UNIVERSIDAD NACIONAL DE CAJAMARCA FACULTAD DE INGENIERÍA

ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA GEOLÓGICA

TESIS PROFESIONAL

ANÁLISIS GEOLÓGICO - GEOTÉCNICO EN LOS TALUDES DE LA CARRETERA CHOROPAMPA - MAGDALENA

Para optar El Título Profesional de:

INGENIERO GEÓLOGO

Presentado Por: BACH. NORA MELISSA ARTEAGA FERNÁNDEZ

Asesor: ING. ROBERTO SEVERINO GONZALES YANA

Cajamarca - Perú

2017

AGRADECIMIENTO

A Dios, por darme la vida, por guiar mi camino día a día y por darme fuerzas para seguir luchando por mis metas y sueños.

A mi alma mater, la Universidad Nacional de Cajamarca, a la Facultad de Ingeniería y en especial a la Escuela Académico Profesional de Ingeniería Geológica, y a todos mis docentes, por brindarme todas las enseñanzas necesarias para mi desarrollo profesional.

A mi asesor de tesis, el Ing. Roberto Gonzales Yana, quien, con sus conocimientos, su tiempo, su orientación y recomendaciones, hizo posible la culminación de esta tesis.

A mis padres, por sus inagotables esfuerzos para ayudarme a alcanzar mis metas, a mi tía Catalina por sus consejos y apoyo incondicional, a mi tía Vilma, mi tía Esperanza, Alicia y Melanie, quienes siempre me alentaron a seguir adelante; gracias por ser una inspiración para mí.

A mis amigas y amigos, quienes siempre persiguen incansablemente sus metas y sueños, que de una u otra manera influyeron en el desarrollo de esta tesis, y que con sus palabras y acciones me apoyan en este arduo camino.

DEDICATORIA

A mis padres, Ana María y José Cruz, quienes me brindan su tiempo y apoyo sin importar las circunstancias, y enfrentan día a día las adversidades de la vida para seguir prosperando; gracias por ser mi motivación y ejemplo a seguir.

CONTENIDO

ÍNDICE DE TABLAS ÍNDICE DE FIGURAS ABREVIATURAS Y SÍMBOLOS......x INTRODUCCIÓN......1 MARCO TEÓRICO ANTECEDENTES TEÓRICOS DE LA INVESTIGACIÓN 2.1 2.2 2.2.1 2.2.2 2.2.3 SISTEMA UNIFICADO DE CLASIFICACIÓN DE SUELOS 13 2.2.4 EL CRITERIO DE ROTURA DE HOEK-BROWN 14 2.2.5 2.2.6 2.2.7 2.2.8 2.3 3.1 3.1.1 3.1.2 3.1.3 3.1.4

		Pág.
3.1.5	HIDROLOGÍA	
3.2	PROCEDIMIENTOS	
3.2.1	METODOLOGÍA DE LA INVESTIGACIÓN	
3.2.2	DEFINICIÓN DE VARIABLES	
3.2.3	TÉCNICAS	
3.2.4	INSTRUMENTOS Y EQUIPOS	30
3.3	ANÁLISIS DE DATOS Y PRESENTACIÓN DE RESULTADOS	30
3.4	ESTRATIGRAFÍA	30
3.4.1	GRUPO CRISNEJAS	30
3.4.2	GRUPO PULLUICANA	
3.4.3	SILL DIORÍTICO (Nm-di)	
3.4.4	DEPÓSITOS CUATERNARIOS	
3.5	PROPIEDADES GEOMECÁNICAS DE LAS UNIDADES GEOLÓGIC	AS 35
3.5.1	GEOMECÁNICA DE LAS UNIDADES CRETÁCICAS	35
3.5.2	GEOMECÁNICA DE LOS DEPÓSITOS CUATERNARIOS	
3.6	GEOTECNIA	
3.6.1	TALUD 01	
3.6.2	TALUD 02	39
3.6.3	TALUD 03	41
3.6.4	TALUD 04	
3.6.5	TALUD 05	
3.6.6	TALUD 06	
3.6.7	TALUD 07	45
3.6.8	TALUD 08	46
3.6.9	TALUD 09	47
3.6.10	TALUD 10	
3.6.11	TALUD 11	
3.6.12	TALUD 12	50
3.6.13	TALUD 13	51
3.6.14	TALUD 14	52
3.6.15	TALUD 15	54

		Pág.
CAPÍ	ÍTULO IV	55
ANÁI	LISIS Y DISCUSIÓN DE RESULTADOS	55
4.1	ANÁLISIS DE LA INFORMACIÓN	55
4.2	DISCUSIÓN DE RESULTADOS	57
4.2.1	INFLUENCIA DE LOS FACTORES GEOLÓGICOS-GEOTÉCNICOS I INESTABILIDAD	EN LA 57
4.2.2	ZONIFICACIÓN DE ESTABILIDAD SEGÚN EL FACTOR DE SEGU	RIDAD 60
4.3	CONTRASTACIÓN DE LA HIPÓTESIS	61
CAPÍ	ÍTULO V	62
CON	CLUSIONES Y RECOMENDACIONES	62
5.1	CONCLUSIONES	62
5.2	RECOMENDACIONES	62
REFI	ERENCIAS BIBLIOGRÁFICAS	64
ANE	XOS	66
A. RI	ESULTADO DEL ANÁLISIS CON EL SOFTWARE ROCDATA V5.0	66
B. RI	ESULTADO DEL ANÁLISIS CON EL SOFTWARE SLIDE V7.0	66
C. PL	ANOS	66

ÍNDICE DE TABLAS

Tabla 1:	Tabla de Clasificación SUCS (Braja, M. 2001)14
Tabla 2:	Caracterización del macizo rocoso en función de los bloques basado en el
	entrabamiento y las condiciones de las juntas. (Hoek, E. 2006) 16
Tabla 3:	Estimación del GSI para macizos heterogéneos como Flysch. (Hoek, E. 2006)
Tabla 4:	Variables de sismicidad para obtener las componentes sísmicas horizontales y
	verticales. (LoadCap, 2014)
Tabla 5:	Coordenadas UTM: DATUM WGS84 de los límites de la carretera25
Tabla 6:	Vía de acceso al tramo de estudio
Tabla 7:	Definición de variables
Tabla 8:	Propiedades geomecánicas de la Formación Chúlec
Tabla 9:	Propiedades geomecánicas de la Formación Pariatambo
Tabla 10:	Propiedades geomecánicas del Grupo Pulluicana
Tabla 11:	Propiedades geomecánicas de los depósitos aluviales
Tabla 12:	Propiedades geomecánicas de los depósitos deluviales
Tabla 13:	Propiedades geomecánicas de los depósitos coluvio-aluviales (Suelos GC>MH)
Tabla 14: F	Propiedades geomecánicas de los depósitos coluvio-aluviales (Suelos GC>CL)
Tabla 15:	Descripción y factor de seguridad obtenido en el Talud 01
Tabla 16:	Descripción y factor de seguridad obtenido en el Talud 02
Tabla 17:	Descripción y factor de seguridad obtenido en el Talud 03
Tabla 18:	Descripción y factor de seguridad obtenido en el Talud 04
Tabla 19:	Descripción y factor de seguridad obtenido en el Talud 05
Tabla 20:	Descripción y factor de seguridad obtenido en el Talud 06
Tabla 21:	Descripción y factor de seguridad obtenido en el Talud 07
Tabla 22:	Descripción y factor de seguridad obtenido en el Talud 08 46
Tabla 23:	Descripción y factor de seguridad obtenido en el Talud 09 47
Tabla 24:	Descripción y factor de seguridad obtenido en el Talud 10
Tabla 25:	Descripción y factor de seguridad obtenido en el Talud 11
Tabla 26:	Descripción y factor de seguridad obtenido en el Talud 12 50

	Pág.
Tabla 27:	Descripción y factor de seguridad obtenido en el Talud 13
Tabla 28:	Descripción y factor de seguridad obtenido en el Talud 14
Tabla 29:	Descripción y factor de seguridad obtenido en el Talud 15
Tabla 30:	Resumen de los factores de seguridad de los taludes analizados (Talud 1-11).56
Tabla 31:	Resumen de los factores de seguridad de los taludes analizados (Talud 12-15)
Tabla 32:	Zonificación del área de estudio según los factores de seguridad60

ÍNDICE DE FIGURAS

Figura 1:	Gráfico que muestra los diferentes métodos de cálculo. (Herrera, F. 2003) 6
Figura 2:	Talud con ángulo uniforme y talud excavado de forma escalonada con bermas y
	bancos. (González de Vallejo L. et. al., 2004)7
Figura 3:	Equilibrio o desequilibrio de fuerzas en un talud. (Suarez, J. 2009)9
Figura 4:	El efecto de deterioro. (Suarez, J. 2009)9
Figura 5:	Evolución de un deslizamiento en la roca fracturada al profundizarse en un cauce
	por erosión permanente. (Suarez, J. 2009)11
Figura 6:	Inicio de una falla progresiva. (Suarez, J. 2009)12
Figura 7:	Esquema de la generación de una falla progresiva en suelos que pierden
	resistencia al deformarse (Suarez, J. 2009)
Figura 8:	Representación de la envolvente de Mohr-Coulomb en el espacio de tensiones
	normal y tangencial. (Melentijevic, S. 2005)
Figura 9:	Caídos de bloques en caída libre de roca fracturada. (Suarez, J. 2009)20
Figura 10:	Desplazamiento de rotación en una ladera. (Suarez, J. 2009) 20
Figura 11:	Flujo de bloques de roca y residuos en la excavación de un "talud" para la
	construcción de una vía. (Suarez, J. 2009)
Figura 12:	Zonas sísmicas en el Perú y Cajamarca. (Ministerio de Vivienda, Construcción
	y Saneamiento, 2016)
Figura 13:	Cauce del río Magdalena, en donde se observa depósitos fluviales constituidos
	por clastos polimícticos redondeados, su tamaño varía desde arcilla hasta gravas.
Figura 14:	Quebrada Tallal, ubicada en las coordenadas N: 9195004 y E: 76965027

vii

Pág.

Figura 15:	Vista de la quebrada de Lucma, que atraviesa la carretera en el Km 126+250
	Coordenadas N: 9194269 y E: 76708927
Figura 16:	Quebrada El Mirme, se observa derrumbes en los márgenes, ubicada en las
	coordenadas N: 9195720 y E: 761792
Figura 17:	Estratos de calizas de la Formación Chúlec, en contacto con un cuerpo intrusivo.
Figura 18:	Estratos de calizas bituminosas intercaladas con lutitas de la Formación
	Pariatambo
Figura 19:	Estratos de calizas mudstone del Grupo Pulluicana
Figura 20:	Sill de composición diorítica, intruyendo lateralmente dos capas de rocas
	sedimentarias
Figura 21:	Depósitos aluviales, conformados por suelos gravo-arcillosos y arcillas de alta
	plasticidad, cercanos a la Quebrada de Lucma33
Figura 22:	Depósitos coluvio-aluviales compuestos por arcillas y limos de alta plasticidad,
	y gravas arcillosas. Ubicado en el Km 123+950
Figura 23:	Depósitos deluviales en las laderas de los cerros, conformado por materiales
	erosionados que no han sido transportados
Figura 24:	Depósitos fluviles de la quebrada de Lucma, compuesto por gravas, limos y
	arcillas
Figura 25:	Talud 01, constituido por depósitos cuaternarios
Figura 26:	Talud 02, constituidos por calizas de la Formación Pariatambo, se observan
	bloques rocosos muy inestables
Figura 27:	Análisis en el software Dips v6.0 del talud 02 40
Figura 28:	Talud 03, compuesto por depósitos coluvio-aluviales que presentan bloques sub-
	angulosos y limos arcillosos
Figura 29:	Talud 04, constituido por depósitos aluviales, se puede observar una buena
	clasificación de los clastos
Figura 30:	Talud 05, constituido por depósitos coluvio-aluviales
Figura 31:	Talud 06, constituido por depósitos aluviales, que tienen alto contenido de finos.
Figura 32:	Talud 07, constituido por depósitos aluviales45
Figura 33:	Talud 08, compuesto por depósitos coluvio-aluviales
Figura 34:	Talud 09, constituido por depósitos aluviales47

	Pág.
Figura 35:	Talud 10, compuesto por depósitos coluvio-aluviales principalmente
Figura 36:	Talud 11, constituidos por depósitos coluvio-aluviales
Figura 37:	Talud 12, constituido por calizas de la Formación Pariatambo, altamente
	meteorizadas
Figura 38:	Talud 13, constituido por depósitos aluviales51
Figura 39:	Talud 14, constituido por calizas del Grupo Pulluicana
Figura 40:	Análisis en el software Dips v6.0 del talud 14
Figura 41:	Talud 15, formado por depósitos aluviales inestables54
Figura 42:	Gráfico del factor de seguridad de los taludes en condiciones normales 58
Figura 43:	Gráfico del factor de seguridad de los taludes en condiciones de saturación59
Figura 44:	Gráfico del factor de seguridad de los taludes en condiciones de sismicidad60

a	: Constante que depende de las propiedades del macizo rocoso
al	: Aluvial
c	: Cohesión
chu	: Chúlec (Formación)
CL	: Arcillas inorgánicas de plasticidad baja a media
со	: Coluvial
co/al	: Coluvio-Aluvial
D	: Factor de disturbación del macizo rocoso
Dn	: Discontinuidad n
de	: Deluvial
Е	: Este
E	: Módulo de Young o Módulo de Elasticidad
Ei	: Módulo de Young de la roca intacta
Erm	: Modulo de deformación del macizo rocoso
fl	: Fluvial
FS	: Factor de Seguridad
GC	: Gravas Arcillosas
GSI	: Índice de Resistencia Geológica
Kh	: Amplificación Estratigráfica (Sismicidad)
Ki	: Cretáceo Inferior
Km	: Kilometro
Ks	: Cretáceo Superior
Kv	: Parametros de Zona (Sismicidad)
m ³	: Metro cúbico
mb	: Valor reducido de la constante del material m _i
mi	: Parámetro de la roca intacta obtenido de ensayos triaxiales
MH	: Limos inorgánicos de alta plasticidad.
ML	: Limos inorgánicos de plasticidad baja.
MN	: Meganewton
MPa	: Megapascales
Ν	: Newton
Ν	: Norte

