UNIVERSIDAD NACIONAL DE CAJAMARCA

FACULTAD DE INGENIERÍA

ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"DEFORMACIONES PRODUCIDAS EN EL PUENTE VEHICULAR MOTILONES – MOYOBAMBA – SAN MARTIN DE 163.00 m DE LUZ, CONSIDERANDO LA ESTRUCTURA REAL Y EL MODELO ANALÍTICO."

PRESENTADO POR:

Bach. Ing. JIMMY ANTONY DÍAZ VILLAR

PARA OPTAR AL TITULO DE:

INGENIERO CIVIL

ASESOR:

DR. ING. MIGUEL A. MOSQUEIRA MORENO

CAJAMARCA, DICIEMBRE DEL 2018

DEDICATORIA

Esta tesis la dedico principalmente a mis padres Llimy Díaz La Torre y Raquel Villar Ramírez, por el esfuerzo y sacrificio y por su apoyo constante en mi formación personal y profesional y por ser los mejores padres que pude merecer.

A mi hermana Raquel y mi hermano gemelo Jimmy Edward, por el apoyo y ánimo que me dieron siempre, lo cual me motivó aún más a concluir mis estudios.

A mi esposa Jessica y a mi pequeña hija Kate Anthonella, porque con sus primeras sonrisas me llenó de felicidad y fue mi más grande inspiración para llegar a culminar este trabajo.

AGRADECIMIENTO

Quiero agradecer a mi asesor Dr. Ing. Miguel A. Mosqueira Moreno, por haber compartido su tiempo y conocimiento desde el inicio hasta la conclusión de este trabajo.

A mis tías Betty y Pura Villar Ramírez, por ser como otras madres para mí, por el cariño, buenos consejos y el apoyo incondicional que me brindaron en mi vida para hacer de mí un profesional.

Así mismo, agradezco a todas las personas que de una u otra forma me apoyaron durante el desarrollo de este proyecto.

ÍNDICE

Contenido

DEDICATORIA	II
AGRADECIMIENTO	III
ÍNDICE	IV
ÍNDICE DE TABLAS	vı
ÍNDICE DE FIGURAS	VII
RESUMEN	XII
ABSTRACT	XIII
CAPITULO I: INTRODUCCIÓN GENERAL	14
1.1. PLANTEAMIENTO DEL PROBLEMA	
1.2. FORMULACIÓN DEL PROBLEMA	15
1.3. Objetivos	15
1.3.1. Objetivo general	15
1.3.2. Objetivos específicos	15
1.4. Hipótesis	15
1.4.1. Hipótesis general	15
1.5. VARIABLES	16
1.5.1. Variable independiente	
1.5.2. Variable dependiente	
1.6. JUSTIFICACIÓN	
1.7. Alcance	17
1.8. LIMITACIONES	17
CAPITULO II: MARCO TEÓRICO	18
2.1. ANTECEDENTES	
2.1.1. A NIVEL INTERNACIONAL	
2.1.2. A NIVEL NACIONAL	
2.2. BASES TEÓRICAS	20
2.2.1. Consideraciones generales de la norma manual de diseño de puentes – Ma	TC 2016 20
2.2.2. Designación de cargas	
2.2.3. Diseño con cargas vivas de vehículos	22
2.2.4. Deformaciones	25
2.3 DESCRIPCIÓN DEL PUENTE MOTILONES	33
2.4. CLASIFICACIÓN SEGÚN EL MANUAL DE PUENTES 2016	40
2.5 MARCO NORMATIVO	

САРІТ	ULO III: MATERIALES Y MÉTODOS	41
3.1.	MATERIALES, EQUIPOS Y PERSONAL TÉCNICO	
3.	1.1. ENSAYOS DE CORAZONES DIAMANTADOS	
3.	1.2. PRUEBA DE CARGA ESTÁTICA	
3.	1.3. PROGRAMA CSIBRIDGE	
САРІТ	ULO IV: ANÁLISIS Y DISCUSIÓN DE RESULTADOS	53
4.1.1	ENSAYOS DE CORAZONES DIAMANTADOS	53
4.2.	PRUEBA DE CARGA ESTÁTICA DEL PUENTE MOTILONES	55
4.	2.1. CÁLCULO DE CONTRAFLECHA	55
4.	2.2. CÁLCULO DE MOMENTOS MÁXIMOS	
4.3.	PROGRAMA CSIBRIDGE	
САРІТ	ULO V: CONCLUSIONES Y RECOMENDACIONES	79
5.1.	CONCLUSIONES	
5.2.	RECOMENDACIONES	80
ANEX	OS	81
\succ	DATOS DEL PUENTE VEHICULAR MOTILONES	81
\succ	MODELAMIENTO EN EL PROGRAMA CSIBRIDGE VERSIÓN 20	
\succ	PANELES FOTOGRÁFICOS	
-	Panel fotográfico – Fabricación en taller – SIMA Chimbote	
-	Panel fotográfico prueba de carga	
≻	PROTOCOLO DE PRUEBA DE CARGA DEL PUENTE MOTILONES	
\triangleright	INFORME DE PRUEBA DE CARGA DEL PUENTE MOTILONES	
\succ	CERTIFICADO DE CALIBRACIÓN NIVEL TOPCON MODELO AC-B4	

ÍNDICE DE TABLAS

Tabla N° 1 Factor presencia múltiple
Tabla N° 2 Peraltes mínimos tradicionales para superestructuras de profundidad constante29
Tabla N° 3 Datos del BM 1
Tabla N° 4 Factores de corrección53
Tabla N° 5 Datos de la rotura de corazones diamantados54
Tabla N° 6 Contraflecha
Tabla N° 7 Datos de línea de influencia57
Tabla N° 8 Datos de línea de influencia del camión de diseño57
Tabla N° 9 Datos de línea de influencia del tándem de diseño59
Tabla N° 10 Datos de línea de influencia del camión equivalente61
Tabla N° 11 Cuadro de resumen de momentos62
Tabla N° 12 Datos obtenidos con el nivel para la viga principal agua arriba
Tabla N° 13 Datos procesados de la nivelación para la viga principal aguas arriba66
Tabla N° 14 Datos obtenidos con el nivel para la viga principal agua abajo68
Tabla Nº 15 Datos procesados de la nivelación para la viga principal aguas abajo
Tabla N° 16 Deformaciones aguas arriba con 4 camiones en paralelo70
Tabla N° 17 Deformaciones aguas abajo con 4 camiones en paralelo72
Tabla N° 18 Deformaciones aguas arriba con 4 camiones en línea cargado aguas arriba73
Tabla Nº 19 Deformaciones aguas abajo con 4 camiones en línea cargado aguas arriba75
Tabla N° 20 Deformaciones aguas abajo con 4 camiones en línea cargado aguas abajo
Tabla N° 21 Listado de componentes 1-2482
Tabla N° 22 Listado de componentes 25-50. 83
Tabla N° 23 Listado de componentes 51-69
Tabla N° 24 Resultados de momentos máximos según el caso121
Tabla N° 25 Deflexiones de tramos laterales y tramo central

Tabla N° 26 Cálculo de cotas para la viga principal – aguas arriba	
Tabla N° 27 Cálculo de cotas para la viga principal – aguas abajo	

ÍNDICE DE FIGURAS

Fig. N° 1 Vista panorámica del puente Motilones aguas arriba22
Fig. N° 2 Camión de diseño23
Fig. N° 3 Mapa político del Perú
Fig. N° 4 Mapa del departamento de San Martin
Fig. N° 5 Mapa de la provincia de Moyobamba
Fig. N° 6 Vista satelital del puente Motilones sobre el río Mayo
Fig. N° 7 Ubicación de los puntos de extracción de corazones diamantados. Escala = $1/400$. 43
Fig. N° 8 Carga lineal de diseño 44
Fig. N° 9 Detalles del camión de diseño49
Fig. N° 10 Separación de camiones de diseño46
Fig. N° 11 Vista lateral del puente Motilones con la ubicación de los camiones 46
Fig. N° 12 Ubicación de los camiones al centro del puente
Fig. N° 13 Corte transversal del puente con la ubicación de los camiones47
Fig. N° 14 Corte transversal del puente con la ubicación de los camiones al lado izquierdo47
Fig. N° 15 Corte transversal del puente con la ubicación de los camiones al lado derecho 47
Fig. N° 16 Deformaciones esperadas en el puente
Fig. N° 17 Resistencia del concreto de las pruebas de los corazones diamantados
Fig. N° 18 Línea de influencia camión de diseño
Fig. N° 19 Comprobación en el programa Sap 2000 del momento del camión de diseño 58
Fig. N° 20 Línea de influencia del tándem de diseño
Fig. N° 21 Comprobación en el programa Sap 2000 del momento del tándem de diseño 59
Fig. N° 22 Comprobación en el programa Sap 2000 momento por sobrecarga

Fig. N° 43 Desplazamiento en el programa CSiBridge aguas arriba con 4 camiones en línea cargado aguas abajo
Fig. N° 42 Comparación 4 camiones en línea cargado aguas arriba deformaciones aguas abajo.
Fig. N° 41 Desplazamiento en el programa CSiBridge aguas abajo con 4 camiones en línea cargado aguas arriba
Fig. N° 40 Comparación 4 camiones en línea cargado aguas abajo deformaciones aguas arriba.
Fig. N° 39 Desplazamiento en el programa CSiBridge aguas arriba con 4 camiones en línea cargado aguas arriba
Fig. N° 38 Comparación 4 camiones en paralelo cargado aguas abajo deformaciones aguas abajo
Fig. N° 37 Desplazamiento en el programa CSiBridge aguas abajo con 4 camiones en paralelo.
Fig. N° 36 Comparación 4 camiones en paralelo cargado aguas arriba deformaciones aguas arriba
Fig. N° 35 Desplazamiento en el programa CSiBridge aguas arriba con 4 camiones en paralelo
Fig. N° 34 Diagrama de deformación de la viga principal aguas abajo
Fig. N° 33 Diagrama de deformación de la viga principal aguas arriba
Fig. N° 32 vista en planta de la ubicación en forma lineal de los vehículos- aguas abajo 65
Fig. N° 31 Vista en planta de la ubicación en forma lineal de los vehículos- aguas arriba 65
Fig. N° 30 Vista en perfil de la ubicación en forma lineal de los vehículos64
Fig. N° 29 Vista en planta de la ubicación en paralelo de los vehículos- aguas abajo64
Fig. N° 28 Vista en planta de la ubicación en paralelo de los vehículos- aguas arriba64
Fig. N° 27 Vista en perfil de la ubicación en paralelo de los vehículos63
Fig. N° 26 Ubicación de los puntos vista en planta63
Fig. N° 25 Ubicación de los puntos de control corte longitudinal63
Fig. N° 24 Comprobación programa Sap 2000 camión equivalente61
Fig. N° 23 Línea de influencia del camión equivalente61

Fig. Nº 44 Comparación 4 camiones en línea cargado aguas abajo deformaciones aguas arriba.
Fig. N° 45 Comparación 4 camiones en línea cargado aguas abajo deformaciones aguas arriba.
Fig. N° 46 Desplazamiento en el programa CSiBridge aguas abajo con 4 camiones en línea
Fig. Nº 47 Comparación 4 comiones en líneo correcto eques obsio deformaciones eques obsio
11g. 19 47 Comparación 4 cannones en inica cargado aguas abajo deformaciónes aguas abajo
Fig. Nº 48 Planos de montaje del arco tanto el lado mostrado como el lado opuesto
Fig. N° 49 Planos de montaje de la estructura metálica del tablero y vigas inferiores
Fig. N° 50 Planos de montaje de los arriostres con sus conectores
Fig. N° 51 Eje del puente
Fig. N° 52 Carril derecho
Fig. N° 53 Carril izquierdo
Fig. N° 54 Definición de acero
Fig. N° 55 Definición de concreto90
Fig. N° 56 Carga de asfalto90
Fig. N° 57 Carga de vereda izquierda91
Fig. N° 58 Carga de vereda derecha91
Fig. N° 59 Carga de peatón izquierda92
Fig. N° 60 Carga de peatón derecha92
Fig. N° 61 Carga de baranda izquierda93
Fig. N° 62 Carga de baranda derecha93
Fig. N° 63 Camión HL-93M (Tándem)94
Fig. N° 64 Detalle de camión HL-93M (Tándem)94
Fig. N° 65 Camión HL-93K (Camión de diseño)95
Fig. N° 66 Detalle de camión HL-93K (Camión de diseño)95
Fig. N° 67 Camión HL-93S (Tren de carga)96

Fig. N° 68 Detalle de camión HL-93S (Tren de carga)	6
Fig. N° 69 Camión equivalente97	7
Fig. N° 70 Detalle del camión equivalente97	7
Fig. N° 71 Fabricación y pre armado del arco lado opuesto puente Motilones	8
Fig. N° 72 Fabricación y pre armado del arco lado mostrado puente Motilones98	8
Fig. N° 73 Vista del puente antes del ingreso de los vehículos	9
Fig. N° 74 Medición para la ubicación de los vehículos aguas abajo99	9
Fig. N° 75 Medición de los puntos cuando los vehículos se encuentran al borde de la vereda aguas abajo, la carga vehicular se encuentra en paralelo	D
Fig. N° 76 Ubicación de los vehículos en el centro de luz100	D
Fig. N° 77 Medición de los puntos aguas abajo102	1
Fig. N° 78 Vista panorámica de la ubicación de los 8 vehículos en el centro de luz de cada tramo	1
Fig. N° 79 Carga vehicular en forma lineal actuando sobre el puente102	2
Fig. N° 80 Vista panorámica del puente cargado en forma lineal102	2
Fig. N° 81 Acomodo de los camiones equivalentes para la prueba de carga estática103	3
Fig. N° 82 Retiro de los camiones del puente103	3
Fig. N° 83 Carga en la línea de diseño110	0
Fig. N° 84 Camión tándem de diseño110	0
Fig. N° 85 Camión de diseño 110	0
Fig. N° 86 Carga móvil para los momentos negativos112	1
Fig. N° 87 Diagrama de deformación para los tramos laterales del puente112	1
Fig. N° 88 Diagrama de deformación para el tramo central del puente	2
Fig. N° 89 Vista general del puente	4
Fig. N° 90 Vaciado de parapeto aguas arriba	4
Fig. N° 91 Colocación de material para los accesos en ambas márgenes	5
Fig. N° 92 Desmontaje de arriostres temporales del arco	5

Fig. N° 93 Modelo tridimensional de los tramos laterales
Fig. N° 94 Modelo tridimensional del tramo central117
Fig. N° 95 Camión equivalente de prueba118
Fig. N° 96 Líneas de influencia cuando la carga móvil se encuentra en el centro de luz. – tramos laterales
Fig. N° 97 Líneas de influencia cuando la carga móvil se encuentra en el centro de luz. – tramos laterales
Fig. N° 98 Momento máximo que se obtuvo con el programa CSiBridge120
Fig. N° 99 Líneas de influencia cuando la carga móvil se encuentra en el centro de luz. – tramo central
Fig. N° 100 Líneas de influencia cuando la carga móvil se encuentra en el centro de luz. – tramo central
Fig. N° 101 Resultados con el programa CSiBridge121
Fig. N° 102 Diagrama de deformaciones de la viga principal – aguas arriba125
Fig. N° 103 Diagrama de deformaciones de la viga principal – aguas abajo127
Fig. N° 104 Diagrama comparación de deformaciones de la viga principal – aguas abajo 128
Fig. N° 105 Diagrama comparación de deformaciones de la viga principal – aguas arriba 129

RESUMEN

El puente vehicular Motilones de 163 m de luz, es uno de los más importantes para la unión de la margen izquierda del río Mayo del distrito de Moyobamba, provincia de Moyobamba, departamento de San Martin. El objetivo fue comparar las deformaciones producidas en una prueba de carga estática y el modelo analítico construido en el programa CSiBridge. La prueba de carga del puente que se realizó, es un proceso que consistió en la reproducción de varios estados de carga actuando sobre el puente para obtener datos suficientes de su deformación frente a dichos estados, para compararlos con los obtenidos en el modelo por computadora, de manera que pueda deducirse su comportamiento funcional. Se llegó a la conclusión que las deformaciones reales de la prueba de carga son mayores en los casos de 4 camiones en paralelo cargado aguas arriba deformaciones aguas arriba, 4 camiones en línea cargado aguas arriba deformaciones aguas arriba y 4 camiones en línea aguas abajo deformaciones aguas y las deformaciones fueron menores que las obtenidas en el programa abajo CSiBridge en los siguientes casos 4 camiones en paralelo cargado aguas abajo deformaciones aguas abajo y 4 camiones en línea cargado aguas abajo deformación aguas arriba, además tenemos un caso de carga que en algunos puntos de control las deformaciones fueron mayores y en otras fueron menores este caso de carga es 4 camiones en línea cargado aguas arriba deformación aguas abajo.

La mayor deformación obtenida por la prueba de carga es de -0.051 m que se registró en los datos de la comparación 4 camiones en línea cargado aguas abajo deformaciones aguas abajo y la mayor deformación obtenida por el programa CSiBridge -0.0347 m que se registró en los datos de la comparación 4 camiones en línea cargado aguas arriba y se registró el mismo dato en la comparación 4 camiones en línea cargado aguas abajo deformaciones aguas abajo deformaciones aguas abajo. Ninguno de estos dos valores supera la deformación máxima de 0.105 m que se calculó de acuerdo a la noma de diseño de puentes, por lo que se puede afirmar que el puente supero la prueba de carga realizada de forma satisfactoria y es seguro transitar por él.

PALABRAS CLAVES: puente, deformación, prueba de carga estática, camión de diseño, resistencia, estados limites, contra flecha.

ABSTRACT

The Motilones vehicular bridge of 163 m of light, is one of the most important for the union of the left bank of the Mayo river of the district of Moyobamba, province of Moyobamba, department of San Martin. The objective was to compare the deformations produced in a static load test and the analytical model built in the CSiBridge program. The load test of the bridge that was carried out, is a process that consisted in the reproduction of several load states acting on the bridge to obtain sufficient data of its deformation in front of these states, to compare them with those obtained in the computer model, so that its functional behavior can be deduced. It was concluded that the actual deformations of the load test are greater in the cases of 4 trucks in parallel loaded upstream upstream deformations, 4 trucks in line loaded upstream upstream deformations and 4 downstream trucks in water deformations below and the deformations were lower than those obtained in the CSiBridge program in the following cases 4 trucks in parallel loaded downstream deformations downstream and 4 trucks in line loaded downstream deformation upstream, in addition we have a load case that in some points of Control deformations were greater and in others were minor this load case is 4 trucks in line loaded upstream deformation downstream. The highest deformation obtained by the load test is -0.051 m which was recorded in the comparison data of 4 lorries in line loaded downstream deformations downstream and the greatest deformation obtained by the CSiBridge program -0.0347 m recorded in the Comparison data 4 trucks in line loaded upstream and the same data was recorded in the comparison 4 trucks in line loaded downstream deformations downstream. Neither of these two values exceeds the maximum deformation of 0.105 m that was calculated according to the design of bridges, so it can be said that the bridge passed the load test performed satisfactorily and it is safe to travel through it.

KEY WORDS: bridge, deformation, static load test, design truck, resistance, limit states, against arrow.

CAPITULO I: INTRODUCCIÓN GENERAL

1.1. Planteamiento del problema

Los puentes constituyen una infraestructura de conectividad estratégica, cuya intervención se debe programar para dar respuesta a las nuevas exigencias de crecimiento y desarrollo del país incremento de cargas, transito seguro de seguro de vehículos y peatones (sobre todo en zonas aledañas a las urbes o centros poblados), distancias adecuadas de visibilidad en los accesos y la estructura, entre otros. (Vargas, 2012).

Los puentes son obras de arte especiales de gran importancia en nuestro país, siendo por este motivo un tema de estudio constante y más aún los puentes salvan grandes luces, como es el puente vehicular Motilones que es un puente metálico que tiene una longitud total de 163 m (29+105+29) entre ejes de apoyos de estribos. La superestructura está conformada por dos tramos laterales de sección mixta de 28.30 m y un arco reticulado con diagonales tubulares con arreglo tipo Warren, ambos de doble vía, los que se han diseñado para la sobrecarga vehicular HL93.

Por ese motivo hacer una evaluación constante de los puentes, su respuesta a diferentes estados de carga con la medición de las deflexiones producidas, es algo que se debe realizar en todos los puentes del país para que con esto podemos garantizar su buen funcionamiento y la seguridad de los peatones o vehículos que los cruzan. Además no existe en la norma AASHTO ni en el manual de diseño de puente ningún procedimiento para llegar a cabo una prueba de carga dinámica ni estática, por lo que en la siguiente investigación se centró en el procedimiento efectuado en la prueba de carga estática del puente Motilones en el tramo central por ser el de mayor longitud. Dichas deformaciones se evaluaron teniendo en cuenta el manual de diseño de puente haciéndose una comparación de la estructura existente y un modelo en el programa CSiBridge.

El objetivo general de dicha investigación fue comparar de las deformaciones reales y las deformaciones teóricas (modelo analítico programa CSiBridge) del puente vehicular Motilones – Moyobamba – San Martin de 163 m de luz, para diferentes estados de carga. Con este trabajo de investigación propongo comparar las deformaciones del puente y poder contribuir a determinar si el puente se comporta de manera satisfactoria y las deformaciones están dentro del rango elástico y además cumple con la normativa vigente.

1.2. Formulación del problema

La pregunta que se ajusta al problema planteado es la siguiente:

¿Las deformaciones reales producidas en el puente vehicular Motilones superan las deformaciones del modelo analítico para diferentes estados de carga?

1.3. Objetivos

1.3.1. Objetivo general

✓ Comparar de las deformaciones reales obtenidas en la prueba de carga estática y las deformaciones teóricas obtenidas del modelo analítico en el programa CSiBridge del puente vehicular Motilones – Moyobamba – San Martin de 163 m de luz, para diferentes estados de carga.

1.3.2. Objetivos específicos

- Verificar la resistencia del concreto colocado con pruebas de diamantina en las diferentes estructuras del puente, con el informe de corazones diamantados del Laboratorio Díaz Arias Ingenieros presentados al Proyecto Especial Alto Mayo (PEAM).
- Evaluar un modelo teórico en software CSiBridge representativo del puente vehicular Motilones para evaluar las deformaciones con diferentes estados de carga.
- Comparar los resultados registrados durante el ensayo en campo mediante la prueba de carga estática con los obtenidos del modelo en software CSiBridge.

1.4. Hipótesis

1.4.1. Hipótesis general

 ✓ Las deformaciones reales son mayores que las deformaciones teóricas del modelo analítico del puente vehicular Motilones – Moyobamba – San Martin de 163 m de luz, para diferentes estados de carga.

