# **UNIVERSIDAD NACIONAL DE CAJAMARCA**

# FACULTAD DE INGENIERÍA

## ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL



## TESIS

# "COMPARACIÓN DE LA RESPUESTA ESTRUCTURAL DE LOS MODELOS DE CÁLCULO DE INTERACCIÓN SUELO ESTRUCTURA CON LA NTP E030 2018 DEL PABELLÓN "D" DE LA I.E. Nº 81703, DISTRITO DE GUADALUPE, PROVINCIA DE PACASMAYO, REGIÓN LA LIBERTAD"

PARA OPTAR EL TÍTULO PROFESIONAL DE INGENIERO CIVIL

## AUTOR:

Bach. Liñan Nizama Mitchell Arnold

## **ASESOR:**

Dr. Ing. Mosqueira Ramírez Hermes Roberto

CAJAMARCA – PERÚ

2022

#### AGRADECIMIENTOS

A mi asesor el Dr. Ing<sup>°</sup> Hermes Roberto Mosqueira Ramírez, por el apoyo e interés en el desarrollo de la presente tesis.

A los docentes de la escuela Académico Profesional de Ingeniería Civil de la Universidad Nacional de Cajamarca, quienes con su enseñanza y dedicación me impulsaron en la búsqueda de conocimiento y posteriormente en la elaboración del presente trabajo.

## DEDICATORIA

A mis padres, mi hermana y mi novia, quienes me apoyaron incondicionalmente siempre en todos mis proyectos e hicieron de mí una persona de bien.

| Capít | ulo I: I | ntroducción                                | 1    |
|-------|----------|--------------------------------------------|------|
| 1.1   | Pla      | nteamiento Del Problema                    | 1    |
| 1.2   | For      | rmulación Del Problema                     | 2    |
| 1.3   | Hij      | pótesis                                    | 2    |
| 1.4   | Jus      | tificación De La Investigación             | 2    |
| 1.5   | Lir      | nitaciones                                 | 4    |
| 1.6   | De       | limitación                                 | 4    |
| 1.7   | Ob       | jetivos                                    | 4    |
|       | 1.7.1    | Objetivo General                           | 4    |
|       | 1.7.2    | Objetivos Especificos:                     | 4    |
| Capít | ulo II:  | Marco Teórico                              | 5    |
| 2.1   | An       | tecedentes Teóricos                        | 5    |
| ,     | 2.1.1    | A Nivel Internacional                      | 5    |
| ,     | 2.1.2    | A Nivel Nacional                           | 6    |
| ,     | 2.1.3    | A Nivel Local                              | 7    |
| 2.2   | Ba       | ses Teóricas                               | 9    |
| ,     | 2.2.1    | Interacción Suelo Estructura (ISE)         | 9    |
| ,     | 2.2.2    | Modelos De Interacción Suelo-Estructura    | . 11 |
| ,     | 2.2.3    | Modelo Dinámico V.A. Ilichev               | . 16 |
| ,     | 2.2.4    | Modelo Dinámico A.E. Sargsian              | . 20 |
| ,     | 2.2.5    | Modelo Dinámico Norma Rusa Snip 2.02.05-87 | . 21 |
| ,     | 2.2.6    | Federal Emergency Management Agency (FEMA) | . 26 |
| ,     | 2.2.7    | Análisis Sísmico Con La Nt E030 2018       | . 33 |
| 2.3   | De       | finición De Términos Básicos               | . 42 |
| Capít | ulo III: | Materiales Y Métodos                       | . 44 |

## CONTENIDO

| 3.1 Ub      | icación                                                                |
|-------------|------------------------------------------------------------------------|
| 3.1.1       | Ubicación De La Investigación 44                                       |
| 3.1.2       | Época De La Investigación44                                            |
| 3.2 De      | scripción De La Estructura En Estudio 44                               |
| 3.2.1       | Descripción General                                                    |
| 3.2.2       | Propiedades Y Especificaciones Técnicas De Los Elementos Estructurales |
| Y Del       | Suelo Para Cimentación                                                 |
| 3.2.3       | Propiedades Y Especificaciones Del Suelo De Cimentación 46             |
| 3.2.4       | Cargas                                                                 |
| 3.2.5       | Análisis Sísmico Estático O De Fuerzas Estáticas Equivalentes          |
| 3.3 Me      | etodología De La Investigación 49                                      |
| 3.4 Pro     | ocedimiento                                                            |
| 3.4.1       | Análisis Sísmo Estático Equivalente Utilizando El Programa Etabs 52    |
| 3.4.2       | Análisis Sísmo Dinámico Utilizando El Programa Etabs V18 55            |
| 3.4.3       | Modelo Dinámico D.D. Barkan – O.A. Savinov 57                          |
| 3.4.4       | Modelo Dinámico V.A. Ilichev                                           |
| 3.4.5       | Modelo Dinámico A.E. Sargsian 69                                       |
| 3.4.6       | Modelo Dinámico Norma Rusa Snip 2.02.05-87                             |
| 3.4.7       | Modelo De Base Flexible De Interacción Suelo Estructura Del Federal    |
| Manag       | ement Agency (FEMA)75                                                  |
| 3.5 Tra     | atamiento Y Análisis De Datos Y Presentación De Resultados             |
| 3.5.1       | Tratamiento Y Análisis De Datos91                                      |
| 3.5.2       | Presentación De Resultados91                                           |
| Capítulo IV | : Análisis Y Discusión De Resultados109                                |
| 4.1 De      | splazamientos 109                                                      |
| 4.2 De      | rivas 110                                                              |

| 4.3     | Fuerzas Internas En Columnas112             |
|---------|---------------------------------------------|
| 4.4     | Fuerzas Internas En Vigas 113               |
| 4.5     | Fuerzas Internas En Muros De Albañilería114 |
| 4.6     | Fuerzas Internas En Placas114               |
| 4.7     | Fuerzas Cortantes De Piso 115               |
| 4.8     | Periodos De Vibración116                    |
| 4.9     | Contrastación De La Hipótesis 117           |
| Capítul | v V: Conclusiones Y Recomendaciones 118     |
| 5.1     | Conclusiones                                |
| 5.2     | Recomendaciones 120                         |
| Referen | cias Bibliográficas 121                     |
| Anexos  |                                             |

