UNIVERSIDAD NACIONAL DE CAJAMARCA

INFLUENCIA DE LA INTERACCIÓN SUELO-ESTRUCTURA EN EL COMPORTAMIENTO SÍSMICO DE UN EDIFICIO DE 7 NIVELES DEL PROYECTO "MULTIFAMILIAR LOS BALCONES DEL VALLE" BARRIO COLUMBO-CAJAMARCA

TESIS PARA OPTAR EL GRADO ACADÉMICO DE INGENIERO CIVIL

Presentada por

Bach. Rigo Kibing Garay Chávez

Asesor

Dr. Miguel Ángel Mosqueira Moreno

Cajamarca - Perú

Junio de 2017

AGRADECIMIENTOS

A mi asesor Dr. Miguel Ángel Mosqueira Moreno, por el permanente apoyo y dedicación al desarrollo del presente trabajo de tesis.

A la empresa constructora A&E y la empresa Caxamarca Andina Inversiones Inmobiliaria SAC. Por haberme dado la oportunidad de formar parte del equipo de colaboradores para la ejecución del proyecto multifamiliar, gracias a ello se ha logrado desarrollar el presente trabajo de tesis.

Al Ingeniero Máximo Escalante ex docente de la Universidad Nacional de Cajamarca y supervisor del proyecto multifamiliar, quién colaboró de forma activa en la obtención y recolección de información, además de compartir sus experiencias profesionales durante el periodo de ejecución del proyecto.

DEDICATORIA

A DIOS

Gracias a Dios por haberme dado la vida, por las metas alcanzadas y por los sueños logrados.

A MIS PADRES

Por haberme dado educación y por convertirme en una persona de bien, íntegra y honesta.

A MIS HERMANOS

Quienes siempre me orientan hacia el camino del éxito.

CONTENIDO

ABSTR	ACT
I. IN	TRODUCCIÓN14
1.1.	Planteamiento del problema
1.2.	Formulación del problema15
1.3.	Justificación de la investigación15
1.4.	Alcances o delimitación de la investigación16
1.5.	Hipótesis:
1.5	1. Hipótesis general
1.6.	Objetivos:
1.6	1. Objetivo general:
1.6	2. Objetivos específicos:
II. MA	ARCO TEÓRICO19
2.1.	Antecedentes teóricos:
2.2.	Bases teóricas
2.2	1. Interacción Suelo-Estructura
2.2	2. Trabajo Espacial y Múltiples Componentes de la Acción Sísmica21
2.2	3. Investigaciones sobre la interacción sísmica suelo-estructura22
2.2	.4. Líneas futuras de la interacción suelo-estructura
2.2	.5. Modelo de Winkler – coeficiente de balasto
2.2	.6. Modelos Dinámicos de Interacción Suelo-Estructura
2.3.	Definición de términos
III. N	IATERIALES Y MÉTODOS
3.1.	Materiales:
3.1	1. Población de estudio
3.1	2. Muestra
3.1	.3. Unidad de análisis

3.2.	Tip	o y Método de estudio	45
3.3.	Det	finición de variables	45
3.	3.1.	Variable Independiente.	45
3.	3.2.	Variable dependiente.	45
3.4.	Téc	cnicas e instrumentos de recolección de datos	45
3.5.	An	álisis e interpretación de datos	46
3.	5.1.	Técnicas de procesamiento de datos	46
3.	5.2.	Técnicas de análisis e interpretación de resultados.	46
IV.	Proce	edimiento metodológico	48
4.1.	Pre	dimensionamiento	48
4.	1.1.	Predimensionamiento de la losa aligerada	48
4.	1.2.	Predimensionamiento de vigas	49
4.	1.3.	Predimensionamiento de columnas	51
4.	1.4.	Predimensionamiento de la cimentación	52
4.2.	Me	trado de cargas	56
4.	2.1.	Metrado de cargas de los elementos estructurales	56
4.3.	An	álisis sísmico considerando la base empotrada	57
4.	3.1.	Análisis sísmico estático con base empotrada	57
4.	3.2.	Etapas del análisis dinámico de la edificación	71
4.	3.3.	Etapas del análisis tiempo – historia de la edificación	81
4.4.	An	álisis sísmico considerando la Interacción Suelo-Estructura (ISE)	92
4.	4.1.	Modelo dinámico D.D. Barkan – O.A. Savinov	92
4.	4.2.	Modelo dinámico Ilichev	97
4.	4.3.	Modelo dinámico Sargian	99
4.	4.4.	Modelo dinámico (NRusa)	. 100
4.	4.5.	Modelo estático de Balasto o modelo de Winkler	. 102
V. R	ESUL	.TADOS	106

5.1.	Resultados de la modelación considerando y no la interacción suelo-estru	uctura
	106	
5.1.	.1. Resultados del análisis estático	106
5.1.	.2. Resultados del análisis dinámico con espectro de aceleración	113
5.1.	.3. Resultados del análisis Tiempo-Historia con espectro de aceleración	121
5.2.	Discusión de resultados	128
VI. C	CONCLUSIONES Y RECOMENDACIONES	135
6.1.	Conclusiones	135
6.2.	Recomendaciones.	137
VII. R	REFERENCIAS BIBLIOGRAFICAS	138
ANEXO	DS	141
PLANOS	DS	176

ÍNDICE DE FIGURAS

Figura	1: Coeficiente de balasto	21
Figura	2: Diagrama de flectores en una viga	22
Figura	3: Módulo de balasto vertical en una viga	23
Figura	4: Modelo dinámico V.A. Ilichev	26
Figura	5: Plano de lotización del proyecto	36
Figura	6: Elevación	37
Figura	7: Planta	37
Figura	8 Elección de la luz crítica para predimensionamiento de losa	42
Figura	9: Predimensionamiento C-27	47
Figura	10: Predimensionamiento C-31	48
Figura	11: Geometría 3D de la estructura	69
Figura	12: Material	70
Figura	13: Sección de vigas longitudinales	71
Figura	14: Colocación de las restricciones de la base	71
Figura	15: Colocación del brazo rígido en vigas	72
Figura	16: Colocación del centro de masa	73
Figura	17: Asignación de restricciones del centro de masa	73
Figura	18: Definición de diafragmas rígidos de entrepisos	74
Figura	19: Asignación del diafragma rígido del techo 7 de la edificación	75
Figura	20: Definición de los estados de carga	75
Figura	21: Asignación de las fuerzas sísmicas (piso 7 – dirección X)	76
Figura	22: Definición de las combinaciones de carga (dirección X)	76

Figura	23: Geometría 3D de la estructura	. 80
Figura	24: Material	. 80
Figura	25: Sección de vigas longitudinales	. 81
Figura	26: Colocación de las restricciones de la base	. 81
Figura	27: Colocación del brazo rígido en vigas	. 82
Figura	28: Colocación del centro de masa	. 82
Figura	29: Asignación de restricciones del centro de masa	. 83
Figura	30: Definición de diafragmas rígidos de entrepisos	. 84
Figura	31: Asignación del diafragma rígido del techo1 de la edificación	. 84
Figura	32: Inclusión del Espectro para el modelo Dinámico	. 86
Figura	33: Espectro de Diseño para un suelo rígido y un amortiguamiento del 5% para	a el
concret	to armado	. 86
Figura	34: Colocación de masas traslacionales y masa rotacional para el nivel 7	. 87
Figura	35: Geometría 3D de la estructura	. 89
Figura	36: Material	. 90
Figura	37: Sección de vigas longitudinales	. 90
Figura	38: Colocación de las restricciones de la base	.91
Figura	39: Colocación del brazo rígido en vigas	.91
Figura	40: Colocación del centro de masa	. 92
Figura	41: Asignación de restricciones del centro de masa	. 92
Figura	42: Definición de diafragmas rígidos de entrepisos	. 93
Figura	43: Asignación del diafragma rígido del entrepiso 7 de la edificación	. 93
Figura	44: Función tiempo – historia para el sismo de Chimbote de 1970	. 94
Figura	45: Estado de carga (Dirección X)	. 94
Figura	46: Liberar los empotramientos de las bases	. 97

Figura	47: Creación del material "ZAPATA"	98
Figura	48: Asignación de la sección para la zapata (Shell-thick)	98
Figura	49: Cimentación dibujadas en la modelación	99
Figura	50: Colocación de los coeficientes de rigidez	99
Figura	51: Colocación de los coeficientes de rigidez	. 101
Figura	52: Colocación de los coeficientes de rigidez	. 103
Figura	53: Colocación de los coeficientes de rigidez	. 105
Figura	54: Colocación de los coeficientes de rigidez	. 111
Figura	55-99: Resultados	2-147

ÍNDICE DE TABLAS

Tabla 1: Valores del coeficiente C_0 cuando $\rho_0 = 0,2$ kg / cm.	25
Tabla 2: Valores de los coeficientes verticales, rotaciones y horizontales	
Tabla 3: Valores de los coeficientes verticales, rotaciones y horizontales	
Tabla 4: Operacionalización de variables	
Tabla 5: Matriz de consistencia	39
Tabla 6: Secciones usuales para vigas según Blanco Blasco	44
Tabla 7: Predimensionamiento de vigas	45
Tabla 8: Predimensionamiento columnas	46
Tabla 9: Resumen de secciones de columnas por gravedad	50
Tabla 10: Resumen de secciones de columnas considerando cortante basal	51
Tabla 11: Características del terreno	
Tabla 12: Resumen de zapatas aisladas:	53
Tabla 13: Resumen de secciones de zapatas combinadas	54
Tabla 14: Resumen de secciones de zapatas corridas	55
Tabla 15: Dimensiones de placa de cimentación	55
Tabla 16: Resumen de sección de vigas de cimentación	57
Tabla 17: Resumen de metrado de cargas de losas	59
Tabla 18: Resumen de metrado de cargas de vigas 8	60
Tabla 19: Resumen de metrado de cargas de columnas	61
Tabla 20: Resumen de cargas por piso	61
Tabla 21: Cargas distribuidas para realizar el análisis en SAP 2000	62
Tabla 22: Datos para obtener la cortante basal	63

Tabla 23: Irregularidades estructurales en altura	65
Tabla 24: Irregularidades estructurales en planta	66
Tabla 25: Distribución de la fuerza sísmica en altura	68
Tabla 26: Resumen de masas traslacionales y rotacionales por piso	77
Tabla 27: Valores para el cálculo del Factor de Escala	78
Tabla 28. Distancias máximas para cada dirección del sismo	79
Tabla 29: Excentricidades	79
Tabla 30: Aceleración espectral	
Tabla 31: Registro de datos sísmicos	
Tabla 32: Características del suelo de fundación	95
Tabla 33: Coeficientes de rigidez para cada zapata	96
Tabla 34: Coeficientes de rigidez para cada zapata	
Tabla 35: Coeficientes de rigidez para cada zapata	
Tabla 36: Coeficientes de rigidez para cada tipo de cimentación	
Tabla 37: Coeficientes de rigidez para cada tipo de cimentación	106
Tabla 38: Resultados	112-147

RESUMEN

INFLUENCIA DE LA INTERACCIÓN SUELO-ESTRUCTURA EN EL COMPORTAMIENTO SÍSMICO DE UN EDIFICIO DE 7 NIVELES DEL PROYECTO "MULTIFAMILIAR LOS BALCONES DEL VALLE" BARRIO COLUMBO-CAJAMARCA

El presente trabajo de investigación, tiene como objetivo realizar el análisis sísmico de un edificio multifamiliar de 7 niveles ubicado en la ciudad de Cajamarca con un tipo de suelo flexible, para determinar la respuesta dinámica de la estructura se realizó un modelamiento considerando el empotramiento perfecto en la base y teniendo en cuenta el efecto de interacción suelo-estructura. Para evaluar la respuesta dinámica de la estructura a través del modelo de base fija, se realizó un análisis estático, dinámico espectral y tiempo-historia, según lo establece la Norma peruana E.030 de "Diseño sismorresistente" y para la obtención de la respuesta del edificio producida por el efecto de interacción suelo-estructura se determinó aplicando modelos dinámicos propuestos por los científicos D.D. Barkan-O.A Savinov, Ilichev, Sargsian y el modelo propuesto por la Norma Rusa. Como software de soporte se utilizó el SAP2000 v.18, analizando a la estructura por el método espectral para sismos de 0°, 45° y 90° respecto al eje más largo de la edificación y por el análisis tiempo-historia a través de acelerogramas reales proporcionados por el CISMID-UNI, que corresponden a los sismos de Lima (17/10/1966), Áncash (31/05/1970) e Ica (15/08/2007), asimismo se utilizó el programa SeismoMatch 2016 para realizar el escalamiento de los acelerogramas. Como resultado del análisis sísmico de la edificación se obtuvo respuestas dinámicas como; periodos de la primera forma de vibración, fuerzas internas de los elementos estructurales y distorsiones de entrepiso, que se determinan a partir de los desplazamientos relativos de cada nivel, tanto para la estructura con base rígida como para la estructura que considera el efecto de interacción suelo-estructura. Mediante la incorporación de la Interacción Suelo-Estructura en el análisis sísmico de la edificación, se logró la reducción de las fuerzas internas en los elementos estructurales hasta un 37.18%; aumento de los desplazamientos laterales de entrepiso hasta un 28.49% y un aumento de los periodos de la primera forma de vibración hasta un 23.78%, todo ello con respecto al modelo convencional de empotramiento perfecto.

Palabras clave: Interacción sísmica suelo-estructura, modelo dinámico, respuesta sísmica.

ABSTRACT

INFLUENCE OF SOIL-STRUCTURE INTERACTION IN THE SEISMIC BEHAVIOR OF A 7-LEVEL BUILDING OF THE "MULTIFAMILIAR LOS BALCONES DEL VALLE" PROJECT BARRIO COLUMBO-CAJAMARCA

The present research work has the objective of performing the seismic analysis of a multi - family building of 7 levels located in the city of Cajamarca with a type of flexible soil, to determine the dynamic response of the structure was made a model considering the perfect embedment in The basis and taking into account the effect of soil-structure interaction. In order to evaluate the dynamic response of the structure through the fixed base model, a static, dynamic spectral and time-history analysis was performed, according to the Peruvian Standard E.030 of "Seismic Design" and to obtain the response Of the building produced by the effect of soil-structure interaction was determined by applying dynamic models proposed by scientists DD Barkan-O.A Savinov, Ilichev, Sargsian and the model proposed by the Russian Standard. As support software, the SAP2000 v.18 was used, analyzing the structure by the spectral method for earthquakes of 0 $^{\circ}$, 45 $^{\circ}$ and 90 $^{\circ}$ with respect to the longest axis of the building and by the time-history analysis through accelerograms CISMID-UNI, corresponding to the earthquakes of Lima (17/10/1966), Áncash (05/31/1970) and Ica (08/15/2007), also the SeismoMatch 2016 program was used to carry out The scaling of the accelerograms. As a result of the seismic analysis of the building, we obtained dynamic responses such as; Periods of the first form of vibration, internal forces of the structural elements and distortions of the mezzanine, which are determined from the relative displacements of each level, both for the structure with rigid base and for the structure that considers the effect of soil interaction -structure. By incorporating the Soil-Structure Interaction in the seismic analysis of the building, the reduction of internal forces in the structural elements was achieved up to 37.18%; Increase of the lateral displacements of mezzanine to 28.49% and an increase of the periods of the first form of vibration up to 23.78%, all with respect to the conventional model of perfect embedding.

Key words: Soil-structure seismic interaction, dynamic model, seismic response.

I. INTRODUCCIÓN

1.1. Planteamiento del problema.

El Perú es un país altamente sísmico y según la clasificación mundial le corresponde 9 grados en la escala Mercalli Modificada. Cerca de 18 millones de peruanos viven en zonas sísmicas y están expuestos a las constantes amenazas de ocurrencias de sismos. Cabe indicar, que en investigaciones sísmicas, aún están lejos de poder resolver el peligro sísmico, el cual se incrementa y al que están expuestos cotidianamente. (Villarreal G. 2006)

Al tema de la zona sísmica se le suma la existencia de problemas con el suelo, esto hace que aumente la aceleración sísmica y el daño sea mucho mayor, en muchos lugares hay suelos de resistencia pobre, placas tectónicas cercanas (Placa de Nazca y Placa sudamericana), incluso complejidad en la superficie del suelo. Estas zonas con alto peligro sísmico son habitadas por una enorme cantidad de personas, el cual frente a la ocurrencia de un movimiento telúrico los daños serían irreparables. (Valderrama C. 2014).

El análisis de edificios se lleva normalmente a cabo suponiendo que el movimiento que se aplica en su base, o las fuerzas estáticas equivalentes que se ejercen en sus distintos niveles, son independientes de las características de la cimentación. Sin embargo, existen casos en que el movimiento en cualquier punto de la frontera sueloestructura es sensiblemente diferente del que habría ocurrido en dicho punto si la estructura no estuviese presente; en estos casos se dice que existe interacción sueloestructura (Bazán E. y Meli R. 2002).

El comportamiento dinámico de cualquier estructura está estrechamente ligado a su nivel de fijación con el suelo de fundación. En un sistema empotrado en su base se espera que los movimientos de la base de la estructura sean iguales a los del suelo de fundación. Cuando esta condición no se cumple, los desplazamientos adicionales que produzcan en la base de la fundación inducen un comportamiento distinto al esperado para la estructura empotrada. (Grases J. 2013).

Actualmente en el Perú aún no está difundido un método analítico suficientemente contrastado que nos permita efectuar el análisis y diseño de edificaciones considerando los efectos de contacto entre el elemento estructural y el suelo que lo sustenta, teniendo en cuenta los criterios de seguridad y confiabilidad; sin embargo en las últimas décadas ya se viene desarrollando investigaciones relacionadas al tema otorgando resultados más confiables en las edificaciones.

Es por ello que la presente investigación se basa en determinar el comportamiento sísmico de una edificación en construcción en Cajamarca, mediante la determinación de periodos de vibración, frecuencias, desplazamientos laterales y fuerzas internas de los elementos estructurales, a fin de obtener resultados comparativos entre un modelamiento con empotramiento perfecto y otro con interacción suelo-estructura teniendo en cuenta parámetros de cálculo propuesto por la norma peruana E.030 y modelos dinámicos que considera la flexibilidad de la base de fundación.

1.2. Formulación del problema.

La pregunta que se deriva de la problemática descrita son:

 ¿Cuál es la influencia de la Interacción Suelo-Estructura en el comportamiento sísmico de una edificación?

1.3. Justificación de la investigación.

Para entender mejor la importancia de esta investigación se plantea las siguientes preguntas:

- ¿Por qué? En el modelo de cálculo normativo la base de fundación se toma como un medio externo absolutamente rígido en la cual la cimentación está empotrada en la base. El efecto de interacción suelo-estructura es muy notorio en el cálculo de edificaciones, porque influye en la determinación de los modos de vibración libre, así como en la distribución de los esfuerzos en el edificio y cimentación, cambiando las fuerzas internas en los diferentes elementos estructurales y variando los desplazamientos. (Villarreal G. 2006).

- ¿Para qué? Determinar el comportamiento sísmico de una edificación en una zona sísmica 3 con características de suelo flexible y considerando en el modelamiento la Interacción Suelo-Estructura, permitirá conocer el efecto que produce en la estructura en comparación con el modelo normativo de base fija. Y así contribuir con el uso de metodologías para el modelamiento sísmico de estructuras técnicamente aceptable y acorde con la importancia de la misma, promoviendo una mejor respuesta antisísmica de la estructura.

- ¿Para quiénes? Debido al insuficiente desarrollo de los métodos de cálculo en nuestro país y en nuestra región, la presente investigación puede servir como manual práctico para los ingenieros e investigadores en esta área, además de ello sirva para mejorar la Norma Peruana de Diseño Sismorresistente y dé el ímpetu adicional para el desarrollo intensivo de esta nueva área de investigación.

1.4. Alcances o delimitación de la investigación.

Se tomó como modelo un edificio de 7 niveles del proyecto "Multifamiliar los Balcones del Valle" ubicado en la calle s/n – sector 05, barrio Columbo, distrito, provincia y departamento de Cajamarca.

Fuente: Google Earth

Según el Estudio Mapa de Peligros de la ciudad de Cajamarca elaborado por el Instituto Nacional de Defensa Civil INDECI-PNUDPER/02/051, identifica a dicha zona con un nivel severo ante la ocurrencia de un sismo por presentar suelos lagunares con un nivel freático alto y suelos expansibles en grandes proporciones con altas aceleraciones sísmicas.

Dicho edificio cumple con los requisitos arquitectónicos reglamentarios y presenta las siguientes características: Siete (07) niveles, dos (02) departamentos por piso con un área techada de 234 m2 por nivel. Cada departamento cuenta con (02) dormitorios, un (01) baño completo para cada dormitorio, un (01) baño completo para visitas, (01) sala de estar, una (01) cocina – lavandería y una sala - comedor.

Se llevó a cabo una serie de comparaciones de modelos que consideren la interacción suelo-estructura (ISE), con el modelo que considera la base empotrada según lo estipulado en la NUEVA NORMA E0.30 "Diseño Sismorresistente" del R.N.E, además para el análisis tiempo-historia se necesitó de 3 acelerogramas reales de sismos y el programa **SeismoMatch 2016** para el escalamiento de cada uno de ellos, luego se realizó el análisis sísmico con el acelerograma escalado de Lima 1966, ya que según resultados del análisis sísmico de la estructura fue el que generó mayores respuestas, para el análisis dinámico espectral y tiempo-historia se hizo variar los ángulos de acción del sismo a fin de conocer los valores que generan mayor efecto. Como resultado de estos análisis se obtuvo respuestas dinámicas como periodos de vibración, frecuencias, fuerzas internas (fuerza axial, fuerza cortante y momentos flectores) y desplazamientos de todos los modelos a considerar.

Toda la argumentación y veracidad de los resultados se fundamenta en la aplicación del método de los elementos finitos; por tal motivo se utilizó el programa SAP 2000, el cual cuenta con el respaldo internacional y proyectos de gran relevancia.

Una de las principales dificultades que implica considerar la ISE (Interacción Suelo Estructura), es el sobrecosto y la dificultad de obtener los parámetros de cálculo para la obtención del Coeficiente de Balasto y el módulo de Poisson del suelo. Estas dificultades implican que salvo para grandes edificaciones y obras de gran responsabilidad, este método no es muy utilizado.

En este trabajo no se ha tenido la oportunidad de calcular el coeficiente de balasto ni el módulo de Poisson del suelo donde se apoya la edificación, por tanto recurriremos a las tablas y aproximaciones que autores acreditados han elaborado.

1.5. Hipótesis:

1.5.1. Hipótesis general.

La incorporación de la Interacción Suelo-Estructura en la modelación de un edificio influye en el comportamiento sísmico de la estructura, mediante la reducción de esfuerzos y el incremento de, los periodos de vibración y desplazamientos laterales.

1.6. Objetivos:

1.6.1. Objetivo general:

- Determinar la influencia que tiene la Interacción Suelo-Estructura en el comportamiento sísmico de una edificación, mediante la determinación de esfuerzos, periodos de vibración y desplazamientos.

1.6.2. Objetivos específicos:

- Realizar el análisis sísmico según la nueva Norma peruana E.030 "Diseño Sismorresistente" para un modelamiento con y sin Interacción suelo-estructura (ISE), considerando diversos ángulos de acción del sismo, espectros de aceleración y sismos reales utilizando el software SAP 2000.
- Incorporar la Interacción Suelo-Estructura en el análisis sísmico estructural del proyecto utilizando los modelos dinámicos de D.D. Barkan – O.A. Savinov, V.A. Ilichev, A.E. Sargsian, y norma Rusa.
- Obtener desplazamientos de la estructura, periodos de vibración y esfuerzos de los elementos estructurales para cada uno de los modelos a estudiar.
- Describir y comparar los resultados obtenidos en los diferentes análisis y modelamientos.

II. MARCO TEÓRICO.

2.1. Antecedentes teóricos:

Condori U. (2014), en su tesis de grado realizó una comparación sísmica lineal y no lineal de un edificio alto en Arequipa con disipadores de energía e interacción sueloestructura, utilizando diferentes metodologías de análisis llegando a las siguientes conclusiones: Los desplazamientos que obtuvo por el análisis sísmico dinámico modal espectral empotrado cumplen con la norma, pero éstos se ven incrementados al aplicarle interacción suelo estructura; además recomienda que para modelos con cercanía a un comportamiento real, el análisis símico dinámico modal tiempo-historia con interacción suelo-estructura, es uno de los modelos recomendables para evaluar el comportamiento sísmico de edificios.

Grases J. (2013), utiliza el término de Interacción Suelo-Estructura para definir los efectos recíprocos que ocurren a nivel de fundación entre la base de la estructura, el sistema de fundación y el suelo circundante. El mecanismo de interacción puede ser explicado mediante dos fenómenos principales:

- Efectos inerciales: las fuerzas inerciales que desarrolla la estructura debido a su propia vibración causan cortantes y momentos en la base de la estructura que se transmiten al suelo y lo deforman, dando lugar a desplazamientos adicionales a nivel de fundación. Se tiende a esperar reducción en la respuesta gracias a esta flexibilidad añadida en el sistema.
- Efectos cinemáticos: ocasionado básicamente por el comportamiento del suelo circundante y el sistema de fundación, actuando como dos materiales distintos que intentan moverse de manera compatible. Se espera que esto ocasione mayor disipación de energía en el sistema.

López E. (2012), En su tesis para optar el grado de magister: "Análisis de interacción sísmica suelo estructura para reducir esfuerzos en los elementos estructurales en edificaciones regulares e irregulares con zapatas aisladas en Huaraz" concluye que en una edificación irregular: en el análisis estático los modelos dinámicos de Ilichev y

Sargsian no cumplen con las derivas de la norma E.030, los modelos empotrado en la base, Barkan y la Norma Rusa si cumplen con las derivas de la norma E.030; en el análisis dinámico espectral y tiempo-historia los modelos de empotrado en la base, Barkan, Ilichev, Sargsian y la Norma Rusa y si cumplen con las derivas de la norma E.030.

Silva D. y Ipanaque G. (2009), En su tesis de Grado sobre Interacción Sísmica Suelo-Estructura en Edificaciones Aporticadas, describe que la interacción de Suelo-Estructura es un campo de la ingeniería civil, que une a la Ingeniería Geotécnica con la Ingeniería Estructural. La necesidad de esta unificación ha sido evidente por el simple hecho de que ningún edificio al momento de su diseño podría evitar la interacción con el suelo de fundación, existiendo muchos espectros y parámetros a resolver. El cambio de las capacidades de los equipos computarizados, ha creado la premisa para la realización de éste cálculo juntando la interacción suelo-cimentación-superestructura, mediante el uso del computador.

García G. (2006), en sus investigaciones publicadas por la Sociedad Mexicana de Ingeniería Estructural afirma que el efecto interacción suelo-estructura influye en el comportamiento dinámico de la estructura pues se refleja en un aumento en el periodo fundamental así como en un aumento en el amortiguamiento del sistema en comparación con el modelo de base fija, que no considera al suelo de cimentación.

Además **García G. (2006)**, analizó el efecto de interacción suelo-estructura de una edificación de mampostería no reforzada localizada en Alemania encontrando que influye en el comportamiento dinámico, pues se refleja en un aumento en el periodo de vibración así como en un aumento en el amortiguamiento del sistema en comparación con el modelo de base fija, que no considera al suelo de cimentación.

2.2. Bases teóricas.

2.2.1. Interacción Suelo-Estructura.

La interacción suelo-estructura consiste en hacer participar al suelo como parte del análisis estructural, para lograr esto existen varios modelos; desde la forma más sencilla asignando una rigidez al suelo en sentido vertical (Balasto vertical), hasta los modelos más complejos que asignan cinco rigideces al suelo como son los modelos dinámicos de **D.D. Barkan – O.A. Savinov, V.A. Ilichev y A.E. Sargsian**, y el modelo dinámico de la **Norma Rusa SNIP 2.02.05-87** que asigna al suelo seis rigideces, tres traslacionales y tres rotacionales. (**Villareal G. 2006**).

Lo que plantea la Interacción suelo-estructura es tomar en cuenta las propiedades elásticas del suelo, es decir, el suelo no es infinitamente rígido, como suele plantearse en la mayoría de análisis, sino que tiene cierto grado de amortiguación y absorbe parte de la energía entregada por el sismo. Esto va a ocasionar que una menor cantidad de energía llegue a la superestructura, generando variaciones apreciables en el control de desplazamientos laterales y en la distribución de esfuerzos de los elementos estructurales. Por ello es necesario la utilización de modelos dinámicos que consideren en el análisis el trabajo conjunto de suelo-cimentación-superestructura.

2.2.2. <u>Trabajo Espacial y Múltiples Componentes de la Acción Sísmica.</u>

"La teoría actual de construcciones antisísmicas, altamente investigadas a nivel internacional, se ha llegado a la conclusión que el esquema de cálculo Normativo aún está lejos de reflejar el trabajo real de las edificaciones ante los sismos. En las normas de estructuras aún se sigue usando el esquema de cálculo de péndulo invertido, el cual no refleja el trabajo real de la estructura, salvo casos parciales. En cambio, el esquema de cálculo espacial si refleja el estado esfuerzo deformación de la edificación. (Villareal G. 2006). (El esquema de péndulo invertido es el modelo dinámico que puede caracterizar el comportamiento dinámico de una estructura y las características que lo definen son su masa y la rigidez, dicho modelo representa a una estructura con la masa concentrada en la parte superior y con un elemento resistente relativamente esbelto en la parte inferior.

Tradicionalmente se utiliza el modelo de péndulo invertido sin peso, con masas puntuales a nivel de entrepisos con una rigidez equivalente de todo el piso y empotrado en su base, modelo en el cual se puede considerar mutuamente la acción sísmica en dos direcciones perpendiculares a la estructura, sin embargo dicho modelo tiene como limitaciones la imposibilidad de la descripción de varios efectos dinámicos del trabajo real de la estructura, no se puede representar la interacción suelo estructura pues al considerar al suelo como rígido, este es indeformable y no existe ningún movimiento del mismo, por esa razón que dicho método se utiliza para un análisis en dos dimensiones, tal es el caso de pórticos en una sola dirección. El modelo espacial se representa mediante un cuerpo sólido con 6 grados de libertad (3 traslacionales y 3 rotacionales), permitiendo de este modo explicar las vibraciones de desplazamiento y giro, en dicho modelo espacial se considera las propiedades del suelo en el cálculo de edificaciones introduciendo sus coeficientes de rigidez equivalentes, en donde al tratarse de un modelo espacial es necesario incorporar estos coeficientes de rigidez en las direcciones horizontal, vertical y giros respecto a los mismo ejes, con el fin de tratar de determinar las perturbaciones sísmicas que surgen en dicha edificación producto de una acción sísmica).

Este tipo de cálculos, requiere el uso y aplicación de programas computacionales de acorde con sus normas de diseño sismorresistente.

2.2.3. Investigaciones sobre la interacción sísmica suelo-estructura.

Según Avilés J. y Pérez L. (2007), la interacción de Suelo-Estructura es un campo de la ingeniería civil, que une a la Ingeniería Geotécnica con la Ingeniería Estructural. La necesidad de esta unificación ha sido evidente por el simple hecho de que ningún edificio al momento de su diseño podría evitar la interacción con el suelo de fundación, existiendo muchos espectros y parámetros a resolver. El cambio de las capacidades de los equipos computarizados, ha creado la premisa para la realización de éste cálculo juntando la interacción suelo-cimentación-superestructura, mediante el uso del computador. Los cálculos de la Interacción Suelo-Estructura han llegado a ser altamente relevantes para los edificios debido a que el diseño estructural en condiciones de campo es complicado. Las deformaciones diferenciadas del subsuelo afectan perceptiblemente en la distribución de las fuerzas a través de toda la estructura y de no hacer caso a ésta amenaza, pone en riesgo la seguridad de los edificios. El rol de los Ingenieros Geotécnicos aumenta exponencialmente, por ello el tema de la Interacción Suelo-Estructura aspira a ser un eje principal de información que proporciona la exactitud de la predicción de los cálculos al momento de diseñar una edificación, ya que toda obra está construida sobre o en el terreno.

2.2.4. Líneas futuras de la interacción suelo-estructura.

La Sociedad internacional de ingeniería geotécnica y mecánica de suelos (**ISSMGE**) es la organización profesional más importante a nivel mundial que se enfoca a desarrollar investigaciones sobre Interacción suelo-estructura, es una organización rusa, que se creó con la finalidad de preservar las ciudades históricas, como patrimonios culturales y su sede está en la ciudad de San Petersburgo.

Los casos particulares investigados por ésta organización es la posibilidad práctica de resolver los problemas geotécnicos encontrados en la reconstrucción de ciudades históricas y la nueva construcción en áreas congestionadas con condiciones de tierra inestables. La filosofía de esta organización, es investigar fundaciones confiables, que impidan desplazamientos o derrumbes, lo cual ocasionaría desastres y pérdidas materiales y humanas. Por ello, indican "es mejor estudiar bien el terreno y de esta manera no se enterrará su dinero en el subsuelo".

Los investigadores han creado un software llamado FEM MODELS, diseñado para abordar la mayoría de los problemas complejos de la interacción suelo-estructura en 3D, utilizando para ello el método de elementos finitos.

Las principales Líneas de Investigación en el área de interacción suelo-estructura son:

- Considerar al suelo como inelástico y disipador de energía.

- Analizar el comportamiento del suelo en forma de elementos sólidos, incorporando el efecto de fricción interna, ángulo de cohesión y otras propiedades.

- Utilizar la metodología de los pasos como método iterativo de cálculo.

Cabe indicar, que en éste tema de investigación, son los rusos y los japoneses, quienes lideran las investigaciones en ésta área y cuyos aportes han permitido proyectar edificaciones seguras, confiables y económicas.

Asimismo la Interacción Suelo-Estructura está siendo aplicada a diversas áreas de la ingeniería civil, como es el caso de túneles, puentes, reservorios simplemente apoyados, reservorios de tanque elevado, centrales nucleares, pilotes para puentes y edificaciones, etc. Los investigadores tienen en cuenta que la Interacción SueloEstructura es el flujo de energía desde el suelo a la estructura y viceversa, por tal motivo surge la necesidad de profundizar el estudio y la aplicación a las diversas áreas.

2.2.5. <u>Modelo de Winkler – coeficiente de balasto</u>

El modelo de Winkler es uno de los métodos de cálculo más utilizado para modelizar la interacción entre estructuras de cimentación y terreno es el que supone el suelo equivalente a un número infinito de resortes elásticos -muelles o bielas biarticuladas- cuya rigidez, denominada módulo o coeficiente de balasto (Ks), se corresponde con el cociente entre la presión de contacto (q) y el desplazamiento -en su caso asiento- (δ). **Freire. (2000).**

$$k_s = q/\delta \tag{1}$$

Figura N° 2: Coeficiente de balasto

Fuente: Silva & Ipanaque, 2009

El nombre balasto le viene, como seguramente se sabe, de que fue precisamente en el análisis de las traviesas del ferrocarril donde se utilizó por primera vez esta teoría. El balasto es la capa de grava que se tiende sobre la explanación de los ferrocarriles para asentar y sujetar las traviesas. A este modelo de interacción se le conoce generalmente como modelo de Winkler debido al nombre de su investigador, y tiene múltiples aplicaciones, no sólo en el campo de las cimentaciones, sino en cualquiera problema que pudiese adaptarse a este modelo. La ecuación diferencial que gobierna el comportamiento de la solución del modelo de Winkler, que es el resultado de suponer a la cimentación como una viga discretizada en infinitas barras de longitud diferencial con nudos en sus extremos es la siguiente (**Silva D. e Ipanaque G. 2009**):

Figura N° 3: Viga discretizada (Modelo de Winkler)

Fuente: Silva & Ipanaque, 2009

$$p = k.w(x) + (E.I) d^4w/dx^4$$
 (2)

Siendo:

w (x) : asiento de la viga (m).