1.5.1. Variable independiente

- ✓ Estados de carga
- **1.5.2.** Variable dependiente
 - ✓ Deformaciones

1.6. Justificación

1.6.1. Teórica

La finalidad de la prueba de carga contrariamente a una opinión bastante extendida, no se trata de verificar si el puente resiste o no, sino de comprobar su aptitud frente a las cargas de servicio, ya que, la prueba tiene por objeto esencial verificar que el puente se comporte de acuerdo con las previsiones de cálculo y que no presente anomalías; a la vez, da información valiosa y necesaria sobre el funcionamiento del puente y su capacidad para soportar acciones más agresivas, siempre que esté bien organizada en todos sus detalles y sea llevada a cabo con cuidado. (Cardoza &Villalobos, 2005)

1.6.2. Analítica

La prueba de carga de una estructura de esta dimensión, es un proceso que consiste en la reproducción de uno o de varios estados de carga actuando sobre la misma y que pretenden obtener datos suficientes de su deformación frente a dichos estados, para compararlos con los obtenidos en forma teórica, de manera que pueda deducirse su comportamiento funcional y confirmar que el diseño y construcción se han realizado de forma satisfactoria.

La formulación de un proyecto de prueba de carga estática y su implementación representa una forma, relativamente sencilla y de rápida ejecución, para determinar la calidad de la obra antes de su recepción, garantizándose a la vez su seguridad; además, su costo no representa un incremento sustancial en el monto total del proyecto.

1.6.3. Social

Como el puente vehicular Motilones es un gran puente, pues salva una luz de 163 m, es apto para su estudio por ser uno de los más importantes para la unión de la margen izquierda del río Mayo y ayuda tremendamente a generar el desarrollo en más de 30 centros poblados ubicados en dicha margen, con una población que supera los 30 000 habitantes.

1.7. Alcance

El trabajo de investigación estará dirigido hacia el análisis de las deformaciones que sufre el puente en forma real y teórica. La prueba real se realiza mediante la formulación y ejecución de una prueba de carga estática, esto debido a que las características de la mayoría de los puentes existentes en el país permitirían obtener resultados confiables a partir de la realización de este tipo de prueba, sin ser necesario recurrir a la prueba de carga dinámica.

-Se utilizó la realización de la prueba de carga del puente para la revisión de la capacidad estructural del puente en uso.

- Se tomó los datos del informe de ensayos de corazones diamantinados (Norma Técnica Peruana NPT 330.059) y ensayos de compresión de probetas de concreto Norma Técnica Peruana NTP 339.039 en la obra: "Construcción del puente Motilones" para verificar la calidad del concreto f´c colocado en los estribos, losa del puente así como también veredas y parapetos. El encargado de realizar estos ensayos solicitados por el PEAM (Proyecto Especial Alto Mayo) fue el laboratorio DIAZ ARIAS INGENIEROS – Nestor Alfonso Díaz Arias – Ing. Civil CIP N° 21362 – Consultor – Estudios de mecánica de suelos, concreto y asfalto, los ensayos se realizaron el 11 de noviembre del 2015, para solo verificar las calidades del concreto a modelar en el programa CSiBridge.

-Se compararon solamente las deformaciones producidas con los diferentes estados de carga en el puente.

1.8. Limitaciones

La información disponible en el país sobre el tema a investigar es muy poca, por lo que se deberá de recurrir a información proveniente de otros países. El acceso a esta información se vuelve complicado, ya que, por ser poco conocido el tema en el Perú, el número de personas, empresas e instituciones que la poseen es reducido. Por otro lado, gran parte de esta información se encuentra en idiomas distintos al español.

-No se considera objeto de esta investigación la evaluación de elementos estructurales aislados, tales como pilotes, vigas prefabricadas, etc.; sino que se evaluará únicamente el comportamiento estructural del puente como conjunto.

-Debido a las características geométricas particulares de cada puente, existen unos que se adecuan mejor que otros a la ejemplificación de la ejecución de la prueba de carga estática; sin embargo, la prueba se ejecutará en un puente vehicular, cuya elección es el puente Motilones – Moyobamba – San Martin, con el fin de que el puente elegido sea el puente que más se adecue a los fines académicos que se persiguen.

-No se evaluó la cantidad de acero y la distribución existente en la losa, veredas y parapetos del puente.

-La materialización del tren de cargas (camiones) que se utilizaron fue gestionado con camiones alquilados debidamente cargados y pesados para dicho fin y el personal involucrado estuvo respectivamente calificado.

CAPITULO II: MARCO TEÓRICO

2.1. ANTECEDENTES

2.1.1. A NIVEL INTERNACIONAL

Carrera, 2011. Se presentan dos modelos numéricos de análisis sísmico para puentes con aisladores de base tipo FPS (frictional pendulum system). En los dos modelos los pilotes son modelados con elementos finitos lineales con masa uniforme distribuida; los estribos con elementos finitos rectangulares concentrando las masas en puntos discretos seleccionados; el suelo que rodea a los pilotes es modelado con resortes con comportamiento no lineal en base a la curva carga deformación del suelo.

Me sirvió como referencia del análisis sísmico y modelamiento utilizados en puentes de otros países vecinos como es Ecuador.

Cardoza & Villalobos, 2005. Se enfocaron principalmente al estudio de las deformaciones de puentes de la Carretera Oeste Panamericana en El Salvador, los resultados de las deformaciones se midieron con viga Benkelman para nuestro caso para evaluar las deformaciones lo haremos con un nivel de ingeniero con precisión milimétrica, por ser equipo más práctico.

Me sirvió como modelo de trabajo y para conocer otro tipo de evaluación de prueba de carga con la ayuda de la viga Benkelman.

Castellanos, 2009. La tesis se centra en el considerable deterioro de los puentes metálicos en Cuba, lo cual provoca inseguridad vial y puede colapsar la estabilidad de las estructuras, comprometiendo seriamente la comunicación para el tráfico de personas y mercancías.

Lo que hace es elaborar un modelo acerca de la evaluación del estado constructivo de los puentes metálicos y aplicarla aun caso de estudio, que permita conocer por medio de dicha evaluación los deterioros de los puentes y poder tomar decisiones acerca de sus futuras conservaciones.

Me sirvió para evaluar el modelo de prueba de carga estática que se llevó a cabo en el puente vehicular Motilones.

2.1.2. A NIVEL NACIONAL

Ministerio de Transportes y Comunicaciones 2006. Guía para la inspección de puentes

Aprobado por la resolución directoral Nº 012-2006-MTC/14

Su finalidad es establecer una guía para inspección de puentes a fin de constatar el estado de los componentes de los mismos que permita la toma de decisiones orientado a mantener la continuidad de la transitabilidad de la infraestructura vial en forma eficiente y segura.

Me sirvió como documento base para realizar la inspección apropiada de los componentes de los puentes del sistema Nacional de Carreteras del Perú a través de procedimientos técnicos estandarizados.

Ministerio de Transportes y Comunicaciones 2016. Manual de puentes

Aprobado con la resolución directoral N° 09-2016-MTC/14 se resuelve disponer la publicación del proyecto del Manual de Puentes.

Esta actualización del "Manual de Puentes" que contiene normas, guías y procedimiento para el diseño y calculo estructural de puentes. Incluye los estudios de ingeniería básica y planos tipo.

Me sirvió como norma que seguí para el análisis del modelo analítico y verificación de las cargas que afectaron en la prueba de carga estática impuestas al puente vehicular Motilones.

Vargas, O. 2012. Del Ministerio de Transportes y Comunicaciones. Es una política del sector y forma parte de los programas estratégicos del gobierno.

El objetivo del programa es esbozar una misión para el desarrollo y fortalecimiento de una conectividad oportuna y segura. Además se proyectara la infraestructura de puentes que requiere el país, para su desarrollo económico, social y productivo.

Me sirvió como información relevante que se consideró en la tesis, conocer como el Perú tiene planificado el mantenimiento y construcción de puentes hasta el 2020.

2.2. BASES TEÓRICAS

2.2.1. Consideraciones generales de la norma manual de diseño de puentes – MTC 2016

La norma emplea factores de carga y resistencia, basados en los estados límites lo cual proporciona mayor confiabilidad en las estructuras.

Esta norma aplica coeficientes de ductilidad, redundancia e importancia que permite combinar las cargas, generando un margen de seguridad en el diseño de la estructura.

Factores de carga y combinaciones de carga

A continuación, se describen las combinaciones que presenta la norma

Resistencia I: Combinación de carga básica que representa el uso vehículo normal del puente, sin viento.

Resistencia II: Combinación de cargas que representa el uso del puente por parte de vehículos de diseño especiales especificados por el propietario, vehículos de circulación restringida (sobrepeso), o ambos, sin viento.

Resistencia III: Combinación de carga que representa el puente expuesto a velocidades del viento mayores a 90 (km/hr).

Resistencia IV: Combinación de carga que representa una alta relación entre las solicitaciones provocadas por las cargas permanentes y las provocadas por las sobrecargas.

Resistencia V: Combinación de carga que representa el uso del puente por parte de vehículos normales con una velocidad del viento de 90 (Km/hr).

Evento extremo I: Combinaciones de carga que incluye sismo.

Evento extremo II: Combinaciones de cargas que incluye carga de hielo, colisión de embarcaciones, vehículos, y ciertos eventos hidráulicos con una sobre carga reducida diferente a la que forma parte de la carga de colisión de vehículos, CT.

Las combinaciones de carga del estado de servicio son las siguientes:

Servicio I: Combinación de cargas que representa la operación normal del puente con un viento de 90 (km/h), tomando todas las cargas con sus valores nominales. También se relaciona con el control de las deflexiones de las estructuras metálicas enterradas, revestimientos de túneles y tuberías termoplásticas y con el control del ancho de fisuración de las estructuras de hormigón armado.

Esta combinación de cargas también se debería utilizar para investigar la estabilidad de taludes.

Servicio II: Combinación de carga cuya intención es controlar la fluencia de las estructuras de acero y el resbalamiento que provoca la sobrecarga vehicular en las condiciones de resbalamiento crítico.

Servicio III: Combinación de carga relativa sólo a la tracción en estructuras de hormigón pretensado con el objetivo de controlar la fisuración.

Servicio IV: Combinación de carga relacionada exclusivamente a la tensión en las columnas de concreto pretensado con el propósito de controlar grietas.

Fatiga I: Combinación de cargas de fatiga y fractura que se relaciona con la vida de fatiga infinita por carga inducida. El concepto de vida infinita es usado en puentes con volumen de tráfico alto.

Fatiga II: Combinación de cargas de fatiga y fractura que se relaciona con la vida de fatiga infinita por carga inducida. El concepto de vida infinita es usado en puentes con volumen de tráfico bajo.

2.2.2. Designación de cargas

Las cargas que vamos a considerar en nuestro estudio son las siguientes:

DC: Carga muerta de la estructura

DW: Carga muerta de las superficies de revestimiento y accesorios.

PL: Carga Peatonal

LL: Carga viva vehicular.

IM: Incremento por carga vehicular dinámica.

2.2.3. Diseño con cargas vivas de vehículos

De acuerdo al Ministerio de Trasportes y Comunicaciones, en su manual de puentes Lima, 15 de marzo del 2016

2.2.3.1 Generalidades

La carga viva correspondiente a cada vía será la suma de:

• Camión de diseño ó tándem, tomándose aquello que produzca en cada caso los efectos más desfavorables.

• Sobrecarga distribuida

Para el estado límite de fatiga sólo se considerará la carga correspondiente al camión de diseño.

Para el cómputo de deflexiones se tomará el mayor de los resultados obtenidos con el camión de diseño solo, o con la suma de la sobrecarga distribuida más 25% del camión de diseño.

2.2.3.2 Camión de diseño: Las cargas por eje y los espaciamientos entre ejes serán los indicados en la Fig. N° 02, la distancia entre los dos ejes de 32 kips (14.55 t) será tomada como aquella que, estando entre los límites de 14.0 ft (4.27m) y 30.0 ft (9.14m), resulta en los mayores efectos.

Fig. N° 1 Vista panorámica del puente Motilones aguas arriba.

Fig. N° 2 Camión de diseño.

Fuente: Extraído de la norma de diseño de puentes, 2016.

2.2.3.3 Tándem de diseño: Consistirá en un conjunto de dos ejes, cada uno con una carga de 25.0 kip (11.4t), espaciados a 4.0 ft (1.20 m). La distancia entre las ruedas de cada eje, en dirección transversal, será de 6.0 ft (1.80 m).

2.2.3.4 Sobrecarga distribuida (carga del carril de diseño): Se considerará una sobrecarga de 0.64 klf (954 kgf/m), uniformemente distribuida en dirección longitudinal sobre aquellas porciones del puente en las que produzca un efecto desfavorable. Se supondrá que esta sobrecarga se distribuye uniformemente sobre un ancho de 10.0 ft (3.00 m) en dirección transversal. Esta sobrecarga se aplicará también sobre aquellas zonas donde se ubique el camión o el tándem de diseño. No se considerarán efectos dinámicos para esta sobrecarga.

2.2.3.5 Presencia múltiple de sobrecargas

Los requisitos de este artículo no se aplicarán al estado límite de fatiga para el cual se utiliza un camión de diseño, independientemente del número de carriles de diseño. Si en lugar de emplear la ley de momentos y el método estático se utilizan los factores de distribución aproximados para carril único y las solicitaciones se deberán dividir por 1,20.

• La solicitación extrema correspondiente a sobrecarga se deberá determinar considerando cada una de las posibles combinaciones de número de carriles cargados, multiplicando por un factor de presencia múltiple correspondiente para tomar en cuenta la probabilidad de que los carriles están ocupados simultáneamente por la totalidad de la sobrecarga de diseño HL93. En ausencia de datos específicos del sitio, los valores de la Tabla N° 1.

• Se deberán utilizar al investigar el efecto de un carril cargado,

• Se podrán utilizar al investigar el efecto de tres o más carriles cargados.

• A los fines de determinar el número de carriles cuando la condición de carga incluye las cargas peatonales combinadas con uno o más carriles con la sobrecarga vehicular, las cargas peatonales se pueden considerar como un carril cargado.

Los factores especificados en la Tabla 2, no se deben aplicar conjuntamente con los factores de distribución de carga aproximados, excepto si se aplica la ley de momentos o si se utilizan requisitos especiales para vigas exteriores en puentes de vigas y losas, son usados.

Tabla Nº 1 Factor presencia múltiple.

Número de vías	Factor presencia	
cargadas	múltiple, m	
1	1.20	
2	1.00	
3	0.85	
4 ó más	0.65	

Fuente: Extraído de la norma de diseño de puentes, 2016.

2.2.3.6 Aplicación de las cargas vivas vehiculares

Posición de las cargas en dirección longitudinal

En la dirección longitudinal, el puente será cargado en forma continua o discontinua según resulte más crítico para el efecto en estudio, considerando los siguientes casos:

• Tándem de diseño más carga distribuida.

• Camión de diseño más carga distribuida. La distancia entre los ejes de 32.0 kips (14,55 t), será aquella que produzca el efecto más desfavorable en cada caso.

Tanto para momento negativo entre puntos de contraflexión bajo una carga uniforme en todos los tramos como para reacción en pilas interiores solamente, 90 por ciento de la solicitación debida a dos camiones de diseño separados como mínimo 50.0 ft (15.00 m) entre el ultimo eje del primer camión hasta el eje delantero del camión que le

sigue, combinada con 90 por ciento de la solicitación debida a la carga del carril de diseño (carga distribuida). La distancia entre los ejes de 32.0 kip (14.55 t) de cada camión se deberá tomar como 14.0 ft (4.27 m). Los dos camiones de diseño serán colocados en tramos adyacentes para producir los máximos esfuerzos.

Los ejes que no contribuyen a la solicitación extrema considerada se deberán despreciar.

Posición de las cargas en dirección transversal

Tanto los carriles de diseño como el ancho cargado de 10.0 ft (3.00 m) cada carril se deberán ubicar de manera que produzcan solicitaciones extremas. El camión y tándem de diseño se deberá ubicar transversalmente de manera que ninguno de los centros de las cargas de rueda esté a menos de:

• Para el diseño del voladizo del tablero – 1 ft (0.30 m) a partir de la cara del sardinel o de la baranda, y

• Para el diseño de todos los demás componentes – 2 ft (0.60 m) a partir del borde del carril de diseño.

A menos que se especifique lo contrario, las longitudes de los carriles de diseño o de las partes de los carriles de diseño que contribuyen a la solicitación extrema bajo consideración, se deberán cargar con la carga del carril de diseño.

Carga para la evaluación opcional de la deflexión por sobrecarga

A menos que se disponga de otro modo, la deflexión se deberá tomar como el mayor valor entre:

• La que resulta del camión de diseño solamente, o

• La que resulta del 25 por ciento del camión de diseño considerado juntamente con la carga del carril de diseño.

2.2.4. Deformaciones

2.2.4.1. Requisitos generales

Las juntas en los tableros y apoyos se adecuaran a los cambios de dimensiones causados por las cargas, la fluencia lenta del concreto (creep), la contracción del concreto (shrinkage), los cambios por temperatura, asentamientos y por el pretensado. Para lo cual se aplicarán las disposiciones siguientes:

2.2.4.2. Disposiciones

Los puentes se deberán diseñar de manera de evitar los efectos estructurales o psicológicos indeseados que provocan las deformaciones. A pesar de que, salvo en el caso de los tableros de placas ortótropas, las limitaciones referidas a deflexiones y profundidad son optativas, cualquier desviación importante de las prácticas relacionadas con la esbeltez y las deflexiones que en el pasado resultaron exitosas debería provocar la revisión del diseño para determinar que el puente se comportará satisfactoriamente.

- ✓ Las juntas y apoyos de los tableros deberán acomodar los cambios dimensionales provocados por las cargas, la fluencia lenta, la contracción, las variaciones térmicas, el asentamiento y el pretensado.
- Para puentes rectos esviajados, con vigas de acero y para puentes curvos en plano horizontal, con vigas de acero curvas con o sin soportes esviajados, las siguientes investigaciones adicionales serán consideradas:
- ✓ Las deflexiones elásticas debido a la aplicación de las combinaciones de cargas serán consideradas para asegurar el desempeño satisfactorio de los apoyos, juntas, estribos integrales, y pilares
- ✓ La rotaciones calculadas de las vigas sobre el apoyo serán acumuladas a las asumidas por el ingeniero en el la secuencia constructiva y no excederán la capacidad rotacional de los apoyos ante la suma de las cargas factoradas correspondiente a la etapa que se está estudiando.
- ✓ Los diagramas de contraflechas puede reflejar la deflexión acumulada calculada debido a la secuencia constructiva asumida por el ingeniero.

2.2.4.3. Criterio por deflexión

Los criterios de esta sección se deben considerar optativos, a excepción de los siguientes:

- Los requisitos para tableros ortótropos se deben considerar obligatorios.
- Los requisitos para estructuras de concreto armado prefabricado que tienen tres lados se deben considerar obligatorios.
- Los tableros metálicos reticulados y otros tableros livianos metálicos y de concreto deben satisfacer los requisitos de estados límites de servicio donde se estipula que se considerará los efectos de excesiva deformación del tablero incluyendo la deflexión causada por la carga viva más la carga dinámica que no deberán de exceder los siguientes criterios:

L/800 para tableros sin tráfico peatonal.

L/1000 para tableros con tráfico peatonal limitado, y

L/1200 para tablero con Tráfico peatonal significativo

Donde L es la longitud del tramo centro de los apoyos.

Para la aplicación de estos criterios la carga del vehículo debe incluir el incremento por carga dinámica.

Si un propietario decide invocar el control de las deflexiones se pueden aplicar los siguientes principios:

- Al investigar la máxima deflexión absoluta, todos los carriles de diseño deberían estar cargados, y se debería asumir que todos los elementos portantes se deforman igualmente;
- Para sistema de vigas cajón curvas y vigas doble T, la deflexión de cada viga será determinada individualmente basado en la respuesta como parte de un sistema.
- Para el diseño compuesto, el diseño de la sección transversal debería incluir la totalidad del ancho de la carretera y las porciones estructuralmente continuas de las barandas, aceras y barreras divisorias;
- Para sistema de vigas rectas, la rigidez de flexión de una viga individual puede ser tomada como la rigidez determinada como se especifica arriba, dividida por el número de vigas.
- Al investigar los máximos desplazamientos relativos, el número y posición de los carriles cargados se deberían seleccionar de manera que se produzca el peor efecto diferencial;
- Se debería utilizar la porción correspondiente a la sobrecarga viva de la combinación de cargas de servicio I incluyendo el incremento por carga dinámica,
- La sobrecarga viva se debe tomar como se indica que la deflexión será tomada como el mayor de:

a) El resultado que se obtiene con el camión de diseño solo, o

b) El resultado de tomar el 25% del camión de diseño junto con la carga repartida de diseño

 Para puentes esviajados se puede usar una sección transversal recta, y para puentes curvos y puentes curvos esviajados se puede usar una sección transversal radial.

En ausencia de otros criterios, para las construcciones de acero, aluminio y concreto se pueden considerar los siguientes límites de deflexión:

Carga vehicular, general	Longitud/800,
Cargas vehiculares y peatonales	Longitud/1000,
Carga vehicular sobre voladizos	Longitud/300, y
Cargas vehiculares y peatonales sobre voladizos	Longitud/375.

En ausencia de otros criterios, para las construcciones de madera se pueden considerar los siguientes límites de deflexión:

- Cargas vehiculares y peatonales. Longitud/425, y
- Carga vehicular sobre tablones y paneles de madera (máxima deflexión relativa entre bordes adyacentes). 0.10 in. (2,5 mm).

Para los tableros de placas ortótropas se deberán aplicar los siguientes requisitos:

- Carga vehicular sobre placa del tablero Longitud/300.
- Carga vehicular sobre los nervios de un tablero ortótropo metálico Longitud/1000, y
- Carga vehicular sobre los nervios de tableros ortótropos metálicos (máxima deflexión relativa entre nervios adyacentes).0.10 in. (2,5 mm).

2.2.4.4. Criterios opcionales para relaciones longitud de tramo-profundidad

Si un propietario decide invocar controles sobre las relaciones longitud-profundidad, en ausencia de otros criterios se pueden considerar los límites indicados en la Tabla 3 donde S es la longitud de la losa y L es la longitud de tramo, ambas en ft. Si se utiliza la Tabla N° 2, a menos que se especifique lo contrario los límites indicados en la misma se deben aplicar a la profundidad total.

Para sistema de vigas de acero curvas la relación de longitud del tramo a profundidad, L/D, de cada viga de acero no excederá 25 cuando la mínima tensión de fluencia especificada de la viga en las zonas de flexión positiva es 50.0 ksi (3500 kg/ cm) o menos, y:

- Cuando la mínima tensión de fluencia especificada de la viga es 70.0 ksi (4900 kg/cm2) o menos en zonas de flexiones negativas, o
- Cuando las secciones hibridas satisfagan los requisitos serán usadas en zonas de flexión negativa. Para todos los otros sistemas de vigas de acero curvas, L_{as}/D, de cada viga no excederá lo siguiente:

$$\frac{L_{as}}{D} \le 25 \sqrt{\frac{50}{F_{yt}}}$$

Donde:

F_{yt}= mínimo límite de fluencia de ala en compresión (ksi).

