UNIVERSIDAD NACIONAL DE CAJAMARCA FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA GEOLÓGICA

TESIS PROFESIONAL

APLICACIÓN DE LOS MÉTODOS DE EQUILIBRIO LÍMITE, ELEMENTOS FINITOS Y DIFERENCIAS FINITAS EN EL COMPORTAMIENTO DE LADERAS Y TALUDES SECTOR CALISPUQUIO-CAJAMARCA

Para optar el título de:

Ingeniero Geólogo

Presentado Por:

Bach. Elvis Rubén Alcántara Quispe

Asesor:

MCs. Ing. Crispín Zenón Quispe Mamani

Cajamarca – Perú

2017

AGRADECIMIENTO

A mi alma mater la Universidad Nacional de Cajamarca, y en especial a los docentes de la Escuela Académico Profesional de Ingeniería Geológica por sus enseñanzas durante mi formación académica.

A mi asesor MCs. Ing. Crispín Zenón Quispe Mamani, por su orientación y apoyo incondicional durante el desarrollo de esta investigación.

A mis padres, hermano y amigos por su apoyo en todo el proceso de esta investigación.

DEDICATORIA

A todas las personas que no se dejan amilanar por las dificultades del camino, sino que las encaran y logran superarlas, como mi padre César Alcántara Julcamoro y mi madre Cruz Quispe Sangay, gracias a cuyo ejemplo y respeto he llegado a ser un profesional para bien de la sociedad.

RESUMEN

Se analizaron las laderas y taludes del sector Calispuquio, al oeste de la ciudad de Cajamarca, constituidos por suelos y macizos rocosos de mala calidad, mediante las metodologías de Equilibrio Límite (Software Slide v7), Elementos Finitos (Software RS2 v9) y Diferencias Finitas (Software FLAC v8), en diversos escenarios, para estudiar y comparar sus resultados con la realidad y entre sí. Los resultados muestran que el software Slide v7 destaca por su velocidad de análisis y confiabilidad de los resultados en el análisis de laderas y taludes, aunque requiere entrenamiento para poder elegir los métodos de análisis adecuados (ya que cuenta con muchos y variados). El software RS2 v9 puede analizar taludes y laderas de forma rápida, pero se debe tener cuidado con el análisis de aguas subterráneas, ya que se generan factores de seguridad sub-estimados en relación con los otros dos softwares. El software FLAC v8 muestra resultados válidos en cualquier condición, pero requiere optimizaciones de geometría y grillas para que sean válidas, en su complemento FLAC SLOPE esta dificultad está ausente y se puede ingresar datos más rápido, pero solo acepta geometrías de taludes.

Palabras Clave: Taludes, laderas, Factor de seguridad, equilibrio límite, elementos finitos, diferencias finitas.

ABSTRACT

The hillsides and slopes of Calispuquio sector, west of the Cajamarca's city, consisting of soil and rock masses low quality, were analyzed using methodologies of Limit Equilibrium (Software Slide v7), Finite Elements (Software RS2 v9) and Finite Differences (FLAC Software v8), in various scenarios, to study and compare their results with reality and with each other. The results show that the Slide v7 software stands out for its speed of analysis and reliability on its results analyzing hillsides and slopes, training is required to choose the appropriate analysis methods (as it has many and varied). The RS2 v9 software can analyze hillsides and slopes quickly, but care must be taken with groundwater, since sub-factors are generated in relation to the other two software. The FLAC v8 software displays valid results in any condition, but requires geometry and grid optimizations to be valid, in its complement, FLAC SLOPE, this difficulty is absent and data can be entered faster, but only accepts geometries of slopes.

Keywords: Hillside, slope, safety factor, limit equilibrium, finite elements, finite differences.

CONTENIDO	Pág.
CAPÍTULO I	
INTRODUCCIÓN	1
CAPÍTULO II	
MARCO TEÓRICO	3
2.1 ANTECEDENTES TEÓRICOS DE LA INVESTIGACIÓN	3
2.2 BASES TEÓRICAS	4
2.2.1 CLASIFICACIÓN DE LOS MATERIALES GEOLÓGICOS	4
2.2.2 CRITERIOS DE ROTURA	6
2.2.3 MOVIMIENTOS EN MASA	11
2.2.4 ANÁLISIS DE ESTABILIDAD	12
2.2.5 MÉTODO DE EQUILIBRIO LÍMITE	14
2.2.6 MÉTODO DE ELEMENTOS FINITOS	16
2.2.7 MÉTODO DE DIFERENCIAS FINITAS	18
2.3 DEFINICIÓN DE TÉRMINOS	19
CAPÍTULO III	
MATERIALES Y MÉTODOS	20
3.1 UBICACIÓN GEOGRÁFICA	20
3.2 ACCESIBILIDAD	20
3.3 METODOLOGÍA DE LA INVESTIGACIÓN	21
3.3.1 TIPO Y MÉTODO DE LA INVESTIGACIÓN	21
3.3.2 POBLACIÓN DE ESTUDIO	21
3.3.3 MUESTRA	21
3.3.4 UNIDAD DE ANÁLISIS	21
3.4 TÉCNICAS E INSTRUMENTOS DE RECOLECCIÓN	21

v

	Pág.
3.4.1 TÉCNICAS	21
3.4.2 INSTRUMENTOS Y MATERIALES	22
3.4.3 SOFTWARES	22
3.5 PROCEDIMIENTO Y TÉCNICA DE RECOLECCIÓN DE DATOS	23
3.5.1 LEVANTAMIENTO TOPOGRÁFICO	23
3.5.2 CARTOGRAFIADO TEMÁTICO	23
3.5.3 ANÁLISIS POR MEDIO DE TABLAS	23
3.6 ANÁLISIS DE DATOS Y PRESENTACIÓN DE RESULTADOS	24
3.6.1 ANÁLISIS DE INESTABILIDAD LOS DESLIZAMIENTOS EXISTENTES	24
3.6.2 ANÁLISIS DE INESTABILIDAD	25
3.7 VARIABLES DE INESTABILIDAD	25
3.7.1 VARIBALES CONDICIONANTES	25
3.7.2 GEOMETRÍA DE LAS LADERAS Y TALUDES	32
3.7.3 PROPIEDADES GEOMECÁNICAS	35
3.7.4 VARIABLES DESENCADENANTES	35
CAPÍTULO IV	
ANÁLISIS Y DISCUSIÓN DE RESULTADOS	37
4.1 PRESENTACIÓN DE LOS RESULTADOS	37
4.1.1 RESULTADOS DEL ANÁLISIS CON LOS TRES SOFTWARES	37
4.1.2 COMPARACIÓN DE LOS MÉTODOS DEL SOFTWARE SLIDE	41
4.1.3 ANÁLISIS PROBABILÍSTICO	42
4.1.4 ANÁLISIS CON DISEÑO ESTÁNDAR	44
4.2 TRATAMIENTO ESTADÍSTICO	45
4.2.1 COEFICIENTE DE CORRELACIÓN DE PEARSON	45

vi

	Pág.
4.2.1 RELACIÓN LINEAL DE LOS RESULTADOS	46
4.3 COMPARACIÓN DE LOS SOFTWARES ANALIZADOS	47
4.2 CONTRASTACIÓN CON LA HIPÓTESIS	48
CAPÍTULO V	
CONCLUSIONES Y RECOMENDACIONES	49
5.1 CONCLUSIONES	49
5.2 RECOMENDACIONES	50
REFERENCIAS BIBLIOGRÁFICAS	51
ANEXOS	55
A. TABLAS DEL CRITERIO DE ROTURA DE HOEK-BROWN	56
B. TABLAS DE REGISTRO EN CAMPO	63
C. PLANOS	65
D. COLUMNA ESTRATIGRÁFICA	73
E. PERFILES	74
F. ANÁLISIS CON EL SOFTWARE ROCDATA V5	75
G. PROPIEDADES GEOMECÁNICAS DE LAS UNIDADES INGENIERILES	81
H. RESULTADOS DEL ANÁLSIS CON EL SOFTWARE SLIDE V7	85
I. RESULTADOS DEL ANÁLSIS CON EL SOFTWARE RS2 V9	111
J. RESULTADOS DEL ANÁLSIS CON EL SOFTWARE FLAC V8	133

FIGURAS

Figura 1. Envolventes de Mohr-Coulomb en términos de esfuerzos tangenciales y	normales
(a) y esfuerzos principales (b)	6
Figura 2. Envolventes de rotura del criterio de Hoek-Brown en función de los	esfuerzos
principales (a) y de los esfuerzos normales y tangencial (b)	7

Pág.

Figura 3: Gráfico de las envolventes de rotura para el criterio de Hoek y Brown y del criterio
de Mohr Coulomb. Apreciándose las gráficas de la resistencia uniaxial y global10
Figura 4. Diagrama de bloque de un deslizamiento11
Figura 5. Métodos de análisis para movimientos en masa12
Figura 6: Diagrama que muestra el tipo de modelo que se recomienda utilizar de acuerdo
con la complejidad de los movimientos14
Figura 7. Varios estadios de un "análisis total de movimientos en masa" y las metodologías
sugeridas14
Figura 8. Esquema de un sistema típico de análisis con tajadas o dovelas
Figura 9. Círculo de falla crítico según su factor de seguridad en Slide
Figura 10. Metodología de discretización del dominio en elementos finitos17
Figura 11. Modelamiento de una falla en un talud con la metodología del SRF en RS217
Figura 12. Metodología de discretización con diferencias finitas
Figura 13. Análisis del factor de seguridad con el Software FLAC18
Figura 14. Metodología general del análisis de las laderas y taludes
Figura 15. Metodología del análisis de inestabilidad de los deslizamientos existentes 24
Figura 16. Metodología del análisis de inestabilidad de las laderas y taludes críticos 25
Figura 17. Distribución del área de las pendientes en el área de estudio
Figura 18. Distribución del área de las geoformas en el área de estudio
Figura 19. Distribución del área de las unidades lito-estratigráficas en el área de estudio. 27
Figura 20. Distribución del área de los acuíferos en el área de estudio
Figura 21. Distribución del área de las zonas de cobertura vegetal en el área de estudio 32
Figura 22. Ubicación de los perfiles de análisis en la zona de estudio en Google Earth 33
Figura 23. Coincidencias y discrepancias de los resultados con intervalos tradicionales 39
Figura 24. Variaciones en los factores de seguridad encontrados
Figura 25. Coincidencias y discrepancias de los resultados en el límite de estabilidad 41
Figura 26. Matriz de Pearson para los datos de la Figura 23 a una precisión de 0.001 (a) y
0.01 (b)
Figura 27. Relación Lineal de los FS obtenidos: Slide v7-RS2 (a), Slide v7-FLAC (b), RS2-
FLAC v8 (c) y gráfico 3D de los FS obtenidos

FOTOS

Pág.

Foto 1. Areniscas cuarzosas de la Formación Farrat al sur de la zona de estudio28
Foto 2. Lutitas ferruginosas intercaladas con limolitas pertenecientes a la Formación Inca
cerca al deslizamiento sur
Foto 3. Calizas wackestone intercaladas con lutitas de la Formación Chúlec al sur de la zona
de estudio
Foto 4. Flujos piroclásticos de pómez y cenizas de la Formación Porculla en la zona central
del área de estudio
Foto 5. Depósito aluvial con gravas y arcillas de alta plasticidad en las riveras de la quebrada
Calispuquio
Foto 6. Cuaternario Coluvial de gravas y arcillas producto del deslizamiento en el cerro
Layzón
Foto 7. Depósito Cuaternario Deluvial de limos y arcillas cubriendo al cerro Antenas 31
Foto 8. Cono coluvio-aluvial en el cerro Antenas en suelos arcillosos de baja plasticidad.31
Foto 9. Detalle de la ubicación de los perfiles: a) A-A', vista hacia el SW; b) B-B,' vista
hacia el NW; c) C-C', vista hacia el S; d) D-D', vista hacia el NE34

TABLAS

Tabla 1. Clasificación de los suelos por el sistema SUCS	4
Tabla 2. El sistema RQD.	5
Tabla 3. Parámetros de la Clasificación Geomecánica RMR ₈₉	5
Tabla 4. Clasificación de los macizos rocosos según el RMR ₈₉	5
Tabla 5. Clasificación de los movimientos de masa	. 11
Tabla 6. Características de las metodologías utilizadas en la modelación de movimientos	en
masa	.13
Tabla 7. Características de las principales metodologías de equilibrio límite de dovelas	.16
Tabla 8. Coordenadas UTM-WGS84 de los vértices de la zona de estudio	. 20
Tabla 9. Rutas de acceso a la zona de estudio	21
Tabla 10. Extensión superficial de las unidades de pendientes cartografiadas en el área	de
estudio	. 25
Tabla 11. Extensión superficial de las geoformas cartografiadas en el área de estudio	. 26

Pág.

Tabla 12. Extensión superficial de las unidades lito-estratigráficas cartografiadas en el área
de estudio27
Tabla 13. Extensión superficial de los acuíferos cartografiados en el área de estudio 31
Tabla 14. Extensión superficial de las zonas de cobertura vegetal cartografiadas en el área
de estudio
Tabla 15. Ubicación de los perfiles diseñados para el análisis
Tabla 16. Características de los perfiles diseñados para el análisis
Tabla 17. Características y ubicación de las estaciones geomecánicas para cada unidad
geotécnica
Tabla 18. Condiciones desencadenantes en los utilizados en los análisis
Tabla 19. Resultados del análisis de seguridad global (mismas condiciones para todos los
softwares)
Tabla 20. Comparación de los resultados del análisis de perfil A-A'1 con el software Slide
v7 bajo sus métodos de superficies de falla y de dovelas. Sombreado los valores con mayor
coincidencia en cada secuencia
coincidencia en cada secuencia. 42 Tabla 21. Resultados del análisis probabilístico con el software Slide v7 sobre el perfil C- C'2. 43 Tabla 22. Resultados del análisis probabilístico con el software RS2 v9 sobre el perfil C- C'2. 43
coincidencia en cada secuencia. 42 Tabla 21. Resultados del análisis probabilístico con el software Slide v7 sobre el perfil C- C'2. 43 Tabla 22. Resultados del análisis probabilístico con el software RS2 v9 sobre el perfil C- C'2. 43 Tabla 23. Resultados del análisis probabilístico con el software FLAC SLOPE v8 sobre el
coincidencia en cada secuencia.42Tabla 21. Resultados del análisis probabilístico con el software Slide v7 sobre el perfil C- C'2.43Tabla 22. Resultados del análisis probabilístico con el software RS2 v9 sobre el perfil C- C'2.43Tabla 23. Resultados del análisis probabilístico con el software FLAC SLOPE v8 sobre el perfil C-C'2.44
coincidencia en cada secuencia.42Tabla 21. Resultados del análisis probabilístico con el software Slide v7 sobre el perfil C-C'2.43Tabla 22. Resultados del análisis probabilístico con el software RS2 v9 sobre el perfil C-C'2.43Tabla 23. Resultados del análisis probabilístico con el software FLAC SLOPE v8 sobre el perfil C-C'2.43Tabla 24. Conclusión del análisis probabilístico con los tres softwares comparados.44
coincidencia en cada secuencia
coincidencia en cada secuencia.42Tabla 21. Resultados del análisis probabilístico con el software Slide v7 sobre el perfil C-C'2.43Tabla 22. Resultados del análisis probabilístico con el software RS2 v9 sobre el perfil C-C'2.43Tabla 23. Resultados del análisis probabilístico con el software FLAC SLOPE v8 sobre el perfil C-C'2.44Tabla 24. Conclusión del análisis probabilístico con los tres softwares comparados.44Tabla 25. Comparación de resultados con condiciones de sismicidad máxima normal y con44
coincidencia en cada secuencia.42Tabla 21. Resultados del análisis probabilístico con el software Slide v7 sobre el perfil C-C'2.43Tabla 22. Resultados del análisis probabilístico con el software RS2 v9 sobre el perfil C-C'2.43Tabla 23. Resultados del análisis probabilístico con el software FLAC SLOPE v8 sobre el perfil C-C'2.44Tabla 24. Conclusión del análisis probabilístico con los tres softwares comparados.44Tabla 25. Comparación de resultados con condiciones de sismicidad máxima normal y conEurocode 7 en el perfil C-C'2 con el software Slide v7.44Tabla 26. Comparación de las características analizadas de los softwares.47

CAPÍTULO I INTRODUCCIÓN

El sector Calispuquio, se encuentra al oeste de la ciudad de Cajamarca, y muestra señales de inestabilidad en las laderas y taludes, que podría afectar a la población de la ciudad de Cajamarca. Los materiales geológicos en el sector Calispuquio son suelos, y macizos rocosos de las formaciones Farrat, Inca, Chúlec y del volcánico San Pablo, que condicionan su inestabilidad sumadas a factores desencadenantes de sismicidad y precipitaciones intensas. En este contexto se aplicaron los métodos de Equilibrio Límite, Elementos Finitos y Diferencias Finitas para calcular los factores de seguridad que ayuden a conocer la inestabilidad real del Sector Calispuquio.

La investigación se centró en resolver la pregunta ¿Cuál es el comportamiento geomecánico de las laderas y taludes del Sector Calispuquio con los métodos de Equilibrio Límite, Elementos Finitos y Diferencias Finitas?, teniendo como hipótesis de que cada método de análisis tiene ventajas y desventajas, teniendo que realizar una buena caracterización geomecánica antes de elegir el más indicado.

El sector Calispuquio es un punto de fuerte expansión urbana y no cuenta con estudios de estabilidad que ayuden a los gobiernos locales y a la población en general a planificarse antes de construir sus nuevos asentamientos y para implementar medidas de mitigación en los lugares con alta inestabilidad pero que ya se encuentren habitados. Se utilizó modernos softwares de Equilibrio límite, Elementos Finitos y Diferencias finitas, ya que la complejidad de los materiales geológicos que se encuentren en la zona dificulta su análisis.

El alcance espacial de la investigación fue el sector Calispuquio, al oeste de la ciudad de Cajamarca, teniendo una duración de 9 meses (enero, 2016 - septiembre, 2016); y

centrándose en la aplicación de los métodos de Equilibrio límite, Elementos finitos y Diferencias finitas en el comportamiento de laderas y taludes del Sector Calispuquio. Se tuvo la limitación de que las pruebas de resistencia en laboratorio son costosas y fueron remplazadas por pruebas de resistencia en campo.

El objetico general fue "Aplicar los métodos de Equilibrio Límite, Elementos Finitos y Diferencias Finitas en las laderas y taludes del Sector Calispuquio", siendo los objetivos específicos los de: Estudiar la geología y geomecánica del sector Calispuquio, aplicar el método de Equilibrio Límite con el software Slide v7, aplicar el método de Elementos Finitos con el software Phase2 (RS2 v9), aplicar el método de Diferencias Finitas con el software FLAC v8, y comparar los resultados obtenidos de los métodos utilizados.

El contenido de los siguientes capítulos se describe a continuación.

CAPÍTULO II: Contiene los antecedentes teóricos de la investigación, las bases teóricas sobre materiales geológicos, criterios de rotura, movimientos en masa, análisis de estabilidad, y los métodos de análisis que se utilizarán en la investigación (método de equilibrio límite, elementos finitos y diferencias finitas); y la definición de términos.

CAPÍTULO III: Constituido por la descripción de los materiales y métodos que se utilizarán en la investigación, generalidades, además de las variables condicionantes y desencadenantes de inestabilidad.

CAPÍTULO IV: Se presentan los resultados a los que he llegado al final de la investigación, análisis estadístico y la contrastación con la hipótesis planteada.

CAPÍTULO V: Muestra las conclusiones para cada objetivo que se ha planteado además de las recomendaciones para futuras investigaciones además de medidas inmediatas que podrían aplicar las autoridades locales para mitigar desastres naturales en la zona.

CAPÍTULO II MARCO TEÓRICO

2.1 ANTECEDENTES TEÓRICOS DE LA INVESTIGACIÓN

Bobet (2010) estudió los métodos numéricos en geotecnia, dando énfasis a los métodos discontinuos para predecir el comportamiento del macizo rocoso.

Huaripata (2014) Realizó un modelo geodinámico de la quebrada Cruz Blanca utilizando el enfoque de cuenca para el análisis de sus variables.

Jing (2003) Estudió la mayor parte de los métodos numéricos existes, realizando una exhaustiva explicación de cada uno y como utilizarlos.

Navarro (2007) Realizó para el INGEMMET el Mapa geológico de Cuadrángulo 15f a escala 1:50 000, clasificando los eventos eruptivos según su centro volcánico.

Ramirez & Alejano (2004) compararon los métodos de elementos finitos, diferencias finitas, elementos de contorno y elementos discretos.

Reyes (1980) Realizó para el INGEMMET el estudio geológico de los cuadrángulos de Cajamarca, San Marcos y Cajabamba, hojas 15-f, 15-g y 16-g, estudió la estratigrafía y la geología estructural a escala 1:100 000.

Zavala & Rosado (2011) Evaluaron la ocurrencia de peligros geológicos y geohidrológicos en términos de susceptibilidad, así como de sus factores detonantes para así determinar el grado de peligrosidad.