- x : coordenada (m).
- k : módulo de balasto (kN/m³)
- p : carga por unidad de longitud (kN/m)
- E : módulo de elasticidad de la losa (kN/m^2)
- I : inercia de la viga respecto al eje que pasa por su centro de gravedad (m⁴).

El módulo de balasto se lo puede obtener a partir de la determinación de parámetros característicos del suelo mediante las siguientes expresiones:

$$k_s = \frac{Es}{b(1-\mu^2)} \tag{3}$$

Donde:

 $k_s =$ módulo de balasto (kN/m³)

Es = módulo de deformación o elasticidad (kN/m²)

 μ = coeficiente de Poisson del suelo

b = ancho de la cimentación (m)

$$k_s = \frac{Es}{\omega * A^{0.5} (1 - \mu^2)}$$
(4)

Donde:

ks = módulo de balasto (kN/m³)

Es = módulo de deformación o elasticidad (kN/m²)

A = área de la base de cimentación (m^2)

 ω = coeficiente de forma de la cimentación (zapata de largo L y ancho b)

 μ = coeficiente de Poisson del suelo

Tabla N°1: Valores del coeficiente de forma de la cimentación

L/b	1.0	1.5	2.0	3.0	4.0	5.0	6.0	7.0	8.0	9.0	10.0
ω	0.88	0.87	0.86	0.83	0.80	0.77	0.74	0.73	0.71	0.69	0.67

Fuente: Silva & Ipanaque, 2009

2.2.6. Modelos Dinámicos de Interacción Suelo-Estructura.

2.2.6.1. Modelo Dinámico D.D. BARKAN – O.A. SAVINOV

Para este modelo sólo se calculan cinco coeficientes de rigidez de los seis grados de libertad existentes, debido a que en este modelo se restringe el giro en el eje "z", según las siguientes fórmulas.

$$K_{x} = C_{x} \times A \qquad K\phi.x = C\phi x \times Ix$$

$$K_{y} = C_{y} \times A \qquad K\phi.y = C\phi y \times Iy$$

$$K_{z} = C_{z} \times A \qquad (5)$$

Donde:

C x, y	= coeficiente de desplazamiento elástico uniforme. (Kg/m ³)
C z, C φ	= coeficientes de compresión elástica uniforme y no uniforme. (Kg/m ³)
A	= área de la base de la cimentación (m^2)
Ι	 momento de inercia de la base de la cimentación respecto al eje principal, perpendicular al plano de vibración. (m⁴)

Mediante investigaciones teórico-experimentales, se logró encontrar una dependencia entre los coeficientes Cx, Cz y C ϕ con la presión estática (kg/cm2) que es transmitida al suelo, obteniéndose las siguientes expresiones finales:

Donde:

$$C_0$$
, D_0 = Coeficientes determinados a través de experimentos (Kg/m³)

$$\Delta$$
 = Coeficiente empírico, asumido como 1m⁻¹

Para el coeficiente D₀, como se mostraron en los experimentos se puede utilizar la dependencia empírica:

$$Do = \frac{1 - \mu}{1 - 0.5\mu}.Co$$
(7)

Sin embargo, para cálculos prácticos se recomienda usar las siguientes expresiones:

$$C_{0} = 1.7. \frac{E_{0}}{1 - \mu^{2}} \cdot 10^{-3} \left(\frac{kg}{cm^{3}}\right)$$

$$D_{0} = 1.7. \frac{E_{0}}{(1 + \mu)(1 - 0.5\mu)} \cdot 10^{-3} \left(\frac{kg}{cm^{3}}\right)$$
(8)

Donde:

Eo: Módulo de elasticidad, calculado experimentalmente para presión estática del suelo de 0,1-0,2 kg/cm2.

También se pueden usar los valores del coeficiente C_0 cuando $\rho_0 = 0.2$ kg/cm2, elegidos de acuerdo al tipo de suelo de la base de fundación, a través de la tabla 2.

Tipo de	Característica de la	Suelo	$C_0(kg/cm^3)$
perfil	base de fundación		
		Arcilla y arena arcillosa dura $(I_L < 0)$	3,0
S1	Roca o suelos muv	Arena compacta $(I_L < 0)$	2,2
	rigidos	Cascajo, grava, canto rodado, arena densa	2,6
		Arcilla y arena arcillosa plástica $(0,25 \le I_L \le 0,5)$	2,0
		Arena plástica $(0 \le I_L \le 0.5)$	1,6
S 2	Suelos intermedios	Arena polvorosa medio densa y densa $(e \le 0.80)$	1,4
		Arenas de grano fino, mediano y grueso, independientes de su densidad y humedad	1,8
		Arcilla y arena arcillosa de baja plasticidad $(0,5 \le I_L \le 0,75)$	0,8
S3	Suelos flexibles o con	Arena plástica $(0,5 \le I_L \le 1)$	1,0
	estratos de gran espesor	Arenas polvorosa, saturada, porosa (e>0,80)	1,2
S4	Condiciones	Arcilla y arena arcillosa muy blanda $(I_L > 0.75)$	0,6
	excepcionales	Arena movediza $(I_L \ge 1)$	0,6

Tabla N° 2: Valores del coeficiente C_0 cuando $\rho_0 = 0,2$ kg / cm.

Fuente: Libro del Dr. Genner V.C "Interacción sísmica suelo-estructura en edificaciones con zapatas aisladas"

2.2.6.2. <u>Modelo Dinámico V.A. ILICHEV</u>

El modelo dinámico V.A. Ilichev fue elaborado para aplicarlo a problemas ondulatorios de interacción suelo-estructura, modelado como un semiespacio elástico. En un inicio el esquema de cálculo de este modelo se aplicó a problemas de vibraciones verticales de cimentaciones circulares, apoyados sobre un semiespacio elástico isótropo. El esquema de cálculo de este modelo se muestra en la siguiente figura.

Figura N° 4: Modelo dinámico V.A. Ilichev

Fuente: Libro del Dr. Genner V.C "Interacción sísmica suelo-estructura en edificaciones con zapatas aisladas"

La parte superior del sistema es una placa sin peso, donde el resorte con rigidez K_1 y el amortiguador B_1 modelan el efecto creado por las ondas longitudinales. Los parámetros K_1 y B_1 dependen del radio de la placa, densidad del material del semiespacio y velocidad de las ondas longitudinales; y no depende del coeficiente de Poisson y velocidad de ondas transversales. A la parte inferior del sistema le corresponde el comportamiento dinámico de la placa ante las ondas transversales y de "Rayleigh". Los parámetros m_2 , B_2 , K_2 también dependen de las dimensiones de la placa y densidad del medio, pero a diferencia de los parámetros del sistema superior, dependen de μ y C_2 ; más no dependen de la velocidad de las ondas longitudinales. Asimismo, en el modelo se ha dividido la influencia de las ondas longitudinales en las transversales, así como las ondas Rayleigh en el movimiento de la placa. (Las ondas Rayleigh son ondas que se propagan por la superficie, debido a su baja frecuencia provocan resonancia en edificios con mayor facilidad que las ondas de cuerpo causando los efectos más devastadores). Las ondas longitudinales crean la resistencia al movimiento de la placa (cimentación), dependiente de su desplazamiento y velocidad. Las ondas transversales y Rayleigh crean también resistencia, dependiente de la aceleración del movimiento de la placa, que tuvo su repercusión en el origen de la masa m2.

El modelo dinámico descrito fue determinado como un sistema con 1,5 grados de libertad, donde un grado de libertad se determina en la parte inferior del sistema y medio grado de libertad se registra en la parte superior de la misma.

Los cinco parámetros adimensionales del modelo mecánico de la base con 1.5 grados de libertad, representan una dependencia lineal de \sqrt{A} , según las siguientes expresiones.

Donde:

- i = 1 (Coeficiente para vibraciones verticales), 2 (Coeficiente para vibraciones horizontales).
- C = Representa a los parámetros con su respectiva dirección (x, y, z, φ_x, φ_y).
- α = Radio asumido de la base de cimentación. ($\alpha = |A/\pi|$ (m)

A = Área de la cimentación (m^2) .

 ψ = Ángulo de fricción interna del suelo.

Los coeficientes K son obtenidos de las siguientes tablas dependientes del tipo de vibración y coeficiente de Poisson de la base de fundación. Según las tablas

Del libro del Dr. Genner Villarreal Castro "Interacción sísmica suelo-estructura en edificaciones con zapatas aisladas".

μ	<i>b</i> _{0Z1}	<i>K</i> _{0Z1}	m_{0Z}	b _{0Z2}	K _{0Z2}
0,25	5,34	21,80	2,80	6,21	7,50
0,35	6,44	26,30	3,12	6,90	8,40
0,45	10,53	43,00	3,29	7,50	9,20
μ	$b_{0\varphi 1}$	$K_{0 arphi \mathrm{l}}$	$m_{0\varphi}$	$b_{0\varphi 2}$	$K_{0\varphi 2}$
0,25	1,36	5,60	1,00	1,60	7,50
0,35	1,63	6,70	1,03	1,70	7,90
0,45	2,50	10,70	0,84	1,60	7,30
μ	<i>b</i> _{0<i>X</i>1}	K _{0X1}	m _{0X}	<i>b</i> _{0<i>X</i>2}	<i>K</i> _{0<i>X</i>2}
0,25	3,10	12,40	1,80	5,20	7,60
0,35	3,10	12,40	1,90	5,70	8,30
0,45	3,10	12,40	2,10	6,40	9,20

Tabla 3: Valores de los coeficientes verticales, rotaciones y horizontales.

Fuente: Libro del Dr. Genner V.C "Interacción sísmica suelo-estructura en edificaciones con zapatas aisladas"

μ	b_{1Z1}	K_{1Z1}	m_{1Z}	b_{1Z2}	<i>K</i> _{1Z2}
0,25	0,87	3,56	0,56	0,62	2,88
0,35	1,06	4,34	0,62	0,78	3,50
0,45	1,81	7,41	0,69	0,78	3,72
μ	$b_{1arphi 1}$	$K_{1arphi 1}$	$m_{1\varphi}$	$b_{1\varphi 2}$	$K_{1\varphi^2}$
0,25	0,22	1,16	0,12	0,12	1,34
0,35	0,28	1,41	0,16	0,12	1,81
0,45	0,50	1,97	0,16	0,12	1,81
μ	b_{1X1}	<i>K</i> _{1<i>X</i>1}	m _{1X}	<i>b</i> _{1<i>X</i>2}	<i>K</i> _{1<i>X</i>2}
0,25	0,53	2,09	0,28	0,75	<mark>1,53</mark>
0,35	0,53	2,09	0,31	0,84	1,87
0,45	0,53	2,09	0,37	0,84	1,91

Tabla 4: Valores de los coeficientes verticales, rotaciones y horizontales.

Fuente: Libro del Dr. Genner V.C "Interacción sísmica suelo-estructura en edificaciones con zapatas aisladas"

Donde:

 $b_{Z1}, k_{Z1}, m_Z, b_{Z2}, k_{Z2}$

: Coeficientes de vibraciones verticales para la parte superior (1) y la parte inferior (2).

$b_{X1}, k_{X1}, m_X, b_{X2}, k_{X2}$: Coef. De vibraciones horizontales para la		
	parte superior (1) y la parte inferior (2).		
$b_{\Phi 1}, k_{\Phi 1}, m_{\Phi}, b_{\Phi 2}, k_{\Phi 2}$: Coef. De vibraciones rotacionales para la		
	parte superior (1) y la parte inferior (2).		

Los coeficientes K son obtenidos en función del módulo de Poisson, tanto para vibraciones verticales como horizontales.

Obteniendo los coeficientes tanto para vibraciones horizontales – verticales, como rotacionales, podremos determinar los coeficientes de rigidez y de amortiguamiento.

- Para vibraciones horizontales y verticales:

$$K_{X(Y)(Z)} = (C_2)^2 \cdot \rho \cdot k_{X(Z)} \cdot \alpha$$
(10)

$$B_{X(Y)(Z)} = (C_2) \cdot \rho \cdot k \, x_{(Z)} \cdot \alpha^2$$
(11)

- Para vibraciones rotacionales:

$$K_{\varphi} = (C_2)^2 .\rho .k_{\varphi} .\alpha^3$$
(12)
$$B_{\varphi} = (C_2) .\rho .k_{\varphi} .\alpha^4$$
(13)

Donde:

 C_2 = Velocidad de propagación de la onda transversal (m/s)

$$(C_2)^2 = \frac{E}{2(1+\mu)\rho}$$
(14)

E = Modulo de elasticidad de la base de fundación. (Kg/cm²)ρ = Densidad del suelo de la base fundación (Kg/cm²) Finalmente, calculamos las rigideces equivalentes, considerando que en el modelo analizado las rigideces horizontales son en forma paralela mientras las verticales serán en forma consecutiva, con lo cual tenemos las siguientes expresiones:

Para vibraciones horizontales (Kg/m):
$$K_{X(\Gamma)} = K_{X(\Gamma)1} + K_{X(\Gamma)2}$$
 (15)

Para vibraciones verticales (Kg/m):
$$K_z = \frac{K_{z_1} \cdot K_{z_2}}{K_{z_1} + K_{z_2}}$$
 (16)

Para vibraciones rotacionales (Kg-m):
$$K_{\varphi} = \frac{K_{\varphi 1} \cdot K_{\varphi 2}}{K_{\varphi 1} + K_{\varphi 2}}$$
(17)

2.2.6.3. Modelo Dinámico A.E. SARGSIAN

De acuerdo a éste modelo dinámico, en su análisis se ingresan parámetros cuasiestáticos de rigidez de la base de fundación Kx, Ky, Kz, K ϕ x, K ϕ y, K ϕ z, los cuales se determinan por las siguientes fórmulas:

$$K_{x} = K_{y} = \frac{28.8(1 - \mu^{2}).\rho.C_{2}^{-2}\sqrt{A}}{\sqrt{\pi}(7 - 8\mu)}$$

$$K_{z} = \frac{4.\rho.C_{2}^{-2}\sqrt{A}}{\sqrt{\pi}(1 - \mu^{2})}$$

$$K\phi x = \frac{8.52.\rho.C_{2}^{-2}I_{AX}}{\sqrt{\pi}(1 - \mu)\sqrt{A}}$$

$$K\phi z = \frac{4.\rho.C_{2}^{-2}I_{AZ}}{\sqrt{\pi}(1 - \mu)\sqrt{A}}$$
(18)

Donde:

- ρ = Densidad del suelo de fundación (Kg/cm²)
- μ = Módulo de Poisson del suelo de fundación

- C1 = Velocidad de propagación de las ondas longitudinales en el suelo de fundación (m/s)
- C2 = Velocidad de propagación de las ondas transversales en el suelo de fundación (m/s)

A = Área de la base de fundación
$$(m^2)$$

De acuerdo a la concepción de semiespacio elástico, las velocidades de propagación de las ondas longitudinales y transversales se determinan por las siguientes fórmulas:

$$C_1^2 = \frac{(1-\mu).E}{(1+\mu).(1-2\mu).\rho} \qquad \qquad C_2^2 = \frac{E}{2(1+\mu).\rho}$$
(19)

Dónde:

 $E = M \acute{o} du lo de elasticidad de la base de la fundación. (Kg/cm²)$

Cabe resaltar que los coeficientes K toman en cuenta la rigidez al giro geométrico y al de las masas inerciales del suelo de fundación que interactúa con la estructura, respecto a los planos "X", "Y" y "Z", con la finalidad de lograr un comportamiento real suelo-estructura con sus 6 grados de libertad activados

Además éste modelo de análisis presenta coeficientes de amortiguamiento en los 6 grados de libertad del movimiento, logrando con ello disipar la energía del sismo tal y como sucede en una edificación real. Estos parámetros resultan de la aplicación de las siguientes fórmulas:

$$\begin{split} \eta_x &= \eta_y = \frac{18.24(1-\mu).\rho.C_2A}{\pi.(7-8\mu)} \\ \eta_{\varphi} &= \frac{1.6\sqrt{(1-2\mu)}.\rho.C_1I_z}{(1-\mu)\pi\sqrt{2.(1-\mu)}} \\ \eta_z &= \frac{3.4\sqrt{(1-2\mu)}.\rho.C_1A}{(1-\mu)\pi\sqrt{2.(1-\mu)}} \\ \end{split}$$

$$\eta_{yz} = \frac{3.4\sqrt{(1-2\mu)}.\rho.C_1.I_z}{(1-\mu)\pi\sqrt{2.(1-\mu)}}$$
(20)

Donde:

ρ	= Densidad	del suelo	de fundación	(Kg/cm^2)
---	------------	-----------	--------------	-------------

- μ = Módulo de Poisson del suelo de fundación
- C₁ = Velocidad de propagación de las ondas longitudinales en el suelo de fundación. (m/s)
- C₂ = Velocidad de propagación de las ondas transversales en el suelo de fundación. (m/s)

A = Área de la base de fundación (m^2)

Ix, Iy, Iz = Momento de inercia respecto a los ejes X, Y, Z (m^4)

 ηx , ηy , ηz = Coeficientes de amortiguamiento en las direcciones x, y, z.

2.2.6.4. Modelo Dinámico de la NORMA RUSA

En éste modelo de análisis, también se consideran los 6 grados de libertad de la interacción suelo-estructura. Los coeficientes de rigidez de compresión elástica uniforme K_z , desplazamiento elástico uniforme Kx; compresión elástica no uniforme K ϕ y desplazamiento elástico no uniforme K ψ ; se calculan con las siguientes fórmulas:

$$K_z = C_z A \qquad K_x = C_x A \qquad K_{\varphi} = C_{\varphi} I_{\varphi} \qquad K_{\psi} = C_{\psi} I_{\psi} \qquad (21)$$

Donde:

A = Área de la base de fundación (m²)
 C_x = Coeficiente de desplazamiento elástico uniforme en X (Kg/m³)
 C_y = Coeficiente de desplazamiento elástico uniforme en Y (Kg/m³)
C_z = Coeficiente de compresión elástica uniforme (Kg/m³)

 $C\phi$ = Coeficiente de compresión elástica no uniforme (Kg/m³)

 $C\psi$ = Coeficiente de desplazamiento elástico no uniforme (Kg/m³)

La principal característica elástica de la cimentación, es decir el coeficiente de compresión elástica uniforme Cz, se puede determinar por la siguiente fórmula:

$$C_{z} = boE\left(1 + \sqrt{\frac{A_{10}}{A}}\right) \tag{22}$$

Donde:

 $b_0 = Coeficiente (m-1)$ asumido para suelos arenosos igual a 1; para arenas arcillosas 1.2; para arcillas, gravas, arenas densas igual a 1.5.

E = Módulo de deformación del suelo en la base de la cimentación

 $A_{10} = 10 \text{ m}^2$

Los coeficientes de desplazamiento elástico uniforme C_x ; compresión elástica no uniforme C_{ϕ} y desplazamiento elástico no uniforme $C\psi$; se determinan por las siguientes fórmulas:

$$C_{x} = C_{y} = 0.7C_{z}$$

$$C_{\phi} = 2C_{z}$$

$$C_{\psi} = C_{z}$$
(23)

En las propiedades de amortiguación de la base de la cimentación, se deben de considerar las amortiguaciones relativas ξ . La amortiguación relativa para las vibraciones verticales ξ_z se puede determinar por las fórmulas:

- Para las vibraciones establecidas (armónicas) o conocidas:

$$\xi_z = \frac{2}{\sqrt{C_z p_m}} \tag{24}$$

- Para las vibraciones no establecidas (impulsos) o desconocidas:

$$\xi_z = 6 \sqrt{\frac{E}{C_z p_m}} \tag{25}$$

Donde:

E = Módulo de deformación del suelo en la base de la cimentación.

C_z = Coeficiente de compresión elástica uniforme.

p_m = Presión estática media en la base de la cimentación.

$$p_m \le \gamma_{ts} \cdot R \tag{26}$$

Siendo γ^{ts} , el coeficiente de la condición de trabajo del suelo de fundación se asumirá mediante tablas descritas en el Libro del Dr. Genner Villarreal Castro "Interacción sísmica suelo-estructura en edificaciones con zapatas aisladas".

El valor de R es la resistencia de cálculo del suelo de fundación el cual se obtendrá los valores mediante tablas. Las amortiguaciones relativas para las vibraciones horizontales y rotacionales respecto a sus ejes horizontal y vertical, se pueden determinar por las siguientes fórmulas:

$$\xi_x = 0.6\xi_z$$
 $\xi_{\phi} = 0.5\xi_z$ $\xi_{\psi} = 0.3\xi_z$ (27)

2.3. Definición de términos.

Acelerograma: Es una representación temporal de la aceleración que experimenta el suelo en un determinado punto durante un terremoto. Los valores de la aceleración se obtienen mediante unos instrumentos llamados acelerógrafos, que registran la aceleración del suelo según tres direcciones perpendiculares; dos horizontales y una vertical.

Acelerógrafo: Instrumento que registra la aceleración del suelo durante un terremoto.

Amortiguamiento en las estructuras: Se define como la capacidad que tiene una estructura para sofocar la energía transmitida por una fuerza externa. Esta fuerza externa o carga dinámica provocará un estado de excitación en la estructura, el cual, a través de fuerzas de fricción, será llevado a un estado de reposo.

Coeficiente de Poisson: Es una constante elástica que proporciona una medida de la compresibilidad de un material perpendicular al esfuerzo aplicado, o la relación entre la deformación latitudinal y la deformación longitudinal.

Diafragmas rígidos: Es un elemento losa que se va a comportar como una estructura rígida que no experimentará deformación. Todas las partículas o puntos de la losa se moverán simultáneamente con el centro de masa.

Elementos estructurales: Son componentes estructurales que resisten las fuerzas de gravedad, de viento, sismo y otros tipos de carga. Es decir, son las columnas, vigas, marcos, pisos, paredes, muros y cimentaciones.

Escalas de magnitudes sísmicas: Son parámetros que clasifican a los sismos de acuerdo a las amplitudes y períodos, y duración de las ondas registradas en los sismógrafos.

Espectros de respuesta elástica: Representan parámetros de respuesta máxima para un terremoto determinado y usualmente incluyen varias curvas que consideran distintos factores de amortiguamiento. Se utilizan fundamentalmente para estudiar las características del terremoto y su efecto sobre las estructuras.

Espectros de respuesta inelástica: son similares a los anteriores pero en este caso se supone que el oscilador de un grado de libertad exhibe comportamiento no-lineal, es decir que la estructura puede experimentar deformaciones en rango plástico por acción del terremoto.

Fricción interna de un suelo: El ángulo de fricción interna de un suelo corresponde al ángulo cuya tangente es el coeficiente promedio de fricción entre las partículas de un suelo.

Grados de libertad (GL): Es definido como el número de desplazamientos independientes requerido para definir las posiciones desplazadas de todas las masas relativas a sus posiciones originales. Un grado de libertad corresponde a cualquier movimiento posible de los nodos de los elementos en una dirección no restringida

Grados de libertad dinámicos (GLD): Son los grados de libertad que tienen asociada masa y para los cuales puede conocerse las vibraciones o movimientos a lo largo del tiempo.

Isotrópico: Dícese del material que posee las mismas propiedades físicas en todas las direcciones.

Microzonificación sísmica: División de una región o de un área urbana en zonas más pequeñas, que presentan un cierto grado de similitud en la forma como se ven afectadas por los movimientos sísmicos, dadas las características de los estratos de suelo subyacente.

Modos de vibración: Un modo de vibración es un patrón o forma característica en el que vibrará un sistema estructural.

Módulo de Reacción o Coeficiente de Balasto: Se define como: *La relación entre la tensión capaz de generar una penetración de la placa en el terreno de 1" que equivale a una deformación de 0,0254 m,* es decir que este coeficiente es la pendiente de la recta secante que une el origen de coordenadas con el punto de la curva "tensión – deformación" que genera un asentamiento de la placa de 0,0254 m

Ondas sísmicas: Son vibraciones que se propagan a través de la corteza terrestre causadas por la repentina liberación de energía en el foco. Se pueden clasificar en ondas de cuerpo (P y S) y superficiales (Love y Rayleigh). Las primeras se transmiten en el interior de la tierra, en todas direcciones.

Ondas longitudinales (P): Es un tipo de onda, llamadas también primarias, compresionales o dilatacionales; producen un movimiento de partículas en la misma dirección de la propagación, alternando compresión y dilatación del medio.

Ondas transversales (S). Es un tipo de onda, llamadas también ondas secundarias de cortante o rotacionales, son las que producen un movimiento de partículas en sentido perpendicular a la dirección de propagación.

Ondas love (L): Es un tipo de onda superficial de corte horizontal similar al de las ondas S que no tienen componente vertical ya que mueven la superficie del suelo de lado a lado sobre un plano horizontal y en sentido perpendicular a la dirección de propagación.

Ondas Rayleigh (R): Es un tipo de onda superficial, en la cual las partículas vibran en un plano vertical, siguiendo una trayectoria elíptica.

Periodo de retorno: Define el lapso de tiempo promedio entre las ocurrencias de terremotos con un determinado rango de magnitud; es igual a la recíproca de la frecuencia de ocurrencia.

Periodo de vibración: Se define como el intervalo de tiempo necesario para que el sistema efectúe un ciclo completo de movimiento.

Rigidez: Es la propiedad de un cuerpo, elemento o estructura de oponerse a las deformaciones. También se define como la capacidad de soportar cargas o tensiones sin deformarse o desplazarse excesivamente.

Sismo: Es una sacudida del terreno que se produce debido al choque de las placas tectónicas y a la liberación de energía en el curso de una reorganización brusca de materiales de la corteza terrestre.

Suelo de fundación: Es una parte del suelo donde se apoya la estructura, es el encargado de recibir y disipar las cargas que le transfiere la fundación.

Suelos blandos: En general el término de suelo blando se aplica a las arcillas (suelos cohesivos) con una resistencia de 2 a 4 golpes en la prueba de penetración estándar (resistencia a la compresión simple de 0.25 a 0.50 kg/cm2).

Suelos granulares: Es un tipo de suelo, está formado por partículas agregadas y sin cohesión entre ellas dado el gran tamaño de las mismas. Su origen obedece fundamentalmente a procesos de meteorización física: lajamiento, termoclastia, o fenómenos de hidratación física.

Suelos cohesivos: A diferencia de los anteriores, esta categoría de suelos se caracteriza por un tamaño más fino de sus partículas constituyentes (inferior a 0.08 mm.), lo que les confiere unas propiedades de superficie ciertamente importantes. La cohesión es la principal propiedad desde el punto de vista mecánico de este tipo de suelos; se define como la fuerza interparticular producida por el agua de constitución del suelo, siempre y cuando este no esté saturado.

Vibración: Es la oscilación o el movimiento repetitivo de un objeto alrededor de una posición de equilibrio.

Zapatas: Es un tipo de cimentación superficial (normalmente aislada), que puede ser empleada en terrenos razonablemente homogéneos y de resistencia a compresión medias o altas. Consisten en un ancho prisma de hormigón (concreto) situado bajo los pilares de la estructura. Su función es transmitir al terreno las tensiones a que está sometida el resto de la estructura y anclarla.

III. MATERIALES Y MÉTODOS

3.1. Materiales:

3.1.1. Población de estudio.

La población de estudio está constituido por todas las edificaciones a construirse dentro del área de influencia correspondiente al sector del barrio Columbo-distrito, provincia y departamento de Cajamarca.

3.1.2. Muestra.

La selección de la muestra se realizó empleando un muestreo no probabilístico de tipo intencional o por conveniencia y está constituida por el proyecto multifamiliar ubicado en el sector 05 del barrio Columbo, el cual está conformada por 18 lotes de terreno a ser construidos con un área total de terreno de 2439.27 m2, contando con cada uno de ellos planos arquitectónicos. La lotización es como se muestra en la figura N° 5.

Fuente: Plano elaborado por la empresa A&E S.R.L

3.1.3. Unidad de análisis.

La unidad de análisis se consideró el lote N°13 que corresponde al edificio de 7 niveles del proyecto multifamiliar, dicha edificación cuenta con planos y parámetros de diseño.

Figura N° 6: Planta

Figura N° 7: Elevación

Fuente: planos elaborados por la empresa A&E S.R.L

3.2. Tipo y Método de estudio.

Según el tipo la investigación es, no experimental transversal y se empleará el método descriptivo; es decir, describir, explicar y analizar sistemáticamente lo que existe con respecto a las variaciones o las condiciones de las variables. Se trabajará con consideraciones sustentadas en investigaciones académicas del campo correspondiente.

3.3. Definición de variables.

3.3.1. Variable Independiente.

- Modelamiento de la base de fundación.

3.3.2. Variable dependiente.

- Comportamiento sísmico.

3.4. Técnicas e instrumentos de recolección de datos.

Dentro de las técnicas e instrumentos de recolección de datos a ser utilizados en la tesis mencionaremos.

- a) <u>Planos arquitectónicos y estructurales</u>: Con la obtención de los planos se podrá determinar la estructuración, predimensionamiento, estructuración Metrados y la modelación sísmica de la estructura.
- b) <u>Estudio de suelos</u>: Se utilizarán los ensayos de laboratorio de mecánica de suelos realizados en la etapa de anteproyecto, con el fin de conocer las propiedades mecánicas del tipo de suelo, para la realización del predimensionamiento de las cimentaciones superficiales y su posterior modelamiento.
- <u>Registros sísmicos</u>: se obtendrá datos de registros sísmicos de acelerogramas usados como: acelerograma de Lima 1966, Huaraz 1970, Ica 2007 para el análisis sísmico Tiempo- Historia.

 d) <u>Análisis de documentos</u>: La información necesaria se obtendrá principalmente de investigaciones realizadas por autores nacionales e internacionales además se contará con normativas vigentes en el Perú y normativas extranjeras, reglamento y tesis realizadas en otras realidades.

3.5. Análisis e interpretación de datos.

3.5.1. Técnicas de procesamiento de datos.

Para el presente trabajo es necesario la aplicación de programas informáticos como:

- a) <u>Microsoft Excel 2010</u>: Para la realización de cálculos en el predimensionamiento y Metrados tanto de la superestructura (columnas, vigas, losas, escaleras, placas, etc.) como de la subestructura (cimentaciones), además se utilizará para la realización de cuadros y gráficos.
- b) <u>AutoCAD 2016</u>: Para realizar las mediciones, cálculos de áreas y visualización de los elementos estructurales.
- c) <u>SAP 2000 V.18</u>: Útil para la modelación espacial de la edificación, el cual permitirá realizar el análisis sísmico variando diversos parámetros ante la acción sísmica en condiciones reales del Perú, dicho modelamiento se encontrará basado en documentos normativos, ya que se fundamenta en la aplicación del método de elementos finitos para el cálculo sísmico de edificaciones, además cuenta con el respaldo internacional en obras y proyectos de gran envergadura.
- 3.5.2. <u>Técnicas de análisis e interpretación de resultados.</u>

Los resultados a obtener serán los que genere:

- a) Análisis Sísmico Estático con base empotrada.
- b) Análisis Sísmico Dinámico Modal-Espectral con base empotrada.
- c) Análisis Sísmico Tiempo-Historia con base empotrada.
- d) Análisis Sísmico Dinámico Modal-Espectral con Interacción Suelo-Estructura (modelo Barkan-Savinov, Ilichev, Sargsian y Norma Rusa).
- e) Análisis Sísmico Dinámico Tiempo-Historia con Interacción Suelo-Estructura (modelo Barkan-Savinov, Ilichev, Sargsian y Norma Rusa).

Los datos procesados han sido analizados e interpretados según lo estipula la norma E.030-2016 del RNE para el caso del control de las derivas y desplazamientos permisibles, Además se utilizaron cuadros y gráficas para la comparación de los resultados (desplazamientos, derivas, distorsiones, asentamientos, fuerzas internas, periodos de vibración y frecuencias) obtenidos según los modelos a analizar.

IV. Procedimiento metodológico

4.1. Predimensionamiento

Antes de realizar el análisis sísmico del edificio se iniciará con la elección de las dimensiones de los elementos estructurales, para ello se seguirá una serie de procedimientos para lograr nuestro objetivo. Las principales fuentes usadas para pre dimensionar los elementos estructurales fueron el libro "Estructuración y Diseño de Edificaciones de Concreto Armado" del Ingeniero Antonio Blanco Blasco y la Norma E.060 del Reglamento Nacional de Edificaciones.

4.1.1. Predimensionamiento de la losa aligerada

Como recomienda la Norma E.060, el peralte mínimo de una losa aligerada adecuada para no hacer la verificación de deflexiones será obtenido a partir de la siguiente expresión:

$$e_{losa} = \frac{L_n}{25} \tag{28}$$

Donde:

h: Peralte de la losa aligerada

L: Luz libre máxima de la losa aligerada

En la figura 8, muestra el paño elegido para determinar el espesor de la losa.

A 15 LOSA: B St2207 m2

Figura N° 8: Elección de la luz crítica para predimensionamiento de losa

Fuente: plano de estructuración – ver en anexos

La losa elegida para el predimensionamiento es la losa N° 08, debido a que presenta mayor luz libre que las demás, entonces, al tener una luz libre máxima de 4.79 m. se tendrá un peralte de 20 cm.

Esta recomendación para losas aligeradas conformadas por ladrillos de ancho igual a 30cm, viguetas de 10cm y con una losa superior de 5cm, que tengan sobrecargas menores a 300 kg/cm2 y luces menores de 7.5 m.

Este resultado fue comparado con lo recomendado en el libro del Ingeniero Blanco, ya que éste indica que para luces comprendidas entre 4 m y 5.5 m. el peralte del aligerado será de 20 cm.

4.1.2. Predimensionamiento de vigas.

Según la Norma E.060 y Blanco Blasco, indica que para vigas que formen parte de pórticos que resistirán fuerzas de sismos, el ancho mínimo debe ser de 25 cm ni tampoco debe ser mayor al ancho de la columna de soporte, el peralte efectivo no puede ser mayor que un cuarto de la luz libre, también se menciona que la relación entre la base y el peralte debe ser más de 0.3 y debería ser menos de 0.5 debido a lo que predomina, con respecto a resistencia de cargas, en las vigas es el peralte.

Para determinar el predimensionamiento del peralte se suele usar un factor que va de 1/9 a 1/12 del peralte, sin embargo, se usará 1/13 con el fin de usar la teoría de viga débil y columna fuerte, de tal forma que al generarse una rótula plástica, el elemento a fallar sea la viga y no la columna.

a) <u>Peralte de Viga</u>

Según Roberto Morales utiliza un método basado en la norma ACI para determinar el peralte de las vigas.

$$h = \frac{L_n}{\left(\frac{4}{\sqrt{W_u}}\right)} \tag{29}$$

Utiliza un método basado en la norma ACI, usando los coeficientes de amplificación Wu = 1.4 WD + 1.7 WL

Donde:

Ln = Luz Libre de la viga

Wu = carga por unidad de área

Según Blanco Blasco utiliza unos factores para determinar el peralte, esto varía de acuerdo al criterio estructural.

$$h = \frac{L_n}{12} \qquad \text{a} \qquad h = \frac{L_n}{10} \tag{30}$$

b) Ancho de la viga

Para estructuras conformadas por pórticos o estructuras sismorresistentes podemos consideraremos un ancho mínimo de 25cm.

El ancho de la viga puede considerarse como:

$$b = \frac{B}{20} \quad \text{o} \quad b = \frac{h}{2} \tag{31}$$

Dimensiones usuales de las vigas según Blanco Blasco, en función de las longitud de luz, dichos valores no garantiza la exactitud de las secciones, por tal motivo el predimensionamiento se lo hará para cada una de los tramos.

Tabla N°5: Secciones usuales para vigas según Blanco B	lasco

SECCIONES USUALES PARA VIGAS				
Luces (m)Secciones (cm x cm)				
$L \le 5.5$	25	x 50	30 :	x 50
$L \le 6.5$	25 x 60	30 x 60	40 :	x 60
$L \le 7.5$	25 x 70	30 x 70	40 x 70	50 x 70
L ≤ 8.5	30 x 75	40 x 75	30 x 80	40 x 80
$L \le 9.5$	30 x 85	30 x 90	40 x 85	40 x 90

Fuente: Blanco Blasco, 1995

En el Anexo 1: Tabla N°1, se muestra el resultado del predimensionamiento de las vigas, considerando parámetros de cálculos ya mencionados; además se han optado por elegir secciones de acuerdo al criterio de rigideces.