D = profundidad de viga metalica (ft).

 L_{as} = un arco de longitud de viga definido como sigue (ft):

- Longitud de arco para tramo simple.
- 0.9 veces la longitud del arco para tramos continuos.
- 0.8 veces la longitud del arco para tramos continuos interiores.

Tabla N° 2 Peraltes mínimos tradicionales para superestructuras de profundidad

constante.

Superestructura		Profundidad mínima (incluyendo el tablero) Si se utilizan elementos de profundidad variable, estos valores se pueden ajustar para considerar los cambios de rigidez relativa de las secciones de momento positivo y negativo	
Material	Тіро	Tramos simples	Tramos continuos
	Losa con armadura principal paralela al tráfico	$\frac{1.2(S+10)}{30}$	$\frac{S+10}{30} \ge 0.54ft$
Concreto		En (ft)	
reforzado	Vigas T	0.070L	0.065L
	Vigas cajón	0.060L	0.055L
	Vigas de estructuras peatonales	0.035L	0.033L
	Losas	0.030L ≥ 6.5 in	0.027 ≥ 6.5 in
Concreto pretensado	Vigas cajón coladas en sitio	0.045L	0.040L
	Vigas doble T prefabricadas	0.045L	0.040L
	Vigas de estructuras peatonales	0.033L	0.030L
	Vigas cajón adyacentes	0.030L	0.025L
Acero	Profundidad total de viga doble T compuesta	0.040L	0.032L
	Profundidad de la porción de sección doble T de la viga doble T compuesta	0.033L	0.027L
	Reticulados	0.100L	0.100L

Fuente: Extraído de la norma de diseño de puentes, 2016.

2.2.4.5. Flechas y contraflechas

En el cálculo de flechas y contraflechas se deberán considerar la carga permanente, sobrecarga, pretensado, cargas de montaje, fluencia lenta y contracción del concreto, y relajación del acero.

En ausencia de un análisis más exhaustivo, las flechas o deformaciones instantáneas se podrán calcular utilizando el módulo de elasticidad del concreto especificado y tomando el momento de inercia ya sea como el momento de inercia bruto, *I*, o bien un momento de inercia efectivo.

$$I_e = \left(\frac{M_{cr}}{M_a}\right)^3 I_g + \left[1 - \left(\frac{M_{cr}}{M_a}\right)^3\right] I_{cr} \le I_g$$

En el cual

$$M_{cr} = f_r \frac{I_g}{y_t}$$

Donde:

*M*_{cr}= momento de fisuración (kip-in); (N-mm)

 $f_r = m \acute{o} du lo de rotura del concreto (MPa)$

 y_t = distancia entre el eje neutro y la fibra extrema traccionada (in), (mm)

 M_a = máximo momento en un elemento en la etapa para la cual se calcula la deformación (kip-in); (N·mm).

Para los elementos prismáticos, el momento de inercia efectivo se puede tomar como el valor obtenido de la ecuación 1 para el punto medio del tramo en el caso de tramos simples o continuos, y para el apoyo en el caso de voladizos. Para los elementos no prismáticos continuos, el momento de inercia efectivo se puede tomar como el promedio de los valores obtenidos de la ecuación para las secciones críticas para momento positivo y negativo.

A menos que se realice una determinación más exacta, la flecha a largo plazo se puede tomar como la flecha instantánea multiplicada por el siguiente factor:

- Si la flecha instantánea se basa en *I*g:4.0
- Si la flecha instantánea se basa en $I_e:3.0 1.2(A's/As) > 1.6$

Donde:

A's = área de la armadura de compresión (in); (mm2)

As = área de la armadura de tracción no pretensada (in2);(mm2

Para los puentes construidos por segmentos, la documentación técnica deberá exigir

que antes de colar los segmentos se calculen las flechas en base a los cronogramas de colado y montaje previstos, y que estas flechas se utilicen como una guía contra la cual verificar las flechas reales medidas.

Deformación axial

El acortamiento o alargamiento instantáneo provocado por las cargas se deberá determinar usando el módulo de elasticidad de los materiales en el momento de aplicar las cargas.

El acortamiento o alargamiento instantáneo provocado por la temperatura se deberá determinar.

El acortamiento a largo plazo provocado por la fluencia lenta y la contracción se deberá determinar.

Flexión biaxial

En vez de un análisis basado en equilibrio y compatibilidad de deformación por flexión biaxial, miembros no circulares sujetos a flexión biaxial y compresión pueden ser dimensionados usando las siguientes expresiones aproximadas:

• Si la carga axial factorada no es menor que $0.10 \oint f'_c A_g$:

$$\frac{1}{P_{rxy}} = \frac{1}{P_{rx}} + \frac{1}{P_{ry}} - \frac{1}{\varphi P_o}$$

En el cual

$$P_{o} = 0.85f'_{c}(A_{g} - A_{st} - A_{ps}) + f_{y}A_{st} - A_{ps}(f_{pe} - E_{p}\varepsilon_{cu})$$

• Si la carga axial factorada es menor que $0.10 \phi f'_c A_g$:

$$\frac{M_{ux}}{M_{rx}} + \frac{M_{uy}}{M_{ry}} \le 1.0$$

Donde:

 ϕ = factor de resistencia para miembros a compresión axial.

 P_{rxy} = resistencia axial factorada en flexión biaxial. (kip).

 P_{rx} = resistencia axial factorada determinada sobre la base que una excentricidad e_y , está presente (kip).

 P_{ry} = resistencia axial factorada determinada sobre la base que una excentricidad e_x , está presente (kip).

Pu = fuerza axial aplicada factorada. (kip).

 $M_{\rm ux}$ = momento factorado aplicado alrededor del eje x (kip-in.).

 $M_{\rm uy}$ = momento factorado aplicado alrededor del eje y (kip-in.).

 e_x = excentricidad de la fuerza axial aplicada factorada en la dirección x, esto es = M_{uy}/P_u (in).

 e_y = excentricidad de la fuerza axial aplicada factorada en la dirección y, esto es = M_{ux}/P_u (in).

 P_0 = resistencia nominal axial en una sección con excentricidad cero.

La resistencia axial factorada P_{rx} y P_{ry} no será mayor que el producto del factor de resistencia, ϕ , y la máxima resistencia nominal a la compresión.

Contraflechas para compensar los efectos de las cargas permanentes

Las estructuras de acero se deberían fabricar con contraflechas adecuadas para compensar las flechas que provocan la carga permanente y la falta de alineamiento vertical.

Las flechas debido al peso del acero y al peso del concreto se deberán tomar en cuenta separadamente.

Las flechas debidas a las futuras cargas de superficie de desgaste (recubrimiento asfáltico) u otras cargas que no sean colocadas al momento de la construcción se considerarán separadamente.

La contraflecha vertical será especificada para tener en cuenta el cálculo de la flecha debido a la carga permanente.

Cuando la etapa de la construcción está especificada, la secuencia de la aplicación de las cargas será considerada cuando las contraflechas están determinadas.

En los sistemas de celosía, arco y atirantados se podrán realizar modificaciones selectivas a las longitudes de los componentes, según corresponda, para:

Ajustar la flecha debida a la carga permanente de manera de lograr la posición geométrica requerida,

Reducir o eliminar el acortamiento de la nervadura, y

Ajustar el diagrama de momentos por cargas permanentes en las estructuras intermedias.

2.3 Descripción del puente Motilones

2.3.1 Delimitación espacial

Este trabajo de investigación se realizó en el puente Motilones sobre el río Mayo, en el sector denominado Puerto Motilones a 7.5 km de la ciudad de Moyobamba, en el distrito de Moyobamba, provincia de Moyobamba, departamento de San Martin. La ciudad de Moyobamba posee una población de 83 475 habitantes según INEI 2015, se encuentra a 860 msnm y su temperatura promedio es de 22°C.

Fuente = <u>www.mapsofworld.com</u>

Escala = 1/16000000

6 PERÚ San Martin Región Mapa la Rioja Moyobamba Amazonas Lamas PERÚ Loreto San Martyn EI Dorad Cajamarca San Martin Mariscal Cácere Bellavista La Libertad Tocache ERA SIL leyenda _____ Línea Costera PERÚ Ancash Huanuco Océano Pacífico Ucayali Borde de Región 40 80 Región de la Capital lle s 2014 1.01

Fig. Nº 4 Mapa del departamento de San Martin.

Fuente = <u>www.mapsofworld.com</u>

Escala = 1/2000000

Fig. N° 5 Mapa de la provincia de Moyobamba.

Fuente = Ordenamiento territorial - Proyecto Especial Alto Mayo (PEAM)

Escala = 1/1000000

Fig. N° 6 Vista satelital del puente Motilones sobre el río Mayo.

Fuente= Google Earth.

2.3.2 Ubicación geográfica

La investigación se realizó en el puente Motilones y se ha tomado como referencia la ubicación geográfica del BM 1 ubicado en el estribo del puente aguas arriba determinándose los siguientes datos como se detallan en la tabla.

Tabla N° 4 : Ubicación geográfica					
DATUM	WGS84				
HUSO	Μ				
ZONA	18 sur				
ESTE	231346.509				
NORTE	8452801.520				
COTA	814.365				

Toble NO	2	Datas	dal	DM	1
I adia in	3	Datos	aer	BIM	1.

2.3.3 Características

El puente Motilones tiene una longitud total de 163.0 m (29+105+29) entre ejes de apoyos de estribos. La superestructura está conformada por dos tramos laterales de sección mixta de 28.30 m y un arco reticulado con diagonales tubulares con arreglo tipo Warren; ambos de doble vía, los que se han diseñado para la sobrecarga vehicular HL93.
La longitud del puente fue definida en el estudio de ingeniería desarrollado por la Universidad Nacional de Ingeniería, según los resultados de los estudios de ingeniería básica realizados, siendo las recomendaciones del diseño geométrico y las recomendaciones del estudio hidrológico – hidráulico las más influyentes en la determinación de la ubicación y longitud.

Las características del puente son las siguientes:

1. Superestructura

Las características del puente son las siguientes:

Longitud:	163 m, entre ejes de estribos. Con tramos parciales de
	29+105+29, entre ejes de subestructura (estribos y pilares)
Número de tramos:	3
Tramos laterales:	
Tipo:	Vigas de sección mixta o compuesta conformada por dos vigas
	de sección cajón de acero y losa de concreto.
Longitud:	28.30 m, entre ejes de apoyo en estribos y pilares.
Cantidad:	2
Tramo central:	
Tipo:	Arco reticulado con arreglo de diagonales tipo Warren sin
	montantes y arriostramiento superior tipo Vierendeel.
Longitud:	105.0 m, entre ejes de apoyo en pilares.
Cantidad:	1
Nº de vías:	2
Ancho total de tablero:	10 400 mm
Ancho de rodadura:	8 000 mm
Veredas:	2 de 1 200 mm
Materiales:	
Acero estructural	
Vigas cajón	
Ala inferior:	ASTM A709 ó A572 Grado 345 Fy = 345 MPa
El resto:	ASTM A709 ó A36 Grado 250 Fy = 250 MPa
Conectores de corte:	ASTM A709 ó A36 Grado 250 Fy = 250 MPa
Arco reticulado	
Arco y tirante:	ASTM A709 ó A572 Grado 345 Fy = 345 MPa

Diagonales:	ASTM A53 Grado B Fy = 240 MPa
Vigas transversales y	
Longitudinales:	ASTM A709 ó A572 Grado 345 Fy = 345 MPa
Arriostre superior:	ASTM A53 Grado B Fy = 240 MPa
Conectores de corte:	ASTM A709 ó Grado 250 Fy = 250 MPa

Soldadura de vigas electrodos: AWS E7018. Pernos de conexión: ASTM A325

Pintura de protección:	Anticorrosivo	zinc	inorgánico	+	anticorrosivo	epóxico	+
	esmalte poliure	etano					

Losa del tablero

Concreto	
Losa:	f'c = 28 MPa
Veredas y parapetos:	f'c = 20 MPa

Acero de refuerzo:	fy = 420 MPa
	1y +20 WII u

2. Subestructura

Se hace una breve descripción de ellas.

Estribos:	Tipo muro, conformado por un muro frontal articulado en su
	base y dos pantallas atirantadas perpendiculares al frontal, de
	12 822 mm y 8 604 mm de altura respectivamente, con
	cimentación directa y elevación de concreto reforzado
Pilares:	Tipo muro de concreto reforzado, conformado por un muro se
	sección irregular con extremos circulares de 2 000 mm de
	radio y cuerpo rectangular de 1 000 mm de espesor, sobre los
	cuales se ha previsto la colocación de una viga cabezal de 2
	000 mm de ancho y 1 500 mm de peralte. La altura total es de
	12 118 mm de altura la cual comprende la elevación del muro
	y la zapata.

Materiales:

Concreto

Estribos:	f'c = 20 MPa (210 Kg/cm ²)
Pilares:	f'c = 20 MPa (210 Kg/cm ²)
Acero de refuerzo:	fy = 420 MPa (4,200 Kg/cm ²)

3. Cimentación

et childhacton	
Estribos:	Directa, conformada por una zapata rectangular de concreto de
	12 000x4 000x 2 500.
Pilares:	Profunda, conformada por 12 pilotes excavados de 1 200
	mm de diámetro y 25 000 mm de longitud.
Materiales:	
Concreto:	Estribos f'c = 20 MPa (210 Kg/cm ²)
	$f^{*}c = 35 \text{ MPa} (350 \text{ Kg/cm}^2)$
Pilares:	$f'c = 28 \text{ MPa} (280 \text{ Kg/cm}^2)$
Acero de refuerzo:	$fy = 420 \text{ MPa} (4,200 \text{ Kg/cm}^2)$
4. Detalles del tablero:	
Veredas:	Adyacente a la calzada con un ancho total de 1 200 mm y un
	ancho útil de 1 000 mm.
Baranda combinada:	Muro de concreto de 200 mm de espesor y sobre este un poste
	de acero con sección I con un único pasamanos tubular de
	acero, protegidos con el recubrimiento zinc inorgánico -
	epoxico - poliuretano.
Dispositivos de apoyo:	Neopreno de dureza 60 Shore A y reforzado con láminas de
	acero grado 250, sujetos al estribo y pilar mediante placas de
	acero y anclajes tipo barra de acero A307 ó A36 embebidos en
	el cabezal del estribo
Juntas de dilatación:	Juntas conformada por ángulos de acero grado 250 adheridos a
	los extremos de la losa, y entre ellas un sello de neopreno
	aligerado en su interior en forma de panal.

Tubos de drenaje:	Tubos de	fierro	galvanizado	de	100	mm	de	diámetro	у	una
	longitud	de L=12	200 mm.							

5. Superficie de rodadura

Se colocó una capa de asfalto en frío de 50 mm adicionales al espesor de la losa como superficie de rodadura.

2.4. CLASIFICACIÓN SEGÚN EL MANUAL DE PUENTES 2016

Los puentes se clasifican de diferentes maneras:

- A) Según la naturaleza de la vía soportada
- Carretera
- B) Según el material (la clasificación se hace considerando el material constitutivo de los elementos portantes principales)
- Acero
- C) Según el sistema estructural principal
- Puente tipo arco de tablero inferior
- D) Según la forma de la geometría en planta
- Puente recto
- E) Según suposición respecto a la vía considerada
- Paso superiores
- F) Según el tiempo de vida previsto
- Puente definitivo
- G) Según la demanda de tránsito y clase de la carretera
- Puente para carreteras de 3° clase
- H) Clasificación de acuerdo a la importancia operativa.
- Puente típico
- I) Clasificación para fines de diseño sísmico
- Puente esencial
- J) Según el sistema de construcción.
- Puente lanzado

2.3.1. N O R M Á S PERUANAS:

- ✓ "MANUAL DE PUENTES" Ministerio de Transportes y Comunicaciones. Lima, enero 2016.
- ✓ "GUIA PARA LA INSPECCIÓN DE PUENTES"- Ministerio de Transportes y Comunicaciones. Lima, marzo 2006.

2.3.2. N O R M Á S INTERNACIONALES:

- ✓ AASHTO LRFD 2010
- Essential requirements for reinforced concrete buildings (For buildings of limited size and height, based on ACI 318-02)

CAPITULO III: MATERIALES Y MÉTODOS

3.1. MATERIALES, EQUIPOS Y PERSONAL TÉCNICO

3.1.1. ENSAYOS DE CORAZONES DIAMANTADOS

Descripción

Ensayos de corazones diamantados Norma Técnica Peruana NPT 330.059 y ensayos de compresión de probetas de concreto Norma Técnica Peruana NTP 339.039 en la Obra: "Construcción del puente Motilones" para verificar la calidad del concreto f´c colocado en los estribos, losa del puente así como también veredas y parapetos. El encargado de realizar estos ensayos solicitados por el PEAM (Proyecto Especial Alto Mayo) fue el laboratorio DIAZ ARIAS INGENIEROS – Néstor Alfonso Díaz Arias – Ing. civil CIP N° 21362 – Consultor – Estudios de mecánica de suelos, concreto y asfalto, los ensayos se realizaron el 11 de noviembre del 2015. Se solicitó dicho informe para tener en cuenta la resistencia del concreto para que con esos datos se pudiera realizar un modelo en el CSiBridge que se asemeje lo más posible a la estructura real.

Ubicación

La ubicación de las extracciones de los corazones diamantados se realizó según el plano proporcionado por el Proyecto Especial Alto Mayo y se realizaron con fecha de 11 de noviembre de 2015 y fueron en total 12 ubicadas de la siguiente manera:

Aguas arriba tramo central

- ✓ 03 Losa
- ✓ 02 Vereda
- ✓ 01 Parapeto

Aguas abajo

- ✓ 03 Losa
- ✓ 02 Vereda
- ✓ 01 Parapeto

Personal y equipo

Personal

- ✓ 01 Ing. Civil.
- ✓ 01 Técnico.

Equipo.

- ✓ 01 Maquina de extracción de corazones diamantados.
- ✓ 02 Broca de 4".
- ✓ 01 Taladro.
- ✓ Extensiones.
- ✓ 01 Cortadora de concreto.
- ✓ 01 Prensa para ensayos de compresión de concreto calibrada (AYA INSTRUMENT DIGITAL, TIPO/MODELO STYE – 2000 SERIE 120640, NORMALIZADO, CERTIFICADO DE CALIBRACIÓN LF-173-2015).
- ✓ 02 Platos de retención con almohadillas de 6", calibradas.
- ✓ Herramientas varias.

3.1.2. PRUEBA DE CARGA ESTÁTICA

Objetivo:

 ✓ Verificar el comportamiento satisfactorio del puente, bajo la acción de la sobrecarga de diseño HL-93 (ref. AASHTO LRFD 2010)

1° Etapa: Aplicación de las cargas y medición de desplazamientos.

2° Etapa: Evaluación de mediciones y aprobación de capacidad de carga.

Consideraciones y alcances generales:

✓ Para obtener los máximos efectos en los elementos principales del puente, se debe considerar al puente como una unidad estructural, en tal sentido se idealiza como una viga de 105 m simplemente apoyada en sus tramos laterales. Se determinara el momento máximo que se genera en dicha viga debido a la sobrecarga de los vehículos de diseño de las especificaciones del AASHTO-LRFD 2016.

Carga en la línea de diseño:

La línea de diseño consistirá en una carga de 9.3 KN/m (954 kgf/m) uniformemente distribuida en la dirección longitudinal.

Transversalmente la carga de la línea de diseño será asumida como uniformemente distribuida sobre un ancho de 3.00m. Los efectos de fuerza de la cargas de las líneas de diseño no estarán sujetas a efectos dinámicos.

Fig. N° 8 Carga lineal de diseño.

Vehículo de diseño:

Los vehículos de diseño se definieron siguiendo especificaciones del AASHTO-LRFD 2016.

Camión HL-93

El efecto tándem de diseño combinado con el efecto de la línea de carga (línea de diseño). El tándem de diseño consiste en dos ejes de 25 kips (11.4 t) espaciados a 4 pies (1.20m) más la consideración de la amplificación dinámica 33%. La línea de diseño consiste en una carga uniforme de 0.64 kips/ft (954 kg/m) distribuida sobre todos los tramos del puente.

El efecto de un camión de diseño con espaciamiento variable entre ejes, combinado con el efecto de la línea de carga (carril de carga) de 0.64 kips/ft (954 kg/m)

Fig. N° 9 Detalles del camión de diseño.

Para momentos negativos entre puntos de inflexión: 90% del efecto de un tren de carga combinado con el 90% del efecto del carril de carga. El tren de cargas consiste en dos camiones de diseño espaciados una distancia mínima de 50' (15m) entre el eje delantero de un camión y el eje posterior del otro camión

La distancia entre los dos ejes de 32kips deberá ser de 14' (4.30m) para cada camión. Los puntos de inflexión se evalúan según la separación entre camiones.

Fig. N° 10 Separación de camiones de diseño.

Mínimo de 50' - 0'

La prueba de carga se realizara usando vehículos equivalentes, de tal manera que dichos vehículos produzcan el mismo momento que genera la sobrecarga de diseño en condiciones de servicio. Para ello será necesario determinar la ubicación de los vehículos en el puente y con su respectiva distribución de cargas

A continuación se muestra gráficamente los estados de carga de acuerdo las especificaciones AASHTO-LRFD 2010

Fig. Nº 11 Vista lateral del puente Motilones con la ubicación de los camiones.

Fig. Nº 12 Ubicación de los camiones al centro del puente.

Fig. N° 13 Corte transversal del puente con la ubicación de los camiones.

Fig. Nº 14 Corte transversal del puente con la ubicación de los camiones al lado izquierdo.

Fig. Nº 15 Corte transversal del puente con la ubicación de los camiones al lado derecho.

 Se debe realizar la medición de las deflexiones del puente en cada nudo de unión de las bridas inferiores y diagonales del reticulado y tales valores se deberán comparar con las deflexiones calculadas para dichos camiones de la prueba.

Fig. N° 16 Deformaciones esperadas en el puente.

- No se considera en la prueba de carga la medición de las deformaciones de elementos secundarios como vigas diafragmas, largueros de apoyo de losa, rigidizadores de cuerdas superiores, ni la losa de concreto
- No se considerara para la prueba de carga el factor de modificación de cargas vivas por efecto del número de vías cargadas.

Cálculo de deflexiones por la carga de diseño HL-93.

En el programa se realizó una división de 12 segmentos para los tramos laterales como su muestra en la Fig. N° 16, en los puntos de intersección procederá a realizar los cálculos de deflexiones.