2.2 BASES TEÓRICAS

2.2.1 CLASIFICACIÓN DE LOS MATERIALES GEOLÓGICOS

2.2.1.1 Clasificación de los suelos (SUCS)

Es un sistema de clasificación de suelos usado en ingeniería y geología para describir la textura y el tamaño de las partículas de un suelo (Wikipedia, 2016).

Tabla 1. Clasificación de los suelos por el sistema SUCS, primeras letras: G-grava, S-arena, M-limo, Carcilla, O-orgánico; segundas letras P: pobremente gradado (tamaño de partícula uniforme), W: bien gradado (tamaños de partículas diversos), H: alta plasticidad, L: baja plasticidad. Fuente: (Wikipedia.org, 2016a).

	Divisiones ma	ayores	Símbolo del grupo	Nombres típicos
	Grava > 50% de la fracción gruesa retenida en el tamiz nº4	grava limpia menos	GW	Gravas, bien graduadas, mezclas grava- arena, pocos finos o sin finos.
		n°200	GP	Gravas mal graduadas, mezclas grava- arena, pocos finos o sin finos.
Suelos granulares		grava con más de 12% de finos pasantes del tamiz nº 200	GM	Gravas limosas, mezclas grava-arena- limo.
más del 50%	(4.75 1111)		GC	Gravas arcillosas, mezclas grava-arena- arcilla.
retenido en el tamiz nº200	Arena	Arona limpia	SW	Arenas bien graduadas, arenas con grava, pocos finos o sin finos.
(0.075 mm)	≥ 50% de fracción gruesa que pasa el tamiz nº4	Arena mupia	SP	Arenas mal graduadas, arenas con grava, pocos finos o sin finos.
		Arena con más de 12% de finos	SM	Arenas limosas, mezclas de arena y limo.
		pasantes del tamiz nº 200	SC	Arenas arcillosas, mezclas arena-arcilla.
Suelos de grano fino más del 50% pasa el tamiz No.200	limos y arcillas límite líquido < 50	inorgánico	ML	Limos inorgánicos y arenas muy finas, limos limpios, arenas finas, limosas o arcillosas, o limos arcillosos con ligera plasticidad.
			CL	Arcillas inorgánicas de plasticidad baja a media, arcillas con grava, arcillas arenosas, arcillas limosas.
		orgánico	OL	Limos orgánicos y arcillas orgánicas limosas de baja plasticidad.
	limo y arcilla	inorgánico	MH	Limos inorgánicos, suelos arenosos finos o limosos con mica o diatomeas, limos elásticos.
	límite líquido > 50		СН	Arcillas inorgánicas de plasticidad alta.
		orgánico	ОН	Arcillas orgánicas de plasticidad media a elevada; limos orgánicos.
	Suelos altamente	orgánicos	Pt	Turba y otros suelos de alto contenido orgánico.

2.2.1.2 Clasificación de los Macizos Rocosos

Geomecánicamente, se pueden utilizar sistemas como el RQD (Deere, 1963, 1967), RMR (Bieniawski, 1989), y, que en base a valoraciones de diversos factores del macizo rocoso, los dividen según su calidad ingenieril.

RQD	Clasificación	Procedimientos generales
<25	Muy pobre	1. Se relaciona las muestras de roca mayores a 10cm y se relaciona con la longitud total (D. Dogra, 1063);
25-50	Pobre	$Ecuación 1. \qquad RQD = \frac{Muestras de roca>10cm}{Longitud total (m)} * 100$
50-75	Regular	2. Se relaciona el número de discontinuidades por metro (λ) según la siguiente fórmula (Priest & Hudson 1976):
75-90	Bueno	Ecuación 2. $RQD = 100e^{-0.1\lambda} * (0.1\lambda + 1)$
90-100	Muy Bueno	Dónde: $\lambda = N$ úmero de discontinuidade/Longitu (m)

Tabla 2. El sistema RQD.

Tabla 3. Parámetros de la Clasificación Geomecánica RMR ₈₉ . (Bieniawski, 1	.989)
--	-------

1. Resistencia de la - roca intacta		Resistencia a la compresión Puntual (MPa) "RCP"		>10	4-10	2-4	1-2	Para e es rec	estos rar comenda vos de R	ngos able
		Resis compres (MP	stencia a la sión Uniaxial a) "RCU"	>250	100- 250	50- 100	25-50	5-25	1-5	<1
	_		Valor	15	12	7	4	2	1	0
2. R	QD (%)		90-100	75-90		50-75	25-	-50	<25	
۲	Valor		20	17		13	8	3	3	
3. Espaciam. de las discont. (m)		>2	0.6-2		0.2-0.6	0.06-0.2		< 0.06		
Valor		20	15		10	8		5		
	Longitud (m)		<1	1-3		3-10	10-20		>20	
	Valor		6	4		2	2 1		0	
	Separación (mm)		Ninguna	< 0.1		0.1-1	1-5		>5	5
	Valor		6	5		4	1		0	
4. Condicion	Rugosidad		Muy rugosa	Rugosa	A	lgo rugosa	Suave		Pulida	
de las	Valor		6	5		3	1		0	
uiscont.	Relleno	(mm)	Ninguno	<5 duro)	>5 duro	<5 blando		>5 blando	
	Valor		6	4		2	2		0	
	Alteración		Ninguna	Ligera	Ν	Moderada Elevada		vada	Desco	mp.
	Val	or	6	5		3	1		0	
5. Agua subterránea		ea	Seco	Húmedo	C	Mojado	Goteo		Fluj	jo
Valor		15	10		7	4	ļ	0		

Tabla 4. Clasificación de los macizos rocosos según el RMR_{89.} (Bieniawski, 1989)

RMR	0-20	21-40	41-60	61-80	81-100
Clasificación	Muy pobre	Pobre	Regular	Bueno	Muy bueno

2.2.2 CRITERIOS DE ROTURA

2.2.2.1 El criterio de rotura de Mohr Coulomb

La teoría de Mohr-Coulomb es un modelo matemático que describe la respuesta de materiales quebradizos, tales como hormigón, o agregados de partículas como el suelo, a esfuerzo cortante, así como tensión normal. La mayoría de los materiales en ingeniería clásica se comportan siguiendo esta teoría al menos en una parte del corte. En general, la teoría se aplica a los materiales para los que la resistencia a la compresión es muy superior a la resistencia a la tracción, caso de los materiales cerámicos. La teoría explica que el corte de un material se produce para una combinación entre tensión normal y tensión tangencial, y que cuanto mayor sea la tensión normal, mayor será la tensión tangencial necesaria para cortar el material. (Wikipedia, 2016).

La relación de esa envolvente se expresa como.

Ecuación 3.

$$\tau = \sigma tan\phi + c$$

Donde:

- \checkmark τ es el esfuerzo cortante.
- \checkmark σ es la tensión de normal.
- \checkmark *c* es la intersección de la línea de fallo con el eje de \tau, llamada cohesión.
- $\checkmark \phi$ es la pendiente del ángulo de la envolvente, también llamado el ángulo de rozamiento interno.

Figura 1. Envolventes de Mohr-Coulomb en términos de esfuerzos tangenciales y normales (a) y esfuerzos principales (b). Para un estado tensional situado por debajo de las rectas o envolventes no se producirá rotura. (Gonzáles et al , 2003)

2.2.2.2 El criterio de rotura de Hoek-Brown

El criterio de rotura de Hoek-Brown es ampliamente aceptado y ha sido aplicado en de proyectos a nivel mundial, sólo debe aplicarse a los macizos rocosos donde la estructura analizada es grande y los bloques son pequeños en comparación y en los que hay un número suficiente de discontinuidades muy próximas entre sí, con características superficiales similares, para asumir al comportamiento de fractura como isotrópico (Anexo A.1). Se define por (Hoek, Carranza-Torres, & Corkum, 2002):

Ecuación 4:
$$\sigma'_{1} = \sigma'_{3} + \sigma_{ci} \left(m_{b} \frac{\sigma'_{3}}{\sigma_{ci}} + s \right)^{a}$$

> σ'_1 y σ'_3 son el máximo y mínimo esfuerzo principal efectivo en la fractura

- \blacktriangleright m_b es el valor de la constante m de Hoek y Brown para el macizo rocoso
- \succ s y a son las constantes que dependen de las características del macizo rocoso y
- \sim σ_{ci} es el esfuerzo de compresión uniaxial para las piezas de roca intacta

Los esfuerzos normal y de cizalla están relacionados a los esfuerzos principales por la siguiente ecuación (Hoek et al., 2002):

Ecuación 5:
$$\sigma'_n = \frac{\sigma'_1 + \sigma'_3}{2} - \frac{\sigma'_1 - \sigma'_3}{2} * \frac{d\sigma'_1/d\sigma'_3 - 1}{d\sigma'_1/d\sigma'_3 + 1}$$

Ecuación 6:

$$\tau = ({\sigma'}_1 - {\sigma'}_3) \frac{\sqrt{d\sigma'_1/d\sigma'_3}}{d\sigma'_1/d\sigma'_{3+1}}$$

 $d\sigma'_{1}/d\sigma'_{3} = 1 + am_{b}(m_{b}\sigma'_{3}/\sigma'_{ci} + s)^{a-1}$ Ecuación 7: a) Tensión tangencial o. Compresión triaxial Compresión uniaxial σ 2β σ_t Tracción Compresión Tensión normal on Tracción ► 03 Tracción Compresión

Figura 2. Envolventes de rotura del criterio de Hoek-Brown en función de los esfuerzos principales (a) y de los esfuerzos normales y tangencial (b). Representación de las diferentes condiciones de (Gonzáles et al., 2003)

Propiedades de la Roca Intacta

La relación entre los esfuerzos principales de rotura de una roca se define por dos constantes, la resistencia a la compresión uniaxial σ_{ci} y una constante m_i . Siempre que sea posible los valores de estas constantes deben ser determinados por análisis estadístico de resultados de ensayos triaxiales. Cuando las pruebas de laboratorio no son posibles, Las tablas de los Anexos A.2 y A.3, pueden utilizarse para obtener estimaciones de σ_{ci} y m_i .

El Índice de Resistencia Geológica GSI

Proporciona un número que combinado con las propiedades de la roca intacta se puede estimar la reducción de la resistencia del macizo rocoso para diferentes condiciones geológicas. Dicha reducción se debe a la mayor facilidad de fracturamiento a través y alrededor de los granos ("bloques" de la roca intacta) a medida que más granos son adicionados, y eventualmente la resistencia alcanzará un valor constante (Hoek, 2007).

La tabla del Anexo A.4 es utilizada para calcular el GSI para macizos homogéneos y la tabla del Anexo A.5 para heterogéneos.

(Hoek, Carter, & Diederichs, 2013) realizaron la cuantificación GSI (Anexo A.6) sobre la base de las Condiciones de las Discontinuidades (Bieniawski, 1989) y el RQD (D. Deere, 1967). De esta forma el GSI puede ser calculado de la siguiente manera:

Ecuación 8:
$$GSI = 1.5JCond_{89} + RQD/2$$

El Factor de Disturbación D

Es un factor que depende del grado de perturbación debido a voladura y relajación tensional (Hoek et al., 2002) (Anexo A.7), variando desde 0 para macizos rocosos sin disturbación a 1 para macizos muy disturbados. Las nuevas variables se calculan así:

(001 100)

Ecuación 9:

$$m_b = m_i exp\left(\frac{GSI-100}{28-14D}\right)$$

 Ecuación 10:
 $s = exp\left(\frac{GSI-100}{9-3D}\right)$

 Ecuación 11:
 $a = \frac{1}{2} + \frac{1}{6} \left(e^{-GSI/15} - e^{-20/3}\right)$

(Van & Vásárhelyi, 2013) mostraron que el criterio de Hoek y Brown es sensitivo a la falta de certeza del GSI y del factor de disturbación D, pudiéndose generar valores muchas veces más altos de lo normal en caso no fueran tomados correctamente.

La Resistencia a la compresión uniaxial y tensional del macizo rocoso

La resistencia a la compresión uniaxial y tensional del macizo rocoso se obtiene mediante la suposición de $\sigma'_3 = 0$ en la Ecuación 4, dando como resultado:

Ecuación 12:
$$\sigma_c = \sigma_{ci} * s'$$

Ecuación 13:
$$\sigma_t = -\frac{s\sigma_{ci}}{mb}$$

La Ecuación 13 se obtiene suponiendo $\sigma'_1 = \sigma'_3 = \sigma'_t$ en la Ecuación 4. Esto representa una condición de tensión biaxial (Hoek, 1983).

Los Parámetros de Mohr-Coulomb

El proceso de ajuste implica equilibrar las áreas en la gráfica de Mohr-Coulomb, resultando:

Ecuación 14:
$$\phi' = \sin^{-1} \left[\frac{6am_b(s+m_b\sigma'_{3n})^{a-1}}{2(1+a)(2+a)+6am_b(s+m_b\sigma'_{3n})^{a-1}} \right]$$

Ecuación 15:
$$C' = \frac{\sigma_{ci}[(1+2a)s+(1-a)m_b\sigma'_{3n}](s+m_b\sigma'_{3n})^{a-1}}{(1+a)(2+a)\sqrt{1+(6am_b(s+m_b\sigma'_{3n})^{a-1})/((1+a)(2+a))}}$$

Cuando $\sigma_{3n} = \sigma'_{3max} / \sigma_{ci}$

La resistencia cizallante de Mohr-Coulomb τ , para una tensión normal σ dada, se encuentra por sustitución de valores de c' y ϕ' en la ecuación:

Ecuación 16:
$$\tau = c' + \sigma' tan \phi'$$

La gráfica equivalente en términos del esfuerzo principal mayor y menor, se define por:

Ecuación 17:
$$\sigma'_{1} = \frac{2c'\cos\phi'}{1-\sin\phi'} + \frac{1+\sin\phi'}{1-\sin\phi'}\sigma'_{3}$$

El valor de σ'_{3max} para su uso en la Ecuación 14 y Ecuación 15, para túneles (Ecuación 18), taludes (Ecuación 19) y para casos generales (Ecuación 20) es:

Ecuación 18:
$$\frac{\sigma'_{3max}}{\sigma'_{cm}} = 0.47 \left(\frac{\sigma'_{cm}}{\gamma H}\right)^{-0.94}$$
Ecuación 19: $\frac{\sigma'_{3max}}{\sigma'_{cm}} = 0.72 \left(\frac{\sigma'_{cm}}{\gamma H}\right)^{-0.91}$ Ecuación 20: $\sigma'_{3max} = \frac{\sigma'_{ci}}{4}$

Dónde: γ es el peso específico de la roca intacta y *H* es la profundidad del túnel o altura del talud. La Ecuación 20 está basada en la observación empírica que el rango de tensiones asociado con la fractura frágil ocurre cuando σ'_{3max} es menor a un cuarto de σ'_{ci} .

Resistencia Global del Macizo Rocoso

El fallamiento inicia cuando σ_c (resistencia a la compresión uniaxial del macizo rocoso Ecuación 12.) es superada por la tensión inducida y se propaga un campo de tensión biaxial hasta estabilizarse cuando la fuerza local, Ecuación 4, es mayor que las tensiones σ'_1 y σ'_3 inducidas. Sin embargo, en ocasiones es útil considerar el comportamiento "global" de un macizo rocoso en lugar de detallar este proceso de fallamiento (Hoek, 2005):

Ecuación 21: $\sigma'_{cm} = \frac{2c'\cos\phi'}{1-\sin\phi'}$ Con *c*' y ϕ' determinados por los rangos de tenciones $\sigma_1 < \sigma_3 < \sigma_{ci}/4$ dando:

Figura 3: Gráfico de las envolventes de rotura para el criterio de Hoek y Brown y del criterio de Mohr Coulomb. Apreciándose las gráficas de la resistencia uniaxial y global. (Hoek, 2005).

El Módulo de Deformación

(Hoek & Diederichs, 2006), propusieron la siguiente ecuación para el cálculo del E_{rm} :

Ecuación 23: $E_{rm}(MPa) = 100\ 000\left(\frac{1-D/2}{1+e^{((75+25D-GSI)/11)}}\right)$

Con la relación de módulo MR (D. U. Deere, 1968) se puede estimar el E_i y luego el E_{rm} , que es una vía útil cuando no se cuentan con valores directos de E_i :

Ecuación 24:
$$E_i = MR * \sigma_{ci}$$

Ecuación 25: $E_{rm} = E_i \left(0.02 + \frac{1 - D/2}{1 + e^{((60 + 15D - GSI)/11)}} \right)$

El criterio de Hoek-Brown ha sido validado ampliamente en casos reales como en simulaciones virtuales (Vallejos, Brzovic, Lopez, Bouzeran, & Mas Ivars, 2013), siendo una herramienta básica en la ingeniería geotécnica (Hammah & Curran, 2009).

2.2.3 MOVIMIENTOS EN MASA

Son aquellos movimientos de materiales geológicos (rocas, detritos o suelos) en taludes o laderas debidos a la gravedad, la incidencia de su estudio recae en que pueden afectar a poblaciones por su gran incertidumbre de incidencia tanto en lugar como en tiempo.

Figura 4. Diagrama de bloque de un deslizamiento (Highland & Jhonson, 2004)

Según la clasificación de movimientos de masa del Grupo de Estándares para Movimientos en Masa de Highland & Jhonson (2004) y GEMMA (2007) tenemos:

Tabla 5.	Clasificación	de los movimientos	de masa Highland &	Jhonson (2004)	GEMMA (2007).

TIPO	SUBTIPO		
Caídas	Caídas de roca (detritos o suelo)		
Volcamiento	Volcamiento de roca (bloque)		
volcamiento	Volcamiento Flexural de roca o del macizo rocoso		
Deslizamiento de rece o suelo	Deslizamiento traslacional, deslizamiento en cuña		
Destizamiento de loca o suelo	Deslizamiento rotacional		
Propagación latoral	Propagación lateral lenta		
Flopagacion lateral	Propagación lateral por licuación (rápida)		
	Flujo de detritos		
	Crecida de detritos		
	Flujo de lodo		
	Flujo de tierra		
Flujo	Flujo de turba		
	Avalancha de detritos		
	Avalancha de rocas		
	Deslizamiento por flujo o deslizamiento por licuación		
	(de arena, limo, detritos, roca fracturada)		
Dontogián	Reptación de suelos		
Reptación	Solifluxión, gelifluxión (en permafrost)		
Deformaciones gravitacionales profundas			
Movimientos complejos			

2.2.4 ANÁLISIS DE ESTABILIDAD

Tiene como objeto analizar las condiciones de estabilidad de los taludes naturales y la seguridad y funcionalidad del diseño en los taludes artificiales (Suárez, 2007).

El uso de software es la metodología más recomendada (Suárez, 2007), por la gran cantidad de utilidades que presenta, posibilidad de analizar muchas variables en poco tiempo, y ya que hacia donde más se dirigen las actuales investigaciones (Stead & Coggan, 2012), además el modelamiento matemático de macizos rocosos solo puede realizarse con el uso de softwares por su complejidad de sus ecuaciones (Gavilanes & Andrade, 2007).

En la Figura 5 se muestran los métodos de análisis con software para movimientos de masa que existen en la actualidad.

Figura 5. Métodos de análisis para movimientos en masa. (Suárez, 2007) y (Jing, 2003).

La descripción de los parámetros críticos, ventajas y limitaciones de estos métodos se presentan en la Tabla 6.

La Figura 6 muestra como los métodos cinemáticos y de equilibrio límite son prácticos para el análisis de movimientos en masa de traslación o rotación simples, pero se requiere utilizar métodos numéricos si el mecanismo es complejo y cuando se presenta una combinación de diversos procesos de fallamiento se requiere la utilización de métodos híbridos.