ABREVIATURAS Y SÍMBOLOS

NE	: Noreste
Nm	: Neógeno-Mioceno
р	: Pulluicana (Grupo)
pa	: Pariatambo (Formación)
Qh	: Cuaternario-holoceno
S	: Constante que depende de las propiedades del macizo rocoso
S	: Sur
sigc	: Resistencia a la compresión uniaxial del macizo rocoso
sigcm	: Resistencia global del macizo rocoso
sigt	: Fuerza de tensión del macizo rocoso
SP	: Arenas mal graduadas, arenas con grava
SUCS	: Sistema Unificado de Clasificación de Suelos
SW	: Suroeste
σ_1'	: Tensión efectiva principal mayor en el momento de la rotura
σ'_3	: Tensión efectiva principal menor en el momento de la rotura
σ_{ci}	: Resistencia a la compresión uniaxial de los bloques de roca
ϕ	: Ángulo de fricción
τ	: Tensión tangencial
UTM	: Universal Transversal de Mercator
W	: Oeste
WGS8	34: World Geodetic System 1984

γ : Peso específico

RESUMEN

Los taludes de la carretera Choropamapa - Magdalena, están constituidos por depósitos cuaternarios aluviales, deluviales y coluvio-aluviales, las Formaciones Chúlec, Pariatambo, Grupo Pulluicana e intrusivos dioríticos que, junto a procesos de meteorización y condiciones climáticas, la inestabilidad de los taludes incrementa; siendo mayor el riesgo en periodos de lluvias intensas. Esta investigación analiza el comportamiento geológico geotécnico en los taludes de la carretera, y cómo influye en su inestabilidad; para ello, se identificaron características litológicas, físicas, geomecánicas de los materiales que conforman los taludes, y factores condicionantes, localizando con ello las zonas críticas de inestabilidad que son susceptibles a deslizamientos. Se estudiaron 15 taludes, que fueron analizados con el Software Slide v7.0 (Método de Equilibrio Límite), utilizando los factores geológicos de cada talud, para la determinación de los parámetros geomecánicos de las unidades geológicas, mediante el análisis en el Software RocData v5.0. El Criterio de Mohr-Coulomb fue utilizado para los taludes de suelos y el Criterio Generalizado de Hoek-Brown para los taludes de roca. Con todos estos datos se obtuvieron los factores de seguridad en los taludes, en condiciones normales, de saturación de los materiales y sismicidad; como resultado se obtuvo la zonificación de la carretera en tramos con inestabilidad absoluta, inestabilidad relativa, estabilidad relativa, estabilidad temporal y estabilidad permanente. El tramo más inestable de la carretera está en el Km 116+500 al Km 118+000, donde los taludes tienen el más bajo factor de seguridad.

Palabras claves: Depósitos Cuaternarios, Análisis de Estabilidad, Factor de Seguridad, Método de Equilibrio Limite.

ABSTRAC

The slopes of the Choropamapa - Magdalena road, are constituted by alluvial, deluvial and coluvial-alluvial Quaternary deposits, the Chúlec Formation, Pariatambo Formation, Pulluicana Group and dioritic intrusive that, together with weathering processes and climatic conditions, the instability of the slopes increases; being greater the risk in periods of intense rains. This research analyzes the geological - geotechnical behavior in the slopes of the road, and how it influences its instability; for this purpose, lithological, physical and geomechanical characteristics of the materials that make up the slopes and conditioning factors were identified, locating with it critical areas of instability that are susceptible to landslides. Fifteen slopes were analyzed, with Software Slide v7.0 (Limit Equilibrium Method), using the geological factors of each slope, for the determination of the geomechanical parameters of the geological units, through the analysis in the software RocData v5 .0. The Mohr-Coulomb Criterion was used for ground slopes and the Hoek-Brown Generalized Criterion for rock slopes. With all these data, the safety factors were obtained in the slopes, under normal conditions, of saturation of the materials and seismicity; as result, the road zoning was obtained in sections with absolute instability, relative instability, relative stability, temporal stability and permanent stability. The most unstable stretch of road is at Km 116 + 500 to Km 118 + 000, where the slopes have the lowest safety factor.

Keywords: Quaternary Deposits, Stability Analysis, Safety Factor, Limit Equilibrium Method.

CAPÍTULO I

INTRODUCCIÓN

La inestabilidad de taludes en carretas es un problema que ocurre frecuentemente en el Perú, provocando deslizamientos que afecta principalmente a la vida humana, y que causa pérdidas económicas cuantiosas. Por ello evaluar sus condiciones actuales es importante para identificar futuros problemas e implementar medidas de prevención.

El tramo Choropamapa a Magdalena forma parte de la carretera principal Cajamarca-Ciudad de Dios, donde los taludes están constituidos por rocas sedimentarias calcáreas, con discontinuidades que afectan la estabilidad de los taludes de roca, y los depósitos cuaternarios inestabilidad de suelos. Los procesos de meteorización, condiciones climáticas, sísmicas y vibraciones por desplazamientos de vehículos, afectan la estabilidad de los taludes, los cuales son propensos al deslizamiento; siendo mayor el riesgo en periodos de lluvias intensas.

Es por ello que realizar un análisis geológico y geotécnico, es importante para identificar las zonas críticas en las que podrían ocurrir deslizamientos de rocas y suelos, y proponer medidas de prevención que eviten accidentes futuros.

En esta investigación se formula la siguiente pregunta: ¿Cómo intervienen los factores geológicos y geotécnicos en la inestabilidad de taludes de la carretera Choropampa - Magdalena? Se plantea como hipótesis que los factores geológicos, geotécnicos y el factor de seguridad influencian en la inestabilidad de taludes en la carretera Choropampa - Magdalena en el tramo desde el Km 115 al Km 127.

Durante el desarrollo de la investigación se va a estudiar y analizar la estabilidad de taludes, identificando las características físicas y mecánicas de los materiales que conforman los taludes de la carretera de Choropampa-Magdalena y los factores condicionantes, localizando con ello las zonas críticas en donde podría ocurrir algún deslizamiento que perjudique a la población y evitar accidentes, y daños a la infraestructura, proporcionando información para

la implementación de medidas de prevención o control, que reduzca el riesgo de futuros deslizamientos. Y con ello dando a conocer la importancia del análisis de estabilidad de taludes en las carreteras que comunican a la ciudad de Cajamarca con otras poblaciones. También proveerá información para investigaciones futuras de la zona estudiada.

El objetivo general de la investigación es analizar el comportamiento de los factores geológicos - geotécnicos que intervienen en la inestabilidad de los taludes de la carretera Choropampa - Magdalena; y como objetivos específicos: realizar el cartografiado geológico en el tramo de la carretera, describir las características físicas y mecánicas de los taludes, zonificar los taludes inestables que son susceptibles a deslizamientos en la carretera y calcular el factor de seguridad con el software Slide v6.

El contenido de los capítulos se describe a continuación:

Capítulo I: En este capítulo se desarrolla la introducción del tema de investigación, con el planteamiento y la formulación del problema. Se establecen los objetivos, se indica la justificación y la hipótesis; y se determinan los alcances y limitaciones de la investigación.

Capítulo II: En este capítulo se desarrolla el marco teórico de la investigación, mencionando antecedentes y bases teóricas de diferentes autores, relacionados con el tema geotécnico que sustenta la investigación.

Capítulo III: Se especifica la ubicación del área de estudio, la accesibilidad, el clima, y otros aspectos generales. Se describe la geología, geomorfología e hidrología, a partir de los datos recolectados en campo, son ordenados en estaciones para su análisis mediante los softwares RocData, Dips, Slide. También se explica la metodología y procedimientos utilizados en la investigación.

Capítulo IV: Se presentan y explican los resultados obtenidos del análisis de los datos de campo, de acuerdo a los objetivos establecidos y se realiza la contratación de la hipótesis.

Capítulo V: Se presentan las conclusiones de la investigación y las recomendaciones correspondientes.

CAPÍTULO II

MARCO TEÓRICO

2.1 ANTECEDENTES TEÓRICOS DE LA INVESTIGACIÓN

Las investigaciones Geológica y Geotécnica, realizadas son las siguientes:

Sáenz E. (2015). Realizó un estudio en el tramo de la Carretera El Gavilán - Chigden, donde analizó la relación que tenían las características litológicas, morfológicas y estructurales y como intervenían en la inestabilidad de taludes de dicha carretera.

Torres W. (2015). Realizó una Evaluación Geotécnica de los Deslizamientos en Taludes de la Carretera Peña Blanca - Choropampa, donde analizó el comportamiento geotécnico - geomecánico de los deslizamientos a lo largo de la carretera teniendo en cuenta las características litomorfoestructurales de los taludes.

Montoya F. (2014). Realizó una Evaluación Geotécnica de los Taludes de la Carretera Cruz Blanca - El Gavilán, donde analizó la inestabilidad de los taludes tomando en cuenta el contexto geológico local, regional y la estrecha relación que existe con los agentes geodinámicos.

Vilchez & Guerrero (2006). Realizaron un informe preliminar del inventario y cartografiado sistemático de Peligros Geológicos en la cuenca Jequetepeque, identificando las ocurrencias de movimientos en masa, evaluación de centros poblados y obras de infraestructura vulnerables a los peligros geológicos y la identificación de zonas críticas.

Zavala & Rosado (2011). Realizaron un estudio de riegos en la región de Cajamarca, donde se analizaron las características climáticas, geológicas y sísmicas que conllevan a la ocurrencia de procesos geodinámicos y determinaron 117 zonas de peligrosidad y susceptibilidad en la región Cajamarca.

Reyes (1980). Realizó un estudio que corresponde a los Cuadrángulos de Cajamarca, San Marcos, Cajabamba. Analiza regionalmente el área de estudio, realizando un cartografiado a escala 1:100,000 en base a un estudio litológico, estratigráfico, estructural, geomorfológico en forma general.

2.2 BASES TEÓRICAS

2.2.1 ESTABILIDAD DE TALUDES

Los análisis de estabilidad se aplican al diseño de taludes o cuando éstos presentan problemas de inestabilidad. Se debe elegir un coeficiente de seguridad adecuado, dependiendo de la excavación y del carácter temporal y definitivo del talud, combinando los aspectos de seguridad, costes de ejecución, consecuencias o riesgos que podría causar su rotura, etc. Para taludes permanentes, el coeficiente de seguridad a adoptar debe ser igual o superior a 1,5, e incluso 2,0, dependiendo de la seguridad exigida y de la confianza que se tenga en los datos geotécnicos que intervienen en los cálculos; para los taludes temporales el factor de seguridad está en torno a 1,3, pero en ocasiones pueden adoptarse valores inferiores.

Los análisis permiten definir la geometría de la excavación o las fuerzas externas que deben ser aplicadas para lograr el factor de seguridad requerido. En caso taludes inestables, los análisis permiten diseñar las medidas de corrección o estabilización adecuadas para evitar nuevos movimientos.

Los análisis a posteriori de taludes se realizan una vez que la rotura se ha producido, y, por tanto, se conoce el mecanismo, modelo y geometría de la inestabilidad. Es un análisis muy útil para la caracterización geomecánica de los materiales involucrados, para el estudio de los factores influyentes en la rotura y para conocer el comportamiento mecánico de los materiales del talud; los resultados obtenidos pueden ser extrapolados a otros taludes de similares características. Estos análisis consisten en determinar, a partir de los datos de campo necesarios (geometría, tipos de materiales, modelos de rotura, presiones hidrostáticas, etc.), los parámetros resistentes del terreno, generalmente pares de valores $c y \phi$, que cumplen la condición de equilibrio estricto del talud (es decir, F=1,0), a lo largo de la superficie de rotura, para las condiciones reales en que esta tuvo lugar. (González de Vallejo L., Ferrer M., Ortuño L., Oteo C. 2004)

Métodos de Equilibrio Límite

Se basan exclusivamente en las leyes de la estática para determinar el estado de equilibrio de una masa de terreno potencialmente inestable. No tienen en cuenta las deformaciones del terreno. Suponen que la resistencia al corte se moviliza total y simultáneamente a lo largo de la superficie de corte. (Herrera, F. 2003)

Se pueden clasificar a su vez en dos grupos: métodos exactos y métodos no exactos.

Métodos exactos: La aplicación de las leyes de la estática proporcionan una solución exacta del problema con la única salvedad de las simplificaciones propias de todos los métodos de equilibrio límite (ausencia de deformaciones, factor de seguridad constante en toda la superficie de rotura, etc.). Esto sólo es posible en taludes de geometría sencilla, como por ejemplo la rotura planar y la rotura por cuñas.

Métodos no exactos: En la mayor parte de los casos la geometría de la superficie de rotura no permite obtener una solución exacta del problema mediante la única aplicación de las leyes de la estática. El problema es hiperestático y ha de hacerse alguna simplificación o hipótesis previa que permita su resolución. Se pueden considerar así los métodos que consideran el equilibrio global de la masa deslizante, hoy en desuso, y los métodos de las dovelas o rebanadas, que consideran a la masa deslizante dividida en una serie de fajas verticales.

Los métodos de las dovelas o rebanas pueden clasificarse en dos grupos:

- Métodos aproximados: no cumplen todas las ecuaciones de la estática. Se pueden citar por ejemplo los métodos de Fellenius, Janbu y Bishop simplificado.
- Métodos precisos o completos: cumplen todas las ecuaciones de la estática. Los más conocidos son los de Morgenstern-Price, Spencer y Bishop Riguroso.