4.1.3. Predimensionamiento de columnas

Se usó como información base lo indicado en el capítulo 3 del libro del Ingeniero Blanco referente a dimensionamiento de columnas, presentada a continuación:

"Para edificios aporticados íntegramente, para los cuales el autor recomienda no exceder de 3 pisos ó 4 pisos, las columnas deberán dimensionarse mediante alguna estimación del momento del sismo, demostrando la experiencia que se requerirán columnas con un área de fluctuante entre 1000 y 2000 cm2, salvo que se tengan vigas con luces mayores a 7 mts." (Blanco 1997: 42).

Tabla N° 6: Predimensionamiento columnas

Tipo C1 (para los primeros pisos)	Columna interior	P = 1.10 P _G n = 0.30		
Tipo C1 (para los 4 últimos pisos superiores)	Columna interior	P = 1.10 P _G n = 0.25	$bh = \frac{P}{nf'_c}$	(32)
Tipo C2, C3	Columnas Extremas de pórticos interiores	P = 1.25 P _G n = 0.25		
Tipo C4	Columna de esquina	P = 1.50 P _G n = 0.20		

Fuente: Libro "Estructuración y diseño de edificaciones De concreto armado Antonio B.B, (pág. 42).

En anexos, las tablas 2 y 3 muestran el resumen de las secciones de columnas, cuyas dimensiones son las mínimas requeridas para realizar el análisis sísmico.

4.1.4. Predimensionamiento de la cimentación

Según el estudio de mecánica de suelos con fines de cimentación realizado por el Ing. Javier Colina Bernal en la etapa de anteproyecto, muestra las siguientes características del terreno, ver Tabla N° 7.

Clasificación SUCS	CL
Peso volumétrico	$v_s = 1830 \text{ Kg/m}^3$
Ángulo de fricción	$\emptyset = 23^{\circ}$
Cohesión	$C = 0.22 \text{ Kg/cm}^2$
Factor de Seguridad	F.S= 3.00
Módulo de Elasticidad	$E_s = 1500000 \text{ Kg/m}^2$
Módulo de Poisson	v= 0.30
Coeficiente de Balasto	2.15 Kg/cm^3
Capacidad Portante	$\sigma_t = 0.90 \text{ Kg/cm}^2$

Tabla N° 7: Características del terreno

Fuente: Elaboración propia

Con estos datos se realizará el predimensionamiento de los diferentes tipos de cimentación, en nuestro proyecto la subestructura está conformada por zapatas aisladas conectadas con vigas de arriostre, zapatas combinadas, además se tiene una platea de cimentación donde se apoya el ascensor y la escalera. Cabe mencionar que, para el predimensionamiento de la cimentación se ha utilizado información del Ing. Braja M. Das, de su libro "Fundamentos de ingeniería de cimentaciones-séptima edición", así mismo, se ha utilizado la norma E.060 "Concreto Armado", la norma E.050 "Suelos y Cimentaciones" y la norma "Requisitos de Reglamento para Concreto Estructural" del ACI 318S-14.

4.1.4.1. Zapatas aisladas.

Con datos de la tabla N° 7, se procedió a realizar el predimensionamiento de la zapata aisladas, en el anexo 4 se muestra como ejemplo el procedimiento del predimensionamiento para la zapata aislada Z-01, cabe mencionar que, los mismos pasos se ha realizado para todas las zapatas aisladas, ya sean en esquina, medianeras

o centradas, el resumen de las secciones de las zapatas es como se muestra en la tabla $N^{\circ} 8$.

ZAI	PATAS AISLA	ADAS DE ESQ	UINA	
	DIMENSIONES DED			
ZAPATA	LARGO	ANCHO	PERALIE	
Z-01	1.30	1.00	0.50	
Z-03	1.20	1.20	0.60	
Z-05	1.20	1.10	0.50	
ZAP	ATAS AISLA	DAS MEDIAN	VERAS	
740474	DIMEN	SIONES		
LAPAIA	LARGO	ANCHO	PERALIE	
Z-02	2.10	1.00	0.50	
Z-08	2.10	1.10	0.50	
Z-09	1.50	1.00	0.70	
Z-11	1.50	1.00	0.50	
Z-12	1.90	0.80	0.50	
Z-19	2.40	0.90	0.50	
Z-28	1.30	1.00	0.60	
Z-30	2.20	1.10	0.70	
Z-35	2.40	1.10	0.60	
ZA	PATAS AISLA	ADAS CÉNTR	ICAS	
	DIMEN	SIONES		
LAPAIA	LARGO	ANCHO	PERALIE	
Z-15	1.80	1.50	0.80	
Z-16	1.70	1.10	0.70	
Z-17	2.20	1.30	0.90	
Z-20	1.40	0.80	0.60	
Z-21	2.30	1.40	0.90	
Z-27	2.20	1.50	1.00	
Z-31	1.80	1.10	0.50	
Z-32	1.60	1.00	0.50	
Z-33	1.60	1.00	0.60	
Z-34	1.70	1.30	0.70	

Tabla N° 8: Resumen de zapatas aisladas:

Fuente: Elaboración propia

4.1.4.2. Zapatas combinadas.

Las zapatas combinadas son aquellas que soportan dos o más elementos verticales. Generalmente se usan cuando el área de dos zapatas se sobrepone, o cuando existen excentricidades grandes en un elemento vertical que se encuentra en el límite de una propiedad.

Para el diseño de la zapata combinada se sigue un procedimiento similar al ejemplo de la zapata aislada, con la diferencia de que se va a trabajar con cargas aplicadas en diferentes puntos de la zapata en función a la ubicación de cada placa, luego las cargas se desplazarán al centro de gravedad de la zapata combinada.

Con datos de la tabla N° 7, se procedió a realizar el predimensionamiento de la zapata combinada "Z-06-Z-07" (ver anexo 5) recordar que el mismo procedimiento se ha realizado para la zapata combinada "Z-10-Z-11, el resumen de las secciones de las zapatas combinadas es como se muestra en la tabla N° 9.

Zapatas Combinadas				
Zapata	Dime	Peralte		
	Largo	Ancho		
Z-06-07	2.20	1.50	0.50	
Z-10-18	4.60	2.00	1.10	

Tabla N° 9: Resumen de secciones de zapatas combinadas

Fuente: Elaboración propia

Para el predimensionamiento de las placas se ha utilizado la información del Ing. Ángel San Bartolomé Ramos en su libro "análisis de edificios", además, cada una de las placas tiene columnas de confinamiento, por lo que, la cimentación se ha analizado como zapatas corridas, sin embargo se seguirá el mismo procedimiento anteriormente descritas para el caso de zapatas combinadas. Con datos de la tabla N° 7, se ha procedido a realizar el predimensionamiento, obteniendo como resultados los valores que se muestran en la Tabla N° 10.

Zamata	Dimensio	Danalta	
Lapata	Largo	Ancho	Peralle
Z-P-01	1.80	1.00	1.10
Z-P-03	1.70	1.20	1.30
Z-P-08	2.10	0.80	1.00
Z-P-07	2.20	1.40	1.30
Z-P-02	2.80	2.10	1.20

Fuente:

Elaboración

propia

En el proyecto se presenta una losa de cimentación que soporta a la escalera y al ascensor, dicha cimentación está clasificada dentro de las zapatas combinadas ya que es una estructura que puede soportar varias columnas o muros al mismo tiempo, debido a que la capacidad de carga del suelo es relativamente baja y las zapatas aisladas en dicho bloque resultan innecesarias, se ha optado por considerar dicha cimentación. Para determinar el ancho y el largo de la losa es necesario seguir el mismo procedimiento que se ha realizado anteriormente descritas en los item 4.1.4.2.

En el anexo 6, se mostrará el procedimiento que se ha seguido para determinar el peralte efectivo (d) y la verificación por punzonamiento, cabe señalar que dicho procedimiento es complemento a lo que ya se ha venido realizando en los items anteriores. En la tabla N° 11, se muestra las dimensiones de la platea de cimentación.

	=		
ZAPATA ASCENSOR-ESCALERA DEFINITIVAS			
	DEDALTE		
LAPATA	LARGO	ANCHO	PEKALIE
Z-P-ASC-ESC	6.50	3.60	0.80

 Tabla N° 11: Dimensiones de placa de cimentación

Fuente: Elaboración propia

4.1.4.3. <u>Vigas de arriostre.</u>

Se entiende por viga de arriostre aquel sobre la que apoyan tres o más pilares. De nuevo aquí la sección trasversal puede ser rectangular o bien adoptar la forma de T invertida con economía de hormigón y acero, pero con un mayor costo de encofrados y mano de obra. La tendencia actual es hacia secciones rectangulares, salvo en grandes cimentaciones, en las que las formas más complicadas pueden compensar desde un punto de vista económico.

Para el predimensionamiento de las vigas de arriostre se utilizarán las siguientes fórmulas:

$$h = \frac{S}{8} \qquad \qquad b = \frac{Pe}{24S} \tag{33}$$

Donde:

S: Distancia entre apoyos de viga de cimentación.Pe: Carga verticalh: Peralte de la vigab: Ancho de la viga

En la tabla 10 (ver anexos), se muestra el resultado de las secciones de las vigas de arriostre, los pesos y las cargas que actúan sobre las vigas se muestran en el plano de cimentaciones.

4.2. Metrado de cargas

4.2.1. Metrado de cargas de los elementos estructurales

A continuación, en las tablas N°4, 5 y 6 (ver anexos) se muestra un resumen de las cargas por piso, mostrando el peso total de la edificación, que corresponde a la suma de la carga muerta con la carga viva y el peso sísmico total de le edificación que corresponde a la suma de la carga muerta con el 25% de la carga viva, (ver anexo, tabla 7).

4.3. Análisis sísmico considerando la base empotrada.

4.3.1. Análisis sísmico estático con base empotrada

Si bien no aplicaría el método estático, éste se realizará con fines de comparación. En la presente tesis, se asumirá que los posibles sótanos están encima del nivel de terreno natural (nivel +00). Esto a fin de esforzar más a la estructura.

4.3.1.1. <u>Cálculos previos.</u>

En la tabla N° 12, se muestra la información necesaria para obtener la cortante basal.

Factor de Zona (Z)	0.35	Tabla N°1 (Cajamarca, "Zona 3")			
Factor de Uso (U)	1.00	Tabla N°5 (Edificaciones comunes, categoría "C")			
Factor de suelo (S)	1.20	Tabla N°3 (Perfil tipo "S3")			
Coeficiente Básico de Reducción (Ro)	7	Tabla N°7 (Concreto Armado, "Dual")			
Periodo de suelo (TP)	1.00 seg	Tabla N°4 (Perfil tipo "S3")			
Periodo (TL)	1.60 seg	Tabla N°4 (Perfil tipo "S3")			
СТ	45	Art. 4.5.4 (Dual-"Pórtico, placas")			
Altura del edificio (Hn)	18.90 m	Según planos arquitectónicos "PA-01"			
Peso sísmico de la estructura (P)	1050.305 Tn	En edificaciones de categoría "C", se tomará el 25% de la carga viva			

Tabla N° 12: Datos para obtener la cortante basal

Fuente: Valores extraídos de la norma E.030-2016 "diseño sismorresistente"

4.3.1.1.1. <u>Cálculo del periodo fundamental de la estructura (T):</u>

El valor del periodo fundamental de vibración para cada dirección se estimará de acuerdo al ítem 4.5.4. De la norma E.030.

$$T = \frac{H_n}{C_t} \tag{34}$$

Reemplazando valores de la tabla N $^{\circ}$ 12. "Datos para obtener la cortante basal" se obtiene como resultado:

T= 0.420 s.

4.3.1.1.2. Cálculo del factor de amplificación (C):

De acuerdo a las características de sitio, se define el factor de amplificación sísmica (C), según el ítem 2.5 de la norma E.030:

$$T < Tp, C = 2.5$$

$$Tp < T < TL, C = 2.5 \left(\frac{T_P}{T}\right)$$

$$T > TL, C = 2.5 \left(\frac{T_P.TL}{T2}\right)$$
(35)

Reemplazando valores de la tabla Nº 12. Se obtiene como resultado:

$$C = 2.5$$

4.3.1.1.3. Coeficiente de Reducción de las Fuerzas Sísmicas (R):

Todos los elementos de concreto armado que conforman el sistema estructural sismorresistente deberán cumplir con lo previsto en el Capítulo 21 "Disposiciones especiales para el diseño sísmico" de la Norma Técnica E.060 Concreto Armado del RNE. El coeficiente de reducción de las fuerzas sísmicas se determinará como el producto del coeficiente R_0 determinado a partir de la Tabla N° 7 y de los factores *Ia*, *Ip* obtenidos de las Tablas N° 8 y N° 9 de la Norma Técnica E.030 del RNE.

$$R = Ro * Ia * Ip \tag{36}$$

En donde:

Ia: Factor de irregularidad en altura.

Ip: Factor de irregularidad en planta.

Ro: Coeficiente básico de reducción de las fuerzas sísmicas.

a) Verificación de Irregularidad de la Estructura:

Según el artículo 3.6 de la N.T.P 0.30 menciona lo siguiente: El factor *Ia* se determinará como el menor de los valores de la Tabla N° 8 correspondiente a las irregularidades estructurales existentes en altura en las dos direcciones de análisis. El factor *Ip* se determinará como el menor de los valores de la Tabla N° 9 correspondiente a las irregularidades estructurales existentes en planta en las dos direcciones de análisis. Si al aplicar las Tablas N° 8 y 9 se obtuvieran valores distintos de los factores *Ia* o *Ip* para las dos direcciones de análisis, se deberá tomar para cada factor el menor valor entre los obtenidos para las dos direcciones.

- Cálculo del factor de irregularidad en altura Ia:

Según la Tabla N°8 (de la Norma E030-2014/DS-003-2016), se puede obtener la verificación de irregularidad en altura de la edificación los resultados se muestra en la siguiente tabla.

IRREGULARIDADES ESTRUCTURALES EN ALTURA				Ia Dir Y-Y
Irregularidad de Rigidez – Piso Blando	DIR X-X	DIR Y-Y	0.75	0.75
Irregularidades de Resistencia – Piso Débil	DIR X-X	DIR Y-Y	1.00	1.00
Irregularidad Extrema de Rigidez	DIR X-X	DIR Y-Y	1.00	1.00
Irregularidad Extrema de Resistencia	DIR X-X	DIR Y-Y	1.00	1.00
Irregularidad de Masa o Peso	AMBAS DIRECCIONES		1.00	1.00
Irregularidad Geométrica Vertical	DIR X-X	DIR Y-Y	1.00	1.00
Discontinuidad en los Sistemas Resistentes	AMBAS DIRECCIONES		1.00	1.00
Discontinuidad extrema de los Sistemas Resistentes	S AMBAS DIRECCIONES		1.00	1.00
Tener en cuenta las restricciones de la tabla N° 10	Se toma el va	lor mas critico	0.75	0.75

Tabla N° 13: Irregularidades estructurales en altura

Fuente: Elaboración propia

- Cálculo del factor de Irregularidad en planta Ip:

Según la Tabla N°9 (Norma E030-2014/DS-003-2016), se puede obtener la verificación de irregularidad en planta de la edificación los resultados se muestra en la siguiente tabla.

Tabla N° 14: Irregularidades estructurales en	pl	ant	a	
	т	D!	X7 X7	Ī

IRREGULARIDADES ESTRUCTURALES EN PLANTA			Ip Dir X-X	Ip Dir Y-Y
Irregularidad Torsional	DIR X-X	DIR Y-Y	0.75	0.75
Irregularidad Torsional Extrema	DIR X-X	DIR Y-Y	1.00	1.00
Esquinas Entrantes	DIR X-X	DIR Y-Y	1.00	1.00
Discontinuidad del Diafragma	AMBAS DIRECCIONES		0.85	0.85
Sistemas no Paralelos	DIR X-X	DIR Y-Y	0.90	1.00
Tener en cuenta las restricciones de la tabla N° 10	Se toma el valor mas critico		0.75	0.75

Fuente: Elaboración propia

CATEGO	RÍA Y RE	Tabla N° 10 GULARIDAD DE LAS EDIFICACIONES
Categoria de la Edificación	Zona	Restricciones
A1 y A2	4, 3 y 2	No se permiten irregularidades
	1	No se permiten irregularidades extremas
В	4, 3 y 2	No se permiten irregularidades extremas
	1	Sin restricciones
	4 y 3	No se permiten irregularidades extremas
с	2	No se permiten irregularidades extremas excepto en edificios de hasta 2 pisos u 8 m de altura total
	1	Sin restricciones

Fuente: tabla N° 10 (Norma E030-2014/DS-003-2016)

b) Cálculo del factor (R):

Reemplazando valores en la ecuación (36) se obtiene:

$$R = 3.9375$$

4.3.1.1.4. Chequeo de la relación C/R:

Según lo establece la norma E.030 en el ítem 4.5.2.

$$\frac{C}{R} \ge 0.125 \tag{37}$$

Reemplazando el valor de C y el coeficiente de reducción sísmica R, se obtiene:

$$C/R = 1.512 \dots ; CUMPLE!$$

4.3.1.1.5. <u>Cálculo de la fuerza cortante en la base (V):</u>

La fuerza cortante total en la base de la estructura, correspondiente a la dirección considerada, se determina por la siguiente expresión, según el ítem 4.5.2. De la norma E.030.

$$V = \frac{ZUCS}{R}P$$
(38)

Reemplazando los valores de la tabla N° 12 en la ecuación 38, se obtiene el valor del cortante basal:

$$V = \frac{0.35 * 1 * 2.5 * 1.20}{3.938} * 1198.796$$

4.3.1.1.6. Distribución de la fuerza sísmica en altura (Fi):

Se distribuye la cortante sísmica basal en todos niveles y según se incremente la altura, esta fuerza se aplicará en el centro de masa "C.M." de cada losa. Según el ítem 4.5.3, de la norma E.030-2016, se obtiene las siguientes expresiones.

$$Fi = \alpha i * V$$

$$\alpha = \frac{P_i * (hi)^k}{\sum_{j=1}^n P_j * (hj)^j}$$
(39)

Donde *n* es el número de pisos del edificio, k es un exponente relacionado con el período fundamental de vibración de la estructura (*T*), en la dirección considerada, que se calcula de acuerdo a:

a) Para T menor o igual a 0,5 segundos: k = 1

b) Para *T* mayor que 0.5 segundos: $k = (0.75 + 0.5 T) \le 2.0$

Piso	Peso P _i (Tn)	Altura h _i (m)	$P_i^*(h_i^k)$	α	Fi (Tn)	Vi (Tn)
1	111.373	2.70	300.706	0.026	7.066	275.662
2	144.519	5.40	780.404	0.067	18.338	268.596
3	144.519	8.10	1170.605	0.100	27.507	250.258
4	144.519	10.80	1560.807	0.133	36.676	222.750
5	162.934	13.50	2199.607	0.188	51.687	186.074
6	162.934	16.20	2639.529	0.225	62.025	134.387
7	162.934	18.90	3079.450	0.263	72.362	72.362
	1033.732	Σ	11731.109	Σ	275.662	

Tabla N° 15: Distribución de la fuerza sísmica en altura.

Fuente: Elaboración propia.

4.3.1.2. <u>Procedimiento de modelación.</u>

El software SAP 2000 es una herramienta bastante utilizada en el mundo de la ingeniería estructural, ya que permite realizar un análisis estructural eficiente, a través del ingreso de características propias de la edificación, tales como longitudes, alturas, material, secciones, entre otras.

Es posible realizar, de manera sencilla, el análisis de estructuras complejas que, años atrás, tomarían un largo proceso de estudio.

A continuación se presentarán los pasos que se siguieron al momento de la modelación de la edificación para un análisis con empotramiento perfecto.

4.3.1.2.1. Geometría de la Edificación

Para iniciar la modelación en el SAP 2000, se utilizó la estructuración según resultados obtenidos en las Tablas 1 y 2 (ver anexos). Es necesario definir las unidades que se van a utilizar antes de realizar la modelación, las cuales son Toneladas y metros. Luego, colocando las longitudes de las luces, alturas de entrepisos y número de pisos, se logra un modelo básico, el cual se modifica hasta lograr las dimensiones exactas de la estructuración requerida. (Ver figura N°9).

Figura N°9: Geometría 3D de la estructura

Fuente: Elaboración propia

4.3.1.2.2. Definición de Material y Secciones

Se utilizará un concreto estructural con las siguientes características:

 $F'c = 2100 \text{ Tn/m}^2$

 $\mu = 0.2$

Módulo de elasticidad (E) = 2173706 Tn/m^2

Estas características se observan en la figura N°10.

Figura N° 10: Material

「「北京大学校学校自体学・ 「大学研究」「大学校会社会学校」	Res - Hetenal Property Data					
Norm	Million Service States Const. COMPA	ero 210				
CCARE OF	Weight and Mass Weight per Life Volume Weiss per Unit Volume	Tost s.C +		1	11/	
	Sampo Pipanty Sala Makar or Exercise 1 Paranti Sala Li Cantone of Themat Systems: A Cantone of Themat Systems: A	517206 02 11796 05 3607160				
	Other Property in Converte National Specified Converte Corporative Stranger, IS Converte Converte Corporative Stranger, IS Converting & Converte National Strategy Strate Theory & Reduction Planter	[780				
Phr.	Gooksh Tachdraeved Property Degitie Gr Des	e.)		1		Ξ

Fuente: Elaboración propia

Por otro lado, se colocaron los valores de secciones según como se indica en el punto 4.1, correspondiente a la etapa de predimensionamiento. En la figura N° 11, se muestra un ejemplo de la sección para vigas longitudinales.

Figura N° 11: Sección de vigas longitudinales

Fuente: Elaboración propia

4.3.1.2.3. Empotramiento de la base

Para el análisis sísmico por el método Empotrado, se procede a empotrar las bases, es decir impedir el desplazamiento en todas las direcciones y la rotación alrededor de todos los ejes (ver figura N° 12):

Figura Nº 12: Colocación de las restricciones de la base

Fuente: Elaboración propia

4.3.1.2.4. Definición de Brazos Rígidos

Se realiza la implementación de brazo rígido a las vigas de todos los pisos y a las columnas del primer piso. En el caso de las vigas, lo que se busca es hacer que las deformaciones comiencen desde las caras internas de las columnas y en el caso de las columnas, se busca que se deforme desde el contacto con la zapata. En la figura N° 13, se observa la colocación de los brazos rígidos a cada viga.

Figura Nº 13: Colocación del brazo rígido en vigas

Fuente: Elaboración propia

4.3.1.2.5. Colocación de los Centros de Masa

Esta ubicación será el centro geométrico en planta más las excentricidades accidentales, según lo estipula la norma E.030 en el ítem 4.5.5. (Ver figura 14).

Figura Nº 14: Colocación del centro de masa

Fuente: Elaboración propia

Es importante colocar las restricciones de los centros de masas, tales como el impedimento de trasladarse en el eje Z, de rotar alrededor del eje X y de rotar alrededor del eje Y. A continuación, en la figura N°15, se presenta la asignación de estas restricciones en el modelo.

Fuente: Elaboración propia

4.3.1.2.6. Definición y Asignación de los Diafragmas Rígidos

Lo que se pretende es que el sistema reconozca a la losa de entrepiso como una losa infinitamente rígida, de tal forma que pueda transmitir eficientemente las cargas horizontales a los elementos encargados de resistirlas, y a la vez hacer que estos elementos no tengan deformaciones variables. Para ello, se definen los diafragmas rígidos de cada entrepiso, como se observa en la figura N°16.

Figura N°16: Definición de diafragmas rígidos de entrepisos

Fuente: Elaboración propia

Posteriormente, en la opción assign/define constraints se asignan los diafragmas rígidos creados anteriormente, tomando en cuenta todos los nodos que los conforman. En la figura N° 17, se aprecia, la asignación del diafragma rígido en el piso 7 de la edificación, el mismo procedimiento es para los demás niveles.

Figura N° 17: Asignación del diafragma rígido del techo 7 de la edificación

Fuente: Elaboración propia

4.3.1.2.7. Definición de los estados de carga

3.0 Van				I X Z Plane B	Y8.4	1				
(Second Second	Define Load Pattorne							\$10	38345	T F WIG 30845
	Load Patrens Load Patrens Dickel Patrens Russe (DEAD	Type (DEAD	Sel Grade Malgier	Andre Latered Land Patriani	1	Dek fo Aktiveri MollyLa	alPater	wig	INX45	WIG MIXES
	E BANDY	GINE GINE	10 a	hiere tiere	•	Detro La contra de	ad Patien	WG	38245	UIC 38845
18					70	Heritad	and a second	We	18245	E WG 38945
								-		0

Figura N° 18: Definición de los estados de carga

Fuente: Elaboración propia

4.3.1.2.8. <u>Asignación de las fuerzas sísmicas en los centros de masa de cada</u> entrepiso.

Esto se realiza para cada entrepiso, en ambas direcciones (ver figura. N° 19)

Figura N°19: Asignación de las fuerzas sísmicas (piso 7 – dirección X)

Fuente: Elaboración propia

4.3.1.2.9. Definición de las combinaciones de carga

En la figura N° 20, se muestra la combinación de carga para la dirección X y dirección en Y.

Figura N° 20: Definición de las combinaciones de carga (dirección X)

Fuente: Elaboración propia

4.3.2. Etapas del análisis dinámico de la edificación

Cualquier estructura puede ser diseñada usando los resultados de los análisis dinámicos por combinación modal espectral según lo especificado en el numeral 4.6 de la norma E.030 "Diseño sismorresistente".

4.3.2.1. <u>Cálculos previos</u>

4.3.2.1.1. Masas traslacionales y masas rotacionales

Basados en el peso sísmico de la estructura, se realizó el cálculo de las masas rotacionales y masas traslacionales. En la tabla N° 16, se muestran los resultados obtenidos. Las siguientes expresiones fueron requeridas para estos cálculos:

$$Mt = \frac{Ppiso}{g}$$

$$Mr = \frac{Mt * (Ix + Iy)}{\acute{A}rea}$$
(40)

Donde:

Ppiso: Peso por piso

g: Gravedad

Ix: Momento de inercia en el eje x

Iy: Momento de inercia en el eje y

Tabla Nº 16: Resumen de masas traslacionales y rotacionales por piso

PISO	Mt (Ton)	Mr. (Ton)
7	13.529	711.983
6	16.894	889.072
5	16.894	889.072
4	16.894	889.072
3	18.771	987.858
2	18.771	987.858
1	18.771	987.858

Fuente: Elaboración propia

4.3.2.1.2. Factor de Escala para el Análisis Espectral

El valor del factor de escala fue obtenido a través de la siguiente expresión:

$$FE = \frac{ZUSg}{R} \tag{41}$$

Donde:

- Z: Factor de sitio
- U: Categoría de la edificación
- S: Factor de suelo
- R: Coeficiente de reducción sísmica
- g: Gravedad

Los valores para los modelos ubicados en Cajamarca serán los mostrados a continuación en la tabla N° 17, a continuación.

Z=	0.35
U=	1.00
S=	1.20
R=	3.938
G=	9.81
Exercites Elab	angaión nuania

 Tabla N°17: Valores para el cálculo del Factor de Escala

Fuente: Elaboración propia

Por lo tanto, se tendrá un valor para el factor de escala de 1.0463

4.3.2.1.3. Excentricidad accidental

Según la normatividad E.030 de diseño sismorresistente menciona que: la incertidumbre en la localización de los centros de masa en cada nivel, se considerará mediante una excentricidad accidental perpendicular a la dirección del sismo igual a 0,05 veces la dimensión del edificio en la dirección
perpendicular a la dirección de análisis. En cada caso deberá considerarse el signo más desfavorable, esto es debido a los efectos de torsión.

ex = 0.05 * Lx	(42)
ey = 0.05 * Ly	

Tabla N°18. Distancias máximas para cada dirección del sismo

Lx=	21.5
Ly=	13.01

En este proyecto, se tiene como excentricidades accidentales, los siguientes valores mostrados en la tabla N°19.

Tabla N°19: Excentricidades

ex=	1.08 m
ey=	0.65 m

4.3.2.2. Procedimiento de modelación

A continuación se presentarán los pasos que se siguieron al momento de la modelación de la edificación para este tipo de análisis.

4.3.2.2.1. Geometría de la Edificación

Al igual que el procedimiento para el análisis estático se va a definir las unidades, las cuales son Toneladas y metros. Luego se colocará las longitudes de las luces, alturas de entrepisos y número de pisos. (Ver figura N°21).

Figura N°21: Geometría 3D de la estructura

Fuente: Elaboración propia

4.3.2.2.2. Definición de Material y Secciones

Se utilizará un concreto estructural con las siguientes características:

F'c = 2100 Tn/m² Módulo de elasticidad (E) = 2173706 Tn/m² $\mu = 0.2$

Estas características se observan en la figura N°22.

Figura N° 22: Material

Fuente: Elaboración propia

Por otro lado, se colocaron los valores de secciones según como se indica en el punto 4.1, correspondiente a la etapa de predimensionamiento. En la figura N° 23 se muestra un ejemplo de la sección para vigas longitudinales.

1801; 19-112-112- 1801; 18-112-	日本に対して、 立山田 大 Table States Anterprise Server		h		
A 20 mm	Terlas Kom Schrösen	(+5.2045 HollySheer Kees.]	NG MAR	VIG 30045	MIG 20040
	Reporter Berline Properties			VIG 20045	WG HANS
	Vett. (0) [23		A DAME NOR	V16 20345	VIG 201005
		Juda-Cite		WG 30345	WG 201415 2
		Cerver]		WG 30345	Vic Mark C
		41100 1 0011	-	1-9020	100

Figura N° 23: Sección de vigas longitudinales

4.3.2.2.3. Empotramiento de las bases

Se restringe el desplazamiento en todas las direcciones y la rotación alrededor de todos los ejes. Ver figura N°24:

Figura N°24: Colocación de las restricciones de la base

Fuente: Elaboración propia

4.3.2.2.4. Definición de Brazos Rígidos

En la figura N° 25, se observa la implementación del brazo rígido en vigas.

Figura N° 25: Colocación del brazo rígido en vigas

4.3.2.2.5. Colocación de los Centros de masa

Esta ubicación será en el centro geométrico en planta más las excentricidades accidentales. Se puede ver en la figura N° 26.

Figura N° 26: Colocación del centro de masa

Fuente: Elaboración propia

Una vez ubicado el centro de masa se procede a colocar las restricciones, tales como el impedimento de trasladarse en el eje Z, de rotar alrededor del eje X y de rotar alrededor del eje Y. En la figura 27 se muestra tal procedimiento.

Fuente: Elaboración propia

4.3.2.2.6. Definición y Asignación de los Diafragmas Rígidos

Lo que se pretende hacer es que, el sistema reconozca a la losa de entrepiso como infinitamente rígida, de tal forma que pueda transmitir eficientemente las cargas horizontales a los elementos encargados de resistirlas, y a la vez hacer que estos elementos no tengan deformaciones variables. Para ello, se definen los diafragmas rígidos de cada entrepiso, como se observa en la figura N° 28.

Figura N° 28: Definición de diafragmas rígidos de entrepisos

Fuente: Elaboración propia

Posteriormente, se asignan los diafragmas rígidos creados a cada entrepiso, tomando en cuenta todos los nodos que los conforman. En la figura N°29, se aprecia, la asignación del diafragma rígido en el nivel 1 de la edificación.

Figura N° 29: Asignación del diafragma rígido del techo1 de la edificación

Fuente: Elaboración propia

4.3.2.2.7. Definición del Espectro de Diseño

En el artículo 4.6.2 de la norma técnica E.030-2016 muestra el cálculo para determinar el espectro inelástico de pseudoaceleraciones, respectivo para un suelo rígido y un amortiguamiento del 5% para el concreto armado.

$$S_{a(X,Y)} = \frac{ZUCS}{R_{(X,Y)}} xg \qquad (Aceleración Espectral)$$
(43)

A partir de la información dada en la tabla N° 20, se obtiene el espectro de respuesta para la dirección X e Y respectivamente (ver figura N° 30).

T (s)	С	Sa/g
0	2.5	0.2667
0.02	2.5	0.2667
0.04	2.5	0.2667
0.06	2.5	0.2667
0.08	2.5	0.2667
0.1	2.5	0.2667
0.12	2.5	0.2667
0.14	2.5	0.2667
0.16	2.5	0.2667
0.18	2.5	0.2667
0.2	2.5	0.2667
0.25	2.5	0.2667
0.3	2.5	0.2667
0.35	2.5	0.2667
0.4	2.5	0.2667
0.45	2.5	0.2667
0.5	2.5	0.2667
0.55	2.5	0.2667
0.6	2.5	0.2667
0.65	2.5	0.2667
0.7	2.5	0.2667
0.75	2.5	0.2667
0.8	2.5	0.2667
0.85	2.5	0.2667
0.9	2.5	0.2667
0.95	2.5	0.2667
1	2.5	0.2667

Tabla N 20: Acceleration espectra	Tabla	ola N° 20	: Aceleración	espectral
--	-------	-----------	---------------	-----------

1.1	2.2727	0.2424
1.2	2.0833	0.2222
1.3	1.9231	0.2051
1.4	1.7857	0.1905
1.5	1.6667	0.1778
1.6	1.5625	0.1667
1.7	1.3841	0.1476
1.8	1.2346	0.1317
1.9	1.108	0.1182
2	1	0.1067
2.2	0.8264	0.0882
2.4	0.6944	0.0741
2.6	0.5917	0.0631
2.8	0.5102	0.0544
3	0.4444	0.0474
4	0.25	0.0267
5	0.16	0.0171
6	0.1111	0.0119
7	0.0816	0.0087
8	0.0625	0.0067
9	0.0494	0.0053
10	0.04	0.0043

Fuente: Elaboración propia

Figura N° 30: Inclusión del Espectro para el modelo Dinámico

Fuente: Elaboración propia

A continuación, se presenta la imagen obtenida del software SAP 2000 en donde se representa las características que tendrá el espectro de respuesta para un amortiguamiento de 5%.

Fuente: Elaboración propia

4.3.2.2.8. Colocación de las cargas en los centros de masa de cada entrepiso

En la figura N° 32, se muestra la colocación de las masas traslacionales y la masa rotacional para el nivel 7 de la edificación. Esto se realiza en cada entrepiso con la información mostrada en la tabla N° 16.

Figura N° 32: Colocación de masas traslacionales y masa rotacional para el nivel 7.

Fuente: Elaboración propia

4.3.3. Etapas del análisis tiempo - historia de la edificación

Para el análisis se usaron 3 registros de aceleraciones del terreno según lo recomienda el artículo 4.7.1 de la Norma E.030, la base de datos de los sismos Ancash 1970, Lima 1966 y de Ica 2007 han sido extraídos de la página del CISMID y considerando un amortiguamiento equivalente de 5%, para cada registro sísmico se ha logrado escalar a un evento individual y obtener un acelerograma de sitio, para ello se ha utilizado el programa SeismicMatch 2016, una vez obtenido el acelerograma escalado se ha realizado el análisis de la edificación en el programa Sap 2000 para cada uno de los modelos vistos con anterioridad, cabe mencionar que; las fuerzas de diseño, las deformaciones y las distorsiones de entrepiso serán evaluadas a partir de los máximos valores obtenidos de todos los análisis.

4.3.3.1. <u>Cálculos previos</u>

El análisis dinámico tiempo - historia se empleará como un procedimiento complementario a los especificados en los numerales 4.5 y 4.6, de la norma técnica E.030 de "Diseño Sismorresistente".

4.3.3.1.1. Información de los sismos en base a acelerogramas

En las tablas, se muestran datos sísmicos obtenidos a partir de acelerogramas.

