. Debido a que el macizo presenta discontinuidades casi verticales con respecto al talud, y un alto grado de erosión eólica e hídrica. Compuesto de arenisca cuarzosas altamente meteorizadas.

Progresivas: 16+200 – 16+280 Km.



Comentarios: Talud compuesto de depósito coluvio – aluvial, al ser un material no cohesivo, presenta un F.S de 0.3 en condiciones Pseudo – estáticas, no drenadas, presentándose un fallamiento circular. Además de tener bolonería colgada en lo alto del talud, representando un gran peligro a personas y vehículos.

Progresivas: 19+260 – 20+740 Km.



Comentarios: En el presente talud se presenta un F.S de 4.0, el talud presenta parámetros geomecánicos muy desfavorables, pero muestra estabilidad bajo condiciones pseudo- estáticas, no drenadas, debido a la topografía del talud. Presenta planos rotura tipo planar, además de tener estratos de carbón antracítico muy meteorizados, que se comportarían como superficie de falla.

#### Progresivas: 20+520 - 20+740 Km.



Comentarios: Talud compuesto de depósito coluvio – aluvial, al ser un material no cohesivo, presenta un F.S de 0.2 en condiciones Pseudo – estáticas, no drenadas, presentándose un fallamiento circular. Además de tener bolonería colgada en lo alto del talud, aproximadamente de unas 8 TN, creando una sobrecarga en la cresta del talud, representando un gran peligro a personas y vehículos.

Progresivas: 22+200 – 22+280 Km.



Comentarios: Talud compuesto de depósito coluvio – aluvial, al ser un material no cohesivo, presenta un F.S de 0.2 en condiciones Pseudo – estáticas, no drenadas, presentándose un fallamiento circular. El talud es susceptible a deslizarse debido a la altura de talud, y su alta pendiente. Representando un peligro para las personas y vehículos que transitan por la zona.

Progresivas: 24+100 – 24+140 Km.



Comentarios: En el presente talud se presenta un F.S de 1.4, muestra estabilidad bajo condiciones pseudo- estáticas, no drenadas, podría presentar un tipo de falla planar, con Rotura por un plano singular. Teniendo como plano de falla el contacto entre areniscas cuarzosas y limolitas, pero debido a su geometría del talud y su bajo ángulo de buzamiento del plano con respecto al talud, se mantiene estable.

Progresivas: 25+380 - 25+480 Km.



Comentarios: Talud compuesto de depósito coluvio – aluvial, al ser un material no cohesivo, presenta un F.S de 0.3 en condiciones Pseudo – estáticas, no drenadas, presentándose un fallamiento circular. Además de tener bolonería colgada en lo alto del talud, representando un gran peligro a personas y vehículos.

Progresivas: 26+420 – 26+480 Km.



Comentarios: Talud compuesto de depósito coluvio – aluvial, al ser un material no cohesivo, presenta un F.S de 0.222 en condiciones Pseudo – estáticas, no drenadas, presentándose un fallamiento circular. Además de tener bolonería colgada en lo alto del talud, representando un gran peligro a personas y vehículos.

Progresivas: 26+600 – 26+700 Km.



Comentarios: En el presente talud se presenta un F.S de 0.6, muestra inestabilidad bajo condiciones pseudo- estáticas, no drenadas, presentando falla tipo planar, con rotura por un plano singular con grieta de tracción. Debido a que el macizo presenta discontinuidades desfavorables, paralelas al buzamiento del talud. Compuesto de arenisca cuarzosas moderadamente meteorizadas.

Progresivas: 26+720 - 26+980 Km.



Comentarios: En el presente talud se presenta un F.S de 0.7, muestra inestabilidad bajo condiciones pseudoestáticas, no drenadas, presentando falla tipo planar, con rotura por una superficie poligonal formada por varios planos. Debido a que el macizo presenta discontinuidades desfavorables, paralelas al buzamiento del talud. Compuesto de arenisca cuarzosas moderadamente meteorizadas.

Progresivas: 27+200 - 27+ 350 Km.



Comentarios: En el presente talud se presente un F.S de 2.1, muestra estabilidad bajo condiciones pseudo- estáticas, no drenadas, debido a que el talud corta de manera semi paralela el buzamiento de los estratos, además de la geometría del talud. El macizo rocoso presenta una intercalación de calizas y lutitas altamente meteorizadas, con un RQD < 25, el talud se analizó con una falla circular debido a las características del macizo.

Progresivas: 28+500 - 28+350 Km.



Comentarios: En el presente talud se presente un F.S de 0.7, muestra inestabilidad bajo condiciones pseudo- estáticas, no drenadas, presentando falla tipo planar, con rotura por un plano singular, debido a que el talud corta de manera perpendicular el buzamiento de los estratos. El talud presenta constantes deslizamientos de roca causado por la que la pendiente de del talud es la misma que el buzamiento de los estratos, la intercalación de lutitas que se comportan como plano de falla, además de la infiltración de agua por estas discontinuidades que ocasionan la disminución en los parámetros de resistencia.