Para el tramo central en el programa se realizó el cálculo en cada uno de los nudos de unión de las bridas inferiores y diagonales del reticulado, como se muestra en la figura 16; tales valores se deberán comparar con las deflexiones calculadas para dichos camiones de la prueba.

Criterios de medición de la deflexión.

Tomando como criterio desfavorable en el aspecto estructural, se debe utilizar la posición correspondiente de la sobrecarga vehicular de la combinación de cargas de servicio I del AASHTO LRFD 2016, incluyendo el incremento por carga dinámica, IM. Para las construcciones de acero, aluminio y/u hormigón se pueden considerar el siguiente límite de

deflexión.

Carga vehicular y peatonales.....Longitud / 1000.

$\Phi = 105/1000 = 0.105$ cm

De acuerdo a la Norma AASHTO LRFD, los valores mostrados líneas arriba precisan lo siguiente:

El tramo central del arco reticulado no excederá de 10.50 cm de deflexión durante la actuación de los camiones de prueba, en la posición más crítica.

Datos y procedimiento para la realización en campo de la prueba de carga:

- Ubicación de los equipos de medición: margen izquierda.
- Carguío de los volquetes de acuerdo a la distribución de cargas para la prueba (se consideró un peso volumétrico de 2.00 ton/m³ para el material de carga de los volquetes).
- Señalización de los puntos de medición.
- Nivelación de presión antes de la prueba de carga.
- Ubicación de los 4 vehículos en la posición que se indica en la figuras
- Nivelación de presión con el puente cargado en los mismos puntos antes medidos en la vereda, con la posición de los vehículos 0.60 m. desde el eje de la línea de la rueda más próxima hacia la vereda.
- Retiro de los vehículos del puente.
- Nivelación de precisión después de la prueba de carga en los mismos puntos.

Los materiales y equipos que se usaron en la investigación son los siguientes:

Camiones:

- Volquete N° 1 de 42.83 ton de peso bruto.
- Volquete N° 2 de 42.83 ton de peso bruto.
- Volquete N° 3 de 42.83 ton de peso bruto.
- Volquete N° 4 de 42.83 ton de peso bruto.

Instrumentos:

- Nivel de precisión automático marca TOPCON. Modelo AC-B4.
- Mira graduada.
- Wincha de 50 mts.

Personal Técnico:

- Ing. especialista en estructuras.
- Topógrafo.
- Asistente de topografía.

PLANILLA DE NIVELACIÓN PARA PRUEBA DE CARGA – TRAMO CENTRAL

OBRA:CONSTRUCCIÓN PUENTE MOTILONESUBICACIÓN:MOYOBAMBA – SAN MARTINDESCRIPCIÓN:NIVELACION PARA PRUEBA DE CARGANIVELACIÓN:N°:.....FECHA:....

		CO'	TAS
N°	РТО	EJE 01	EJE 02
		Aguas abajo	Aguas arriba
0	0.00		
1	10.50		
2	21.00		
3	31.50		
4	42.00		
5	52.50		
6	63.00		
7	73.50		
8	84.00		
9	94.50		
10	105.00		

Observaciones

Equipo Utilizado: Nivel de precisión TOPCON AC-B4

3.1.3. PROGRAMA CSIBRIDGE

CSiBridge es un software totalmente independiente que integra las capacidades de modelado, análisis y dimensionamiento de estructuras de puentes en un único modelo, para satisfacer las necesidades de los profesionales de ingeniería. La facilidad con que todas estas tareas se pueden lograr.

Con CSiBridge, los ingenieros pueden definir fácilmente geometrías complejas de puentes y diversos tipos de cargas y análisis. El modelado es basado en la definición paramétrica de los varios elementos estructurales, utilizando términos que son familiares para los ingenieros de puentes, como las líneas de layout, tramos, sección del tablero, aparatos de apoyo, estribos, pilares, juntas y pos-tensado. El software permite crear modelos tipo shell o solid, que se actualizan automáticamente cuando se cambian los parámetros de definición del puente.

Entre otros tipos de puentes, destacamos puentes de vigas de concreto armado y pretensado de varias geometrías parametrizables, puentes mixtos, puentes atirantados, puentes colgantes, puentes en arco, entre otros.

CSiBridge permite el dimensionamiento rápido y eficaz y el refuerzo estructural de puentes existentes de concreto y metálicos. El modelado paramétrico permite al usuario construir modelos de puentes simples o complejos y hacer cambios de manera eficiente, manteniendo un control total sobre el proceso de dimensionamiento. Permite definir rápidamente los carriles y vehículos e incluir también los efectos de ancho (consideración automática de la distribución transversal de cargas).

CSiBridge incluye de forma completamente integrada el módulo de dimensionamiento y el motor de cálculo SAPFire® que incluyen, entre otras, las siguientes capacidades:

- Análisis de secuencia constructiva, incluyendo efectos diferidos de fluencia, retracción y envejecimiento del hormigón y relajación del acero;
- Cálculo automático de deformación axial en cables para obtención de esfuerzos objetivos, contra-flechas y buscador de forma;
- No linealidades geométricas (P-delta y grandes desplazamientos);
- No linealidades materiales (superestructura, aparatos de apoyo, subestructura y apoyos para simular el suelo);

- Análisis de pandeo, análisis estáticos y dinámicos.
- Dimensionamiento según las normativas europea (Eurocódigo), americana (AASHTO LRFD), canadiense (CAN/CSA S6), china (JTG-D62-2004) e indiana (IRC 2011), para las combinaciones de carga automáticas y dimensionamiento sísmico.

Deflexiones

El modelo se realizó teniendo en cuenta los planos y la norma de diseño de puentes, el camión equivalente no se encontraba dentro de la base del programa por lo que se lo aumento con las características de medidas y pesos.

La evaluación en el programa se realizó mediante la representación de los diferentes estados de carga realizados en la prueba de carga que en este caso son los siguientes:

- ➢ 4 Camiones equivalentes en paralelo aguas arriba de dos en dos
- 4 Camiones equivalentes en paralelo aguas abajo de dos en dos
- ➢ 4 Camiones equivalentes en línea aguas arriba uno tras otro
- > 4 Camiones equivalentes en línea aguas abajo uno tras otro

CAPITULO IV: ANÁLISIS Y DISCUSIÓN DE RESULTADOS

4.1. ENSAYOS DE CORAZONES DIAMANTADOS

Datos obtenidos (Según informe Nº 01 del laboratorio Díaz Arias Ingenieros)

Factor de corrección

Según norma es:

LONGITUD/DIAMETRO (L/D)	FACTOR DE CORRECCIÓN DE RESISTENCIA
2	1
1.75	0.98
1.5	0.96
1.25	0.93
1	0.87

Tabla Nº 4 Factores de corrección.

Datos proporcionados por el laboratorio Díaz & Ocampo – Constructores y Consultores SRL – Registro de INDECOPI N° 00069377 – Estudio de mecánica de suelos, concreto y asfalto (LABORATORIO) – Jr. Libertad N° 1309 - Chachapoyas – Correo electrónico: <u>nestorda433@hotmail.com</u>

		D_{ℓ}	ATOS DEL 7	IESTIGO DI	E CONCRET	0				Dacietonoio	Decietomoio	Decisionation
Ensayo	Drocedencie	Fecha de	Fecha de	Días desde	Diámetro	(000) carril V	(m) very	Altura / Dismetro	Factor de	según E.T.	ensayo	del testigo
		extracción	rotura	extracción	(cm)		MUCA (UIII)	DIALIZATION		(kg/cm2)	(KN)	(kg/cm2)
					AC	JUAS ARRIE	8A					
1	Losa	11/11/2015	20/11/2015	6	9.40	18.60	69.40	1.98	1.00	280.00	201.15	295.46
2	Losa	11/11/2015	20/11/2015	6	9.40	18.80	69.40	2.00	1.00	280.00	198.25	291.20
ς	Losa	11/11/2015	20/11/2015	6	9.40	18.80	69.40	2.00	1.00	280.00	196.54	288.69
4	Vereda	11/11/2015	20/11/2015	6	9.40	18.60	69.40	1.98	1.00	210.00	154.23	226.54
5	Vereda	11/11/2015	20/11/2015	6	9.40	18.80	69.40	2.00	1.00	210.00	147.67	216.91
9	Parapeto	11/11/2015	20/11/2015	6	9.40	18.60	69.40	1.98	1.00	210.00	142.98	210.02
					A	GUAS ABAJ	0					
L	Losa	11/11/2015	20/11/2015	6	9.40	18.60	69.40	1.98	1.00	280.00	197.54	290.16
8	Losa	11/11/2015	20/11/2015	6	9.40	18.60	69.40	1.98	1.00	280.00	195.12	286.61
6	Losa	11/11/2015	20/11/2015	6	9.40	18.60	69.40	1.98	1.00	280.00	193.45	284.15
10	Vereda	11/11/2015	20/11/2015	6	9.40	14.50	69.40	1.54	0.94	210.00	145.76	214.10
11	Vereda	11/11/2015	20/11/2015	6	9.40	18.50	69.40	1.97	1.00	210.00	143.89	211.36
12	Parapeto	11/11/2015	20/11/2015	6	9.40	18.80	69.40	2.00	1.00	210.00	143.62	210.96

,
ido
nta
ma
dia
es
zon
oraz
ŏ
de
ura
rot
la
de
OS
Dat
5]
<u>_</u>
Z
ola
ab
Γ

Fuente: Laboratorio Díaz & Ocampo - Constructores y Consultores SRL.

Fig. Nº 17 Resistencia del concreto de las pruebas de los corazones diamantados.

4.2. PRUEBA DE CARGA ESTÁTICA DEL PUENTE MOTILONES

4.2.1. CÁLCULO DE CONTRAFLECHA

La contraflecha de armado de la estructura estuvo basada en la observación del ingeniero supervisor Manuel Villoslada Trujillano CIP 81343 que posee una maestría en ingeniería estructural.

Se describe el cálculo y los datos con el cual se realizó el montaje de toda la estructura antes de ser lanzado.

Datos

L = Longitud total del puente (105 m)

h = L/2 = Mitad de la longitud total del puente (52.5 m)

c = Contraflecha (0.25 m) de acuerdo a la norma de diseño de puentes el límite de deflexión para cargas vehiculares y peatonales es:

Longitud/1000 = 105/1000 = 0.105 m.

Para el montaje del puente se consideró una contraflecha superior porque todavía faltaba el proceso de lanzamiento y el de colocado de losa, veredas, sardineles y la capa asfáltica de 5 cm de espesor.

Cálculo

 $k = (h^2 - c^2) / (2c)$

Tabulamos la contraflecha para los diferentes puntos de control.

N°	h	С
0	0	0
1	10.5	0.09
2	21	0.16
3	31.5	0.21
4	42	0.24
5	52.5	0.25
6	63	0.24
7	73.5	0.21
8	84	0.16
9	94.5	0.09
10	105	0

Tabla N° 6 Contraflecha.

4.2.2. CÁLCULO DE MOMENTOS MÁXIMOS.

Carga de diseño HL-93

Para el tramo central.

Líneas de influencia

Se considera una viga simplemente apoyada

Entonces las ecuaciones del momento son

M = X*(L-a)/L

Donde:

M= Momento

 $X = Distancia \quad 0 \le X \le 105$

L = longitud total del puente (105 m)

a = Punto arbitrario dentro de la longitud del puente

Tabulamos

Tabla N° 7 Datos de línea de influencia.

Х	М
0	0
52.5	26.25
105	0

Camión de diseño

Tabla Nº 8 Datos de línea de influencia del camión de diseño.

Separación	Х	L. Influencia	Carga
-4.3	48.2	24.1	14.55
0	52.5	26.25	14.55
4.3	56.8	24.1	3.6

Fig. N° 18 Línea de influencia camión de diseño.

Fig. Nº 19 Comprobación en el programa Sap 2000 del momento del camión de diseño.

Fuente: Programa Sap 2000 versión 19

Tándem de Diseño.

Separación	Х	L. Influencia	Carga
-1.2	51.3	25.65	11.4
0	52.5	26.25	11.4

Tabla N° 9 Datos de línea de influencia del tándem de diseño.

Fig. N° 20 Línea de influencia del tándem de diseño.

Momentos

 $M_{CD} \,{=}\, 11.40 {*} 25.65 {+} 11.40 {*} 26.25$

$M_{CD} = 591.66 \text{ ton} - \text{m}$

Fig. Nº 21 Comprobación en el programa Sap 2000 del momento del tándem de diseño.

Diagrams for Frame Object 1 (FSEC1)	and the second
Case DEAD Items Major (V2 and M3) Single valued Items Jt: 1 0.000000 m 0.000000 m Items Jt: 2 0.000000 m Items Jt: 2 0.000000 m Items Jt: 2 0.000000 m Items Items Single valued Items Items	n) Display Options C Scroll for Values C Show Max
- Equivalent Loads - Free Body Diagram (Concentrated Forces in Tonf, Concentrated M 11.53 11.27	toments in Tonf-m) Dist Load (2-dir) 0.000 Tonf/m at 105.00000 m Positive in -2 direction
Resultant Shear	Shear V2 -11.5303 Tonf at 51.30000 m
Resultant Moment	Moment M3 591.66000 Tonf-m at 52.50000 m
C Absolute C Relative to Beam Minimum C Relative to Beam Ends	Deflection (2-dir) 410.176828 m at 52.5000 m Positive in -2 direction
Reset to Initial Units	Units Tonf, m, C 💌

Fuente: Programa Sap 2000 versión 19

Sobrecarga distribuida (Carga del carril de diseño)

Momentos

 $M_{SC} = 0.954*(0.5*26.25*105) = 1314.73 \text{ ton} - \text{m}$

	F 11 2 F 2 2 3	P1 1 2 2
Case DEAD Items Major (V2 and M3) Single valued	End Length Offset (Location) -End: Jt: 1 (0.000000 m (0.00000 m) J-End: Jt: 2 0.000000 m (105.00000 m)	C Scroll for Values Show Max
Equivalent Loads - Free Body Diagram (Concentrated For	ces in Tonf, Concentrated Mo	ments in Tonf-m)
50.09	50.08	Dist Load (2-dir) 0.954 Tonf/m at 103.00000 m Positive in -2 direction
Resultant Shear		Chow 1/2
		-50.0850 Tonf at 0.00000 m
Resultant Moment		
		Moment M3 1314.73125 Tonf-m at 52.50000 m
Deflections		Deflection (2-dir)
C Absolute C Relative to Beam Minimum	 Relative to Beam Ends 	1126.717390 m at 52.50000 m Positive in -2 direction
Reset to Initial Units	e	Units Tonf, m, C

Fig. Nº 22 Comprobación en el programa Sap 2000 momento por sobrecarga.

Fuente: Programa Sap 2000 versión 19

Debemos combinar ahora el camión de diseño con la carga de carril. En este caso escogemos, por ser crítica, la combinación: camión de equivalente con carga de carril considerando además el incremento por carga dinámica del 33% para la carga de camión.

Momento máximo en el centro de luz.

$$M_{max} = M_{CD} * INC. DINAMICO + M_{SC}$$

 $M_{max} = 81935 * 1.33 + 1314.73 = 2404.47 \text{ ton} --m$

Carga del camión equivalente.

Separación	Х	L. Influencia	Carga
-1.4	51.1	25.55	17.35
0	52.5	26.25	17.35
3.57	56.07	24.46	8.13

Tabla N° 10 Datos de línea de influencia del camión equivalente.

Fig. Nº 23 Línea de influencia del camión equivalente.

Momento por el camión equivalente.

 $M_{CE} = 17.35*25.55+17.35*26.25+24.46*8.13$ $M_{CE} = 1097.59 \text{ ton} - m$

Fig. Nº 24 Comprobación programa Sap 2000 camión equivalente.

Case DEAD ▼ Items Major (V2 and M3) ▼ Single valued ▼ J-End: 0.00000 m (0.00000 m J-End: J: End: 0.00000 m (0.00000 m (105.00000	ocation) Display Options C Scroll for Values Show Max m)
- Equivalent Loads - Free Body Diagram (Concentrated Forces in Tonf, Concentr	ated Moments in Tonf-m)
21.37	Dist Load (2-dir) 0.000 Tonf/m at 105.00000 m 1.46
- Resultant Shear	Shear V2
	21.4601 Tonf at 105.00000 m
Resultant Moment	
	Moment M3 1097.63045 Tonf-m at 52.50000 m
Deflections	Deflection (2 dir)
C Absolute C Relative to Beam Minimum C Relative to Beam	769.498544 m at 52.50000 m Positive in -2 direction Ends
Beset to Initial Units	

Fuente: Programa Sap 2000 versión 19

Debemos combinar ahora el camión equivalente con la carga de carril. En este caso escogemos, por ser crítica, la combinación: camión de equivalente con carga de carril considerando además el incremento por carga dinámica del 33% para la carga de camión.

Momento máximo en el centro de luz.

 $M_{max} = M_{CE} * INC. DINAMICO + M_{SC}$ $M_{max} = 109759 * 1.33 + 1314.73 = 2774.52 ton ---m$

Cuadro de resumen:

MOMENTOS MÁXIMOS (ton-m)				
HL-93	CAMIÓN EQUIVALENTE			
2404.47	2774.52			

Tabla N° 11 Cuadro de resumen de momentos

De acuerdo a los resultados presentados en el cuadro resumen de máximos momentos, se puede observar que los resultados tienen similar valor; por lo tanto la carga vehicular utilizada en la prueba de carga genera los mismos esfuerzos y deflexiones en la superestructura que la carga de diseño HL93 (AASHTO LRFD), por lo tanto los resultados de la prueba de carga reflejan el comportamiento estructural y las deformaciones presentadas y la carga de diseño HL-93.

De acuerdo a la norma

Camión de diseño solo

M = 819.35 ton - m

Suma de la sobrecarga distribuida + 25% del camión de diseño
 M = 1314.73 + 0.25*819.35 = 1519.57 ton - m

4.3.1. RESULTADOS DE CAMPO OBTENIDOS EN LA PRUEBA DE CARGA.

Distancia	Sin carga	Carga aguas abajo (paralelo)	Carga aguas arriba (paralelo)	Carga aguas abajo (lineal)	Carga aguas arriba (lineal)	Después de aplicar la carga
m	m	m	m	m	m	m
0.00	1.246	1.230	1.230	1.220	1.230	1.232
10.50	1.196	1.165	1.160	1.220	1.160	1.177
21.00	1.151	1.125	1.120	1.200	1.120	1.147
31.50	1.121	1.090	1.090	1.160	1.080	1.117
42.00	1.116	1.085	1.080	1.085	1.080	1.107
52.50	1.106	1.080	1.080	1.080	1.070	1.107
63.00	1.116	1.090	1.080	1.100	1.085	1.107
73.50	1.131	1.100	1.080	1.100	1.100	1.127
84.00	1.156	1.130	1.090	1.125	1.130	1.157
94.50	1.201	1.170	1.120	1.160	1.170	1.187
105.00	1.236	1.210	1.160	1.200	1.220	1.227

Tabla N° 12 Datos obtenidos con el nivel para la viga principal agua arriba.

Tabla Nº 13 Datos procesados de la nivelación para la viga principal aguas arriba.

Distancia	Sin carga	Carga aguas abajo (paralelo)	Carga aguas arriba (paralelo)	Carga aguas abajo (lineal)	Carga aguas arriba (lineal)	Después de aplicar la carga
m	m	m	m	m	m	m
0.00	0.000	-0.016	-0.016	-0.026	-0.016	-0.014
10.50	0.050	0.019	0.014	0.074	0.014	0.031
21.00	0.095	0.069	0.064	0.144	0.064	0.091
31.50	0.125	0.094	0.094	0.164	0.084	0.121
42.00	0.130	0.099	0.094	0.099	0.094	0.121
52.50	0.140	0.114	0.114	0.114	0.104	0.141
63.00	0.130	0.104	0.094	0.114	0.099	0.121
73.50	0.115	0.084	0.074	0.084	0.084	0.111
84.00	0.090	0.064	0.054	0.059	0.064	0.091
94.50	0.045	0.014	0.004	0.004	0.014	0.031
105.00	0.010	-0.016	-0.016	-0.026	-0.006	0.001

		Carga aguas	Carga aguas	Carga aguas	Carga aguas	Después de
Distancia	Sin carga	abajo	arriba	abajo	arriba	aplicar la
		(paralelo)	(paralelo)	(lineal)	(lineal)	carga
m	m	m	m	m	m	m
0.00	0.005	0.006	0.031	-0.009	0.036	-0.002
10.50	0.030	0.051	0.071	0.031	0.081	0.013
21.00	0.070	0.081	0.111	0.056	0.111	0.043
31.50	0.100	0.111	0.141	0.086	0.146	0.073
42.00	0.105	0.106	0.141	0.086	0.151	0.083
52.50	0.115	0.111	0.146	0.091	0.156	0.083
63.00	0.115	0.119	0.151	0.091	0.161	0.083
73.50	0.095	0.101	0.131	0.081	0.141	0.063
84.00	0.070	0.076	0.111	0.051	0.111	0.033
94.50	0.035	0.051	0.071	0.021	0.081	0.003
105.00	0.000	0.021	0.041	-0.014	0.051	0.003

Tabla N° 14 Datos obtenidos con el nivel para la viga principal agua abajo.

Tabla N° 15 Datos procesados de la nivelación para la viga principal aguas abajo.

Distancia	Sin carga	Carga aguas abajo (paralelo)	Carga aguas arriba (paralelo)	Carga aguas abajo (lineal)	Carga aguas arriba (lineal)	Después de aplicar la carga
m	m	m	m	m	m	m
0.00	0.005	0.006	0.031	-0.009	0.036	-0.002
10.50	0.030	0.051	0.071	0.031	0.081	0.013
21.00	0.070	0.081	0.111	0.056	0.111	0.043
31.50	0.100	0.111	0.141	0.086	0.146	0.073
42.00	0.105	0.106	0.141	0.086	0.151	0.083
52.50	0.115	0.111	0.146	0.091	0.156	0.083
63.00	0.115	0.119	0.151	0.091	0.161	0.083
73.50	0.095	0.101	0.131	0.081	0.141	0.063
84.00	0.070	0.076	0.111	0.051	0.111	0.033
94.50	0.035	0.051	0.071	0.021	0.081	0.003
105.00	0.000	0.021	0.041	-0.014	0.051	0.003

Fig. Nº 34 Diagrama de deformación de la viga principal aguas abajo.

4.3. PROGRAMA CSIBRIDGE

<u>RESULTADOS</u>

> 4 Camiones equivalentes en paralelo aguas arriba de dos en dos.

Fig. N° 35 Desplazamiento en el programa CSiBridge aguas arriba con 4 camiones en paralelo.