Figura 1: Gráfico que muestra los diferentes métodos de cálculo. (Herrera, F. 2003)

2.2.2 FACTORES INFLUYENTES EN LA ESTABILIDAD

La estabilidad de un talud está determinada por factores geométricos (altura e inclinación), factores geológicos (que condicionan la presencia de planos y zonas de debilidad y anisotropía en el talud), factores hidrogeológicos (presencia de agua) y factores geotécnicos o relacionados con el comportamiento mecánico del terreno (resistencia y deformabilidad). La condición de los factores citados puede determinar la condición de rotura a lo largo de una o varias superficies, y que sea cinemáticamente posible el movimiento de un cierto volumen de masa de suelo o roca. La posibilidad de rotura y los mecanismos y modelos de inestabilidad de los taludes están controlados principalmente por factores geológicos y geométricos.

Los factores geológicos, hidrogeológicos y geotécnicos se consideran factores condicionantes, y son intrínsecos a los materiales naturales. En los suelos la litología, estratigrafía y las condiciones hidrogeológicas determinan las propiedades resistentes y el comportamiento del talud. En el caso de macizos rocosos competentes el principal factor condicionante es la estructura geológica: la disposición y frecuencia de las superficies de discontinuidad y el grado de fracturación; en materiales blandos, la litología y el grado de fracturación juegan también un papel preponderante.

Figura 2: Talud con ángulo uniforme y talud excavado de forma escalonada con bermas y bancos. (González de Vallejo L. et. al., 2004)

Junto a los factores condicionantes de la estabilidad de los taludes (también denominados pasivos), los factores desencadenantes o activos provocan la rotura una vez que se cumplen una serie de condiciones. Estos últimos son factores externos que actúan sobre los suelos o macizos rocosos, modificando sus características y propiedades y las condiciones de equilibrio del talud. El conocimiento de todos ellos permitirá un correcto análisis del talud, la evaluación del estado de estabilidad del mismo y, en su caso, el diseño de las medidas que deberán ser adoptadas para evitar o estabilizar los movimientos. (González de Vallejo L. et. al., 2004).

Otros Factores

Las sobrecargas estáticas y las cargas dinámicas que se ejercen sobre los taludes modifican la distribución de las fuerzas y pueden generar condiciones de inestabilidad. Entre las primeras están el peso de estructuras o edificios, u otro tipo de cargas como rellenos, escombreras, paso de vehículos pesados, etc. que, cuando se ejercen sobre la cabecera de los taludes, aportan una carga adicional que puede contribuir al aumento de las fuerzas desestabilizadoras.

Las cargas dinámicas se deben, principalmente, a los movimientos sísmicos, naturales o inducidos, y a las vibraciones producidas por voladuras cercanas al talud. El principal efecto en los macizos rocosos fracturados es la apertura de las discontinuidades preexistentes, con la consiguiente reducción de su resistencia al corte, y la individualización y caída de bloques rocosos.

Las precipitaciones y el régimen climático influyen en la estabilidad de los taludes al modificar el contenido de agua en el terreno. La alternancia de periodos de sequía y lluvia produce cambios en la estructura de los suelos que dan lugar a pérdidas de resistencia.

En determinados tipos de suelo o macizos rocosos blandos, los procesos de meteorización juegan un papel importante en la reducción de sus propiedades resistentes, dando lugar a una alteración y degradación intensas al ser expuestos los materiales a las condiciones ambientales como consecuencia de una excavación. Esta pérdida de resistencia puede dar lugar a la caída del material superficial y, si afecta a zonas críticas del talud, como su pie, puede generar roturas generales, sobre todo en condiciones de presencia de agua. (González de Vallejo L. et. al., 2004).

2.2.3 MECANISMOS DE FALLA

La ocurrencia de una falla obedece a un proceso, el cual comprende una gran cantidad de factores, en el espacio y en el tiempo.

Condiciones Originales del Talud (Susceptibilidad)

Todo talud tiene unas propiedades o características físicas como son el relieve, geología, propiedades mecánicas de los materiales y perfiles, condiciones ambientales, cobertura vegetal, etc. Estas condiciones determinan una susceptibilidad al deterioro, a la acción de los factores detonantes y al fallamiento. (Suarez, J. 2009)

Equilibrio o Desequilibrio de Fuerzas (Factor de seguridad)

En un talud estable hay un equilibrio entre las fuerzas actuantes y las fuerzas resistentes, entre las cuales es determinante la fuerza de gravedad. En la figura 3, se muestran las masas que tratan de producir el movimiento y las masas que tratan de contrarrestarla.

Si se colocan cargas adicionales en la parte superior del talud o se remueven en el pie, se puede producir la inestabilidad de éste. Igualmente, la inestabilidad puede ocurrir por el aumento de la pendiente del talud. (Suarez, J. 2009)

Figura 3: Equilibrio o desequilibrio de fuerzas en un talud. (Suarez, J. 2009)

El Deterioro (Modificación de las condiciones originales)

El deterioro comprende la alteración física y química de los materiales y su subsecuente desprendimiento o remoción. Esto incluye la alteración mineral, los efectos de relajación y la abrasión. Los efectos del deterioro pueden ser lentos o rápidos y se acumulan hasta producir la falla en forma progresiva.

Figura 4: El efecto de deterioro. (Suarez, J. 2009)

Cuando se corta un talud, para la construcción de una vía o de una obra de infraestructura, ocurre una relajación de los esfuerzos de confinamiento y una exposición al medio ambiente, cambiándose la posición de equilibrio por una de deterioro acelerado. La iniciación y

propagación de fracturas es de significancia particular en la destrucción de la superficie que puede conducir a caídos de roca o colapso del talud.

El resultado del deterioro es una disminución en la resistencia al cortante del material, falla progresiva por expansión o fisuración, deformación al cortante, inclinación, desmoronamiento, etc. Igualmente se puede producir descomposición por desecación, reducción de la cohesión, lavado y remoción de los cementantes, disolución, erosión interna o sifonamiento. El deterioro, con el tiempo, da lugar a la necesidad de mantenimiento o construcción de obras de estabilización. (Suarez, J. 2009)

Factores Detonantes (Activación del movimiento)

En el fenómeno de detonación o activación de un deslizamiento, actúa una serie compleja de procesos, los cuales, ocasionalmente, se traslapan con los factores de deterioro. Los deslizamientos pueden activarse en forma instantánea o en forma progresiva. El resultado generalmente es un aumento en los esfuerzos de cortante. Estos esfuerzos aumentan a lo largo de la superficie de falla hasta que ocurre el movimiento. (Suarez, J. 2009)

Los elementos externos más comunes que pueden generar la activación de un deslizamiento son los siguientes:

- Corte del soporte en el pie del talud por acción de la erosión o de actividades humanas, como la construcción de carreteras.
- Lluvias intensas o prolongadas y/o fluctuaciones fuertes del nivel de aguas subterráneas.
- Sismos o vibraciones fuertes.
- Colocación de cargas sobre el talud.
- Combinación de algunos de los elementos anteriores.

Fallamiento

El proceso de fallamiento después de que interviene el factor detonante, por lo general es un fenómeno físico, en el cual las condiciones de esfuerzo y deformación juegan un papel preponderante.

Para el análisis de un deslizamiento o para la determinación de niveles de amenaza y riesgo, es esencial que se tenga claridad sobre los procesos de evolución que generan un deslizamiento, la susceptibilidad, los procesos de deterioro y los factores detonantes, así como el proceso de fallamiento propiamente dicho. (Suarez, J. 2009)

Figura 5: Evolución de un deslizamiento en la roca fracturada al profundizarse en un cauce por erosión permanente. (Suarez, J. 2009)

La Falla Progresiva

Las fallas en la mayoría de los casos no ocurren en forma repentina, sino que se toman un tiempo, el cual puede durar de minutos a años. El proceso se inicia con deformaciones o agrietamientos aislados, relacionados con la concentración de esfuerzos. Estas deformaciones que se producen por la actuación de los esfuerzos, generan a su vez disminuciones en la resistencia.

Figura 6: Inicio de una falla progresiva. (Suarez, J. 2009)

Al inicio del movimiento, es muy posible que estas deformaciones progresivas afecten volúmenes aislados del talud, pero a medida que avanza el proceso de fallamiento, las principales deformaciones se concentran en una superficie o banda de falla, a lo largo de la cual se produce la rotura o falla del material (Superficie de falla). Esta superficie de falla con el tiempo va progresando en longitud.

Si la resistencia se moviliza totalmente en cualquier punto de la superficie de falla, el suelo falla localmente. Al fallar el esfuerzo en el punto de falla, se reduce y los esfuerzos se transfieren a los puntos adyacentes, los cuales a su vez tratan de fallar.

En la falla progresiva cuando la resistencia pico es superada en el punto A, la resistencia al corte disponible disminuye de la resistencia pico a la resistencia residual. Los esfuerzos relacionados con la diferencia entre la resistencia pico y la residual del punto A, es transferida a los puntos B. Esto puede ocasionar que los esfuerzos superen la resistencia pico en los puntos B y así sucesivamente, a los puntos C y en la totalidad de la superficie de falla. (Suarez, J. 2009)

Figura 7: Esquema de la generación de una falla progresiva en suelos que pierden resistencia al deformarse (Suarez, J. 2009)

2.2.4 SISTEMA UNIFICADO DE CLASIFICACIÓN DE SUELOS

El Sistema Unificado de Clasificación de Suelos - SUCS (Unified Soil Classification System (USCS)) es un sistema de clasificación de suelos usado en ingeniería y geología para describir la textura y el tamaño de las partículas de un suelo. Este sistema de clasificación puede ser aplicado a la mayoría de los materiales sin consolidar y se representa mediante un símbolo con dos letras. Cada letra es descrita debajo (con la excepción de Pt). Para clasificar el suelo hay que realizar previamente una granulometría del suelo mediante tamizado u otros. También se le denomina clasificación modificada de Casagrande. (Braja, M. 2001)

Divisiones mayores			Símbolo del grupo	Nombre del grupo	
	Grava > 50% de la fracción gruesa	Grava limpia menos del 5%	GW	Grava bien graduada, grava fina a gruesa	
		n°200	GP	Grava pobremente graduada	
Suelos	tomiz nº/	Grava con más	GM	Grava limosa	
granulares gruesos más del 50%	(4.75 mm)	de 12% de finos pasantes del tamiz nº 200	GC	Grava arcillosa	
retenido en el tamiz nº200 (0.075	A rena ≥ 50% de fracción gruesa que pasa el tamiz nº4	Arena limpia	SW	Arena bien graduada, arena fina a gruesa	
mm)		7 dena minpia	SP	Arena pobremente graduada	
		Arena con más de 12% de finos pasantes del tamiz nº 200	SM	Arena limosa	
			SC	Arena arcillosa	
	Limos y araillas	Inorgánico	ML	Limo	
	Linios y arcinas	morganico	CL	arcilla	
Suelos de	50	Orgánico	OL	Limo orgánico, arcilla orgánica	
grano fino más del 50% pasa el tamiz	0 % iz Limo y arcilla límite líquido ≥ 50	Inorgánico	MH	Limo de alta plasticidad, limo elástico	
No.200			СН	Arcilla de alta plasticidad	
		Orgánico OH		Arcilla orgánica, Limo orgánico	
Sue	Suelos altamente orgánicos Pt Turba				

Tabla 1: Tabla de Clasificación SUCS (Braja, M. 2001)

2.2.5 EL CRITERIO DE ROTURA DE HOEK-BROWN

El criterio de rotura de Hoek-Brown es ampliamente aceptado y ha sido aplicado en de proyectos a nivel mundial, sólo debe aplicarse a los macizos rocosos donde la estructura analizada es grande y los bloques son pequeños en comparación y en los que hay un número suficiente de discontinuidades muy próximas entre sí, con características superficiales similares, para asumir al comportamiento de fractura como isotrópico.

El criterio de falla generalizado de Hoek-Brown para macizos rocosos fracturados está definido por:

$$\sigma_1' = \sigma_3' + \sigma_{ci} \times \left(m_b \times \frac{\sigma_3'}{\sigma_{ci}} + s \right)^a$$

Donde σ'_1 y σ'_3 son los esfuerzos efectivos principales mayor y menor, respectivamente, en la condición de falla, m_b es el valor de la constante *m* de Hoek-Brown para el macizo rocoso, *s* y *a* son constantes que dependen de las características del macizo rocoso y σ_{ci} es la resistencia a la compresión uniaxial de los trozos o bloques de roca intacta que conforman el macizo rocoso. (Hoek & Brown, 2002)

Índice de Resistencia Geológica (GSI: Geological Strength Index)

El GSI estima la reducción de la resistencia del macizo para diferentes condiciones geológicas. El GSI se ha actualizado para macizos débiles en varias ocasiones.

La caracterización del macizo rocoso es simple y está basada en la impresión visual de la estructura rocosa, en términos de bloques y de la condición superficial de las discontinuidades indicadas por la rugosidad y alteración de las juntas. La combinación de estos dos parámetros proporciona una base práctica para describir un rango amplio de tipos de macizos rocosos.

La determinación de los parámetros del GSI se basa en las descripciones de la calidad del macizo rocoso en lugar de formular datos de entrada cuantitativos como en los sistemas RMR, Q y RMi. El GSI es principalmente útil para macizos rocoso más blandos con RMR menor a 20.

El GSI es utilizado para la estimación de los parámetros de entrada para el cálculo de la resistencia, solo es una relación empírica y los procesos asociados a las clasificaciones de la ingeniería de rocas.