Progresivas: 28+680 – 28+780 Km.



Comentarios: En el presente talud se presente un F.S de 0.6, muestra inestabilidad bajo condiciones pseudo- estáticas, no drenadas, presentando falla tipo planar debido a que el talud corta de manera perpendicular el buzamiento de los estratos. El talud presenta constantes deslizamientos de roca causado debido al socavamiento de la base, el buzamiento de los estratos, y la intercalación de lutitas que se comportan como plano de falla, además de la infiltración de agua por estas discontinuidades que ocasionan la disminución en los parámetros de resistencia.

Progresivas: 29+080 - 29+100 Km.



Comentarios: En el presente talud se presenta un F.S de 0.9, lo muestra inestabilidad bajo condiciones pseudoestáticas, presentando falla tipo planar debido a que el talud corta de manera perpendicular el buzamiento de los estratos. Además se presenta una gran meteorización en el macizo rocoso a causa del agente hídrico, lo cual disminuye los paramentos de resistencia.

Progresivas: 29+300 - 29+560 Km.



Comentarios: Talud compuesto de calizas arcillosa, presenta un F.S de 6.5, lo muestra estabilidad bajo condiciones pseudo- estáticas, no presenta alguna discontinuidad desfavorable a la cara del talud, la estratificación de estas calizas se encuentran a contra pendiente del ángulo del talud, lo cual favorece a su estabilidad.

| Talud | Progresivas (Km) | Resistencia | RQD   | RMR | SMR | GSI | F.S |
|-------|------------------|-------------|-------|-----|-----|-----|-----|
| 1     | 3+950 – 5+520    | R3          | 28.63 | 44  | 50  | 49  | 4.4 |
| 2     | 8+900 - 9+900    | R4          | 63.34 | 66  | 55  | 71  | 0.1 |
| 3     | 13+740 – 13+820  | R4          | 52.33 | 47  | 15  | 52  | 0.6 |
| 4     | 16+200 – 16+280  | Depósito    | -     | -   | -   | <25 | 0.3 |
| 5     | 19+260 – 20+740  | R4          | 7.59  | 38  | 38  | 43  | 4   |
| 6     | 20+520 – 20+740  | Depósito    | -     | -   | -   | <25 | 0.2 |
| 7     | 22+200 - 22+280  | Depósito    | -     | -   | -   | <25 | 0.2 |
| 8     | 24+100 – 24+140  | R4          | 52.33 | 52  | 41  | 57  | 1.4 |
| 9     | 25+380 – 25+480  | Depósito    | -     | -   | -   | <25 | 0.3 |
| 10    | 26+420 - 26+480  | Depósito    | -     | -   | -   | <25 | 0.2 |
| 11    | 26+600 - 26+700  | R4          | 65.98 | 53  | 32  | 58  | 0.6 |
| 12    | 26+720 – 26+980  | R4          | 28.63 | 48  | 37  | 53  | 0.7 |
| 13    | 27+200 - 27+350  | R3          | 7.59  | 38  | 42  | 43  | 2.1 |
| 14    | 28+500 - 28+350  | R3          | 7.59  | 35  | 24  | 40  | 0.7 |
| 15    | 28+680 - 28+780  | R3          | 7.59  | 35  | 24  | 40  | 0.6 |
| 16    | 28+680 - 28+780  | R3          | 12.92 | 29  | 18  | 34  | 0.9 |
| 17    | 29+300 – 29+560  | R3          | 37.17 | 58  | 58  | 63  | 6.5 |

Tabla 12: Tabla de resultados finales en análisis de taludes



### 4.2 CONTRASTACIÓN DE LA HIPÓTESIS

Mediante la observación de documentación y el trabajo de los datos de campo, en los cuales se determinó que teniendo factores influyentes como la geología local que consta de Formaciones geológicas del Cretácico Inferior y superior, la geomorfología escarpada de la zona de investigación conformada generalmente por laderas empinadas, la topografía de los taludes, el sistemas de diaclasas desfavorables a la dirección y pendiente de los taludes, las características del macizo rocoso y depósitos cuaternarios dentro de las cuales se calificó los taludes con las diferentes clasificaciones geomecánicas como Rock Mass Rating, Rock Quality Designation, Geological Strength Index, Slope Mass Rating, además obteniendo el modelo numérico mediante el Sofware Slide v 5.0, determinando un factor de seguridad en condiciones pseudo estáticas, no drenadas, se comprobó que la hipótesis es verdadera, teniendo así como proposición de tesis que los taludes en la carretera Bambamarca - Paccha, entre los kilómetros 0 - 30, presentan una alta inestabilidad, siendo un riesgo geológico latente, el cual pone en peligro las infraestructuras antropogénicas y vidas humanas.