## ÍNDICE DE TABLAS

| <b>Tabla 2.1:</b> Valores del coeficiente $C_0$ cuando $\rho_0 = 0.2kg / cm^2$ . (Villareal 2013) 15                              |
|-----------------------------------------------------------------------------------------------------------------------------------|
| <b>Tabla 2.2:</b> Valores de los coeficientes verticales, rotaciones y horizontales. (Villareal 2013)                             |
| <b>Tabla 2.3.</b> Valores de los coeficientes verticales, rotaciones y horizontales. (Villareal 2013)                             |
| <b>Tabla 2.4:</b> Resistencia de cálculo R para suelos grandes o de grano grueso. (Villareal 2013)                                |
| Tabla 2.5: Resistencia de cálculo R para suelos arenosos. (Villareal 2013)                                                        |
| <b>Tabla 2.6:</b> Resistencia de cálculo R para arenas, arenas arcillosas y arcillas. (Villareal 2013)                            |
| Tabla 2.7: Resistencia de cálculo R para suelos naturales y compactados. (Villareal 2013)                                         |
| Tabla 2.8: Resistencia de cálculo R para suelos terraplenados o de relleno. (Villareal 2013)                                      |
| Tabla 2.9: Coeficiente de Rigidez de la cimentación en la superficie. (FEMA 356) 29                                               |
| <b>Tabla 2.10:</b> Factores de corrección por profundidad de desplante/empotramiento.(FEMA 356)                                   |
| Tabla 2.11: Factores de Zona. (NT E030 2018)                                                                                      |
| Tabla 2.12: Factor de Suelo "S". (NT E030 2018)                                                                                   |
| Tabla 2.13: Clasificación de los perfiles de Suelo. (NT E030 2018)                                                                |
| Tabla 2.14: Periodos "T P " y "T L ". (NT E030 2018)         38                                                                   |
| Tabla 2.15: Categoría de las Edificaciones y Factor "U". (NT E030 2018)                                                           |
| Tabla 2.16: Factor de Amplificación Sísmica. (NT E030 2018)                                                                       |
| Tabla 2.17: Sistemas Estructurales. (NT E030 2018)         40                                                                     |
| <b>Tabla 3.1:</b> Propiedades y Especificaciones Técnicos de los Elementos Estructurales         (Expediente técnico IE N° 81703) |

| <b>Tabla 3.2:</b> Propiedades y especificaciones técnicas del Suelo de Cimentación(Expediente técnico IE N° 81703)                                                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Tabla 3.3:</b> Parámetros utilizados en Análisis Sísmico según NT E030 2018 (Expedientetécnico IE N° 81703).48                                                        |
| <b>Tabla 3.4</b> : Coeficientes de Desplazamiento y Compresión & Coeficientes de Rigidez parael Modelo Dinámico D.D. Barkan – O.A. Savinov.59                            |
| Tabla 3.5: Propiedades de masas utilizadas para el modelamiento en ETABS V18 61                                                                                          |
| <b>Tabla 3.6:</b> (a) Coeficientes de rigidez y amortiguamiento del Modelo Dinámico V.A.         Ilichev                                                                 |
| <b>Tabla 3.7:</b> (b) Coeficientes de rigidez y amortiguamiento del Modelo Dinámico V.A.         Ilichev.       65                                                       |
| Tabla 3.8: (c) Coeficientes de rigidez y amortiguamiento del Modelo Dinámico V.A.         Ilichev.       66                                                              |
| Tabla 3.9: Coeficientes de Rigidez para el Modelo Dinámico A.E. Sargsian                                                                                                 |
| Tabla 3.10: Coeficientes de Desplazamiento y Compresión, Coeficientes de Rigidez &         Amortiguaciones Relativas para el Modelo Dinámico NORMA RUSA SNIP 2.02.05-87. |
| Tabla 3.11: Módulo de corte inicial (G <sub>0</sub> ).    76                                                                                                             |
| Tabla 3.12: Razón de corte efectivo (r).    76                                                                                                                           |
| Tabla 3.13: Tipos de zapatas identificadas                                                                                                                               |
| Tabla 3.14: Resumen de los factores de rigidez corregidos por profundidad de empotramiento.         80                                                                   |
| <b>Tabla 3.15</b> : Desplazamiento de entrepiso en X para el análisis sismo estático con laNorma E030 2018                                                               |
| <b>Tabla 3.16</b> : Desplazamiento de entrepiso en X para el análisis sismo dinámico con laNorma E030 2018                                                               |
| Tabla 3.17: Desplazamiento de entrepiso en Y para el análisis sismo estático con la         Norma E030 2018                                                              |