Select Bridge Object PUENTE MOTILONES Select Display Component		Model Type Object		Show Tabular Display of Current Plot				Units	Units			
				Show Table Export To Excel			Kgf, m, C 🔹					
			Load Case/Load Combo					Multivalued Options				
Result Types	Displacement - 1	Oth Point	ts Case/Combo VEHICULO			Envelope Max/Min						
Results For	Left Exterior Gire	der		•		_				Envelope Max		
Vertical Displace	ment - Web Top			-						 Envelo Eter 	pe Min	
Include Tendo	on Forces	Show S	elected Girder							O Step		
Bridge Response P	lot											
0.04			PUE	NTE MOT	FILONES -	Left Exterio	r Girder (Case VEHIC	ULO) Ve	rtical Displace	ment - Web Top	
0			-				-				÷	
											0	
											-	
										•		
				1		•						
-0.04								Max	Value = 1.	718E-07 Mi	n Value = -0.034	
•												•
Mouse Pointer Loc	ation						Snap Opt	ions			Distance Op	tions
Distance From Start of Bridge Object		Brid	Bridge Cut 🛛 Snap to Computed Respon		d Respons	e Points		ine				
Response Before	Current Location		-0.034	6	S	how Cut					Girder L	ength
Deserves Affred Comments and King				7 Show								

Fuente: Programa CSiBridge versión 20

Tabla N° 16 Deformaciones aguas arriba con 4 camiones en paralelo.

Distancia	CSiBrigde	Prueba de carga
m	m	m
0.00	-0.007	-0.016
10.50	-0.021	-0.036
21.00	-0.027	-0.031
31.50	-0.031	-0.031
42.00	-0.033	-0.036
52.50	-0.034	-0.026
63.00	-0.033	-0.036
73.50	-0.031	-0.041
84.00	-0.027	-0.036
94.50	-0.021	-0.041
105.00	-0.007	-0.026

Análisis de resultados: Como se observa en la Fig. N° 36 deducimos que las deformaciones de la prueba de carga son superiores a las obtenidas por el programa CSiBridge.

> 4 Camiones equivalentes en paralelo aguas abajo de dos en dos

Fig. Nº 37 Desplazamiento en el programa CSiBridge aguas abajo con 4 camiones en paralelo.

Fuente: Programa CSiBridge versión 20

Distancia	CSiBrigde	Prueba de carga
m	m	m
0.00	-0.007	-0.001
10.50	-0.021	-0.021
21.00	-0.027	-0.011
31.50	-0.031	-0.011
42.00	-0.033	-0.001
52.50	-0.034	0.004
63.00	-0.033	-0.004
73.50	-0.031	-0.016
84.00	-0.027	-0.006
94.50	-0.021	-0.016
105.00	-0.003	-0.021

Tabla Nº 17 Deformaciones aguas abajo con 4 camiones en paralelo.

Fig. Nº 38 Comparación 4 camiones en paralelo cargado aguas abajo deformaciones aguas abajo.

Análisis de resultados: Como se observa en la Fig. N° 38 deducimos que las deformaciones de la prueba de carga son menores a las obtenidas por el programa CSiBridge, además observamos que el comportamiento estructural difiere al esperado en la forma de su deformación.
> 4 Camiones equivalentes en línea aguas arriba uno tras otro

Fig. N° 39 Desplazamiento en el programa CSiBridge aguas arriba con 4 camiones en línea cargado aguas arriba.

Fuente: Programa CSiBridge versión 20

Tabla Nº 18 Deformaciones aguas arriba con 4 camiones en línea cargado aguas arriba.

Distancia	CSiBrigde	Prueba de carga
m	m	m
0.00	-0.005	-0.016
10.50	-0.020	-0.036
21.00	-0.027	-0.031
31.50	-0.032	-0.041
42.00	-0.034	-0.036
52.50	-0.035	-0.036
63.00	-0.034	-0.031
73.50	-0.032	-0.031
84.00	-0.027	-0.026
94.50	-0.019	-0.031
105.00	-0.002	-0.016

Análisis de resultados: Como se observa en la Fig. N° 40 deducimos que las deformaciones de la prueba de carga son mayores a las obtenidas por el programa CSiBridge entre los tramos 0 al 52.5 y el tramo 84 al 105 pero en el tramo 52.5 al 84 las deformaciones son menores respecto a los datos obtenidos del programa CSiBridge.

Fig. Nº 41 Desplazamiento en el programa CSiBridge aguas abajo con 4 camiones en línea cargado aguas arriba.

Select Bridge Object	t Bridge	Model Type	Show Tabular D	isplay of Current Plot	Units
PUENTE MOTILON	ES 👻 Area	Object	Show Tab	Export To Excel	Kgf, m, C 👻
Select Display Com	ponent		Load Case/Load	I Combo	Multivalued Options
Result Types	Displacement - 10th Poi	nts 🔻	Case/Combo	VEHICULO	Envelope Max/Min
Results For	Right Exterior Girder	•			Envelope Max
Vertical Displacen	nent - Web Top	•			Sten 1
Include Tendo	n Forces 📄 Show	Selected Girder			O step
Bridge Response Pl	ot				
0.025		PUENTE	MOTILONES - Right E	xterior Girder (Case VEHICULO) \	/ertical Displacement - Web Top
	<				
			+ +		
-0.025 ∢				Max Value = 1	.814E-07 Min Value = -0.0223
Mouse Pointer Loca	ition			Snap Options	Distance Options
Distance From Sta	art of Bridge Object 🛛 👻	52.5	Bridge Cut	Snap to Computed Respon	nse Points
Response Before	Current Location	-0.0223	6 Show C	ut	O Girder Length
		0.0210	7 Show C	ut	

Fuente: Programa CSiBridge versión 20

Distancia	CSiBrigde	Prueba de carga
m	m	m
0.00	-0.004	-0.026
10.50	-0.013	0.024
21.00	-0.018	0.049
31.50	-0.021	0.039
42.00	-0.022	-0.031
52.50	-0.022	-0.026
63.00	-0.022	-0.016
73.50	-0.021	-0.031
84.00	-0.018	-0.031
94.50	-0.013	-0.041
105.00	-0.002	-0.036

Tabla Nº 19 Deformaciones aguas abajo con 4 camiones en línea cargado aguas arriba.

Fig. Nº 42 Comparación 4 camiones en línea cargado aguas arriba deformaciones aguas abajo.

Análisis de resultados: Como se observa en la Fig. N° 42 deducimos que las deformaciones de la prueba de carga son menores a las obtenidas por el programa CSiBridge entre los tramos 0 al 42.00 y en el tramo 42.00 al 105 las deformaciones son mayores respecto a los datos obtenidos del programa CSiBridge.

> 4 Camiones equivalentes en línea aguas abajo uno tras otro

Fig. Nº 43 Desplazamiento en el programa CSiBridge aguas arriba con 4 camiones en línea

cargado aguas abajo.

Fuente: Programa CSiBridge versión 20

Fig. Nº 44 Comparación 4 camiones en línea cargado aguas abajo deformaciones aguas arriba.

Distancia	CSiBrigde	Prueba de carga
m	m	m
0.00	-0.005	0.014
10.50	-0.020	-0.001
21.00	-0.027	0.014
31.50	-0.032	0.014
42.00	-0.034	0.019
52.50	-0.035	0.024
63.00	-0.034	0.024
73.50	-0.032	0.014
84.00	-0.027	0.019
94.50	-0.019	0.014
105.00	-0.002	0.014

Fig. Nº 45 Comparación 4 camiones en línea cargado aguas abajo deformaciones aguas arriba.

Análisis de resultados: Como se observa en la Fig. N° 45 deducimos que las deformaciones de la prueba de carga son menores a las obtenidas por el programa CSiBridge entre los tramos 0 al 105.

Fig. Nº 46 Desplazamiento en el programa CSiBridge aguas abajo con 4 camiones en línea cargado aguas abajo.

Select Bridge Obje	ct	Bridge I	lodel Type		Show Tabular Di	splay of C	urrent Plot		Units		
PUENTE MOTILON	IES 🔻	Area (Object		Show Tab	le	Export T	o Excel	Kgf,	m, C	•
Select Display Con	ponent			5 1	Load Case/Load	Combo			Multivalue	d Options	
Result Types	Displacement -	10th Point	s •	•	Case/Combo	VEHICU	LO	•	Envel	ope Max/Min	
Results For	Right Exterior (Girder		-					C Envel	ope Max	
Vertical Displacer	ment - Web Top			-					Envel	ope Min	
Include Tendo	n Forces	Show S	elected Girder						O Step	L	
Bridge Response P	lot										
0.04			PUENTI	E MOTILO	ONES - Right Ex	terior Gird	er (Case \	EHICULO) V	ertical Displace	ement - Web Top	
		_									
	Ĭ	1				Ĩ					;
		-									
			-	•				•			
-0.04								Max Value = 9	.175E-07 Min	Value = -0.0347	
•					III						P.
Mouse Pointer Loc	ation					Sna	p Options			Distance Op	ptions
Distance From St	art of Bridge Object	• •	52.5	Bridge	e Cut	V	Snap to Co	mputed Respon	nse Points	Layout	Line
Response Before	Current Location		-0.0347	6	Show C	ut				Girder	Length
			0.024	7	Show C	ut					

Fuente: Programa CSiBridge versión 20

Distancia	CSiBrigde	Prueba de
Distancia	ColDingue	carga
m	m	m
0.00	-0.004	-0.031
10.50	-0.013	-0.051
21.00	-0.018	-0.041
31.50	-0.021	-0.046
42.00	-0.022	-0.046
52.50	-0.022	-0.041
63.00	-0.022	-0.046
73.50	-0.021	-0.046
84.00	-0.018	-0.041
94.50	-0.013	-0.046
105.00	-0.002	-0.051

Tabla Nº 20 Deformaciones aguas abajo con 4 camiones en línea cargado aguas abajo.

Fig. Nº 47 Comparación 4 camiones en línea cargado aguas abajo deformaciones aguas abajo

Análisis de resultados: Como se observa en la Fig. N° 47 deducimos que las deformaciones de la prueba de carga son mayores a las obtenidas por el programa CSiBridge entre los tramos 0 al 105.

CAPITULO V: CONCLUSIONES Y RECOMENDACIONES

5.1. CONCLUSIONES

- La temperatura ambiental máxima registrada durante la prueba de carga fue de 25° C.
- Las deformaciones reales de la prueba de carga son mayores en los siguientes estados de carga: comparación de 4 camiones en paralelo cargado aguas arriba deformaciones aguas arriba, comparación de 4 camiones en línea cargado aguas arriba deformaciones aguas arriba, comparación de 4 camiones en línea cargado aguas abajo deformaciones aguas abajo.
- Las deformaciones obtenidas del programa CSiBridge son mayores en los siguientes estados de carga: comparación de 4 camiones en paralelo cargado aguas abajo deformaciones aguas abajo y comparación de 4 camiones en línea cargado aguas abajo deformaciones aguas arriba.
- Las deformaciones en la comparación de 4 camiones en línea cargado aguas arriba deformaciones aguas abajo de la prueba de carga son menores a las obtenidas por el programa CSiBridge entre los tramos 0 al 42.00 y en el tramo 42.00 al 105 las deformaciones son mayores que las obtenidas del programa CSiBridge.
- La mayor deformación obtenida por la prueba de carga es de -0.051 m que se registró en los datos de la comparación 4 camiones en línea cargado aguas abajo deformaciones aguas abajo y la mayor deformación obtenida por el programa CSiBridge -0.0347 m que se registró en los datos de la comparación 4 camiones en línea cargado aguas arriba y se registró el mismo dato en la comparación 4 camiones en línea cargado aguas abajo deformaciones aguas abajo. Ninguno de estos dos valores supera la deformación máxima de 0.105 m que se calculó de acuerdo a la norma de diseño de puentes, por lo que se puede afirmar que el puente superó la prueba de carga realizada de forma satisfactoria y es seguro transitar por él.
- Las muestras de corazones diamantinados cumplieron satisfactoriamente con la resistencia del concreto para lo que fueron evaluados, con esto se verificó la resistencia de los concretos colocados en el puente y dichos datos fueron utilizados para generar el modelo en el programa CSiBridge.

5.2. RECOMENDACIONES

- Se recomienda que para pruebas de carga en puentes se realicen previamente modelos analíticos para evaluar las posibles deformaciones que se obtendrían al realizar la prueba de carga.
- Se recomienda implementar planes de pruebas de carga en los puentes construidos antes de ser recibidos para el tránsito de vehículos y peatones, puesto que dicha prueba no es un costo significativo el presupuesto de los puentes.

REFERENCIAS BIBLIOGRÁFICAS

- Cardoza, M., & Villalobos, J. 2005. Evaluación estructural de un puente mediante la realización de una prueba estática, Universidad Nacional de El Salvador. Tesis para optar el título de Ingeniero Civil Ciudad Universitaria. El Salvador. 406p. Disponible en: http://ri.ues.edu.sv/id/eprint/4554/1/Evaluaci%C3%B3n%20estructural%20de%20un%2 Opuente%20mediante%20la%20realizaci%C3%B3n%20de%20una%20prueba%20de%2 Ocarga%20est%C3%A1tica.pdf
- Carrera, D. 2011. Análisis sísmico y modelamiento de la prueba de carga del puente sur de Esmeraldas. Escuela politécnica del ejercito – Carrera de Ingeniería Civil. Tesis previa a la obtención de grado académico o título de Ingeniero Civil – Sangolquí, Ecuador. 127p. Disponible en:

http://repositorio.espe.edu.ec/xmlui/bitstream/handle/21000/2854/T-ESPE-030561.pdf?sequence=1&isAllowed=y

- Castellanos, R. 2009. Propuesta de un modelo para la evaluación de los puentes metálicos. Universidad de Oriente – Facultad de Construcciones – Maestría en Carreteras y Puentes. Tesis en opción al título académico de master en carreteras y puentes – Santiago de Cuba, Cuba. 102p. Disponible en: <u>https://www.monografias.com/trabajospdf4/propuesta-modelo-evaluacion-puentes-metalicos/propuesta-modelo-evaluacionpuentes-metalicos.pdf</u>
- Ministerio de Transportes y Comunicaciones. 2016. Manual de puentes. Lima, Perú.
 736p. Disponible en: http://transparencia.mtc.gob.pe/idm_docs/P_recientes/8044.pdf
- Ministerio de Transportes y Comunicaciones. 2006. Guía para la inspección de puentes-Lima, Perú. 83p. Disponible en: https://portal.mtc.gob.pe/transportes/caminos/normas_carreteras/documentos/otras/GUIA///>https://portal.mtc.gob.pe/transportes/caminos/normas_carreteras/documentos/otras/GUIA///>

- Gómez, R. 2008. Comparación entre las filosofías de diseño por esfuerzos admisibles, factores de carga y resistencia en el diseño de superestructuras de puentes vehiculares bajo la acción de cargas gravitacionales. Universidad Nacional Autónoma de México-Programa de maestrías y doctorado en Ingeniería. Tesis para optar por el grado de: Maestro en ingeniería. Ciudad universitaria, D.F México. 186p. Disponible en: http://132.248.52.100/2492/gomezjohnson.pdf?sequence=1
- Vargas, O. 2012. Programa de puentes Programa 2012-2020 Ministerio de Transportes y Comunicaciones. Provias Nacional, Lima Perú. 40p. Disponible en: <u>https://www.pvn.gob.pe/wp-content/uploads/2017/12/PROGRAMA-PUENTES-APROBADO.pdf</u>

ANEXOS

> Datos del puente vehicular Motilones

-Tablas de listado de componentes.

- Planos isométricos de montaje.

Tabla N° 21 Listado de componentes 1-24

SIMACH METAL MECANICA JDDDMM

LISTADO DE COMPONENTES

PROYECTO : PT166B - PTE. TIPO ARCO "MOTILONES" - L=105 m - Carga HL-93 PLANO(S) DE REF.: PT168B.F01 al PT166B.F.10

Cliente : Proyecto Especial Alto Mayo

LC01-PT166B R3

TEM	COMPONENTE	CANT	. DIMER	NSIONES GEN	ERALES	CODIGO	MATERIAL	PESO U. Kg	PESO T. Kg	Area int	Area ext	Cant + 5%	
-		5	998 x	2972 x	6000	ARQ.1A.M,ARQ.2A.M- PT166B	A-709 Gr.345	6444.59	12889.19	101.60	63.89		
2		0	625 x	2972 x	6000	ARQ.1A.O,ARQ.2A.O- PT166B	A-709 Gr.345	6358.97	12717.93	99.85	62.13		
e		0	633 x	1272 x	4396	ARQ.1B.M,ARQ.2B.M- PT166B	A-709 Gr.345	2616.09	5232.18	35.27	25.67		
4		0	633 x	1272 x	4396	ARQ.1B.O,ARQ.2B.O- PT166B	A-709 Gr.345	2616.09	5232.18	35.27	25.67		
2	PL TAPA ARRANQUE	4	16 x	568 x	767	PA.1M,PA.2M,PA.10,PA20- PT166B	A-709 Gr.345	54.72	218.87	1.74	1.74		
9	ARCOS INTERIORES	Ŋ	625 x	1039 x	9001	ARC.2A.1.M,ARC.2A.2.M - PT166B	A-709 Gr.345	4123.18	8246.35	53.63	53.63		
7	ARCOS INTERIORES	5	625 x	1039 x	9001	ARC.2A.1.0,ARC.2A.2.0 - PT166B	A-709 Gr.345	4123.18	8246.35	53.63	53.63		
00	ARCOS INTERIORES	5	925 x	1603 x	9001	ARC.2B.1.M,ARC.2B.2.M - PT166B	A-709 Gr.345	5120.06	10240.11	67.96	58.08		
თ	ARCOS INTERIORES	2	625 x	1603 x	9001	ARC.2B.1.0,ARC.2B.2.0 - PT166B	A-709 Gr.345	5022.79	10045.57	67.96	56.82		
10	ARCOS INTERIORES	5	925 x	1516 x	9001	ARC.3A.1.M,ARC.3A.2.M - PT166B	A-709 Gr.345	4122.57	8245.15	63.73	57.02		
Ŧ	ARCOS INTERIORES	2	625 x	1516 x	9001	ARC.3A.1.0,ARC.3A.2.0 - PT166B	A-709 Gr.345	4025.30	8050.61	63.73	55.77		
12	ARCOS INTERIORES	5	925 x	1520 x	9001	ARC.3B.1.M,ARC.3B.2.M - PT166B	A-709 Gr.345	4149.34	8298.69	65.25	56.96		
13	ARCOS INTERIORES	5	625 x	1520 x	9001	ARC.3B.1.0,ARC.3B.2.0 - PT166B	A-709 Gr.345	4052.07	8104.14	65.25	55.70		
4	ARCOS INTERIORES	2	925 x	1542 X	9045	ARC.3C.1.M,ARC.3C.2.M - PT166B	A-709 Gr.345	4129.77	8259.54	63.95	57.25		
15	ARCOS INTERIORES	2	625 x	1542 x	9045	ARC.3C.1.0,ARC.3C.2.0 - PT166B	A-709 Gr.345	4032.50	8065.00	63.95	55.99		
16	ARCO CENTRAL	F	625 x	897 x	7538	ARC.3D.1.M - PT166B	A-709 Gr.345	2803.53	2803.53	22.32	22.32		
17	ARCO CENTRAL	-	625 x	997 x	7538	ARC.3D.1.0 - PT166B	A-709 Gr.345	2803.53	2803.53	22.32	22.32		
18	BACKINGS DE ARCOS	28	9.5 x	32 x	4500	BA- PT166B	A-709 Gr.345	6.89	192.84	2.59	00.0		
19	VIGAS TIRANTES	Ø	715 x	1797 x	0006	TIR.1.1.M, TIR.1.2.M- PT166B	A-709 Gr.345	5358.06	10716.12	78.51	62.91		
20	VIGAS TIRANTES	2	625 x	1797 x	0006	TIR.1.1.O, TIR.1.2.O- PT166B	A-709 Gr.345	5343.68	10687.36	78.51	62.60		
21	VIGAS TIRANTES	2	715 x	1822 x	0006	TIR.2.1.M, TIR.2.2.M- PT166B	A-709 Gr.345	4721.08	9442.17	74.26	61.74		
52	VIGAS TIRANTES	5	625 x	1822 x	0006	TIR.2.1.0, TIR.2.2.0- PT166B	A-709 Gr.345	4706.70	9413.41	74.26	61.43		
33	VIGAS TIRANTES	5	711 x	1810 x	0006	TIR.3A.1.M, TIR.3A.2.M- PT166B	A-709 Gr.345	4112.68	8225.37	73.67	61.15		
24	VIGAS TIRANTES	N	625 x	1810 x	0006	TIR.3A.1.0, TIR.3A.2.0- PT166B	A-709 Gr.345	4098.30	8196.61	73.67	60.84		
NOT,	X: Peso de item 18 mas demas	ia es 300	kg				SUB TO	TAL :	184572.8	1402.9	1155.3		