SSMO DE UMA (17.10	. 1966): Bloc de not	as	- 0	SismoAncash197	00531152300 Bloc de nota	rs		-	. ×	
Archivo Edición Form	ato Ver Ayuda			Archive Edición I	ormato Ver Ayuda					
COMENTARIOS: REGISTRO CORREGID FILTRO: PASABANDA DAT	O POR LÍNEA B TRAPEZIODAL OS DE ACELERA	MASE Y FILTRADO.		DATE ORIGIN TIME (L LATITUDE LONGITUDE DEPTH (km)	: // ocal) : 1 : - : - : 6	lay 31, 1970 5:23:00 9.36 78.87 4.00	9			-
DT	E 14	w.c.	11-70	MAGNITUDE	£ 6	.6 Mb				
9	-11 AP9	-14 254	4,153	INFORMATION SO	URCE : I	GP				
6.02	-2.687	-7,775	-5,003	3 THEORMATTON	ABOUT THE RECORD	12				
0.84	-3.88	-6.297	-4.567	RECORD TIME (1	ocal) : 1	5-23-00				
0.06	-4.994	1,489	0.903	NUMBER OF SAMP	LES I	2255				
0.08	0.266	2.995	9.831	MAXIMUM ACCELE	RATION	-185.85	-97.81	74.83		
0.1	3.592	-1.747	6.917	DATA UNITS	1 0	m/s2				
0.12	-10.183	1.733	-3.848	and the second second						
0.14	-18.254	5.861	-9.283	4. COMMENTS						
0.16	0.34	0,158	-10.091	BASELINE CORRE	CTED					
0.18	3.386	4.5//	5 985	an assessments						
8.22	-8.784	6.339	2.836	5. ACCELERATIO	N DATA				0.342	
0.24	4,281	3,437	-3,012		1 E	M.	RS .		UD	
8.26	-0.865	1.713	-8.846	0.00	00 -14,450	0	7.7721	-20	0341	
0.28	-1.69	-2.35	-9.434	0.02	00 12.472	4	2,0071	1	7490	
0.3	8.085	-4.162	-0.13	0.04	60 -8.416	6	7.5169	2	1840	
0.32	11.22	-8.101	6.755	8,08	60 -4.497	6	9,4989	1	5539	
		Archivo Edición	Formato Ver /	Ayuda cesado eracia:	al Dr. Akin 4	he v a A				
		CORREGIDO POR FILTRO: PASAB	LINEA BASE ANDA [0.01 -	Y FILTRADO. 25 htz) ACELERACION						
		DT.	EO EO	NS	V					
		0	0 41341	0 25727	1 49503					
		0	0.41341	-0.25/3/	1.40393					
		0.01	0./68/5	0.76020	-0.45987					
		0.02	0.135	1.13637	-1,90343					
		0.03	-0.05179	0.68497	0.43444					
		0.04	0,91863	0.38649	3.67711					
		0.05	2.15958	0.59281	2.31691					
		0.06	2.88207	1.21769	-3.19922					
		0.07	3.36632	1.75055	-6.74899					
		0.08	3.73874	2.84563	-5.45555					
		0.09	3.34163	1.76527	-2.91231					
		0.1	2.13967	0.62009	-1.96517					
		0.11	1,41585	-0.73567	-0,14554					
		0.12	2,03994	-1.13531	4.7716					
		0 13	3 05255	-0.51537	9 4712					
		0.14	2 00019	-0.00253	9 72201					
		0.14	1 90093	0 50000	E 95505					
		0.15	1.89983	-0.59882	6.63335					
		0.16	0.93653	-1.3099	4.93372					
		0.17	0.82685	-1.2247	4.88611					
		0.18	1.41345	-0.29554	1.25672	23				
		1								
		164				5.0				

Tabla N° 21: Registro de datos sísmicos

Fuente: Acelerograma del Instituto Geofísico del Perú.

4.3.3.1.2. Escalamiento de los acelerogramas

La información que se utilizará para escalar es la siguiente:

<u>Periodo fundamental de la estructura en estudio</u>: De la ecuación (36) se obtiene el valor de T= 0.420 s.

<u>Rango de escalamiento</u>: Según la norma, menciona un rango de periodos de 0.2T
y 1.5T, por lo tanto el valor mínimo y máximo es: 0.084 y 0.63

<u>Espectro elástico de acuerdo a la Norma E.030</u>: La construcción de dicho espectro está en función de los parámetros sísmicos reales de la edificación tratados anteriormente, con la diferencia que el coeficiente de reducción sísmica (R) será 1.

Figura N° 33: Construcción de espectro (R=1)

 <u>Uso del programa SeismoMatch</u>: Con los datos descritos se procede a utilizar el programa para cada uno de los acelerogramas, en las imágenes se muestran los resultados obtenidos de la conversión.

Figura N° 34: Escalamiento de acelerogramas (Lima 1966-Áncash 1970-Ica 2007)

Acelerograma escalado de Lima 1966

Acelerograma escalado de Áncash 1970

Time (s)	Acc (g)	Vel (cm/sec)	Disp (cm)	Time (s)	Acc (g)	Vel (cm/sec)	Disp (cm)
0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
0.02000	-0.01141	-0.11192	-0.00075	0.02000	-0.01446	-0.14184	-0.00095
0.04000	-0.00269	-0.25020	-0.00465	0.04000	0.01247	-0.16132	-0.00486
0.06000	-0.00308	-0.30678	-0.01021	0.06000	0.00183	-0.02098	-0.00633
0.08000	-0.00499	-0.38598	-0.01707	0.08000	-0.00842	-0.08556	-0.00706
0.10000	0.00027	-0.43237	-0.02543	0.10000	-0.00449	-0.21220	-0.01017
0.12000	0.00359	-0.39452	-0.03381	0.12000	-0.01081	-0.36230	-0.01571
0.14000	-0.01010	-0.45839	-0.04189	0.14000	0.00034	-0.46497	-0.02435
0.16000	-0.01825	-0.73657	-0.05357	0.16000	0.00228	-0.43923	-0.03345
0.18000	0.00034	-0.91231	-0.07067	0.18000	-0.01165	-0.53109	-0.04270
0.20000	0.00848	-0.82584	-0.08832	0.20000	-0.00222	-0.66708	-0.05499
0.22000	-0.00229	-0.76512	-0.10387	0.22000	0.01279	-0.56335	-0.06778
0.24000	-0.00078	-0.79524	-0.11953	0.24000	0.00941	-0.34553	-0.07676
0.26000	0.00428	-0.76093	-0.13525	0.26000	0.00277	-0.22602	-0.08226
0.28000	-0.00086	-0.72742	-0.14997	0.28000	0.00713	-0.12886	-0.08595
0.30000	-0.00169	-0.75249	-0.16474	0.30000	0.01370	0.07550	-0.08670
0.32000	0.00809	-0.68975	-0.17948	0.32000	0.02571	0.46207	-0.08172
0.34000	0.01122	-0.50037	-0.19149	0.34000	0.03163	1.02453	-0.06704

Acelerograma escalado de Ica 2007

Time (s)	Acc (g)	Vel (cm/sec)	Disp (cm)
0.00000	0.00000	0.00000	0.00000
0.01000	0.00041	0.00203	0.00001
0.02000	0.00077	0.00783	0.00005
0.03000	0.00014	0.01226	0.00016
0.04000	-0.00005	0.01267	0.00028
0.05000	0.00092	0.01692	0.00042
0.06000	0.00216	0.03202	0.00066
0.07000	0.00288	0.05675	0.00110
0.08000	0.00337	0.08740	0.00181
0.09000	0.00374	0.12225	0.00286
0.10000	0.00334	0.15697	0.00426
0.11000	0.00214	0.18386	0.00597
0.12000	0.00142	0.20130	0.00790
0.13000	0.00204	0.21825	0.01000
0.14000	0.00305	0.24323	0.01230
0.15000	0.00300	0.27291	0.01488
0.16000	0.00190	0.29694	0.01774
0.17000	0.00094	0.31086	0.02078

NOTA: El escalamiento de los sismos se ha dado para ambas direcciones horizontales, con estos acelerogramas finalmente obtenidos se procederá a realizar el análisis sísmico tiempo-historia en el Sap 2000.

A continuación se presentarán los pasos que se siguieron al momento de la modelación de la edificación.

4.3.3.2.1. Geometría de la Edificación

Se utilizó la estructuración mostrada en la figura N° 35, la colocación de las secciones son las que se han considerado en las tablas 1 y 2 (ver anexos).

Figura N° 35: Geometría 3D de la estructura

Fuente: Elaboración propia

4.3.3.2.2. Definición de Material y Secciones

Se utilizará un concreto estructural con las siguientes características:

F'c = 2100 Tn/m² Módulo de elasticidad (E) = 2173706 Tn/m² $\mu = 0.2$

Estas características se observan en la figura N° 36.

Figura N° 36: Material

用其著名 也以古戶即為語。	Material Property Sala					
NU HA CANANANANANANANANANANANANANANANANANANA	L IIII General Date La 1 Manual Name and Date Date Manual Name Manual Name	10 201	VIG 2000	S wa mag	WK 18245	5,
	Weght and Macs Weght per Link Volume Marcare Tel Volume	100 m (100 m (1) (100	VIG 30005	NG MARY	VIG 30X/5	(111.3325)
жны	Hamas Popey/We Motion of Electric, 1 Policies of Termit Equation, A	D1727%	WG 30X45	60 10 10 10 10 10 10 10 10 10 10 10 10 10	VIG JUX45	COL WICH
	Press Musike, II Other Properties for Concerts Mutavali Scientified Concerts Compared to Strangth Ft	300710.0 00 (710) 00	VIG 20205	HIG HOLE	VIG MIXES	(0) 1020
	The Second Concept	COL MOD	VIG 303015	EXC 10 WG 30XP	VIG 30X45	SDIK 100
	T Setts Tu Advected Process Daulay	*)		CON 2525		COX MICH

Fuente: Elaboración propia

Por otro lado, se colocaron los valores de secciones según como se indica en el punto 4.1, correspondiente a la etapa de predimensionamiento. En la figura N° 37, se muestra un ejemplo de la sección para vigas longitudinales.

Figura N° 37: Sección de vigas longitudinales

				- 0	1.1
The bit was been the sale ang Ang Ang Loo HG クロノ 自 + C 4 4 4 4 4 4 4 4 ビエニス・N Yと出けい・ 「NC HG こみ・A 10 X 11 Y E 14	Вицинико∳\$28%- Прп- м ом ом ок ме	「「「「「「」」」」	r në set në •	1.8.5	• 1 _J
お「日かのでい」五十日日本一人に見	Fertugale letter	10			
T	Late Har Million	WIE 20045	VIC 38.8	WIG 30045	8
	Tanton Multipolitania Popeline Popeline Name Selo-Popeline Sel Modes 1 (2002/2010-2014)	VIL MILES	NG HER OF	Vin Josef	CDI 1000M
	Deet (0) [58	NG XXHO	VIG MIXE	VIG 30XHS	COL MEDI
		WE MILES	No mark	will address	CDI 2000
	Date Cor	VIG 30048	VIG MIXES	WIG 30045	00, 9035
THE			COL PXCS		COL BOOM
11.001				50000 - Tu	-

Fuente: Elaboración propia

4.3.3.2.3. Empotramiento de las bases

Se procede a empotrar las bases, es decir impedir el desplazamiento en todas las direcciones y la rotación alrededor de todos los ejes (ver figura N° 38).

Figura N° 38: Colocación de las restricciones de la base

4.3.3.2.4. Definición de Brazos Rígidos

Se realiza la implementación de brazo rígido a las vigas de todos los pisos y a las columnas del primer piso. (Ver figura N° 39).

Figura N° 39: Colocación del brazo rígido en vigas

Figura N° 40: Colocación del centro de masa

Fuente: Elaboración propia

Es importante tomar en cuenta las restricciones de los centros de masas, tales como el impedimento de trasladarse en el eje Z, de rotar alrededor del eje X y de rotar alrededor del eje Y. (ver figura N° 41).

Fuente: Elaboración propia

4.3.3.2.6. Definición y Asignación de los Diafragmas Rígidos

El ejemplo para la definición de los diafragmas rígidos se observa en la figura N° 42, para el nivel 7 de la edificación.

Figura Nº 42: Definición de diafragmas rígidos de entrepisos

Posteriormente, se asignan los diafragmas rígidos creados a cada entrepiso, tomando en cuenta todos los nodos que los conforman. Ver el ejemplo que se ha tomado para el nivel 7. (Ver figura N° 43).

Figura Nº 43: Asignación del diafragma rígido del entrepiso 7 de la edificación

4.3.3.2.7. Definición de la función tiempo – historia

En la figura Nº 44, se muestra la función tiempo-historia para el análisis.

BA DA JARDANS	ma History Function Definition		
al+ beh∐≮ ⇒I :	Function Name	[inse 101	
REE	Parcher Fle Ten Hame	Value an 1 Tan aut/Lactor Value 4 Value (Equation of 100 Formal Type 4 Tono forma 1 Proof forma 1 Characterize from 1	
	Factor Coast	land a generation of the	
"THE		((12999) - 79994)) Caroli (

Figura Nº 44: Función tiempo – historia para el sismo de Áncash de 1970

Fuente: Elaboración propia

4.3.3.2.8. Definición de los estados de carga

En la figura N° 45, se muestra el estado de carga para la dirección X. Nótese que el valor del factor de escala es el que se indica en el ítem 4.3.2.1.2, este valor es el correspondiente a la zona 3.

S.••"将早回题并是一	Load Exce Date - Lawer Model History		
田田 口道・「太陽四米口行」 おけば・「五十日日考 十二	International Sector Name States	Lost Case Type Tree Tatos - Design	1
Wex	Keld Condition: Number Understand Steller Condition: Number Understand Steller Conditions of Income Steller Steller Transmittion: Land Steller Steller Steller Kode Land Stell	Andysis Tape Solidoo Tape A: Linear A: Mode If: Tape A: Tape If: Tape A: Tape	Micheline Michelins - Micheline 2010
	Load Appled Load Speet Load News Function Socie Factor The Parts Association and the Committee Strategy of Load Cold Parts Strategy of Load Cold Strategy	American Constant Arga B COAL (1)	
	State Schweisert Lauf Prozenter <u>Aut</u> Sam Sing-Data Name Sing-Data Names of Dataset Trave Steps Names or Dataset Names or Dataset	Musty Date: Must have Press PRESECT	MIC 1920 MIC 19245 S WIG 19245
TRUE	Calue The Sec line 10.00 Dest Faceworks Model Dargeng Toroner # 1280	/line_]	

Figura N° 45: Estado de carga (Dirección X)

Fuente: Elaboración propia

4.4. Análisis sísmico considerando la Interacción Suelo-Estructura (ISE).

A partir de este punto, se modelará a la edificación considerando la influencia que tiene la interacción entre el suelo de fundación con la estructura, implementando el modelo dinámico desarrollado por el científico D.D. Barkan, Sargian, Ilichev y Rusa. Tal y como se explicó en el marco teórico de la presente investigación, cada uno de los modelos busca implementar los coeficientes de rigidez del suelo en dirección X, Y y Z y además alrededor del eje X y del eje Y, restringiendo el giro alrededor del eje Z, según sea el caso.

4.4.1. Modelo dinámico D.D. Barkan – O.A. Savinov

4.4.1.1. <u>Coeficientes de rigidez</u>

Para obtener los coeficientes de rigidez será necesario contar con la siguiente información mostrada en la tabla N° 22.

Tipo de Suelo	Arena Arcillo Limosa			
Módulo de Elasticidad del suelo	Es	150	Kg/cm2	
Densidad del Suelo	δs	1.83	gr/cm3	
Coeficiente Poisson del Suelo	μs	0.30	-	
Angulo de Fricción Interna del Suelo	φ	23	-	

Tabla N° 22: Características del suelo de fundación

Utilizando la ecuación (4) del ítem 2.2.7.1 se obtiene los coeficientes de rigidez. A continuación en la tabla N° 23, se muestran los resultados obtenidos para las diferentes dimensiones de zapatas aisladas.

N° ZAPATA	Kx (T/m)	Ky (T/m)	Kz (T/m)	Кфх (Т.m)	Кфу (Т.m)
''Z-01''	9821.306	9821.306	11925.872	1667.601	3159.851
''Z-03''	10387.280	10387.280	12613.126	2677.864	2677.864
''Z-05''	9854.599	9854.599	11966.299	2103.400	2600.244
''Z-06-Z-07''	17811.522	17811.522	21628.277	6329.303	15897.794
''Z-02''	13816.414	13816.414	16777.074	2071.868	12405.434
''Z-08''	14498.912	14498.912	17605.821	2672.052	12709.998
''Z-09''	10820.083	10820.083	13138.673	1768.667	4737.502
''Z-10-Z-18''	37287.672	37287.672	45277.888	145422.872	20482.854
''Z-11''	10820.083	10820.083	13138.673	1768.667	4737.502
''Z-12''	11053.131	11053.131	13421.660	7553.322	1060.796
''Z-19''	12651.174	12651.174	15362.140	10510.938	1528.129
''Z-28''	9821.306	9821.306	11925.872	3159.851	1667.601
''Z-30''	13583.366	13583.366	16494.088	8382.877	3143.579
''Z-35''	14848.484	14848.484	18030.302	8797.655	4793.796
''Z-15''	15481.042	15481.042	18798.409	9005.044	5798.703
''Z-16''	12434.773	12434.773	15099.367	6946.703	2419.318
''Z-17''	16413.234	16413.234	19930.356	15212.966	4287.149
''Z-20''	9188.748	9188.748	11157.765	940.055	3671.282
''Z-21''	17678.352	17678.352	21466.570	5355.053	17661.038
''Z-27''	17811.522	17811.522	21628.277	6329.303	15897.794
'' Z- 31''	12950.808	12950.808	15725.981	8175.489	2482.502
''Z-32''	11319.472	11319.472	13745.073	1819.201	5692.077
''Z-33''	11319.472	11319.472	13745.073	1819.201	5692.077
'' Z- 34''	13666.598	13666.598	16595.154	3817.441	7306.938
"Z-P-ASC-ESC"	73509.982	73509.982	89262.121	127838.881	517730.005
"Z-PL-01"	12318.249	12318.249	14957.874	7968.100	1920.268
''Z-PL-02''	26101.370	26101.370	31694.521	17887.595	35497.864
"Z-PL-03"	13050.685	13050.685	15847.261	7126.820	3065.960
"Z-PL-07"	17112.378	17112.378	20779.316	15555.380	5242.802
''Z-PL-08''	12451.419	12451.419	15119.580	11796.305	1151.352

Tabla N° 23: Coeficientes de rigidez para cada zapata

Fuente: Elaboración propia

4.4.1.2. Procedimiento de modelación

A continuación se presentarán los pasos que se siguieron al momento de la modelación de la edificación, partiendo de las modelaciones ya realizadas para los análisis empotrados (estático, dinámico y tiempo – historia).

4.4.1.2.1. Liberación de los empotramientos de las bases

Partiendo de los modelos que considera el empotramiento perfecto en las bases, es necesario la liberación de dichas bases con el propósito de colocar en su lugar las secciones de las zapatas. En la figura N°46 se muestra la liberación de las bases.

Fuente: Elaboración propia

4.4.1.2.2. Colocación de las zapatas

Para poder asignar las zapatas en necesario, crear su respectivo material y sección, para finalmente dibujarlas siguiendo las dimensiones que muestra el plano estructural de la edificación, cabe mencionar que para dibujar se utilizará la herramienta "quick draw area" del software SAP 2000 V.18. Estos pasos se muestran en las figuras N° 47, 48 y 49.

	Decige Optimer Trady Mag Historial Property Data Decimal Edite		at (+) 3	• • • •		**
	Hantan Harle and Upware Law (24-84/4) Hantan Harle Market Market Market Hantan Kalan (1999) Ungif and Hant Wang of Lak Velame (1999) Hantan Praemic (1999) Hantan (1) Demonstra Praemic (1999) Hantan (1) Controller (1999) Galaxies, 5 Controller (1999)	ty Draw Yana Mark Jack D				
	Blow Properties for Concerns Halanses Teenched Concerns Energeneers Discoption for the Discoption Concerns Discoption Concerns Discoption Concerns Discoption Concerns	[758]				
11w	Division to Advanced Property Degree	q			1.04	uses -

Figura N° 47: Creación del material "ZAPATA"

Fuente: Elaboración propia

Figura N° 48: Asignación de la sección para la zapata (Shell-thick)

Fuente: Elaboración propia

Figura N° 49: Cimentación dibujadas en la modelación

Fuente: Elaboración propia

4.4.1.2.3. Colocación de los coeficientes de rigidez

De acuerdo a los resultados mostrados en la tabla N° 23, se procedió a incorporar los coeficientes de rigidez en el modelo para cada tipo de cimentación. A continuación, en la figura N° 50, se muestra la colocación de los coeficientes de rigidez.

Figura N° 50: Colocación de los coeficientes de rigidez

Fuente: Elaboración propia

4.4.2. Modelo dinámico Ilichev

4.4.2.1. <u>Coeficientes de rigidez</u>

Para obtener los coeficientes de rigidez será necesario contar con la información mostrada en la tabla N° 22 y las ecuaciones (13), (14) y (15) estudiados en el ítem 2.2.6.2. En la tabla N° 24, se muestran los resultados obtenidos para los diferentes tipos de cimentación.

N° ZAPATA	Kx (T/m)	Ky (T/m)	Kz (T/m)	Кфх (Т.m)	Кфу (Т.m)
''Z-01''	8233.031	8233.031	2579.925	577.679	577.679
''Z-03''	8702.607	8702.607	2735.055	676.683	676.683
''Z-05''	8301.377	8301.377	2602.459	591.474	591.474
''Z-06-Z-07''	13760.752	13760.752	4446.807	2462.583	2462.583
''Z-02''	10698.449	10698.449	3401.985	1215.308	1215.308
''Z-08''	11276.921	11276.921	3597.451	1409.818	1409.818
''Z-09''	8897.931	8897.931	2799.789	720.829	720.829
''Z-10-Z-18''	24908.491	24908.491	8419.451	12519.693	12519.693
''Z-11''	8897.931	8897.931	2799.789	720.829	720.829
''Z-12''	8702.607	8702.607	2735.055	676.683	676.683
''Z-19''	9829.319	9829.319	3110.094	956.340	956.340
''Z-28''	8233.031	8233.031	2579.925	577.679	577.679
''Z-30''	10866.028	10866.028	3458.514	1269.794	1269.794
''Z-35''	11834.538	11834.538	3786.738	1614.785	1614.785
''Z-15''	12297.851	12297.851	3944.642	1798.545	1798.545
''Z-16''	10037.124	10037.124	3179.684	1014.722	1014.722
''Z-17''	12699.482	12699.482	4081.974	1967.985	1967.985
''Z-20''	7596.452	7596.452	2370.777	458.934	458.934
''Z-21''	13572.115	13572.115	4381.757	2369.596	2369.596
''Z-27''	13760.752	13760.752	4446.807	2462.583	2462.583
'' Z-3 1''	10357.327	10357.327	3287.162	1108.998	1108.998
''Z-32''	9216.348	9216.348	2905.576	796.630	796.630
''Z-33''	9216.348	9216.348	2905.576	796.630	796.630
''Z-34''	11464.972	11464.972	3661.193	1476.995	1476.995
"Z-P-ASC-ESC"	44728.940	44728.940	15903.988	58598.576	58598.576
''Z-P-01''	9829.319	9829.319	3110.094	956.340	956.340
''Z-P-02''	19140.880	19140.880	6335.175	6127.086	6127.086
''Z-P-03''	10528.911	10528.911	3344.876	1161.706	1161.706
''Z-P-07''	13237.543	13237.543	4266.596	2210.113	2210.113
''Z-P-08''	9465.147	9465.147	2988.451	859.235	859.235

Tabla Nº 24: Coeficientes de rigidez para cada zapata

Fuente: Elaboración propia

4.4.2.2. Procedimiento de modelación

El procedimiento de modelación es el mismo según el ítem 4.4.1.2, lo único que cambiará para cada uno de los modelos es la colocación de los coeficientes de rigidez ya que cada uno es independiente de otro.

4.4.2.2.1. Colocación de los Coeficientes de rigidez

De acuerdo a los resultados mostrados en la tabla N° 24, se procedió a incorporar los coeficientes de rigidez en el modelo para cada tipo de cimentación. A continuación, en la figura N° 51, se muestra la colocación de los coeficientes de rigidez para dicho modelo dinámico.

Figura N° 51: Colocación de los coeficientes de rigidez

Fuente: Elaboración propia

4.4.3. Modelo dinámico Sargian

4.4.3.1. <u>Coeficientes de rigidez</u>

Para obtener los coeficientes de rigidez será necesario contar con la información mostrada en la tabla N° 22 y la ecuación (18) estudiado anteriormente en el ítem 2.2.6.3. En la tabla N° 25 se muestran los resultados obtenidos para los diferentes tipos de cimentación.

N° ZAPATA	Kx (T/m)	Ky (T/m)	Kz (T/m)	Кфх (Т.m)	Кфу (Т.m)				
''Z-01''	1192.932	1192.932	3037.185	376.422	636.153				
''Z-03''	1255.525	1255.525	3196.545	570.489	570.489				
''Z-05''	1202.074	1202.074	3060.459	458.961	546.201				
''Z-06-Z-07''	1900.645	1900.645	4839.010	1349.406	2902.723				
''Z-02''	1516.190	1516.190	3860.195	478.424	2109.850				
''Z-08''	1590.194	1590.194	4048.606	607.148	2212.829				
''Z-09''	1281.415	1281.415	3262.460	404.342	909.770				
''Z-10-Z-18''	3173.496	3173.496	8079.667	21189.117	4005.504				
'' Z- 11''	1281.415	1281.415	3262.460	404.342	909.770				
''Z-12''	1255.525	1255.525	3196.545	1283.600	253.551				
''Z-19''	1403.720	1403.720	3573.846	1771.738	358.777				
''Z-28''	1192.932	1192.932	3037.185	636.153	376.422				
''Z-30''	1537.698	1537.698	3914.952	1572.082	698.703				
''Z-35''	1660.903	1660.903	4228.631	1698.043	1027.211				
''Z-15''	1719.198	1719.198	4377.049	1757.641	1220.584				
''Z-16''	1430.754	1430.754	3642.674	1304.734	546.273				
''Z-17''	1769.404	1769.404	4504.873	2702.288	943.568				
''Z-20''	1107.269	1107.269	2819.088	223.611	684.807				
''Z-21''	1877.466	1877.466	4779.996	1161.147	3133.913				
''Z-27''	1900.645	1900.645	4839.010	1349.406	2902.723				
'' Z- 31''	1472.233	1472.233	3748.281	1505.154	562.110				
''Z-32''	1323.439	1323.439	3369.454	417.603	1069.063				
'' Z- 33''	1323.439	1323.439	3369.454	417.603	1069.063				
''Z-34''	1555.393	1555.393	3960.005	829.442	1418.395				
"Z-P-ASC-ESC"	5099.966	5099.966	12984.427	20856.023	70099.412				
''Z-P-01''	1403.720	1403.720	3573.846	1435.108	442.935				
''Z-P-02''	2537.072	2537.072	6459.341	3530.454	6276.362				
''Z-P-03''	1494.374	1494.374	3804.649	1362.750	679.017				
''Z-P-07''	1836.198	1836.198	4674.928	2804.297	1135.624				
''Z-P-08''	1356.122	1356.122	3452.663	1887.107	273.866				

Tabla N° 25: Coeficientes de rigidez para cada zapata

Fuente: Elaboración propia

4.4.3.2. Procedimiento de modelación

4.4.3.2.1. Colocación de los Coeficientes de rigidez

De acuerdo a los resultados mostrados en la tabla N° 25, se procedió a incorporar los coeficientes de rigidez en el modelo para cada tipo de cimentación. A continuación, en la figura N° 52, se muestra la colocación de los coeficientes de rigidez.

Figura N° 52: Colocación de los coeficientes de rigidez

Fuente: Elaboración propia

4.4.4. Modelo dinámico (NRusa)

4.4.4.1. <u>Coeficientes de rigidez</u>

Para obtener los coeficientes de rigidez será necesario contar con la información mostrada en la tabla N° 22 y la ecuación (21) estudiada anteriormente en el ítem 2.2.6.4. En la tabla N° 26 se muestran los resultados obtenidos para los diferentes tipos de cimentación.

N° ZAPATA	Kx (T/m)	Ky (T/m)	Kz (T/m)	Кфх (Т.m)	Кфу (Т.m)	Kψz (T.m)
''Z-01''	6063.556	6063.556	8662.222	1443.704	2439.859	1941.782
''Z-03''	6470.444	6470.444	9243.492	2218.438	2218.438	2218.438
''Z-05''	6122.428	6122.428	8746.326	1763.842	2099.118	1931.480
''Z-06-Z-07''	11179.622	11179.622	15970.889	5989.083	12883.184	9436.133
''Z-02''	8260.065	8260.065	11800.092	1966.682	8673.068	5319.875
''Z-08''	8796.107	8796.107	12565.867	2534.117	9235.912	5885.014
''Z-09''	6641.330	6641.330	9487.614	1581.269	3557.855	2569.562
''Z-10-Z-18''	23227.623	23227.623	33182.319	117022.977	22121.546	69572.261
''Z-11''	6641.330	6641.330	9487.614	1581.269	3557.855	2569.562
''Z-12''	6470.444	6470.444	9243.492	4991.486	985.972	2988.729
''Z-19''	7469.066	7469.066	10670.095	7113.397	1440.463	4276.930
''Z-28''	6063.556	6063.556	8662.222	2439.859	1443.704	1941.782
''Z-30''	8414.577	8414.577	12020.825	6491.245	2884.998	4688.122
''Z-35''	9319.843	9319.843	13314.062	7189.593	4349.260	5769.427
''Z-15''	9760.118	9760.118	13943.026	7529.234	5228.635	6378.934
''Z-16''	7656.588	7656.588	10937.983	5268.462	2205.826	3737.144
''Z-17''	10145.453	10145.453	14493.504	11691.427	4082.337	7886.882
''Z-20''	5521.035	5521.035	7887.193	841.301	2576.483	1708.892
''Z-21''	10994.141	10994.141	15705.916	5130.599	13847.382	9488.991
''Z-27''	11179.622	11179.622	15970.889	5989.083	12883.184	9436.133
''Z-31''	7947.519	7947.519	11353.598	6130.943	2289.642	4210.293
''Z-32''	6921.936	6921.936	9888.480	1648.080	4219.085	2933.582
''Z-33''	6921.936	6921.936	9888.480	1648.080	4219.085	2933.582
''Z-34''	8971.972	8971.972	12817.102	4186.920	6173.571	5180.246
"Z-P-ASC-ESC"	48421.759	48421.759	69173.942	149415.715	502202.819	325809.267
''Z-PL-01''	7469.066	7469.066	10670.095	5761.851	1778.349	3770.100
"Z-PL-02"	16746.284	16746.284	23923.263	17583.598	31259.730	24421.664
"Z-PL-03"	8104.395	8104.395	11577.708	5576.596	2778.650	4177.623
''Z-PL-07''	10666.919	10666.919	15238.456	12292.355	4977.896	8635.125
''Z-PL-08''	7142.919	7142.919	10204.170	7500.065	1088.445	4294.255

Tabla N° 26: Coeficientes de rigidez para cada tipo de cimentación

Fuente: Elaboración propia

4.4.4.2. Procedimiento de modelación

4.4.4.2.1. Colocación de los Coeficientes de rigidez

De acuerdo a los resultados mostrados en la tabla N° 26, se procedió a incorporar los coeficientes de rigidez en el modelo para cada tipo de cimentación. A continuación, en la figura N° 53, se muestra la colocación de los coeficientes de rigidez, cabe resaltar que para este modelo se tendrá 6 coeficientes de rigidez (ver ítem 2.2.6.4).

Figura N° 53: Colocación de los coeficientes de rigidez

Fuente: Elaboración propia

4.4.5. Modelo estático de Balasto o modelo de Winkler

4.4.5.1. <u>Coeficientes de rigidez</u>

Para obtener los coeficientes de rigidez será necesario contar con la información que ha sido determinado según tablas (coeficiente de balasto 2.15 Kg/cm³) y haciendo uso de la ecuación (1) estudiado en el apartado 2.2.5. A continuación en la tabla N° 27, se muestran los resultados obtenidos para los diferentes tipos de cimentación, cabe resaltar que sólo se tendrá un coeficiente de rigidez en la dirección "z".

TIPO DE CIMENTACIÓN	SECC	SECCIONES ÁREA A		ÁREA COEF. DE BALASTO A C7=k1		PUNTOS A	COEF. DE RIGIDEZ SAP 2000
	a	b	(m2)	(Tn/m3)	Kz (Tn/m)	ALLICAN	Kz (Tn/m)
Zapatas Aisladas	(m)	(m)			(110111)		(11/11)
"Z-01"	1.00	1.30	1.30	2150.00	2795.00	1.00	2795.00
"Z-03"	1.20	1.20	1.44	2150.00	3096.00	1.00	3096.00
"Z-05"	1.10	1.20	1.32	2150.00	2838.00	1.00	2838.00
"Z-02"	1.00	2.10	2.10	2150.00	4515.00	1.00	4515.00
"Z-08"	1.10	2.10	2.31	2150.00	4966.50	1.00	4966.50
"Z-09"	1.00	1.50	1.50	2150.00	3225.00	1.00	3225.00
"Z-11"	1.00	1.50	1.50	2150.00	3225.00	1.00	3225.00
"Z-12"	0.80	1.80	1.44	2150.00	3096.00	1.00	3096.00
"Z-19"	0.90	2.00	1.80	2150.00	3870.00	1.00	3870.00
"Z-28"	1.00	1.30	1.30	2150.00	2795.00	1.00	2795.00
"Z-30"	1.20	1.80	2.16	2150.00	4644.00	1.00	4644.00
"Z-35"	1.40	1.80	2.52	2150.00	5418.00	1.00	5418.00
"Z-15"	1.50	1.80	2.70	2150.00	5805.00	1.00	5805.00
"Z-16"	1.10	1.70	1.87	2150.00	4020.50	1.00	4020.50
"Z-17"	1.30	2.20	2.86	2150.00	6149.00	1.00	6149.00
"Z-20"	0.80	1.40	1.12	2150.00	2408.00	1.00	2408.00
"Z-21"	1.40	2.30	3.22	2150.00	6923.00	1.00	6923.00
"Z-27"	1.50	2.20	3.30	2150.00	7095.00	1.00	7095.00
"Z-31"	1.10	1.80	1.98	2150.00	4257.00	1.00	4257.00
"Z-32"	1.00	1.60	1.60	2150.00	3440.00	1.00	3440.00
"Z-33"	1.00	1.60	1.60	2150.00	3440.00	1.00	3440.00
"Z-34"	1.30	1.70	2.21	2150.00	4751.50	1.00	4751.50

Tabla N° 27: Coeficientes de rigidez para cada tipo de cimentación

TIPO DE CIMENTACIÓN	SECC	IONES	ÁREA	COEF. DE BALASTO	COEF. DE RIGIDEZ	PUNTOS A	COEF. DE RIGIDEZ SAP
Zapatas Combinadas	a (m)	b (m)	(m2)	Cz=k1 (tn/m3)	Kz (tn/m)	APLICAR	Kz (tn/m)
"Z-06-07"	1.50	2.20	3.30	2150.00	7095.00	2.00	14190.00
"Z-10-18"	2.00	4.60	9.20	2150.00	19780.00	2.00	39560.00
TIPO DE CIMENTACIÓN	D DE CIMENTACIÓN SECCIONES ÁREA A COEF. DE RIGID a b (m2) COEF. DE RIGID CZ=k1 COEF. DE RIGID EQUIVAL		SECCIONES		COEF. DE RIGIDEZ FOLIVALENTE	PUNTOS A	COEF. DE RIGIDEZ SAP 2000
			Cz=k1	Kz	APLICAR	Kz	
Losa de Cimentación	(m)	(m)		(tn/m3)	(tn/m)		(tn/m)
"Z-P-ASC-ESC"	3.60	6.60	23.76	2150.00	51084.00	16.00	817344.00
TIPO DE CIMENTACIÓN	SECC	IONES	ÁREA	COEF. DE BALASTO	COEF. DE RIGIDEZ FOLIVALENTE	PUNTOS A	COEF. DE RIGIDEZ SAP 2000
	а	b	(m2)	Cz=k1	Kz	APLICAR	Kz
Zapatas de Placas	(m)	(m)	``´	(tn/m3)	(tn/m)		(tn/m)
"Z-PL-01"	1.00	1.80	1.80	2150.00	3870.00	3.00	11610.00
"Z-PL-03"	1.20	1.70	2.04	2150.00	4386.00	3.00	13158.00
"Z-PL-08"	0.80	2.10	1.68	2150.00	3612.00	3.00	10836.00
"Z-PL-07"	1.40	2.20	3.08	2150.00	6622.00	3.00	19866.00
"Z-PL-02"	2.10	2.80	5.88	2150.00	12642.00	3.00	37926.00

Fuente: Elaboración propia

4.4.5.2. Procedimiento de modelación

4.4.5.2.1. Colocación de los Coeficientes de rigidez

De acuerdo a los resultados mostrados en la tabla N° 27, se procederá a incorporar los coeficientes de rigidez en el modelo para cada tipo de cimentación. A continuación, en la figura N° 54, se muestra la colocación de los coeficientes de rigidez, cabe resaltar que para este modelo se tendrá 1 coeficiente de rigidez en la dirección "z".