| <b>Tabla 3.18:</b> Desplazamiento de entrepiso en Y para el análisis sismo dinámico con laNorma E030 2018                      |
|--------------------------------------------------------------------------------------------------------------------------------|
| Tabla 3.19: Derivas en la Dirección X para el análisis Sismo Estático E030 2018 94                                             |
| Tabla 3.21: Derivas en la Dirección X para el análisis Sismo Dinámico E030 201895                                              |
| Tabla 3.21: Derivas en la Dirección Y para el análisis Sismo Estático E030 2018 96                                             |
| Tabla 3.22: Derivas en la Dirección Y para el análisis Sismo Dinámico E030 201896                                              |
| Tabla 3.23: Fuerzas Axiales en la columna 12-B (en Tn)                                                                         |
| Tabla 3.24: Cortantes en la columna 12-B (en Tn).    98                                                                        |
| <b>Tabla 3.25:</b> Momentos en la columna 12-B (en Tn-m).99                                                                    |
| <b>Tabla 3.26:</b> Porcentajes de variación de fuerzas internas de la columna 12-B en ladirección Y - Primer Nivel.99          |
| Tabla 3.27: Porcentajes de variación de fuerzas internas de la columna 12-B en ladirección Y - Segundo Nivel.100               |
| <b>Tabla 3.28:</b> Cortantes en la viga 12-B-C (en Tn).100                                                                     |
| Tabla 3.29: Momentos Flectores en la viga 12-B-C (en Tn-m).    101                                                             |
| <b>Tabla 3.30:</b> Porcentajes de variación de fuerzas internas de la viga 12-B-C en la direcciónY - Primer Nivel.101          |
| <b>Tabla 3.31:</b> Porcentajes de variación de fuerzas internas de la viga 12-B-C en la direcciónY - Segundo Nivel.102         |
| Tabla 3.32: Fuerzas axiales en el muro de albañilería 11-B-C (en Tn)                                                           |
| Tabla 3.33: Cortantes en el Muro de albañilería 11-B-C (en Tn).       103                                                      |
| <b>Tabla 3.34:</b> Porcentajes de variación de fuerzas internas del muro de albañilería 11-B-Cen la dirección Y - Primer Nivel |
| Tabla 3.35: Porcentajes de variación de fuerzas internas del muro de albañilería 11-B-Cen la dirección Y - Segundo Nivel       |
| <b>Tabla 3.36:</b> Fuerzas axiales en la placa C-12-13 (en Tn).104                                                             |
| Tabla 3.37: Cortantes en la placa C-12-13 (en Tn).         105                                                                 |

| Tabla 3.38: Porcentajes de variación de fuerzas internas de la placa C-12-13 er | n la |
|---------------------------------------------------------------------------------|------|
| dirección X - Primer Nivel.                                                     | 105  |
| Tabla 3.39: Porcentajes de variación de fuerzas internas de la placa C-12-13 er | n la |
| dirección X - Segundo Nivel                                                     | 106  |
| Tabla 3.40: Cortantes de piso en Dirección X (en Tn).                           | 106  |
| Tabla 3.41: Cortantes de piso en Dirección Y (en Tn).                           | 107  |
| Tabla 3.42: Porcentajes de variación de cortantes de piso en la dirección X     | 107  |
| Tabla 3.43: Porcentajes de variación de cortantes de piso en la dirección Y     | 107  |
| Tabla 3.44: Periodos de vibración (en seg).                                     | 108  |

## ÍNDICE DE FIGURAS

| Figura 2.1: Esquemas de cálculo de las condiciones de fijación de la estructura tipo                                                                                                                                               |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| péndulo invertido: a) Esquema tradicional, b) Esquema considerando la flexibilidad de la                                                                                                                                           |
| base de fundación. (Villareal Castro 2013)                                                                                                                                                                                         |
| Figura 2.2: Esquema espacial de cálculo de la cimentación tipo zapata aislada. (Villareal Castro 2013)         10                                                                                                                  |
| <b>Figura 2.3:</b> Perfiles de desplazamiento de superficie del modelo de Filonenko-Borodich:<br>(a) modelo básico (b) carga concentrada, (c) carga rígida y (d) carga flexible uniforme.<br>(Madhav, Abhidhek, Rajyalakshmi 2016) |
| Figura 2.4: Modelo dinámico V.A. Ilichev. (Villareal 2013) 16                                                                                                                                                                      |
| Figura 2.5: Modelo zapata aislada interacción suelo-estructura. (Condori 2014) 21                                                                                                                                                  |
| <b>Figura 2.6:</b> (a) Idealización del comportamiento de la carga elastoplástica – deformación para suelos y (b) Modelo desacoplado de resortes para fundaciones rígidas. (ASCE/SEI 41-17)                                        |
| <b>Figura 2.7:</b> Modelos de base rígida y base flexible y efectos cinemático y amortiguamiento del suelo de fundación según el FEMA. (FEMA 356)                                                                                  |
| Figura 3.1: Ubicación del estudio (Google Earth, 2022)                                                                                                                                                                             |
| Figura 3.2: Planta Primer piso (Expediente técnico I.E N° 81703 E: 1/70) 50                                                                                                                                                        |
| Figura 3.3: Planta Segundo piso (Expediente técnico I.E N° 81703 E: 1/70) 51                                                                                                                                                       |
| Figura 3.4: Corte de Elevación (Expediente técnico I.E N° 81703)                                                                                                                                                                   |
| Figura 3.5: Modelo finalizado de la estructura en estudio (ETABS V18) 53                                                                                                                                                           |
| Figura 3.6: Asignación de diafragma rígido (ETABS V18)                                                                                                                                                                             |
| Figura 3.7: Definición de la masa sísmica (ETABS V18) 55                                                                                                                                                                           |
| Figura 3.8: Definición del Espectro de Pseudo Aceleraciones en ETABS V18 (Etabs V18)                                                                                                                                               |
| Figura 3.9: Definición de los casos de carga, acorde con los espectros de pseudoaceleraciones (ETABS V18)                                                                                                                          |
| Figura 3.10: Asignación de material rígido                                                                                                                                                                                         |