REV .: Ing.M.del Carpio

X

HOJA: 1 de 3

82

Hile, Hil Frealizado: E. VELASQUEZ

JDDDN	CH METAL MECANICA MM						ISTADO DE COMPONENTES	S					C01-PT166B R3
		PRO	YECTO :	PT166B IE REF.: P	- PTE. 71668.F01	TIPO A	.RCO "MOTILONES" - L=105 m - Ca B.F.10	arga HL-93				ō	iente : Proyecto Especial Alto Mayo
ITEN	A COMPONENTE	CANT.	DIMEN	ISIONES G	GENERAL	ES	CODIGO	MATERIAL	PESO U. Kg	PESO T. Kg	Area int	Area ext Ca	int + 5%
25	VIGAS TIRANTES	N	625 x	1012	×	7500	TIR.3B.1.M, TIR.3B.2.M- PT166B	A-709 Gr.345	2631.93	5263.86	50.00	47.78	
26	VIGAS TIRANTES	2	625 x	1012	×	7500	TIR.3B.1.0, TIR.3B.2.0- PT166B	A-709 Gr.345	2631.93	5263.86	50.00	47.78	
27	VIGAS TIRANTES	Ø	711 x	1809	×	0006	TIR.3C.1.M, TIR.3C.2.M- PT166B	A-709 Gr.345	4093.74	8187.47	72.03	61.27	
28	VIGAS TIRANTES	2	625 x	1809	×	0006	TIR.3C.1.0, TIR.3C.2.0- PT166B	A-709 Gr.345	4079.36	8158.71	72.03	60.96	
8	VIGA TIRANTE CENTRAL	-	711 ×	1811	×	6000	TIR.3D.1.M- PT166B	A-709 Gr.345	3011.21	3011.21	25.33	21.07	
30	VIGA TIRANTE CENTRAL	-	625 x	1811	×	6000	TIR.3D.1.O- PT166B	A-709 Gr.345	2996.83	2996.83	25.33	20.91	
31	BACKINGS DE TIRANTES	24	9.5 x	32	×	4500	B3- PT166B	A-709 Gr.345	7.39	177.32	2.38	00.0	
32	DIAGONAL D1	4	324 x	364	×	3499	D1.1.M,D1.2.M,D1.1.O,D1.2.O PT166B	A-709 Gr.345	648.80	2595.19	0:00	17.56	
33	DIAGONAL D2	4	324 x	364	×	7769	D2.1.M,D2.2.M,D2.1.O,D2.2.0 PT166B	A-709 Gr.345	1212.44	4849.75	0:00	34.94	
34	DIAGONAL D3	4	324 x	364	×	8310	D3.1.M,D3.2.M,D3.1.O,D3.2.O PT166B	A-709 Gr.345	1283.85	5135.40	0.00	37.14	
35	DIAGONAL D4	4	324 ×	364	×	11885	D4.1.M,D4.2.M,D4.1.O,D4.2.O PT166B	A-709 Gr.345	1755.75	7023.01	0.00	51.69	
36	DIAGONAL D5	4	324 x	364	×	12072	D5.1.M,D5.2.M,D5.1.O,D5.2.O PT166B	A-709 Gr.345	1780.44	7121.75	00.0	52.45	
37	DIAGONAL D6	4	324 x	364	×	14468	D6.1.M,D6.2.M,D6.1.O,D6.2.O PT166B	A-709 Gr.345	2096.71	8386.84	0.00	62.20	
38	DIAGONAL D7	4	324 x	364	×	14544	D7.1.M,D7.2.M,D7.1.O,D7.2.O PT166B	A-709 Gr.345	2106.74	8426.97	0.00	62.50	
39	DIAGONAL D8	4	324 x	364	×	15737	D8.1.M,D8.2.M,D8.1.O,D8.2.O PT166B	A-709 Gr.345	2264.22	9056.87	0.00	67.36	
40	DIAGONAL D9	4	324 x	364	×	15758	D9.1.M,D9.2.M,D9.1.O,D9.2.O PT166B	A-709 Gr.345	2266.99	9067.96	0.00	67.44	
41	PL. AMARRE DIAGONAL	22	32 x	300	×	453	41A,41B,42A,42B,42C,42D,43A,43B,43C,43 D	A-709 Gr.345	34.14	2457.94	0.00	19.57	
42	PL. AMARRE DIAGONAL	72	32 ×	300	×	453	60Å,80B,61Å,61B,61C,61D,62Å,62B,62C,62 D	A-709 Gr.345	34.14	2457.94	0.00	19.57	
43	VIGA TRANSV. EXTERIOR	N	700 ×	1434	×	10042	VTE.01,VTE.02- PT166B	A-709 Gr.345	3605.97	7211.94	74.41	57.22	
44	TAPA HAND HOLE VTE	ø	9.5 x	200	×	300	TH.01, TH.02, TH.03, TH.04TH.08- PT166B	A709 Gr. 345	3.83	30.67	0.41	0.41	
45	CONECTOR DE VIGA TRANSV. EXT.	16	50 x	127	×	150	CVTE- PT166B	A36	1.50	23.93	0.00	0.00	
46	VIGA TRANSV. INTERIOR	4	350 ×	1134	×	10590	VTI.02,VTI.04,VTI.06,VTI.08- PT166B	A-709 Gr.345	2210.79	8843.15	0.00	135.80	
47	VIGA TRANSV. INTERIOR	ŋ	449.5 ×	1134	×	10590	VTI.01, VTI.03, VTI.05, VTI.07, VTI.09- PT166B	A-709 Gr.345	2262.58	11312.89	0.00	172.38	
48	CONEXIÓN VTE-ARRANQUE	N	600 x	385	×	907	C.01,C.02- PT166B	A-709 Gr.345	85.63	171.25	1.75	1.75	
49	PL AMARRE ALMA VTE-CONEX. VTE	80	12.5 x	350	×	755	1A,1B,2A,2B,3A,3B,4A,4B- PT166B	A-709 Gr.345	25.93	207.44	0.00	2.11	
20	PL AMARRE ALMA VTE-CONEX. VTE	8	12.5 x	350	×	755	1C,1D,2C,2D,3C,3D,4C,4D- PT166B	A-709 Gr.345	25.93	207.44	2.11	00.0	
LON	FA: Peso de item 31 mas demasia e	es 300 k	5			A		SUB TO	DTAL :	127647.6	375.8	1121.9	
	REALIZADO: E. VELASQUEZ		REV	Ing.M.del Cé	arpio		APROB.: Ing.M.del Carpio		HOJA: 2 de 3	Ħ	ECHA: 2014.06.	.16 Arc	h.: LP01.R02-LC01.R03.PT166B.

Tabla N° 22 Listado de componentes 25-50.

83

MODOL						LIST/	ADO DE COMPONENTE	S					LC01-PT166B R3	
		PRO	(ECTO : P	T166B - P1 Ref.: PT166B	FE. TIP 3.F01 al P	O ARCO 71668.F.10	"MOTILONES" - L=105 m - C6	arga HL-93					Cliente : Proyecto Especi Alto Mayo	T.
ITEM	COMPONENTE	CANT.	DIMENSI	IONES GENE	RALES		CODIGO	MATERIAL	PESO U. Kg	PESO T. Kg	Area int	Area ext	Cant + 5%	
51	PL AMARRE ALA VTE-CONEX. VTE	8	12.5 x	350 x	44	145	1G,1H,2G,2H,3G,3H,4G,4H- PT166B	A-709 Gr.345	15.28	122.26	1.25	0.00		
52	PL AMARRE ALA VTE-CONEX. VTE	4	12.5 x	350 x	4	145	1E,2E,3E,4E- PT166B	A-709 Gr.345	15.28	61.13	0.00	0.00		
53	PL AMARRE ALA VTE-CONEX. VTE	4	12.5 x	350 x	44	145	1F,2F,3F,4F- PT166B	A-709 Gr.345	15.28	61.13	00.0	0.62		
54	ANGULO CONEX. VTI-TIR	27	102 x	102	x 75	755	L1,L2,L3,L4,L25,L26,L27- PT166B	A572 Gr. 50	14.38	388.26	00.0	4.16		
55	VIGA LONGITUDINAL EXTREMA	8	250 x	655	x 100)92 V	L.01, VL.02, VL.03, VL.04, VL.37, VL.38, PT166B VL.39, VL40-	A-709	988.39	7907.15	0.00	141.09		
56	VIGA LONGITUDINAL INTERIOR	32	250 x	655	x 101	88	VL.05,VL.06,,VL.35,VL.36- PT166B	A-709	1018.70	32598.42	0.00	570.20		
57	ANGULO CONEX. VL-VTE	8	102 x	102	x 4!	155 L	.C1,LC2,LC3,LC4,LC5,LC6,LC7,LC8- PT166B	A572 Gr. 50	8.67	69.33	00.0	0.74		
58	PLACAS DE AMARRE VL-VT	64	12.5 x	145	x 45	110,111 (9,10,11	,12,17,18,19,20,25,26,27,28,33,34,35 PT166B 36//A B C D)-	A-709	6.47	414.32	0.00	4.22		
59	PLACAS DE AMARRE VL-VT	40	12.5 ×	145	x 46	t55 (5,6,7,8,	,13,14,15,16,21,22,23,24,29,30,31,32, PT166B 37,38,39,40)(A,B)-	A-709	6.47	258.95	0.00	2.64		
60	ARRIOSTRE SUPERIOR	8	× 669	669	× 100(000 AS01,4	AS02,AS03,AS04,AS05,AS06,AS07,A PT166B S08-	A-709	1652.43	13219.42	0.00	130.09		
61	CONECTOR ARRIOSTRE SUPERIOR	80	× 669	669	× 3(800 CS01,C	:S02,CS03,CS04,CS05,CS06,CS07,C PT166B S08-	A-709	97.27	778.17	0.00	5.04		
62	PERNO CABEZA EXAGONAL	980	Ø 7/8"	x 3"	N	NC	- PT153	A325	0.33318	326.52	00.0	00.0	1029	
63	PERNO CABEZA EXAGONAL	192	Ø 7/8"	x 3.1/4"	N	NC	- PT153	A325	0.31409	60.31	00:0	00:0	202	
64	PERNO CABEZA EXAGONAL	256	Ø 1"	x 4.3/4"	N	NC	- PT153	A325	0.62046	158.84	00:0	00:0	269	
65	PERNO CABEZA EXAGONAL	1440	Ø 1"	x 6.1/4"	N	NC	- PT153	A325	0.79773	1148.73	00:0	00:0	1512	
99	TUERCA EXAGONAL	1172	Ø 7/8"		N	NC	- PT153	A563	0.135	158.22	00:0	00.00	1231	
67	TUERCA EXAGONAL	1696	Ø 1"		N	NC	- PT153	A563	0.19318	327.63	00:0	00.00	1781	
68	ARANDELA PLANA	2344	7/8"				- PT149	F436	0.03227	75.64	00:0	00.00	2461	
69	ARANDELA PLANA	3392	+				- PT149	F436	0.04227	143.38	00.0	00:0	3562	
Dav 0	2. SE REVISA ITEMS 55 58													
						-								
NOTA	: CANTIDAD DE PERNERIA A ENVIAR E	S CANT. 4	+ 5%					SUB TC)TAL :	58277.8	1.2	858.8		
								TOT	AL :	370498.2	1779.92	3135.91		
	111 11/				4	Ē								
	1/1/1000				7/	Y								

Tabla N° 23 Listado de componentes 51-69.

Arch.: LP01.R02-LC01.R03.PT166B.

HOJA: 3 de 3 FECHA: 2014.06.16

APROB.: Ing.M.del Carpio

REV .: Ing.M.del Carpio

REALIZADO: E. VELASQUEZ

Fig. Nº 48 Planos de montaje del arco tanto el lado mostrado como el lado opuesto.

Fig. Nº 49 Planos de montaje de la estructura metálica del tablero y vigas inferiores.

N		2	VTE.0		
0	LC5	١Ľ	LC7	LC8	
.2.0	VL.40	VL.39	VL.38	VL.37	2.M
TIR.1			<u>, , , , , , , , , , , , , , , , , , , </u>	27	TIR.1
R.2.2.0	VL.36	م ۵۲.35	УП. VL.34	VL.33	R.2.2.M
F			1		F
R.3A.2.0	VL.32	VL.31	CL.30	VL.29	R.3A.2.M
F			<u>.0117 </u>	1	Ē
TIR.3B.2.0	VL.28	VL.27	VL.26	VL.25	TIR.3B.2.M
0.2.0	<u> </u> 	9 	0.ITV	1	C.2.M
TIR.3	24	23	52	51	TIR.30
oļ	VL:	VLS	, T	ζΓ?	Σ
R.3D.1	ן ו	lg I	0.ITV		R.3D.1
Fl	20	19	18	17	F
3C.1.0	۲L	۲۲	۲L	۲	8C.1.M
TIR	 	† 	о.ITV I	l	TIR.
TIR.3B.1.0	VL.16	VL.15	VL.14	VL.13	TIR.3B.1.M
<u>o</u> -		l _s			Σ
	VL.12	VL.11	VL.10	VL.09	- TIR.3A.1
.1.0	<u> </u> 1	5	1 <u>\</u>		N
TIR.2	VL.08	VL.07	VL.06	VL.05	TR.2
1.1.0		l,	0.ITV		1.1.M
TIR.	VL.04	VL.03	VL.02	VL.01	TIR
<u> </u>	ြင	ا ا2	ا ا		
0		ŀ	VTE.0		

ESTRUCTURA PRINCIPAL - PLATAFORMA

NUDOS AMARRE - PLATAFORMA

> Modelamiento en el programa CSiBridge versión 20

1.Definir el eje del puente (0 al 105)

Bridge Layout Line Name	Coordinate System	Shift Layout Line	Units
EJE PUENTE	GLOBAL	Modify Layout Line Stations.	Tonf, m, C 🔻
		Coordinates of Initial Station	
Plan View (X-Y Projection)		Global X	0.
	Station	Global Y	0.
\cup	Bearing	Global Z	0.
Developed Elevation View Along Lay	out Line	Initial and End Station Data Initial Station (m) Initial Bearing Initial Grade in Percent End Station (m) Horizontal Layout Data Define Horizontal Layout D Define Layout Data Define Vertical Layout D	0. N900000E 0. 105. Data Quick Start

Fig. N° 51 Eje del puente

2. Definir los carriles de diseño

Fig. N° 52 Carril derecho

HO Lengths A	Notes	GLOBAL d Discretization Paran ength Not Greater Th		if, m, C 🔹
Lengths A	dditional Lane Loa Discretization L	d Discretization Paran ength Not Greater Th	neters Along Lane an 1/ 4.	of Span Longth
	Discretization L	ength Not Greater Th	an 1/ 4.	of Span Longth
	7 Discretization I			or span cenyur
	UISCI CIIZAIION L	ength Not Greater Th	an 1/ 10.	of Lane Length
Chating	Cantania Officia	1	Dadius	
m tation	m	Lane width m	m 🕕	Move Lane
2.		4.	0.	
2.		4.	0.	Add
2.		4.	0.	inseπ
				Modify
oating Lane Set	ating Lane Width		Define Lane Edge Type Left Edge	Floating Lanes
	Cu l'inc	, 	Diabit Edge	Exterior -
	Station		RIGHLEQUE	
	Station		Right Edge	
	Station Bearing		Objects Loaded I	By Lane
	Station Bearing Radius		Objects Loaded I	By Lane
	Station Bearing Radius Grade		Objects Loaded I Program De Group	By Lane etermined
	Station Bearing Radius Grade X	-28.8898	Objects Loaded I Program De Group	By Lane etermined
	Station Bearing Radius Grade X Y	-28.8898 4.5391	Objects Loaded I Program De Group	By Lane stermined
	Station (m 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2	Station Centerline Offset m m 2.	Station Centerline Offset Lane Width m m m m 2. 4. 2. 4. 2. 4. 2. 4. 4. 4. 4. 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	Station Centerline Offset Lane Width Radius m m m 0 2. 4. 0. 2. 4. 0. Lane Width Define Lane Udding Lane Width Define Lane Edge Type Left Edge

General			Coordinate S	System	Units
Lane Name CAP	RRIL IZQUIERDO	Notes	GLOBAL	•	Kgf, m, C 🔹
faximum Lane Load Dis	scretization Lengths	Additional Lane Loa	d Discretization Par	ameters Along Lane	
Along Lane	3.	Discretization L	ength Not Greater T	Than 1/ 4.	of Span Length
Across Lane	3.	Discretization I	ength Not Greater T	Than 1/ 10.	of Lane Length
ane Data Bridge Layout Line	Station m	Centerline Offset m	Lane Width m	Radius m	Move Lane
EJE PUENTE	▼ 0.	-2.	4.	0.	
EJE PUENTE	0.	-2.	4.	0.	Add
EJE PUENTE	105.	-2.	4.	0.	insert
					Modify
ane type	C Floating Lane	Set			Delete
eane type Fixed Lane Fixed Lane	Floating Lane Auto	Set Floating Lane Width			Delete
ane type Fixed Lane Fixed Lane Fixed Lane Ran View (X-Y Project	Floating Lane Auto	Set Floating Lane Width		Lane Edge 1	Delete
ene type Fixed Lane Fixed Lane Plan View (X-Y Project	Floating Lane Auto	Set Floating Lane Width		Lane Edge 1 Left Edge	Delete efine Floating Lanes Type Exterior
ane type Fixed Lane 1 Fixed Lane Plan View (X-Y Project	Floating Lane Auto	Set Floating Lane Width Layout Line Station		Lane Edge T Left Edge Right Edge	Delete Delete Exterior Interior
ane type (a) Fixed Lane 1 Fixed Lane Plan View (X-Y Project North	Floating Lane Auto	Set Floating Lane Width Layout Line Station Bearing		Lane Edge 1 Left Edge Right Edge Objects Loa	Delete efine Floating Lanes fype Exterior interior ded By Lane
ane type Fixed Lane 1 Fixed Lane North North	Floating Lane Auto	Set Floating Lane Width Layout Line Station Bearing Radius		Lane Edge 1 Left Edge Right Edge Objects Loa @ Proors	Delete Delete efine Floating Lanes Type Exterior Interior ded By Lane am Determined
ane type Fixed Lane Fixed Lane Fixed Lane North North	Floating Lane Auto	Set Floating Lane Width Layout Line Station Bearing Radius Grade		Lane Edge 1 Left Edge Right Edge Objects Loa © Progra	Delete Delete efine Floating Lanes fype Exterior Interior ded By Lane am Determined
ane type Fixed Lane Fixed Lane Fixed Lane In View (X-Y Project North	Floating Lane Auto	Set Floating Lane Width Layout Line Station Bearing Radius Grade X		Lane Edge 1 Left Edge Right Edge Objects Loa @ Progre @ Group	Exterior interior inded By Lane model By Lane model and by Lane model by Lane
ane type Fixed Lane Fixed Lane Fixed Lane Plan View (X-Y Project North	Floating Lane Auto	Set Floating Lane Width Layout Line Station Bearing Radius Grade X Y		Lane Edge T Left Edge Right Edge Objects Loa @ Progra @ Group	Exterior interior ided By Lane modernmined
ane type Fixed Lane Fixed Lane Fixed Lane Fixed Lane North North	Floating Lane Auto	Set Floating Lane Width Layout Line Station Bearing Radius Grade X Y Z		Lane Edge T Left Edge Right Edge Objects Loa @ Progra @ Group	Delete Delete Exterior Exterior Interior

Fig. N° 53 Carril izquierdo

3. Definir materiales

Fig. N° 54 Definición de acero

Material Name and Display Co	olor	ASTM A709 GRADO 345		
Material Type		Steel		
Material Notes		Modify	/Show Notes	
Weight and Mass			Units	
Weight per Unit Volume	7850.		Kgf, m, C	
Mass per Unit Volume	800.477	2		
sotropic Property Data				
Modulus of Elasticity, E			2.039E+10	
Poisson, U			0.1	
Coefficient of Thermal Expan	sion, A		1.170E-05	
Shear Modulus, G			9.268E+09	
Other Properties for Steel Mat	erials			
Minimum Yield Stress, Fy			35180000.	
Minimum Tensile Stress, Fu			45900000.	
Expected Yield Stress, Fye			35180000.	
Expected Tensile Stress, Fue	•		45900000.	

Fig. N° 55 Definición de concreto

General Data					
Material Name and Display	Color	CONCRET	CONCRETO 280		
Material Type		Concrete v			
Material Notes	ify/Show Notes				
Weight and Mass			Units		
Weight per Unit Volume	2400.		Kgf, m, C 👻		
Mass per Unit Volume	per Unit Volume 244.7319				
Isotropic Property Data					
Modulus of Elasticity, E			2.510E+09		
Poisson, U			0.2		
Coefficient of Thermal Expa	ansion, A		9.900E-06		
Shear Modulus, G			1.046E+09		
Other Properties for Concret	e Materials				
Specified Concrete Compre	ssive Strengt	h, fc	2800000.		
Expected Concrete Compre	ssive Strengt	h	2800000.		
Lightweight Concrete					
Shear Strength Reduct	ion Factor				
Curitab Ta Advanced Dress	arthy Die play				

4. Asignación cargas

Cargas de superficie

Load Name	Un	its
ASFALTO	K	igf, m, C ▼
Load Direction		
Load Type	Force	•
Coordinate System	GLOBAL	-
Direction Gravity		•
Load Value		
Left Edge Value		112.5
Right Edge Value		112.5
Load Transverse Location		
Left Reference Location	Left Edge o	f Deck 👻
Left Load Distance from Left Re	ef. Location	1.2
Right Reference Location	Right Edge	of Deck 👻
Right Load Distance from Right	Ref. Location	1.2
Load Vertical Location		
Top Slab is Loaded at Midheight	t of its Thinnest Po	rtion
		_

✓ Vereda

Bridge Area Load Distribution Defini	ition Data
Load Name VEREDA IZQUIERDA	Units Kgf, m, C
Load Direction	
Load Type	Force -
Coordinate System	GLOBAL 🔻
Direction Gravity	
Load Value	
Left Edge Value	384.
Right Edge Value	384.
Load Transverse Location	
Left Reference Location	Left Edge of Deck 👻
Left Load Distance from Left Ref. L	Location 0.
Right Reference Location	Left Edge of Deck 👻
Right Load Distance from Right Ref	f. Location 1.2
Load Vertical Location Top Slab is Loaded at Midheight of	its Thinnest Portion
ОК	Cancel

Fig. N° 57 Carga de vereda izquierda

Fig. N° 58 Carga de vereda derecha

Bridge Area Load Distribution Definition	on Data	x
Load Name VEREDA DERECHA		Units Kgf, m, C
Load Direction		
Load Type	Force	•
Coordinate System	GLOBA	L 🗸
Direction Gravity		▼
Load Value		
Left Edge Value		384.
Right Edge Value		384.
Load Transverse Location		
Left Reference Location	Right E	dge of Deck 🔹
Left Load Distance from Left Ref. Loo	cation	1.2
Right Reference Location	Right E	dge of Deck 👻
Right Load Distance from Right Ref. L	ocation	0.
Load Vertical Location		
Top Slab is Loaded at Midheight of its	Thinnes	t Portion
ОК	Can	cel

.oad Name	Units	
PEATON IZQUIERDA	Kgf	, m, C 👻
oad Direction		
Load Type	Force	•
Coordinate System	GLOBAL	•
Direction Gravity		•
.oad Value		
Left Edge Value		360.
Right Edge Value		360.
oad Transverse Location		
Left Reference Location	Left Edge of [Deck 🔻
Left Load Distance from Left Ref	. Location	0.2
Right Reference Location	Left Edge of [Deck 🔻
Right Load Distance from Right R	ef. Location	1.2
oad Vertical Location		
Top Slab is Loaded at Midheight o	of its Thinnest Portio	n

Fig. N° 59 Carga de peatón izquierda

Fig. N° 60 Carga de peatón derecha

Load Name	Units
PEATON DERECHA	Kgf, m, C
oad Direction	
Load Type	Force
Coordinate System	GLOBAL
Direction Gravity	
.oad Value	
Left Edge Value	360.
Right Edge Value	360.
oad Transverse Location	
Left Reference Location	Right Edge of Deck
Left Load Distance from Left Re	f. Location 1.2
Right Reference Location	Right Edge of Deck
Right Load Distance from Right F	Ref. Location 0.2
oad Vertical Location	
Top Slab is Loaded at Midheight	of its Thinnest Portion

✓ Baranda

Load Name	Units
BARANDA IZQUIERDA	Kgf, m, C 🗸
Load Direction	
Load Type	Force 👻
Coordinate System	GLOBAL 🔻
Direction Gravity	•
Load Value	
Value	447.2
Load Transverse Location	
Reference Location	Left Edge of Deck 👻
Load Distance from Referen	ce Location 0.1
Load Vertical Location	
Top Slab is Loaded at Midhe	ight of its Thinnest Portion