Figura N° 54: Colocación de los coeficientes de rigidez

Fuente: Elaboración propia

V. RESULTADOS

5.1. Resultados de la modelación considerando y no la interacción sueloestructura

A continuación se presentará los desplazamientos, derivas y fuerzas internas tanto para el modelo con empotramiento perfecto como el modelo de interacción sueloestructura, los elementos que servirán de estudio para el caso de las fuerzas internas son: la columna C-21 intersección de ejes C y 2, la viga que se encuentra en el eje 2 tramo C-E y la placa PL-02 en el eje 4 tramo B-C (ver el plano de estructuración en Anexos).

5.1.1. <u>Resultados del análisis estático</u>

5.1.1.1. <u>Desplazamientos</u>

X máx.	Desplazamientos de entrepiso (m) –Dirección X									
Nº Pisos	Empotrado	Barkan	Ilichev	Sargsian	NRusa	Balasto				
7	0.02653	0.02751	0.03395	0.03410	0.02917	0.02825				
6	0.02290	0.02409	0.02993	0.03006	0.02551	0.02470				
5	0.01891	0.02034	0.02563	0.02573	0.02151	0.02080				
4	0.01473	0.01639	0.02113	0.02121	0.01730	0.01670				
3	0.01054	0.01235	0.01649	0.01654	0.01300	0.01249				
2	0.00661	0.00844	0.01183	0.01186	0.00884	0.00839				
1	0.00312	0.00467	0.00712	0.00713	0.00485	0.00441				

Tabla N°28: Desplazamientos de entrepiso en la dirección X

Figura N° 55: Desplazamientos de entrepiso en la dirección X.

En la tabla y la figura se observa que en todos los pisos los desplazamientos aumentan con la interacción suelo-estructura, siendo los más notorios los modelos de Ilichev y Sargsian.

Y máx.	Desplazamientos de entrepiso (m) –Dirección Y								
Nº Pisos	Empotrado	Barkan	Ilichev	Sargsian	NRusa	Balasto			
7	0.03555	0.03613	0.04379	0.04410	0.03895	0.03392			
6	0.03044	0.03143	0.03825	0.03853	0.03375	0.02938			
5	0.02496	0.02640	0.03245	0.03269	0.02821	0.02451			
4	0.01923	0.02109	0.02640	0.02660	0.02238	0.01937			
3	0.01347	0.01565	0.02021	0.02037	0.01645	0.01413			
2	0.00806	0.01035	0.01404	0.01416	0.01070	0.00904			
1	0.00346	0.00545	0.00808	0.00815	0.00548	0.00437			

Tabla N°29: Desplazamientos de entrepiso en la dirección Y.

Figura N° 56: Desplazamiento de entrepiso en la dirección Y

Como se esperaba, los desplazamientos máximos de los centros de masa en la dirección X y Y, tanto sin considerar la ISE, como considerando la flexibilidad de la misma, suceden en el piso 7.

< 0.007	Deriva de entrepiso ∆D/H - Dirección X					
N° Pisos	Empotrado	Barkan	Ilichev	Sargsian	NRusa	Balasto
7	0.00529	0.00500	0.00586	0.00589	0.00534	0.00519
6	0.00582	0.00547	0.00627	0.00631	0.00583	0.00568
5	0.00610	0.00575	0.00656	0.00659	0.00614	0.00598
4	0.00611	0.00589	0.00678	0.00681	0.00627	0.00615
3	0.00572	0.00570	0.00679	0.00682	0.00607	0.00597
2	0.00509	0.00550	0.00687	0.00691	0.00582	0.00581
1	0.00273	0.00409	0.00623	0.00624	0.00424	0.00386

Tabla N°30: Deriva de entrepiso en la dirección X.

De los resultados se observa que todos los modelos cumplen con las derivas máximas permitidas porque no superan a 0.007, los modelos dinámicos que más se acercan al límite permisible son los modelos de Ilichev y Sargsian.

< 0.007	Deriva de entrepiso ∆D/H - Dirección Y					
N° Pisos	Empotrado	Barkan	Ilichev	Sargsian	NRusa	Balasto
7	0.00639	0.00588	0.00692	0.00696	0.00650	0.00568
6	0.00685	0.00629	0.00726	0.00730	0.00693	0.00609
5	0.00677	0.00664	0.00756	0.00761	0.00728	0.00642
4	0.00679	0.00679	0.00774	0.00779	0.00741	0.00656
3	0.00676	0.00664	0.00771	0.00776	0.00719	0.00636
2	0.00575	0.00612	0.00746	0.00752	0.00652	0.00583
1	0.00260	0.00409	0.00606	0.00611	0.00411	0.00328

Tabla N°31: Deriva de entrepiso en la dirección Y.

De los resultados se observa que los modelos dinámicos de Ilichev, Sargian y NRusa no cumplen con las derivas máximas permitidas porque superan a 0.007, en cambio en los modelos dinámicos de Barkan y el modelo de Balasto si cumplen con las derivas.

5.1.1.2. <u>Fuerzas internas</u>

N máx.	MODELOS DE ESTUDIO					
Nº Pisos	Empotrado	Barkan	Ilichev	Sargsian	NRusa	Balasto
1er piso	5.2663	4.7417	3.0138	3.0223	4.6994	4.8791
2do piso	4.6894	4.1946	2.5788	2.5945	4.2364	4.2001
3er piso	3.9261	3.5015	2.0944	2.1113	3.5773	3.4608
4to piso	3.0821	2.7559	1.6186	1.6338	2.8335	2.6885
5to piso	2.2019	1.9664	1.1097	1.1211	2.0283	1.9056
6to piso	1.3700	1.2452	0.6941	0.7016	1.2863	1.1981
7mo piso	0.5114	0.4955	0.3172	0.3234	0.5107	0.4766

 Tabla N°32: Fuerzas Axiales en columna.

Figura N° 57: Fuerzas Axiales en columna

Las fuerzas axiales máximas sin considerar la Interacción Suelo-Estructura de la base de fundación y considerándolo, surgen en el primer piso en las columnas. La tabla y figura indican una disminución considerable de la fuerza axial, siendo más notorio en los modelos Ilichev y Sargsian, a pesar de que no cumplen con las derivas de la norma E.030.

V Max (2-2)		MODELOS DE ESTUDIO						
Nº Pisos	Empotrad							
11 1 1505	0	Barkan	Ilichev	Sargsian	N Rusa	Balasto		
1er piso	0.7662	1.0750	1.1879	1.2029	1.1348	1.1731		
2do piso	0.7534	1.0500	1.0434	1.0579	1.1087	1.1184		
3er piso	0.7182	1.0167	1.0432	1.0572	1.0752	1.0771		
4to piso	0.7111	0.9907	0.9775	0.9909	1.0486	1.0515		
5to piso	0.6878	0.9262	0.9381	0.9517	0.9780	0.9949		
6to piso	0.6811	0.8994	0.8950	0.9073	0.9511	0.9581		
7mo piso	0.4478	0.4816	0.3823	0.3853	0.4813	0.4829		

 Tabla N°33: Fuerzas Cortantes en columna

Figura N° 58: Fuerzas Cortantes en columna

En la tabla y figura se observa un incremento de la fuerza cortante con los modelos de interacción, a excepción de los modelos Ilichev y Sargsian que presenta una reducción en el último piso con respecto al modelo de empotramiento en la base.

M máx. (3- 3)	MODELOS DE ESTUDIO								
	Empotrad	Empotrad							
N° PISOS	0	Barkan	Ilichev	Sargsian	NRusa	Balasto			
1er piso	1.2368	1.4886	1.6307	1.6497	1.5736	1.6447			
2do piso	1.1471	1.4108	1.3958	1.4116	1.4896	1.5049			
3er piso	1.0815	1.3712	1.3920	1.4145	1.4506	1.4524			
4to piso	1.0160	1.3151	1.2981	1.3160	1.3921	1.3972			
5to piso	0.9575	1.1936	1.2981	1.2076	1.2617	1.2739			
6to piso	0.9010	1.1499	1.1683	1.1851	1.2089	1.2288			
7mo piso	0.5135	1.1444	0.6832	0.6884	1.1408	1.2044			

Figura N° 59: Momentos flectores en columna

En la tabla y figura se observa que en el análisis con interacción suelo-estructura incrementa los momentos flectores con respecto al modelo con empotramiento.

V Max (2-2)	MODELOS DE ESTUDIO								
N° PISOS	Empotrado	Barkan	Ilichev	Sargsian	NRusa	Balasto			
1er piso	1.3152	1.2431	1.3464	1.3437	1.2346	1.3844			
2do piso	1.3870	1.5252	1.5384	1.5406	1.5660	1.6281			
3er piso	1.4781	1.6123	1.5191	1.5238	1.6800	1.6940			
4to piso	1.5694	1.6757	1.5425	1.5493	1.7576	1.7294			
5to piso	1.5468	1.6053	1.4360	1.4428	1.6898	1.6502			
6to piso	1.5751	1.6243	1.4548	1.4620	1.7115	1.6578			
7mo piso	0.9676	1.0598	0.9223	0.9267	1.1165	1.0803			

Tabla N°35: Fuerzas cortantes en viga

Figura N° **60:** Fuerzas cortantes en viga

En la tabla y figura se observa un incremento de las fuerzas cortantes con la interacción suelo-estructura, pero en los últimos niveles se muestra una disminución de la fuerza cortante en los modelos de Ilichev y Sargsian con respecto al modelo de empotramiento perfecto.

M Max (3- 3)	MODELOS DE ESTUDIO							
Nº DIGOG	Empotrad	Empotrad						
N PISUS	0	Barkan	Ilichev	Sargsian	NRusa	Balasto		
1er piso	2.2025	2.1965	2.3766	2.3853	2.2948	2.2547		
2do piso	2.1616	2.1710	2.3583	2.3660	2.2288	2.2194		
3er piso	2.1582	2.1483	2.2951	2.3055	2.2215	2.2122		
4to piso	2.0034	2.1237	2.2899	2.2986	2.2117	2.1805		
5to piso	1.9977	2.0133	2.2784	2.2815	2.0701	2.1458		
6to piso	1.7147	1.6974	2.2608	2.2599	1.6794	1.7964		
7mo piso	1.1130	1.6421	1.7586	1.7664	1.6645	1.6527		

Tabla N°36: Momentos flectores en viga

Figura N° 61: Momentos flectores en viga

En la tabla y figura se observa que en el análisis con interacción suelo-estructura incrementa los momentos flectores con respecto al modelo con empotramiento, siendo más notorio el modelo Sargsian seguido del modelo Ilichev.

ELEMENTO	TIPO	MOMENTO	% VARIACIÓN
PL-02, Eje 4, B-C	Empotrado	60.1720	100.00%
PL-02, Eje 4, B-C	Barkan	57.7360	95.95%
PL-02, Eje 4, B-C	Ilichev	53.4580	88.84%
PL-02, Eje 4, B-C	Sargsian	50.6090	84.11%
PL-02, Eje 4, B-C	NRusa	58.7780	97.68%
PL-02, Eje 4, B-C	Balasto	58.0060	96.40%

Tabla N°37: Fuerzas cortantes en la base de la placa

Figura N° 62: Fuerza cortante en la base de la placa

Las fuerzas cortantes máximas sin considerar la flexibilidad de la base de fundación y considerando dicha flexibilidad, también surgen en el primer piso, se observa una reducción de la fuerza cortante con la interacción suelo-estructura, respecto al modelo empotrado en la base, siendo el más notorio es el modelo de Sargsian.

ELEMENTO	TIPO	MOMENTO	% VARIACIÓN
PL-02, Eje 4, B-C	Empotrado	161.6970	100.00%
PL-02, Eje 4, B-C	Barkan	153.8340	95.14%
PL-02, Eje 4, B-C	Ilichev	125.8070	77.80%
PL-02, Eje 4, B-C	Sargsian	125.0376	77.33%
PL-02, Eje 4, B-C	NRusa	154.1960	95.36%
PL-02, Eje 4, B-C	Balasto	134.2950	83.05%

Tabla N°38: Momentos flectores en la base de placa

Figura N° 63: Momentos flectores en la base de la placa

Los momentos flectores máximos sin considerar la flexibilidad de la base de fundación y considerando la flexibilidad de la misma, surgen en el primer piso, se observa la reducción del momento flector en el elemento, en el modelo de Ilichev y Sargsian.

5.1.2. Resultados del análisis dinámico con espectro de aceleración

5.1.2.1. Desplazamientos

Para el análisis dinámico con espectro de aceleración calculado según la norma E.030, se aplican las masas de cada piso en el centro de masa y se ingresa el espectro de aceleración para un suelo S3 que es nuestro caso, calculado según las características de la edificación y parámetros de sitio, suelo, etc., que se muestra en el ítem 4.3.2. En las tablas 39 y 40 se muestran los desplazamientos por piso en ambas direcciones obtenidos a través del programa Sap 2000.

	MODELOS DE ESTUDIO							
N° Pisos	Empotrado	Barkan	Ilichev	Sargsian	NRusa			
7	0.02022	0.02112	0.02305	0.02283	0.02145			
6	0.01745	0.01853	0.02038	0.02018	0.01879			
5	0.01442	0.01570	0.01753	0.01736	0.01589			
4	0.01127	0.01272	0.01455	0.01441	0.01283			
3	0.00811	0.00965	0.01143	0.01132	0.00969			
2	0.00513	0.00664	0.00828	0.00819	0.00663			
1	0.00246	0.00370	0.00503	0.00498	0.00366			

Tabla N°39: Desplazamientos de entrepiso en la dirección X ($\alpha = 0^\circ$)

Y máx.	MODELOS DE ESTUDIO							
N° Pisos	Empotrado	Barkan	Ilichev	Sargsian	NRusa			
7	0.028592	0.03147572	0.03526	0.03442	0.03261			
6	0.024591	0.02745736	0.03087	0.03015	0.02831			
5	0.020262	0.02314273	0.02628	0.02567	0.02361			
4	0.01570	0.01857081	0.02148	0.02099	0.01887			
3	0.01109	0.01385538	0.01653	0.01616	0.01391			
2	0.00671	0.00920208	0.01155	0.01130	0.00907			
1	0.00293	0.00487389	0.00668	0.00654	0.00466			

Tabla N°40: Desplazamientos de entrepiso en la dirección Y ($\alpha = 0^\circ$)

En las figuras N° 64 y 65 se muestran los desplazamientos máximos de los centros de masas tanto en la dirección X como en Y para los diversos modelos dinámicos y bajo diferentes ángulos de inclinación del sismo. Cabe indicar que el mayor desplazamiento ocurre en el 7mo piso. La flexibilidad de la base de fundación incrementa los máximos desplazamientos de los centros de masas en las direcciones X y Y, siendo más notorio en el modelo Ilichev.

Figura N°64: Desplazamiento máximo del centro de masas en el 7mo –Dirección X

Figura N°65: Desplazamiento máximo del centro de masas en el 7mo –Dirección Y

Las derivas de entrepiso que se muestran en las tablas 41 y 42 han sido determinadas en función del desplazamiento lateral y de la altura de entrepiso, las derivas están directamente relacionado con los desplazamientos de entrepiso y han sido verificados mediante los valores máximos permisibles de la norma E.030.

<0.007	MODELOS DE ESTUDIO							
N° Pisos	Empotrado	Barkan	Ilichev	Sargsian	NRusa			
7	0.00404	0.00377	0.00390	0.00386	0.00388			
6	0.00441	0.00412	0.00416	0.00412	0.00424			
5	0.00460	0.00435	0.00434	0.00431	0.00446			
4	0.00461	0.00449	0.00454	0.00450	0.00458			
3	0.00434	0.00439	0.00460	0.00456	0.00447			
2	0.00390	0.00428	0.00473	0.00469	0.00432			
1	0.00215	0.00324	0.00440	0.00435	0.00320			

Tabla N°41: Derivas de entrepiso en la dirección X ($\alpha = 0^\circ$)

Tabla N°42: Derivas de entrepiso en la dirección Y ($\alpha = 0^{\circ}$)

Y máx.	MODELOS DE ESTUDIO							
N° Pisos	Empotrado	Barkan	Ilichev	Sargsian	NRusa			
7	0.00583	0.00586	0.00640	0.00624	0.00627			
6	0.00631	0.00629	0.00670	0.00653	0.00685			
5	0.00665	0.00667	0.00699	0.00682	0.00692			
4	0.00673	0.00688	0.00722	0.00704	0.00723			
3	0.00638	0.00679	0.00726	0.00709	0.00706			
2	0.00551	0.00631	0.00710	0.00694	0.00643			
1	0.00256	0.00426	0.00585	0.00572	0.00408			

En la tabla 42, se observa que las derivas en la dirección del eje Y se incrementan porque están directamente relacionas con los desplazamientos laterales. En los modelos de Ilichev y Sargsian no cumplen con los máximos permisibles (<0.007).

5.1.2.2. Fuerzas internas

a) Columna:

- En la tabla N° 43 se muestran los resultados por piso de las fuerzas axiales para una dirección de sismo horizontal, además en la figura N° 66 se muestran los valores de las fuerzas axiales máximas, analizados por la Norma Peruana E030-2016 a través del programa SAP2000, para los diversos modelos dinámicos y bajo diferentes ángulos de inclinación del sismo (α =0⁰,45⁰, 90⁰) para obtener los máximos valores.

N Max	MODELOS DE ESTUDIO								
Nº Pisos	Empotrado	Barkan	Ilichev	Sargsian	NRusa				
1er piso	2.6518	2.5069	2.1883	2.1834	2.2619				
2do piso	2.4666	1.9479	1.8126	1.8087	1.7521				
3er piso	1.8880	1.4693	1.2585	1.2535	1.3171				
4to piso	1.2110	1.0194	0.9689	0.8653	0.9196				
5to piso	0.7293	0.6477	0.5835	0.5824	0.6322				
6to piso	0.5067	0.3977	0.4953	0.4946	0.3888				
7mo piso	0.2900	0.2537	0.3131	0.3126	0.2776				

Tabla N°43: Fuerzas Axiales en columna ($\alpha = 90^{\circ}$)

- En la tabla N° 44 se muestran los resultados por piso de las fuerzas cortantes para una dirección de sismo horizontal, además en la figura N° 67 se muestran los valores de las fuerzas cortantes máximas para los diversos modelos dinámicos y bajo diferentes ángulos de inclinación del sismo (α =0⁰,45⁰, 90⁰).

V Max	MODELOS DE ESTUDIO							
Nº Pisos	Empotrado	Barkan	Ilichev	Sargsian	NRusa			
1er piso	0.3798	0.3683	0.3806	0.3811	0.3671			
2do piso	0.3508	0.3286	0.3147	0.3160	0.3290			
3er piso	0.3403	0.3249	0.3017	0.3027	0.3251			
4to piso	0.3338	0.2954	0.2710	0.2718	0.2966			
5to piso	0.3109	0.2643	0.2541	0.2548	0.2656			
6to piso	0.3014	0.2615	0.2439	0.2445	0.2629			
7mo piso	0.2256	0.2150	0.1572	0.1565	0.2146			

Tabla N°44: Fuerzas cortantes en columna ($\alpha = 90^{\circ}$)

- En la tabla N° 45 se muestran los resultados por piso de los momentos flectores para una dirección de sismo horizontal, en la figura N° 68 se muestran los valores de los momentos flectores máximos para los diversos modelos dinámicos y bajo diferentes ángulos de inclinación del sismo (α =0⁰,45⁰, 90⁰).

M Max	MODELOS DE ESTUDIO							
Nº Pisos	Empotrado	Barkan	Ilichev	Sargsian	NRusa			
1er piso	0.5790	0.5501	0.5140	0.5150	0.5421			
2do piso	0.4759	0.5102	0.4364	0.4381	0.5024			
3er piso	0.4597	0.4503	0.4156	0.4171	0.4505			
4to piso	0.4586	0.4457	0.3750	0.3762	0.4457			
5to piso	0.4578	0.4093	0.3698	0.3709	0.4107			
6to piso	0.4144	0.3889	0.3473	0.3458	0.3905			
7mo piso	0.3669	0.3614	0.3355	0.3363	0.3634			

Tabla N°45: Momentos flectores en columna ($\alpha = 90^\circ$)

b) <u>Viga</u>

- Los resultados que a continuación se muestran han sido analizados por la Norma Peruana E030-2016 a través del programa SAP2000, en las tablas se presentan los resultados por piso para una dirección de sismo horizontal.

V Max (2-2)	MODELOS DE ESTUDIO							
Nº Pisos	Empotrado	Barkan	Ilichev	Sargsian	NRusa			
1er piso	1.1509	1.1234	0.8500	0.8471	1.0802			
2do piso	1.0382	0.9930	0.7860	0.7826	0.9459			
3er piso	1.0038	0.9373	0.6189	0.6184	0.8975			
4to piso	0.9619	0.8084	0.5068	0.5070	0.7680			
5to piso	0.7745	0.5930	0.4274	0.4227	0.5727			
6to piso	0.7125	0.5569	0.4235	0.4188	0.5711			
7mo piso	0.4630	0.3584	0.2676	0.2646	0.3670			

Tabla N°46: Fuerzas Cortantes en Viga ($\alpha = 90^{\circ}$)

M Max (3-3)	MODELOS DE ESTUDIO								
N° Pisos	Empotrado	Barkan	Ilichev	Sargsian	NRusa				
1er piso	1.2562	1.0543	0.8770	0.8652	1.0788				
2do piso	1.2316	1.0355	0.8324	0.8232	1.0531				
3er piso	1.2071	1.0153	0.8294	0.8191	1.0232				
4to piso	1.1948	0.9852	0.8293	0.8152	1.0112				
5to piso	1.0879	0.9784	0.7658	0.7575	1.0027				
6to piso	0.8772	0.8824	0.7477	0.7394	0.8683				
7mo piso	0.8380	0.6888	0.5247	0.5188	0.7065				

Tabla N°47: Momentos flectores en viga ($\alpha = 90^{\circ}$)

c) <u>Placa</u>

- Los resultados que a continuación se muestran han sido analizados por la Norma Peruana E030-2016 a través del programa SAP2000, todos los valores de interacción suelo-estructura muestran una variación respecto al modelo empotrado como era de esperarse ya que, en dicho análisis se está considerando características de la cimentación y las propiedades del suelo.

Tabla N°48: Fuerzas Axiales en placa ($\alpha = 90^{\circ}$)

F Max (1-2)	MODELOS DE ESTUDIO							
Nº Pisos	Empotrado	Barkan	Ilichev	Sargsian	NRusa			
1er piso	18.0460	15.3430	17.4200	17.0730	14.4860			
2do piso	16.0720	14.0280	13.3430	13.0930	12.8370			
3er piso	15.7300	12.3630	13.0520	12.8060	12.2980			
4to piso	14.8010	11.9290	12.6700	12.4110	12.0080			
5to piso	13.7800	10.7680	11.7610	11.5380	10.9720			
6to piso	12.8020	9.4390	11.3050	11.0750	9.7050			
7mo piso	11.5970	8.7820	10.5270	10.3220	8.2930			

Figura N°69: Fuerzas Axiales en placa

V Max (2-3)	MODELOS DE ESTUDIO							
Nº Pisos	Empotrado	Barkan	Ilichev	Sargsian	NRusa			
1er piso	0.4340	0.4100	0.3020	0.2980	0.4140			
2do piso	0.4320	0.3950	0.2940	0.2900	0.4060			
3er piso	0.4210	0.3860	0.2820	0.2780	0.3980			
4to piso	0.4200	0.3570	0.2690	0.2650	0.3710			
5to piso	0.4190	0.3480	0.2610	0.2570	0.3640			
6to piso	0.3810	0.3110	0.2430	0.2380	0.3250			
7mo piso	0.2130	0.2150	0.2320	0.2290	0.2240			

Tabla N°49: Fuerzas cortantes en placa ($\alpha = 90^{\circ}$)

Figura N°70: Fuerzas cortantes en placa

Lable 11 50. Momentos en place ($\alpha = 50$	Tabla N	° 50: Momentos	en placa ($(\alpha = 90^{\circ})$
---	---------	-----------------------	------------	-------------------------

M Max (2-2)	MODELOS DE ESTUDIO							
Nº Pisos	Empotrado	Barkan	Ilichev	Sargsian	NRusa			
1er piso	0.6434	0.5757	0.6007	0.5886	0.5826			
2do piso	0.6091	0.5379	0.4183	0.4121	0.5588			
3er piso	0.5893	0.5335	0.4038	0.3980	0.5513			
4to piso	0.5758	0.5272	0.4005	0.3950	0.5446			
5to piso	0.5756	0.5196	0.3878	0.3822	0.5445			
6to piso	0.5168	0.4939	0.3613	0.3561	0.5127			
7mo piso	0.2974	0.4264	0.3160	0.3115	0.4446			

Figura N°71: Momentos en placa

5.1.3. <u>Resultados del análisis Tiempo-Historia con espectro de aceleración</u>

Según la Norma E.030-Artículo 4.7.3 menciona lo siguiente: "Si se utilizaran menos de siete juegos de registros, las fuerzas de diseño, las deformaciones y las distorsiones de entrepiso serán evaluadas a partir de los máximos valores obtenidos de todos los análisis". Es por ello que, los máximos valores obtenidos según el análisis sísmico de la edificación resulta que de los 3 acelerogramas escalados, el de Lima 1966 genera mayores esfuerzos y mayores desplazamientos. Los resultados se muestran a continuación.

5.1.3.1. Desplazamientos

Por ser sismos reales los desplazamientos obtenidos no requieren ser corregidos por 0.75R como en el caso del análisis estático y dinámico con espectro de aceleración, en la tabla muestra los desplazamientos por piso y la variación que sufre cuando se incorpora en el análisis la ISE.

X máx.	MODELOS DE ESTUDIO							
N° Pisos	Empotrado	Barkan	Ilichev	Sargsian	NRusa			
7	0.0098	0.0112	0.0126	0.0122	0.0115			
6	0.0084	0.0099	0.0110	0.0107	0.0100			
5	0.0069	0.0084	0.0093	0.0090	0.0084			
4	0.0053	0.0069	0.0076	0.0073	0.0069			
3	0.0038	0.0053	0.0058	0.0056	0.0053			
2	0.0024	0.0037	0.0040	0.0039	0.0037			
1	0.0011	0.0021	0.0023	0.0023	0.0021			

Tabla N°51: Desplazamientos de entrepiso Dirección X ($\alpha = 0^\circ$)

Tabla N°52: Desplazamientos de entrepiso Dirección Y ($\alpha = 0^{\circ}$)

Y máx.	MODELOS DE ESTUDIO							
N° Pisos	Empotrado	Barkan	Ilichev	Sargsian	NRusa			
7	0.0109	0.0123	0.0137	0.0133	0.0126			
6	0.0092	0.0112	0.0123	0.0116	0.0108			
5	0.0075	0.0098	0.0103	0.0010	0.0096			
4	0.0064	0.0076	0.0083	0.0080	0.0076			
3	0.0048	0.0057	0.0061	0.0059	0.0056			
2	0.0031	0.0040	0.0043	0.0041	0.0039			
1	0.0020	0.0032	0.0033	0.0033	0.0031			

En las figuras N° 72 y 73 se muestran los desplazamientos máximos de los centros de masas tanto en la dirección X como en Y para los diversos modelos dinámicos y bajo diferentes ángulos de inclinación del sismo. Cabe indicar que el mayor desplazamiento ocurre en el 7mo piso.

Figura N°72: Desplazamiento máximo–Dirección X

Figura N°73: Desplazamiento máximo–Dirección Y

Las derivas de entrepiso que se muestran en la tabla han sido determinadas en función del desplazamiento lateral y de la altura de entrepiso, las derivas están directamente relacionado con los desplazamientos de entrepiso y han sido verificados mediante los valores máximos permisibles de la norma E.030. Las distorsiones máximas de entrepiso no deberán exceder de 1.25 veces el máximo permisible de 0.007.

X máx.	MODELOS DE ESTUDIO								
N° Pisos	Empotrado	Barkan	Ilichev	Sargsian	NRusa				
7	0.00206	0.00193	0.00236	0.00230	0.00213				
6	0.00225	0.00214	0.00249	0.00243	0.00232				
5	0.00234	0.00225	0.00257	0.00250	0.00232				
4	0.00224	0.00234	0.00263	0.00256	0.00235				
3	0.00205	0.00237	0.00259	0.00250	0.00237				
2	0.00184	0.00240	0.00251	0.00241	0.00240				
1	0.00153	0.00187	0.00208	0.00205	0.00184				

Tabla N°53: Derivas de entrepiso Dirección X ($\alpha = 0^{\circ}$)

Tabla N°54: Derivas de entrepiso Dirección Y ($\alpha = 0^\circ$)

X máx.	MODELOS DE ESTUDIO								
N° Pisos	Empotrado	Barkan	Ilichev	Sargsian	NRusa				
7	0.00252	0.00163	0.00207	0.00252	0.00267				
6	0.00251	0.00207	0.00296	0.01570	0.00178				
5	0.00163	0.00326	0.00296	0.01037	0.00296				
4	0.00237	0.00281	0.00326	0.00311	0.00296				
3	0.00252	0.00252	0.00267	0.00267	0.00252				
2	0.00163	0.00119	0.00148	0.00119	0.00119				
1	0.00267	0.00284	0.00293	0.00293	0.00276				

5.1.3.2. Fuerzas internas

a) Columna:

- En la tabla N° 55 se muestran los resultados por piso de las fuerzas axiales para una dirección de sismo horizontal, además en la figura N° 74 se muestran los valores de las fuerzas axiales máximas, analizados por la Norma Peruana E030-2016 a través del programa SAP2000, para los diversos modelos dinámicos y bajo diferentes ángulos de inclinación del sismo (α =0°,45°, 90°).

N Max	MODELOS DE ESTUDIO							
Nº Pisos	Empotrado	Barkan	Ilichev	Sargsian	NRusa			
1er piso	13.2550	11.8121	9.3196	8.3496	9.8945			
2do piso	11.7483	9.4509	8.8794	7.5434	7.8170			
3er piso	9.8231	7.3592	7.3249	6.4782	6.3097			
4to piso	7.7163	5.3411	5.3622	5.3234	4.7957			
5to piso	5.5247	3.5662	3.4302	3.0712	3.3319			
6to piso	3.4838	2.0508	2.3194	2.3979	2.1178			
7mo piso	1.4351	1.2704	1.3722	1.4194	1.3318			

Tabla N°55: Fuerzas axiales en columna ($\alpha = 90^{\circ}$)

Figura N°74: Resumen de fuerzas axiales -columna - Tiempo - Historia

- En la tabla N° 56 se muestran los resultados por piso de las fuerzas cortantes para una dirección de sismo horizontal, además en la figura N° 75 se muestran los valores de las fuerzas cortantes máximas para los diversos modelos dinámicos y bajo diferentes ángulos de inclinación del sismo ($\alpha=0^{0},45^{0},90^{0}$), a fin de conocer los valores máximos.

V Max (3-3)	MODELOS DE ESTUDIO							
N° Pisos	Empotrado	Barkan	Ilichev	Sargsian	NRusa			
1er piso	2.5869	2.7170	3.0489	3.0181	2.6340			
2do piso	2.3649	2.4920	2.8652	2.7699	2.4754			
3er piso	2.3556	2.4532	2.7007	2.6314	2.4377			
4to piso	2.2795	2.4241	2.6517	2.5879	2.3916			
5to piso	2.1745	2.4056	2.6377	2.5483	2.3488			
6to piso	2.0268	2.1991	2.4922	2.4104	2.2179			
7mo piso	0.5923	0.8012	0.8514	0.8355	0.7802			

Tabla N°56: Fuerzas cortantes en columna ($\alpha = 90^{\circ}$)

Figura N°75: Resumen de fuerzas cortantes -columna - Tiempo - Historia

- En la tabla N° 57 se muestran los resultados por piso de los momentos flectores para una dirección de sismo horizontal, además en la figura N° 76 se muestran los valores de los momentos flectores máximos para los diversos modelos dinámicos y bajo diferentes ángulos de inclinación del sismo ($\alpha=0^{0},45^{0},90^{0}$), a fin de conocer el mayor efecto.

M Max (2-2)		MODELOS DE ESTUDIO							
Nº Pisos	Empotrado	Barkan	Ilichev	Sargsian	NRusa				
1er piso	3.7939	3.7189	3.5458	3.4703	3.8362				
2do piso	3.5378	3.4799	3.5287	3.4146	3.5108				
3er piso	3.3920	3.3649	3.1323	3.0702	3.3817				
4to piso	3.4628	3.3028	3.0846	3.0247	3.3367				
5to piso	3.3846	3.2472	2.8828	2.8128	3.2875				
6to piso	3.2250	3.2093	2.6225	2.5325	3.1682				
7mo piso	1.8878	1.8132	1.4648	1.4010	1.7165				

Tabla N°57: Momentos flectores en columna ($\alpha = 90^\circ$)

Figura N°76: Resumen de momentos flectores -columna - Tiempo - Historia

b) <u>Viga</u>

- Los resultados que a continuación se muestran han sido analizados por la Norma Peruana E030-2016 a través del programa SAP2000, en las tablas se presentan los resultados por piso para una dirección de sismo horizontal.

V Max (2-2)	MODELOS DE ESTUDIO								
N° Pisos	Empotrado	Barkan	Ilichev	Sargsian	NRusa				
1er piso	3.6118	3.6066	3.5203	3.4639	3.5848				
2do piso	3.4641	3.4293	3.2506	3.2023	3.4079				
3er piso	3.4383	3.3864	3.2147	3.1513	3.3791				
4to piso	3.3864	3.3332	3.1948	3.1105	3.3221				
5to piso	3.2429	3.2513	2.8942	2.8233	2.9947				
6to piso	3.1585	2.8506	2.8790	2.8073	2.9911				
7mo piso	2.2729	1.8344	1.8005	1.7572	1.9260				

Tabla N°58: Fuerzas cortantes en viga ($\alpha = 90^{\circ}$)

Tabla N°59: Momentos flectores en viga ($\alpha = 90^{\circ}$)

M Max (3-3)		MODELOS DE ESTUDIO							
Nº Pisos	Empotrado	Barkan	Ilichev	Sargsian	NRusa				
1er piso	5.5590	5.4573	5.4406	5.3871	5.3169				
2do piso	5.4768	5.4530	5.3200	5.2501	5.3094				
3er piso	5.3411	5.3107	5.1424	4.9975	5.1754				
4to piso	5.3325	5.0172	5.0827	4.9758	5.0370				
5to piso	4.8733	4.6922	4.8484	4.6890	4.7726				
6to piso	3.9107	4.0157	4.7382	4.6181	4.0888				
7mo piso	3.7206	3.8537	3.5923	3.5009	3.7568				

c) <u>Placa</u>

- Los resultados que a continuación se muestran han sido analizados por la Norma Peruana E030-2016 a través del programa SAP2000, en las tablas se presentan los resultados por piso para una dirección de sismo horizontal.