La determinación del GSI se hace a partir de la Tabla 2 y la Tabla 3 a las que se ingresa desde 2 puntos diferentes, uno horizontal: referente al tamaño y entrabamiento de bloques, composición y estructura; el ingreso vertical es referente a las condiciones de las discontinuidades, se converge posteriormente en el valor del GSI dispuesto en las líneas diagonales. (Hoek, E. et al., 2002)

Tabla 2: Caracterización del macizo rocoso en función de los bloques basado en el entrabamiento y las condiciones de las juntas. (Hoek, E. 2006)

ÍNDICE DE RESISTENCIA GEOLÓGICA (GSI) PARA ROCAS FRACTURADAS (Hoek y Marinos, 2000) Estimar el valor promedio del GSI para la litología, estructura y condiciones superficiales de las discontinuidades. No intentar ser muy preciso. Citar un rango de 33 a 37 es más realista que un GSI de 35. Note que las tablas no se aplican a fracturas estructuralmente controladas. Cuando los planos estructurales débiles están en una orientación desfavorable con respecto de la cara excavada, estas dominarán el comportamiento de todo el macizo rocoso. La resistencia de cizalla de las superficies de la roca son propensas a deteriorarse como el resultado en cambios en el contenido de humedad, se reducirá si hay presencia, de agua. Cuando se trabaja con rocas en las categorías de débil a muy débil, se debería hacer un desplazamiento hacia la derecha. La presión del agua es tratada con análisis de esfuerzos efectivos. ESTRUCTURA	MUY BUENA Superficies muy rugosas, inalteradas y frescas	BUENA O Superficies rugosas, ligeramente intemperizadas, con pátinas de óxidos de hierro	REGULAR Superficies lisas, moderadamente intemperizadas y/o alteradas	 MALA Superficies lisas y cizalladas, muy intemperizadas con revestimientos o rellenos compactos o fragmentos angulares 	WUY MALA Superficies lisas y cizalladas, muy intemperizadas con revestimientos o rellenos arcillosos blandos
INTACTA O MASIVA. Espécimen de roca intacta o roca in-situ masiva con pocas discontinuidades ampliamente espaciadas.	90			N/A	N/A
BLOCOSA. Macizo rocoso inalterado bien trabado, definido por bloques cúbicos formados por 3 familias de discontinuidades. Esp. 30cm		70 60			
MUY BLOCOSA. Macizo rocoso trabado, parcialmente perturbado, definido por bloques angulares de varias caras formado por 4 o más familias de discontinuidades. Esp. 10cm		5			
BLOCOSA/PERTURBADA/DEFORMADA Plegada, bloques angulares de muchas familias de discontinuidades. Persistencia de los planos de estratificación o esquistosidad. Esp. 3cm				30	
DESINTEGRADA. Pobremente trabada, macizo rocoso muy fracturado con mezcla de fragmentos de rocas angulares y redondeados.		\square		20	[]
LAMINADA/CIZALLADA. Ausencia de blocosidad debido a espacios cercanos de débil esquistocidad o planos de cizalla.	N/A	N/A			10

Tabla 3: Estimación del GSI para macizos heterogéneos como Flysch. (Hoek, E. 2006)

ÍNDICE DE RESISTENCIA GEOLÓGICA (GSI) PARA MACIZOS ROCOSOS		CONDICIONES DE LAS SUPERFICIES DE LAS DISCONTINUIDADES			DE LAS
HETEROGENEOS COMO LOS FLYSCH (V, Marinos, 2007) COMPOSICIÓN Y ESTRUCTURA	MUY BUENA	BUENA	REGULAR	MALA	MUY MALA
TIPO I: Imperturbado, capas de areniscas de grosores de anchos a medios con lentes finos esporádicos de limolitas. En tuneles superficiales o taludes donde el confinamiento es pobre, el modo de fractura tiene características cinemáticas controladas por los planos de estratificación y el GSI pierde significado.	80 70	1	II		
TIPO III: Areniscas moderadamente perturbadas con delgados estratos de limolitasTIPO IV: Macizos rocosos moderadamente perturbados con areniscas y limolitas en similares cantidadesTIPO V: Limolitas moderadamente perturbadas con intercalaciones de areniscasTIPO V: Limolitas moderadamente perturbadas con intercalaciones de areniscasTIPO V: Limolitas moderadamente perturbadas con intercalaciones de areniscasTIPO V: Limolitas moderadamente perturbadas con intercalaciones de areniscasTIPO VI: 		60 111 1 50	v v v	ī	
TIPO VII: Macizos rocosos muy perturbados y plegados, que conservan su estructura con areniscas y limolitas en similar extensión TIPO VIII: Macizos rocosos muy perturbados y plegados de intercalaciones de limolitas y areniscas. La estructura se conserva y la deformación-cizalla no es muy fuerte			40 VII 30	VIII	
TIPO IX: Macizo rocoso desintegrado que puede ser encontrado en zonas falladas y/o de alta meteorización. Se encuentran principalmente materiales deleznables con algunas limolitas deformables entra las piezas de rocaTIPO X: Limolitas o lutitas tectónicamente deformadas con intenso plegamiento y fallamiento con capas de areniscas en bloques y deformadas, llegando a formar una estructura caótica		\square	IX	20×	
TIPO XI: Limolitas o lutitas fuertemente cizalladas tectónicamente formando una estructura caótica con paquetes de arcilla. Las delgadas capas de areniscas son transformadas a pequeñas piezas de roca. Al extremo, el comportamiento es como un suelo	N/A	N/A		XI	10

→Disminución a la derecha si hay deformación luego de la perturbación tectónica

2.2.6 CRITERIO DE MOHR-COULOMB

La ventaja del criterio de Mohr-Coulomb es su simplicidad. Sin embargo, presenta los inconvenientes ya descritos para el caso de la matriz rocosa, sobre todo los relacionados con el comportamiento tensión-deformación no lineal de los macizos rocosos, por lo que no es un criterio adecuado para la estimación de su resistencia. No obstante, en determinados casos el criterio puede ser empleado para macizos rocosos resistentes en los que la rotura se produzca a favor de superficies de discontinuidad, teniendo en cuenta que deben adoptarse valores para la cohesión y para el ángulo de rozamiento representativo del macizo rocoso. (Vallejo L. et. al. 2004)

Generalmente para el caso del criterio de Mohr-Coulomb, se define el criterio de rotura en función de la tensión tangencial y la tensión normal en un plano. En este caso la superficie de fluencia es de la forma $\tau = f(\sigma)$ La expresión matemática de dicha ecuación es:

$$\tau = c + \sigma_n \tan \phi$$

donde:

- *c* es la cohesión, una constante que representa la tensión cortante que puede ser resistida sin que haya ninguna tensión normal aplicada.
- ϕ es el ángulo de fricción.
- τ es la tensión tangencial que actúa en el plano de rotura.
- σ_n es la tensión normal que actúa en el plano de rotura.

A continuación, se representa el criterio de Mohr-Coulomb en el espacio de tensiones normal y tangencial. Se puede apreciar que la ecuación de la superficie de rotura es la ecuación de la recta tangente a todos los círculos de falla.

Figura 8: Representación de la envolvente de Mohr-Coulomb en el espacio de tensiones normal y tangencial. (Melentijevic, S. 2005)

En este caso, el dominio elástico viene representado Opor la envolvente de Mohr. Por lo tanto, los puntos del macizo con estado tensional por debajo de dicha envolvente están en un estado elástico mientras que los que se sitúan encima se encuentran en rotura. La zona de estados tensionales inaccesibles para este macizo es aquella que se encuentra por encima de la envolvente de Mohr. (Melentijevic, S. 2005)

2.2.7 DESLIZAMIENTOS

En el término "deslizamiento" se incluyen tanto los procesos de erosión como los procesos denudacionales. La naturaleza precisa del proceso no está incluida en la definición e incluye procesos que son producto de la acción de las fuerzas gravitacionales, hidráulicas, etc. Los movimientos ocurren generalmente a lo largo de las superficies de falla, por caída libre, movimientos en masa, erosión o flujos. Algunos segmentos del talud o ladera, pueden moverse hacia abajo mientras otros se mueven hacia arriba. Los fenómenos de inestabilidad incluyen, generalmente, una combinación de procesos erosionales y denudacionales interrelacionados entre sí y a menudo mezclados. (Suarez, 2009)

Clasificación de los Movimientos

Caído: Caído es el desprendimiento y caída de materiales del talud. En los caídos se desprende una masa de cualquier tamaño desde un talud de pendiente fuerte a lo largo de una superficie en la cual el desplazamiento de corte es mínimo o no se da. (Suarez, J. 2009)

Figura 9: Caídos de bloques en caída libre de roca fracturada. (Suarez, J. 2009)

Deslizamiento Rotacional: En un desplazamiento rotacional, la superficie de falla es cóncava hacia arriba y el movimiento es rotacional con respecto al eje paralelo a la superficie y transversal al deslizamiento. El centro de giro se encuentra por encima del centro de gravedad del cuerpo del movimiento. Visto en planta, el deslizamiento de rotación posee una serie de agrietamientos concéntricos y cóncavos en la dirección del movimiento. El movimiento produce un área superior de hundimiento y otra inferior de deslizamiento, lo cual genera, comúnmente, flujos de materiales por debajo del pie del deslizamiento. (Suarez, J. 2009)

Figura 10: Desplazamiento de rotación en una ladera. (Suarez, J. 2009)

Flujos: En un "flujo" ocurren movimientos relativos de las partículas, o bloques pequeños, dentro de una masa que se mueve o desliza sobre una superficie. Las deformaciones relativas internas son muy grandes y fluyen en forma similar a un líquido viscoso. El flujo puede ser laminar a turbulento. Al aumentar la densidad y la viscosidad, el flujo puede transportar grandes bloques hacia la parte superior.

Figura 11: Flujo de bloques de roca y residuos en la excavación de un "talud" para la construcción de una vía. (Suarez, J. 2009)

2.2.8 SISMICIDAD

La sismicidad es el estudio de los sismos que ocurren en algún lugar en específico. Un lugar puede tener alta o baja sismicidad, lo que tiene relación con la frecuencia con que ocurren sismos en ese lugar. (Zúñiga, R. 2011)

Zonas Sísmicas del Perú

El territorio nacional se considera dividido en cuatro zonas. La zonificación propuesta se basa en la distribución espacial de la sismicidad observada, las características generales de los movimientos sísmicos y la atenuación de éstos con la distancia epicentral, así como en la información neotectónica. (Ministerio de Vivienda, Construcción y Saneamiento, 2016)

Figura 12: Zonas sísmicas en el Perú y Cajamarca. (Ministerio de Vivienda, Construcción y Saneamiento, 2016)

Análisis de Sismicidad

Para el análisis de sismicidad se requiere las componentes de sismicidad (Kh y Kv) que se obtienen de la siguiente tabla.

Tabla 4:	Variables	de	sismicidad	para	obtener	las	componentes	sísmicas	horizonta	les y	verticales.
(LoadCap	, 2014)										

a: Zonas	b: Coeficiente de	c: Categoría del perfil estratigráfico
sísmicas del	amplificación	
Perú	topográfica	
1 = 0.10	1: Laderas y taludes	0: S1 (Depósitos con niveles de más de 10m de
2 = 0.25	con pendientes	arcillas/limos blandos con un índice de plasticidad alto
3 = 0.35	menores a 15°.	(IP>40) y alto contenido de agua. S2 (Depósitos de suelos
4 = 0.45	1.2: Laderas y	licuefactables, arcillas sensibles)
	taludes aislados con pendientes mayores a 15°. 1.4: Taludes y laderas con significante menor grosor de cresta que de base, con pendientes mayores a 30°	 A (Roca u otra formación geológica similar a roca, incluyendo como máximo 5 m de material más débil en superficie) 1.25: B (Depósitos de arena muy densa, gravas, o arcilla muy dura, de decenas de metros de espesor caracterizado por un incremento de las propiedades mecánicas en profundidad). C (Depósitos de arena densa o media, grava o arcilla dura con un espesor de unas decenas hasta centenares de metros). E (Un perfil de suelo formado por una capa aluvial superficial. 1.35: D (Depósitos de suelo suelto de cohesión media a no aphagina con a sin appas da dóbil aphagina o da ligara a
		gran cohesión predominantemente).
Las componentes sísmicas se definen como:

Amplificación estratigráfica:

$$Kh = (a \times b \times c)/2$$

Parámetros de zona:

$$Kv = (a \times b \times c)/4$$

2.3 DEFINICIÓN DE TÉRMINOS BÁSICOS

Estabilidad: estado y condición de una estructura o de una masa de material cuando puede soportar los esfuerzos aplicados durante largo tiempo sin sufrir una deformación o movimiento apreciable que no se recupere o devuelva al retirar la carga (Hoyos, F. 2012)

Depósitos Aluviales: material depositado en las depresiones generalmente continentales transportados por las aguas de los ríos. (Dávila, J. 2011)

Deslizamiento: los deslizamientos ("Landslides") consisten en "movimientos de masas de roca, residuos o tierra, hacia abajo de un talud" (Suarez, J. 2009)

Factor de Seguridad: equilibrio entre las fuerzas actuantes y las fuerzas resistentes, entre las cuales es determinante la fuerza de gravedad. (Suarez, J. 2009)

Talud: un "talud" o ladera es una masa de tierra que no es plana sino que presenta una pendiente o cambios significativos de altura. En la literatura técnica se define como "ladera" cuando su conformación actual tuvo como origen un proceso natural y "talud" cuando se conformó artificialmente. (Suarez, J. 2009)

Ángulo de Fricción (ϕ): el ángulo de fricción es la representación matemática del coeficiente de rozamiento, el cual es un concepto básico de la física. El ángulo de fricción en suelos granulares secos coincide con el ángulo de reposo. Todos los suelos poseen fricción. Sin embargo, a los suelos arcillosos con fricción muy baja o despreciable, se les denomina suelos cohesivos: $\phi = 0$. (Suarez, J. 2009)

Cohesión: parámetro de resistencia de un suelo que expresa la fuerza por la cual las moléculas homogéneas de un cuerpo se adhieren unas con otras. (GEMMA, 2007)

Densidad: Es la relación existente entre el peso de un material y su volumen. La comparación en el sistema métrico decimal se realiza en Ton/m3, Kg/dm3, gr/cm3. (Dávila, J. 2011)

Peso Específico: se llama peso específico al peso que posee una sustancia en un determinado volumen. El símbolo del peso específico es γ . Suele expresarse en newtons sobre metro cubico (N/m3). (Dávila, J. 2011)

CAPÍTULO III

MATERIALES Y MÉTODOS

3.1 UBICACIÓN DE LA ZONA DE ESTUDIO

3.1.1 GEOGRÁFICA

Geográficamente la carretera Choropampa – Magdalena, se encuentra en la cordillera occidental de los andes en el norte del Perú, al suroeste de la ciudad de Cajamarca, en el distrito de Magdalena. Con coordenadas UTM: DATUM WGS84, ZONA – 17S.