Fig. N° 61 Carga de baranda izquierda

Fig. N° 62 Carga de baranda derecha

Load Name	Units
BARANDA DERECHA	Kgf, m, C
Load Direction	
Load Type	Force
Coordinate System	GLOBAL
Direction Gravity	
Load Value	
Value	447.2
Load Transverse Location	
Reference Location	Right Edge of Deck
Load Distance from Reference L	ocation 0.1
Load Vertical Location	
Top Slab is Loaded at Midheight o	of its Thinnest Portion

Vehicle Name	Design Type		Units		
HL-93M	Vehicle Live	•	Kgf, m, C 👻		•
Source			Notes		
Source: AASHTO.xml	Con	vert to User Defined	Notes		
Length Effects				Load Plan	
Axle	None		Modify/Show		
Uniform	None		Modify/Show		
Vehicle Location in Lane				V V	¥
Vehicle Applies To Str	addle (Adjacent) Lane:	s Only		Load Elevation	
Straddle Reduction F	Factor			Modify/Show Loads	
Vehicle Remains Fully	In Lane (In Lane Longit	udinal Direction)		Vertical Loading	Horizontal Loading
Usage		Min Dist Allowed Fi	om Axle Load	Center of Gravity	
✓ Lane Negative Momen	ts at Supports	Lane Exterior Edg	e 0.3048	Height - Axle Load	s 0.
✓ Interior Vertical Suppo	rt Forces	Lane Interior Edge	0.6096	Height - Uniform Lo	oads 0.
✓ All other Responses					

Fig. N° 63 Camión HL-93M (Tándem)

Fig. N° 64 Detalle de camión HL-93M (Tándem)

		Uniform Load Scale Factor 1			1	Axle L	1.33	
Load Length Type	Minimum Distance	Maximum Distance	Uniform Load	Uniform Width Type	Uniform Width	Axle Load	Axle Width Type	Axle Width
Leading Load 🛛 👻	Infinite		952.425	Fixed Width	3.048	11339.81	Two Points	▼ 1.8288
Leading Load Fixed Length Trailing Load	Infinite 1.2192 Infinite		952.425 952.425 952.425	Fixed Width Fixed Width Fixed Width	3.048 3.048 3.048	11339.81 11339.81	Two Points Two Points	1.8288 1.8288
loating Axle Loads					Sup	erelevation Eff	ects	
	Va	lue	Width Type	Axle Width		Adjust Vertic	al Loads for Superelev	ration
For Lane Moments	0	0	ne Point	. ▼ 1		Axle Loa	d Factor	
For Other Responses	s 0	0	ne Point	- ▼ 1		Uniform	Load Factor	
Electing Ayle Load Sc	ale Factor	1						
Floating Axie Load St	Ioment Load	when Calculat	ting Negative S	Span Moments				
Double the Lane N	Toment Load							

venicle Name	Design Type		Units			
HL-93K	Vehicle Live	•	Kgf, m, C 🔻		• •	•
Source			Notes			
Source: AASHTO.xml	Conve	rt to User Defined	Notes		• •	
Length Effects				Load Plan		
Axle	None	~	Modify/Show			
Uniform	None		Modify/Show			
Vehicle Location in Lan	e				¥ ¥	V V
Vehicle Applies To	Straddle (Adjacent) Lanes C	Inly		Load Eleva	ation	
Straddle Reduction	on Factor			Modify/Sho	w Loads	
Vehicle Remains Fu	ully In Lane (In Lane Longitud	inal Direction)		Ver	tical Loading	Horizontal Loading
Usage		Min Dist Allowed F	rom Axle Load		Center of Gravity	
✓ Lane Negative Mon	nents at Supports	Lane Exterior Ed	ge 0.3048		Height - Axle Loads	0.
Interior Vertical Sup	oport Forces	Lane Interior Edg	e 0.6096		Height - Uniform Loads	0.
✓ All other Response	S					

Fig. N° 65 Camión HL-93K (Camión de diseño)

Fig. N° 66 Detalle de camión HL-93K (Camión de diseño)

			Uniform Lo	oad Scale Factor	1	Axle L	oad Scale Factor	1.33
Load Length Type	Minimum Distance	Maximum Distance	Uniform Load	Uniform Width Type	Uniform Width	Axle Load	Axle Width Type	Axle Width
Leading Load 🚽	Infinite		952.425	Fixed Width -	3.048	3628.7392	Two Points	 1.8288
Leading Load Fixed Length Variable Length Trailing Load	Infinite 4.2672 4.2672 Infinite	9.144	952.425 952.425 952.425 952.425 952.425	Fixed Width Fixed Width Fixed Width Fixed Width	3.048 3.048 3.048 3.048 3.048	3628.7392 14514.957 14514.957	Two Points Two Points Two Points	1.8288 1.8288 1.8288
Floating Axle Loads					Sup	erelevation Effe	ects	
	V	alue	Width Type	Axle Width		Adjust Vertica	al Loads for Superelev	vation
For Lane Moments	0	0	ne Point	1		Axle Loa	d Factor	
For Other Responses 0 Or		ne Point	- 1		Uniform L	.oad Factor		
Floating Axle Load S	cale Factor	1						
Double the Lane I	Moment Load	when Calculat	ting Negative S	Span Moments				

HL-93S (TREN DE CARGA)

	Design Type		Units			
HL-93S	Vehicle Live	•	Kgf, m, C 💌	• •	÷	• • •
Source			Notes			
Source: AASHTO.xml Convert to User Defined Notes					Ţ	
Length Effects				Load Plan		
Axle	None	-	Modify/Show			
Uniform	None	-	Modify/Show			
Vehicle Location in Lane				V V	Ý	* * *
Vehicle Applies To 9	Straddle (Adjacent) Lanes	Only		Load Elevation		
Straddle Reduction	Factor			Modify/Show Loads		
Venicie Remains Fui	iy in Lane (in Lane Longiti	Idinal Direction)		Vertical Loading.		Horizontal Loading
Usage		Min Dist Allowed F	rom Axle Load	Center of G	Fravity	
✓ Lane Negative Mome	ents at Supports	Lane Exterior Edg	ge 0.3048	Height - A	xle Loads	0.
Interior Vertical Supp	port Forces	Lane Interior Edg	e 0.6096	Height - U	niform Loads	0.
All other Responses						

Fig. N° 67 Camión HL-93S (Tren de carga)

Fig. N° 68 Detalle de camión HL-93S (Tren de carga)

			Uniform Lo	ad Scale Factor	1	Axle L	oad Scale Factor	1.33
Load Length Type	Minimum Distance	Maximum Distance	Uniform Load	Uniform Width Type	Uniform Width	Axle Load	Axle Width Type	Axle Width
Leading Load 🛛 👻	Infinite		857.1825	Fixed Width	3.048	3265.8653	Two Points 👻	1.8288
Leading Load Fixed Length Fixed Length Variable Length Fixed Length Fixed Length Trailing Load	Infinite 4.2672 4.2672 15.24 4.2672 4.2672 Infinite	0. (Infinite)	857.1825 857.1825 857.1825 857.1825 857.1825 857.1825 857.1825 857.1825	Fixed Width Fixed Width Fixed Width Fixed Width Fixed Width Fixed Width Fixed Width	3.048 3.048 3.048 3.048 3.048 3.048 3.048 3.048	3265.8653 13063.461 13063.461 3265.8653 13063.461 13063.461	Two Points Two Points Two Points Two Points Two Points Two Points	1.8288 1.8288 1.8288 1.8288 1.8288 1.8288 1.8288
loating Axle Loads					Sup	erelevation Eff	ects	
For Long Mamoria	Va	alue	Width Type	Axle Width		Adjust Vertica	al Loads for Superelevat	tion
For Lane moments			ie Politi			Axle Loa	d Factor	
For Other Responses	s 0	O	ne Point	▼ 1		Uniform L	oad Factor	
Floating Axle Load Scale Factor 1								
	Ioment Load	when Calculat	ing Negative S	Span Moments				
Double the Lane I								

CAMIÓN EQUIVALENTE

Vehicle Name	Design Type		Unit	s				
Camion equivalente	uivalente Vehicle Live				•	•	•	
Source								
Source: User Defined Convert to User Defined Notes					•	•	•	
Length Effects					Load Pla	an		
Axle	None	•	Modify	/Show				ī
Uniform	None	•	Modify	/Show				L
						1		L
Vehicle Location in Lane						V V	V V	Ý
Vehicle Applies To Stradd	le (Adjacent) Lanes	Only			Load El	evation		
Straddle Reduction Factor					Modify/Show Loads			
Vehicle Remains Fully In L	ane (In Lane Longitu	dinal Direction)			\ \	/ertical Loading	Horizontal Loading	
Usage		Min Dist Allowed	From Axle	Load		Center of Gravity		
✓ Lane Negative Moments a	t Supports	Lane Exterior E	dge	0.3		Height - Axle Loads	0.	
Interior Vertical Support For	orces	Lane Interior Ed	ige	0.6		Height - Uniform Loads	0.	
All other Responses								

Fig. N	l° 69	Camión	equivalente	
--------	-------	--------	-------------	--

Fig. N° 70 Detalle del camión equivalente

20003			Uniform Lo	ad Scale Factor	1	Axle L	oad Scale Factor	1
Load Length Type	Minimum Distance	Maximum Distance	Uniform Load	Uniform Width Type	Uniform Width	Axle Load	Axle Width Type	Axle Width
Leading Load 🛛 👻	Infinite		0.	Fixed Width 👻	0.	8130.	Two Points	1.8
Leading Load Fixed Length Fixed Length	In finite 3.57 1.4		0. 0. 0.	Fixed Width Fixed Width Fixed Width	0. 0. 0.	8130. 17350. 17350.	Two Points Two Points Two Points	1.8 1.8 1.8
Floating Axle Loads		Ac	ld	Insert Modi	fy Sun	Delete	erts	
iouting, one coude	Va	alue	Width Type	Axle Width		Adjust Vertica	al Loads for Superelev	ation
For Lane Moments	0	0	ne Point	▼ 1		Axle Loa	d Factor	
For Other Responses	s O	0	ne Point	→ 1		Uniform l	Load Factor	
Floating Axle Load S	cale Factor	1						
Double the Lane I	Moment Load	when Calculat	ing Negative S	Span Moments				
	a da 16 Haniana	tal Castrifusa	or Braking Lo	ada ara Dafinad				

> Paneles fotográficos

Panel fotográfico – Fabricación en taller – SIMA Chimbote

Fig. Nº 71 Fabricación y pre armado del arco lado opuesto puente Motilones

Fig. Nº 72 Fabricación y pre armado del arco lado mostrado puente Motilones

Panel fotográfico prueba de carga

Fig. N° 73 Vista del puente antes del ingreso de los vehículos.

Fig. N° 74 Medición para la ubicación de los vehículos aguas abajo.

Fig. N° 75 Medición de los puntos cuando los vehículos se encuentran al borde de la vereda aguas abajo, la carga vehicular se encuentra en paralelo.

Fig. N° 76 Ubicación de los vehículos en el centro de luz.

Fig. N° 77 Medición de los puntos aguas abajo.

Fig. N° 78 Vista panorámica de la ubicación de los 8 vehículos en el centro de luz de cada tramo.

Fig. N° 79 Carga vehicular en forma lineal actuando sobre el puente.

Fig. N° 80 Vista panorámica del puente cargado en forma lineal.

Fig. Nº 81 Acomodo de los camiones equivalentes para la prueba de carga estática.

Fig. N° 82 Retiro de los camiones del puente.

> Protocolo de prueba de carga del puente Motilones

UBICACIÓN:

DISTRITO : MOYOBAMBA PROVICIA : MOYOBAMBA DEPARTAMENTO : SAN MARTIN REPONSABLE:

ING. JHIM SAAVEDRA RENGIFO

CIP Nº 118505

NOVIEMBRE-2014

PROTOCOLO- PRUEBA DE CARGA DEL PUENTE MOTILONES

1.0.- GENERALIDADES:

En la actualidad se realizó la CONSTRUCCIÓN DEL PUENTE MOTILONES, para verificar la capacidad de este puente se realizara la prueba de carga para lo cual se encontrará los resultados.

El puente Motilones tiene una longitud total de 163.0 m (29+105+29) entre ejes de apoyos de estribos. La superestructura está conformada por dos tramos laterales de sección mixta de 28.30 m y un Arco Reticulado con diagonales tubulares con arreglo tipo Warren; ambos de doble vía, los que se han diseñado para la sobrecarga vehicular HL93.

Las características del puente son las siguientes:

Superestructura.

Las características del puente son las siguientes:

Longitud	: 163 m, entre ejes de estribos. Con tramos parciales de 29+105+29, entre ejes de subestructura (estribos y pilares).
Número de tramos	: 3
Tramos laterales:	
Tipo	: Vigas de sección mixta o compuesta conformada por dos vigas de sección cajón de acero y losa de concreto.
Longitud Cantidad	: 28.30 m, entre ejes de apoyo en estribos y pilares. : 2
Tramo central	
Тіро	: Arco reticulado con arreglo de diagonales tipo Warren sin montantes y arriostramiento superior tipo Vierendeel.
Longitud	: 105.0 m, entre ejes de apoyo en pilares.
Cantidad	. 1

Nº de vías	: 2	
Ancho total de tablero	: 10 400 mm	
Ancho de rodadura	: 8 000 mm	
Veredas	: 2 de 1 200 mm	

Materiales:

Acero estructural	
Vigas cajón	
Ala inferior	ASTM A709 o A572 Grado 345 Fy = 345 MPa
El resto	ASTM A709 o A36 Grado 250 Fy = 250 MPa
Conectores de corte	ASTM A709 o A36 Grado 250 Fy = 250 MPa
Arco reticulado	
Arco y tirante	ASTM A709 o A572 Grado 345 Fy = 345 MPa
Diagonales	ASTM A53 Grado B Fy = 240 MPa
Vigas transversales y	
Longitudinales	ASTM A709 o A572 Grado 345 Fy = 345 MPa
Arriostre superior	ASTM A53 Grado B Fy = 240 MPa
Conectores de corte	ASTM A709 o Grado 250 Fy = 250 MPa
Soldadura de vigas	Electrodos AWS E7018.
Pernos de conexión	ASTM A325

Pintura de protecciónAnticorrosivo zinc inorgánico + anticorrosivoepóxica + esmalte poliuretano.

Losa del tablero

Concreto

Losa	f'c = 28 MPa
Veredas y parapetos	f'c = 20 MPa
Acero de refuerzo	Fy = 420 MPa.

Subestructura.

Estribos Tipo muro, conformado por un muro frontal articulado en su base y dos pantallas atirantadas perpendiculares al frontal, de 12 822 mm y 8 604 mm de altura respectivamente, con cimentación directa y elevación de concreto reforzado.

Pilares Tipo muro de concreto reforzado, conformado por un muro se sección irregular con extremos circulares de 2 000 mm de radio y cuerpo rectangular de 1 000 mm de espesor, sobre los cuales se ha previsto la colocación de una viga cabezal de 2 000 mm de ancho y 1 500 mm de peralte. La altura total es de 12 118 mm de altura la cual comprende la elevación del muro y la zapata.

Materiales:

Concreto

Estribos f'c = 20 MPa (210 Kg/cm2) Pilares f'c = 20 MPa (210 MPa (210 Kg/cm2) Acero de refuerzo Fy = 420 MPa (4,200 Kg/cm2)

Cimentación.

Estribos	Directa, conformada por una zapata rectangular de concreto de 12 000x4 000x 2 500.
Pilares	Profunda, conformada por 12 pilotes excavados de 1 200 mm de diámetro y 25 000 mm de longitud.
Materiales:	
Concreto	
Estribos	f'c = 20 MPa (210 Kg/cm2) F'c = 35 MPa (350 Kg/cm2)
Pilares Acero de refuerzo	f'c = 28 MPa (280 Kg/cm2) Fy = 420 MPa (4,200 Kg/cm2)
Detalles del Tablero:	
Veredas	: Adyacente a la calzada con un ancho total de 1 200 mm y un ancho útil de 1 000 mm.
Baranda combinada	: Muro de concreto de 200 mm de espesor y sobre este un poste de acero con sección I con unos únicos pasamanos tubular de acero, protegidos con el recubrimiento zinc inorgánico – epóxica - poliuretano.
Dispositivos de apoyo	: Neopreno de dureza 60 Shore A y reforzado con láminas de acero grado 250, sujetos al Estribo y Pilar mediante placas de acero y anclajes tipo barra de acero A307 o A36 embebidos en el cabezal del estribo.

Juntas de dilatación : Juntas conformada por ángulos de acero grado 250 adheridos a los extremos de la losa, y entre ellas un sello de neopreno aligerado en su interior en forma de panal.
Tubos de drenaje

: Tubos de fierro galvanizado de 100 mm de diámetro y una longitud de L=1200 mm.

Superficie de rodadura

Se ha previsto la colocación de una capa de asfalto en frío de 50 mm adicionales al espesor de la losa como superficie de rodadura.

2.0.- OBJETIVO:

Verificar el comportamiento satisfactorio del puente, bajo la acción de la sobrecarga de diseño HL-93 (ref. AASHTO LRFD 2010).

1ra etapa : Aplicación de las cargas y medición de desplazamientos.

2da etapa : Evaluación de mediciones y aprobación de capacidad de carga.

3.0.- CONSIDERACIONESYALCANCESGENERALES:

- Para obtener los máximos efectos en los elementos principales del puente, se debe considerar al puente como una unidad estructural, en tal sentido se idealiza como una viga de 28.30m simplemente apoyada en sus tramos laterales. Para el arco reticulado se realizara el modelamiento tridimensional.
- Se determinará el momento máximo que se genera en dicha viga debido a la sobrecarga de los vehículos de diseño de las especificaciones del AASHTO-LRFD 2010. Camión HL-93.

Carga en la línea de diseño:

La línea de diseño consistirá en una carga de 9.30KN/m (970kgf/m) uniformemente distribuida en la dirección longitudinal.

Transversalmente la carga de la línea de diseño será asumida como uniformemente distribuida sobre un ancho de 3.00m. Los efectos de fuerza de la cargas de las líneas de diseño no estarán sujetas a efectos dinámicos.

Vehículos de diseño:

Los vehículos de diseño se definieron siguiendo especificaciones del AASHTO-LRFD 2010. Camión HL-93.

El efecto del tándem de diseño combinado con el efecto de la línea de carga (línea de diseño). El tándem de diseño consiste en dos ejes de 25kips (110KN) espaciados a 4 pies (1.20m) más la consideración de la amplificación dinámica 33%. La línea de diseño consiste en una carga uniforme de 0.64kips/ft. (9.30KN/m) distribuida sobre todos los tramos del puente.

El efecto de un camión de diseño con espaciamiento variable entre ejes, combinado con el efecto de la línea de carga (carril de carga) de 0.64kips/ft. (9.30KN/m).

Para momentos negativos entre puntos de inflexión: 90% del efecto de un tren de carga combinado con el 90% del efecto del carril de carga. El tren de cargas consiste en dos camiones de diseño espaciados una distancia mínima de 50' (15m) entre el eje delantero de un camión y el eje posterior del otro camión.

La distancia entre los dos ejes de 32kips deberá ser de 14' (4.30m) para cada camión. Los puntos de inflexión se evalúan según la separación entre camiones.

Fig. Nº 86 Carga móvil para los momentos negativos.

- La prueba de carga se realizará usando vehículos equivalentes, de tal manera que dichos vehículos produzcan el mismo momento que genera la sobrecarga de diseño en condiciones de Servicio. Para ello será necesario determinar la ubicación de los vehículos en el puente y con su respectiva distribución de cargas.

- Se debe realizar la medición de las deflexiones del puente en cada nudo de unión de las bridas inferiores y diagonales del reticulado y tales valores se deberán comparar con las deflexiones calculadas para dichos camiones de la prueba. Para el caso de los tramos laterales, se realizara una división de 12 segmentos de longitudes variables y se tomara la medición de cada intersección de segmento.

Fig. Nº 87 Diagrama de deformación para los tramos laterales del puente

Fig. Nº 88 Diagrama de deformación para el tramo central del puente.

- No se considera en la prueba de carga la medición de las deformaciones de elementos secundarios como vigas diafragmas, largueros de apoyo de losa, rigidizadores de cuerdas superiores, ni la losa de concreto.
- No se considerará para la prueba de carga el factor de modificación de cargas vivas por efecto del número de vías cargadas.

4.0.- Equipo:

Camiones:

- Volquete Nº 1 de 42.83 ton de peso bruto.
- Volquete Nº 2 de 42.83 ton de peso bruto.
- Volquete Nº 3 de 42.83 ton de peso bruto.
- Volquete Nº 4 de 42.83 ton de peso bruto.

Instrumentos:

- Nivel de Precisión Automático Marca TOPCON, Modelo AC-B4.
- Mira graduada
- Wincha de 50

mts. Personal técnico:

- Ing. Especialista.
- Topógrafo
- Asistente de topografía.

5.0.- Anexos:

PANEL FOTOGRÁFICO.

Fig. N° 89 Vista general del puente.

VISTA PANORAMICA DEL PUENTE MOTILONES.

Fig. N° 90 Vaciado de parapeto aguas arriba.

Fig. Nº 91 Colocación de material para los accesos en ambas márgenes.

Fig. N° 92 Desmontaje de arriostres temporales del arco.

> Informe de prueba de carga del puente Motilones

PRUEBA DE CARGA DEL PUENTE MOTILONES

1.0.- GENERALIDADES:

En la actualidad se realizó la CONSTRUCCIÓN DEL PUENTE MOTILONES, para verificar la capacidad de este puente se realizara la prueba de carga para lo cual se encontrará los resultados.

El puente Motilones tiene una longitud total de 163.0 m (29+105+29) entre ejes de apoyos de estribos. La superestructura está conformada por dos tramos laterales de sección mixta de 28.30 m y un Arco Reticulado con diagonales tubulares con arreglo tipo Warren; ambos de doble vía, los que se han diseñado para la sobrecarga vehicular HL93.

2.0.- OBJETIVO:

Verificar el comportamiento satisfactorio del puente, bajo la acción de la sobrecarga de diseño HL-93 (ref. AASHTO LRFD 2010).

1ra etapa : Aplicación de las cargas y medición de desplazamientos.

2da etapa : Evaluación de mediciones y aprobación de capacidad de carga.

3.0.- ANÁLISIS DE LA SUPERESTRUCTURA:

El análisis estructural del puente se ha elaborado en base al proceso constructivo y las cargas que actúan sobre la estructura durante la vida útil del puente.

Para el análisis lineal se utilizó el programa CSIBridge de Computers & Structures Inc. (CSI). El modelo del puente que se describe aquí se ha utilizado un tipo de elemento, que es el elemento Shell y Frame para todos los elementos estructurales.

Fig. N° 93 Modelo tridimensional de los tramos laterales.

Fig. N° 94 Modelo tridimensional del tramo central.

De la misma manera de realizo el modelamiento de la superestructura del tramo central – arco metálico reticulado.