| Figura 3.11: Asignación de las secciones de zapatas y cimientos corridos 60                                                                                                              |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Figura 3.12: Asignación de las propiedades de masas de zapatas y cimientos corridos en         ETABS V18.       62                                                                       |
| Figura 3.13: Asignación de factores de rigidez en zapatas y cimientos corridos en ETABS V18                                                                                              |
| <b>Figura 3.14:</b> Asignación de las propiedades tipo Link en el ETABS V.18. para el modelo dinámico V.A. Ilichev                                                                       |
| <b>Figura 3.15:</b> Configuración de coeficientes de rigidez y de amortiguamiento por cada dirección en las propiedades tipo Link en el ETABS V.18. para el modelo dinámico V.A. Ilichev |
| <b>Figura 3.16:</b> Asignación de factores de rigidez y amortiguamiento en zapatas y cimientos corridos en ETABS V18. Para el modelo dinámico V.A. Ilichev                               |
| <b>Figura 3.17:</b> Asignación de factores de rigidez en zapatas y cimientos corridos en ETABS V18. Para el modelo dinámico A.E. Sargsian                                                |
| <b>Figura 3.18:</b> Asignación de factores de rigidez en zapatas y cimientos corridos en ETABS V18. Para el modelo dinámico Norma Rusa SNIP 2.02.05-8                                    |
| Figura 3.19: Cálculo de las rigideces traslacionales y rotacionales en los apoyos tipo resorte                                                                                           |
| Figura 3.20: Factor de corrección por profundidad                                                                                                                                        |
| Figura 3.21: Factores de rigidez corregidos por profundidad de empotramiento 79                                                                                                          |
| Figura 3.22: Determinación del factor de reajuste por efecto de amortiguamiento del suelo de fundación en X                                                                              |
| <b>Figura 3.23:</b> Determinación del factor de reajuste por efecto de amortiguamiento del suelo de fundación en Y                                                                       |
| Figura 3.24: Factor de reajuste por efecto cinemático en X                                                                                                                               |
| Figura 3.25: Espectro de Pseudoaceleraciones reajustado por los efectos del amortiguamiento del suelo de fundación y cinemático en X                                                     |
| Figura 3.26: Factor de reajuste por efecto cinemático en Y                                                                                                                               |

| Figura 3.27: Espectro de Pseudoaceleraciones reajustado por los efectos del                                                                                            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| amortiguamiento del suelo de fundación y cinemático en Y                                                                                                               |
| Figura 3.28: Asignación de factores de rigidez en zapatas y cimientos corridos en ETABS V18. Para el modelo de base flexible de interacción suelo estructura del FEMA. |
| Figura 3.29: Definición del espectro de pseudo aceleraciones considerando el ISE según el FEMA 356                                                                     |
| Figura 3.30: Definición de los casos de carga con el espectro de pseudo aceleraciones         del FEMA 356.       90                                                   |
| Figura 3.31: Gráfico de columnas de desplazamientos de entrepiso en la dirección X para el análisis sismo estático                                                     |
| <b>Figura 3.32:</b> Gráfico de columnas de desplazamientos de entrepiso en la dirección X para el análisis sismo dinámico                                              |
| <b>Figura 3.33:</b> Gráfico de columnas de desplazamientos de entrepiso en la dirección Y para el análisis sismo estático                                              |
| Figura 3.34: Gráfico de columnas de desplazamientos de entrepiso en la dirección Y para el sismo dinámico                                                              |
| Figura 3.35: Gráfico de columnas de derivas de entrepiso en la dirección X para el análisis sismo estático                                                             |
| Figura 3.36: Gráfico de columnas de derivas de entrepiso en la dirección X para el análisis sismo dinámico                                                             |
| Figura 3.37: Gráfico de columnas de derivas de entrepiso en la dirección Y para el análisis sismo estático                                                             |
| Figura 3.38: Gráfico de columnas de derivas de entrepiso en la dirección Y para el análisis sismo dinámico                                                             |
| Figura 3.39: Gráfico de columnas de fuerzas axiales en la columna 12-B (en Tn) 98                                                                                      |
| Figura 3.40: Gráfico de columnas de fuerzas axiales en la columna 12-B (en Tn) 98                                                                                      |
| Figura 3.42: Gráfico de columnas de Momentos en la columna 12-B (en Tn-m) 99                                                                                           |

| Figura 3.42: Gráfico de columnas de cortantes en la viga 12-B-C (en Tn) 100             |
|-----------------------------------------------------------------------------------------|
| Figura 3.43: Gráfico de columnas de Momentos Flectores en la viga 12-B-C (en Tn-m).     |
|                                                                                         |
| Figura 3.44: Gráfico de columnas de Fuerzas axiales en el muro de albañilería 11-B-C    |
| (en Tn)                                                                                 |
| Figura 3.45: Gráfico de columnas de Cortantes en el Muro de albañilería 11-B-C (en Tn). |
|                                                                                         |
| Figura 3.46: Gráfico de columnas de Fuerzas axiales en la placa C-12-13 (en Tn) 104     |
| Figura 3.47: Gráfico de columnas de Cortantes en la placa C-12-13 (en Tn) 105           |
| Figura 3.48: Gráfico de columnas de cortantes de piso en la Dirección X (en Tn) 106     |
| Figura 3.49: Gráfico de columnas de cortantes de piso en la Dirección Y (en Tn) 107     |
| Figura 3.50: Gráfico de columnas de los Periodos de vibración (en seg) 108              |