Método	Parámetros críticos	Ventajas	Limitaciones
Dinámica de caídos de roca	Geometría del talud, tamaño y forma de los bloques y coeficiente de restitución.	Permite analizar la dinámica de los bloques y existen programas en dos y tres dimensiones.	Existe poca experiencia de su uso en los países tropicales.
Dinámica de flujos	Relieve del terreno, concentración de sedimentos, viscosidad y propiedades de la mezcla suelo-agua.	Se puede predecir el comportamiento, velocidades, distancia de recorrido y sedimentación de los flujos.	Se requiere calibrar los modelos para los materiales de cada región. Los resultados varían según el modelo utilizado.
Límite de equilibrio	Topografía del talud, estratigrafía, ángulo de fricción, cohesión, eso unitario, niveles freáticos y cargas externas.	Existe una gran cantidad de softwares. Se obtiene un número de factores de seguridad. Analiza superficies curvas, rectas, cuñas, inclinaciones, etc. Análisis en dos y tres dimensiones con muchos materiales, refuerzos y condiciones de nivel de agua.	Genera un número de factor de seguridad sin tener en cuenta el mecanismo de inestabilidad. El resultado difiere según el método. No incluye análisis de las deformaciones.
Cinemáticos estereográficos para taludes en roca	Geometría y características de las discontinuidades. Resistencia a las discontinuidades.	Es relativamente fácil de utilizar. Permite la identificación y análisis de bloques críticos, utilizando teoría de bloques. Pueden combinarse con técnicas estadísticas.	Útiles para el diseño preliminar. Se requiere criterio de ingeniería para determinar cuáles son las discontinuidades críticas. Evaluar las juntas.
Esfuerzo deformación continuos	Geometría del talud, propiedades de los materiales, propiedades elásticas, elastoplásticas y de "creep". Niveles freáticos, resistencia.	Permite simular procesos de deformación. Permite determinar la deformación del talud y el proceso de falla. Existen programas para trabajar en dos y tres dimensiones. Se puede incluir análisis dinámico y análisis de "creep"	Es complejo y no lineal. Comúnmente no se tiene conocimiento de los valores reales a utilizar en la modelación. Se presentan varios grados de libertad. No permite modelar roca muy fracturada.
Discontinuos Esfuerzo- Deformación	Geometría del talud, propiedades del material, rigidez, discontinuidades, resistencia y niveles freáticos.	Permite analizar la deformación y el movimiento relativo de bloques.	Existe poca información disponible sobre las propiedades de las juntas. Se presentan problemas de escala, especialmente en los taludes en roca.
Métodos híbridos	Combinación de parámetros de los métodos continuos y discontinuos	Los métodos acoplados de elementos finitos/distintos son capases de simular la propagación y fragmentación de fracturas en macizos rocosos fracturados y/o estratificados.	La solución de problemas complejos requiere mayor capacidad de hardware y entrenamiento del usuario.
Redes Neuronales Artificiales	Propiedades de los macizos rocosos según su aplicación	Tienen la capacidad de "aprender" a solucionar problemas y "adaptarse".	Requieren mayor investigación y desarrollo, poco uso práctico actual.

Tabla 6. Características de las metodologías utilizadas en la modelación de movimientos en masa. (Eberhardt, 2003), (Suárez, 2007) y (Bobet, 2010).

Figura 6: Diagrama que muestra el tipo de modelo que se recomienda utilizar de acuerdo con la complejidad de los movimientos (Stead, Eberhardt, & Coggan, 2006).

La Figura 7 muestra que para estudiar el inicio de un movimiento en masa (fallamiento) es adecuado los métodos de equilibrio límite, pero, si se quiere estudiar el proceso de transporte y depositación se requiere metodologías más complejas.

Figura 7. Varios estadios de un "análisis total de movimientos en masa" y las metodologías sugeridas. (Stead et al., 2006)

2.2.5 MÉTODO DE EQUILIBRIO LÍMITE

Consiste en determinar si existe suficiente resistencia en los materiales del talud para soportar los esfuerzos de cortante que tienden a causar la falla (Suárez, 2007).

La principal característica es que representa a los materiales geológicos como bloques rígidos. Existen diversos softwares según el mecanismo de rotura, como RocPlane, Swedge y Slide para roturas planares, en cuña y circulares respectivamente (Rocscience, 2016)

2.2.5.1 Método de dovelas

Es un método para fallas curvas o circulares, donde la masa de la parte superior de la superficie de falla se divide en una serie de tajadas verticales. El número de tajadas depende de la geometría del talud y de la precisión requerida para el análisis (Suárez, 2007).

Figura 8. Esquema de un sistema típico de análisis con tajadas o dovelas. (Suárez, 2007).

Uno de los softwares comerciales más conocidos y utilizados con la metodología de equilibrio límite de dovelas es Slide (Rocscience, 2016) el cual contiene las principales y más difundidos enfoques (Bishop, Janbú, Spencer, Sarma, etc.), cada superficie de deslizamiento puede ser analizada, o se pueden aplicar métodos de búsqueda para localizar la superficie de deslizamiento crítico para una talud, además de poder aplicar análisis determinísticos (factor de seguridad) o probabilísticos (probabilidad de fallamiento).

Figura 9. Círculo de falla crítico según su factor de seguridad en Slide. (Rocscience, 2016).

Las principales características de los métodos utilizados en Slide se muestran en la Tabla 7.

Tabla 7. Características de las principales metodologías de equilibrio límite de dovelas. W=Peso de la dovela, t=resistencia cizallante, σ =resistencia normal, b=en la base, l=en el lado izquierdo, r=en el lado derecho, K(c)=factor de aceleración crítica, θ =ángulo de inclinación. (Suárez, 2007), (Rocscience, 2016)

Método	Fuerzes inter-doveles resultantes	Condición de Equilibrio Satisfecha		Superficie	Fuerzas
Miciouo	rucizas inter-uovelas resultantes	Fuerzas	Momentos	de falla	cada dovela
(Fellenius, 1936)	No se toman en cuenta	no	si	circular	W T(b) Q(b)
(Bishop, 1955)	Son horizontales. No hay fuerzas cizallantes entre dovelas.	en x, no en y	si	circular	W III
Janbú (Janbú, 1954)	Son horizontales. Se utiliza un factor de corrección empírico para explicar las fuerzas de corte intersticiales.	si	si (corr)	cualquiera	σ(I) (b) σ(b)
(U.S. Army Corps of Engineers, 1970)	Son paralelas a la superficie del suelo o igual a la pendiente media desde el principio hasta el final de la superficie de rotura.	si	no		
(Lowe & Karafiath, 1960)	Su dirección es igual a la media de la superficie del suelo y la pendiente de la base de cada dovela.	si	no	cualquiera	$\sigma(l)$
(Spencer, 1967)	Tienen una pendiente constante a lo largo de la masa deslizante.	si	si	cualquiera	
(Morgenstern & Price, 1965)	Su dirección se define usando una función arbitraria. Se calculan los valores fraccionales de función necesarios para el balance de fuerzas y momentos.	si	si	cualquiera	(t) τ _{t(b)} ζ(b)
(Sarma, 1973)	Las inclinaciones de las interfaces de las dovelas varían hasta que se cumpla un criterio crítico. El criterio de resistencia cizallante se aplica a los lados y al fondo de cada dovela.	si	si	cualquiera	(c) = (c) + (c)

2.2.6 MÉTODO DE ELEMENTOS FINITOS

Divide la masa de talud en unidades llamadas elementos finitos interconectados en sus nodos y bordes predefinidos, luego se formulan desplazamientos que presentan los resultados en forma de esfuerzos y desplazamientos en los puntos nodales, la condición de falla obtenida es la de un fenómeno progresivo en donde no todos los elementos fallan simultáneamente (Suarez, 2007). La principal ventaja de este método es que simula el proceso de fallamiento independientemente de la forma de la superficie de rotura, sus resultados son más precisos y es capaz de asumir diversos factores condicionantes y desencadenantes.

Figura 10. Metodología de discretización del dominio en elementos finitos. (Bobet, 2010).

2.2.6.1 Factor de seguridad con el método del Factor de Reducción de Resistencia

Con elementos finitos el factor de seguridad es evaluado realizando una reducción gradual de los parámetros de resistencia al cortante de los materiales "Strength Reduction Factor (SRF) e induciendo a una falla. Inicialmente, la fuerza de gravedad se aplica en estado elástico para obtener la primera distribución de esfuerzos en todo el talud (Suárez, 2007). Luego, la reducción gradual de la resistencia va a producir un esfuerzo residual en los elementos fallados y así se evalúa la fuerza residual. Así el valor inicial SRF se asume lo suficientemente pequeño para obtener un problema elástico, luego va aumentando etapa por etapa hasta que se desarrolle una falla global del talud (Popescu, Ugai, & Trandafir, 2000).

El software RS2 (Phase2) en 2D o RS3 en su versión en 3D (Rocscience, 2016) es uno de los más utilizados en la actualidad, utiliza una metodología de Reducción de Resistencia Cizallante "Shear Strength Reduction (SSR)" para determinar el factor crítico de reducción (SRF). Puede ser usado para un gran rango de proyectos de ingeniería.

Figura 11. Modelamiento de una falla en un talud con la metodología del SRF en RS2. (Rocscience, 2016).

2.2.7 MÉTODO DE DIFERENCIAS FINITAS

Representa al talud por zonas que forman una malla de acuerdo con la geometría elegida. Utiliza el cálculo de "Lagrange" para modelar deformaciones de gran escala y del colapso de los materiales. El esquema general del análisis consiste en el reequilibrio del sistema y el estudio de las condiciones de falla (Suárez, 2007). Para el cálculo del factor de seguridad también utiliza la metodología de Reducción de Resistencia Cizallante.

Figura 12. Metodología de discretización con diferencias finitas. (Bobet, 2010).

El software más difundido con la metodología de elementos finitos es FLAC de sus ciclas en inglés en su versión 2D y FLAC3D en su versión 3D. Utiliza una formulación de diferencias finitas explícita que pueden modelar comportamientos complejos como problemas que consisten de muchos pasos, grandes desplazamientos y tensiones, comportamiento no lineal de materiales, o sistemas inestables (incluso casos de fallamiento de grandes áreas, o colapso total), utilizándose ampliamente en la geotecnia (Itasca, 2016).

Figura 13. Análisis del factor de seguridad con el Software FLAC. (Itasca, 2016).

2.3 DEFINICIÓN DE TÉRMINOS

Esfuerzo Cortante (τ) (shear stress). Esfuerzo con dirección paralela al plano sobre el que actúa (Suárez, 2007).

Esfuerzo Normal (σ_n) (normal stress). Esfuerzo en dirección perpendicular al plano sobre el cual actúa (Gonzáles et al , 2003).

Esfuerzo Total (\sigma) (total stress). Esfuerzo igual a la suma del esfuerzo efectivo y la presión de los fluidos de los poros (generalmente agua y/o aire) (Gavilanes & Andrade, 2007)..

Estabilidad (slope stability). Condición de estabilidad de un talud o ladera (Suárez, 2007).

Factor de Seguridad (safety factor/factor of safety): Es la resistencia global frente a cargas externas que tiene el macizo rocoso antes de sufrir deformaciones permanentes en su estructura (Gonzáles et al., 2003).

Ladera (natural slope). Superficie natural inclinada de un terreno (Suárez, 2007).

Macizo Rocoso (Rock mass). Conjunto de material de roca in situ y sus discontinuidades (Suárez, 2007).

Método dinámico: Análisis con el que se pueden obtener detalles relacionados con esfuerzos, deformaciones cíclicas o permanentes. (Gavilanes & Andrade, 2007)..

Método pseudo-estático: Análisis sísmico en el cual las cargas del sismo son simuladas como cargas estáticas horizontales y verticales. (Gonzáles et al , 2003).

Talud (slope). Superficie artificial inclinada de un terreno que se forma al cortar una ladera, o al construir obras como por ejemplo un terraplén (Suárez, 2007).

CAPÍTULO III

MATERIALES Y MÉTODOS

3.1 UBICACIÓN GEOGRÁFICA

La zona de estudio se encuentra en el Sector Calispuquio, ubicado al sur-oeste de la ciudad de Cajamarca, con un área de 1km² (100 has), las coordenadas UTM-WGS84 de sus vértices se describen en la Tabla 8 y la ubicación general se pueden observar en el Anexo C, P-01, la zona se aprecia mejor en el Anexo C, P-02.

Vértice	Coordenadas UTM-WGS84			
	Este	Norte		
1	774000	9207000		
2	774000	9206000		
3	773000	9206000		
4	773000	9207000		

Tabla 8. Coordenadas UTM-WGS84 de los vértices de la zona de estudio.

Políticamente se ubica en:

- ✓ País: Perú
- ✓ Región, provincia y distrito: Cajamarca

3.2 ACCESIBILIDAD

Existen dos rutas de acceso a la zona de investigación, una por la carretera Cajamarca-Cumbemayo y la otra por la carretera Cajamarca-Ruinas de Layzón, las características de estas rutas se describen en la Tabla 9. Tabla 9. Rutas de acceso a la zona de estudio.

Desde	Hacia	Estado	Distancia	Tiempo en automóvil	Tiempo caminando
Plaza mayor de Cajamarca	Cumbemayo	Afirmada	5km	20min	1hr.
Plaza mayor de Cajamarca	Ruinas de Layzón	Afirmada	3km	15min	40min

3.3 METODOLOGÍA DE LA INVESTIGACIÓN

3.3.1 TIPO Y MÉTODO DE LA INVESTIGACIÓN

El problema investigado tiene características descriptivas, comparativas, explicativas y relacionantes. Los métodos de investigación serán: Descriptivo, analítico, comparativo, deductivo y explicativo.

3.3.2 POBLACIÓN DE ESTUDIO

Todos los taludes y laderas del sector Calispuquio.

3.3.3 MUESTRA

Los taludes y laderas con mayor inestabilidad del sector Calispuquio.

3.3.4 UNIDAD DE ANÁLISIS

Se analizarán la estabilidad utilizando el método de Equilibrio Límite, Diferencias Finitas y Elementos Finitos.

3.4 TÉCNICAS E INSTRUMENTOS DE RECOLECCIÓN

3.4.1 TÉCNICAS

- Levantamiento topográfico: Utilizado para la obtención de la superficie topográfica actual, necesaria como geometría externa para el modelamiento de estabilidad.
- Cartografiado temático: Consistente en realizar el cartografiado por factores condicionantes de la zona (pendientes, geología, etc.)
- Documentación por medio de tablas: Recopilación de la información geomecánica de las unidades geológicas para utilizarlas en el modelamiento de estabilidad.
- Ensayos geomecánicos de campo y laboratorio: Cálculo de las propiedades geomecánicas en campo (resistencia con martillo de geólogo) o en laboratorio (granulometría de suelos).

3.4.2 INSTRUMENTOS Y MATERIALES

- Picota marca estwing mango largo: Herramienta necesaria para extraer muestras de roca y probar la resistencia de las mismas en campo.
- Lápiz rayador 88CM General Tools: Herramienta utilizara para identificar minerales por medio de su dureza relativa.
- Lupa de 10x Baush & Lamp: Herramienta óptica utilizada para visualizar mejor los cristales de una roca.
- Lápices y lapiceros: Utilizados para anotaciones y cartografiado.
- Cámara digital Cannon PowerShot: Instrumento utilizado para el registro fotográfico.
- > Protactor Escala 1/1000: Utilizado para el cartografiado local.
- Brújula Brunton mod. 5006: Utilizado para la toma de datos de direcciones de discontinuidades y planos de estratificación
- GPS Garmin eTrex 20: Instrumento utilizado para la obtención de las coordenadas para la ubicación de puntos.
- Tablas geomecánicas y de registro: Utilizados como guías para la documentación de las propiedades de resistencia de los macizos rocosos.
- Laptop Lenovo: Instrumento utilizado para el procesamiento de los datos y redacción de los informes.

3.4.3 SOFTWARE

- RocData v5.006: Utilizado para la obtención de las propiedades geomecánicas de los materiales geológicos necesarios para el modelamiento de estabilidad.
- Slide v7.017: Software utilizado para el cálculo del factor de seguridad utilizando la metodología de equilibrio límite.
- RS2 (Phase2) v9.016: Software utilizado para el cálculo del factor de seguridad utilizando la metodología de elementos finitos.
- FLAC v8.00.436: Software utilizado para el cálculo del factor de seguridad utilizando la metodología de diferencias finitas.
- FLAC SLOPE v8.00.436: Complemento del software FLAC v8 con atajos y aplicaciones directas para el análisis de estabilidad de taludes.
- AutoCAD y AutoCAD CIVIL 3D v2016: Utilizados para la creación de los perfiles.
- ArcMap v10.3: Software utilizado para la creación de los planos
- Strater v5.0.710: Software utilizado para la creación de columnas estratigráficas
- CorelDraw vX8: Software utilizado para la creación de gráficos.
- Microsoft Office v2016 (Word, Excel, PowerPoint): Softwares utilizados para la elaboración de los informes y presentaciones.

3.5 PROCEDIMIENTO Y TÉCNICA DE RECOLECCIÓN DE DATOS

3.5.1 LEVANTAMIENTO TOPOGRÁFICO

Se cuenta con una un Modelo Digital de Elevaciones a un detalle de 30m (fuente SRTM), pero para lograr un mejor análisis se realizó un levantamiento topográfico en la zona, el resultado final se muestra en el Anexo C, P-03.

3.5.2 CARTOGRAFIADO TEMÁTICO

Se realizó un cartografiado temático a detalle (1/4000) para poder analizar las variables condicionantes y desencadenantes del riego geológico de la zona de estudio además para definir las unidades que se utilizarán analizar la estabilidad con los softwares geotécnicos.

Los mapas temáticos cartografiados en campo:

- ✓ Geomorfología
- ✓ Geología
- ✓ Hidrogeología
- ✓ Cobertura vegetal y uso de suelos

En base a imágenes satelitales, al modelo digital de elevaciones (MED) y las fuentes geográficas del Instituto Geográfico Nacional (IGN) se han diseñado los siguientes mapas:

- ✓ Ubicación
- ✓ Imagen Satelital
- ✓ Topográfico
- ✓ Pendientes

3.5.3 ANÁLISIS POR MEDIO DE TABLAS

3.5.3.1 Documentación de las propiedades geomecánicas de los taludes de suelos

Para el registro de las propiedades geomecánicas de los taludes de suelos se el Anexo B.1, con el objetivo de conocer sus propiedades ingenieriles en base a la clasificación SUCS.

3.5.3.2 Documentación de las propiedades geomecánicas de rocas

Para el registro de las propiedades geomecánicas de los taludes de roca se utilizó el formado del Anexo B.2, para calcular las variables de entrada para el análisis de estabilidad con softwares.

3.6 ANÁLISIS DE DATOS Y PRESENTACIÓN DE RESULTADOS

Se presentan dos casos, uno donde se analizan deslizamientos existentes y otro donde se analizan zonas inestables, describiendo las viables para cada caso en la Figura 14.

Figura 14. Metodología general del análisis de las laderas y taludes.

3.6.1 ANÁLISIS DE INESTABILIDAD LOS DESLIZAMIENTOS EXISTENTES

Se realizó un análisis de los deslizamientos existentes, para conocer los factores que los desencadenaron y que podrían afectar a las zonas colindantes, además sirvió para calibrar y comparar resultados con los softwares analizados en la presenta investigación.

Figura 15. Metodología del análisis de inestabilidad de los deslizamientos existentes en la investigación.

3.6.2 ANÁLISIS DE INESTABILIDAD

Las zonas de alta peligrosidad identificadas fueron evaluadas con los softwares en condiciones normales (actuales) y en condiciones críticas (máxima sismicidad y saturación posibles), para identificar cuales requieren estabilizarse con medidas preventivas.

Figura 16. Metodología del análisis de inestabilidad de las laderas y taludes críticos en la investigación.

3.7 VARIABLES DE INESTABILIDAD

3.7.1 VARIBALES CONDICIONANTES

Se elaboraron mapas temáticos para las variables condicionantes, la de sismicidad y saturación se consideran uniformes por las dimensiones de la misma (1Km2)

3.7.1.1 Pendientes

Se utilizó las unidades de Zavala & Rosado (2011), el plano final es el Anexo C. P-04 y los resultados se muestran en la Tabla 10.

Tabla 10. Extensión superficial de las unidades de pendientes cartografiadas en el área de estudio.

TERRENOS	SIMBOLOGÍA	RANGO	AREA (has)	PORC %
Llanos	LL	<1°	0.04	0.04
Inclinados con suave pendiente	ISP	1°-5°	0.95	0.95
Pendiente moderada	PM	5°-15°	37.57	37.57
Pendiente fuerte	PF	15°-25°	51.23	51.23
Pendiente escarpada	PE	25°-45°	10.21	10.21

Figura 17. Distribución del área de las pendientes en el área de estudio.

3.7.1.2 Geomorfología

Se utilizó las unidades de Villota (2005), el plano final es el Anexo C. P-05 y los resultados se muestran en la Tabla 11.

Tabla 11. Extensión superficial de las geoformas cartografiadas en el área de estudio.

GEOFORMA	SIMBOLOGÍA	AREA (has)	PORC %
Colina fluvio-erosional	Cfe	92.43	92.43
Pie de monte aluvial	P-al	4.05	4.05
Pie de monte coluvio-aluvial	P-co/al	3.53	3.53

Figura 18. Distribución del área de las geoformas en el área de estudio.

3.7.1.3 Geología

Las unidades geológicas cartografiadas en base a los estándares del INGEMMET y presentadas por Reyes (1980) se muestran en el plano del Anexo C. P-06, la columna estratigráfica se muestra en el Anexo D y los resultados se resumen en la Tabla 12.

	FORMACIÓN	SIMBOLOGÍA	AREA (has)	PORC %
	Depósito coluvio-aluvial	Qh-co/al	3.53	3.53
Unidades Inconsolidadas	Depósito deluvial	Qh-de	9.69	9.69
Cuaternarias	Depósito coluvial	Qh-co	20.85	20.85
	Depósito aluvial	Qh-al	4.05	4.05
Unidades Volcánicas del Paleógeno/Neógeno	Volcánico Porculla	PN-vp	55.23	55.23
	Formación Chúlec	Ki-chu	3.92	3.92
Unidades Sedimentarias Cretácicas	Formación Inca	Ki-in	2.27	2.27
	Formación Farrat	Ki-f	0.47	0.47

Figura 19. Distribución del área de las unidades lito-estratigráficas en el área de estudio

3.7.1.3.1 Unidades Sedimentarias Cretácicas

GRUPO GOYLLARISQUIZGA

Formación Farrat (Ki-f)

Se ubican afloramientos de esta formación al sur-este de la zona de estudio, constituyendo macizos rocosos de areniscas competentes con intercalaciones de limolitas y en algunos casos lutitas, su espesor promedio en la zona de estudio es de 250m.