Fmáx (1-2)	MODELOS DE ESTUDIO							
N° Pisos	Empotrado	Barkan	Ilichev	Sargsian	NRusa			
1er piso	104.2737	106.8120	94.5960	92.2110	100.7130			
2do piso	97.4960	97.8470	92.1600	90.2320	96.0830			
3er piso	95.3130	93.8030	90.9730	88.7200	94.5600			
4to piso	93.1500	92.8450	89.0150	86.7680	93.2400			
5to piso	91.6430	91.3880	87.1390	85.0380	92.9500			
6to piso	88.6500	88.4980	84.7050	82.5640	88.1250			
7mo piso	80.6910	82.2170	78.0040	77.1850	78.6730			

Tabla N°60: Fmáx (1-2) en placa ($\alpha = 90^{\circ}$)

Tabla N°61: Vmáx (1-3) en placa ($\alpha = 90^{\circ}$)

V Max (1-3)	MODELOS DE ESTUDIO								
Nº Pisos	Empotrado	Barkan	Ilichev	Sargsian	NRusa				
1er piso	1.4140	1.5960	1.5080	1.5100	1.4890				
2do piso	1.2510	1.2780	1.1110	1.1260	1.2250				
3er piso	1.1940	1.2620	1.0740	1.0950	1.2150				
4to piso	1.1140	1.2260	0.9890	1.0120	1.1390				
5to piso	1.2260	1.1700	0.7790	0.7770	1.0510				
6to piso	0.9780	0.9590	0.7200	0.7110	0.8570				
7mo piso	0.6030	0.5590	0.3890	0.3830	0.6070				

Tabla N°62: Mmáx (2-2) en placa ($\alpha = 90^\circ$)

M Max (2-2)	MODELOS DE ESTUDIO							
Nº Pisos	Empotrado	Barkan	Ilichev	Sargsian	NRusa			
1er piso	1.0005	1.4173	1.3604	1.4096	1.6113			
2do piso	0.9753	1.3240	1.3425	1.3197	1.2407			
3er piso	0.9321	1.2170	1.3766	1.2306	1.1210			
4to piso	0.9125	1.1500	1.2526	1.2011	1.1001			
5to piso	0.8624	1.0472	1.2458	1.1871	1.0107			
6to piso	0.8513	1.0251	1.1407	1.1513	0.9903			
7mo piso	0.7155	0.8693	0.9816	0.8739	0.8471			

5.2. Discusión de resultados

Para la comparación de los resultados de las fuerzas internas o esfuerzos con los modelos de Interacción Suelo-Estructura, respecto al modelo empotrado en la base, se han considerado tres elementos estructurales (columna, viga, placa), estos no son una muestra probabilística sino una muestra por conveniencia, ya que en esta muestra se presentan los máximos valores de las fuerzas internas, consecuentemente son los más representativos.

De las Tablas 23, 24, 25, 26, 27. Coeficientes de rigidez para la ISE, se observa que en los modelos de interacción suelo-estructura los desplazamientos de entrepisos dependerán de los coeficientes de rigidez, donde los valores más altos de estos coeficientes producirán menores desplazamientos de entrepisos.

De las Tablas 23, 24, 25, 26, 27, tenemos que las fuerzas internas de los elementos estructurales dependerán de los coeficientes de rigidez, al tener valores altos de los coeficientes de rigidez producirán en algunos casos mayores fuerzas internas en los elementos estructurales; esto se debe a que los suelos más flexibles absorberán poca energía del sismo, de tener mayor rigidez en el suelo la energía absorbida será mayor.

Según la tabla N° 63, se muestra el resultado del análisis modal en la edificación, se observa que la Interacción suelo-estructura incrementa los períodos de las formas de vibración. El incremento más notorio se da para la primera forma de vibración por el modelo Ilichev con un 23.78% y el menor incremento de 3.52% para el modelo de Barkan.

Modos	Empotrado	Barkan	Ilichev	Sargsian	NRusa
1	0.6877970	0.7119750	0.8513210	0.8495770	0.7250760
2	0.5263360	0.5932130	0.7160630	0.7138800	0.5974090
3	0.4397960	0.4806680	0.5789120	0.5748330	0.4775000
4	0.1969660	0.1955910	0.2113930	0.2096070	0.1986900
5	0.1343950	0.1420350	0.1504200	0.1502700	0.1403990
6	0.1171900	0.1186740	0.1220880	0.1216080	0.1177810
7	0.0921290	0.1076950	0.1064470	0.1064220	0.1031840
8	0.0905350	0.0923030	0.0958320	0.0958240	0.0935760
9	0.0781220	0.0838920	0.0940070	0.0937400	0.0830110
10	0.0737020	0.0762690	0.0832840	0.0832840	0.0752940
11	0.0691630	0.0709180	0.0730030	0.0690410	0.0686910
12	0.0666570	0.0709180	0.0693640	0.0693270	0.0686810

Tabla N°63: Períodos de las 12 primeras formas de vibración libre

Con la implementación de la Interacción suelo-estructura se observa que disminuye las frecuencias de las formas de vibración libre, tal como se muestra en la tabla N° 64. La disminución más notoria se da en el modelo Ilichev en el primer modo de vibración con un 19.21% y la menor de 3.40% para el modelo de Barkan.

Modos	Empotrado	Barkan	Ilichev	Sargsian	NRusa
1	9.1352322	8.8250083	7.3805125	7.3956631	8.6655541
2	11.9375937	10.5917863	8.7746264	8.8014587	10.5173931
3	14.2865904	13.0717778	10.8534377	10.9304534	13.1585033
4	31.8998472	32.1241024	29.7227690	29.9760280	31.6230576
5	46.7516300	44.2368804	41.7709434	41.8126393	44.7523509
6	53.6153708	52.9449189	51.4643971	51.6675326	53.3463403
7	68.1998644	58.3424050	59.0264198	59.0402859	60.8930193
8	69.4006219	68.0713011	65.5645850	65.5700587	67.1452649
9	80.4278604	74.8961201	66.8374196	67.0277929	75.6909965
10	85.2512185	82.3819023	75.4428859	75.4428859	83.4486852
11	90.8460493	88.5978920	86.0674946	91.0065803	91.4702844
12	94.2614475	88.5978920	90.5827995	90.6311438	91.4836026

Tabla N°64: Frecuencias de las 12 primeras formas de vibración

5.2.1. Análisis estático

- La incorporación de la ISE, calculado por la Norma Peruana E030-2016, a través de un análisis estático, permite el incremento de los desplazamientos máximos del centro de masas en el eje X desde 3.68% (Barkan) hasta el 28.51% (Sargsian) y en el eje Y entre 1.65% (Barkan) y 24.06% (Sargsian). Los resultados son como se muestra en la tabla N° 65.

Tabla Nº65: Variación po	orcentual de desplazamientos	máximos ($\alpha = 0^{\circ}$)
--------------------------	------------------------------	----------------------------------

		DESPLAZAMIENTOS MAXIMOS (m)								
DIRECCIÓN	EMPOTRAM	BARKAN	ILICHEV	SARGSIAN	NORMA RUSA	BALASTO				
X máx	100%	103.68%	127.95%	128.51%	109.92%	106.49%				
Y máx	100%	101.65%	123.19%	124.06%	109.58%	105.43%				

- Las fuerzas axiales máximas de la columna en estudio disminuyen en un intervalo de 7,35% (Balasto) al 42.77% (Ilichev); existe un incremento de las fuerzas cortantes máximas desde el 40.30% (Barkan) hasta el 57,0% (Sargsian) y hay un incremento de los momentos flectores máximos entre 20.37% (Barkan) y 33.39% (Sargsian), las fuerzas cortantes máximas de la viga se ven disminuidas en un intervalo del 5.48% (Barkan) al 6.13% (NRusa) y un incremento entre 2.17% (Sargsian) y 5.26% (Balasto), los momentos flectores máximos sufre un incremento entre 2.37% (Balasto) y 8.30% (Sargsian), finalmente el elemento de corte o muro de corte sufre una disminución de fuerzas cortantes en la base entre 2.32% (NRusa) y 15.89% (Sargsian). Los resultados son como se muestran en la tabla N° 66.

Elemento Columna	Tipo	Fuerza Axial (Tn)	Fuerza Corte (Tn)	M Flector (Tn-m)	% Variación Axial	% Variación Corte	% Variación M Flector
Eje C-2	Empotrado	5.2663	0.7662	1.2368	100.00%	100.00%	100.00%
Eje C-2	Barkan	4.7417	1.0750	1.4886	90.04%	140.30%	120.37%
Eje C-2	Ilichev	3.0138	1.1879	1.6307	57.23%	155.04%	131.85%
Eje C-2	Sargsian	3.0223	1.2029	1.6497	57.39%	157.00%	133.39%
Eje C-2	NRusa	4.6994	1.1348	1.5736	89.24%	148.11%	127.23%
Eje C-2	Balasto	4.8791	1.1731	1.6447	92.65%	153.11%	132.98%
Elemento Viga	Tipo	Fuerza Corte (Tn)	M Flector (Tn-m)	% Variación Corte	% Variación M Flector		
Eje 2 tramo C-E	Empotrado	1.3152	2.2025	100.00%	100.00%		
Eje 2 tramo C-E	Barkan	1.2431	2.1965	94.52%	99.73%		
Eje 2 tramo C-E	Ilichev	1.3464	2.3766	102.37%	107.90%		
Eje 2 tramo C-E	Sargsian	1.3437	2.3853	102.17%	108.30%		
Eje 2 tramo C-E	NRusa	1.2346	2.2948	93.87%	104.19%		
Eje 2 tramo C-E	Balasto	1.3844	2.2547	105.26%	102.37%		
Elemento Placa	Tipo	Fuerza Base (Tn)	% Variación Fuerza				
PL-02	Empotrado	60.1720	100.00%				
PL-02	Barkan	57.7360	95.95%				
PL-02	Ilichev	53.4580	88.84%				
PL-02	Sargsian	50.6090	84.11%				
PL-02	NRusa	58.7780	97.68%				
PL-02	Balasto	58.0060	96.40%				

Tabla N°66: Fuerzas internas del análisis estático. ($\alpha = 90^\circ$)

5.2.2. Análisis dinámico

Como era de esperarse, la incorporación de la Interacción Suelo-Estructura incrementa los máximos desplazamientos de los centros de masas en las direcciones X y Y, siendo más notorio en el modelo Ilichev.

- La flexibilidad de la base de fundación, calculado por la Norma Peruana E030-2016, para un análisis espectral cuando $\alpha = 0^{\circ}$ se incrementan los desplazamientos máximos del centro de masas en el eje X desde el 4.46% (Barkan) hasta el 14.03% (Ilichev) y en el eje Y entre 10.09% (Barkan) y 23.33% (Ilichev). Los resultados son como se muestra en la tabla N° 67.

Tabla N°67: Variación por	centual de desp	lazamientos i	máximos ($\alpha = 0^{\circ}$)
---------------------------	-----------------	---------------	-----------	----------------------	---

	DESPLAZAMIENTOS MAXIMOS (m)										
DIRECCIÓN	EMPOTRADO	BARKAN	ILICHEV	SARGSIAN	NORMA RUSA						
X máx	100%	104.46%	114.03%	112.94%	106.11%						
Y máx	100%	110.09%	123.33%	120.39%	114.07%						

- Asimismo cuando $\alpha = 90^{\circ}$ disminuyen las fuerzas axiales máximas de la columna en un intervalo del 22.36% (NRusa) al 28.09% (Sargsian); existe una disminución de las fuerzas cortantes máximas desde el 13.07% (NRusa) hasta el 24.15% (Ilichev), una disminución de los momentos flectores máximos entre 13.17% (NRusa) y 25.64% (Ilichev). Las fuerzas cortantes máximas de la viga se ven disminuidas en un intervalo del 12.76% (Barkan) al 32.57% (Ilichev), los momentos flectores máximos sufren una disminución entre 14.12% (NRusa) y 31.13% (Sargsian), finalmente el elemento de corte o muro de corte sufre un aumento de la Fmáx 1-2 entre 9.23% (NRusa) y 25.55% (Ilichev). Las fuerzas de corte Vmáx 2-3 disminuyen en un intervalo del 4.61% (NRusa) al 31.80% (Ilichev), asimismo una disminución de los momentos Mmáx 2-2 desde el 8.40% (Ilichev) al 10.52% (Barkan), los resultados son como se muestran en la tabla N° 68.

Elemento Columna	Tipo	Fuerza Axial (Tn)	Fuerza Corte (Tn)	M Flector (Tn-m)	% Variación Axial	% Variación Corte	% Variación M Flector
	Empotra						
Eje C-2	do	6.6493	0.6038	0.9385	100.00%	100.00%	100.00%
Eje C-2	Barkan	5.1456	0.5038	0.7818	77.39%	83.44%	83.31%
Eje C-2	Ilichev	4.8860	0.4580	0.6979	73.48%	75.85%	74.36%
Eje C-2	Sargsian	4.7818	0.4640	0.7054	71.91%	76.85%	75.16%
Eje C-2	NRusa	5.1623	0.5249	0.8148	77.64%	86.93%	86.83%
Elemento Viga	Tipo	Fuerza Corte (Tn)	M Flector (Tn-m)	% Variación Corte	% Variación M Flector		
	Empotra						
Eje 2, C-E	do	1.3462	1.2562	100.00%	100.00%		
Eje 2, C-E	Barkan	1.1744	1.0543	87.24%	83.92%		
Eje 2, C-E	Ilichev	0.9077	0.8770	67.43%	69.81%		
Eje 2, C-E	Sargsian	0.9092	0.8652	67.54%	68.87%		
Eje 2, C-E	NRusa	1.0481	1.0788	77.86%	85.88%		
Elemento (Placa)	Tipo	Fmáx 1-2 (Tn)	Vmáx 2-3 (Tn/m)	Mmáx 2-2 (Tn-m/m)	% Variación Axial	% Variación Corte	% Variación M Flector
	Empotra						
PL-02	do	19.3490	0.4340	0.6434	100.00%	100.00%	100.00%
PL-02	Barkan	21.9920	0.4100	0.5757	113.66%	94.47%	89.48%
PL-02	Ilichev	24.2920	0.2960	0.5893	125.55%	68.20%	91.60%
PL-02	Sargsian	23.6750	0.2980	0.5886	122.36%	68.66%	91.48%
PL-02	NRusa	21.1350	0.4140	0.5826	109.23%	95.39%	90.55%

Tabla N°68: Fuerzas internas del análisis dinámico. ($\alpha = 90^\circ$)

5.2.3. Análisis tiempo-historia

En las tabla 69, se muestra el desplazamiento máximo en el centro de masas en la dirección X y Y, calculados mediante el análisis tiempo-historia y utilizando el acelerograma del sismo de Lima de 1966. De acuerdo a los resultados obtenidos, sin considerar la flexibilidad de la base de fundación y considerando dicho efecto, los desplazamientos se ven disminuidos cuando se cambia el ángulo del sismo.

- La flexibilidad de la base de fundación, calculado por la Norma Peruana E030-2016, para un análisis tiempo-historia cuando α =0°, incrementan los desplazamientos máximos del centro de masas en el eje X desde el 14.19% (Barkan) hasta el 28.49% (Ilichev) y en la dirección Y se incrementan desde el 12.84% hasta 25.69%.

	DESPLAZAMIENTOS MAXIMOS (m)										
DIRECCIÓN	EMPOTRADO	BARKAN	ILICHEV	SARGSIAN	NORMA RUSA						
X máx.	100%	114.19%	128.49%	125.01%	117.10%						
X máx.	100%	112.84%	125.69%	122.02%	115.60%						

Tabla N°69: Variación porcentual de desplazamientos máximos ($\alpha = 0^{\circ}$)

Tabla N°70: Fuerzas internas del análisis dinámico ($\alpha = 90^{\circ}$)

Elemento Columna	Tipo	Fuerza Axial (Tn)	Fuerza Corte (Tn)	M Flector (Tn-m)	% Variación Axial	% Variación Corte	% Variación M Flector
Eje C-2	Empotrado	25.3081	2.7245	4.1557	100.00%	100.00%	100.00%
Eje C-2	Barkan	19.8648	2.7170	3.6315	78.49%	99.72%	87.39%
Eje C-2	Ilichev	15.9050	3.0489	4.1328	62.85%	111.91%	99.45%
Eje C-2	Sargsian	15.8977	3.0181	4.1430	62.82%	110.78%	99.70%
Eje C-2	NRusa	17.2430	2.6340	3.8362	68.13%	96.68%	92.31%
Elemento (Viga)	Tipo	Fuerza Corte (Tn)	M Flector (Tn-m)	% Variación Corte	% Variación M Flector		
	Empotrad						
Еје 2, С-Е	0	5.7498	3.8495	100.00%	100.00%		
Eje 2, C-E	Barkan	5.7470	3.8491	99.95%	99.99%		
Eje 2, C-E	Ilichev	4.9343	3.8467	85.82%	99.93%		
Eje 2, C-E	Sargsian	4.8921	3.8628	85.08%	100.34%		
Eje 2, C-E	NRusa	4.9896	3.4781	86.78%	90.35%		
Elemento (Placa)	Tipo	Fmáx 1-2 (Tn)	Vmáx 2-3 (Tn/m)	Mmáx 2-2 (Tn-m/m)	% Variación Axial	% Variación Corte	% Variación M Flector
	Empotrad						
PL-02	0	79.5920	2.1931	4.2136	100.00%	100.00%	100.00%
PL-02	Barkan	75.0730	1.7690	2.7621	94.32%	80.66%	65.55%
PL-02	Ilichev	74.8240	2.0270	4.0839	94.01%	92.43%	96.92%
PL-02	Sargsian	75.6420	2.0550	4.1177	95.04%	93.70%	97.72%
PL-02	NRusa	63.9680	1.7580	2.7528	80.37%	80.16%	65.33%

- cuando se cambia el ángulo del sismo α =90°, disminuyen las fuerzas axiales máximas de la columna en un intervalo del 21.51% (Barkan) al 37.18% (Sargsian); existe una disminución de las fuerzas cortantes máximas desde el 0.28% (Barkan) hasta el 3.32% (NRusa) y un aumento de las mismas de 10.78% (Sargsian) y 11.91% (Ilichev), asimismo hay una disminución de los momentos flectores máximos entre 0.30% (Sargsian) y 12.61% (Barkan). Las fuerzas cortantes máximas de la viga se ven disminuidas en un intervalo del 13.22% (NRusa) al 14.92% (Sargsian), además existe una pequeña disminución de 0.05% (Barkan), los momentos flectores máximos sufren una pequeña disminución entre 0.01% (Barkan) y 9.65% (Sargsian), finalmente el elemento de corte o muro de corte sufre una disminución de la Fmáx 1-2 entre 4.96% (Sargsian) y 19.63% (NRusa). Las fuerzas de corte Vmáx 2-3 disminuyen en un intervalo del 6.30% (Sargsian) al 19.84% (NRusa), asimismo una disminución de los momentos Mmáx 2-2 desde el 2.28% (Sargsian) al 34.67% (NRusa).

VI. CONCLUSIONES Y RECOMENDACIONES.

6.1. Conclusiones

Habiendo cumplido con los objetivos planteados en la investigación, es decir, realizar el análisis de interacción sísmica suelo estructura de una edificación se concluye que:

 La incorporación de la interacción suelo - estructura en el análisis sísmico de una edificación influye directamente en la determinación de los parámetros de cálculo. Una comparación entre un modelo empotrado y considerando la interacción sueloestructura permite que:

- El periodo de la primera forma de vibración libre, aumente hasta un 23.78% observado en el modelo dinámico de Ilichev.

- La frecuencia de la primera forma de vibración libre, disminuya en 19.21% observado en el modelo dinámico de Ilichev.

 Del análisis sísmico estático calculado según la Norma Peruana E.030-2016 se concluye que al incorporar la Interacción suelo-estructura permite:

- El incremento de los desplazamientos máximos del centro de masas en el eje X hasta un 28.51% y en el eje Y hasta un 24.06%.

La disminución de las fuerzas axiales máximas de la columna hasta un 42.77%;
 el incremento de las fuerzas cortantes máximas hasta un 57,0% y un incremento de los momentos flectores máximos hasta un 33.39%.

- La disminución de las fuerzas cortantes máximas de la viga hasta un 6.13% y un incremento de los momentos flectores máximos hasta un 8.30%.

- La disminución de las fuerzas cortantes máximas del elemento de corte o placa hasta un 15.89%.

 Del análisis sísmico dinámico espectral calculado según la Norma Peruana E.030-2016 se concluye que al incorporar la Interacción suelo-estructura permite:

- El incremento de los desplazamientos máximos del centro de masas en el eje X hasta un 14.03% y en el eje Y hasta un 23.33%.

La disminución de las fuerzas axiales máximas de la columna hasta un 28.09%;
 disminución de las fuerzas cortantes máximas hasta un 24.15% y la disminución de los momentos flectores máximos hasta un 25.64%.

- La disminución de las fuerzas cortantes máximas de la viga hasta un 32.57% y la disminución de los momentos flectores máximos hasta un 31.13%.

- La disminución de la fuerza cortante del elemento de corte o muro de corte hasta un 31.80% y una disminución de los momentos Mmáx 2-2 hasta un 10.52%.

 Del análisis sísmico dinámico tiempo-historia calculado según la Norma Peruana E.030-2016 y con fines de verificación se concluye que al incorporar la Interacción suelo-estructura permite:

- El incremento del desplazamiento máximo del centro de masas en el eje X hasta un 21.45%, y en el eje Y hasta un 28.49%.

La disminución de las fuerzas axiales máximas de la columna hasta un 37.18%;
 disminución de las fuerzas cortantes máximas hasta 11.91% y disminución de los momentos flectores máximos hasta un 12.61%.

- La disminución de las fuerzas cortantes máximas de la viga hasta un 14.92% y disminución de los momentos flectores máximos hasta 9.65%.

- La disminución de la fuerza cortante del muro de corte o placa hasta un 19.84%, asimismo una disminución de los momentos Mmáx 2-2 hasta 34.67%.

- 5. La comparación de los resultados de cálculo nos permite indicar que el mayor efecto incorporando Interacción Suelo-Estructura se da en el modelo dinámico Ilichev y el menor efecto se refleja en el modelo dinámico de Barkan.
- 6. Finalmente se concluye que la Interacción suelo-estructura tiene influencia en el comportamiento sísmico del edificio de 7 niveles ubicado en el Barrio Columbo-Cajamarca, generando variación en la determinación de los periodos y frecuencias de vibración libre, desplazamientos de entrepisos y fuerzas internas de los elementos estructurales.

6.2. Recomendaciones.

- Se recomienda el uso y aplicación de los modelos dinámicos para el cálculo de estructuras, ya que según los resultados obtenidos en dicha investigación muestran una mayor confiabilidad en el análisis sísmico.
- Para el cálculo de los coeficientes de Rigidez del suelo se recomienda considerar la planta exacta de la cimentación ya que la geometría y el área de contacto son factores determinantes en el cálculo de dichos coeficientes de rigidez.
- Es fundamental contar con un adecuado Estudio de Mecánica de suelos y con parámetros de aceptable confiabilidad, ya que cada factor es determinante en el cálculo de coeficientes de rigidez del suelo.
- 4. Se debe realizar un correcto ingreso de Coeficientes de rigidez del Suelo al programa computacional, teniendo especial cuidado al asignar las restricciones y unidades de medida. Tener en cuenta el centroide de cada zapata para la adición de los coeficientes de rigidez.
- 5. Se recomienda realizar en futuras investigaciones el diseño estructural considerando la interacción suelo-estructura y verificar las variaciones de las cuantías de acero a fin de llevar a cabo comparaciones de tipo estructural y económico.

VII. REFERENCIAS BIBLIOGRAFICAS

NORMA TÉCNICA E.030-2016. Decreto supremo que modifica la norma técnica
 e.030 "diseño sismorresistente" del reglamento nacional de edificaciones, aprobada por decreto supremo n° 011-2006-vivienda, modificada con decreto supremo n° 002-2014-vivienda.

- NORMA TÉCNICA PERUANA E 060 CONCRETO ARMADO

- **CONDORI, Gustavo. (2014).** "Comparación del comportamiento sísmico lineal y nolineal, en el análisis y diseño estructural de un edificio alto, con disipadores de energía e interacción suelo-estructura". Arequipa: Universidad Católica Santa María.

 MEZA, José; VALDERRAMA, Christian. (2014). Influencia de la Interacción sueloestructura en la reducción de esfuerzos de una edificación aporticada con zapatas aisladas (tesis). Lima: Universidad Peruana de Ciencias Aplicadas.

- **GRASES, José. (2013)** Efectos de la Interacción suelo-estructura y vulnerabilidad sísmica de edificaciones en Caracas Venezuela. Publicación Sísmica Magazine.

- VILLARREAL, Genner; SAGASTEGUI PLASENCIA F. (2013). Soil – structure seismic interaction and its impact on buildings with isolated shoes. (Interacción sísmica suelo-estructura y su impacto en edificios con zapatas aisladas)

- LÓPEZ, Efraín. (2012). Análisis de interacción sísmica suelo estructura para reducir esfuerzos en los elementos estructurales en edificaciones regulares e irregulares con zapatas aisladas en Huaraz. Huaraz: Universidad Nacional Santiago Antúnez de Mayolo.

- SILVA, Daniel; IPANAQUE, Gustavo. (2009) Interacción Sísmica Suelo – Estructura en Edificios Aporticados. Piura: Universidad Nacional de Piura.

- KHALIL, L. (2007). Influencia de la Interacción Suelo-Estructura en el periodo fundamental de una edificación. Ingeniería sísmica y dinámica estructural.

- BLANCO, Antonio. (2007) Estructuración y diseño de edificaciones de concreto armado. Lima: Capítulo de Ingeniería Civil.

- GARCÍA A. (2006). Interacción Suelo-Estructura en el Análisis y Diseño Sísmico de Estructuras de Mampostería no Reforzada. Memorias del XV Congreso Nacional de Ingeniería Estructural en Jalisco, México.

- VILLARREAL, Genner. (2006) Interacción Suelo-Estructura en edificaciones con zapatas aisladas. Lima: Asamblea Nacional de Rectores.

 - INDECI (2005). Programa de prevención y medidas de mitigación ante desastres de la Ciudad de Cajamarca. Cajamarca, Perú: INSTITUTO NACIONAL DE DEFENSA CIVIL. (INDECI).

- AVILÉS J; PÉREZ-ROCHA L.E., (2004). Bases para las Nuevas Disposiciones Reglamentarias sobre Interacción Dinámica Suelo-Estructura. Revista de Ingeniería Sísmica, No. 71, México.

- CHEN W. y SCAWTHORN C. (2003). Manual de Ingeniería sísmica. Sección II, Capítulo 10, Estados Unidos de América.

- BAZÁN E; MELI R., (2002). Diseño Sísmico de Edificios. Editorial Limusa, México.

- SAFINA S. (1996). Relationship Soil-Structure Upon Fundamental Dynamic Properties of Ordinary Buildings. Proceeding Eleventh World Conference on Earthquake Engineering. Acapulco, México.

- AVILÉS J, PÉREZ-ROCHA L.E, (1997). Efectos de Sitio e Interacción Suelo-Estructura en el Valle de México. Memorias del XI Congreso Nacional de Ingeniería Sísmica, Veracruz, México.

- **INSTITUTO GEOFÍSICO DEL PERÚ (IGP) (2016)** Sismología (consulta: 20 de Abril)(<u>http://www.igp.gob.pe/igp/index.php?option=com_content&view=article&id=96</u> <u>&lang=es</u>).

- MORALES, Roberto. (2006) Diseño en concreto armado. Lima: ICG.

- SARGSIAN A.E. (2004). Mecánica estructural. 2da. Edición. Moscú, 2004.

-SOCIEDAD INTERNACIONAL DE INGENIERÍA GEOTÉCNICA Y MECÁNICA DE SUELOS. Website: <u>www.issmge.org</u> (consulta: 20 de mayo) - COMITÉ ACI 318. Requisitos de Reglamentos Para Concreto Estructural (ACI 318S-05) y Comentarios (ACI 318SR-05), Capítulo Peruano ACI. Lima: Comité ACI 318, 2005.

- ILICHEV VA; ANIKA A. (1985). Sistema con grados y medio de libertad como una dinámica modelo de la base no homogénea. Bases Dinámicas, fundaciones y subterránea estructuras.

 NORMA RUSA- SNIP II-7-81 (1995). La construcción en zonas sísmicas. Actas de la IV Conferencia Internacional de Ingeniería Sísmica.

- **BARCKAN -SAVINOV O.A (1979)** moderno diseño de bases de máquinas y su cálculo. El método de la estructura de interacción de contabilidad con una base en cálculos sobre los efectos sísmicos. / Ingeniería Sísmica.

FREIRE TELLADO, Manuel. (2000): "Precisiones para el empleo del módulo de balasto", "Interacción del suelo, cimiento y estructura: el caso de las zapatas I y II", en: Informes de la Construcción - Nº: 463/471/ 472 respectivamente.

ANEXOS

GENERAL (ESTRUCTURACION IRREGULAR)												
EJE X-X	LUZ LIBRE Ln(m)	H(cm)=Ln/12	$h = \frac{L_n}{\left(\frac{4}{\sqrt{W_u}}\right)}$	b(cm)=h/2	b (cm) (criterio rigideces)	H (cm) (calculad 0)	b x H	Verifica	Optadas para el analisis			
EJE X-X												
V38	4.28	35.67	34.51	17.83	30	40	1200.00	OK !!!	30x40			
V39	5.05	42.08	40.71	21.04	30	45	1350.00	OK !!!	30x45			
V40	2.60	21.67	20.96	10.83	30	25	750.00	OK !!!	30x25			
V41	5.00	41.67	40.31	20.83	30	45	1350.00	OK !!!	30x45			
V42	4.22	35.17	34.02	17.58	30	40	1200.00	OK !!!	30x40			
V29	4.92	41.00	39.67	20.50	30	45	1350.00	OK !!!	30x45			
V30	4.88	40.67	39.34	20.33	30	45	1350.00	OK !!!	30x45			
V31	4.22	35.17	34.02	17.58	30	40	1200.00	OK !!!	30x40			
V27	2.18	18.17	17.58	9.08	25	20	500.00	OK !!!	25x20			
V43	3.78	31.50	30.48	15.75	25	35	875.00	OK !!!	25x35			
V47	2.18	18.17	17.58	9.08	25	20	500.00	OK !!!	25x20			
V16	4.75	39.58	38.30	19.79	25	40	1000.00	OK !!!	25x40			
V17	2.71	22.58	21.85	11.29	30	25	750.00	OK !!!	30x25			
V44	2.71	22.58	21.85	11.29	30	25	750.00	OK !!!	30x25			
V18	4.70	39.17	37.89	19.58	30	40	1200.00	OK !!!	30x40			
V19	3.11	25.92	25.07	12.96	30	30	900.00	OK !!!	30x30			
V4	3.10	25.83	24.99	12.92	30	30	900.00	OK !!!	30x30			
V5	5.02	41.83	40.47	20.92	30	45	1350.00	OK !!!	30x45			
V6	2.51	20.92	20.24	10.46	30	25	750.00	OK !!!	30x25			
V7	1.68	14.00	13.54	7.00	30	20	600.00	OK !!!	30x20			
V8	4.61	38.42	37.17	19.21	30	40	1200.00	OK !!!	30x40			
V9	3.11	25.92	25.07	12.96	30	30	900.00	OK !!!	30x30			
V1	1.90	15.83	15.32	7.92	30	20	600.00	OK !!!	30x20			
				EJE Y-Y				T ···				
V32	5.13	42.75	41.36	21.38	25	45	1125.00	OK !!!	25x45			
V33	2.96	24.67	23.86	12.33	30	25	750.00	OK !!!	30x25			
V34	2.79	23.25	22.49	11.63	25	25	625.00	OK !!!	25x25			
V35	2.79	23.25	22.49	11.63	25	25	625.00	OK !!!	25x25			
V36	3.01	25.08	24.27	12.54	30	30	900.00	OK !!!	30x30			
V37	3.06	25.50	24.67	12.75	25	30	750.00	OK !!!	25x30			
V20	2.93	24.42	23.62	12.21	25	25	625.00	OK !!!	25x25			
V21	2.93	24.42	23.62	12.21	25	25	625.00	OK !!!	25x25			
V45	4.02	33.50	32.41	16.75	30	35	1050.00	OK !!!	30X35			
V24 V46	4.91	40.92	39.39	20.40	30	45	500.00		30X45 25-20			
V40 V26	2.24	18.0/	18.00	9.55	25	20	200.00 875.00		25x20			
V20 V10	4.00	27.50	32.23	10.07	25	33	1000.00	OK !!!	25x35 25v40			
V10 V11	4.50	37.30	30.28	16.75	23 30	40	1050.00	OK !!!	25340			
V11 V12	3.57	20.75	32.49 28.79	10.79	30	30	900.00	OK !!!	30x33			
V12 V13	3.57	25.75	20.70	14.00	30	30	1050.00	OK !!!	30x30			
V25	1 10	9.17	\$ 90.59 8 97	4 58	30	20	600.00	OK !!!	30x20			
V14	3.74	31.17	30.15	15 58	30	35	1050.00	OK !!!	30x35			
V15	3.74	31.17	30.13	15.88	30	35	1050.00	OK !!!	30x35			
V3	1 72	14 33	13.87	7 17	30	20	600.00	OK !!!	30x20			
*5	1.72	17.33	VIC	AS INCLIN	ADAS	20	000.00	011	50440			
V28	2.94	24,50	23.70	12.25	30	25	750.00	OK !!!	30x25			
V22	4.16	34.67	33.54	17.33	30	35	1050.00	OK !!!	30x35			
V23	4.19	34.92	33.78	17.46	30	35	1050.00	OK !!!	30x35			
1/2	1.86	15 50	15.00	7 75	30	20	600.00	OK !!!	30.20			
¥ 4	1.00	15.50	15.00	1.15	50		000.00		JUA4U			

1. Tabla 1: Predimensionamiento de vigas

Fuente: Elaboración propia.

П с	lipo de olumna	Área tributaria	γt	n	Pg	b x D	si b=D (cm)	b (cm) (minimo)	D (cm) (calculado)	b x D	Verifica	Tipos
C1	Esquinera	3.06	1.50	0.20	24151.28	862.55	29.37	30	30	900.00	OK !!!	30x30
<i>C</i> 2	Lateral	6.93	1.25	0.25	51474.42	1225.58	35.01	30	45	1350.00	OK !!!	30x45
С3	Lateral	4.02	1.25	0.25	29859.62	710.94	26.66	30	25	750.00	OK !!!	30x25
C5	Lateral	4.29	1.25	0.25	31865.12	758.69	27.54	30	30	900.00	OK !!!	30x30
<i>C6</i>	Esquinera	0.84	1.50	0.20	6629.76	236.78	15.39	30	25	750.00	OK !!!	30x25
<i>C</i> 7	Esquinera	0.55	1.50	0.20	4340.92	155.03	12.45	30	25	750.00	OK !!!	30x25
<i>C</i> 8	Lateral	8.12	1.25	0.25	60313.46	1436.03	37.90	35	45	1575.00	OK !!!	35x45
<i>C9</i>	Lateral	3.56	1.25	0.25	26442.85	629.59	25.09	30	25	750.00	OK !!!	30x25
C10	Interior	3.20	1.10	0.30	22106.04	385.98	19.65	30	25	750.00	OK !!!	30x25
C11	Lateral	2.56	1.25	0.25	19015.08	452.74	21.28	30	25	750.00	OK !!!	30x25
C12	Lateral	2.20	1.25	0.25	16341.09	389.07	19.72	30	25	750.00	OK !!!	30x25
C15	Interior	10.22	1.10	0.30	70601.17	1232.72	35.11	30	45	1350.00	OK !!!	30x45
C16	Interior	4.45	1.10	0.30	30741.21	536.75	23.17	35	25	875.00	OK !!!	35x25
C17	Interior	11.36	1.10	0.30	78476.44	1370.22	37.02	35	40	1400.00	OK !!!	35x40
C18	Interior	11.42	1.10	0.30	78890.93	1377.46	37.11	30	50	1500.00	OK !!!	30x50
C19	Lateral	2.20	1.25	0.25	16341.09	389.07	19.72	30	25	750.00	OK !!!	30x25
C20	Interior	3.20	1.10	0.30	22106.04	385.98	19.65	30	25	750.00	OK !!!	30x25
C21	Interior	19.29	1.10	0.30	133257.97	2326.73	48.24	40	60	2400.00	OK !!!	40x60
C27	Interior	14.60	1.10	0.30	100858.81	1761.03	41.96	40	45	1800.00	OK !!!	40x45
C28	Lateral	4.83	1.25	0.25	35876.11	854.19	29.23	30	30	900.00	OK !!!	30x30
C30	Esquinera	4.56	1.50	0.20	35990.14	1285.36	35.85	30	45	1350.00	OK !!!	30x45
C31	Lateral	6.33	1.25	0.25	47017.76	1119.47	33.46	30	40	1200.00	OK !!!	30x40
<i>C</i> 32	Lateral	4.16	1.25	0.25	30899.51	735.70	27.12	30	25	750.00	OK !!!	30x25
<i>C33</i>	Lateral	4.15	1.25	0.25	30825.23	733.93	27.09	30	25	750.00	OK !!!	30x25
C34	Lateral	6.05	1.25	0.25	44937.99	1069.95	32.71	30	40	1200.00	OK !!!	30x40
C35	Esquinera	2.85	1.50	0.20	22493.83	803.35	28.34	30	30	900.00	OK !!!	30x30

2. Tabla 2: Resumen de secciones de columnas por gravedad

Fuente: Elaboración propia.