#### RESUMEN

La presente tesis muestra el estudio de la comparación de la respuesta estructural de los modelos Dinámicos de Interacción Suelo Estructura como D.D. Barkan - O.A. Savinov, V.A. Ilichev, A.E. Sargsian, la Norma Rusa SNIP 2.02.05-87 y el modelo de Interacción Suelo Estructura del FEMA 440 con la NTP E030 2018 del pabellón "D" de la I.E. N° 81703 en el distrito de Guadalupe, el cual se encuentra en una zona sísmica alta; esto sumado a que la edificación es de categoría "A" es un indicativo que comparar las respuestas estructurales de los modelos de interacción suelo estructura con el modelo empotrado de la norma E030 2018 es muy importante. Para lograr esto primero se determinó la respuesta estructural del modelo de base empotrada en el programa ETABS V18, tanto el análisis sismo estático como el análisis dinámico. Luego, con los parámetros del estudio de mecánica de suelos y propiedades geométricas de la cimentación se modeló y determinó la respuesta estructural del modelo tomando en cuenta la interacción suelo estructura. Teniendo esto se procedió a comparar las respuestas estructurales obteniendo que las del modelo dinámico de interacción suelo estructura propuesto por el FEMA son las menores parcialmente en desplazamientos con 0.0669cm y en derivas con 0.00013, así también en contraste con el modelo empotrado se tuvo que los valores porcentuales en las cortantes de columnas son 135%, 147% en los momentos de columnas, 112% en cortantes de vigas, 65% en cortantes de muros de albañilería, 72% en fuerzas axiales de muros de albañilería, 48% en cortantes de placas, 108% en fuerzas axiales de placas y 72% en cortantes de piso; por lo que el efecto de la interacción suelo estructura es relevante en el análisis de la estructura.

#### **Palabras Clave**

Interacción Suelo Estructura, Comparación de la Respuesta Estructural, Modelos Dinámicos de Interacción Suelo Estructura.

#### ABSTRACT

This thesis presents the study of the comparison of the Structural Response of Dynamic Soil Structure Interaction, models such as D.D. Barkan - O.A. Savinov, V.A. Ilichev, A.E. Sargsian, the Russian Standard 2.02.05-87 and Soil Structure Interaction model of the FEMA 440 with NTP E030 2018 of pavilion "D" at High School "81703" in the district of Guadalupe, which is located in a high seismic zone; this added to the fact that the building is of category "A" is an indication that a soil-structure interaction analysis is very important. To achieve this, first the structural response of the embedded base model was determined in the ETABS V18 program, both the Static Seismic Analysis and the Dynamic Seismic Analysis. Then, with the parameters of the Soil Mechanics Study and geometric properties of the foundation, the structure was modelled and the structural response of the model was determined taking into account the soil-structure interaction. Based on this, the structural responses were compared obtaining that, those of the dynamic soil-structure interaction model proposed by FEMA are the lowest partially in displacements with 0.0669cm and in drifts with 0.00013, so also in contrast to the embedded model, the percentage values in column shears were 135%, 147% in column moments, 112% in beam shears, 65% in masonry wall shears, 72% in masonry wall axial forces, 48% in plate shears, 108% in plate axial forces and 72% in floor shears; so the effect of soil-structure interaction is relevant in the analysis of the structure.

#### **Key Words**

Soil-Structure Interaction, Structural Response Comparison, Dynamic Soil-Structure Interaction Models.

#### **CAPÍTULO I: INTRODUCCIÓN**

#### 1.1 PLANTEAMIENTO DEL PROBLEMA

Nuestro país al encontrarse situado en el borde del Pacífico Oriental y en las proximidades de la Zona de Benioff, dentro del área de interacción de la Placa Continental Sudamericana y la Placa de Nazca, soporta profundos cambios de masas corticales, con atributos de alta sismicidad; habiéndole significado en los últimos siglos la pérdida de muchos miles de vidas humanas e ingentes daños materiales (INGEOMIN 1978). Además, debido a la naturaleza dinámica de las placas, siempre ocurrirán terremotos.

La región de La Libertad también está afectada de sismos interplaca importantes que han causado daños importantes en las edificaciones a los centros educativos como consecuencia de la estructuración con sistemas aporticados muy rígidos en una dirección y también como consecuencia de los diferentes tipos de suelos de la Región.

Actualmente, en la mayoría de los códigos de análisis y diseño sismorresistentes en edificaciones alrededor del mundo disponen reglas y procedimientos basándose en una idealización de base rígida e indeformable, prescindiendo de las manifestaciones que pueda tener producto de la interacción entre las cimentaciones de la estructura y el suelo de fundación. Situación que contrasta con el comportamiento sísmico natural el cual no se puede desarrollar sin tener en cuenta el contacto dinámico con el suelo.

Asimismo, se sabe que una Institución Educativa es una edificación de categoría A (edificación esencial) según la NT E030 Diseño Sismorresistente, las cuales deben mantenerse en pie y salvaguardar las vidas de sus ocupantes ante cargas dinámicas externas. Esto significa que el análisis y diseño de la edificación debe incluir el efecto de interacción entre las cimentaciones de la estructura y el suelo de fundación, efecto que indica que el suelo aporta cierto grado de amortiguación y absorción de energía proveniente del sismo.

La institución educativa I.E. N° 81703 Nuestra Señora de Guadalupe, como la gran mayoría de edificaciones en el país, se ha construido con el modelo tradicional de base empotrada y la NT E030 (2006), lo cual indica que no se ha tomado en cuenta el efecto de interacción entre las cimentaciones de la superestructura y el suelo de fundación.

## 1.2 FORMULACIÓN DEL PROBLEMA

¿Cuánto varían las respuestas estructurales de los modelos de cálculo de interacción suelo estructura con respecto a la NTP E030 2018 del Pabellón "D" de la I.E. N° 81703, distrito de Guadalupe, provincia de Pacasmayo, región de La Libertad?