Tabla 5: Coordenadas UTM: DATUM WGS84 de los límites de la carretera.

VÉRTICES	LONGITUD	LATITUD
Punto inicial (Km 115+000)	758 865	9 197 633
Punto final (Km 127+000)	768 000	9 193 821

3.1.2 POLÍTICA

Políticamente la carretera se encuentra al suroeste de la ciudad de Cajamarca comprende el distrito de Magdalena de la provincia y región de Cajamarca. (ANEXO C.1)

La carretera Choropampa - Magdalena abarca una longitud de 12 km; iniciando en el Km. 127+000 hasta el Km. 115+000.

3.1.3 ACCESIBILIDAD

La carretera Choropampa - Magdalena, forma parte de la carretera Cajamarca - Ciudad de Dios, se accede a la zona de estudio desde la ciudad de Cajamarca, en el paradero a la costa, ubicado en la Av. Independencia, siendo el acceso principal a la zona de estudio. Con un tiempo de 50 minutos aproximadamente, en auto hasta Choropampa.

Tabla 6: Vía de acceso al tramo de estudio.

RUTA - TERRESTRE	DISTANCIA (Km)	VÍA	ESTADO
Cajamarca - Choropampa	47	Asfaltada	Buena

3.1.4 CLIMA

Magdalena está dominada por el clima templado. A lo largo del año, se dan pocas precipitaciones en Magdalena. La temperatura media anual en Magdalena se encuentra en 19.2°C. El mes más seco es Julio, mientras que en el mes de Marzo se dan las mayores precipitaciones del año. (SENAMHI, 2016)

3.1.5 HIDROLOGÍA

Río Magdalena

El río Magdalena es el cauce principal de la zona, en donde convergen las quebradas Tallal, de Lucma y El Mirme, estas quebradas interceptan la carretera.

Figura 13: Cauce del río Magdalena, en donde se observa depósitos fluviales constituidos por clastos polimícticos redondeados, su tamaño varía desde arcilla hasta gravas.

Quebrada Tallal

Ubicada entre el km 122 y 123, por esta quebrada discurren huaycos en las épocas de lluvia, por derrumbes en los márgenes de la quebrada. Es afluente del río Magdalena.

Figura 14: Quebrada Tallal, ubicada en las coordenadas N: 9195004 y E: 769650

Quebrada de Lucma

Quebrada susceptible a la ocurrencia de huaycos. Derrumbes y deslizamientos activos en ambas márgenes de la quebrada, aportan material suelto al cauce principal. Es afluente del río Magdalena.

Figura 15: Vista de la quebrada de Lucma, que atraviesa la carretera en el Km 126+250 Coordenadas N: 9194269 y E: 767089

Quebrada del Mirme

Quebrada por donde discurren huaycos, se observan derrumbes hacia ambas márgenes de la quebrada. Es afluente del río Magdalena.

Figura 16: Quebrada El Mirme, se observa derrumbes en los márgenes, ubicada en las coordenadas N: 9195720 y E: 761792

3.2 PROCEDIMIENTOS

3.2.1 METODOLOGÍA DE LA INVESTIGACIÓN

Tipo y método de la Investigación

El tipo de investigación es no experimental, descriptiva, correlacional, explicativa y transversal. En cuanto a los métodos de la investigación que se utilizan son: la observación, métodos analíticos, deductivos y explicativos.

Población de estudio

Taludes de la Carretera Choropampa - Magdalena, en el tramo Km 115 - Km 127.

Muestra

Los taludes inestables de la carretera Choropampa – Magdalena.

Unidad de análisis

La unidad de análisis está representada por las propiedades intrínsecas y extrínsecas de suelos y rocas, en la Carretera Choropampa – Magdalena.

Análisis e interpretación de datos

El análisis e interpretación de datos será realizado en gabinete, donde se utilizarán los datos obtenidos en campo, y el procesamiento será en el software Slide v7.0 y RocData v5.0.

3.2.2 DEFINICIÓN DE VARIABLES

Tabla 7: Definición de variables.

Variables independientes (Causa)	Variables dependientes (Efecto)
Factor de seguridad	Estabilidad de taludes
Tipo de material Geodinámica externa	Movimiento en masa

3.2.3 TÉCNICAS

Las técnicas empleadas para la recopilación de la información serán:

- Observación Dirigida.
- Análisis documental.
- Tomas fotográficas.
- Mediciones en campo (medición de discontinuidades, rumbos y buzamientos, de resistencia).

3.2.4 INSTRUMENTOS Y EQUIPOS

- Brújula Brunton Azimutal.
- GPS Navegatorio Garmin Mal 60 Cx.
- Wincha (30m) y Fluxómetro (5m).
- Picota geológica Estwing.
- Lápiz de dureza Carbide (Rayador), protactor-Escala 1/5000.
- Mapas topográficos, geológico e imagen satelital.
- Libretas de campo, lapiceros y lápices, bolsas de muestreo.
- Cámara fotográfica Sony DSC-WX80
- Laptop Toshiba Satellite S55.
- Software ArcGis 10.2.
- Software Slide v7.0, RocData v5.0, Dips v6.0.
- Software AutoCAD 2015 y AutoCAD Civil 3D 2016.
- Microsoft Office v2016 (Word, Excel, PowerPoint).

3.3 ANÁLISIS DE DATOS Y PRESENTACIÓN DE RESULTADOS

El análisis y la interpretación de datos se realizó en gabinete usando los datos obtenidos en campo (los datos de mediciones de azimut, buzamiento de estratos, identificación de litología y suelos, y datos geotécnicos).

Los datos fueron procesados en el software ArcGis 10.2, con la elaboración de mapas temáticos, en los softwares Slide v7.0, RocData v5.0 y Dips v6.0, donde se analizó la inestabilidad de taludes, para obtener el factor de seguridad de los taludes.

3.4 ESTRATIGRAFÍA

3.4.1 GRUPO CRISNEJAS

Formación Chúlec (Ki-chu)

Los afloramientos de esta formación se encuentran entre el km 120+800 y km 119+000, está compuesta por estratos de calizas fosilíferas, que adquieren un color crema amarillento debido al intemperismo. El espesor de los estratos varía de 20 a 40 cm.

Figura 17: Estratos de calizas de la Formación Chúlec, en contacto con un cuerpo intrusivo.

Formación Pariatambo (Ki-pa)

La Formación Pariatambo aflora al NW de la carretera entre el km 116+000 y 116+500 y al SE entre el km 122+200 y 122+400, está compuesta por estratos de calizas bituminosas negruzcas, intercaladas con estratos delgados de lutitas, con presencia de fósiles.

Figura 18: Estratos de calizas bituminosas intercaladas con lutitas de la Formación Pariatambo.

3.4.2 GRUPO PULLUICANA (Ks-p)

El Grupo Pulluicana aflora al SE de la carretera entre el km 124+100 y 124+400, está conformada por estratos gruesos de calizas mudstone de aproximadamente 1.50 m a 2.00 m de espesor, intercaladas con estratos delgados de lutitas.

Figura 19: Estratos de calizas mudstone del Grupo Pulluicana.

3.4.3 SILL DIORÍTICO (Nm-di)

En la zona se hallan afloramientos de sills de composición diorítica, que ha intruido lateralmente capas de rocas sedimentarias, en la Formación Chúlec y la Formación Pariatambo. Las dioritas se encuentran muy meterorizadas, de estructura porfirítica, constituidas por plagioclasas, bajo contenido de cuarzo y hornblendas.

Figura 20: Sill de composición diorítica, intruyendo lateralmente dos capas de rocas sedimentarias.

3.4.4 DEPÓSITOS CUATERNARIOS

Depósitos Aluviales (Qh-al)

Los depósitos aluviales se hallan en gran parte de la zona de estudio, ubicados en la parte media e inferior de las quebradas, conformados por suelos gravo-arcillosos y arcillas de alta plasticidad.

Figura 21: Depósitos aluviales, conformados por suelos gravo-arcillosos y arcillas de alta plasticidad, cercanos a la Quebrada de Lucma.

Depósitos Coluvio-Aluviales (Qh-co/al)

Estos depósitos se originaron por deslizamientos en los que el agua fue el factor desencadenante principal, generando una mezcla de materiales de poco transporte y aquellos materiales transportados por el flujo de agua, está conformado por arcillas y limos de alta plasticidad, y gravas arcillosas.

Figura 22: Depósitos coluvio-aluviales compuestos por arcillas y limos de alta plasticidad, y gravas arcillosas. Ubicado en el Km 123+950.

Depósitos Deluviales (Qh-de)

Los depósitos deluviales se presentan en las laderas de los cerros, conformado por materiales erosionados que no han sido transportados, y con presencia de suelos finos-orgánicos en la parte superior de estos depósitos.

Figura 23: Depósitos deluviales en las laderas de los cerros, conformado por materiales erosionados que no han sido transportados.

Depósitos Fluviales (Qh-fl)

Estos depósitos se hallan en los márgenes de quebradas y ríos, poseen materiales que han sido transportados grandes distancias, su composición puede ser variada, en su mayoría los clastos son redondeados.

Figura 24: Depósitos fluviles de la quebrada de Lucma, compuesto por gravas, limos y arcillas.

3.5 PROPIEDADES GEOMECÁNICAS DE LAS UNIDADES GEOLÓGICAS

Las propiedades geomecánicas de las unidades geológicas fueron analizadas en el software Rocdata v5.0, a partir de datos obtenidos en campo. (ANEXO A)

Los taludes analizados están conformados por depósitos aluviales, coluvio-aluviales, deluviales, y rocas de las Formaciones Chúlec, Pariatambo y Grupo Pulluicana.

Condiciones de aplicación para las unidades geológicas:

- Taludes de suelos: Criterio de Mohr-Coulomb.
- Taludes de rocas: Criterio Generalizado de Hoek-Brown.

3.5.1 GEOMECÁNICA DE LAS UNIDADES CRETÁCICAS

Para la obtener los parámetros geomecánicos de las formaciones sedimentarias se utilizó el software RocData v5.0, aplicando el Criterio Generalizado de Hoek-Brown para rocas.

PROPIEDADES GEOMECÁNICAS DE LA FORMACIÓN CHÚLEC (Ki-chu)						
Tipo de macizo	Homogéneo	Pa	arámetros de	e Salida		
Tipo de roca	Caliza	~	mb	0.487048		
Densidad seca	2450 Kg/m ³	Criterio Hoek-Brown	S	0.00034533		
Densidad sat.	2560 Kg/m ³		a	0.508086		
Alt. Prom. Del Talud	50 m	Mohr-	c	0.269578	Mpa	
Datos de Entrada (Clasificación Hoek-Brown)		Coulomb Fit	Φ	38.1844°		
Sigci (σ)	35 MPa		sigt	-0.0248158	Mpa	
GSI	45	Parámetros	sigc	0.609808	Mpa	
mi	10	rocoso	sigcm	3.15497	Mpa	
D	0.7		Erm	1917.33	Mpa	
Ei MR	24500 700	Failure Envelope Range	sig3max (\sigma ₃)	0.960386	Mpa	

Tabla 8: Propiedades geomecánicas de la Formación Chúlec.

PROPIEDADES GEOMECÁNICAS DE LA FORMACIÓN PARIATAMBO (Ki-pa)							
Tipo de macizo	Heterogéneo	Pa	rámetros de	Salida			
Tipo de roca	Caliza	~	mb	0.333045			
Densidad seca	2450 Kg/m ³	Criterio Hoek-Brown	S	0.00016731			
Densidad sat.	2560 Kg/m ³	HOCK DIOWN	а	0.511368			
Alt. Prom. Del Talud	50 m	Mohr-	c	0.225298	Mpa		
Datos de Entrada (Clasificación Hoek-Brown)		Coulomb Fit	Ф	34.8769°			
Sigci (σ)	35 MPa		sigt	-0.017583	Mpa		
GSI	40	Parámetros	sigc	0.410108	Mpa		
mi	9	rocoso	sigcm	2.54635	Mpa		
D	0.7		Erm	1834.25	Mpa		
Ei	31500	Failure	sig3max	0.040000			
MR	900	Envelope Range	(σ ₃)	0.942039	Мра		

Tabla 9: Propiedades geomecánicas de la Formación Pariatambo.

Tabla 10: Propiedades geomecánicas del Grupo Pulluicana.

PROPIEDADES GEOMECÁNICAS DEL GRUPO PULLUICANA (Ks-n)							
Tipo de macizo	Homogéneo	Pa	rámetros de	Salida			
Tipo de roca	Caliza	~ • •	mb	0.843713			
Densidad seca	2450 Kg/m ³	Criterio Hoek-Brown	S	0.00147111			
Densidad sat.	2560 Kg/m ³	- HOCK-DIOWH	a	0.504048			
Alt. Prom. Del Talud	50 m	C C		0.576547	Мра		
Datos de Entrada (Clasificación Hoek-Brown)		Coulomb Fit	Φ	47.9179°			
Sigci (σ)	75 MPa		sigt	-0.130771	Mpa		
GSI	55	Parámetros	sigc	2.80168	Mpa		
mi	10	rocoso	sigcm	9.23751	Mpa		
D	0.7	-	Erm	7751.38	Mpa		
Ei	52500	Failure	sig3max	1.05700			
MR	700	Envelope Range	(σ ₃)	1.05788	Мра		

3.5.2 GEOMECÁNICA DE LOS DEPÓSITOS CUATERNARIOS

Para la obtener los parámetros geomecánicos de los depósitos cuaternarios se utilizó el software RocData v5.0, aplicando el Criterio de Mohr-Coulomb para suelos.

PROPIEDADES GEOMECÁNICAS DE LOS DEPÓSITOS ALUVIALES (Qh-al)						
Datos Generales Clasificación d			de Mo	hr-Coulom	b	
Clasificación SUCS	GC>CH	Cohesión	c	24	kPa	
Densidad Seca	2100 Kg/m ³	Ángulo de Fricción	Φ	40	Grados	
Densidad Saturada	2600 Kg/m ³	Esfuerzo Tensional	σ_t	-0.5	kPa	
Altura Promedio del Talud	50 m	Resistencia Compresiva Uniaxial	σ_c	102.936	kPa	
		Alpha	α	77.7324	Grados	

Tabla 11: Propiedades geomecánicas de los depósitos aluviales.