Foto 1. Areniscas cuarzosas de la Formación Farrat al sur de la zona de estudio.

Formación Inca (Ki-in)

Se encuentran afloramientos de esta formación en los cortes de carretera cerca al deslizamiento sur, está constituida por lutitas ferruginosas intercaladas con algunos niveles de areniscas y limolitas, se encuentra fuertemente fracturada y alterada por acción del tectonismo de la zona, su espesor promedio es de 150m.

Foto 2. Lutitas ferruginosas intercaladas con limolitas pertenecientes a la Formación Inca cerca al deslizamiento sur.

GRUPO CRISNEJAS

Formación Chúlec (Ki-chu)

Los afloramientos de esta unidad se presentan tanto en la parte sur de la zona de estudio como en la parte central, caracteriza por calizas wackestone con abundantes fósiles, tiene un color crema amarillento por alteración, su espesor promedio es de 250m.

Foto 3. Calizas wackestone intercaladas con lutitas de la Formación Chúlec al sur de la zona de estudio.

3.7.1.3.2 Unidades Volcánicas del Paleógeno

GRUPO CALIPUY

Formación Porculla (PN-vp)

Se ubica sobreyaciendo a las unidades sedimentarias cretáceas discordantemente, y se caracteriza por flujos piroclásticos de pómez y cenizas, gris blanquecinas, ricos en cristales de composición riolítica, tiene un espesor aproximado de 300m.

Foto 4. Flujos piroclásticos de pómez y cenizas de la formación Porculla en la zona central del área de estudio.

3.7.1.3.3 Unidades Inconsolidadas del Cuaternario - Holoceno

Depósitos Aluviales (Qh-al)

Se encuentran en las partes bajas de las quebradas que pasan por el área de estudio, al este de la misma. Están conformados principalmente por suelos gravo-arcillosos (GC) y gravo-limosos (GM).

Foto 5. Depósito aluvial con gravas y arcillas de alta plasticidad en las riveras de la quebrada Calispuquio.

Depósitos Coluviales (Qh-de)

Son las acumulaciones de detritos originadas por deslizamientos gravitacionales, se acumulan principalmente al sur de la zona de estudio, están conformados por suelos gravoarcillosos (GC) y arcillas de alta plasticidad (CH).

Foto 6. Cuaternario Coluvial de gravas y arcillas producto del deslizamiento en el cerro Layzón.

Depósitos Deluviales (Qh-co)

Está conformado por materiales cuaternarios ubicados en las laderas de los cerros, principalmente en el cerro antenas, su composición depende de la formación sobre la que subyacen, presentan una buena clasificación de detritos y muestran una transición de meteorización desde suelo fino/orgánico en la parte superior, hasta transición al macizo rocoso en la parte inferior, dando suelos principalmente de limos de alta plasticidad (MH) y arcillas de mediana a baja plasticidad (CL)

Foto 7. Depósito Cuaternario Deluvial de limos y arcillas cubriendo al cerro Antenas.

Depósitos Coluvio-Aluviales (Qh-co/al)

Son depósitos recientes de movimientos donde el agua fue un elemento principal en el deslizamiento, generando una mezcla de las variables gravitacionales de corto transporte (coluvial) y de traslado por saturación parcial o total (aluvial). Sus suelos son principalmente arcillas de baja plasticidad (CL) y gravas arcillosas (GC).

Foto 8. Cono coluvio-aluvial en el cerro Antenas en suelos arcillosos de baja plasticidad.

3.7.1.4 Hidrogeología

Se utilizó clasificación de acuíferos del INGEMMET, el cartografiado se muestra en el plano del Anexo C. P-07 y los resultados se muestran en la Tabla 13.

HIDROGEOLOGÍA	SIMB.	FORMACIÓN	AREA (has)	PORC %
Acuífero fisurado	A-f	Ki-f	0.47	0.47
Acuífero poroso consolidado	A-pc	PN-vp	55.23	55.23
Acuífero poroso no consolidado	A-pnc	Qh-al, Qh-co, Qh-de, Qh-co/al)	38.11	38.11
Acuitardo	Ac	Ki-in, Ki-chu	6.19	6.19

Tabla 13. Extensión superficial de los acuíferos cartografiados en el área de estudio.

Figura 20. Distribución del área de los acuíferos en el área de estudio.

3.7.1.5 Cobertura Vegetal

Se utilizó clasificación áreas de cobertura vegetal de la ZEE-OT-Cajamarca, el cartografiado se muestra en el plano del Anexo C. P-08 y los resultados se muestran en la Tabla 14.

Tabla 14. Extensión superficial de las zonas de cobertura vegetal cartografiadas en el área de estudio.

COBERTURA	SIMBOLOGÍA	AREA (has)	PORC %
Área deforestada	AD	40.01	40.01
Área forestada	AF	16.80	16.80
Matorral seco	MS	37.24	37.24
Matorral semi-seco	MSH	5.94	5.94

Figura 21. Distribución del área de las zonas de cobertura vegetal en el área de estudio.

3.7.2 GEOMETRÍA DE LAS LADERAS Y TALUDES

Se diseñaron 8 perfiles para el análisis de los softwares a partir del MED combinado con el levantamiento topográfico. Las unidades lito-estratigráficas fueron proyectadas en base al cartografiado. Los resultados se muestran en el Anexo E, y se describen en la Tabla 15.

PERFIL	PUNTO	COORD. ESTE	COORD. NORTE	LONGITUD (m)		
A-A'	А	773291.77	9206314.98	189.25		
	A'	773414.24	9206459.26	107120		
B-B'	В	773324.48	9206717.54	432.34		
D-D	Β'	773691.89	9206489.66			
C-C'	С	773600.89	9206323.64	336.66		
00	C'	773851.00	9206549.00	220100		
D-D'	D	773695.00	9206902.00	393.15		
D-D	D'	773973.00	9206624.00	- 575.15		

Tabla 15. Ubicación de los perfiles diseñados para el análisis.

Cada perfil tubo un objetivo, el cual era poder comparar resultados de los softwares en condiciones diferentes, así se pueden encontrar perfiles con topografías originales y topografías actuales, en suelos y rocas, además de laderas y taludes.

Tabla 16. Características de los perfiles diseñados para el análisis.

PERFIL	SUBPERFIL	TIPO	MATERIAL CRÍTICO
Δ_Δ'	1: Topografía original	Ladera	QH-co: Suelo gravo-arcilloso
	2: Topografía actual	Ladera	Qh-co/al: Suelo arcillo-gravoso
B-B'	1: Topografía original	Ladera	Qh-de: Suelo limo-arcilloso
	2: Topografía actual	Ladera	Qh-co/al: Suelo arcillo-gravoso
C-C'	1: Topografía actual	Ladera	QH-co: Suelo gravo-arcilloso
00	2: Diseño carretera	Talud	Ki-in: Macizo rocoso heterogéneo disturbado
D-D'	1: Topografía actual	Ladera	Qh-de: Suelo limo-arcilloso
D-D'	2: Diseño carretera	Talud	PN-vp: Macizo rocoso homogéneo de baja resistencia

Figura 22. Ubicación de los perfiles de análisis en la zona de estudio en Google Earth.

Foto 9. Detalle de la ubicación de los perfiles: a) A-A', vista hacia el SW; b) B-B, 'vista hacia el NW; c) C-C', vista hacia el S; d) D-D', vista hacia el NE.

3.7.3 PROPIEDADES GEOMECÁNICAS

Se realizaron 8 estaciones geomecánicas, una para cada unidad geotécnica, las mismas que se correlacionan a las unidades lito-estratigráficas cartografiadas.

En cada estación se utilizó las tablas geomecánicas y de recolección de datos especificados en la sección 3.5.3 según el material presente.

Los datos de campo fueron procesados con el software RocData v5 para obtener las propiedades geomecánicas necesarias como datos de entrada para los softwares de análisis, los resultados se muestran en el Anexo F y se resumen en la Tabla 17.

		CDITEDIO DE	COORDENADAS DE LA					
UNIDAD GEOTÉCNICA	MATERIAL	ROTURA	ESTACION					
		norenti -	ESTE	NORTE	СОТА			
Ki-f	Macizo rocoso homogéneo	Hoek-Brown	773954	9206030	2935			
Ki-in	Macizo rocoso heterogéneo	Hoek-Brown	773750	9206564	2876			
Ki-chu	Macizo rocoso heterogéneo	Hoek-Brown	773639	9206214	2940			
PN-vp	Macizo rocoso homogéneo	Hoek-Brown	773442	9206196	2989			
Qh-al	Suelo arcillo-gravoso	Mohr-Coulomb	773801	9206515	2868			
Qh-co	Suelo gravo-arcilloso	Mohr-Coulomb	773367	9206364	2976			
Qh-de	Suelo limo-arcilloso	Mohr-Coulomb	773630	9206570	2899			
Qh-co/al	Suelo gravo-arcilloso	Mohr-Coulomb	773444	9206458	2933			

Tabla 17. Características y ubicación de las estaciones geomecánicas para cada unidad geotécnica.

Los resultados del análisis con el software RocData fueron complementados con otras propiedades físicas necesarias para el análisis con softwares y el resumen final de dichas propiedades geomecánicas se pueden apreciar en el Anexo G.

3.7.4 VARIABLES DESENCADENANTES

Las suposiciones desencadenantes fueron:

- 1. Condiciones normales: el desencadénate es la misma gravedad.
- 2. Sismicidad máxima: condicionado por la máxima aceleración del terreno.
- 3. Saturación: nivel freático, media a mitad de la altura del material crítico, a la altura de la topografía superficial.

Una descripción más detallada de las condiciones de análisis se presenta en la Tabla 18.

AN.	CONDICIÓN	GRAV. (m/s2)	Kh	Kv	NIVEL FREÁTICO	APLICACIÓN			
1	Normal	9.81	0	0	Ausente	En todos los análisis			
2	Sismicidad máxima	9.81	0.263	0.132	Ausente	En todos los análisis			
3	Saturación	0.81	0	0	Altura media del Cuando el FS en el An. 1 es				
5	media	9.01	0	0	material crítico	a 1			
Δ	Saturación total	9.81	0	0	Topografía	Cuando el FS en el An. 1 es alto y/o			
+	Saturación total	9.01	0	0	superficial del talud	cuando es mayor a 1 en el An. 3			
	Sismicidad								
5	máxima y	9.81	0.263	0 132	Altura media del	Cuando el FS en el An. 1 es alto y/o			
5	saturación	2.01	0.205	0.152	material crítico	cuando es mayor a 1 en el An. 3			
	media								
	Sismicidad				Topografía	Cuando el ES es alto v/o cuando con			
6	máxima y	9.81	0.263	0.132	superficial del talud	es mayor a 1 en el An 5			
	saturación total				supernetai dei talud	es mayor à l'ell el All. 5			

Tabla 18. Condiciones desencadenantes en los utilizados en los análisis.

A continuación, se denotas algunos puntos destacables para el análisis:

- 1. Las componentes sísmicas horizontales y verticales son obtenidas bajo estas variables:
 - a. Zona sísmica: 4, aceleración máxima: 0.3-0.4 gal = 0.35 gal (promedio)
 - b. Coeficiente de amplificación topográfica: 1.2 (taludes mayores a 30m aislados)
 - c. Categoría de perfil estratigráfico: B (1.25, suelos duros, mediana a alta cohesión)
 - d. Amplificación estratigráfica "Kh": 0.263
 - e. Parámetros de Zona "Kv": 0.132
- La componente sísmica horizontal será siempre en dirección del talud y la componente sísmica vertical será siempre a favor de la gravedad.
- 3. La geometría del nivel freático tanto para la condición de saturación media y saturación total se puede visualizar en los perfiles del Anexo E.
- 4. Los perfiles A-A'1, A-A'2, B-B'1, B-B'2 y C-C'1 han sido centrados en la zona crítica para el software FLAC por motivos de validación de geometría y/o grilla, el área de análisis final también se puede ver en los perfiles del Anexo E.

CAPÍTULO IV

ANÁLISIS Y DISCUSIÓN DE RESULTADOS

4.1 PRESENTACIÓN DE LOS RESULTADOS

4.1.1 RESULTADOS DEL ANÁLISIS CON LOS TRES SOFTWARES

Los criterios para el análisis de los perfiles con el software Slide v7 fueron:

- Los métodos seleccionados por ser los más contemporáneos y realizar el equilibrio de mayor cantidad de variables (más exhaustivo) fueron: Spencer, Cuerpo de Ingenieros N°2, Lowe-Karafiath, GLE / Morgenstern-Price, Sarma.
- El método de búsqueda de la falla crítica fue el de "Auto Refine Search" ya que es mejor método para búsqueda de fallas críticas no evidentes, al centrar progresivamente el análisis donde se concentran los factores de seguridad más bajos.
- Se realizó la búsqueda de fallas circulares en todos los casos salvo en el perfil A-A'1 por tener una superficie de falla evidente no circular.
- 4. El número de dovelas fue de 50, tolerancia 0.005, iteración máx. 70, superficies 4500.

Con el software RS2 se tuvieron los siguientes comentarios:

- 1. La geometría pulida de los perfiles fue ingresada del software Slide v7 ya que en algunos casos se presentaban errores de validación de geometría.
- La malla fue de 6 nodos y 100 de precisión de grilla, tolerancia 0.001, iteración máx.
 500, búsqueda activada de SRF, tensión de campo = gravedad con topografía actual, materiales plásticos.

Con el software FLAC v8 se tuvieron las siguientes anotaciones.

- Se realizó una limpieza de geometría continua hasta obtener una geometría y grilla válidas y óptimas para el análisis, al ser un programa demo se presentaba restricción en la densidad de la grilla, pero fue suficiente para un resultado deseado.
- 2. Para los perfiles C-C'2 y D-D'2 se utilizó el software FLAC SLOPE v8 (complemento de FLAC v8) por ser de mayor versatilidad en el caso de taludes.

Los resultados correlativos para los 3 softwares se encuentran en los Anexos H, I y J, resumiéndose en la Tabla 19.

DEDE	CONDICIÓN		()	SLIDE v7			RS2	FLAC
PERF.	CONDICION -	SPENCER	CORP2	LOWE	GLE	SARMA	v9	v8
	Normales	1.145	1.148	1.144	1.139	1.145	1.051	1.02
A-A'	Sis Máx	0.745	0.737	0.734	0.738	0.745	0.574	0.62
1	Sat Med	0.849	0.853	0.851	0.838	0.855	0.782	0.65
	Sis Máx y Sat Med	0.55	0.542	0.538	0.535	0.552	0.373	0.45
	Normales	1.472	1.477	1.476	1.476	1.472	1.47	1.33
۸ ۸,	Sis Máx	0.922	0.924	0.923	0.922	0.922	0.866	0.76
A-A 2	Sat Med	1.21	1.21	1.208	1.21	1.204	1.204	1.01
2	Sat Tot	0.828	0.833	0.831	0.833	0.828	0.78	0.73
	Sis Máx y Sat Med	0.76	0.759	0.756	0.76	0.763	0.249	0.29
	Normales	1.131	1.129	1.129	1.131	1.124	1.097	1.05
B-B'	Sis Máx	0.675	0.675	0.675	0.675	0.674	0.577	0.46
1	Sat Med	0.919	0.92	0.92	0.919	0.918	0.816	0.99
	Sis Máx y Sat Med	0.546	0.546	0.546	0.546	0.545	0.397	0.32
	Normales	1.845	1.845	1.846	1.846	1.842	1.855	1.77
рр,	Sis Máx	1.103	1.101	1.1	1.103	1.1	1.019	1.02
в-в 2	Sat Med	1.565	1.565	1.565	1.565	1.562	1.635	1.36
	Sat Tot	1.103	1.102	1.1	1.104	1.111	1.112	1.17
	Sis Máx y Sat Med	0.923	0.924	0.924	0.923	0.923	0.802	0.99
	Normales	2.622	2.634	2.626	2.622	2.622	2.654	2.54
C-C'	Sis Máx	1.461	1.46	1.459	1.462	1.459	1.391	1.29
1	Sat Tot	1.553	1.553	1.551	1.554	1.598	1.408	1.88
	Sis Máx y Sat Tot	0.883	0.882	0.882	0.883	0.879	0.696	0.62
	Normales	9.588	9.162	9.412	9.265	8.77	9.447	10.1
C-C'	Sis Máx	5.244	5.165	4.827	5.227	5.22	6.099	5.29
2	Sat Tot	7.382	7.516	7.431	7.324	7.173	8.657	7.11
	Sis Máx y Sat Tot	4.011	4.055	3.683	3.99	4.022	4.545	3.56
	Normales	4.137	4.231	4.142	4.134	4.129	4.094	4.34
D-D'	Sis Máx	2.384	2.285	2.245	2.369	2.376	2.258	2.84
1	Sat Tot	2.666	2.276	2.621	2.653	2.715	2.522	2.93
	Sis Máx y Sat Tot	1.617	1.535	1.5	1.585	1.649	1.411	2.44
	Normales	11.977	12.135	12.033	11.968	11.952	11.78	12.72
D-D'	Sis Máx	6.429	6.222	5.95	6.407	6.406	6.296	6.57
2	Sat Tot	11.977	12.135	12.033	11.968	11.952	8.142	8.51
	Sis Máx y Sat Tot	6.429	6.22	5.95	6.407	6.406	4.325	4.13

Tabla 19. Resultados del análisis de seguridad global (mismas condiciones para todos los softwares).

En la Figura 23 se muestran los resultados de la Tabla 19 en intervalos tradicionales de FS, a una precisión centecimal y promediando los resultados del software Slide, se conluye en:

- 1. En todas las condiciones normales los 3 softwares coinciden al 100%.
- El software Slide es el que genera menos discrepancias (1) y por FS sobre-estimado.
 RS2 es el que genera más discrepancias (4), siempre frente a saturación y por un FS sub-estimado.
 FLAC genera 2 discrepancias y en ambos casos por FS sub-estimado.
- 3. En el análisis de taludes (perfiles C-C'2 y D-D'2) los 3 softwares coinciden al 100%.
- Los perfiles donde los materiales críticos son suelos (A-A'1, A-A'2, B-B'1, B-B'2 y C-C'1) muestran inestabilidad en almenemos una condición. Mientras donde se analizó macizos rocosos (C-C'2, D-D'1 y D-D'2), son estables en toda condición.

PERE	CONDICIÓN	SLIDE	RS2	FLAC	REAL	FS								
FERF.	CONDICION	V7	V9	V8	NLAL		С	De	А		Estado			
	Normales	1.14	1.05	1.02			(0.00	0.90	Ine	stable abs	oluto		
Δ_Δ'1	Sis Máx	0.74	0.57	0.62				0.90	1.00	Ine	estable rel	ativo		
A-A 1	Sat Med	0.85	0.78	0.65				1.00	1.30	Es	stable rela	tivo		
	Sis Máx y Sat Med	0.54	0.37	0.45				1.30	1.50	Estab	le tempor	almente		
	Normales	1.47	1.47	1.33				1.50	3.00	Estable	permane	ntemente		
	Sis Máx	0.92	0.87	0.76				3.00	15.00	Es	table abso	oluto		
A-A'2	Sat Med	1.21	1.20	1.01										
	Sat Tot	0.83	0.78	0.73		-								
	Sis Máx y Sat Med	0.76	0.25	0.29			С	Soft	Discre	pante	Cant D	%		
	Normales	1.13	1.10	1.05				N	VINGUN	10	27	79.41		
B-B'1	Sis Máx	0.67	0.58	0.46					SLIDE		1	2.94		
0-01	Sat Med	0.92	0.82	0.99					RS2		4	11.76		
	Sis Máx y Sat Med	0.55	0.40	0.32					FLAC		2	5.88		
	Normales	1.84	1.86	1.77										
	Sis Máx	1.10	1.02	1.02										
B-B'2	Sat Med	1.56	1.64	1.36										
	Sat Tot	1.10	1.11	1.17										
	Sis Máx y Sat Med	0.92	0.80	0.99										
	Normales	2.63	2.65	2.54	1									
C-C'1	Sis Máx	1.46	1.39	1.29										
	Sat Tot	1.56	1.41	1.88										
	Sis Máx y Sat Tot	0.88	0.70	0.62										
	Normales	9.24	9.45	10.10										
C-C'2	Sis Máx	5.14	6.10	5.29										
	Sat Tot	7.37	8.66	7.11										
	Sis Máx y Sat Tot	3.95	4.55	3.56										
	Normales	4.15	4.09	4.34										
רים 1	Sis Máx	2.33	2.26	2.84										
	Sat Tot	2.59	2.52	2.93										
	Sis Máx y Sat Tot	1.58	1.41	2.44	Juni j									
	Normales	12.01	11.78	12.72										
ביח-ח	Sis Máx	6.28	6.30	6.57										
	Sat Tot	8.28	8.14	8.51										
	Sis Máx y Sat Tot	4.46	4.33	4.13										

Figura 23. Coincidencias y discrepancias de los resultados con intervalos tradicionales.