3. Predimensionamiento de columnas considerando cortante basal en la base.

DATOS	
ALTURA DEL PRIMER NIVEL (m)	2.70 m
Nro. de Columnas	26
Resistencia del Concreto	210 kg/cm2
Distorsión Permisible	0.007 m
Módulo de Elasticidad del Concreto	2.17E+05

CORTANTE POR SISMO	
Vs = ZUCS x Pe	
Vs = 9089.50	
Pe = PU x Área Trib	

Tabla 3: Resumen de secciones de columnas considerando cortante basal

Tipo	de columna	Area tributaria	Vs (Kg)	b x D	SI b=D (cm)	b (cm) (minimo)	D (cm) (calculado)	b x D	Verifica	Tipos
<i>C1</i>	Esquinera	3.06	27,813.87	534.43	23.12	30	30	900.00	OK !!!	30x30
<i>C2</i>	Lateral	6.93	62,990.24	804.26	28.36	30	30	900.00	OK !!!	30x30
С3	Lateral	4.02	36,539.79	612.55	24.75	30	30	900.00	OK !!!	30x30
<i>C</i> 5	Lateral	4.29	38,993.96	632.79	25.16	30	30	900.00	OK !!!	30x30
<i>C6</i>	Esquinera	0.84	7,635.18	280.01	16.73	30	30	900.00	OK !!!	30x30
<i>C</i> 7	Esquinera	0.55	4,999.23	226.57	15.05	30	30	900.00	OK !!!	30x30
<i>C</i> 8	Lateral	8.12	73,806.75	870.58	29.51	30	30	900.00	OK !!!	30x30
С9	Lateral	3.56	32,358.62	576.44	24.01	30	30	900.00	OK !!!	30x30
C10	Interior	3.20	29,086.40	546.52	23.38	30	30	900.00	OK !!!	30x30
С11	Lateral	2.56	23,269.12	488.82	22.11	30	30	900.00	OK !!!	30x30
C12	Lateral	2.20	19,996.90	453.15	21.29	30	30	900.00	OK !!!	30x30
C15	Interior	10.22	92,894.70	976.69	31.25	30	35	1050.00	OK !!!	30x35
<i>C16</i>	Interior	4.45	40,448.28	644.48	25.39	30	30	900.00	OK !!!	30x30
<i>C17</i>	Interior	11.36	103,256.73	1029.72	32.09	30	35	1050.00	OK !!!	30x35
C18	Interior	11.42	103,802.10	1032.44	32.13	30	35	1050.00	OK !!!	30x35
C19	Lateral	2.20	19,996.90	453.15	21.29	30	30	900.00	OK !!!	30x30
C20	Interior	3.20	29,086.40	546.52	23.38	30	30	900.00	OK !!!	30x30
C21	Interior	19.29	175,336.47	1341.83	36.63	30	50	1500.00	OK !!!	30x50
<i>C</i> 27	Interior	14.60	132,706.71	1167.37	34.17	30	40	1200.00	OK !!!	30x40
C28	Lateral	4.83	43,902.29	671.44	25.91	30	30	900.00	OK !!!	30x30
<i>C30</i>	Esquinera	4.56	41,448.12	652.40	25.54	30	30	900.00	OK !!!	30x30
<i>C31</i>	Lateral	6.33	57,536.54	768.66	27.72	30	30	900.00	OK !!!	30x30
<i>C32</i>	Lateral	4.16	37,812.32	623.13	24.96	30	30	900.00	OK !!!	30x30
<i>C33</i>	Lateral	4.15	37,721.43	622.38	24.95	30	30	900.00	OK !!!	30x30
<i>C34</i>	Lateral	6.05	54,991.48	751.46	27.41	30	30	900.00	OK !!!	30x30
<i>C</i> 35	Esquinera	2.85	25,905.08	515.77	22.71	30	30	900.00	OK !!!	30x30

Fuente: Elaboración propia.
Módulo	<i>L</i> (<i>m</i>)	Área (m)	h (m)	N° Veces	Peso(Tn)
Losa1	-	3.48	0.2	1	1.044
Losa2	-	10.77	0.2	1	3.231
Losa3	-	16.34	0.2	1	4.902
Losa4	-	17.87	0.2	1	5.361
Losa5	-	10.84	0.2	1	3.252
Losab	-	27.17	0.2	1	8.151
Losa7	-	6.32	0.2	1	1.896
Losa8	-	22.57	0.2	1	6.771
Losa9	-	12.71	0.2	1	3.813
Losa10	-	18.00	0.2	1	5.400
Losa11	-	9.86	0.2	1	2.958
Losa12	-	2.75	0.2	1	0.825
Losa13	-	12.33	0.2	1	3.699
Losa14	-	11.13	0.2	1	3.339
Losa15	-	6.42	0.2	1	1.926
Losa Maciza	-	2.70	0.1	1	0.648
				TOTAL	57.216 Tn

 Tabla 4: Resumen de metrado de cargas de losas

Acabados	18.86 Tn
Sobrecarga (S/C)	9.43 Tn
Tabiquería	18.86 Tn

	Vigas	b (m)	h (m)	L(m)	N• Veces	Peso(Tn)
	V38	0.3	0.35	4.28	1	1.08
	V39	0.3	0.45	5.05	1	1.64
	V40	0.3	0.45	2.60	1	0.84
	V41	0.3	0.45	5.00	1	1.62
	V42	0.3	0.45	4.22	1	1.37
	V29	0.3	0.45	4.92	1	1.59
	V30	0.3	0.45	4.88	1	1.58
	V31	0.3	0.45	4.22	1	1.37
	V27	0.25	0.25	2.18	1	0.33
	V43	0.25	0.25	3.78	1	0.57
	V47	0.25	0.25	2.18	1	0.33
DIRECCION X-X	V16	0.25	0.45	4.75	1	1.28
	V17	0.3	0.45	2.71	1	0.88
	V44	0.3	0.45	2.71	1	0.88
	V18	0.3	0.45	4.70	1	1.52
	V19	0.3	0.3	3.11	1	0.67
	V4	0.3	0.45	3.10	1	1.00
	V5	0.3	0.45	5.02	1	1.63
	V6	0.3	0.45	2.51	1	0.81
	V7	0.3	0.3	1.68	1	0.36
	V8	0.3	0.45	4.61	1	1.49
	V9	0.3	0.3	3.11	1	0.67
	VI	0.3	0.3	1.90	1	0.41
	V32	0.25	0.3	5.13	1	0.92
	V33	0.3	0.35	2.93	1	0.74
	V34	0.25	0.25	4.50	1	0.68
	V35	0.25	0.25	2.93	1	0.44
	V36	0.3	0.35	4.03	1	1.02
	V37	0.25	0.35	2.96	1	0.62
	V20	0.25	0.3	3.57	1	0.64
	V21	0.25	0.3	2.79	1	0.50
	V45	0.3	0.35	4.02	1	1.01
DIDECCION V V	V24	0.3	0.45	2.79	1	0.90
DIRECCIÓN I-I	V46	0.25	0.35	3.77	1	0.79
	V26	0.25	0.25	3.01	1	0.45
	V10	0.25	0.33	4.91	1	0.97
	V11	0.3	0.35	1.10	1	0.28
	V12	0.3	0.35	3.74	1	0.94
	V13	0.3	0.35	3.06	1	0.77
	V25	0.3	0.35	2.24	1	0.56
	V14	0.3	0.35	4.00	1	1.01
	V15	0.25	0.35	3.81	1	0.80
	V3	0.25	0.35	1.72	1	0.36
	V28	0.3	0.35	2.94	1	0.74
DIRECCION X-V	V22	0.3	0.35	4.16	1	1.05
DIALCOION A-1	V23	0.3	0.35	4.19	1	1.06
	V2	0.3	0.3	1.86	1	0.40
					TOTAL=	41.59

 Tabla 5: Resumen de metrado de cargas de vigas

Ejes	Sección	Columnas	b(m)	D(m)	h(m)	Peso(Tn)
	40X40	2	0.40	0.40	2.50	1.92
EJE 1-1	30X35	2	0.30	0.35	2.50	1.26
	25X35	2	0.25	0.35	2.50	1.05
Eje 2-2	30X35	2	0.30	0.35	2.50	1.26
	25x35	1	0.25	0.35	2.50	0.53
Eje 3-3	25X30	1	0.25	0.30	2.50	0.45
	30X35	1	0.30	0.35	2.50	0.63
	25x35	1	0.25	0.35	2.50	0.53
<i>EJE 4-4</i>	30X30	4	0.30	0.30	2.50	2.16
	30X35	1	0.30	0.35	2.50	0.63
EJE J-J	30X30	1	0.30	0.30	2.50	0.54
EIE 6 6	30X40	1	0.30	0.40	2.50	0.72
EJE 0-0	30X35	1	0.30	0.35	2.50	0.63
	40X40	1	0.40	0.40	2.50	0.96
Eje 7-7	30X35	3	0.30	0.35	2.50	1.89
	30X30	2	0.30	0.30	2.50	1.08
	Total Col=	26				
			b(m)	L total(m)	h(m)	
PLACAS	e=0.25		0.25	14.65	2.5	21.98
					TOTAL	38.21

 Tabla 6: Resumen de metrado de cargas de columnas

 Tabla 7: Resumen de cargas por piso

# de Piso	Carga Muerta (Tn)	Carga Viva (Tn)	Peso Total (Tn) (CM + CV)	Peso sísmico (Tn) (CM + 25%CV)
7	120.875	28.284	149.159	127.94597
6	137.448	28.284	28.284 165.732	
5	137.448	28.284	165.732	144.51919
4	137.448	28.284	165.732	144.51919
3	155.863	28.284	184.147	162.93388
2	155.863	28.284	184.147	162.93388
1	155.863	28.284	184.147	162.93388
Total	1000.808	197.988	1198.796	1050.305

Fuente: Elaboración propia

Esf Adm	Winkler	Esf Adm	Winkler	Esf Adm	Winkler
(Kg/Cm [*])	(Kg/Cm [*])	(Kg/Cm ⁻)	(Kg/Cm ⁻)	(KgCm)	(Kg/Cm ⁻)
0.25	0.65	1.00	3.19	4.00	5.70
0.30	0.78	1.60	3,28	2.90	5.80
0.35	0.91	1.65	3.37	2.95	5.90
0.40	1.04	1.70	3,46	3.00	6.00
0.45	1.04	1.75	3,55	3.05	6.10
0.45	1.30	1.60	3.64	3.10	0.20
0.50	1,30	1.85	3.73	3.15	6.30
0.55	1.39	1.90	3,82	3.20	6,40
0.60	1.48	1.95	3,91	3.25	6.50
0.65	1.5/	2.00	4.00	3.30	6.60
0,70	1.66	2.05	4,10	3.35	6.70
0.75	1.75	2.10	4.20	3.40	6.80
0.80	1.84	2.15	4.30	3.45	6.90
0.85	1.93	2.20	4,40	3.50	7.00
0.90	2.02	7.25	4.50	3.55	7,10
0.95	2.11	2.30	4.60	3.60	7.20
1.00	2.20	2.35	4.70	3.65	7.30
1.05	2.29	2.40	4.80	3.70	7.40
1.10	2.38	2.45	4.90	3.75	7.50
1.15	2.47	2.50	5.00	3.90	7.60
1.20	2.56	2.56	5.10	3.00	7.70
1.25	2.65	7.60	5.20	3.05	7.80
1,30	2.74	2.00	5.20	3.70	7.00
1.35	2.83	2.00	5.10	3.92	7.90
1.40	2.92	2.70	5.40	4.00	8.00
1.45	3.01	2.75	5.50	-	· · · · · · · · · · · · · · · · · · ·
1.50	3.00	2,80	5,60		12

Tabla N°8: Coeficiente de Balasto

Fuente: "Interacción Suelo-Estructuras: Semi-espacio de Winkler", Universidad Politécnica de Cataluña, Barcelona- España. 1993 (Autor Nelson Morrison).

	Tabla N°9:	Coeficientes of	de balasto	según difer	entes tipos	de suelos.
--	------------	-----------------	------------	-------------	-------------	------------

COEFICIENTES DE BALASTO ES SEGÚN LOS				
DIFERENTES TIPOS DE SUELOS				
TIPO DE SUELO	$E_{s} [Tn/m^{2}]$			
Arcilla Muy Blanda	30-300			
• Blanda	200-400			
Media	450-900			
• Dura	700-2000			
Arcilla Arenosa	3000-4250			
Suelos Glaciares	1000-16000			
Loess	1500-6000			
Arena Limosa	500-2000			
Arena Suelta	1000-2500			
• Densa	5000-10000			
Grava Arenosa Densa	8000-20000			
Suelta	5000-14000			
Arcilla Esquistosa	14000-140000			
Limos	200-2000			

Fuente: Libro de Cimentaciones Superficiales del Dr. Jorge E. Alva Hurtado.

SPATA 2-01 Static of Sugle of
$ \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l}$
$ \begin{array}{llllllllllllllllllllllllllllllllllll$
$ \frac{\mathbf{r}}{\mathbf{r}} = 1830 \text{ Kg/m}^3 $ 1. PREDIMENSIONAMIENTO POR DISEÑO 1. I CÁLCULO DE LA CARGA DE SERVICIO Clouma C-01: A. Cálculo del P: Longitud V.P. 0.30x0.45 = 1.35 m Longitud V.S. 0.25x0.30 = 0.725 m Area de Losa = 3.1135 m2 b (ancho) = 0.40 m t (peraite) = 0.40 m
$\begin{array}{l} \textbf{1. PREDIMENSIONAMIENTO POR DISEÑO}\\ \textbf{1. LÁLCULO DE LA CARGA DE SERVICO}\\ \hline \textbf{1. CÁLCULO DE LA CARGA DE SERVICO}\\ \hline 2. Comparative de la casa a c$
1.1 CÁLCUD DE LA CARGA DE SERVICIO $Scheme C: 11$ $Scheme C: 12$
$\begin{aligned} \text{Scluma C-01:} \\ \text{A Cálculo del P:} \\ & \text{Longitud V.S. 0.350.0.45} & = 1.35 & m \\ & \text{Longitud V.S. 0.350.0.45} & = 0.725 & m \\ & \text{Area de Losa} & = 3.1135 & m^2 \\ & \text{b} (ancho) & = 0.40 & m \\ & \text{t} (perate) & = 0.40 & m \\ & \text{t} (perate) & = 0.40 & m \\ & \text{t} (perate) & = 0.40 & m \\ & \text{t} (perate) & = 0.40 & m \\ & \text{t} (perate) & = 0.40 & m \\ & \text{t} (perate) & = 0.40 & m \\ & \text{t} (perate) & = 0.40 & m \\ & \text{t} (perate) & = 0.40 & m \\ & \text{t} (perate) & = 0.40 & m \\ & \text{t} (perate) & = 0.40 & m \\ & \text{t} (perate) & = 0.40 & m \\ & \text{t} (perate) & \text{t} (perate)$
A. Cálculo del P: Longitud V.P. 0.30x0.45 = 1.35 m Longitud V.S. 0.25x0.30 = 0.725 m Årea de Losa = 3.1135 m2 b (ancho) = 0.40 m t (peralte) = 0.40 m t (peralte) = 0.40 m SECCIONES: Según Predimensionamiento V.Principal: 0.30 x 0.45 = 0.1350 m2 V.Secundaria: 0.25 x 0.30 = 0.0750 m2 SOBRECARGAS: Según Norma E.020 S/C Losa: 300 Kg/m (aligerado e=0.20 S/C Cabados: 100 Kg/m2 S/C Tabiqueria móvil: 100 Kg/m (muros compl. e= S/C Vivienda: 200 Kg/m3 CARACTERÍSTICAS EDIFICACIÓN Número de niveles 7 Altura de Pisos Long. de Columna = 7.50 m RESISTENCIA DE MATERIALES fy = 4200 Kg/cm ² fc = 2.70 m $\frac{19}{7^{\circ}} = 2.70 m}{7^{\circ}} = 2.70 m}$ fg = 4200 Kg/cm ² Cargas por gravedad: preso propio Losa = 1151.55 Kg Peso propio viga p. = 437.40 Kg
Longlud V.P. 0.30x0,45 = 1.35 m Longlud V.P. 0.30x0,45 = 0.725 m Årea de Losa = 3.1135 m2 b (ancho) = 0.40 m t (peratle) = 0.40 m SECCIONES: Según Predimensionamiento V.Principal: 0.30 x 0.45 = 0.1350 m2 V.Secundaria: 0.25 x 0.30 = 0.0750 m2 SOBRECARGAS: Según Norma E020 S/C Losa: 300 Kg/m (aligerado e=0.20 S/C Losa: 100 Kg/m2 S/C Tabiquería móvil: 100 Kg/m2 S/C Tabiquería móvil: 100 Kg/m2 DENSIDAD: Según Norma E020 Concreto Armado 2400 Kg/m3 CARACTERÍSTICAS EDIFICACIÓN Número de niveles 7 Atura de Pisos T <u>2° = 2.70 m</u> $\frac{19^{\circ} = 2.70 \text{ m}}{4^{\circ} = 2.70 \text{ m}}$ $\frac{19^{\circ} = 2.70 \text{ m}}{7^{\circ} = 2.70 \text{ m}}$ Long. de Columna = 17.50 m RESISTENCIA DE MATERIALES fy = 4200 Kg/cm ² fc = 280 Kg/cm ² Cargas por gravedad: Peso propio Losa = 1151.55 Kg Peso propio viga p. = 437.40 Kg Peso propio viga s. = 130.50 Kg Peso propio viga s. = 130.50 Kg
$\begin{aligned} \begin{array}{llllllllllllllllllllllllllllllllllll$
headerbosa = 0.1100 miz b (ancho) = 0.40 m t (perate) = 0.40 m SECCIONES: Según Predimensionamiento V.Principal: 0.30 x 0.45 = 0.1350 m² V.Secundaria: 0.25 x 0.30 = 0.0750 m² SOBRECARGAS: Según Norma E.020 S/C Losa: 300 Kg/m (aligerado e=0.20 S/C Acabados: 100 Kg/m2 S/C Tabiquería móvil: 100 Kg/m (muros compl. e= S/C Vivenda: 200 Kg/m3 CARACTERÍSTICAS EDIFICACIÓN Número de niveles 7 Altura de Pisos Long. de Columna = 77.00 m $\frac{1^{\circ} = 2.70 \text{ m}}{3^{\circ} = 2.70 \text{ m}}$ Long. de Columna = 17.50 m RESISTENCIA DE MATERIALES $fy = 4200 \text{ Kg/cm}^2$ fc = 280 Kg/cm ² fc = 280 Kg/cm ² Headerbosa = 1151.55 Kg Peso propio Losa = 135.05 Kg Peso propio viga p. = 437.40 Kg
$b (ancho) = 0.40 \text{ m} \\ t (peralte) = 0.40 \text{ m} \\ c (peralte) = 0.40 \text{ m} \\ \hline \text{SECCIONES: Según Predimensionamiento} \\ \hline \text{V.Principal:} 0.30 \times 0.45 = 0.1350 \text{ m} \\ \hline \text{V.Secundaria:} 0.25 \times 0.30 = 0.0750 \text{ m} \\ \hline \text{V.Secundaria:} 0.25 \times 0.30 = 0.0750 \text{ m} \\ \hline \text{SC Losa:} & 300 \text{ Kg/m} (aligerado e=0.20 \text{ S/C Losai} & 100 \text{ Kg/m} \\ \hline \text{SC Losa:} & 100 \text{ Kg/m} \\ \text{SC Tabiquería móvil:} 200 \text{ Kg/m} \\ \hline \text{SC Tabiquería móvil:} 200 \text{ Kg/m} \\ \text{SC Tabiquería móvil:} 200 \text{ Kg/m} \\ \hline \text{Murero de niveles} 7 \\ \hline \text{Atura de Pisos} 7 \\ \hline \text{Atura de Pisos} \\ \hline \frac{1^{\circ}}{2^{\circ}} = 2.70 \text{ m}}{3^{\circ}} = 2.70 \text{ m}}{3^{\circ}} = 2.70 \text{ m}} \\ \hline \frac{1^{\circ}}{2^{\circ}} = 2.70 \text{ m}}{7^{\circ}} = 2.70 \text{ m}} \\ \hline \text{SC ESISTENCIA DE MATERIALES} \\ \text{fy} = 4200 \text{ Kg/cm}^{2} \\ \text{fc} = 280 \text{ Kg/cm}^{2} \\ \hline \text{Fc} = 0.230 \text{ Kg/cm}^{2} \\ \hline \text{Fc}$
$t(peralte) = 0.40 \text{ m}$ SECCIONES: Según Predimensionamiento $V.Principal: 0.30 \times 0.45 = 0.1350 \text{ m}^2$ V.Secundaria: 0.25 \times 0.30 $=$ 0.0750 m² SOBRECARGAS: Según Norma E.020 $S/C \ Losa: 300 \ Kg/m (aligerado e=0.20 \ S/C \ Cabados: 100 \ Kg/m2 S/C \ Tabiqueria móvil: 100 \ Kg/m2 S/C \ Tabiqueria móvil: 100 \ Kg/m2 S/C \ Tabiqueria móvil: 200 \ Kg/m3 DENSIDAD: Según Norma E.020 Concreto Armado 2400 \ Kg/m3 CARACTERÍSTICAS EDIFICACIÓN Número de niveles 7 Altura de Pisos \frac{1^\circ = 2.70 \text{ m}}{3^\circ = 2.70 \text{ m}} Econg. de Columna = 17.50 m ESISTENCIA DE MATERIALES fy = 4200 \ Kg/cm^2 fc = 280 \ Kg/cm^2 fc = 280 \ Kg/cm^2 $
SECCIONES: Según Predimensionamiento V.Principal:0.30 xx0.45 s=0.1350 m2m2SOBRECARGAS: Según Norma E020 S/C Losa:300 X/C Kg/m2 Kg/m2 S/C Tabiquería móvil:100 Xg/m2 Kg/m (nuros compl. e= S/C Vivienda:200 Kg/m2DENSIDAD: Según Norma E020 Concreto Armado2400 Kg/m2DENSIDAD: Según Norma E020 Concreto Armado2400 Kg/m3CARACTERÍSTICAS EDIFICACIÓN Número de niveles T Atura de PisosDENSIDAD: Según Norma E020 Concreto Armado2400 Kg/m3CARACTERÍSTICAS EDIFICACIÓN Número de niveles T T T T T T T T T T T T T T C T <br< td=""></br<>
V.Principal: 0.30 x 0.45 = 0.1350 m2 V.Secundaria: 0.25 x 0.30 = 0.0750 m2 SOBRECARGAS: Según Norma E.020 S/C Losa: 300 Kg/m (aligerado e=0.20 S/C Losa: 100 Kg/m2 S/C Cababados: 100 Kg/m2 S/C Tabiquería móvil: 100 Kg/m (muros compl. e= S/C Vivienda: 200 Kg/m3 CARACTERÍSTICAS EDIFICACIÓN Número de niveles 7 Altura de Pisos 7 Long. de Columna T.70 RESISTENCIA DE MATERIALES fv = 4200 Kg/cm ² fc = 280 Kg/cm ² Deso propio Losa = 1151.55 fc = 280 Kg/cm ² fc = 280 Kg/cm ² fc <
V.Secundaria: 0.25 x 0.30 = 0.0750 m2 SOBRECARGAS: Según Norma E.020 S/C Losa: 300 Kg/m (aligerado e=0.20 S/C Acabados: 100 Kg/m2 S/C Tabiquería móvil: 100 Kg/m (muros compl. e= S/C Vivienda: 200 Kg/m2 DENSIDAD: Según Norma E.020 Concreto Armado 2400 Kg/m3 CARACTERÍSTICAS EDIFICACIÓN Número de niveles 7 Altura de Pisos $\frac{1^{\circ} = 2.70 \text{ m}}{3^{\circ} = 2.70 \text{ m}}$ $\frac{1^{\circ} = 2.70 \text{ m}}{3^{\circ} = 2.70 \text{ m}}$ Long. de Columna = 17.50 m RESISTENCIA DE MATERIALES fy = 4200 Kg/cm ² fc = 280 Kg/cm ² Cargas por gravedad: $\frac{1}{2} \text{ fc} = 280 \text{ Kg/cm}^2$ $\frac{1}{2} \text{ fc} = 1151.55 \text{ Kg}}{280 \text{ peso propio Losa} = 130.50 \text{ Kg}}$
SOBRECARGAS: Según Norma E.020 S/C Losa: 300 Kg/m (aligerado e=0.20 S/C Acabados: 100 Kg/m2 S/C Tabiquería móvil: 100 Kg/m (muros compl. e= S/C Vivienda: 200 Kg/m2DENSIDAD: Según Norma E.020Concreto Armado 2400 Kg/m3Concreto Armado 2400 Kg/m3CARACTERÍSTICAS EDIFICACIÓNNúmero de niveles 7 Altura de Pisos $12^{\circ} = 2.700$ m $3^{\circ} = 2.70$ m
S/C Losa: S/C Acabados: S/C Acabados: S/C Tabiquería móvil: 100 Kg/m (muros compl. e= S/C Vivienda: 200 Kg/m3 DENSIDAD: Según Norma E.020 Concreto Armado 2400 Kg/m3 CARACTERÍSTICAS EDIFICACIÓN Número de niveles 7 Altura de Pisos $1^{\circ} = 2.70$ m $3^{\circ} = 2.70$ m
S/C Acabados:100Kg/m2S/C Tabiquería móvil:100Kg/m (muros compl. e=S/C Vivienda:200Kg/m2DENSIDAD: Según Norma E.020 Concreto Armado2400Kg/m3CARACTERÍSTICAS EDIFICACIÓN Número de nivelesNúmero de niveles7Altura de Pisos $1^{\circ} = 2.70 \text{ m}$ $3^{\circ} = 2.70 \text{ m}$ $3^{\circ} = 2.70 \text{ m}$ $4^{\circ} = 2.70 \text{ m}$ $6^{\circ} = 2.70 \text{ m}$ $7^{\circ} = 2.70 \text{ m}$ Long. de ColumnaT.50 mRESISTENCIA DE MATERIALES fyfy= 4200 Kg/cm² f'cf'c= 280 Kg/cm²Cargas por gravedad:Deso propio Losa1151.55 Kg Peso propio viga p.Peso propio viga s.= 137.40 Kg Peso propio viga s.Peso propio viga s.= 130.50 Kg Peso propio viga s.Peso propio viga s.= 130.50 Kg Peso propio viga s.Peso propio viga s.= 130.50 KgPeso propio viga s.= 130.50 Kg
$\begin{aligned} & \text{S/C Tabiqueria móvil:} & 100 & \text{Kg/m} (\text{muros compl.e}=\\ & \text{S/C Vivienda:} & 200 & \text{Kg/m2} \end{aligned}$ $\begin{aligned} & \text{DENSIDAD: Según Norma E.020}\\ & \text{Concreto Armado} & 2400 & \text{Kg/m3} \end{aligned}$ $\begin{aligned} & \text{CARACTERÍSTICAS EDIFICACIÓN}\\ & \text{Número de niveles} & 7\\ & \text{Altura de Pisos} & & & & & & & & & & & & & & & & & & &$
S/C Wienda: 200 Kg/m2 DENSIDAD: Según Norma E.020 Concreto Armado 2400 Kg/m3 CARACTERÍSTICAS EDIFICACIÓN Número de niveles 7 Atura de Pisos $\frac{1^{\circ} = 2.70 \text{ m}}{3^{\circ} = 2.70 \text{ m}}$ $\frac{3^{\circ} = 2.70 \text{ m}}{3^{\circ} = 2.70 \text{ m}}$ $\frac{6^{\circ} = 2.70 \text{ m}}{7^{\circ} = 2.70 \text{ m}}$ Long. de Columna = 17.50 m RESISTENCIA DE MATERIALES fy = 4200 Kg/cm ² f'c = 280 Kg/cm ² H'c = 280 Kg/cm ² H'c = 1151.55 Kg Peso propio Losa = 1151.55 Kg Peso propio Viga p. = 437.40 Kg
DENSIDAD: Según Norma E.02 Concreto Armado2400 Y Kg/m3CARACTERÍSTICAS EDIFICACIÓN Número de niveles7Número de niveles7Atura de Pisos $1^{\circ} = 2.70$ m $\frac{3^{\circ}}{2} = 2.70$ m $\frac{4^{\circ}}{2} = 2.70$ m $\frac{5^{\circ}}{2} = 2.70$ m $\frac{6^{\circ}}{2} = 2.70$ m $\frac{7^{\circ}}{2} = 2.70$ m $\frac{17.50}$ mLong. de Columna=Tresistencia De MATERIALES f'cf $g' = 4200$ Kg/cm² f'c $e = 280$ Kg/cm² f'c $e = 1151.55$ Kg Peso propio Losa $e = 130.50$ Kg Peso propio viga p. $e = 130.50$ Kg Peso propio viga s. $e = 130.50$ KgPeso propio viga s. $e = 130.50$ KgPeso propio viga s. $e = 130.50$ KgPeso propio viga s. $e = 130.50$ Kg
Concreto Armado 2400 Kg/m3 CARACTERÍSTICAS EDIFICACIÓN Número de niveles 7 Altura de Pisos $\frac{1^{\circ} = 2.70 \text{ m}}{2^{\circ} = 2.70 \text{ m}}$ $\frac{3^{\circ} = 2.70 \text{ m}}{3^{\circ} = 2.70 \text{ m}}$ $\frac{4^{\circ} = 2.70 \text{ m}}{7^{\circ} = 2.70 \text{ m}}$ $\frac{6^{\circ} = 2.70 \text{ m}}{7^{\circ} = 2.70 \text{ m}}$ Long. de Columna = 17.50 m RESISTENCIA DE MATERIALES fy = 4200 Kg/cm ² fc = 280 Kg/cm ² fc = 280 Kg/cm ² Marce Solution
CARACTERÍSTICAS EDIFICACIÓNNúmero de níveles7Altura de Pisos 1° $\frac{1^{\circ}$ $\frac{2}{2}$ $\frac{1^{\circ}}{2^{\circ}}$ $\frac{1^{\circ}}{2}$ <
Número de niveles 7 Altura de Pisos $ \frac{1^{\circ} = 2.70 \text{ m}}{2^{\circ} = 2.70 \text{ m}} $ $ \frac{3^{\circ} = 2.70 \text{ m}}{3^{\circ} = 2.70 \text{ m}} $ $ \frac{4^{\circ} = 2.70 \text{ m}}{5^{\circ} = 2.70 \text{ m}} $ $ \frac{6^{\circ} = 2.70 \text{ m}}{7^{\circ} = 2.70 \text{ m}} $ Long. de Columna = 17.50 m RESISTENCIA DE MATERIALES fy = 4200 Kg/cm ² f'c = 280 Kg/cm ² Cargas por gravedad: Carga muerta: $ \frac{\text{Peso propio Losa} = 1151.55 \text{ Kg}}{\text{Peso propio viga p.} = 437.40 \text{ Kg}} $ Peso propio viga s. = 130.50 Kg Peso propio viga s. = 130.50 Kg
Altura de Pisos $ \frac{1^{\circ} = 2.70 \text{ m}}{2^{\circ} = 2.70 \text{ m}} $ $ \frac{3^{\circ} = 2.70 \text{ m}}{3^{\circ} = 2.70 \text{ m}} $ $ \frac{4^{\circ} = 2.70 \text{ m}}{5^{\circ} = 2.70 \text{ m}} $ $ \frac{6^{\circ} = 2.70 \text{ m}}{7^{\circ} = 2.70 \text{ m}} $ $ \frac{6^{\circ} = 2.70 \text{ m}}{7^{\circ} = 2.70 \text{ m}} $ Long. de Columna = 17.50 m RESISTENCIA DE MATERIALES $ fy = 4200 \text{ Kg/cm}^{2} $ $ fc = 280 \text{ Kg/cm}^{2} $ Cargas por gravedad: Carga muerta: $ \frac{\text{Peso propio Losa} = 1151.55 \text{ Kg}}{\text{Peso propio Losa} = 437.40 \text{ Kg}} $ $ \frac{\text{Peso propio viga p.} = 437.40 \text{ Kg}}{\text{Peso propio viga s.} = 130.50 \text{ Kg}} $
$\frac{1^{\circ} = 2.70 \text{ m}}{2^{\circ} = 2.70 \text{ m}}$ $\frac{2^{\circ} = 2.70 \text{ m}}{3^{\circ} = 2.70 \text{ m}}$ $\frac{4^{\circ} = 2.70 \text{ m}}{5^{\circ} = 2.70 \text{ m}}$ $\frac{6^{\circ} = 2.70 \text{ m}}{7^{\circ} = 2.70 \text{ m}}$ Long. de Columna = 17.50 m RESISTENCIA DE MATERIALES fy = 4200 Kg/cm ² f'c = 280 Kg/cm ² Cargas por gravedad: Carga muerta: $\frac{\text{Peso propio Losa} = 1151.55 \text{ Kg}}{\text{Peso propio viga p.} = 437.40 \text{ Kg}}$ $\frac{\text{Peso propio viga s.} = 130.50 \text{ Kg}}{\text{Peso propio viga s.} = 130.50 \text{ Kg}}$
$\frac{2}{3^{\circ}} = \frac{2.70 \text{ m}}{2.70 \text{ m}}$ $\frac{4^{\circ}}{4^{\circ}} = \frac{2.70 \text{ m}}{2.70 \text{ m}}$ $\frac{5^{\circ}}{5^{\circ}} = \frac{2.70 \text{ m}}{7^{\circ}} = \frac{2.70 \text{ m}}{2.70 \text{ m}}$ $\frac{6^{\circ}}{7^{\circ}} = \frac{2.70 \text{ m}}{1.50 \text{ m}}$ RESISTENCIA DE MATERIALES $fy = 4200 \text{ Kg/cm}^{2}$ $f'c = 280 \text{ Kg/cm}^{2}$ Cargas por gravedad: Carga muerta: $\frac{\text{Peso propio Losa} = 1151.55 \text{ Kg}}{\text{Peso propio losa} \text{ propio Losa} = 437.40 \text{ Kg}}$ $\frac{\text{Peso propio viga p.}}{\text{Peso propio viga s.}} = 130.50 \text{ Kg}$ $\frac{\text{Peso propio columna}}{\text{Peso propio columna}} = 6720.00 \text{ Kg}$
$\frac{3}{4^{\circ}} = \frac{2.70 \text{ m}}{2.70 \text{ m}}$ $\frac{4^{\circ}}{5^{\circ}} = 2.70 \text{ m}}{5^{\circ}} = 2.70 \text{ m}}$ $\frac{6^{\circ}}{7^{\circ}} = 2.70 \text{ m}}{7^{\circ}} = 2.70 \text{ m}}$ Long. de Columna = 17.50 m RESISTENCIA DE MATERIALES $fy = 4200 \text{ Kg/cm}^{2}$ $f'c = 280 \text{ Kg/cm}^{2}$ Cargas por gravedad: Carga muerta: $\frac{\text{Peso propio Losa} = 1151.55 \text{ Kg}}{\text{Peso propio viga p.}} = 437.40 \text{ Kg}}$ $\frac{\text{Peso propio viga s.}}{\text{Peso propio viga s.}} = 130.50 \text{ Kg}}$
$\frac{5^{\circ} = 2.70 \text{ m}}{6^{\circ} = 2.70 \text{ m}}$ $\frac{6^{\circ} = 2.70 \text{ m}}{7^{\circ} = 2.70 \text{ m}}$ Long. de Columna = 17.50 m RESISTENCIA DE MATERIALES $fy = 4200 \text{ Kg/cm}^2$ $f'c = 280 \text{ Kg/cm}^2$ Cargas por gravedad: Carga muerta: $\frac{\text{Peso propio Losa} = 1151.55 \text{ Kg}}{\text{Peso propio viga p.} = 437.40 \text{ Kg}}$ $\frac{\text{Peso propio viga s.} = 130.50 \text{ Kg}}{\text{Peso propio columna} = 6720.00 \text{ Kg}}$
$\frac{6^{\circ} = 2.70 \text{ m}}{7^{\circ} = 2.70 \text{ m}}$ Long. de Columna = 17.50 m RESISTENCIA DE MATERIALES fy = 4200 Kg/cm ² f'c = 280 Kg/cm ² Cargas por gravedad: Carga muerta: $\frac{\text{Peso propio Losa} = 1151.55 \text{ Kg}}{\text{Peso propio viga p.} = 437.40 \text{ Kg}}$ Peso propio viga s. = 130.50 Kg Peso propio columna = 6720.00 Kg
$7^{\circ} = 2.70 \text{ m}$ Long. de Columna = 17.50 m RESISTENCIA DE MATERIALES fy = 4200 Kg/cm ² f'c = 280 Kg/cm ² Cargas por gravedad: Carga muerta: Peso propio Losa = 1151.55 Kg Peso propio viga p. = 437.40 Kg Peso propio viga s. = 130.50 Kg Peso propio columna = 6720.00 Kg
$Long. de Columna = 17.50 m$ $RESISTENCIA DE MATERIALES$ $fy = 4200 Kg/cm^{2}$ $f'c = 280 Kg/cm^{2}$ $Cargas por gravedad:$ $Carga muerta:$ $Peso propio Losa = 1151.55 Kg$ $Peso propio viga p. = 437.40 Kg$ $Peso propio viga s. = 130.50 Kg$ $Peso propio columna = 6720.00 Kg$
RESISTENCIA DE MATERIALES fy = 4200 Kg/cm ² f'c = 280 Kg/cm ² Cargas por gravedad: Carga muerta: Peso propio Losa = 1151.55 Kg Peso propio viga p. = 437.40 Kg Peso propio viga s. = 130.50 Kg Peso propio columna = 6720.00 Kg
ry = 4200 kg/cm ² f'c = 280 kg/cm ² Cargas por gravedad: Carga muerta: Peso propio Losa = 1151.55 kg Peso propio viga p. = 437.40 kg Peso propio viga s. = 130.50 kg Peso propio columna = 6720.00 kg
Cargas por gravedad: Carga muerta: Peso propio Losa = 1151.55 Kg Peso propio viga p. = 437.40 Kg Peso propio viga s. = 130.50 Kg Peso propio columna = 6720.00 Kg
Carga muerta: Peso propio Losa = 1151.55 Kg Peso propio viga p. = 437.40 Kg Peso propio viga s. = 130.50 Kg Peso propio columna = 6720.00 Kg
Peso propio Losa=1151.55KgPeso propio viga p.=437.40KgPeso propio viga s.=130.50KgPeso propio columna=6720.00Kg
Peso propio viga p. = 437.40 Kg Peso propio viga s. = 130.50 Kg Peso propio columna = 6720.00 Kg
Peso propio viga s. = 130.50 Kg Peso propio columna = 6720.00 Kg
Peso propio columna = 6720.00 Kg
Peso de acabados = 383.85 Kg
labiqueria movil = 383.85 Kg
$P_{\rm D} = 24.13$ Tn