Tabla 12: Propiedades geomecánicas de los depósitos deluviales.

PROPIEDADES GEOMECÁNICAS DE LOS DEPÓSITOS DELUVIALES					
		(Qh-de)			
Datos GeneralesClasificación de Mohr-Coulomb				b	
Clasificación SUCS	MH	Cohesión	c	20	kPa
Densidad Seca	1750 Kg/m ³	Ángulo de Fricción	Φ	32	Grados
Densidad Saturada	2000 Kg/m ³	Esfuerzo Tensional	σ_t	-0.5	kPa
Altura Promedio del Talud	50 m	Resistencia Compresiva Uniaxial	σ_c	72.1619	kPa
		Alpha	α	72.92	Grados

Tabla 13: Propiedades geomecánicas de los depósitos coluvio-aluviales (Suelos GC>MH)

PROPIEDADES GEOMECÁNICAS DE LOS DEPÓSITOS COLUVO- ALUVIALES (Qh-co/al)						
Datos GeneralesClasificación de Mohr-Coulomb				b		
Clasificación SUCS	GC>MH	Cohesión	c	23	kPa	
Densidad Seca	1800 Kg/m ³	Ángulo de Fricción	Φ	38	Grados	
Densidad Saturada	2300 Kg/m ³	Esfuerzo Tensional	σ_t	-0.5	kPa	
Altura Promedio del Talud	50 m	Resistencia Compresiva Uniaxial	σ_c	94.314	kPa	
		Alpha	α	76.619	Grados	

Tabla 14: Propiedades geomecánicas de los depósitos coluvio-aluviales (Suelos GC>CL)

PROPIEDADES GEOMECÁNICAS DE LOS DEPÓSITOS COLUVIO- ALUVIALES (Qh-co/al)						
Datos Gene	Datos Generales Clasificación de Mohr-Coulomb					
Clasificación SUCS	GC>CL	Cohesión	c	22	kPa	
Densidad Seca	2000 Kg/m ³	Ángulo de Fricción	Φ	36	Grados	
Densidad Saturada	2300 Kg/m ³	Esfuerzo Tensional	σ_t	-0.5	kPa	
Altura Promedio del Talud	50 m	Resistencia Compresiva Uniaxial	σ_c	86.3549	kPa	
		Alpha	α	75.4464	Grados	

3.6 GEOTECNIA

La carretera Choropampa-Magdalena, tramo Km 115 - Km 127, se desarrolló y analizó en 15 taludes, definiendo el comportamiento geológico y geomecánico, con las variables litología, medidas del talud (pendiente, altura, ancho del pie, azimut y buzamiento) y factores desencadenantes (agua y sismicidad), para obtener el factor de seguridad, mediante el análisis de estabilidad, realizado con el software Slide v7.0. (ANEXO B)

3.6.1 TALUD 01

El talud se encuentra entre el Km 115 y Km 116, constituido por depósitos deluviales, aluviales y principalmente por depósitos coluvio-aluviales, meteorizado por procesos geodinámicos externos, inestable principalmente en épocas de lluvia.

GEOMETRÍA DEL TALUD FACTOR DE				TOR DE S	SEGURIDAD	
Altı	ıra	11.76 m				
Longitud	l del pie	17.70 m	Condiciones	C-n and a art	GLE/Morgenstern-	C
Pendiente	del talud	74°		Spencer	Price	Sarma
Dirección	del talud	N 145°	Normal	1.065	1.072	1.065
UBICACIÓN		Saturación Total	0.299	0.286	0.303	
Norte	Este	Cota	- Signicidad Mávima	0 794	0.707	0.722
9197368	759641	1316	Sismicidad Maxima	0.784	0.797	0.732

Tabla 15: Descripción y factor de seguridad obtenido en el Talud 01.

Figura 25: Talud 01, constituido por depósitos cuaternarios.

3.6.2 TALUD 02

El talud se encuentra en el Km 116+490, constituido por calizas mudstone de la Formación Paritambo, con capas delgadas de lutitas, presenta alta meteorización, y su resistencia a la compresión uniaxial es intermedia, su GSI es de 40. En este tramo se observan taludes que muestran bloques rocosos muy inestables.

GEOME	TRÍA DEI	FRÍA DEL TALUDFACTOR DE SEGURIDAD				
Altı	ura	39.24 m				
Longitud	l del pie	12 m	Condiciones	Snonoon	GLE/Morgenstern-	Samaa
Pendiente	del talud	62°	Apricadas ar Laidu	Spencer	Price	Sarma
Dirección	del talud	169°	Normal	1.341	1.316	1.310
UBICACIÓN		Saturación Total	0.237	0.238	0.227	
Norte	Este	Cota	Signified Máring	0.090	0.800	0.009
9196912	759970	1344	Sisilicidad Maxima	0.980	0.899	0.908

Tabla 16: Descripción y factor de seguridad obtenido en el Talud 02.

Figura 26: Talud 02, constituidos por calizas de la Formación Pariatambo, se observan bloques rocosos muy inestables.

H	Kinematic A	nalysis	V	Vedge Sliding		
	Sle	ope Dip	6	52		
Slope Dip Direction			2	259		
	Friction Angle			s5°		
				Critical	Total	%
	Wedge Sliding			0	21	0.00
	Color	Din		Din Direction	Lah	പ
	Color Dip				Lau	el
				User Planes		
1		75		201	ESTRA	ATO
2		81		291	D1	
3		32		76	D2	
			-			
	Plo	ot Mode	ŀ	ole Vectors		
	Vector	r Count	7 (7 Entries)			
	Hem	isphere	Lower			
	Pro	ojection	Equal Angle			

DISCONTINUIDADES	DIP	DIP DIRECTION
ESTRATO	75	201
D1	82	292
D1	79	295
D1	83	287
D2	30	74
D2	35	78
D2	28	69

Figura 27: Análisis en el software Dips v6.0 del talud 02.

3.6.3 TALUD 03

El talud se encuentra en el Km 116+748 aproximadamente, está constituido por depósitos coluvio-aluviales compuestos por clastos sub-angulosos y mal clasificados, presentan bloques y limos arcillosos en mayor cantidad. Según la clasificación SUCS, el suelo de este talud es de tipo GC>MH.

GEOME	TRÍA DEI	L TALUD	FAC	TOR DE S	SEGURIDAD	
Alt	ura	16.50 m			Método de Calculo	
Longituc	l del pie	12 m	Condiciones	Snonoon	GLE/Morgenstern-	Samma
Pendiente	del talud	65°	Aplicadas al Talud	Spencer	Price	Sarma
Dirección	del talud	125°	Normal	1.021	1.024	1.024
UBICACIÓN			Saturación Total	0.338	0.331	0.375
Norte	Este	Cota	Signicidad Mávima	0.721	0.712	0.711
9196715	760102	1352		0.721	0.712	0./11

Tabla 17: Descripción y factor de seguridad obtenido en el Talud 03.

Figura 28: Talud 03, compuesto por depósitos coluvio-aluviales que presentan bloques subangulosos y limos arcillosos.

3.6.4 TALUD 04

9196588

760323

1349

Este talud está ubicado en el Km 117+000, y está constituido principalmente por depósitos coluvio-aluviales que están constituidos por clastos sub-angulosos, mal clasificados, presentan bloques, gravas, alto contenido de limos y arcillas. Según la clasificación SUCS, el suelo de este talud es de tipo GC>MH.

GEOME	TRÍA DEI	L TALUD	FACTOR DE SEGURIDAD			
Alt	ura	16.90 m			Método de Calculo	
Longitud	d del pie	13 m	Condiciones -	Spencer	GLE/Morgenstern-	Samma
Pendiente	del talud	70°	Apricauas ar Taiuu		Price	Sarma
Dirección	del talud	120°	Normal	1.049	1.052	1.048
τ	JBICACIÓ	N	Saturación Total	0.290	0.275	0.383
Norte	Este	Cota	Ciami aida d Márima	0.770	0.727	0.720
			- Sisinicidad Maxima	0.770	0.737	0.720

Tabla 18: Descripción y factor de seguridad obtenido en el Talud 04.

Figura 29: Talud 04, constituido por depósitos aluviales, se puede observar una buena clasificación de los clastos.

0.720

3.6.5 TALUD 05

El talud se encuentra en el Km 117+430, está constituido por depósitos coluvio-aluviales compuestos por clastos sub-angulosos y mal clasificados, presentan bloques rocosos y limos arcillosos con ligera plasticidad. Según la clasificación SUCS, el suelo de este talud es de tipo GC>MH.

GEOME	TRÍA DEI	L TALUD	FAC	TOR DE S	SEGURIDAD	
Alt	ura	16 m	a		Método de Calculo	
Longitud	l del pie	15 m	Condiciones	Snonoon	GLE/Morgenstern-	Carrosa
Pendiente	del talud	72°	Apricauas ar Taluu	Spencer	Price	Sarma
Dirección	del talud	135°	Normal	1.026	1.034	1.022
U	BICACIÓ	N	Saturación Total	0.193	0.193	0.190
Norte	Este	Cota	Signified Mérimo	0.807	0.720	0.704
9196328	760655	1387		0.807	0.750	0.704

Tabla 19: Descripción y factor de seguridad obtenido en el Talud 05.

Figura 30: Talud 05, constituido por depósitos coluvio-aluviales.

3.6.6 TALUD 06

Este talud está ubicado en el Km 117+720, y está constituido por depósitos coluvio-aluviales donde se aprecia clastos sub-angulosos, con mala clasificación, presenta bloques y alto contenido de finos (arcillas inorgánicas de alta plasticidad). Según la clasificación SUCS, el suelo de este talud es de tipo GC>CL.

	,					
GEOME	TRÍA DEI	L TALUD	FAC	TOR DE S	SEGURIDAD	
Alt	ura	12.71 m			Método de Calculo	
Longitud	d del pie	15 m	Condiciones	Snonoon	GLE/Morgenstern-	Samma
Pendiente	del talud	80°		Spencer	Price	Sarma
Dirección	del talud	110°	Normal	1.025	1.016	1.072
UBICACIÓN			Saturación Total	0.127	0.127	0.121
Norte	Este	Cota	Signicidad Mávima	0.667	0 675	0.672
9196091	760830	1430		0.007	0.075	0.072

Tabla 20: Descripción y factor de seguridad obtenido en el Talud 06.

Figura 31: Talud 06, constituido por depósitos aluviales, que tienen alto contenido de finos.

3.6.7 TALUD 07

El talud está en el Km 117+950, y está constituido por depósitos coluvio-aluviales donde se aprecia mala clasificación de los clastos, presenta bloques rocosos mayores de 10 cm, alto contenido de arcillas de baja plasticiad y bajo contenido de limos. Según la clasificación SUCS, el suelo de este talud es de tipo GC>CL.

GEOME	TRÍA DEI	L TALUD	FAC	TOR DE S	SEGURIDAD	
Alt	ura	10.45 m			Método de Calculo	
Longituc	l del pie	13 m	Condiciones	Snonoon	GLE/Morgenstern-	Samma
Pendiente	del talud	85°	Aplicadas al Talud	Spencer	Price	Sarma
Dirección	del talud	81°	Normal	1.034	1.033	1.177
U	BICACIÓ	N	Saturación Total	0.091	0.091	0.091
Norte	Este	Cota	Signicidad Mávima	0.690	0.683	0.695
9196028	761043	1394		0.080	0.085	0.085

Tabla 21: Descripción y factor de seguridad obtenido en el Talud 07.

Figura 32: Talud 07, constituido por depósitos aluviales.

3.6.8 TALUD 08

El talud se encuentra en el Km 118+315 aproximadamente, está constituido por depósitos coluvio-aluviales compuestos por clastos sub-angulosos y mal clasificados, debido al poco transporte que ha tenido, presentan bloques y limos arcillosos en mayor cantidad. Según la clasificación SUCS, el suelo de este talud es de tipo GC>MH.

GEOME	TRÍA DEI	L TALUD	FAC	TOR DE S	SEGURIDAD		
Alt	ura	4.35 m		Método de Calculo			
Longituc	l del pie	11 m	A plicedes el Telud	Snonoon	GLE/Morgenstern-	C arres a	
Pendiente	del talud	80°	Aplicadas al Talud	Spencer	Price	Sarma	
Dirección	del talud	115°	Normal	1.377	1.372	1.372	
U	BICACIÓ	N	Saturación Total	0.927	0.904	0.934	
Norte	Este	Cota	Signiaidad Mávima	1 024	1 022	1 220	
9195921	761383	1405	- Sisinicidad Maxima	1.234	1.233	1.238	

Tabla 22: Descripción y factor de seguridad obtenido en el Talud 08.

Figura 33: Talud 08, compuesto por depósitos coluvio-aluviales.

3.6.9 TALUD 09

Este talud está ubicado en el Km 118+650, y está constituido principalmente por depósitos aluviales compuestos por bloques y finos, sus clastos son redondeados y presentan cierta clasificación. Según la clasificación SUCS, el suelo de este talud es de tipo GC>CH.

GEOMETRÍA DEL TALUD			FACTOR DE SEGURIDAD				
Altı	ıra	3.55 m		Método de Calculo			
Longitud	l del pie	13 m	Condiciones	<u>Crama a ar</u>	GLE/Morgenstern-	C arma a	
Pendiente	del talud	80°	- Aplicadas al Talud	Spencer	Price	Sarma	
Dirección	del talud	125°	Normal	1.981	1.975	1.983	
U	BICACIÓ	N	Saturación Total	1.302	1.308	1.327	
Norte	Este	Cota	- Signicidad Mávima	1 50/	1 59/	1 5 9 7	
9195800	761650	1442		1.364	1.364	1.387	

Tabla 23: Descripción y factor de seguridad obtenido en el Talud 09.

Figura 34: Talud 09, constituido por depósitos aluviales.