En la Figura 24 se muestran las variaciones en los FS de la Tabla 19 a una precisión de 0.001, a partir de la cual se concluye lo siguiente:

- 1. La variación de todos los softwares es baja (0.013), pero su VPA es alta (0.250).
- Los softwares que más discrepan en VPA son RS2 y FLAC (0.313), seguido de Slide y FLAC (0.254) y los que más convergen son Slide y RS2 (0.182).
- 3. En perfiles con suelos el VPA entre los tres softwares es bajo (0.127), y en los perfiles de rocas es alto (0.475).
- En condiciones normales o de sismicidad máxima el VPA es bajo (0.216, 0.219 respectivamente), mientras en saturación total y/o con sismicidad máxima es alto (0.329 y 0.435 respectivamente).

	CONDICIÓN	SLIDE		FLAC	SLIDE -	SLIDE ·	RS2 -					
PERF.		V7	K32 V9	V8	RS2	FLAC	FLAC	VPA				
	Normales	1.144	1.051	1.020	0.093	0.124	0.031	0.083		С	DE	Α
A A'1	Sis Máx	0.740	0.574	0.620	0.166	0.120	-0.046	0.111	FS		0.00	0.90
A-A I	Sat Med	0.849	0.782	0.650	0.067	0.199	0.132	0.133	DE		0.90	1.00
	Sis Máx y Sat Med	0.543	0.373	0.450	0.170	0.093	-0.077	0.113	OS		1.00	1.30
	Normales	1.475	1.470	1.330	0.005	0.145	0.140	0.097	NG		1.30	1.50
	Sis Máx	0.923	0.866	0.760	0.057	0.163	0.106	0.109	RAI		1.50	3.00
A-A'2	Sat Med	1.208	1.204	1.010	0.004	0.198	0.194	0.132			3.00	15.00
	Sat Tot	0.831	0.780	0.730	0.051	0.101	0.050	0.067				
	Sis Máx y Sat Med	0.760	0.249	0.290	0.511	0.470	-0.041	0.341	(D	С	DE	А
	Normales	1.129	1.097	1.050	0.032	0.079	0.047	0.053	AN	1	0.000	0.030
B_B'1	Sis Máx	0.675	0.577	0.460	0.098	0.215	0.117	0.143	(R	2	0.030	0.100
D-D I	Sat Med	0.919	0.816	0.990	0.103	-0.071	-0.174	0.116	BS	3	0.100	0.300
	Sis Máx y Sat Med	0.546	0.397	0.320	0.149	0.226	0.077	0.151	FΑ	4	0.300	0.700
	Normales	1.845	1.855	1.770	-0.010	0.075	0.085	0.057	D		0.700	2.000
	Sis Máx	1.101	1.019	1.020	0.082	0.081	-0.001	0.055				
B-B'2	Sat Med	1.564	1.635	1.360	-0.071	0.204	0.275	0.183				
	Sat Tot	1.104	1.112	1.170	-0.008	-0.066	-0.058	0.044				
	Sis Máx y Sat Med	0.923	0.802	0.990	0.121	-0.067	-0.188	0.125				
	Normales	2.625	2.654	2.540	-0.029	0.085	0.114	0.076				
C C'1	Sis Máx	1.460	1.391	1.290	0.069	0.170	0.101	0.113				
	Sat Tot	1.562	1.408	1.880	0.154	-0.318	-0.472	0.315				
	Sis Máx y Sat Tot	0.882	0.696	0.620	0.186	0.262	0.076	0.175				
	Normales	9.239	9.447	10.100	-0.208	-0.861	-0.653	0.574				
C C'2	Sis Máx	5.137	6.099	5.290	-0.962	-0.153	0.809	0.641				
C-C 2	Sat Tot	7.365	8.657	7.110	-1.292	0.255	1.547	1.031				
	Sis Máx y Sat Tot	3.952	4.545	3.560	-0.593	0.392	0.985	0.657				
	Normales	4.155	4.094	4.340	0.061	-0.185	-0.246	0.164				
וים ח	Sis Máx	2.332	2.258	2.840	0.074	-0.508	-0.582	0.388				
0-01	Sat Tot	2.586	2.522	2.930	0.064	-0.344	-0.408	0.272				
	Sis Máx y Sat Tot	1.577	1.411	2.440	0.166	-0.863	-1.029	0.686				
	Normales	12.013	11.780	12.720	0.233	-0.707	-0.940	0.627				
בים ח	Sis Máx	6.283	6.296	6.570	-0.013	-0.287	-0.274	0.191				
D-D 2	Sat Tot	8.283	8.142	8.510	0.141	-0.227	-0.368	0.245				
	Sis Máx y Sat Tot	4.463	4.325	4.130	0.138	0.333	0.195	0.222				
VP						-0.020	-0.014	0.013				
	VPA				0.182	0.254	0.313	0.250				
VP.	VPA SUELOS A-A' (1 Y 2), B-B' (1 Y 2) Y C-C'1					0.161	0.118	0.127				
	VPA ROCAS C-C'2, D-D' (1 Y 2)					0.426	0.670	0.475				
N	VPA TODOS LOS PERFILES COND NORM					0.283	0.282	0.216				
	VPA TODOS LOS PERFILES SIS MAX					0.212	0.255	0.219				
VPA A	A-A'2, B-B'2, C-C'(1 Y	2), D-D'	(1 Y 2) S	AT TOT	0.285	0.219	0.484	0.329				
VPA	C-C'(1 Y 2), D-D'(1 Y	2) SIS IV	1AX Y SA	TOT	0.271	0.463	0.571	0.435				

Figura 24. Variaciones en los factores de seguridad encontrados. V=variación, P=promedio, A=absoluto.

A diferencia de los rangos anteriores, discutibles frente a diversos criterios y condiciones, y que podría cambiar los resultados concluidos; cuando comparamos los resultados en el límite de estabilidad (FS=1) todos los programas coinciden, como se aprecia en la Figura 25, tanto en las laderas como en los taludes y en cualquier condición de análisis.

DEDE	CONDICIÓN	SLIDE	RS2	FLAC			FS	
PEKF.	CONDICION	V7	V9	V8	С	De	А	Estado
	Normales	1.14	1.05	1.02		0.00	1.00	Instable
A_A'1	Sis Máx	0.74	0.57	0.62		1.00	15.00	Estable
	Sat Med	0.85	0.78	0.65				
	Sis Máx y Sat Med	0.54	0.37	0.45				
	Normales	1.47	1.47	1.33				
	Sis Máx	0.92	0.87	0.76				
A-A'2	Sat Med	1.21	1.2	1.01				
	Sat Tot	0.83	0.78	0.73				
	Sis Máx y Sat Med	0.76	0.25	0.29	С	DISC	TOT	%
	Normales	1.13	1.1	1.05		0	34	100.00
	Sis Máx	0.67	0.58	0.46				
D-D T	Sat Med	0.92	0.82	0.99				
	Sis Máx y Sat Med	0.55	0.4	0.32				
	Normales	1.84	1.86	1.77				
	Sis Máx	1.1	1.02	1.02				
B-B'2	Sat Med	1.56	1.64	1.36				
	Sat Tot	1.1	1.11	1.17				
	Sis Máx y Sat Med	0.92	0.8	0.99				
	Normales	2.63	2.65	2.54				
C C'1	Sis Máx	1.46	1.39	1.29				
	Sat Tot	1.56	1.41	1.88				
	Sis Máx y Sat Tot	0.88	0.7	0.62				
	Normales	9.24	9.45	10.1				
C C'2	Sis Máx	5.14	6.1	5.29				
	Sat Tot	7.37	8.66	7.11				
	Sis Máx y Sat Tot	3.95	4.55	3.56				
	Normales	4.15	4.09	4.34				
	Sis Máx	2.33	2.26	2.84				
	Sat Tot	2.59	2.52	2.93				
	Sis Máx y Sat Tot	1.58	1.41	2.44				
	Normales	12.01	11.78	12.72				
רים ח	Sis Máx	6.28	6.3	6.57				
0-0-2	Sat Tot	8.28	8.14	8.51				
	Sis Máx y Sat Tot	4.46	4.33	4.13				

Figura 25. Coincidencias y discrepancias de los resultados en el límite de estabilidad.

4.1.2 COMPARACIÓN DE LOS MÉTODOS DEL SOFTWARE SLIDE

Slide v7 al ser un software de equilibrio límite, cuenta con diversos métodos de análisis desde su enfoque en las dovelas, hasta tipos superficies de rotura, métodos de búsqueda de fallas, inclinación de las dovelas, entre otros más.

Se utilizó el perfil A-A'1 para un análisis comparativo de 4 métodos de análisis de superficies de fallas, de entre los muchos que hay, los resultados se muestran en el Anexo H, Análisis Slide N° 2-7 y se resume en la Tabla 20.

TIPO DE					Ν	AÉTOD	0				
FALLA	Ord/ Fell	Bish sim	Jan sim	Jan corr	Spc	Corp Eng 1	Corp Eng 2	Lowe- Kar	GLE/ Mr-Pr	Sarm V	Sarm No V
Circular (milés.)	1.133	1.156	1.131	1.168	1.158	1.156	1.158	1.156	1.159	1.153	1.157
Circular (cent.)	1.13	1.16	1.13	1.17	1.16	1.16	1.16	1.16	1.16	1.15	1.16
Circular (dec.)	1.1	1.2	1.1	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2
No circ. (milés.)	1.07	1.157	1.116	1.155	1.145	1.147	1.148	1.144	1.139	1.145	1.152
No circ. (cent.)	1.07	1.16	1.12	1.16	1.15	1.15	1.15	1.14	1.14	1.15	1.15
No circ. (dec.)	1.1	1.2	1.1	1.2	1.2	1.2	1.2	1.1	1.1	1.2	1.2

Tabla 20. Comparación de los resultados del análisis de perfil A-A'l con el software Slide v7 bajo sus métodos de superficies de falla y de dovelas. Sombreado los valores con mayor coincidencia en cada secuencia.

De la tabla anterior, se concluye lo siguiente:

- 1. Los factores de seguridad más bajos los da el criterio de Fellenius.
- 2. Los factores de seguridad más altos los da el criterio de Janbu corregido.
- 3. Los resultados a una precisión milesimal no muestran muchas coincidencias.
- 4. A una precisión centesimal los métodos que logran coincidencias tanto en fallas circulares y no circulares son: Spencer, Corp Eng1, Corp Eng 2 y Sarma no vertical.
- 5. A una precisión decimal los métodos que se suman a las coincidencias son: Bishop simplificado, Janbu corregido y Sarma vertical.
- 6. Las fallas circulares son las que generan resultados más correlacionables.
- El método de Bishop simplificado, a pesar de su antigüedad, genera coincidencias destacables con los métodos más modernos.

4.1.3 ANÁLISIS PROBABILÍSTICO

El análisis probabilístico en el análisis de estabilidad de taludes es una herramienta muy necesaria cuando se tiene gran variabilidad en las propiedades geomecánicas (terrenos muy heterogéneos), este método permite analizar al talud bajo múltiples valores de una o varias propiedades a partir de una variabilidad y condiciones estadísticas.

Para el análisis probabilístico comparativo entre los 3 softwares, se utilizó el perfil C-C'2 (talud) bajo condiciones normales. La variable utilizada para la variabilidad fue la resistencia a la compresión uniaxial de la formación Inca (Ki-in) que es la que compone enteramente al talud, siendo su valor estándar 25MPa, se aplicó una desviación estándar de 2MPa y un real mínimo y máximo de 4MPa, el número de muestras fue de 100.

En el software Slide v7, el análisis probabilístico se puede aplicar a la falla crítica o a todo el talud y se realiza dentro del mismo archivo, para esta investigación realizo solo a la falla crítica, los resultados se muestran en el Anexo H, Análisis Slide N°33-37 y se resume en la Tabla 21:

Método	Sarma
FS determinístico (normal)	8.77
FS promedio (de todas las muestras)	8.629
PF (probabilidad de falla)	0%
RI (normal)	19.867
RI (lognormal)	48.43

Tabla 21. Resultados del análisis probabilístico con el software Slide v7 sobre el perfil C-C'2.

En el software RS2 se tiene que crear nuevos archivos de análisis para cada valor estadístico de la muestra para el análisis probabilístico, lo que incremente enormemente el tiempo de análisis, ya que se tiene que analizar cada talud en su totalidad para cada muestra. Los resultados se muestran en el Anexo I, Análisis RS2 N° 29 y 30 y se resume en la Tabla 22.

Tabla 22. Resultados del análisis probabilístico con el software RS2 v9 sobre el perfil C-C'2.

FS determinístico (normal)	9.447
FS determinístico (de todas las muestras)	11.13
Des. Est. del FS	0.4379
PF (probabilidad de falla)	0%

El software FLAC v8 y FLAC SLOPE v8 no cuenta con un método para incluir el análisis probabilístico dentro del archivo de trabajo como en el software Slide v7 ni crear múltiples archivos individuales para cada muestra como en el software RS2, por lo que se procedió a analizar el talud bajo la resistencia mínima dada en el análisis, con una resistencia uniaxial de 21MPa. El resultado se muestra en el Anexo J, Análisis FLAC N° 29 y 30 y se resume en la Tabla 23.

Tabla 23. Resultados del análisis probabilístico con el software FLAC SLOPE v8 sobre el perfil C-C'2.

FS normal (sigci=25MPa)	9.57
FS mínimo (sigci=21MPa)	9.24
PF (probabilidad de falla)	0%

Las conclusiones del presente análisis se muestran en la Tabla 24:

Tabla 24. Conclusión del análisis probabilístico con los tres softwares comparados.

SOFT	FS	FS	PF	GENERACIÓN DE	VELOCIDAD DEL ANÁLISIS
SOF 1.	NORMAL DETER. % MUES		MUESTRAS	VELOCIDAD DEL ANALISIS	
Slide	8 77	8 620	0	En un solo archivo	Rápida al aplicarse solo a la superficie
v7	0.77	0.029	0	En un solo archivo	de falla crítica
DS2 10	0.447	11 12	0	En múltiples	Lenta, tiene que evaluar cada talud en
K52 V9	7.447	11.15	0	archivos	su totalidad
FLAC		No		El usuario tiene que	Muy lenta, se tiene que crear y
TLAC	9.57	aalaulada	0	generar sus muestras	configurar los taludes manualmente y
vo		calculatio		en diversos archivos	analizar cada talud en su totalidad

4.1.4 ANÁLISIS CON DISEÑO ESTÁNDAR

Existen en la actualidad diseños estándar como es el caso del Eurocode 7, que establece la utilización de factores de seguridad parciales que generaran un factor de seguridad sobrediseñado. A pesar de que en RS2 y FLAC se pueden realizar análisis dinámicos (verdadero análisis sísmico de deformaciones, aunque no genera un FS), en dichos softwares se puede ingresar directamente valores de diseño estándar para el cálculo del factor de seguridad.

Para el análisis estándar (Eurocode 7) y compararlo con un análisis común, se ha utilizado el perfil C-C'2 bajo condiciones sísmicas extremas con del software Slide v7, los resultados se muestran en el Anexo H, Análisis Slide N° 38 y 39 y se resumen en la Tabla 25.

MÉTODO CONDICIÓN GLE/ Morg-Corp of Eng. Spencer Lowe-Kar Sarma Price 2 Sis. Máx. 5.244 5.165 4.827 5.227 5.220 Sis. máx. con 4.999 4.672 4.244 4.853 4.955 Eurocode 7 Variación 0.245 0.493 0.583 0.374 0.265 Porc de var % 4.67 9.55 12.08 7.16 5.08

Tabla 25. Comparación de resultados con condiciones de sismicidad máxima normal y con Eurocode 7 en el perfil C-C'2 con el software Slide v7.

De la tabla anterior se puede concluir que las variables introducidas durante el análisis con el estándar Eurocode 7 afectan al factor de seguridad final de forma notable.

4.2 TRATAMIENTO ESTADÍSTICO

4.2.1 COEFICIENTE DE CORRELACIÓN DE PEARSON

Para el cálculo de la matriz de coeficientes de Pearson (medida de relación lineal entre variables independiente de la escala de medida) se ha utilizado la Tabla 19, en dos condiciones, precisión milesimal (0.001) y centesimal (0.01), tanto para la data de entrada como de salida. Los resultados se muestran en la Figura 26.

a)		COEFICIENTE DE CORRELACIÓN DE PEARSON (PRECISIÓN DE DATA A 0.001)													
	Spencer														
~	C de Ing. 2	0.999					Correlación	positiva perf	ecta (1.000)						
	Lowe-Kar	0.999	0.999				Correlación p	ositiva alta (0.750-0.999)						
	GLE/Morg-P	1.000	0.999	0.999											
l N	Sarma	0.999	0.999	0.998	1.000		ē.								
	Prom	1.000	1.000	0.999	1.000	0.999									
	RS2 v9	0.995	0.995	0.993	0.995	0.994	0.995								
	FLAC v8	0.996	0.994	0.996	0.996	0.995	0.995	0.987							
		Spencer	C de Ing. 2	Lowe-Kar	GLE/Morg-P	Sarma	Prom	P\$2.v0							
				SLID)E v7			N32 V3	FLAC VO						
b)			COEFICIENT	e de correl	ACION DE PE	ARSON (PR	ECISION DE D	ATA A 0.01)							
	Spencer							Spencer							
~	C de Ing. 2	1.00													
>		1.00					Correlaciór	positiva per	fecta (1.00)						
<u> </u>	Lowe-Kar	1.00	1.00				Correlación Correlación	<mark>positiva per</mark> positiva alta	fecta (1.00) (0.75-0.99)						
LIDE	Lowe-Kar GLE/Morg-P	1.00 1.00	1.00 1.00	1.00			Correlaciór Correlación	positiva per positiva alta	fecta (1.00) (0.75-0.99)						
SLIDE	Lowe-Kar GLE/Morg-P Sarma	1.00 1.00 1.00	1.00 1.00 1.00	1.00 1.00	1.00		Correlación Correlación	positiva per positiva alta	fecta (1.00) (0.75-0.99)						
SLIDE	Lowe-Kar GLE/Morg-P Sarma Prom	1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00	1.00 1.00 1.00	1.00 1.00	1.00	Correlaciór Correlación	positiva per positiva alta	f <mark>ecta (1.00)</mark> (0.75-0.99)						
SLIDE	Lowe-Kar GLE/Morg-P Sarma Prom RS2 v9	1.00 1.00 1.00 1.00 0.99	1.00 1.00 1.00 1.00 0.99	1.00 1.00 1.00 0.99	1.00 1.00 0.99	1.00 0.99	Correlación Correlación 0.99	positiva per positiva alta	fecta (1.00) (0.75-0.99)						
	Lowe-Kar GLE/Morg-P Sarma Prom RS2 v9 FLAC v8	1.00 1.00 1.00 1.00 0.99 1.00	1.00 1.00 1.00 0.99 0.99	1.00 1.00 1.00 0.99 1.00	1.00 1.00 0.99 1.00	1.00 0.99 0.99	Correlación Correlación 0.99 1.00	positiva per positiva alta 0.99	fecta (1.00) (0.75-0.99)						
	Lowe-Kar GLE/Morg-P Sarma Prom RS2 v9 FLAC v8	1.00 1.00 1.00 1.00 0.99 1.00 Spencer	1.00 1.00 1.00 0.99 0.99 C de Ing. 2	1.00 1.00 0.99 1.00 Lowe-Kar	1.00 1.00 0.99 1.00 GLE/Morg-P	1.00 0.99 0.99 Sarma	Correlación Correlación 0.99 1.00 Prom	positiva per positiva alta 0.99	fecta (1.00) (0.75-0.99)						

Figura 26. Matriz de Pearson para los datos de la Figura 23 a una precisión de 0.001 (a) y 0.01 (b).

Se puede concluir en:

- 1. A una precisión de 0.001 se presentan 5 correlaciones positivas perfectas, todas en el caso de los métodos de análisis del software Slide v7.
- A una precisión de 0.01 se presentan 19 correlaciones positivas perfectas, entre todos los datos del software Slide v7 y entre 4 relaciones entre Slide v7 y FLAC V8.
- 3. Tanto a una precisión de 0.001 como 0.01, el software RS2 presenta correlaciones positivas altas, mas no perfectas con los demás softwares.
- 4. En todos los casos, se muestra una correlación positiva alta muy importante (>0.987) lo que demuestra que los 3 Softwares generan factores de seguridad muy similares.

4.2.1 RELACIÓN LINEAL DE LOS RESULTADOS

Figura 27. Relación Lineal de los FS obtenidos: Slide v7-RS2 (a), Slide v7-FLAC (b), RS2-FLAC v8 (c) y gráfico 3D de los FS obtenidos.