4. Predimensionamiento de la zapata aislada "Z-01" (ver plano de cimentaciones)

		Carga	viva:					
			S/C		=	767.70	Kg	
				P.	_	5 37	Tn	l
		•			_	0.01		
		Carga	total:					
				Р	=	29.50	Tn	
	Momen	tos: Seg	jún Análisis	s Estático - I	Dinámico	SAP 200	0	
		MD	=	1.725	Tn-m			
		ML	=	1.090	Tn-m			
		M _{Sx}	=	2.040	Tn-m			
		M _{Sy}	=	3.140	Tn-m			
		Mx-x	=	4.855	Tn-m			
		Му-у	=	5.955	Tn-m			
1.2. CÁLCUL	O DE LA	CARGA I	FACTORIZA	DA				
	$P_{} = 1$	$.4P_{\rm D} +$	1.7 <i>P</i> ,	Seaúr	n Norma	E.060 (C;	argas Está	ticas)
	Pu -	-	42 92	Tn				,
		- 1 25 (M	+ M) +	M			Conidora	
	$M_u - 1$	1.23(14)		TMS	Segun	N. E.000	(Conidera	icion por
	WUX-X	=	0.00	I n-m				
	Muy-y	=	6.66	Tn-m				
1.3. CÁLCUL	.O DEL PE	ESO PRO	PIO DE LA	ΖΑΡΑΤΑ				
Ø't	=	0.90	Kg/cm ²	Segúr	n Estudio	de suelo	S	
Pz	=	10%	P	Para 2	zapata ai	slada (4%	5 - 10%)P	
1.4. CALCUL	U DE LA	EXCENT	RICIDAD					
1.4. CALCUL ex	=	0.202	m					
1.4. CALCUL ex ex	=	0.202 20.2	m cm					
1.4. CALCUL ex ex ey	=	0.202 20.2 0.165	m cm m					
1.4. CALCUL ex ex ey ey	= = = = =	0.202 20.2 0.165 16.5	m cm m cm					
1.4. CALCUL ex ex ey ey 1.5. CÁLCUL	= = = = 	0.202 20.2 0.165 16.5 MENSIO	m cm m cm cm NAMIENTO	EN PLANTA	c			
1.4. CALCUL ex ex ey ey 1.5. CÁLCUL A) Cá	= = = = 	0.202 20.2 0.165 16.5 MENSIO área de	RICIDAD m cm m cm NAMIENTO zapata:	EN PLANTA	c			
1.4. CALCUL ex ex ey ey 1.5. CÁLCUL A) Cá	= = = = LO DEL DI	0.202 20.2 0.165 16.5 MENSIO área de	RICIDAD m cm m cm NAMIENTO zapata:	EN PLANTA	c			
1.4. CALCUL ex ex ey ey 1.5. CÁLCUL A) Cá	= = = = 0 DEL DI álculo del	EXCENT 0.202 0.202 0.165 16.5 MENSIO área de $\frac{P + P_Z}{\sigma_t}$	m cm cm cm cm NAMIENTO zapata:	EN PLANTA	c			
1.4. CALCUL ex ey ey 1.5. CÁLCUL A) Cá	= $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$	EXCENT 0.202 20.2 0.165 16.5 MENSIO área de $\frac{P + P_Z}{\sigma_t}$	m cm m cm m cm NAMIENTO zapata:	EN PLANTA	z			

B) Cálculo del ancho:

$$A = \sqrt{A_Z} - \frac{1}{2}(t - b)$$

$$A = 190 \text{ cm}$$

C) Cálculo de la longitud:

$$\sigma = \frac{P + P_Z}{A * B} + \frac{6M_{y-y}}{A * B^2}$$

La ecuación se reduce a una cuadrática de la forma:

aB^2	+ b	В	+	С	=	0	
							_

Cuyas raíces y valores de B son:

B = -	$-b \pm \sqrt{b^2 - 4ac}$
	2a

Donde:

Fuente: Elaboración propia - Hoja de Excel

5. Predimensionamiento de la zapata combinada "Z-06-Z-07"

SECCIONES: Según Pre	dimension	amiento			
V.Principal:	0.30 x	0.30	=	0.0900	m2
V.Secundaria:	0.30 x	0.30	=	0.0900	m2
SOBRECARGAS: Sequir	Norma E.0	20			
S/C Losa		300	Ko/m (alio	nerado e=0	20m)
S/C Acabados:		100	Ka/m2	<i>joiddo 0</i> =0	
S/C Tabiquería r	n óvil:	100	Kg/m2		$a_{100} = 0.15 m$
S/C Vivionda:	novii.	200	Kg/m 2	ios compi	etos e=0.15m)
S/C vivienda.		200	Kg/IIIZ		
DENSIDAD: Segun Norr	na E.020	2400	Karlan O		
Concreto Armad	0	2400	Kg/m3		
CARACTERISTICAS ED	FICACION	_			
Numero de nivel	es	(
Altura de Pisos			-		
	1° =	2.7	0 m		
	2° =	2.7	0 m		
	3° =	2.7	0 m		
	4° =	2.7	0 m		
	5° =	2.7	0 m		
	6° =	2.7	0 m		
	7° =	2.7	0 m		
Long de Colum	na =	17.5	i0 m		
Long. de Colum			.		
RESISTENCIA DE MATE					
		2			
iy =	4200 Kg/C	m 2			
r'c =	280 Kg/c	m-			
Cargas por gravedad:					
Carga muerta:					
_					
Peso proj	pio Losa	=	467.58	Kg	
Peso pro	oio viga p.	=	158.76	Kg	
Peso proj	bio viga s.	=	156.60	Kg	
Peso proj	pio columna	ı =	3780.00	Kg	
Peso de a	acabados	=	155.86	Kg	
Tabiquerí	a móvil	=	155.86	Kg	
	PD	=	11.44	Tn	
					_
Carga viva:					
-					
S/C		=	311.72	Kg	
				0	
	P	=	2.18	Tn	
Carga total:					
U					
	Р	=	13.62	Tn	
Momentos: Según Aná	lisis Estátic	o - Dinámio	:o SAP 200	00	
	M		0.234	Tn-m	7
		, –			
	м		0 1 4 0	Tn.m	7
		. =	0.140	111-111	
			2 405	Te	7
	M _S	× =	3.195	in-m	
			4 070	T	7
	Ms	y =	1.870	Tn-m	
					-
	Mx->	(=	3.569	Tn-m	
					_
	My-y	/ =	2.244	Tn-m	

A.2. COLUMNA C-07

Longitud V.P. 0.30x0.30	=	0.735	m
Longitud V.S. 0.25x0.25	=	0.700	m
Área de Losa	=	0.5471	m2
b (ancho)	=	0.30	m
t (peralte)	=	0.30	m

SECCIONES: Según Predimensionamiento

V.Principal:	0.30	х	0.30	=	0.0900	m2
V.Secundaria:	0.25	x	0.25	=	0.0625	m2

SOBRECARGAS: Según Norma E.020

S/C Losa:	300	Kg/m (aligerado e=0.20m)
S/C Acabados:	100	Kg/m2
S/C Tabiquería móvil:	100	Kg/m (muros completos e=0.15m)
S/C Vivienda:	200	Kg/m2

2400

Kg/m3

DENSIDAD: Según Norma E.020 Concreto Armado

CARACTERÍSTICAS EDIFICACIÓN

Número de niveles			7		
Altura de Pisos					
	1°	=		2.70	m
	2°	=		2.70	m
	3°	=		2.70	m
	4 °	=		2.70	m
	5°	=		2.70	m
	6°	=		2.70	m
	7°	=		2.70	m
Long. de Columna		=		17.50	m

RESISTENCIA DE MATERIALES

fy	=	4200	Kg/cm ²
f'c	=	280	Kg/cm ²

Cargas por gravedad:

Carga muerta:

	-				
	PL	=	1.75	Tn	
S/C		=	249.42	Kg	
Carga viva:					
	PD	=	9.99	Tn	
Tabiquería móvi	il	=	124.71	Kg	
Peso de acabac	los	=	124.71	Kg	
Peso propio col	umna	=	3780.00	Kg	
Peso propio viga	as.	=	105.00	Kg	
Peso propio viga	аp.	=	158.76	Kg	
Peso propio Los	sa	=	374.13	Kg	
	Peso propio Los Peso propio vigi Peso propio vigi Peso propio col Peso de acabao Tabiquería móvi va: S/C	Peso propio Losa Peso propio viga p. Peso propio viga s. Peso propio columna Peso de acabados Tabiquería móvil Pp va: S/C PL	Peso propio Losa=Peso propio viga p.=Peso propio viga s.=Peso propio columna=Peso de acabados=Tabiquería móvil= P_D =va:S/C= P_L =	Peso propio Losa = 374.13 Peso propio viga p. = 158.76 Peso propio viga s. = 105.00 Peso propio columna = 3780.00 Peso de acabados = 124.71 Tabiquería móvil = 124.71 Va:	

Carga total:

Ρ

=

11.74 Tn

A.6. Cálculo de factores de profundidad D:

6. Predimensionamiento de altura de la cimentación Z-P-ASC-ESC

DISEÑO DE CIMENTACIÓN EXCÉNTRICAS EN LAS DOS DIRECCIONES ZAPATA Z-P-ASC-ESC								
1. CÁLCULC) del dimen	SIONAMIE	IENTO EN ALTURA:					
1.1. E	CENTRICID	AD CON C	CARGA FACTORIZADA					
	eux =	0.010	m					
	eux =	1.0	cm					
	euy =	0.014	· m					
	euy =	1.4	cm					
1.2. ES	SFUERZO FA	CTORIZAI	ADO					
	$\sigma_u = \frac{P+}{A*}$	$\frac{P_Z}{B} \pm \frac{6P_1}{A}$	$\frac{P_u * e_{ux}}{A * B^2}$					
	O'min = O't = O'max =	1.46 0.90 1.46	Kg/cm2 OK Kg/cm2					
2. ESFUERZ	2. ESFUERZO ADMISIBLE FACTORIZADO							
Asumi	Asumimos el valor de "d", peralte de la cimentación:							
d :	= 70	cm	recomendación entre 72 y 120					
Oʻnu: E Oʻnu	Esfuerzo nete = 1.30	o factoriza Kg/cm2	rado 2					

Fuente: Elaboración propia - Hoja de Excel

COD	DESCRIDCIÓN	S	Pe	Н	В
COD	DESCRIPCIÓN	(m)	(Tn)	(cm)	(cm)
01	VIGA DE CIMENTACIÓN ''Z-01'' - ''Z-30''				
	Viga de conexión ''Z-12'' - ''Z-19''	2.85	14.28	35	40
	Viga de conexión ''Z-01'' - ''Z-P-01''	2.19	28.36	35	40
	Viga de conexión ''Z-P-01'' - ''Z-12''	2.34	22.91	35	40
	Viga de conexión ''Z-19'' - ''Z-P-03''	2.60	14.28	30	40
	Viga de conexión "Z-P-03" "Z-31"	2.58	30.61	40	40
02	VIGA DE CIMENTACIÓN "Z-30" - "Z-35"				
	Viga de conexión "Z-30" - "Z-31"	4.28	30.61	40	40
	Viga de conexión ''Z-31'' - ''Z-32''	5.05	40.04	65	40
	Viga de conexión "Z-32" - "Z-33"	2.6	40.04	45	40
	Viga de conexión ''Z-33'' - ''Z-34''	5	41.41	65	40
	Viga de conexión ''Z-34'' - ''Z-35''	4.17	32.15	55	40
03	VIGA DE CIMENTACIÓN "Z-35" - "Z-06-07"				
	Viga de conexión ''Z-28'' - ''Z-11''	3.95	25.88	50	30
	Viga de conexión "Z-35" - "Z-P-07"	3.09	32.15	50	30
	Viga de conexión ''Z-P-07'' - ''Z-28''	2.22	46.33	45	30
	Viga de conexión ''Z-11'' - ''Z-P-08''	1.94	25.88	35	30
	Viga de conexión ''Z-P-08'' - ''Z-09''	1.92	31.44	35	30
	Viga de conexión ''Z-09'' - ''Z-06-07 (Z-07)''	1.69	11.74	25	30
04	VIGA DE CIMENTACIÓN "Z-12" - "Z-10-18"				
	Viga de conexión ''Z-12'' - ''Z-P-02''	2.68	22.91	35	50
	Viga de conexión ''Z-P-02'' - ''Z-15''	5.35	98.56	85	50
	Viga de conexión''Z-15'' - ''Z-16''	2.61	53.76	45	50
	Viga de conexión''Z-16'' - ''Z-17''	2.61	53.76	45	50
	Viga de conexión''Z-17'' - ''Z-10-18 (Z-18)''	4.8	89.06	75	50
05	VIGA DE CIMENTACIÓN "Z-27" - "Z-P-07"				
	Viga de conexión''Z-27'' - ''Z-P-07''	4.24	57.65	65	40
06	VIGA DE CIMENTACIÓN "Z-27" - "Z-34"				
	Viga de conexión''Z-27'' - ''Z-34''	3.04	61.57	55	40
07	VIGA DE CIMENTACIÓN "Z-19" - "Z-20"				
	Viga de conexión''Z-19'' - ''Z-20''	2.33	14.28	30	30
08	VIGA DE CIMENTACIÓN "Z-02" - "Z-P-02"				
	Viga de conexión ''Z-02'' - ''Z-P-02''	3.98	66.05	65	40
09	VIGA DE CIMENTACIÓN "Z-P-02" - "Z-20"				
	Viga de conexión ''Z-P-02'' - ''Z-20''	2.85	36.11	50	30
10	VIGA DE CIMENTACIÓN "Z-03" - "Z-15"				
	Viga de conexión ''Z-03'' - ''Z-15''	3.52	43.82	55	40
11	VIGA DE CIMENTACIÓN "Z-05" - "Z-17"				
	Viga de conexión ''Z-05'' - ''Z-17''	3.69	45.73	60	40

Tabla	N°10:	Resumen	de	sección	de	vigas	de	arriostre

12	VIGA DE CIMENTACIÓN "Z-08" - "Z-09"				
	Viga de conexión ''Z-08'' - ''Z-09''	3.01	31.44	50	30
13	VIGA DE CIMENTACIÓN "Z-08" - "Z-10-18"				
	Viga de conexión ''Z-08'' - ''Z-10-18(Z-10)''	3.86	77.51	65	40
14	VIGA DE CIMENTACIÓN "Z-10-18" - "Z-11"				
	Viga de conexión ''Z-10-18 (Z-10)'' - ''Z-11''	3.09	25.88	40	35
15	VIGA DE CIMENTACIÓN "Z-21" - "Z-31"				
	Viga de conexión "Z-21" - "Z-31"	2.89	58.32	55	40
16	VIGA DE CIMENTACIÓN "Z-20" - "Z-21"				
	Viga de conexión "Z-20" - "Z-21"	2.89	36.11	45	40
17	VIGA DE CIMENTACIÓN "Z-01" - "Z-02"				
	Viga de conexión ''Z-01'' - ''Z-02''	3.07	29.5	45	40
18	VIGA DE CIMENTACIÓN "Z-02" - "Z-03"				
	Viga de conexión ''Z-02'' - ''Z-03''	5.01	43.82	65	40
19	VIGA DE CIMENTACIÓN "Z-05" - "Z-08"				
	Viga de conexión ''Z-05'' - ''Z-08''	4.99	45.73	65	40
20	VIGA DE CIMENTACIÓN "Z-08" - "Z-06-07"				
	Viga de conexión ''Z-08'' - ''Z-06-07(06)''	2.12	13.62	30	30
21	VIGA DE CIMENTACIÓN "Z-27" - "Z-10-18"				
	Viga de conexión ''Z-27'' - ''Z-10-18(18)''	5.2	89.06	85	40
22	VIGA DE CIMENTACIÓN "Z-15" - "Z-P-ASC-ESC"				
	Viga de conexión "Z-15" - "Z-P-ASC-ESC (P-Hz)"	4.28	98.56	70	50
23	VIGA DE CIMENTACIÓN "Z-17" - "Z-P-ASC-ESC"				
	Viga de conexión ''Z-17'' - ''Z-P-ASC-ESC(P-Hz)''	4.53	104.49	80	50
24	VIGA DE CIMENTACIÓN "Z-P-ASC-ESC" - "Z-32"				
	Viga de conexión ''Z-P-ASC-ESC (P-Izq_ESC)'' - ''Z-32''	1.47	40.04	35	30
25	VIGA DE CIMENTACIÓN "Z-P-ASC-ESC" - "Z-33"				
	Viga de conexión ''Z-P-ASC-ESC (P-Der_ESC)'' - ''Z-33''	1.47	41.41	35	30
26	VIGA DE CIMENTACIÓN "Z-P-ASC-ESC" - "Z-21"				
	Viga de conexión "Z-P-ASC-ESC (P-Izq_ESC)" - "Z-21"	5.2	109.92	80	50
27	VIGA DE CIMENTACIÓN "Z-P-ASC-ESC" - "Z-27"				
	Viga de conexión ''Z-P-ASC-ESC (P-Der_ESC)'' - ''Z-27''	5.11	133.89	85	50

N° ZAPATA	Mx (T.s2/m)	My (T.s2/m)	Mz (T.s2/m)	Мфх (T.s2/m)	Мфу (T.s2/m)	Μψz (T.s2/m)
"Z-01"	0.0971	0.0971	0.1581	0.0218	0.0218	0.0218
"Z-03"	0.1136	0.1136	0.1852	0.0283	0.0283	0.3272
"Z-05"	0.0994	0.0994	0.1619	0.0227	0.0227	0.0219
"Z-06-Z-07"	0.4093	0.4093	0.6728	0.2324	0.2324	0.2418
"Z-02"	0.2032	0.2032	0.3323	0.0736	0.0736	0.0916
"Z-08"	0.2354	0.2354	0.3855	0.0938	0.0938	0.1103
"Z-09"	0.1210	0.1210	0.1972	0.0314	0.0314	0.0328
"Z-10-Z-18"	2.0449	2.0449	3.4112	3.2100	3.2100	4.2875
"Z-11"	0.1210	0.1210	0.1972	0.0314	0.0314	0.0328
"Z-12"	0.1136	0.1136	0.1852	0.0283	0.0283	0.0367
"Z-19"	0.1602	0.1602	0.2616	0.0498	0.0498	0.0642
"Z-28"	0.0971	0.0971	0.1581	0.0218	0.0218	0.0218
"Z-30"	0.2122	0.2122	0.3472	0.0791	0.0791	0.0828
"Z-35"	0.2694	0.2694	0.4414	0.1170	0.1170	0.1167
"Z-15"	0.2997	0.2997	0.4916	0.1394	0.1394	0.1371
"Z-16"	0.1699	0.1699	0.2775	0.0548	0.0548	0.0580
"Z-17"	0.3277	0.3277	0.5378	0.1614	0.1614	0.1783
"Z-20"	0.0772	0.0772	0.1256	0.0150	0.0150	0.0167
"Z-21"	0.3940	0.3940	0.6474	0.2183	0.2183	0.2380
"Z-27"	0.4093	0.4093	0.6728	0.2324	0.2324	0.2418
"Z-31"	0.1855	0.1855	0.3033	0.0634	0.0634	0.0688
"Z-32"	0.1336	0.1336	0.2179	0.0369	0.0369	0.0396
"Z-33"	0.1336	0.1336	0.2179	0.0369	0.0369	0.0396
"Z-34"	0.2465	0.2465	0.4038	0.1012	0.1012	0.0996
"Z-P-ASC-ESC"	9.3648	9.3648	15.9129	37.5572	37.5572	44.1081
"Z-PL-01"	0.1602	0.1602	0.2616	0.0498	0.0498	0.0566
"Z-PL-02"	1.0092	1.0092	1.6716	1.0166	1.0166	1.0302
"Z-PL-03"	0.1943	0.1943	0.3177	0.0684	0.0684	0.0701
"Z-PL-07"	0.3677	0.3677	0.6039	0.1949	0.1949	0.2084
"Z-PL-08"	0.1440	0.1440	0.2351	0.0418	0.0418	0.0606

Tabla $N^{\circ}11$: Resumen de masas traslacionales y rotacionales

7. Cálculo de asentamientos inmediatos:

Según el artículo 14 de la norma E.050 "suelos y cimentaciones", menciona que en todo EMS se deberá indicar el asentamiento tolerable para la edificación o estructura motivo de estudio, cabe mencionar que en el estudio de suelo de dicho proyecto objeto de investigación presenta un asentamiento inmediato máximo de 3.82 cm.

El asentamiento diferencial no debe ocasionar una distorsión angular mayor que la indicada en la tabla N° 8 de la norma.

TABLA N° 8						
DISTORSIÓN ANGULAR = α						
$\alpha = d/L$	DESCRIPCIÓN					
1/150	Límite en el que se debe esperar daño estructural en edificios convencionales.					
1/250	Límite en que la pérdida de verticalidad de edificios altos y rígidos puede ser visible.					
1/300	Límite en que se debe esperar dificultades con puentes grúas.					
1/300	Límite en que se debe esperar las primeras grietas en paredes.					
1/500	Límite seguro para edificios en los que no se permiten grietas.					
1/500	Límite para cimentaciones rígidas circulares o para anillos de cimentación de estructuras rígidas, altas y esbeltas.					
1/650	Límite para edificios rígidos de concreto cimentados sobre un solado con espesor aproximado de 1.20 m.					
1/750	Límite donde se esperan dificultades en maquinaria sensible a asentamientos.					

Fuente: Norma E.050 "suelos y cimentaciones" - del RNE

En la tabla N°12, se muestra el resumen del cálculo de los asentamientos para cada punto de las zapatas, para ello necesitamos conocer las dimensiones de cada una de las zapatas a calcular y las respectivas cargas que soportan, para dichos cálculos ha sido necesario apoyarnos de la información propuesta por el Ing. Braja M. Das de su libro "Fundamentos de Ingeniería Geotécnica".

Fuente: Braja M. Das "Fundamentos de Ingeniería Geotécnica"

Zonata	Dimensiones (m)		Carga	qo			Asentamiento	Comparación Asent.	
Lapata	Largo	Ancho (Tn) (Tn/m2) III a		u	(m)	Admisible			
Z-01	1.30	0.95	29.50	23.8866	1.37	1.6879	0.0232	CUMPLE	
Z-03	1.20	1.20	43.82	30.4306	1.00	1.1222	0.0249	CUMPLE	
Z-05	1.15	1.10	45.73	36.1502	1.05	1.1891	0.0287	CUMPLE	
Z-02	2.05	1.00	66.05	32.2195	2.05	2.8461	0.0556	CUMPLE	
Z-08	2.05	1.05	79.45	36.9106	1.95	2.6730	0.0628	CUMPLE	
Z-09	1.50	0.95	31.44	22.0632	1.58	2.0322	0.0258	CUMPLE	
Z-11	1.45	1.00	25.88	17.8483	1.45	1.8197	0.0197	CUMPLE	
Z-12	1.85	0.80	22.91	15.4797	2.31	3.3219	0.0250	CUMPLE	
Z-19	2.35	0.90	14.28	6.7518	2.61	3.8799	0.0143	CUMPLE	
Z-28	1.30	1.00	46.33	35.6385	1.30	1.5791	0.0341	CUMPLE	
Z-30	2.20	1.10	30.61	12.6488	2.00	2.7571	0.0233	CUMPLE	
Z-35	2.35	1.10	32.15	12.4371	2.14	3.0010	0.0249	CUMPLE	
Z-15	1.80	1.50	98.56	36.5037	1.20	1.4229	0.0473	CUMPLE	
Z-16	1.70	1.05	53.76	30.1176	1.62	2.0992	0.0403	CUMPLE	
Z-17	2.20	1.30	104.49	36.5350	1.69	2.2229	0.0640	CUMPLE	
Z-20	1.40	0.75	36.11	34.3905	1.87	2.5228	0.0395	CUMPLE	
Z-21	2.25	1.40	109.92	34.8952	1.61	2.0793	0.0616	CUMPLE	
Z-27	2.20	1.50	133.89	40.5727	1.47	1.8469	0.0682	CUMPLE	
Z-31	1.80	1.10	58.32	29.4545	1.64	2.1283	0.0418	CUMPLE	
Z-32	1.60	1.00	40.04	25.0250	1.60	2.0673	0.0314	CUMPLE	
Z-33	1.60	1.00	41.41	25.8813	1.60	2.0673	0.0325	CUMPLE	
Z-34	1.70	1.30	61.57	27.8597	1.31	1.5913	0.0350	CUMPLE	
Z-P-ASC-ESC	6.50	3.60	310.96	13.2889	1.81	2.4168	0.0701	CUMPLE	
Z-06-07	2.20	1.45	25.36	7.9498	1.52	1.9299	0.0135	CUMPLE	
Z-10-18	4.60	1.95	141.79	15.8071	2.36	3.4076	0.0637	CUMPLE	
Z-P-01	1.75	0.95	28.36	17.0586	1.84	2.4801	0.0244	CUMPLE	
Z-P-03	1.70	1.20	41.61	20.3971	1.42	1.7656	0.0262	CUMPLE	
Z-P-08	2.05	0.80	25.65	15.6402	2.56	3.7879	0.0288	CUMPLE	
Z-P-07	2.20	1.35	57.65	19.4108	1.63	2.1170	0.0337	CUMPLE	
Z-P-02	2.75	2.05	104.26	18.4940	1.34	1.6449	0.0378	CUMPLE	

Tabla N°12: Cuadro de resumen para el cálculo de asentamiento admisible.

Z-02	Z-P-02	0.0556	0.0378	0.0178	3.98	0.0045	CUMPLE
Z-P-02	Z-20	0.0378	0.0395	0.0016	2.85	0.0006	CUMPLE
Z-03	Z-15	0.0249	0.0473	0.0224	3.52	0.0064	CUMPLE
Z-05	Z-1 7	0.0287	0.0640	0.0354	3.69	0.0096	NO CUMPLE
Z-08	Z-09	0.0628	0.0258	0.0370	3.01	0.0123	NO CUMPLE
Z-08	Z-10-18	0.0628	0.0637	0.0009	3.86	0.0002	CUMPLE
Z-10-18	Z-11	0.0637	0.0197	0.0440	3.09	0.0142	NO CUMPLE
Z-21	Z-31	0.0616	0.0418	0.0198	2.89	0.0068	NO CUMPLE
Z-20	Z-21	0.0395	0.0616	0.0221	2.89	0.0077	NO CUMPLE
Z-01	Z-02	0.0232	0.0556	0.0324	3.07	0.0106	NO CUMPLE
Z-02	Z-03	0.0556	0.0249	0.0308	5.01	0.0061	CUMPLE
Z-05	Z-08	0.0287	0.0628	0.0342	4.99	0.0068	NO CUMPLE
Z-08	Z-06-07	0.0628	0.0135	0.0494	2.12	0.0233	NO CUMPLE
Z-27	Z-10-18	0.0682	0.0637	0.0045	5.20	0.0009	CUMPLE
Z-15	Z-P-ASC-ESC	0.0473	0.0701	0.0229	4.28	0.0053	CUMPLE
Z-17	Z-P-ASC-ESC	0.0640	0.0701	0.0061	4.53	0.0013	CUMPLE
Z-P-ASC-ESC	Z-32	0.0701	0.0314	0.0388	1.47	0.0264	NO CUMPLE
Z-P-ASC-ESC	Z-33	0.0701	0.0325	0.0377	1.47	0.0256	NO CUMPLE
Z-P-ASC-ESC	Z-21	0.0701	0.0616	0.0085	5.20	0.0016	CUMPLE
Z-P-ASC-ESC	Z-27	0.0701	0.0682	0.0020	5.11	0.0004	CUMPLE

Finalmente se determina el asentamiento diferencial y se chequea la distorsión angular, según la norma E.050 de suelos y cimentaciones el valor límite en el que se debe esperar daño estructural en edificios convencionales es de: 1/150 (ver tabla N° 8 de la norma).

De	Hasta	Asentamiento Inicial (m)	Asentamiento Final (m)	Asentamiento Diferencial (m)	Separación (m)	Distorsión Angular	Chequeo
----	-------	-----------------------------	---------------------------	---------------------------------	-------------------	-----------------------	---------

Z-01	Z-P-01	0.0232	0.0244	0.0011	2.19	0.0005	CUMPLE
Z-P-01	Z-12	0.0244	0.0250	0.0006	2.34	0.0002	CUMPLE
Z-12	Z-19	0.0250	0.0143	0.0107	2.85	0.0037	CUMPLE
Z-19	Z-P-03	0.0143	0.0262	0.0119	2.60	0.0046	CUMPLE
Z-P-03	Z-30	0.0262	0.0233	0.0029	2.58	0.0011	CUMPLE
Z-30	Z-31	0.0233	0.0418	0.0186	4.28	0.0043	CUMPLE
Z-31	Z-32	0.0418	0.0314	0.0104	5.05	0.0021	CUMPLE
Z-32	Z-33	0.0314	0.0325	0.0011	2.60	0.0004	CUMPLE
Z-33	Z-34	0.0325	0.0350	0.0025	5.00	0.0005	CUMPLE
Z-34	Z-35	0.0350	0.0249	0.0101	4.17	0.0024	CUMPLE
Z-35	Z-P-07	0.0249	0.0337	0.0087	3.09	0.0028	CUMPLE
Z-P-07	Z-28	0.0337	0.0341	0.0005	2.22	0.0002	CUMPLE
Z-28	Z-11	0.0341	0.0197	0.0144	3.95	0.0037	CUMPLE
Z-11	Z-P-08	0.0197	0.0288	0.0090	1.94	0.0047	CUMPLE
Z-P-08	Z-09	0.0288	0.0258	0.0029	1.92	0.0015	CUMPLE
Z-09	Z-06-07	0.0258	0.0135	0.0123	1.69	0.0073	NO CUMPLE
Z-12	Z-P-02	0.0250	0.0378	0.0129	2.68	0.0048	CUMPLE
Z-P-02	Z-15	0.0378	0.0473	0.0094	5.35	0.0018	CUMPLE
Z-15	Z-16	0.0473	0.0403	0.0070	2.61	0.0027	CUMPLE
Z-16	Z-17	0.0403	0.0640	0.0238	2.61	0.0091	NO CUMPLE
Z-17	Z-10-18	0.0640	0.0637	0.0003	4.80	0.0001	CUMPLE
Z-27	Z-P-07	0.0682	0.0337	0.0345	4.24	0.0081	NO CUMPLE
Z-27	Z-34	0.0682	0.0350	0.0332	3.04	0.0109	NO CUMPLE
Z-19	Z-20	0.0143	0.0395	0.0252	2.33	0.0108	NO CUMPLE

Fuente: Elaboración propia

Nota: Téngase en consideración que los asentamientos han sido calculados en base a cargas y características de deformación del suelo y considerando de que cada una es una zapata aislada y no conectada (el cual es el diseño propuesto debido a lo demostrado ahora: que las distorsiones angulares ocasionadas por los asentamientos diferenciales presentes son superiores al permisible). Por lo tanto se concluye que el sistema estructural seleccionado es el más adecuado.

8. Panel fotográfico

Excavación de zanjas para cimentaciones superficiales

Colocación de acero de refuerzo en zapatas Z-ASC-ESC

Distribución de acero de refuerzo en vigas de arriostre

Excavación de zanjas para zapatas

Zapata combinada Z-10-18

Cimentación y columnas

Avance de un 80% del proyecto multifamiliar

PLANOS