## 1.3 HIPÓTESIS

Las variaciones de las respuestas estructurales de los modelos de cálculo de interacción suelo estructura disminuyen con respecto a la NTP E030 2018 del Pabellón "D" de la I.E. N° 81703, distrito de Guadalupe, provincia de Pacasmayo, región de La Libertad.

## 1.4 JUSTIFICACIÓN DE LA INVESTIGACIÓN

El Perú es un país de alta sismicidad, los modelos de las estructuras deberían ser las más reales posibles, es decir considerando la interacción suelo estructura, siendo aún más necesario para edificaciones de categoría A pero que por ahora no hay norma que nos proporcione las bases necesarias para su aplicación.

Además, la región de La Libertad, está asentado en suelos blandos donde la interacción dinámica entre el suelo y la estructura adquiere relevancia significativa, dado que los desplazamientos se dan tanto para la fundación como para la superestructura.

## • JUSTIFICACIÓN METODOLÓGICA

La metodología utilizada es descriptiva y transversal debido a que permite el estudio de varios apartados, propias de la respuesta estructural; además de la facilidad para hacer los respectivos análisis descriptivos.

Y es también correlacional y cuantitativa debido que se analiza las dos variables, la respuesta estructural y los modelos de interacción suelo estructura; y porque el presente estudio está aplicado a un Pabellón de la Institución Educativa N° 81703 del distrito de Guadalupe.

## JUSTIFICACIÓN PRÁCTICA

El presente trabajo de investigación se enfoca en estudiar la comparación de la respuesta estructural de una edificación de categoría A de concreto armado, construida en el distrito de Guadalupe, región de La Libertad. Dado que dicha región se encuentra en la Zona 4, alta sismicidad, implica que se deba hacer un estudio estricto. Esto contribuirá a futuros análisis en lugares cercanos o donde las condiciones de edificación y suelos sea similar al presente trabajo.

## JUSTIFICACIÓN SOCIAL

El edificio para investigar es el Pabellón D de la Institución Educativa N° 81703 en el distrito de Guadalupe en la región de La Libertad y la formulación del proyecto se hizo con la NT E030 2006; es decir, se trata de una edificación de Categoría A, el más importante, además se encuentra en una Zona 4, zona de alta sismicidad y finalmente que la norma ha tenido cambios significativos al actual. Esto indica el grado de importancia para la población, que ante cualquier carga dinámica debe salvaguardar las vidas humanas y que la población se sienta segura.

## JUSTIFICACIÓN ECONÓMICA

Con la utilización de modelos de interacción suelo estructura se pueden optimizar los procesos de análisis y diseño de las estructuras, lo que en algunos casos (de acuerdo a ciertas condiciones de edificación) las respuestas estructurales son menores a las obtenidas aplicando la actual NT E030 2018.

#### • IMPORTANCIA

Con el desarrollo de este proyecto de tesis se dará mayor importancia al análisis y diseño de estructuras considerando la ISE, ya que esta filosofía nos permitirá conocer la respuesta estructural real ya que tiene en cuenta la superestructura y ciertas propiedades del suelo, haciendo un análisis completo de la cimentación conectada con la superestructura al momento de un sismo. Esto nos permite una mejor performance al momento del diseño de los refuerzos de las edificaciones, consiguiendo la integridad de sus ocupantes.

#### **1.5 LIMITACIONES**

Se tienen limitaciones en cuanto a los resultados de los estudios de mecánica de suelos los cuales se obtuvieron directamente del expediente técnico. También limitaciones en cuanto a las propiedades geométricas de los elementos de la estructura y las propiedades de sus respectivos materiales, cuyos valores se obtuvieron directamente del expediente técnico.

#### 1.6 DELIMITACIÓN

El presente trabajo compara la respuesta estructural de los modelos de cálculo de interacción suelo estructura (Barkan, Ilichev, Sargsian, la Norma Rusa y el FEMA) con respecto a la NTP E030 2018 del Pabellón D de la I.E. N° 81703, distrito de Guadalupe, provincia de Pacasmayo, región de la Libertad. Se evaluó la respuesta dinámica de la estructura mediante modelamiento estructural, esto se hizo empleando el software ETABS V18.1.1, el cual está basado en elementos finitos.

#### **1.7 OBJETIVOS**

#### **1.7.1 OBJETIVO GENERAL**

Comparar la respuesta estructural de los modelos de cálculo de interacción suelo estructura y la NT E030 2018 del Pabellón "D" de la I.E. N° 81703, distrito de Guadalupe, provincia de Pacasmayo, región La Libertad.

### **1.7.2 OBJETIVOS ESPECIFICOS:**

- Calcular la respuesta estructural del Pabellón "D" de la I.E. N° 81703, distrito de Guadalupe, provincia de Pacasmayo, región La Libertad, utilizando la NT E-030 2018 al someterlo al análisis Sismo Estático y Sismo Dinámico.
- Calcular la respuesta estructural del Pabellón "D" de la I.E. N° 81703, distrito de Guadalupe, provincia de Pacasmayo, región La Libertad, aplicando los métodos de Interacción Suelo Estructura según: D.D Barkan – O.A Savinov, A. E. Sargsian, V. A. Ilichev, Modelo dinámico de la Norma Rusa y el Federal Emergency Management Agency (FEMA).