3.6.10 TALUD 10

Este talud se encuentra en el Km 119+400, está constituido por depósitos coluvio-aluviales que presentan composición de clastos de calizas en una matriz arcillosa, mal clasificados, el talud está altamente meteorizado, principalmente por agentes climáticos. Según la Clasificación SUCS el suelo es de tipo GC>MH.

GEOME	TRÍA DEI	L TALUD	FAC	TOR DE S	SEGURIDAD	
Alt	ura	8 m			Método de Calculo	
Longituc	d del pie	12 m	Condiciones	Snonoon	GLE/Morgenstern-	Samma
Pendiente	del talud	55°	Apricauas ar Taluu	Spencer	Price	Sarma
Dirección	del talud	45°	Normal	1.448	1.449	1.446
U	JBICACIÓ	N	Saturación Total	0.938	0.934	0.996
Norte	Este	Cota	Signicidad Mávima	1 175	1 174	1 174
9195603	762229	1454		1.1/3	1.1/4	1.1/4

Tabla 24: Descripción y factor de seguridad obtenido en el Talud 10.

Figura 35: Talud 10, compuesto por depósitos coluvio-aluviales principalmente.

3.6.11 TALUD 11

Este talud se encuentra en el Km121+148, está constituido por depósitos coluvio-aluviales que presentan clastos finos constituidos por limos arcillosos en su mayoría, sus clastos son sub-angulosos y mal clasificados, según la Clasificación SUCS el suelo es de tipo GC>MH. Se observa alta meteorización en el talud, que desestabiliza los clastos del talud, provocando caída de los detritos.

GEOMETRÍA DEL TALUD FACTOR DE S				SEGURIDAD		
Alt	ura	13.62 m	a r r	Método de Calculo		
Longitue	d del pie	18 m	Condiciones	C	GLE/Morgenstern-	C
Pendiente	del talud	67°	- Aplicadas al Talud	spencer	Price	Sarma
Dirección	del talud	118°	Normal	1.124	1.132	1.123
τ	JBICACIÓ	N	Saturación Total	0.394	0.389	0.425
Norte	Este	Cota	Signicidad Mávima	0 858	0.800	0.780
9195363	763748	1521		0.038	0.800	0.789

Tabla 25: Descripción y factor de seguridad obtenido en el Talud 11.

Figura 36: Talud 11, constituidos por depósitos coluvio-aluviales.

3.6.12 TALUD 12

El talud se encuentra en el Km 122+375, constituido por calizas de la Formación Pariatambo que presentan alta meteorización debido a agentes climáticos principalmente, su resistencia a la compresión uniaxial es baja, su GSI es de 35. En épocas de lluvia es más inestable debido al fracturamiento del macizo rocoso, provocando caídas de rocas y detritos.

GEOME	TRÍA DEI	L TALUD	FAC	TOR DE S	SEGURIDAD	
Altı	ıra	10.57 m			Método de Calculo	
Longitud	l del pie	9.63 m	Condiciones	C	GLE/Morgenstern-	C manage of
Pendiente	del talud	79°	Aplicadas al Talud	spencer	Price	Sarma
Dirección	del talud	65°	Normal	2.118	2.117	2.114
UBICACIÓN			Saturación Total	0.234	0.215	0.233
Norte	Este	Cota	Signicidad Mávima	1 500	1 400	1 /26
9194995	764568	1542		1.500	1.499	1.430

Tabla 26: Descripción y factor de seguridad obtenido en el Talud 12.

Figura 37: Talud 12, constituido por calizas de la Formación Pariatambo, altamente meteorizadas.

3.6.13 TALUD 13

El talud se encuentra en el Km 123+955, está constituido por depósitos aluviales, formados por clastos de calizas en una matriz limo-arcillosa, sub-redondeados y con cierta clasificación, también presenta bloques en la parte superior del talud. Se ha considerado según clasificación SUCS un suelo tipo GC>CH.

GEOME	TRÍA DEI	L TALUD	FACTOR DE SEGURIDAD					
Alt	ura	8.55 m		Método de Calculo				
Longituc	d del pie 15 m		Condiciones	C	GLE/Morgenstern-	C		
Pendiente	del talud	87°	Apricauas ar Taiuu	spencer	Price	Sarma		
Dirección del talud 97°		Normal	1.111	1.110	1.281			
UBICACIÓN			Saturación Total	0.138	0.133	0.239		
Norte	Este	Cota	Signiaidad Mávima	0.762	0.762	0.765		
9194866	765519	1569	- Sisinicidad Maxima	0.763	0.762	0.765		

Tabla 27: Descripción y factor de seguridad obtenido en el Talud 13.

Figura 38: Talud 13, constituido por depósitos aluviales.

3.6.14 TALUD 14

El talud se encuentra en el Km 124+290, constituidos por estratos gruesos de calizas del Grupo Pulluicana, que presentan una alta resistencia, el talud esta levemente meteorizado. Su GSI es de 55. El fracturamiento del macizo rocoso, puede desestabilizar bloques de roca provocando su caída, debido a diferentes factores como el agua o la vibración causada por el paso de vehículos en la carretera.

GEOME	TRÍA DEI	L TALUD	FACTOR DE SEGURIDAD					
Alt	ura	15.91 m	a r r					
Longitud del pie		13 m	Condiciones	Spencer	GLE/Morgenstern-	Sarma		
Pendiente del talud		82°	- Aplicauas al Taluu		Price			
Dirección del talud		110°	Normal	2.358	2.360	2.354		
UBICACIÓN			Saturación Total	1.446	1.448	1.457		
Norte	Este	Cota	Signicidad Mávima	1 495	1 496	1 490		
9194765	765840	1569		1.463	1.400	1.480		

Tabla 28: Descripción y factor de seguridad obtenido en el Talud 14.

Figura 39: Talud 14, constituido por calizas del Grupo Pulluicana.

k	Kinematic A	nalysis	Wedge	Slidi	ng				
	Slo	ope Dip	82						
S	lope Dip Di	irection	200						
	Friction	n Angle	48°						
			C	ritica	al	Total	%		
	Wedg	e Slidiną	3	12		21	57.14		
	Color	Dip	Dip I	Direct	tion	Lab	el		
User Planes									
1		32		13		ESTRA	ATO		
2		78		100		D1			
3		84		213		D2			
	Plo	t Mode	Pole V	ector	5				
	Vector	Count	7 (7 Entries)						
	Hem	isphere	Lower						
	Pro	jection	Equal A	Angle					
	DISCON	NTINUIE	DADES	DIP	DIP I	DIRECTION	ſ		
	E)	32						
			85	218		1			
			80	210					
		D1	_	78		215			
		D2	_	82		95			
		D2		71		104			

77

101

D2

Figura 40: Análisis en el software Dips v6.0 del talud 14.

3.6.15 TALUD 15

El talud se encuentra en el Km 125+000, constituido por depósitos aluviales, compuestos por clastos de origen calcáreo y con contenido de finos arcillosos, está altamente meteorizado. Presenta mayor inestabilidad en épocas de lluvia. Según la clasificación SUCS se considera el tipo de suelo como GC>CH.

Tabla	29:	Descrip	ción y	factor	de	seguridad	obtenido	en el	Talud 15	5.
						0				

GEOME	TRÍA DEI	L TALUD	FACTOR DE SEGURIDAD					
Alt	ura	20.45 m						
Longitud del pie 16 m		16 m	Condiciones	Cro are a are	GLE/Morgenstern-	C		
Pendiente	del talud	34°	Aplicadas al Talud	spencer	Price	Sarma		
Dirección del talud 105°		Normal	1.494	1.494	1.492			
UBICACIÓN			Saturación Total	0.780	0.777	0.964		
Norte	Este	Cota	Signified Máring	1 102	1 105	1 100		
9194598	766505	1616		1.192	1.185	1.190		

Figura 41: Talud 15, formado por depósitos aluviales inestables.

CAPÍTULO IV

ANÁLISIS Y DISCUSIÓN DE RESULTADOS

4.1 ANÁLISIS DE LA INFORMACIÓN

El análisis de la información obtenida de los 15 taludes estudiados, se realizó mediante el Software Slide v7.0 (Método de Equilibrio Limite), donde se obtuvo los factores de seguridad en taludes de suelo y roca, para la determinación de zonas inestables que son susceptibles a deslizamientos en la carretera Choropampa - Magdalena. Se analizó los factores geológicos (litología, discontinuidades) de cada talud, para determinar los parámetros geomecánicos de las unidades geológicas que influyen en cada talud, mediante el análisis en el Software RocData v5.0. Para los taludes de suelos se utilizó el Criterio de Mohr-Coulomb y para los taludes de roca el Criterio Generalizado de Hoek-Brown.

Los taludes se analizaron en condiciones naturales, de saturación total de los materiales y sismicidad. Para condiciones normales se tuvo en cuenta la litología, topografía, cargas estáticas, propiedades geomecánicas de los materiales (cohesión, ángulo de fricción en suelos; y resistencia a la compresión uniaxial, GSI en rocas, además de parámetros obtenidos en el software RocData v5.0 a partir de datos de entrada determinados en campo);

Para el análisis en el Software Slide v7.0, se emplearon los métodos de Spencer, GLE/Morgenstern-Price, Sarma; que son los métodos de análisis más precisos y complejos, ayudados por programas de software que permiten realizar análisis muy rigurosos. Generalmente, los métodos son de iteración y cada uno de éstos posee un cierto grado de precisión (Suárez, J. 2009). En la siguiente tabla 30 y 31 se resumen los resultados de los taludes analizados.

		FACTOR DE SEGURIDAD					
	UNIDAD	,					
TALUD	GEOLÓGICA	CONDICION	Spencer	GLE/Morgenstern- Price	Sarma		
	Depósitos Coluvio-	Normal	1.065	1.072	1.065		
1-1'	aluviales	Saturación Total	0.299	0.286	0.303		
	(Qh-co/al)	Sismicidad Máxima	0.784	0.797	0.732		
2-2'		Normal	1.341	1.316	1.310		
	Calizas (Ki-na)	Saturación Total	0.237	0.238	0.227		
	(itti pu)	Sismicidad Máxima	0.980	0.899	0.908		
	Depósitos Coluvio-	Normal	1.021	1.024	1.024		
3-3' 	aluviales	Saturación Total	0.338	0.331	0.375		
	(Qh-co/al)	Sismicidad Máxima	0.721	0.712	0.711		
	Depósitos Coluvio-	Normal	1.049	1.052	1.048		
4-4'	aluviales	Saturación Total	0.290	0.275	0.383		
	(Qh-co/al)	Sismicidad Máxima	0.770	0.737	0.720		
	Depósitos Coluvio-	Normal	1.026	1.034	1.022		
5-5'	aluviales	Saturación Total	0.193	0.193	0.190		
	(Qh-co/al)	Sismicidad Máxima	0.807	0.730	0.704		
6-6'	Depósitos Coluvio-	Normal	1.025	1.016	1.072		
	aluviales	Saturación Total	0.127	0.127	0.121		
	(Qh-co/al)	Sismicidad Máxima	0.667	0.675	0.672		
	Depósitos Coluvio-	Normal	1.034	1.033	1.177		
7-7'	aluviales	Saturación Total	0.091	0.091	0.091		
7-7'	(Qh-co/al)	Sismicidad Máxima	0.680	0.683	0.685		
	Depósitos Coluvio-	Normal	1.377	1.372	1.372		
8-8'	aluviales	Saturación Total	0.927	0.904	0.934		
	(Qh-co/al)	Sismicidad Máxima	1.234	1.233	1.238		
		Normal	1.981	1.975	1.983		
9-9'	Depositos Aluviales (Oh-al)	Saturación Total	1.302	1.308	1.327		
	(Qii ui)	Sismicidad Máxima	1.584	1.584	1.587		
	Depósitos Coluvio-	Normal	1.448	1.449	1.446		
10-10'	aluviales	Saturación Total	0.938	0.934	0.996		
	(Qh-co/al)	Sismicidad Máxima	1.175	1.174	1.174		
	Depósitos Coluvio-	Normal	1.124	1.132	1.123		
11-11'	aluviales	Saturación Total	0.394	0.389	0.425		
	(Qh-co/al)	Sismicidad Máxima	0.858	0.800	0.789		

Tabla 30: Resumen de los factores de seguridad de los taludes analizados (Talud 1-11).

		FACTOR DE SEGURIDAD				
	UNIDAD	,	MÉTODO			
TALUD	GEOLÓGICA	CONDICIÓN	Spencer	GLE/Morgenstern- Price	Sarma	
		Normal	2.118	2.117	2.114	
12-12'	Calizas (Ki-pa)	Saturación Total	0.234	0.215	0.233	
	(itti pu)	Sismicidad Máxima	1.500	1.499	1.436	
		Normal	1.111	1.110	1.281	
13-3'	Depósitos Aluviales	Saturación Total	0.138	0.133	0.239	
	(Qii ui)	Sismicidad Máxima	0.763	0.762	0.765	
		Normal	2.358	2.360	2.354	
14-14'	Calizas (Ks. p)	Saturación Total	1.446	1.448	1.457	
	(135 p)	Sismicidad Máxima	1.485	1.486	1.480	
	5 () 11 11	Normal	1.494	1.494	1.492	
15-15'	Depósitos Aluviales (Oh-al)	Saturación Total	0.780	0.777	0.964	
	(2" ")	Sismicidad Máxima	1.192	1.185	1.190	

Tabla 31: Resumen de los factores de seguridad de los taludes analizados (Talud 12-15).