Se puede observar que los datos de FS cercanos a 1 se interrelaciones mejor que los FS altos, esto se debe a la magnitud misma del análisis, además se puede ver gráficamente que los FS obtenidos se relaciones en buena medida entre los 3 softwares.

Además, se discierne que se puede realizar una línea de tendencia con una relación x/y muy cercana a 1, observado en la Figura 27, gráficos a-c.

4.3 COMPARACIÓN DE LOS SOFTWARES ANALIZADOS

En la Tabla 26, se resume los resultados finales alcanzados por la presente investigación con relación a los softwares comparados.

	SOFTWARES UTILIZADOS							
CARACTERÍSTICA	SLIDE V7	RS2 v9	FLAC v8	FLAC SLOPE V8				
Método	Equilibrio límite	Elementos finitos	Diferencias finitas					
Materiales	Suelos (Mohr-Coulomb) y ma	acizos rocosos de	baja calidad (Ho	ek-Brown)				
Aplicación recomendable	Laderas y Talude	S	Laderas	Taludes				
Dibujo de grilla	Importación rápida y auto- limpieza de la geometría	Importación rápida y limpieza manual de la geometría	Importación lenta y requiere refinar la geometría	Interfaz rápida de dibujo de la geometría.				
Inserción de propiedades	Rápida		Lenta	Rápida				
Precisión del análisis	Eleg	gible por el usuari	por el usuario					
Mejor método de búsqueda de la falla crítica	Fallas no circulares (con falla evidente), método de búsqueda "Auto Refine Search", Método de Bishop Simplificado y los métodos méa maientas		ction)					
Agua subterránea	Definid	o por un nivel fre	ático					
Sismicidad	Anál	isis pseudo-estáti	co					
Análisis de deformaciones	No		Si					
Estándares de diseño	Si		No					
Validez del FS	En condiciones normales total condiciones de s	mente válida, req ismicidad y/o agu	uiera análisis de 1a subterránea	tenido bajo				
Análisis probabilístico	Rápido	Lento	Aus	ente				
Ventajas	- Rapidez del análisis - Posibilidad de analizar múltiples círculos de falla a la vez.	- Un solo méto - Análisis de deform -Mayor discre talud y/o	do de análisis variables de nación etización del o ladera	- Rapidez del análisis - Diseño rápido del talud				
Desventajas	 No incluye variables de deformación Requiera un criterio refinado para la selección del método correcto 	- FS sub- estimado con agua subterránea	- Continua invalidez de la geometría y/o grilla	- Solo aplicable a taludes				
Personalización de los resultados	Alta: Gráficos, membretes,	informes.	Baja, estándares de dibujo pre-establecidos					

Tabla 26. Comparación de las características analizadas de los softwares.

Además, la Tabla 27 describe otras características de los softwares que no se han analizado en la presente investigación pero que pueden ayudar a la selección del software indicado para cada necesidad.

	SOFTWARES UTILIZADOS						
CARACTERÍSTICA	SLIDE V7 RS2 v9		FLAC v8	FLAC SLOPE V8			
Ventajas de licencias para	Convenio educativo e inclu	Descarga de v	versión libre				
Investigación y educación	softwares de Rocscience p	rápida con restr	ricciones en la				
investigación y educación	universidad	densidad de la grilla					
	Estructuras superficiales	Estructuras	Estructuras superficiales y				
Aplicación	(laderas, taludes, represas,	subterráneas (tunelería minera	Taludes			
	terraplenes, etc)	y civil), ci	mentaciones				
Análisis sísmico	Pseudo-estático, Newmark	Pseudo-está	tico, dinámico	Pseudo-			
				estatico			
	Nivel freatico, condiciones	Nivel freatic	o, condiciones	Nivel			
Agua subterranea	drenadas y no drenadas,	drenadas y no drenadas, agua		freático			
	agua transitoria transitoria						
Cargas	51						
Soportes lineales (anclajes,							
soil-nailing, geo-	Si						
membranas, etc.)							
Soportes geométricos	Indire	No					
(Muros, gaviones, etc.)	munectamente						
Análisis de tensiones	No		Si				
Análisis de deformaciones	No		Si				
Zonificación del FS	Si (coloración de los círculos de falla)	No	Si	No			
Análisis de creep	No	•	Si	No			
Análisis térmico	No		Si	No			
Análisis multi-pasos		Si	•	No			
Retro-análisis	Si						
Discontinuidades	No	Si		No			

Tabla 27. Otras características comparativas entre los softwares analizados.

4.4 CONTRASTACIÓN CON LA HIPÓTESIS

Se ha demostrado con la investigación, en el caso del análisis de laderas y taludes en suelos y macizos rocosos de mala calidad, las tres metodologías: Equilibrio límite (Software Slide v7), Elementos Finitos (Software RS2 v9) y Diferencias Finitas (Software FLAC v8) muestran factores de seguridad similares y válidos. Sin embargo, para otras aplicaciones (análisis dinámico y deformaciones) algunos métodos tienen mayores ventajas (Tabla 26 y Tabla 27), tomando en cuenta todas estas variables a la hora de elegir el método indicado para un análisis en específico; validando así la hipótesis inicial.

CAPÍTULO V

CONCLUSIONES Y RECOMENDACIONES

5.1 CONCLUSIONES

- La zona de Calispuquio, al sur-oeste de la ciudad de Cajamarca está constituido por suelos (depósitos aluviales, coluviales, deluviales y coluvio-aluviales) y macizos rocos de mala calidad (Formaciones Farrat, Inca, Chúlec y Porculla), materiales homogéneos y analizables con los métodos de Equilibrio límite (Software Slide v7), Elementos finitos (Software RS2 v9) y Diferencias finitas (Software FLAC v8).
- El software Slide v7 destaca por su velocidad de análisis y confiabilidad de los resultados en el análisis de laderas y taludes, requiere entrenamiento para poder elegir los métodos de análisis adecuados (ya que cuenta con muchos y variados).
- El software RS2 v9 puede analizar taludes y laderas de forma rápida, teniendo cuidado con el análisis de aguas subterráneas, ya que se generan factores de seguridad sub-estimados en relación con los otros dos softwares.
- El software FLAC v8 muestra resultados válidos en cualquier condición, pero requiere realizar optimizaciones de geometría y grillas para que sean válidas, en su complemento FLAC SLOPE esta dificultad está ausente y se puede ingresar datos más rápido, pero solo acepta geometrías de taludes.
- ✓ La variación promedio (VP) de FS es baja entre los tres softwares (0.013), pero la variación promedio absoluta (VPA) es alta (0.250); los softwares que más discrepan en VPA son RS2 y FLAC (0.313), seguido de Slide y FLAC (0.254) y los que más convergen son Slide y RS2 (0.182); además, en perfiles con suelos el VPA entre los tres softwares es bajo (0.127), y en los perfiles de rocas es alto (0.475).

5.2 **RECOMENDACIONES**

- Utilizar indistintamente los métodos de Equilibrio límite (Software Slide v7), Elementos Finitos (Software RS2 v9) y Diferencias Finitas (Software FLAC v8) en condiciones normales o de sismicidad máxima en laderas y taludes de suelos y macizos rocosos de mala calidad (comportamiento homogéneo); teniendo cuidado en el análisis con agua subterránea y/o con sismicidad máxima.
- Utilizar datos de ensayos geomecánicos como parámetros de entrada en los softwares, si no se cuenta con los mismos se puede utilizar datos documentados (bibliotecas) como los del software RocData pero solo en diseños preliminares.
- ✓ Estudiar los resultados de los softwares Slide v7, RS2 v9 y FLAC v8 frente a soportes y cargas dinámicas para complementar este enfoque comparativo.
- Tomar las medidas de estabilización más adecuadas para mitigar los peligros de movimientos en masa en las laderas que tienen como material crítico a suelos de la localidad de Calispuquio ya que presentan inestabilidades frente a condiciones de sismicidad y agua subterránea.

REFERENCIAS BIBLIOGRÁFICAS

- Bieniawski, Z. T. (1989). Engineering Rock Mass Classifications (illustrate). NY, USA: John Wiley & Sons.
- Bishop, A. W. (1955). The Use of the Slip Circle in the Stability Analysis of Slopes. Geotechnique, 5(1).
- Bobet, A. (2010). Numerical Methods in Geomechanics. The Arabian Journal for Science and Engineering, 35(1B), 27–48.
- Deere, D. (1963). Techincal Description of Rock Cores for Engineering Purposes. Rock Mechanics and Engineering Geology, 1(1), 16–22.
- Deere, D. (1967). Design of Surfaces and Near-Surface Construction in Rock. Failure and Breakage of Rock, 1(1), 237–302.
- Deere, D. U. (1968). Geological considerations. In Rock Mechanics in Engineering Practice (pp. 1–20). London, UK: Wiley.
- Eberhardt, E. (2003). Rock Slope Stability Analysis Utilization of Advanced Numerical Technicques (1st ed.). Vancouver, Canadá: University of British Columbia.
- Fellenius, W. (1936). Calculation of the Stability of Earth Dams. In Second Congress on Large Dams, International Comission on Large Dams of the world power conference, Vol 4 (pp. 445–462). Wasington DC, USA.
- Gavilanes, H., & Andrade, B. (2007). Introducción a la Ingeniería de Túneles (3rd ed.).(AIME), Asociación de Ingenieros de Minas del Ecuador.
- GEMMA. (2007). Movimientos en Masa en la Región Andina: Una Guía para la Evaluación de Amenazas (1st ed.). Toronto, Canada: Proyecto Multinacional Andino: Geociencias para las Comunidades Andinas.
- Gonzáles, L., Ferrer, M., Ortuño, L., & Oteo, C. (2003). Ingeniería Geológica (1st ed.).

Madrid, España: Pearson.

- Hammah, R. E., & Curran, J. H. (2009). It is Better to be Approximately Right than Precisely Wrong: Why Simple Models Work in Mining Geomechanics. In 43rd US Rock Mechanics Symposium and 4° U.s.-Canada Rock Mechanics Symposium, Asheville, NC June 28-July (p. 8). Asheville, USA: ARMA.
- Highland, L., & Jhonson, M. (2004). Landslide Types and Processes.
- Hoek, E. (1983). Strength of jointed rock masses. Géotechnique, 3(1), 187–223.
- Hoek, E. (2005). Uniaxial compressive strength versus Global strength in the Hoek Brown criterion. Vancouver, Canadá.
- Hoek, E. (2007). Rock Mass Properties. In Practical Rock Engineering (2nd ed., pp. 190–236). Toronto, Canada: Rocscience.
- Hoek, E., Carranza-Torres, C., & Corkum, B. (2002). Hoek-Brown failure criterion 2002 Edition. Toronto, Canada.
- Hoek, E., Carter, T. G., & Diederichs, M. S. (2013). Quantification of the Geological Strength Index Chart. In 47th US Rock Mechanics / Geomechanics Symposium San Francisco, CA, USA, 23-26 June. (p. 9). San Fracncisco, USA: ARMA.
- Hoek, E., & Diederichs, M. S. (2006). Empirical estimation of rock mass modulus. International Journal of Rock Mechanics and Mining Sciences, 43(1), 203–215.
- Huaripata, M. (2014). Modelo Geodinámico de la Quebrada Cruz Blanca, Microcuenca Cruz Blanca - Los Chilcos. Universidad Nacional de Cajamarca.
- Itasca. (2016). Itasca Software Products. Minneapolis,USA: Itasca Consulting Group. Retrieved from http://www.itascacg.com/
- Janbú, N. (1954). Stability Analysis of Slopes with dimensionless parameters. Harvard Soil Mechanics Series, 56(1), 811.
- Jing, L. (2003). A review of techniques, advances and outstanding issues in numerical modelling for rock mechanics and rock engineering. International Journal of Rock Mechanics and Mining Sciences, 40(1), 283–353.
- Lowe, L., & Karafiath, L. (1960). Stability of Earth Dams upon Drawdown. In Proceedings of the First PanAmerican Conference on Soil Mechanics and Fundation Engineering (pp. 537–552). Mexico D.F, Mexico: Mexican Society of Soil Mechanics.

- Marinos, P. G., Marinos, V., & Hoek, E. (2007). The Geological Strength Index (GSI): A characterization Tool for Assessing Engineering Properties for Rock Masses. In Underground works under special conditions (Romana, Pe, pp. 13–21). Taylor and Fancis.
- Morgenstern, N., & Price, V. (1965). The Analysis of the Stability of General Slip Surfaces. Geotechnique, 15(1), 79–93.
- Navarro, P. (2007). Mapa Geológico del Cuadrángulo de Cajamarca, Escala 1:50 000 Hoja 15f Cuadrante-I. INGEMMET Lima, Perú.
- Popescu, M., Ugai, K., & Trandafir, A. (2000). Linear versus Non-linear Failure envelopes in LEM and FEM slople stability Analysis. In A. A. Cardiff (Ed.), 8th international symposium on landslides (pp. 1227–1234). Roterdam, Países Bajos.
- Priest, S. D., & Hudson, J. A. (1976). Discontinuity Spacings in Rock. International Journal of Rock Mechanics and Mining Sciences1, 13(1), 135–148.
- Ramirez, P., & Alejano, L. (2004). Mecánica de Rocas: Fundamentos e Ingeniería de Taludes (1st ed.). Madrid, España: E.T.S.I Minas (UPM).
- Reyes, L. (1980). Geología de los Cuadrángulos de Cajamarca, San Marcos y Cajabamba (1st ed.). Lima, Perú: INGEMMET.
- Rocscience. (2016). Rocscience Software Products. Toronto, Canadá: Rocscience Inc. Retrieved from https://www.rocscience.com
- Sarma, S. K. (1973). Stability Analysis of Embarkments and Slopes. Geotechnique, 23(3), 423–433.
- Spencer, E. (1967). A method of analysis of the stability of embarkments assuming parallel inter-slice forces. Geotechnique, 17(1), 11–26.
- Stead, D., & Coggan, J. (2012). Numerical modeling of rock-slope instability. In J. Clague & D. Stead (Eds.), Landslides: Types, Mechanisms and Modeling (1st ed., pp. 144–158). Cambridge University Press.
- Stead, D., Eberhardt, E., & Coggan, J. S. (2006). Developments in the characterization of complex rock slope deformation and failure using numerical modelling techniques.
 Engineering Geology, 83(1–3), 217–235. JOUR. http://doi.org/http://dx.doi.org/10.1016/j.enggeo.2005.06.033

- Suárez, J. (2007). Deslizamientos Análisis Geotécnico (1st ed.). Bogota, Colombia: Erosion.com.
- U.S. Army Corps of Engineers. (1970). Stability of Earth and Rock-Fill Dams. Vicksburg, USA.
- Vallejos, J. A., Brzovic, A., Lopez, C., Bouzeran, L., & Mas Ivars, D. (2013). Application of the Synthetic Rock Mass approach to characterize rock mass behavior at the El Teniente Mine, Chile. In 3nd International FLAC / DEM Symposium, At Hangzhou, China. Paper 7-2 (p. 15). Hangzhou, China.
- Van, P., & Vásárhelyi, B. (2013). Sensitivity analysis of the generalized Hoek-Brown failure criterion. In Rock Mechanics for Resources, Energy and Environment (pp. 835–840).
 Wroclaw, Poland: ISRM.
- Villota, H. (2005). Geomorfología Aplicada a Levantamientos Edafológicos y ZonificaciónFísica de Tierras (2nd ed.). Bogota, Colombia: Instituto Geográfico Agustín Codazzi.
- Wikipedia.org. (2016a). Sistema Unificado de Clasificación de Suelos. Retrieved from https://es.wikipedia.org/wiki/Sistema_Unificado_de_Clasificación_de_Suelos
- Wikipedia.org. (2016b). Teoría de Mohr-Coulomb. Retrieved from https://es.wikipedia.org/wiki/Teor%C3%ADa_de_Mohr-Coulomb
- Zavala, B., & Rosado, M. (2011). Riesgo Geológico en la Región Cajamarca. Lima, Perú.

ANEXOS

- A. TABLAS DEL CRITERIO DE ROTURA DE HOEK-BROWN
- **B.** TABLAS DE REGISTRO EN CAMPO
- C. PLANOS
- D. COLUMNA ESTRATIGRÁFICA
- E. **PERFILES**
- F. ANÁLISIS CON EL SOFTWARE ROCDATA V5
- G. PROPIEDADES GEOMECÁNICAS DE LAS UNIDADES INGENIERILES
- H. RESULTADOS DEL ANÁLSIS CON EL SOFTWARE SLIDE V7
- I. RESULTADOS DEL ANÁLSIS CON EL SOFTWARE RS2 V9
- J. RESULTADOS DEL ANÁLSIS CON EL SOFTWARE FLAC V8

A.1 DIAGRAMA DE TRANCISIÓN DE UN MACIZO ROCOSO INTACTO A UNO FUERTEMENTE FRACTURADO

A.2 TABLA DE ESTIMACIÓN DE LA RESISTENCIA A LA COMPRESIÓN UNIAXIAL DE LA ROCA INTACTA σ_{ci}

CALIDAD*	TÉRMINO	ESTIMACIÓN DE CAMPO DE LA RESISTENCIA	RESIST. A LA COMP. UNIAXIAL (MPa)	ÍNDICE DE CARGA PUNT. (Mpa)	EJEMPLOS
R6	Extrema- damente resistente	Solo se pueden romper esquirlas de la roca con el martillo de geólogo.	> 250	> 10	Basalto, diabasa, gneis, granito, cuarcita, chert.
R5	Muy resistente	Se necesitan muchos golpes con el martillo para romperla.	100 - 250	4 - 10	Anfibolita, arenisca, gneis, gabro, granodiorita, basalto.
R4	Resistente	Se necesita más de un golpe con el martillo de geólogo para romperla.	50 - 100	2 - 4	Caliza, mármol, esquisto, arenisca.
R3	Moderada- mente Resistente	No se puede rayar o labrar con una navaja, se pueden romper con un golpe firme con el martillo.	25 - 50	1 - 2	Lutita, carbón, concreto, esquisto, pizarra, limolita
R2	Débil	Puede labrarse con dificultad con una navaja, se pueden hacer marcas superficiales golpeando fuertemente con el martillo.	5.0 - 25	**	Creta, marga, yeso, esquisto, pizarra
R1	Muy Débil	Deleznable bajo golpes fuertes con la punta del martillo de geólogo puede labrarse con una navaja.	1.0 - 5.0	**	Roca alterada o muy alterada
R0	Extrema- damente Débil	Rayado con la uña del dedo pulgar.	0.25 - 1	**	Milonita de falla
*Calidad and	and Desarra (1	001)			

*Calidad según Brown (1981).

**Las pruebas de carga puntual en rocas con una resistencia a la compresión uniaxial debajo de 25MPa tienden a generar resultados ambiguos.

TIPO	CLASE	GRUPO		TEXTU	RA	
ROCA	CLASE	GILOPO	GRUESA	MEDIA	FINA	MUY FINA
Clásitcas EIXEL		sitcas	Conglomerados (21+-3) Brechas (19+-5)	* Arenisca 17+-4	Limolita 7+-2 Grauvacas (18+-3)	Lutita 4+-2 Pizarra (Shale (6+-2) Marga (7+-2)
SEDIME	No	Carbonatadas	Caliza Cristalina (12+-3)	Caliza Esparítica (10+-2)	Caliza Micrítica (9+-2)	Dolomita (9+-3)
	Clásticas	Evaportitas		Yeso 8+-2	Anhidrita 12+-2	
		Orgánicas				Creta 7+-2
RFICA	No Foliadas		Mármol 9+-3	Hornfels (19+-4) Meta-arenisca (19+-3)	Cuarcitas 20+-3	
ETAMÓF	Débilmente foliadas		Migmatita (29+-3)	Anfibolita 26+-6		
Σ	Foliadas**		Gneis 28+-5	Esquisto 12+-3	Filita (7+-3)	Pizarra (slate) 7+-4
		Félsicas	Granito 32+-3 Granodi (29+-	Diorita 25+-5 orita 3)		
NEA	Plutónicas	Máficas	Gabro 27+-3 Norita 20+-5	Dolerita (16+-5)		
<u>Ö</u>	Hipat	oisales	Porfiríticas (20+-5)		Diabasa (15+-5)	Peridotita (25+-5)
	Volcánicas	Lávicas		Riolita (25+-5) Andesita 25+-5	Dacita (25+-3) Basalto (25+-5)	Obsidiada (19+-3)
		Piroclásticas	Aglomerado (19+-3)	Brecha (19+-5)	Toba (13+-5)	

A.3 TABLA DE ESTIMACIÓN DEL m_i

* Los conglomerados y las brechas pueden presentar un variado rango de valores "mi" dependiendo de la naturaleza del material cementante y el grado de cementación, así que pueden variar de rangos de arenisca a valores usados para sedimentos finos.

** Estos valores son de especímenes de roca intacta evaluados normalmente en la estratificación o foliación. El valor de "mi" será significativamente diferentemente si el fallamiento ocurre a lo largo de un plano de debilidad.