Carga en la línea de diseño:

La línea de diseño consistirá en una carga de 9.30KN/m (960kgf/m) uniformemente distribuida en la dirección longitudinal.

Transversalmente la carga de la línea de diseño será asumida como uniformemente distribuida sobre un ancho de 3.00m. Los efectos de fuerza de la cargas de las líneas de diseño no estarán sujetas a efectos dinámicos.

3.2.- VERIFICACIÓN DE LA CARGA MÓVIL.

Para la verificación de la carga móvil es necesario tener las siguientes consideraciones.

Se deberá considerar en cada tramo del puente como una unidad estructural, en tal sentido los tramos laterales se idealizara como una viga simplemente apoyada de 28.30m, y para el tramo central de arco reticulado, se idealizara como una viga simplemente apoyada de 105.00 m simplemente apoyada.

Se determinará el momento máximo que se genera en dicha viga debido a la sobrecarga de los vehículos de diseño de las especificaciones del AASHTO-LRFD 2010. Camión HL-93. Vehículos equivalentes que usaron en la prueba de carga.

Se comparara los resultados obtenidos de los análisis de ambas cargas; con los resultados obtenidos del análisis utilizando el programa CSIBridge de Computers & Structures Inc. (CSI).

Esta comparación garantizara que los vehículos utilizados en la prueba de carga, son equivalentes en la carga de diseño HL-93.

A continuación se presenta las características de la carga móvil utilizada en la prueba de carga.

Fig. N° 95 Camión equivalente de prueba.

Para los tramos laterales.

Carga de diseño HL-93

Fig. N° 96 Líneas de influencia cuando la carga móvil se encuentra en el centro de luz. – tramos laterales.

3.2.2.- Carga del camión equivalente.

Fig. N° 97 Líneas de influencia cuando la carga móvil se encuentra en el centro de luz. – tramos laterales.

3.2.3.- Momento máximo con el programa CSiBridge.

Fig. N° 98 Momento máximo que se obtuvo con el programa CSiBridge

3.2.4.- Para el tramo central.

Carga de diseño HL-93

Fig. N° 99 Líneas de influencia cuando la carga móvil se encuentra en el centro de luz. – tramo central

3.2.5.-Carga del camión equivalente.

Fig. Nº 100 Líneas de influencia cuando la carga móvil se encuentra en el centro de luz. – tramo central

3.2.6.- Momento máximo con el programa CsiBridge.

Fig. N°	101	Resultados	con el	programa	CSiBridge
				r0	

	The second	CT STORE	
Diagrams for Fran	ne Object 19 (VAR2)		
Case MOVL Items Major (V2 and M3) Max/Min Env	- End Length Offset (Location) IEnd Jr: 9 0.000000 m (0.00000 m) JEnd Jr: 10 0.000000 m (2.97143 m)	- Display Options C Scroll for Values G Show Max	
- Resultark Shear		Shear V2 54.3344 Tonf at 2.97143 m 73.2643 Tonf at 0.00000 m	
- Resultark Moment		Homent M3 4801.82950 Tonl-m 42.36846 m 1.00000 Tonl-m 41.2.97143 m	
Reset to Initial Units	one	Units Tonf, m, C 💌	

Cuadro de resumen:

Tabla Nº 24 Resultados de momentos máximos según el caso.

	MOMENTO MAXIMOS (ton-m)					
TRAMOS	HL-93	CAMIÓN EQUIVALENTE	CSIBRIDGE			
LATERAL	702.66	702.71	702.44			
CENTRAL	4801.84	4804.65	4801.82			
LATERAL	702.66	702.71	702.44			

De acuerdo a los resultados presentados en el cuadro resumen de máximos momentos, se puede observar que los resultados tienen similar valor; por lo tanto la carga vehicular utilizada en la prueba de carga genera los mismos esfuerzos y deflexiones en la superestructura que la carga de diseño HL93 (AASHTO LRFD), además el momento máximo generado el programa CsiBridge, guarda similitud (en cuanto a los valores de los momentos máximos) con la carga equivalente, por lo tanto los resultados de la prueba de carga reflejan el comportamiento estructural y las deformaciones presentadas en el programa y la carga de diseño HL-93.

3.3.- Cálculo de deflexiones por la carga de diseño HL-93.

Se realizó con el programa CsiBridge, con los resultados obtenidos en este cálculo se realizara la comparación de las deflexiones medidas en la prueba de carga.

El programa realiza una división de 12 segmentos para los tramos laterales, en los puntos de intersección procederá a realizar los cálculos de deflexiones.

Para el tramo central el programa realizara el cálculo en cada uno de los nudos de unión de las bridas inferiores y diagonales del reticulado; tales valores se deberán comparar con las deflexiones calculadas para dichos camiones de la prueba.

Tabla N° 25 Deflexiones de tran	nos laterales y tramo central.
---------------------------------	--------------------------------

TRAMOS		DEFLEXIONES POR LA CARGA DE DISEÑO HL-93 (cm)										
TRAIVIUS	d1	d2	d3	d4	d5	d6	d7	d8	d9	d10	d11	d12
LATERAL 1°	0.000	1.070	1.701	2.258	2.778	3.103	3.216	2.780	2.258	1.701	1.070	0.000
CENTRAL	0.001	1.180	3.272	5.485	6.849	7.301	6.849	3.272	1.180	0.001	-	-
LATERAL 2°	0.000	1.070	1.701	2.258	2.778	3.103	3.216	2.780	2.258	1.701	1.070	0.000

3.4.-Criterios de medición de la deflexión.

Tomando como criterio desfavorable en el aspecto estructural, se debe utilizar la posición correspondiente de la sobrecarga vehicular de la combinación de Cargas de servicio I del AASHTO LRFD 2010, incluyendo el incremento por carga dinámica, IM. Para las construcciones de acero, aluminio y/u hormigón se pueden considerar el siguiente límite de deflexión: (AASHTO LRDF 2010 Articulo. 2.5.2.6.2)

• Carga vehicular, general.....Longitud / 800.

De acuerdo a la norma AASHTO LRFD, los valores mostrados líneas arriba precisan lo siguiente:

- a. Los tramos laterales no excederán de 3.5 cm de deformación durante la actuación de los camiones de prueba en la posición más crítica.
- b. El tramo central del arco reticulado no excederá de 13.12 cm de deflexión durante la actuación de los camiones de prueba, en la posición más crítica.

4.0.-<u>DATOS Y PROCEDIMIENTO PARA LA REALIZACIÓN EN CAMPO DE LA PRUEBA</u> <u>DE CARGA:</u>

- Ubicación de los equipos de medición: margen izquierda.
- Carguío de los volquetes de acuerdo a la distribución de cargas para la prueba (se consideró un peso volumétrico de 2.00 ton/m³ para el material de carga de los volquetes).
- Señalización de los puntos de medición.
- Nivelación de presión antes de la prueba de carga (Niv. Nº 1).
- Ubicación de los 8 vehículos en la posición.
- Nivelación de presión con el puente cargado (Niv. Nº 2 y Niv. Nº 3) en los mismos puntos antes medidos en la vereda, con la posición de los vehículos 0.60 m. desde el eje de la línea de la rueda más próxima hacia la vereda.
- Ubicación de los 8 vehículos en la posición que se indica.

- Nivelación de presión con el puente cargado (Niv. Nº 3 y Niv. Nº 4) en los mismos puntos antes medidos en la vereda.

- Retiro de los vehículos del puente.

- Nivelación de precisión después de la prueba de carga (Niv. N° 5, sin vehículos) en los mismos puntos.

DISTANCIA	SIN CARGA	CARGA AGUAS ABAJO (PARALELO)	CARGA AGUAS ARRIBA (PARALELO)	CARGA AGUAS ABAJO (LINEAL)	CARGA AGUAS ARRIBA (LINEAL)	DEPUÉS DE APLICARCAR LAS CARGA
0.00	1 246	1 235	1 235	1 230	1 225	1 214
2 1 5	1 226	1 215	1 220	1 210	1 210	1 209
4.30	1.221	1.215	1.215	1.210	1.205	1.209
6.45	1.221	1.210	1.210	1.210	1.200	1.214
9.00	1.211	1.205	1.210	1.205	1.200	1.194
11.55	1.201	1.195	1.200	1.195	1.190	1.184
14.15	1.201	1.195	1.200	1.200	1.185	1.184
16.75	1.206	1.200	1.200	1.200	1.190	1.189
19.30	1.206	1.200	1.200	1.200	1.190	1.194
21.85	1.221	1.210	1.210	1.210	1.200	1.194
24.00	1.217	1.215	1.220	1.210	1.210	1.194
26.15	1.226	1.215	1.220	1.210	1.210	1.209
28.30	1.243	1.235	1.235	1.220	1.230	1.209
0.00	1.246	1.230	1.230	1.220	1.230	1.232
10.50	1.196	1.165	1.160	1.220	1.160	1.177
21.00	1.151	1.125	1.120	1.200	1.120	1.147
31.50	1.121	1.090	1.090	1.160	1.080	1.117
42.00	1.116	1.085	1.080	1.085	1.080	1.107
52.50	1.106	1.080	1.080	1.080	1.070	1.107
63.00	1.116	1.090	1.080	1.100	1.085	1.107
73.50	1.131	1.100	1.090	1.100	1.100	1.127
84.00	1.156	1.130	1.120	1.125	1.130	1.157
94.50	1.201	1.170	1.160	1.160	1.170	1.187
105.00	1.236	1.210	1.210	1.200	1.220	1.227
0.00	1.219	1.210	1.210	1.200	1.220	1.204
2.15	1.223	1.210	1.220	1.205	1.220	1.209
4.30	1.218	1.210	1.220	1.200	1.205	1.209
6.45	1.204	1.200	1.210	1.200	1.200	1.214
9.00	1.208	1.190	1.210	1.190	1.200	1.194
11.55	1.198	1.190	1.200	1.180	1.190	1.184
14.15	1.188	1.180	1.200	1.195	1.200	1.184
16.75	1.198	1.180	1.195	1.185	1.195	1.189
19.30	1.198	1.200	1.200	1.195	1.200	1.194
21.85	1.198	1.200	1.210	1.200	1.200	1.194
24.00	1.208	1.210	1.220	1.200	1.200	1.194
26.15	1.218	1.210	1.225	1.210	1.210	1.209
28.30	1.228	1.210	1.225	1.215	1.220	1.209

Tabla N° 26 Cálculo de cotas para la viga principal – aguas arriba.

Fig. Nº 102 Diagrama de deformaciones de la viga principal – aguas arriba.

DISTANCIA	SIN CARGA	CARGA AGUAS ABAJO (PARALELO)	CARGA AGUAS ARRIBA (PARALELO)	CARGA AGUAS ABAJO (LINEAL)	CARGA AGUAS ARRIBA (LINEAL)	DEPUÉS DE APLICARCAR LAS CARGA
0.00	1.236	1.235	1.205	1.250	1.205	1.234
2.15	1.231	1.230	1.200	1.250	1.200	1.229
4.30	1.231	1.235	1.205	1.250	1.205	1.229
6.45	1.231	1.240	1.210	1.260	1.205	1.234
9.00	1.216	1.225	1.200	1.245	1.190	1.214
11.55	1.206	1.215	1.185	1.235	1.180	1.204
14.15	1.206	1.215	1.185	1.235	1.180	1.204
16.75	1.201	1.215	1.180	1.230	1.175	1.209
19.30	1.206	1.220	1.185	1.245	1.185	1.214
21.85	1.216	1.220	1.190	1.245	1.185	1.214
24.00	1.216	1.225	1.190	1.245	1.195	1.214
26.15	1.216	1.225	1.190	1.240	1.190	1.229
28.30	1.233	1.230	1.200	1.250	1.200	1.229
0.00	1.226	1.225	1.200	1.240	1.195	1.233
10.50	1.201	1.180	1.160	1.200	1.150	1.218
21.00	1.161	1.150	1.120	1.175	1.120	1.188
31.50	1.131	1.120	1.090	1.145	1.085	1.158
42.00	1.126	1.125	1.090	1.145	1.080	1.148
52.50	1.116	1.120	1.085	1.140	1.075	1.148
63.00	1.116	1.112	1.080	1.140	1.070	1.148
73.50	1.136	1.130	1.100	1.150	1.090	1.168
84.00	1.161	1.155	1.120	1.180	1.120	1.198
94.50	1.196	1.180	1.160	1.210	1.150	1.228
105.00	1.231	1.210	1.190	1.245	1.180	1.228
0.00	1.214	1.215	1.190	1.245	1.180	1.224
2.15	1.218	1.220	1.200	1.245	1.190	1.229
4.30	1.218	1.220	1.200	1.250	1.185	1.229
6.45	1.204	1.210	1.180	1.230	1.170	1.234
9.00	1.203	1.205	1.180	1.235	1.180	1.214
11.55	1.198	1.200	1.180	1.225	1.170	1.204
14.15	1.193	1.190	1.180	1.225	1.170	1.204
16.75	1.208	1.200	1.185	1.230	1.180	1.209
19.30	1.208	1.200	1.185	1.230	1.180	1.214
21.85	1.218	1.200	1.195	1.225	1.185	1.214
24.00	1.218	1.210	1.190	1.225	1.185	1.214
26.15	1.223	1.215	1.200	1.230	1.190	1.229
28.30	1.228	1.215	1.200	1.230	1.200	1.229

Tabla N° 27 Cálculo de cotas para la viga principal – aguas abajo.

Fig. Nº 103 Diagrama de deformaciones de la viga principal - aguas abajo.

7.0.- COMENTARIOS A LOS RESULTADOS:

-Con respecto a la geometría inicial del puente antes de la aplicación de las cargas vehiculares, cabe mencionar que se hizo una nivelación de la estructura a nivel de los puntos marcados en el puente para cada tramo; encontrándose una geometría tal como la descrita en las "Graficas de Nivelación Niv. 01, en cada una de las pruebas de carga".

-Referente a las deflexiones producidas por la aplicación de las cargas vehiculares, estas se producen con la aplicación de los 8 vehículos con aproximaciones a las vigas principales aguas abajo y aguas arriba respectivamente.

-De la tabla del acápite 6.0 COMPARACIÓN DE DEFLECIONES, debido a la aplicación de los camiones de prueba (volquetes cargados) tal como se muestra en las gráficas de deflexiones los tramos laterales del puente sufrieron un asentamiento máximo de 3.10cm y el tramo central de arco reticulado tiene una deflexión máxima de 5.10 cm.

- La temperatura ambiental máxima registrada durante la prueba de carga fue de 25° C.

-Se realizaron los comparativos de las cargas de prueba con los de diseño, verificándose el óptimo comportamiento del puente.

8.0.- CONCLUSIONES Y RECOMENDACIONES:

-Las mediciones se realizaron con el puente sin carga vehicular, en una primera etapa. En la siguiente etapa se tomaron las mediciones de nivelación con carga vehicular en las ubicaciones de acuerdo al procedimiento del protocolo de prueba y la norma AASHTO LRFD.

- Se comparó las deflexiones reales en los puntos señalados en cada tramo del puente con las deflexiones teóricas obtenidas para tal distribución de cargas, obteniéndose en todos los casos valores ligeramente cercanos a los teóricos, lo cual indica un comportamiento estructural satisfactorio del puente para efectos de la Sobrecarga de Diseño HL-93 para lo que fue concebido y/o proyectado.

-Si bien la estructura del puente llegó a una considerable deformación el mismo que se comprobó con la prueba de carga real, sin embargo según la norma AASHTO LRFD 2010 la deformación máxima en el rango elástico no pudo ser mayor de $\delta = 3.50$ cm para los tramos laterales y para el tramo central no debió ser mayor que $\delta = 13.12$ cm. Considerando además que se colocó la carga máxima en la prueba N° 2, 3, 4 y 5 (8 vehículos ubicados con las respectivas excentricidades); confirmándose las condiciones óptimas estructurales del puente Motilones.

- La deformación máxima por la prueba de carga de es de 3.10 cm para el caso de los tramos laterales y 5.10 cm. Para el caso del tramo central del puente; encontrándose por debajo del valor admisible según la NORMA AMERICANA, este resultado confirma el comportamiento óptimo del Puente para la nueva sobrecarga HL93 (AASHTO LRFD).

Nº 002515

CERTIFICADO DE CALIBRACION

Otorgado A:

N°G-0051/14

CONSTRUCCIONES CANCHARI S.A.C. CONTRATISTAS GENERALES

DATOS DEL EQUIPO:			SOPORTE
EQUIPO	MARCA	MODELO	SERIE
NIVEL AUTOMATICO	TOPCON	AC-B4	B07296

EQUIPO DE CALIBRACION UTILIZADO Y RESULTADOS:

Equipe/Marca	Valor Leido en el Instrumento	Valor del Patrón	Precisión En 1 KM Doble de Nivelación	Error al Corregir
Set de Colimadores NCS	00 mm En Milímetros	90,00,00.	+/- 1.0 mm	00 mm en milímetros

PROCEDIMIENTO DE CALIBRACIÓN:

Por medio del cierre angular en directa y en transito enfocando al infinito a fraves del Colimpidor

GEOPERU, a través de su Servicio Técnico CERTIFICA que el equipo en mensión se encuentra totalmente revisados, controlados, calibrados y 100% operativos; cumpliendo con las especificaciones Técnicas de fábrica y los Estándares internacionales establecidos (DIN18723).

GEOPERU, ha registrado la Calibración en nuestro Servicio Tecnico el 02 de NOVIEMBRE del 2014 : sugiriéndose una recalibración en un periodo máximo de 66 meres, oproximada al 02 de MAYO del 2015

 Nota: GEOPERU CORPORATION S.A.C. no se responsabiliza por desajustes y/o descalibraciones en los equipos causados por un inadecuado transporte del mismo

Fecha de emisión	Próxima Calibración:	Validez del Certificado:
02- NOVIEMBRE -2014	02 - MAYO -2015	06 MESES
DEFATURA B	ALE BOOMERS AND ALE AN	

> Planos

	S S	BD06.2013.ETD03.103 Plano: Revisión: 03/15 0 Archivo DWG: 103-111.dwg SIMA-BD06-2013.ETD03.103-111.dwg 16
	132 Posición de los ejes en la etapa de fabricación 17500 17500 17500 Posición definit 137 Posición definit 105000 105000	PLANO POST CONSTRUCCION Tramo Central: Vista General do por: Revisado por: Aprobado por: Ing. J. Yeckle Aprobado por: Ing. J. Yeckle Ing. J. Yeckle Ing. J. Yeckle Fecha: Fecha: I. Probado por: I. Probado por:
NOMENCLATURASímboloElementoARQArranqueARQArranqueARC###ArcoAA#Arriostre del ArcoDIA##DiagonalTIR###TiranteVQViga de ArranqueVT#Vigu de ArranqueVL###Vigueta Longitudinal		Construcción de la Superestructura del Puente Motilones Distrito de Moyobamba, Provincia de Moyobamba, Departamento y Región San Martín Luz/Longitud: S/C: 163.0 m 12

ESPECIFICACIONES TÉCNICAS

...

- isión y Control, Pintura, Empalme y Montaje se utili Para la Fabricación, Supervisión y Control, Pintura, Empalme y Montaj siguientes especificaciones: * AASHTO LRFD BRIDGE DESIGN SPECIFICATIONS 2,007, CONSTRUCTION * ANSI/AASHTO/AWS D1.5 BRIDGE WELDING CODE 2,002.
 - <u>ructural</u> nte Materiales: <u>Acero Estru</u> Arco Tiranti 5
- ngitu ansversales y Lond Superior es tipo Canal goriales as Trar iostre (
 - Ř Alta ы. 4. Ю.
- dor) n tabla de torques de 412 N-m (42.0 Kg-r 559 N-m (57.0 Kg-r 711 N-m (72.5 Kg-r 1425 N-m (145 Kg-
- brimiento de Protección brimiento de Protección apa: Pintura Anticorrosiva a base de Zinc Inorganico (3 mils) apa: Pintura Anticorrosiva epoxica (4 mils) apa: Pintura a base de Poliuretano bicomponente (3 mils) uperficie interior de los elementos cerrados como el Arco, Tirante y Viga rior solamente requerirá la aplicación de la 1º capa de pintura. s las unidades se encuentran en el sistema internacional a menos que se

6.

- 1° Capo 2° Capo 3° Capo La sup exterior Todas
- trans
- se . Ю. Ч

LADO TIRANTE		887	7 1572	16907 13968	14044	18120 15237	1 81	
LADO ARCO	7810 7810 	113 DIAGONAL D04		DIAGONAL DOS	DIAGONAL DOG	DIAGONAL D07	DIAGONAL DC	DIAGONAL DO REFERENCIAS tulo/Nombre Referencia
6392 250 2999 2999 2999 2999 2999 2999 2999 200 Public PD01 DIAGONAL D01	600 PLACA DIAG. PD01	600 PLACA DIAG. PD01	600 600	PLACA DIAG. PD01	PLACA DIAG. PD01	600 600	PLACA DIAG. PDO1	PLACA DIAG. PD01

Este plano ha sido preparado por el Ing. José Yeckle, Consultor especialista en Puentes, para uso exclusivo del cliente y del proyecto mencionado en Este plano ha sido preparado por el Ing. José Yeckle, Consultor especialista en Puentes, para uso exclusivo de los derechos intelectuales del mismo.

		С I
		isión: DO3 Sión:
		3.E
		2010
		ی در 00,
		Srior ON
		Supe
		Stre Stre
		ONS ONS
		al: A C
		PO(Ing. J.
		ANO no C
		PL PL
		Diseñada J. Yeckle
		DDes San Mar
	SEC	y Región Udtilc
		Uen or N
	A322	a, beput
	Q Q J	ijÓn . JeS,
	LEX Q 10 10 10 10 10 10 10 10 10 10 10 10 10	Dtilon
		ar Mo
	R ³⁴	Veh de Veh
3220		

	 \triangleleft		0			LL.	0	Ξ
State	000 L=10600	COD 0006=1 000 000 000 000 000 000 000 0			o en una misma indique lo			BD06.2013.ETD03.113 Plano: Revisión: 13/15 0 Archivo DWG: 16 SIMA-BD06-2013.ETD03.112-113.dwg
CAPA SUBERIOR CAPA SUBERIOR					<u>Notas:</u> 1. No deberá traslaparse más del 50% del refuerz sección. 2. Las dimensiones están en milfmetros, salvo se contrario.			PLANO POST CONSTRUCCION PLANO POST CONSTRUCCION Endo post Losa: Acero de Refuerzo Revisado por: Veckle Ing. J. Yeckle Aprobado por: Ujó: Fecha: Escala: DICIEMBRE 2018 1/75, 1/30
				CAPA SUPERIOR				Construcción del Puente Construcción del Puente Vehicular Motilones, Sector Motilones Distrito de Moyobamba, Provincia de Moyobamba, Departamento y Región San Martín Luz/Longitud: S/C: 103.0 m 13