## **CAPÍTULO II: MARCO TEÓRICO**

## 2.1 ANTECEDENTES TEÓRICOS

#### 2.1.1 A NIVEL INTERNACIONAL

Arancibia (2020) En su tesis: "Estudio del efecto de la interacción suelo – estructura en edificios bajos de albañilería" nos dice que el tipo de suelo afecta de forma importante en la respuesta sísmica obtenida en superficie, retratando el efecto de la rigidez del suelo en las amplitudes de movimiento obtenidas. También nos dice que, en estructuras de periodo bajo, como lo son las estructuras de albañilería, considerando el amortiguamiento por radiación e histerético, la demanda sísmica disminuye, concluyendo que el efecto del amortiguamiento es mayor al efecto del aumento de la demanda sísmica por el alargamiento del periodo de la estructura, pero se tiene una sobreestimación del daño esperado. Asimismo, nos dice que el efecto de la interacción suelo-estructura (ISE) afecta el comportamiento de la respuesta para estructuras con periodos bajo los 2 segundos, rango en el que se encuentra la mayoría de construcciones, y en todos los tipos de suelo donde conocer el periodo asociado a éste es de gran importancia para predecir los efectos de este fenómeno, observando una mayor incidencia en periodos cortos y en el caso que la estructura entra en resonancia.

Borda (2012), en su investigación "Análisis de los efectos de interacción sísmica suelo estructura en una edificación de hormigón armado ubicada en cochama – Bolivia", trabajó con una edificación de hormigón armado de más de 8 pisos, con características sísmicas propias del país de Cochabamba - Bolivia. Utilizó el método de los módulos de reacción para un comportamiento lineal del sistema suelo-estructura para analizar la estructura tomando en cuenta la ISE. Llegando a la siguiente conclusión: que la consideración de interacción suelo-estructura disminuye los periodos e incrementa las frecuencias de vibración con respecto al modelo empotrado, lo que es relevante considerar en la cimentación.

Díaz, Espinoza, Sánchez y Huerta (2014), en su tesis: "Repuesta dinámica de un edificio considerando el efecto de interacción suelo-estructura" nos dicen que el efecto de interacción suelo-estructura es relevante para tomarse en cuenta en el análisis sísmico ya que al realizar el análisis que considera la interacción suelo-estructura se obtuvo que la

estructura presentó un aumento del periodo fundamental en ambas direcciones, una disminución del amortiguamiento para ambas direcciones y un aumento de las distorsiones incluso superiores a lo permitido por la normativa en la dirección X.

#### 2.1.2 A NIVEL NACIONAL

Villareal Castro (2013) En su libro: "Interacción Sísmica Suelo Estructura en Edificaciones con Zapatas Aisladas" donde tuvo como objeto de investigación una edificación típica de 5 pisos de sistema aporticado. Utilizó los métodos dinámicos D.D. Barkan – O.A Savinov, Norma Rusa, A. E. Sargsian y V.A. Ilichev, y concluyó que la flexibilidad de la base de fundación influye directamente en la determinación de los parámetros de cálculo. Además, hizo una comparación de los resultados de cálculos obtenidos e indica que el mayor efecto de flexibilidad de la base de fundación se da en el modelo dinámico Ilichev (sin disipación de energía) y el menor efecto en el modelo dinámico Barkan. Analizó también los acelerogramas usados e indica que usando el acelerograma con mayor aceleración (Lima 1974) se obtuvo mayores desplazamientos, fuerzas axiales, fuerzas cortantes, momentos flectores y momentos torsores, que los obtenidos por el acelerograma de Chimbote 1970. Indica también que la NT E030 2006 es solo referencial en cuanto al análisis espectral para edificaciones aporticadas con zapatas aisladas sobre suelos rígidos, ya que sus valores están por debajo de los obtenidos por los acelerogramas de Lima y Moyobamba y de Norma Rusa SNIP II-7-81.

Arquiñego & Velásquez (2020) en su tesis "Evaluación de la interacción suelo – estructura en una edificación de 4 pisos, en el distrito de Cercado de Lima", quienes aplicaron la interacción de la tabiquería con la estructura aporticada, debido a que aporta rigidez al modelo, y optimiza el diseño, nos indican que al aplicar el análisis estructural de la edificación con flexibilidad en la base, se atribuye la condición de que dicha estructura tiende a provocar desplazamientos de traslación y rotación. Ante ello, las fuerzas sísmicas aumentan y por lo tanto genera mayor periodo de vibración, mayores desplazamientos y mayores derivas de entrepiso. También nos indican que debido a que los periodos aumentan, esto hace que los esfuerzos por cortante y momento disminuyan. Asimismo, al analizar la interacción suelo estructura en edificaciones de periodo corto, si bien el cortante es menor por el incremento del periodo, los desplazamientos de entrepiso se incrementan en mayor proporción, por lo que podría considerarse oportuno esta

revisión para verificar si se seguirá cumpliendo con las exigencias de derivas máximas de entrepiso de la norma E-030, puesto que estos incrementos pudieran ser mayores en suelos intermedios o blandos.

López (2012) en su tesis "Análisis de interacción sísmica suelo estructura para reducir esfuerzos en los elementos estructurales en edificaciones regulares e irregulares con zapatas aisladas en Huaraz" nos dice que los desplazamientos de entrepiso y las fuerzas internas están en función de los coeficientes de rigidez y estos están en función de las características del edificio, suelo de fundación y zapatas. También nos indica que en edificaciones regulares los desplazamientos de entrepiso se incrementan con la interacción suelo-estructura debido a la flexibilidad de la base, de igual manera los periodos de vibración aumentan con la interacción suelo-estructura debido a la flexibilidad de la base de fundación y que en todos los modelos los periodos de vibración disminuyen cuando se disminuyen los pisos. López también nos indica que en edificaciones irregulares los desplazamientos de entrepiso se incrementan con la interacción suelo-estructura debido a la flexibilidad de la base, de igual manera los periodos de vibración aumentan con la interacción suelo-estructura debido a la flexibilidad de la base de fundación y que en todos los modelos los periodos de vibración disminuyen cuando se disminuyen los pisos. López también nos indica que en edificaciones irregulares los desplazamientos de entrepiso se incrementan con la interacción suelo-estructura debido a la flexibilidad de la base, de igual forma que los periodos de vibración aumentan con la ISE debido a la flexibilidad del suelo de cimentación y que los periodos de vibración disminuyen cuando se disminuyen los pisos.