A.4 TABLA GSI PARA MACIZOS ROCOSOS HOMOGENEOS

ÍNDICE DE RESISTENCIA GEOLÓGICA (GSI) PARA ROCAS FRACTURADAS (Hoek y Marinos, 2000) Estimar el valor promedio del GSI para la litología, estructura y condiciones superficiales de las discontinuidades. No intenar ser muy preciso. Citar un rango de 33 a 37 es más realístico que un GSI de 35. Note que las tablas no se aplican a fracturas estructuralmente controladas. Cuando los planos estructurales débiles están en una orientación desfavorable con respecto de la cara excavada, estas dominarán el comportamiento de todo el macizo rocoso. La resistencia de cizalla de las superficies de la roca son propensas a deteriorarse como el resultado de cambios en el contenido de humedad, se reducirá si hay presencia de agua. Cuando se trabaja con rocas en las categorías de débil a muy debil, se debería hacer un desplazamiento hacia la derecha. La presión del agua es tratada con análisis de esfuerzos efectivos.	더 MUY BUENA A Superficies muy rugosas, inalteradas y frescas A T	ob BUENA O Superficies rugosas, ligeramente intemperizadas, con O pátinas de óxidos de hierro	ପ୍ତ REGULAR ଜ Superficies lisas, moderadamente intemperizadas y/o ଘ alteradas	편 전 MALA 당 Superficies lisas y cizalladas, muy intemperizadas con 떤 revestimientos o rellenos compactos o fragmentos angulares	NUY MALA Superficies lisas y cizalladas, muy intemperizadas con revestimientos o rellenos arcillosos blandos
INTACTA O MASIVA. Espécimen de roca intacta o roca in-situ masiva con pocas discontinuidades ampliamente espaciadas. Esp. 100cm S	90			N/A	N/A
BLOCOSA. Macizo rocoso inalterado bien trabado, definido por bloques cúbicos formados por 3 familias de discontinuidades.		70 60			
MUY BLOCOSA. Macizo rocoso trabado, Sparcialmente perturbado, definido por bloques angulares de varias caras formado por 4 o más familias de discontinuidades. Esp. 10cm		5			
BLOCOSA/PERTURBADA/DEFORMADA Plegada, bloques angulares de muchas familias de discontinuidades. Persistencia de los planos de estratificación o esquistocidad. Esp. 3cm			40	30	//
DESINTEGRADA. Pobremente trabada, macizo rocoso muy fracturado con mezcla de fragmentos de roca angulares y redondeados Esp. 1cm		\Box		20	//
LAMINADA/ CIZALLADA. Ausencia de blocosidad debido a espaciados cercanos de debil esquistocidad o planos de cizalla	N/A	N/A			10

A.5 TABLA GSI PARA MACIZOS ROCOSOS HETEROGÉNEOS

A.6 TABLA CUANTIFICADA DEL GSI

A.7 TABLA DE ESTIMACIÓN DEL FACTOR DE DISTURBACIÓN D

El factor de Disturbación "D" se calcula según la **¡Error! No se encuentra el origen de la referencia.** (Hoek, 2007).

	FA	CTOR DE DISTURBACIÓN "D"	
		Una voladura contralada de excelente calidad o una excavación realizada por una Tunelaroda TBM resultan en una disturbación mínima en el macizo rocoso confinado alrededor del túnel.	D=0
ELES		Una excavación mecánica o manual en macizos rocosos de mala calidad (sin voladura) resulta en una mínima disturbación alrededor del macizo rocoso.	D=0
PARA TÚN		La disturbación puede ser severa cuando los problemas de confinamiento generan un levantamiento del piso, a menos que se ubique un nivel inferior "Invert" temporal como se muestra en la fotografía.	D=0.5 Sin "Invert"
		Una voladura de muy baja calidad en un túnel de roca dura genera daños locales severos que se pueden extender 2 o 3 metros alrededor del macizo rocoso.	D=0.8
		Una voladura de pequeña escala en taludes de ingeniería civil provocan daños en macizos de regular calidad,	Buena Voladura D=0.7
JDES		particularmente si se usa una voladura controlada como se muestra en a la izquierda. Sin embargo, el alivio tensional causa alguna disturbación.	Mala Voladura D=1.0
PARA TALI		Las grandes minas a cielo abierto sufren disturbaciones significantes debido a las voladuras a gran escala y también por el alivio tensional del movimiento de tierras.	Voladura a Gran Escala D=1.0
		En rocas más blandas se puede excavar mediante acarreo por corte y explanación por lo que el grado de daño a las pendientes es menor.	Excavación mecánica D=0.7

REGISTRO	GEOLÓGICO	-GEOTECN	ICO DE	7	Aplicació	n de los mé	todos de	s equilibrio límite, elem	ientos finitos y diferen	icias finiat	as en el	NACIONAL.	- 9 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	
TALUDI	ES POR ESTA	CIÓN-SUEI	ros	1 [20] 3	CO	mportamie	nto de la	Ideras y taludes, Sector	 Calispuquio-Cajamaro 	ca" - 2016		DE CAU	Clasificación de 9	Suplar Suplar
CODIGO:				HOJA Nº :		DE:			SALIDA N°:			AMARCA SAINT	LISCS - ASTM 1	
RESPONSABLE:	Elvis Rub.	én Alcántara Q	uispe	EJECUTADO POR:		Elvis Ru	ube Alcán	tara Quispe	FECHA:			- markened		C021
ESTACIÓN N°:		UBICACIÓN:				CLASIFICA	CIÓN DE	SUELOS USCS	ESTACIÓN N°:		UBICACIÓN:			
HORA:					DIVIS	SIONES PRINCIPA.	LES SIM	1B NOMBRES TÍPICOS	HORA:					
1. DATA	GPS		2. MAT	ERIAL				Gravas, bien graduadas,	1. DATA GPS			2. MAT	ERIAL	
SISTEMA:		2.1 Depósito	2.2 Plast	2.3 Comp %	0	e € vođ	npias GV	V mezclas grava-arena, pocos	SISTEMA:		2.1 Depósito	2.2 Plast	2.3 Comp 9	%
ESTE:		1: Eluvial	1: Alta	Bloques:	07 N	iəmù		finos o sin finos.	ESTE:		1: Eluvial	1: Alta	Bloques:	
NORTE:	. 4	2: Deluvial	2: Media	Cantos:	sime	n sin		Gravas mal graduadas,	NORTE:		2: Deluvial	2: Media	Cantos:	
COTA:	-01	3: Coluvial	3: Baja	Grava:	st le r	ad de el tar	COS 0 GP	mezclas grava-arena, pocos	COTA:		3: Coluvial	3: Baja	Grava:	
ERROR:	7	1: Aluvial	4: No Plas	Arena:	uə op	bor e	finos)	finos o sin finos.	ERROR:		4: Aluvial	4: No Plas	Arena:	
MARCA Y		5: Fluvial		Finos:	reteni	ebinet G	ravas GN	Gravas limosas, mezclas	MARCA Y		5: Fluvial		Finos:	
SEKIE:	3 TAILI			Mat. Org.:	pepin	M :2A 91 29 1 (mm) 8	n finos	Biava arcia mino.	SERIE:	3 TALL			Mat. Org.:	
Altura (m)-		Pie (m).		Perf (VCP) Precorte (P) Vol	a – Iela	VAR No. 197,4 Nuess Nuess A	a cant. GC finos)	grava-arciitosas, mezcias grava-arena-arcilla.	Altura (m):		Pie (m)		Perf (VCP) Precorte	(P) Vol
Diracción	Dia (a)	Talud (h)	Cahaza (c)	Strave (VS). Vol. o Excav. Me.	p se	7) 8 9			Dirección Di	(c) oi	Talud (h)	Cahaza (c)	Suave (VS). Vol. o Exc.	av Mer
Azimut (Z):	LIC (d)		raneza (n)	(VES), Vol. Def. (VD):	W :OS	4 (4,76	renas	Arenas bien graduadas, arenas con grava, pocos finos	Azimut (Z):			معمدهم (م)	(VES), Vol. Def. (V	VD):
Dip:					anas	nt el oner	spidu	o sin finos.	Dip:					
4. ESQUEMA				1	оиаяа	nùn sime. Bi g ë	acos o Sp finos)	Arenas mal graduadas, arenas con grava, pocos finos	4. ESQUEMA				N	
	1	A D	to	20 CABEZA		el ab séM r la roq es g g g	renas sinos	Arenas limosas, mezclas de arena y limo.			I	Vic	2cCABEZA	_
	N	9	5		IS	ARENAS: mm) G At	a cant. SC finos)	Arenas arcillosas, mezclas arena-arcilla.		V		K		
	ARUT		$\overline{\ }$		n simet le roq eseq	te líquido menor	W	Limos inorgánicos y arenas muy finas, limos limpios, arenas finas, limosas o arcillosa, o limos arcillosos con ligera plásticidad.		AAU				1
	- ∀				l leireitei	imiJ :2A	č	Arcillas inorgánicas de plasticidad baja a media,		LIA				
AZa PIE		$\overline{)}$		ESTRUCTURAS Abrev-Sim	n ləb betim el ə	ae 50 LIMOS Y ARCILL	o lo	arcillas con grava, arcillas arenosas, arcillas limosas. Limos orgánicos y arcillas orgánicos limosas de baja nicatricidad	Za PIE	7			ESTRUCTURAS Abrev-Sim	
					o Pino: Más d	: Límite 0	W	H Limos inorgánicos, suelos arenosos finos o limosos con mica o diatomeas, limos elásticos.			\mathbf{i}			
					DE GRAN	ARCILLAS: ayor de Si	5	Arcillas inorgánicas de plasticidad alta.						
/				(Tipos de suelo, Nivel freático,	I SOTENOS	w opinbil	ó	Arcillas orgánicas de a plasticidad media a elevada; limos orgánicos.	/				(Tipos de suelo, Nivel freático,	
					SUER	OS MUY ORGÁNIA	cos PT*	 Turba y otros suelos de alto contenido orgánico. 						٦
Observaciones:					1° Letra:	G(Grava), S(Areni	a), M(Limo),	C(Arcilla), O(Orgánico)	Observaciones:					
					2° Letra: W(Bien G L(Baja Pla	P(Pobremente Gi radado=tamaño v isticidad). *Pt: Tui	radado=tami de partículas rba	año de partículas uniforme), diversos), H(Alta plasticidad),						

B.1 REGISTRO DE PROPIEDADES GEOMECÁNICAS DE SUELOS

REGISTRO GEOLÓ TALUDES POR ODIGO: ESPONSABLE: EIV	GICO-GEO I ESTACIÓN is Rubén Alcánta	TECNI I-ROC	AS AS Is a spe	TESIS: "Aplic UBIACIÓN: Elevis	ación de los m Rubén Alcánta	iétodos de ec ra Quispe	luilibrio límite, el taludes, Sec SALIDA N°: EST. N°:	ementos f ctor Calisp	finitos y diferen uquio-Cajamarı HOJA: FECHA:	cias finiatas e ca" - 2016	n el compor DE: HORA:	tamiento de	laderas y		RQD (Deer RMR (Bieniaw SMR (Romar SRC (Gonzales GSI (Hoek y Ma	r - 1967) vski - 1989) na - 1997) de V - 2003) arinos-2007)
1. DATA GPS			2. MACIZ	ZO ROCOSO	30	5SI (2)				.9	PROPIED/	ADES DE LA	S DISCONTIN	NUIDADES		
ISTEMA:	2.1 UNIC	DAD	2.2 RQD	2.3 METEORIZACIÓN	VALOR:		TIPOS	Oc(3)	ORIFNITACIÓN	Espaciado	Persist	Abertura	BLIGOS	REI	LLENO	ALTERAC -
STE: DRTF:	Formaci	ión:	:ON	1: Fresco, 2: Lev Met, 3: Mod, 4: Met, 5: Comp	Alt Macizo	Estructura	F=Fstratif	olpes ofcota		A(4): (m) 1=> 2	A(4): (m) 1 = < 1	A(4): (mm) 1=Nada		TIPO 1=Arcilloso	DUREZA 1 = Nineuna	METEOR 1=Inalt
OTA:	Miembi	ro:	L (m):		Homog.:	Disconts.:	D=Diac.	cou b S : A		2= 2-0,6	2 = 1-3	2=< 0.1	2=Rugosa	2=Qz / Silic	2=Duro<5mm	2=Lig. Alt
RROR:				2.4 FRACTURACIÓN			VIO. Fn=F. Nor.		DIRECCION.	3= 0,6-0,2	3 = 3-10	3=0,1-1,0	3=Lig. Rug	3=Calcita	3=Duro>5mm	3=Mod. Alt
AARCA Y SERIE:	Litología	a (1): λ	(ND/L):	1: Alto, 2: Medio, 3: Bajo	Macizo	Tipo:	PIEF. Inv.	t* o ləb s		4=0,2-0,06	4=10-20	4 =1,0-5,0	4=Ondlisa	4=Oxidos	4=Suave<5mm	4=Muy Alt
		A TALL			Heterog.		Fd=F. Dir.	pote artill bimd		5= < 0,06	5 = >20	5= > 5	5=Suave	5=Roca Trit	5=Suave>5mm	5=Descomp
Altura (m):	Pie (m):	4. IALU		Taud. Nat. (TN), Vol. o Cort. Pe	rf 1 5000 3	UN SUB .	SE=Sob.es.	Sch M B: Re	Z/R DIP D	D B(5): (m)	B(5): (m)	B(5): (mm)		b=BX 7=Panizo		
Dirección Pie (a	a) Talud (b)) Cat	beza (c)	(VCP), Precorte (P), Vol. Suave (V	(S), Mod. Alt.,	4: Muy Alt., 5:	C=Cont.							8=Veta	_	
Azimut (Z):				(VD):		-lujo:	1									
Dip:					_		7									
7. ESQUEMA				M			γĸ									
			11	C.X	ABFZA		t u									
		7				. ~	c 9									
		2		×		/	2									
						/	∞									
		_				T	6									
	A	_		7			10		_							
	ิป	_					11			_						
	L	_		<hr/>			12			_						
	יר	_					13									
	A						14									
N							15									
Id W	Ц	1				[16									
B2/		¥	1		STRUCTURA	S	17									
		/		4	vbrev-Sim		18									
_		/	-				19									
_		1					20									
							21									
							22					-				
							23									
_					Tinor do cuolo		24									
_					lipos de sueio, Jivel freático.		25	-								
_				-	(00000 L 0000 L 000		26									
						1	27			-						
Observaciones:							28	-								
							(1): Utilizar un	idades lito	lógicas del "mi'	, (2): Utilizar	las tablas de	il "GSI", (3) S	eleccionar el I	método de m	iedición de la Re	esistencia a
*Dirección del MS: hacia a	ibajo (1), hacia a	arriva (2,	.), horizonta	al (3)= E:(),D1:(),D2:()	()		la Compresión	Uniaxial, ((4) Seleccionar	un rango de v	alores, (5): .	Anotar la me	dida absoluta			

B.2 REGISTRO GEOMECÁNICO DE MACIZOS ROCOSOS

773000 9207000

3

	S DE LA Z O UTM-	ZONA DE WGS84
VÉRTICE	ESTE	NORTE
1	774000	9207000
2	774000	9206000
3	773000	9206000
4	773000	9207000

320 UNIVERSIDAD NACIONAL DE CAJAMARCA FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA GEOLÓGICA TESIS PROFESIONAL: APLICACIÓN DE LOS MÉTODOS DE EQUILIBRIO LÍMITE, ELEMENTOS FINITOS Y DIFERENCIAS FINITAS EN EL COMPORTAMIENTO DE LADERAS Y TALUDES SECTOR CALISPUQUIO-CAJAMARCA PLANO: IMAGEN SATELITAL TESISTA: Bach. Elvis Rubén Alcántara Quis P-02 ASESOR: ASESOR: MCs. Ing. Crispín Zenón Quispe Mamani
SISTEMA: UTM-WGS84 ESCALA: 1/4 000 FECHA: Enero 2017

	S DE LA Z O UTM-	ZONA DE WGS84
VÉRTICE	ESTE	NORTE
1	774000	9207000
2	774000	9206000
3	773000	9206000
4	773000	9207000

0 40

VERTICE	S DE LA Z	ZONA DE
ESTUDI	O UTM-	WGS84
VÉRTICE	ESTE	NORTE
1	774000	9207000
2	774000	9206000
3	773000	9206000
4	773000	9207000

) 40

VERTICE	S DE LA Z	ZONA DE
ESTUDI	O UTM-	WGS84
VÉRTICE	ESTE	NORTE
1	774000	9207000
2	774000	9206000
3	773000	9206000
4	773000	9207000

) 40

- Ki-in: Formación Inca
- Ki-f: Formación Farrat

	S DE LA Z	ZONA DE
VÉRTICE	ESTE	NORTE
1	774000	9207000
2	774000	9206000
3	773000	9206000
4	773000	9207000

) 40

240

VERTICE	S DE LA Z	ZONA DE
ESTUDI	O UTM-	WGS84
VÉRTICE	ESTE	NORTE
1	774000	9207000
2	774000	9206000
3	773000	9206000
4	773000	9207000

	S DE LA Z O UTM-	ZONA DE WGS84
VÉRTICE	ESTE	NORTE
1	774000	9207000
2	774000	9206000
3	773000	9206000
4	773000	9207000

) 40

EON	ERA	SISTEMA	SERIE	UNIDADES LITO- ESTRATIGRÁFICAS	ABR.	ESP. (m)	LITOLOGÍA	DESCRIPCIÓN
				Dep. Coluvio-Aluviales Dep. Deluviales	Qh-co/al Qh-de	30 20		Depósitos coluvio-aluviales con suelos CL>GC Depósitos deluviales con suelos MH>CL
		CUATERNARIO	HOLOCENO	Dep. Coluviales	Qh-co	30	120504	Depósitos coluviales con suelos GC>CH
				Dep. Aluviales	Qh-al	50		Depósitos aluviales con suelos GC>GM
	CENOZOICO	PALEÓGENO / NEÓGENO	OLIGOCENO / MIOCENO	Fm. Porculla	PN-vp	300		Discontinuidad angular Tobas traquíticas de color blanquesino ricas en cristales
							D . D . D	Discontinuidad angular
FANEROZOICO				Fm. Chúlec	Ki-chu	250		Lutitas calcareas intecaladas con calizas wackestone
	MESOZOICO	CRETÁCEO	INFERIOR	Fm. Inca	Ki-in	150		Areniscas ferruginosas intercaladas con lutitas cuarzosas
				Fm. Farrat	Ki-f	250		Areniscas cuarzosas intercaladas con limolitas cuarzosas
		UNC		UNIVER	SIDAD N	ACIO	NAL DE CAJAMA	RCA
		NACIONAL		ESCUELA ACADÉMIC	FACULT/	AD DE ESIO	E INGENIERÍA NAL DE INGENIE	RÍA GEOLÓGICA
			APLICA	CIÓN DE LOS MÉTODOS EN EL COMPORTAMIENT	te: S de equ o de lac	SIS PRO	D FESIONAL: D LÍMITE, ELEMENT Y TALUDES, SECT	OS FINITOS Y DIFERENCIAS OR CALISPUQUIO-CAJAMARCA
		5 / 1	COLUN	INA ESTRATIGRÁFICA D	EL ÁREA	DE ES	TUDIO	OCTUBRE DEL 2016
		Conagrar la vida a la busgorda y defensa de	TESISTA	Bach. Elvis Rubén Alcán	tara Quisp	e	ASESOR: MCs. Ing.	Crispín Zenón Quispe Mamani

	PRO	OPIEDADE	S GEOME	CÁNICAS	- N°1: FORMACIÓN	FARRAT	Г (Ki-f)	
	TIPO DE MAC	CIZO						
	Homogéne	20	A CONTRACT					N
R	OCA PREDOMI	NANTE:		THE ALL				No.
	Arenisca							
	DENSIDAD SI	ECA						Marka.
	2450 Kg/m	13	and the second s	- File	A A A A A			
	POROSIDA	D						
	0.16		4 A.	100 - A.	The set	1000		
۵	DENSIDAD SATU	JRADA	A Low All		MUTE SAL	-	12 3	
	2610 Kg/m	13			ARE SA	va de	- Mades	
ALTU	JRA PROMEDIC) TALUDES			F: 77	3051 N	· 9206030 7·	2035
	100 m		N.	M. C. C.		5554, N	. 5200050, 2.	2333
P	ARÁMETRO EN	TRADA	VALOR	UNIDAD	PARÁMETRO SAL	IDA	VALOR	UNIDAD
	o(ci)	Clase	3	R		mb	4.87058	-
	0(0)	Valor	35	MPa	Criterio Hoek-Brown	S	0.0204681	-
	Directo	Valor	65	-		а	0.501975	-
S		RQD	60	-	Mohr-Coulomb Fit	с	1.07578	MPa
G	Cuantificado	JCond89	25	-		φ	51.2742	grados
		Valor	67	-		σt	-0.147084	MPa
	mi		17	-	Parametros del	σc	4.96902	MPa
F	actor de distur	bación	0	-	macizo rocoso	σcm	10.843	MPa
	Relación de M	ódulo	275	-		Erm	6080.3	MPa