4.2 DISCUSIÓN DE RESULTADOS

4.2.1 INFLUENCIA DE LOS FACTORES GEOLÓGICOS-GEOTÉCNICOS EN LA INESTABILIDAD

Los taludes más inestables en la zona de estudio son los que están compuestos por depósitos cuaternarios, los cuales son suelos gravosos, con abundantes finos arcillosos y limosos, en su mayoría bien graduados o con granulometría discontinua; presentan inestabilidad en las tres condiciones aplicadas. Los taludes en rocas presentan más estabilidad, en condiciones naturales; pero varía al aplicar saturación a los materiales o sismicidad. Sin embargo, tanto en taludes de suelo y rocas, la estabilidad también depende de las propiedades físicas de los taludes (altura, pendiente, longitud de pie) y de la topografía. Estos factores sumados a los factores geológicos y geotécnicos, influyen en el resultado final de los análisis en las tres condiciones aplicadas. El factor de seguridad resultante en los métodos utilizados (Spencer, GLE/Morgenstern-Price, Sarma) no varía significativamente; para la comparación de resultados en esta investigación se va a utilizar el factor de seguridad del Método Sarma. En condiciones normales, los taludes 01, 03, 04, 05, 06, 07, 11 y 13 presentan estabilidad

relativa, el factor de seguridad de estos taludes se encuentra en el rango de 1.00 - 1.29, están compuestos por depósitos cuaternarios, geomorfológicamente están ubicados en terrenos con pendientes que varían de 25°-45° y fueron analizados con el criterio de Mohr - Coulomb.

Los taludes 02, 08, 10 y 15 presentan estabilidad temporal, el factor de seguridad de estos taludes se encuentra en el rango de 1.30 - 1.49; el talud 02 está compuesto por calizas de la Formación Pariatambo y los taludes 08, 10 y 15 están compuestos por depósitos cuaternarios, ubicados en terrenos con pendientes de $15^{\circ}-25^{\circ}$. Los taludes 09, 12 y 14, presentan estabilidad permanente, el factor de seguridad de estos taludes se encuentra en el rango de 1.50 - 2.99; los taludes 12 y 14 están compuestos por calizas de la Formación Pariatambo y Grupo Pulluicana respectivamente, y el talud 09 está compuesto por depósitos aluviales, ubicado en terrenos de pendiente de $15^{\circ}-20^{\circ}$.

Figura 42: Gráfico del factor de seguridad de los taludes en condiciones normales.

En condiciones de saturación, los taludes 01, 02, 03, 04, 05, 06, 07, 11, 12, 13 presentan inestabilidad absoluta, el factor de seguridad está en el rango de 0.00 - 0.89, el mecanismo de rotura en los taludes (superficie de deslizamiento), es la rotura rotacional; la inestabilidad en los taludes 02 y 12 compuestos por calizas está influenciada por la geometría del talud. Los taludes 08, 10 y 15 presentan inestabilidad relativa, el factor de seguridad está en el rango de 0.90 - 0.99. Los taludes 09 y 14 presentan estabilidad temporal, en el talud 14 la superficie de falla está en la base del talud donde hay depósitos coluvio-aluviales.

Figura 43: Gráfico del factor de seguridad de los taludes en condiciones de saturación.

Para las condiciones de sismicidad se consideró los siguientes factores:

- Zona sísmica: 3, aceleración máxima: 0.3-0.4 gal = 0.35 gal (promedio)
- Coeficiente de amplificación topográfica: 1.2 (taludes aislados mayores a 15°)
- Categoría de perfil estratigráfico: B (1.25, suelos duros, mediana a alta cohesión)
- Amplificación estratigráfica "Kh" = 0.263
- Parámetros de Zona "Kv" = 0.132

En condiciones de sismicidad, los taludes 01, 03, 04, 05, 06, 07, 11 y 13 presentan inestabilidad absoluta, debido a que están compuestos por depósitos cuaternarios, sus características geológicas, geotécnicas y geométricas influyen en su inestabilidad. El talud 02, compuesto por calizas de la Formación Pariatambo presenta inestabilidad relativa, influenciada principalmente por la topografía del talud. Los taludes 08, 10 y 15 presentan estabilidad relativa, debido a la topografía del talud y por las características geomecánicas de los suelos que contienen los taludes. Los taludes 12 y 14 presentan estabilidad temporal, están compuestos por calizas de las Formación Pariatambo y Grupo Pulluicana respectivamente, sus características geomecánicas influyen en la estabilidad de estos taludes; en el talud 14, la superficie de falla se encuentra en la base del talud donde hay depósitos coluvio-aluviales. El talud 09 presentan estabilidad permanente, la estabilidad está influenciada por la topografía del talud (la pendiente del talud es 55°) y propiedades geomecánicas de los suelos que contienen los depósitos aluviales.

Figura 44: Gráfico del factor de seguridad de los taludes en condiciones de sismicidad.

4.2.2 ZONIFICACIÓN DE ESTABILIDAD SEGÚN EL FACTOR DE SEGURIDAD

El factor de seguridad recomendado para taludes permanentes debe ser igual o superior a 1.5, e incluso 2.0 (González de Vallejo L. et. al., 2004), dependiendo de la seguridad exigida y de los datos geotécnicos que intervienen en los cálculos; para taludes temporales el factor de seguridad está en torno a 1.3, pero en ocasiones pueden adoptarse valores inferiores. La zonificación en el área de estudio ha sido clasificada de acuerdo a los factores de seguridad en los taludes obtenidos con las tres condiciones aplicadas y los métodos Spencer, GLE/Morgenstern-Price y Sarma. Para ello se ha utilizados la siguiente clasificación, que se muestra en la tabla.

FACTOR DE SEGURIDAD	
RANGO	ESTADO DEL TALUD
0.00 - 0.89	Inestable Absoluto
0.90 - 0.99	Inestable Relativo
1.00 - 1.29	Estable Relativo
1.30 - 1.49	Estable Temporalmente
1.50 - 2.99	Estable Permanentemente
3.00 - 15.00	Estable Absoluto
	Fuente: Hoek, E. 2007

Tabla 32: Zonificación del área de estudio según los factores de seguridad.

4.3 CONTRASTACIÓN DE LA HIPÓTESIS

La inestabilidad de los taludes en la carretera Choropampa - Magadalena, se ve influenciada por el comportamiento de los factores geológicos-geotécnicos, influyendo también factores geométricos y factores detonantes. Los taludes en la carretera están compuestos en su mayoría, por depósitos cuaternarios aluviales (suelos tipo GC>CH), coluvio-aluviales (suelos GC>CL, y tipo GC>MH) y deluviales (suelos tipo MH), por rocas de las Formaciones Chúlec, Pariatambo, Grupo Pulluicana, y por intrusivos dioríticos en cortos tramos de la carretera, que se ven afectados por agentes geodinámicos externos que erosionan suelos y rocas, provocando fracturamiento, denudación de los materiales; reduciendo su resistencia y alterando sus propiedades geomecánicas. Los factores geométricos de los taludes como su altura, pendiente, ubicación topográfica, también influyen en la inestabilidad de los taludes. La infiltración de agua en los materiales, dándose principalmente en épocas de lluvia, hace al agua un agente detonante, así como el factor sismicidad. La combinación de todos estos factores, influyen en el análisis de estabilidad de los taludes para obtener el factor de seguridad. Por lo que la hipótesis ha sido contrastada y verificada.

CAPÍTULO V

CONCLUSIONES Y RECOMENDACIONES

5.1 CONCLUSIONES

Los factores geológicos-geotécnicos, junto con factores geométricos y topográficos del talud, han sido afectados por procesos geodinámicos externos e internos, que han modificado sus propiedades geomecánicas, influyendo en la inestabilidad de los taludes, que incrementa con factores desencadenantes de saturación y sismicidad.

Los taludes analizados de la carretera Choropampa-Magdalena, están compuestos principalmente por depósitos cuaternarios aluviales, coluvio-aluviales, deluviales, por calizas de las Formaciones Chúlec, Pariatambo, Grupo Pulluicana, y por intrusivos dioríticos, se encuentran en terrenos con pendientes fuertes (15°-25°) y escarpadas (>45°).

El factor de seguridad obtenido en el análisis, varía de acuerdo a las condiciones aplicadas (normales, de saturación y sismicidad), por lo que, los taludes se clasificaron en inestables absolutos, inestables relativos, estables relativos, estables temporales y estables permanentes.

En condiciones normales los taludes 01, 03, 04, 05, 06, 07, 11 y 13 presentan estabilidad relativa, su factor de seguridad varía entre 1.00 - 1.29. En condiciones de saturación, los taludes 01, 02, 03, 04, 05, 06, 07, 08 (tramo Km 115+500 - 118+500) y los taludes 11, 12 y 13, presentan inestabilidad absoluta, su factor de seguridad varía entre 0.00 - 0.89, los taludes 10 y 14 son inestables relativos, su factor de seguridad está entre 0.90 - 0.99. En condiciones de sismicidad los taludes 10, 03, 04, 05, 06, 07, 11 y 13 se clasifican como inestables absolutos; y el talud 02 como inestable relativo; los taludes restantes son estables.

5.2 **RECOMENDACIONES**

En los periodos de lluvias, los taludes presentan mayor inestabilidad, principalmente en los taludes compuestos por depósitos cuaternarios, por lo que las autoridades competentes de la Región y del Distrito de Magdalena, deben monitorear constantemente los tramos más susceptibles a deslizamientos en épocas secas, realizando obras de mitigación, como zanjas de coronación, en los puntos identificados de mayor susceptibilidad.

Se recomienda realizar ensayos geomecánicos en los taludes de suelos y rocas, para obtener resultados más fiables, ya que en esta investigación se utilizaron estimaciones empíricas de los datos obtenidos en campo; procesándolos luego en softwares como RocData y Slide.

Se recomienda realizar obras de estabilidad en las quebradas, ya que, en sus cauces se ha observado presencia de abundante material suelto producto de los derrumbes y los procesos de meteorización, este material es susceptible de ser acarreado como huaycos durante periodos de lluvia excepcional, afectando directamente a la carretera.

REFERENCIAS BIBLIOGRÁFICAS

- BRAJA, M. (2001) "Fundamentos de Ingeniería Geotécnica". Sacramento, USA. Cengage Learning Latin Am.
- DAVILA, J. (2011) "Diccionario Geológico". INGEMMET, Lima, Perú.
- GEMMA GRUPO DE ESTÁNDARES PARA MOVIMIENTOS EN MASA (2007). "Movimientos en Masa en la Región Andina: Una Guía para la Evaluación de Amenazas". Publicación Geológica Multinacional No. 4.
- GRANADOS, A. (2006). "Estabilización del Talud de la Costa Verde en la Zona del Distrito de Barranco". Lima-Perú.
- HERRERA, F. (2003). "Introducción al Análisis de la Estabilidad de Taludes en Suelos y los Diferentes Métodos de Cálculo Utilizados". Ponencia presentada en el VI Curso de Geotecnia. Ilustre Colegio Oficial de Geólogos (ICOG)-Aragón.
- HOEK, E., CARRANZA TORRES, C., & CORKUM, B. (2002). "El Criterio de Rotura de Hoek - Brown". Edición 2002. Minnsesota
- HOEK, E. (2013). "Quantification of the Geological Strength Index Chart". 47th US Rock Mechanics / Geomechanics Symposium.
- HOEK, E. (2007). "Rock Mass Properties. In Practical Rock Engineering". Toronto, Canadá: Rocscience.

HOYOS, F. (2012). "Geotecnia Diccionario Básico". 1st Ed. Medellín-Colombia.

GEOSTRU SOFTWARE (2014). LoadCap. http://www.geostru.eu/es/.

MELENTIJEVIC, S. (2005). "Estabilidad de Taludes en Macizos Rocosos con Criterios de Rotura No Lineales y Leyes de Fluencia No Asociada". Tesis Doctoral. Universidad Politécnica de Madrid.

- MINISTERIO DE VIVIENDA, CONSTRUCCIÓN Y SANEAMIENTO (2016). Norma Técnica E.030 "Diseño Sismorresistente" del Reglamento Nacional de Edificaciones, DECRETO SUPREMO Nº 003-2016-VIVIENDA. El Peruano - 576293.
- MONTOYA, F. (2014) "Evaluación geotécnica de los Taludes de la Carretera Cruz Blanca - El Gavilán". Universidad Nacional de Cajamarca.
- REYES, L. (1980). Boletín N° 31, "Cuadrángulo de Cajamarca San Marcos Cajabamba". INGEMMET, Lima-Perú.
- RICO A, A. & CASTILLO, H. (1998). "La Ingeniería de Suelos en las Vías Terrestres". (1st Ed.). Limusa - México.
- SÁENZ, E. (2015). "Evaluación Geotécnica De Los Taludes En El Tramo De La Carretera El Gavilán - Chigden". Universidad Nacional de Cajamarca.
- SUAREZ, J. (2009). "Deslizamientos: Análisis Geotécnico". España. U. Industrial de Santander.
- TORRES, W. (2015). "Evaluación Geotécnica de los Deslizamientos en Taludes de la Carretera Peña Blanca - Choropampa - Cajamarca". Universidad Nacional de Cajamarca.
- VALLEJO, L. Et. Al, (2004). "Ingeniería Geológica". Madrid, España. Pearson Educacion.
- VILCHEZ, M. & GUERRERO, C. (2006). "Zonas Críticas por Peligros Geológicos en la Cuenca del Río Jequetepeque". INGEMMET, Lima-Perú.
- ZAVALA, B. & ROSADO, M. (2011). "Riesgo Geológico en la Región de Cajamarca". INGEMMET. Lima-Perú.
- ZAVALETA, A. (2016). "Evaluación Geotécnica en Zonas Críticas de la Carretera Cajabamba-Cauday". Universidad Nacional de Cajamarca.
- ZÚÑIGA, R. (2011). "Sismología". Posgrado en Ciencias de la Tierra. Universidad Nacional Autónoma de México.

ANEXOS

A. RESULTADO DEL ANÁLISIS CON EL SOFTWARE ROCDATA V5.0

B. RESULTADO DEL ANÁLISIS CON EL SOFTWARE SLIDE V7.0

C. PLANOS

C.1 UBICACIÓN
C.2 IMAGEN SATELITAL
C.3 TOPOGRÁFICO
C.4 PENDIENTES
C.5 GEOLÓGICO
C.6 ESTABILIDAD EN CONDICIONES NORMALES
C.7 ESTABILIDAD EN CONDICIONES DE SATURACIÓN
C.8 ESTABILIDAD EN CONDICIONES DE SISMICIDAD