## **CAPÍTULO V**

### **CONCLUSIONES Y RECOMENDACIONES**

#### **5.1 CONCLUSIONES**

La estabilidad en condiciones pseudo – estáticas, no drenadas, de diecisiete (17) taludes representativos en la carretera Bambamarca – Paccha, identificándose zonas de alta inestabilidad, principalmente en los Km 09 -11 en areniscas cuarzosas con caída libre de rocas, los Km 11 – 23 en depósitos coluviales con deslizamientos circulares, del Km 25 -27 en areniscas cuarzosas con caídas planares y cuñas y del Km 28 - 29 en calizas arcillosas, con deslizamientos planares.

La zona de estudio se encuentra geomorfológicamente laderas de alta pendiente, en los flancos del valle joven – maduro, del río LLaucano.

Litológicamente se encuentra emplazado en formaciones del Cretácico inferior e superior. Donde se encuentran rocas silicoclásticas del Cretácico inferior (Grupo Goyllarisquizga) y formaciones carbonatada del cretácico superior.

La zona se encuentra influenciada hidrológicamente, por el río LLaucano cono efluente principal, y quebradas secundarias, mostrando un drenaje tipo dentrítico.

La variación de las características del RMR varían en taludes estables con una clasificación de buena IIA (talud N°2), regular IIIA (talud N° 8, 11,17), regular IIIB (taludes N°1, 3,12), mala IVA (taludes N°5, 13,14, 15) y mala IVB (talud N°4, 6, 7, 9, 10, 16)

Las condiciones climáticas, en especial, las altas precipitaciones de la zona de estudio son el principalmente agente detonante de las condiciones de inestabilidad de taludes.

125

## 5.2 RECOMENDACIONES

Al Ministerio de Transportes ampliar la investigación realizando ensayos de laboratorio como ensayos uniaxiales o triaxiales, en la roca fresca y en discontinuidades, así como también en los materiales no consolidados concernientes a los depósitos, para así poder obtener resultados más exactos.

Al Ministerio de Transportes realizar una señalización de peligros geológicos en la carretera Bambamarca – Paccha como medida de precaución para las personas y vehículos.

Al Ministerio de Transportes que se apliquen métodos de estabilización de taludes según el tipo de rotura que disponga el talud, tales como desamarre en rocas colgadas en el talud, pernos de anclaje en roturas planares, disminución de pendiente, uso de gaviones, o banqueteo en taludes de material no consolidado.

#### **REFERENCIAS BIBLIOGRÁFICAS**

- Bishop A. (1960). Estabilidad de taludes, soluciones y prueba. Sociedad americana de ingeniería civil, Pág 437-501.
- Das B. (2001). Fundamentos de Ingeniería Geotécnia, Cengage editorial 2015, México, Pág 334 373.
- De Matteis A. (2003). Estabilidad de Taludes, Universidad Nacional de Rosario editorial, Argentina, Pág 2-10.
- Ferrer M. (1999). Manual de Campo para la Descripción y Caracterización de Macizos Rocosos en Afloramientos, Instituto Geológico y Minero de España editorial 2007, Madrid, Pág 134 -135.
- Goodman R. (1976). Toppling en taludes rocosos. Sociedad Americana de Ingeniería Civil, New York, Pág. 201-234.
- Herrera F. (2000). Análisis de Estabilidad de Taludes, Madrid, 04 -05 p.
- Hoek E. (2002). El criterio de rotura de Hoek-Brown, University of Minnesota editorial 2002, EE. UU, Pág 1 – 8.
- Janbú N. (1954). Estabilidad de taludes con parámetros dimensionables – Mecanica de suelos, EE. UU, Pág 46.
- Ortuño L. (2004). Estabilización de Taludes en Suelo, Sevilla, 14-16 p.
- Ramírez P. (2004). Mecánica de Rocas: Fundamentos e Ingeniería de Taludes, Universidad Politécnica de Madrid editorial 2004, Madrid, Pág 173 – 219.

- Suárez J. (1989). Estabilidad en Taludes en Zonas Tropicales, Universidad Industrial de Santander editorial 1989, Bucaramanga, Pág 281
- Taylor D. (1948). Fundamentos de mecánica de suelos, John Wiley & Sons editorial (1953), New York, Pág 700.
- Terzaghi K. (1962). Mecánica de suelos en ingeniería práctica, John Wiley & Sons editorial (1967), New York, Pág 729.
- Vallejo L. (2004). Ingeniería Geológica, Madrid, Pág 152 175.
- Varnes D. (1958). Tipos de deslizamientos y procesos, National Reseaarch Council editorial 1963, EE. UU, Pág 20 - 47.