Tipo de rotura (Mogi)

Frágil

-

Ei

9625

MPa

	PR	OPIEDAD	ES GEOMI	ECÁNICA	S - N°2: FORMACIÓN	INCA (Ki-in)	
	TIPO DE MAC	IZO:	in A said		Maria Maria	ARC.	and the second	
	Heterogéne	90			Constant in	and the second	the second	23 6
R	OCA PREDOMI	NANTE:			Same Provent		THE AND	The the second
	Limolita			in ser		the Ye	A ALL	W. K.C.
	DENSIDAD SE	CA:				1.00	N. S. A. C	
	2400 Kg/m	3		Joseph .		12-	A SA WAS	134
	POROSIDA	D:		and the		k h.		
	0.085		~ NP	77 -		16		We a state
D	ENSIDAD SATU	IRADA:	S NOT	STYLE	and the second			
	2485 Kg/m	3	J. S. War		A AND AN	sta	A Was	
ALTU	RA PROMEDIO	TALUDES:	. The state of		No. 1 Company	A Wards	Contraction of the	
					C. 77	DALO NI		2070
	100 m				E: 77	3750, N	: 9206564 <i>,</i> Z:	2876
P	100 m Arámetro en	TRADA	VALOR	UNIDAD	E: 77 PARÁMETRO SALI	3750, N DA	: 9206564, Z: VALOR	2876 UNIDAD
P/	100 m ARÁMETRO EN	TRADA Clase	VALOR 2	UNIDAD R	E: 77 PARÁMETRO SALI	3750, N DA mb	: 9206564, Z: VALOR 0.981792	2876 UNIDAD -
P	100 m ARÁMETRO EN σ(ci)	TRADA Clase Valor	VALOR 2 25	UNIDAD R MPa	E: 77 PARÁMETRO SALI Criterio Hoek-Brown	3750, N DA mb s	9206564, Z: VALOR 0.981792 0.0022181	2876 UNIDAD - -
P	100 m ARÁMETRO EN σ(ci) Hetero	TRADA Clase Valor og.	VALOR 2 25 Heterg.	UNIDAD R MPa -	E: 77 PARÁMETRO SALI Criterio Hoek-Brown	3750, N DA mb s a	9206564, Z: VALOR 0.981792 0.0022181 0.508086	2876 UNIDAD - - -
P/	100 m ARÁMETRO EN σ(ci) Hetero Roca no res	TRADA Clase Valor og. sistente	VALOR 2 25 Heterg. Lutita	UNIDAD R MPa -	E: 77 PARÁMETRO SALI Criterio Hoek-Brown	3750, N DA mb s a c	9206564, Z: VALOR 0.981792 0.0022181 0.508086 0.474672	2876 UNIDAD - - - MPa
P/ esi	100 m ARÁMETRO EN σ(ci) Hetero Roca no res Tipo de m	TRADA Clase Valor og. sistente nacizo	VALOR 2 25 Heterg. Lutita V	UNIDAD R MPa - -	E: 77 PARÁMETRO SALI Criterio Hoek-Brown Mohr-Coulomb Fit	3750, N DA mb s а с ф	VALOR 0.981792 0.0022181 0.508086 0.474672 36.2062	2876 UNIDAD - - - MPa grados
P/ Cesi	100 m ARÁMETRO EN σ(ci) Hetero Roca no res Tipo de m Valo	TRADA Clase Valor og. sistente nacizo r	VALOR 2 25 Heterg. Lutita V 45	UNIDAD R MPa - - -	E: 77 PARÁMETRO SALI Criterio Hoek-Brown Mohr-Coulomb Fit	3750, Ν DA mb s a c φ ot	VALOR 0.981792 0.0022181 0.508086 0.474672 36.2062 -0.0564805	2876 UNIDAD - - MPa grados MPa
P/ BSI	100 m ARÁMETRO EN σ(ci) Hetero Roca no res Tipo de m Valo mi	TRADA Clase Valor og. sistente nacizo r	VALOR 2 25 Heterg. Lutita V 45 7	UNIDAD R MPa - - - - - - -	E: 77 PARÁMETRO SALI Criterio Hoek-Brown Mohr-Coulomb Fit Parametros del	3750, Ν DA mb s a c φ ot oc	9206564, Z: VALOR 0.981792 0.0022181 0.508086 0.474672 36.2062 -0.0564805 1.12065	2876 UNIDAD - - MPa grados MPa MPa
P/ IS9	100 m ARÁMETRO EN σ(ci) Hetero Roca no res Tipo de m Valo mi actor de distur	TRADA Clase Valor og. sistente nacizo r bación	VALOR 2 25 Heterg. Lutita V 45 7 0	UNIDAD R MPa - - - - - -	E: 77 PARÁMETRO SALI Criterio Hoek-Brown Mohr-Coulomb Fit Parametros del macizo rocoso	3750, Ν DA mb s a c φ ot oc σcm	VALOR 0.981792 0.0022181 0.508086 0.474672 36.2062 -0.0564805 1.12065 3.2886	2876 UNIDAD - - MPa grados MPa MPa MPa
P/ ISD	100 m ARÁMETRO EN σ(ci) Hetero Roca no res Tipo de m Valo mi actor de distur Relación de Mo	TRADA Clase Valor og. sistente nacizo r bación ódulo	VALOR 2 25 Heterg. Lutita V 45 7 0 375	UNIDAD R MPa - - - - - - - - - - -	E: 77 PARÁMETRO SALI Criterio Hoek-Brown Mohr-Coulomb Fit Parametros del macizo rocoso	3750, Ν DA mb s a c φ σt σc σcm Erm	9206564, Z: VALOR 0.981792 0.0022181 0.508086 0.474672 36.2062 -0.0564805 1.12065 3.2886 2096.72	2876 UNIDAD - - MPa grados MPa MPa MPa MPa

				<u> </u>			(1 <i>4</i>) 1 1	
	PRO	PIEDADES	GEOMEC	ANICAS -	N°3: FORMACION C	HULEC	(Ki-chu)	
	TIPO DE MAC	CIZO	- 20	1343	Contraction of the second			S. C. S.
	Heterogéne	eo		(Alan	Contraction of the			
R	OCA PREDOMI	NANTE:			MAL SAME	a formation		
	Caliza esparí	tica			AD ICHON "			
	DENSIDAD SI	ECA	1-1-1-1		4 to 1 1 1	and the second	0	
	2450 Kg/m	13	All S.	783	18 18 22	a Jen	A HANN	Sales inc.
	POROSIDA	D	1 All	A CONST	AND AND A	· mark	10	Marchine
	0.11		and the	1.1.1.1.1	CONTRACTOR OF THE			Service 1
[DENSIDAD SATU	JRADA	A 144		A CONTRACTOR	Cast C	M. A.	and the sec
	2560 Kg/m	13		ALC: N	ACTION ON	A Contraction	A State	
ALTU	JRA PROMEDIC) TALUDES	1.2.1.4	11.74 5		AL SECT		
	100 m		Sector VI	Store Pho	E: 773	3639, N:	9206214, Z: 2	2940
P	ARÁMETRO EN	TRADA	VALOR	UNIDAD	PARÁMETRO SAL	IDA	VALOR	UNIDAD
	-(-;)	Clase	3	R		mb	1.67677	-
	0(0)	Valor	35	MPa	Criterio Hoek-Brown	S	0.0038659	-
	Heter	og.	Heterg.	-		а	0.505734	-
5	Roca no re	sistente	Lutita	-	Mahr Caulamh Fit	с	0.682811	MPa
Ğ	Tipo de n	nacizo	IV	-		φ	43.0543	grados
	Valo	r	50	-		σt	-0.080695	MPa
	mi		10	-	Parametros del	σc	2.10795	MPa
F	actor de distur	bación	0	-	macizo rocoso	σcm	6.10167	MPa
	Relación de M	ódulo	700	-		Erm	7526.05	MPa
	F :		24500	MPa	Tipo de rotura (M	ogi)	Frágil	_

	PROPI	EDADES G	EOMECÁ	NICAS - M	N°4: FORMACIÓN PO	RCULLA	A (PN-vp)	
	TIPO DE MAC	IZO:						
	Homogéne	0		PINKI .		20 365		
R	OCA PREDOMII	NANTE:			Le Mander Ver	19.2		
	Toba				A PHALE AND			
	DENSIDAD SE	CA:						
	2100 Kg/m	3	A Stores	"murung				
	POROSIDA	D:		1.54	的复数有一个	1 Arra	al sur	4" ·
	0.27		J. P. Maria		A RECEIPTION	-	the second	C. C
C	ENSIDAD SATU	IRADA:	Sec. A		the second second	- A		1. AM
	2370 Kg/m	3	A Designed	Consider and		AN AN	Areas and	
	0,		and the second	A REAL PROPERTY AND A REAL				WARPEN OVER THE REPORT
ALTU	RA PROMEDIO	TALUDES:			F , 772	0442 NI.	0206106 7.2	
ALTU	IRA PROMEDIO 100 m	TALUDES:			E: 773	3442 <i>,</i> N:	9206196, Z: 2	989
ALTU	IRA PROMEDIO 100 m ARÁMETRO EN	TALUDES:	VALOR	UNIDAD	E: 773	8442, N: I DA	9206196, Z: 2 VALOR	UNIDAD
ALTU P	IRA PROMEDIO 100 m ARÁMETRO EN	TALUDES: TRADA Clase	VALOR 3	UNIDAD R	E: 773 PARÁMETRO SAL	8442, N: IDA mb	9206196, Z: 2 VALOR 1.42001	UNIDAD
ALTU P	IRA PROMEDIO 100 m ARÁMETRO EN σ(ci)	TALUDES: TRADA Clase Valor	VALOR 3 30	UNIDAD R MPa	E: 773 PARÁMETRO SAL Criterio Hoek-Brown	8442, N: DA mb s	9206196, Z: 2 VALOR 1.42001 0.0010191	2989 UNIDAD - -
ALTU P	IRA PROMEDIO 100 m ARÁMETRO EN σ(ci) Directo	TALUDES: TRADA Clase Valor Valor	VALOR 3 30 38	UNIDAD R MPa -	E: 773 PARÁMETRO SAL Criterio Hoek-Brown	A42, N: DA mb s a	9206196, Z: 2 VALOR 1.42001 0.0010191 0.51302	2989 UNIDAD - - -
	IRA PROMEDIO 100 m ARÁMETRO EN σ(ci) Directo	TALUDES: TRADA Clase Valor Valor RQD	VALOR 3 30 38 25	UNIDAD R MPa -	E: 773 PARÁMETRO SAL Criterio Hoek-Brown	B442, N: DA mb s a c	9206196, Z: 2 VALOR 1.42001 0.0010191 0.51302 0.483318	UNIDAD MPa
ALTU P	RA PROMEDIO 100 m ARÁMETRO EN σ(ci) Directo Cuantificado	TALUDES: TRADA Clase Valor Valor RQD JCond89	VALOR 3 30 38 25 15	UNIDAD R MPa - - -	E: 773 PARÁMETRO SAL Criterio Hoek-Brown Mohr-Coulomb Fit	d442, N: DA mb s a c φ	9206196, Z: 2 VALOR 1.42001 0.0010191 0.51302 0.483318 41.7566	UNIDAD - - - MPa grados
ALTU P/	IRA PROMEDIO 100 m ARÁMETRO EN σ(ci) Directo Cuantificado	TALUDES: TRADA Clase Valor Valor RQD JCond89 Valor	VALOR 3 30 38 25 15 35	UNIDAD R MPa - - - -	E: 773 PARÁMETRO SAL Criterio Hoek-Brown Mohr-Coulomb Fit	442, N: DA mb s a c φ σt	9206196, Z: 2 VALOR 1.42001 0.0010191 0.51302 0.483318 41.7566 -0.021529	UNIDAD - - - MPa grados MPa
ALTU P,	RA PROMEDIO 100 m ARÁMETRO EN σ(ci) Directo Cuantificado mi	TALUDES: TRADA Clase Valor Valor RQD JCond89 Valor	VALOR 3 30 38 25 15 35 13	UNIDAD R MPa - - - - -	E: 773 PARÁMETRO SAL Criterio Hoek-Brown Mohr-Coulomb Fit Parametros del	8442, N: DA mb s a c φ σt σc	9206196, Z: 2 VALOR 1.42001 0.0010191 0.51302 0.483318 41.7566 -0.021529 0.875516	UNIDAD MPa grados MPa MPa MPa
	RA PROMEDIO 100 m ARÁMETRO EN σ(ci) Directo Cuantificado mi actor de distur	TALUDES: TRADA Clase Valor Valor RQD JCond89 Valor bación	VALOR 3 30 38 25 15 35 13 0	UNIDAD R MPa - - - - - - - - -	E: 773 PARÁMETRO SAL Criterio Hoek-Brown Mohr-Coulomb Fit Parametros del macizo rocoso	A42, N: mb s a c φ σt σc σcm	9206196, Z: 2 VALOR 1.42001 0.0010191 0.51302 0.483318 41.7566 -0.021529 0.875516 4.56489	2989 UNIDAD - - - MPa grados MPa MPa MPa
	RA PROMEDIO 100 m ARÁMETRO EN σ(ci) Directo Cuantificado mi actor de distur Relación de Mo	TALUDES: TRADA Clase Valor Valor RQD JCond89 Valor bación ódulo	VALOR 3 30 38 25 15 35 13 0 300	UNIDAD R MPa - - - - - - - - - - - - - - -	E: 773 PARÁMETRO SAL Criterio Hoek-Brown Mohr-Coulomb Fit Parametros del macizo rocoso	A442, N: DA mb s a c φ σt σc σcm Erm	9206196, Z: 2 VALOR 1.42001 0.0010191 0.51302 0.483318 41.7566 -0.021529 0.875516 4.56489 1252.83	UNIDAD - - MPa grados MPa MPa MPa MPa MPa

PROP	IEDADES O	GEOMECÁ	NICAS -	N°5: DEPÓSITOS	S ALU	VIALES	(Qh-al)	
DEPÓSITC)				1 8 3	120		A State
Aluvial					ALC: NO	A WAY		
CLASIFICACIÓN	SUCS			A Carlot	The La Has		al same it	AL CONT
GC>GM			the state	son and the state			the state	At SIL
DENSIDAD SE	ECA	e V Property	Sale Con	A. "于我"		in the	委如在了	AS REAL
2100 Kg/m	3				25.	A State		
POROSIDA	D	a more	Charles I			1.10	the Cal	
0.5		R. A.	What we have		E.	CA.	1. 2.1.	
DENSIDAD SATU	JRADA		Athe and		Per C		N. T. WAR	
2600 Kg/m	3	And a second	小林	金林派 个	1 10 1			
ALTURA PROMEDIC) TALUDES		1 Marine 1	Not the other	1.1.1.1	1111		
100 m			A State		E: 77	73801, N	I: 9206515, Z:	2868
PARÁMETR	0	VALOR	UNIDAD	PARÁME	TRO		VALOR	UNIDAD
Cohesión	С	6	КРа	Resistencia tensi	onal	σt	-0.5	КРа
Ángulo de fricción	ф	35	Grados	Resistencia unia	ixial	σc	23.0518	КРа
Alfa	α	74.8376	Grados	Módulo de You	ing	E	12	MPa

PROPI	EDADES G	EOMECÁI	NICAS - N	N°6: DEPÓSITOS COLU	JVIALES	6 (Qh-co)	
DEPÓSITC)						
Coluvial							N DE
CLASIFICACIÓN	SUCS				to get	145-29 ST	A SHEAT
GC>CH			- Alexandre	Addition and the	11-1-1-		A STAT
DENSIDAD SI	ECA	12-10°	Statis .			and the second second	
1800 Kg/m	3		1.28	Contraction of the second	- Sic	100	
POROSIDA	D			100 200 123			
0.5				FRA L	- Frait	And 24.3	-
DENSIDAD SATU	JRADA	A Star	See al	be i de la trate	2	- Ande	
2300 Kg/m	3		A Car	the second and the	大大学	at and	
ALTURA PROMEDIC	TALUDES		Mr. T	and the second second	1. 20		
100 m		2 March	为国际大学	E: 77	3367 <i>,</i> N	: 9206364 <i>,</i> Z:	2976
PARÁMETR	0	VALOR	UNIDAD	PARÁMETRO		VALOR	UNIDAD
Cohesión	С	8	КРа	Resistencia tensional	σt	-0.5	КРа
Ángulo de fricción	ф	34	Grados	Resistencia uniaxial	σc	30.0916	КРа
Alfa	α	74.2136	Grados	Módulo de Young	E	16	MPa

PROPI	EDADES G	EOMECÁ	NICAS -	N°7: DEPÓSITOS DE	LUVIAL	ES (Qh-de)	
DEPÓSITC)			a character and the	20 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
Deluvial		- and the second	6				
CLASIFICACIÓN	SUCS	in the		and the second			a cater a
MH>CL			1 . · · ·	Contraction of the second	- Colora		and the second second
DENSIDAD SE	ECA						-
1750 Kg/m	3			A MORENTON -	il in		
POROSIDA	D				-		and the second second
0.5			Film.	Norman States		State Sta	R
DENSIDAD SATU	JRADA	and the	- Add	In the second	and the second second	IC MITHING	
2000 Kg/m	3	- 15	1.000			HER. C.	make to
ALTURA PROMEDIC) TALUDES		Carry	E 777	C20 NH		
100 m				E: //3	630, N:	9206570, 2: 2	899
PARÁMETR	0	VALOR	UNIDAD	PARÁMETRO		VALOR	UNIDAD
Cohesión	С	3	КРа	Resistencia tensional	σt	-0.5	КРа
Ángulo de fricción	ф	25	Grados	Resistencia uniaxial	σc	9.41811	КРа
Alfa	α	67.9098	Grados	Módulo de Young	E	8	MPa

PROPIEDAD	ES GEOMI	ECÁNICAS	- N°8: D	EPÓSITOS COLUVIO-	ALUVIA	LES (Qh-co/	al)
DEPÓSITC)		Runn				
Coluvio/Aluv	vial					2 All	
CLASIFICACIÓN	SUCS	Sugar 1	and the second	and the second second			
CL>GC		T YE	-		Contraction of the	and the second	
DENSIDAD SI	ECA			and the second	a start of		and the second
1900 Kg/m	13	Contraction of the	1.28			A. SE	and the second
POROSIDA	D						ence -
0.5		教師で	W. P.	All and the second		Ma is the	
DENSIDAD SATU	JRADA	* *	MALL:	1 Bet managed			NS CH
2400 Kg/m	13	No. AN	A BETT		123		
ALTURA PROMEDIC) TALUDES		Y and a set	E. 77	2444 NI	0206450 7	2022
100 m				E: //.	3444, N	9206458, Z:	2933
PARÁMETR	RO	VALOR	UNIDAD	PARÁMETRO		VALOR	UNIDAD
Cohesión	С	6	КРа	Resistencia tensional	σt	-0.5	КРа
Ángulo de fricción	ф	30	Grados	Resistencia uniaxial	σc	20.7846	КРа
Alfa	α	71.5651	Grados	Módulo de Young	E	14	MPa

-		Material Name	Color	Unit Weight (kN/m3)	Strength Type	Cohesion (kPa)	Phi (deg)	UCS (kPa)	m	s	а	Water Surface	Ru
020		Qh-de		17.5	Mohr-Coulomb	3	25					None	0
ē -		PN-vsp		21	Generalized Hoek-Brown			30000	1.42001	0.00101905	0.51302	None	0
_		Ki-in		24	Generalized Hoek-Brown			25000	0.981792	0.00221808	0.508086	None	0
		Ki-f		24.5	Generalized Hoek-Brown			35000	4.87058	0.0204681	0.501975	None	0
2950		000000000000000000000000000000000000000	0000000										
				20000000000000000000000000000000000000	O O O O O O O O O O O O O O O O O O O	0.50							
50 2900				000000000000000000000000000000000000000	Attention and and and and and and and and and an	Contraction of Contra	and and and	o o	o o			2000 ° ° ° °	, o o
2850 2900	50			150	200	250			300				400
2900	50 TESIS PROFESIONAL	°	ΔΡ	150 ESG	200 UNIVERSIDAD FACULT CUELA ACADEMICO PRO	250 NACIONA AD DE INIFESIONAL	L DE C GENIE . DE IME	AJAMAI	300 RCA	DGICA		1	o 400
2850 2900 2900	50 TESIS PROPESIONAL		AP	150 ESG LICACION DE L EN EL COM	200 UNIVERSIDAD FACULT CUELA ACADEMICO PRO OS METODOS DE EQUILIBR IPORTAMIENTO DE LADERY	250 NACIONA FESIONAL IO LIMITE, S Y TALUD	L DE C GENIE DE IN F ELEME FES, SEC	AJAMAI RIA IGENIEI INTOS FI CTOR CA	300 RCA RIA GEOLU NITOS Y E LISPUQUIC	DGICA JIFERENCIAS I JCAJAMARCA	550 FINITAS		400