### 2.1.3 A NIVEL LOCAL

Garay Chávez (2017) En su tesis "Influencia de la Interacción Sísmica Suelo Estructura en el comportamiento sísmico de un edificio de 7 niveles del proyecto multifamiliar los balcones del valle Cajamarca". Nos dice que la incorporación de la interacción suelo estructura en el análisis sísmico de una edificación influye directamente en la determinación de los parámetros de cálculo; además, haciendo una comparación de la ISE con el modelo empotrado se tiene que:

- El periodo de la primera forma de vibración aumenta en un 23.78%.
- Disminución de fuerzas axiales máximas en columnas, de fuerzas cortantes máximas en vigas y en placas.
- Incremento de las fuerzas cortantes máximas en columnas y en momentos flectores en vigas.

Huamán Mendoza, GC (2018) en su tesis "Respuesta dinámica por los modelos de cálculo de interacción suelo estructura del FEMA y norma E030-2016 del edificio de comando de control ribereño – Iquitos" nos dice que el modelo de base flexible de interacción suelo estructura del FEMA es más seguro que el modelo de base rígida de la norma E030-2016, debido a la incorporación de la flexibilidad del suelo de fundación y el reajuste del espectro de pseudo aceleraciones por los efectos cinemático y amortiguamiento del suelo. Nos dice también que el efecto de la interacción suelo estructura es relevante y que no debe omitirse en el análisis y diseño de estructuras, especialmente en suelos blandos.

Estela Luna, JJ (2019) en su tesis "Comparación de la respuesta estructural de una edificación regular con zapatas aisladas en la ciudad de Cajamarca, considerando y obviando el efecto de interacción sísmica suelo-estructura" nos dice que la respuesta estructural es mayor considerando el efecto de la interacción suelo estructural respecto al modelo convencional, además la respuesta estructural del modelamiento de la estructura, según el tipo de apoyo de la edificación regular, considerando u obviando la interacción suelo estructura si cumple con la deriva máxima permisible de acuerdo a la Norma E030. También nos dice que la mayor respuesta estructural del modelamiento de la edificación regular considerando el efecto de interacción sísmica suelo estructura se obtiene en el modelo dinámico de D.D Barkan-O. A Savinov y que el modelo dinámico de Norma Rusa presenta mayor flexibilidad.

#### 2.2 BASES TEÓRICAS

#### 2.2.1 INTERACCIÓN SUELO ESTRUCTURA (ISE)

La interacción dinámica suelo-estructura consiste en un conjunto de efectos cinemáticos e inerciales producidos en la estructura y el suelo como resultado de la deformabilidad de este ante excitación sísmica. (Avilés & Pérez Rocha 2004)

Además, el efecto interacción suelo-estructura influye en el comportamiento dinámico de la estructura pues se refleja en un aumento en el periodo fundamental, así como en un aumento en el amortiguamiento del sistema en comparación con el modelo de base fija, que no considera al suelo de cimentación. (García 2006)

El problema de interacción sísmica suelo-estructura permite un gran número de diferentes formulaciones del problema, y consecuentemente, diferentes modificaciones del esquema de cálculo de la edificación. (Villareal 2013)

Y, para aclarar las principales dificultades es necesario analizar el problema más sencillo de interacción suelo-estructura, es decir el del péndulo invertido con masas puntuales a nivel de entrepisos; para esto, se admite la concepción de flexibilidad elástica de la base de fundación, llegando al siguiente esquema de la base del péndulo mostrado en la siguiente figura: (Villareal 2013)



Figura 2.1: Esquemas de cálculo de las condiciones de fijación de la estructura tipo péndulo invertido: a) Esquema tradicional, b) Esquema considerando la flexibilidad de la base de fundación. (Villareal Castro 2013)

Donde la Figura 2.1. (a) representa el sistema tradicional con empotramiento perfecto de la columna en el medio de cimentación; en la Figura 2.1 (b)  $R_x, R_z, R_{\omega}$  representan las

fuerzas de reacción, u, v representan los desplazamientos en las direcciones x, z y  $\varphi$  el ángulo de giro.

Al cambiar de esquema plano al espacial, el problema de flexibilidad de la base de fundación es mucho mayor y complicado. En particular el carácter espacial del trabajo del armazón estructural permite la posibilidad del surgimiento de vibraciones torsionales en las columnas, quedando el esquema espacial de cálculo siguiente: (Villareal 2013)



Figura 2.2: Esquema espacial de cálculo de la cimentación tipo zapata aislada. (Villareal Castro 2013)

Entonces, el problema principal de la consideración de la flexibilidad de la base de fundación, consiste en la determinación de los coeficientes de rigidez (Figura 2.2), donde: (Villareal 2013)

 $K_z$ : Coeficiente de rigidez de compresión elástica uniforme; (kN/m)

 $K_x$ ,  $K_y$ : Coeficientes de rigidez de desplazamiento elástico uniforme; (kN/m)

 $K_{\varphi x}$ ,  $K_{\varphi y}$ : Coeficientes de rigidez de compresión no uniforme; (kN.m)

 $K_{\psi z}$ : Coeficientes de rigidez de desplazamiento no uniforme; (kN.m)

Estos coeficientes, que sirven para dar flexibilidad a la base de cimentación, varían según el modelo de interacción suelo-estructura considerado y son obtenidos para cada elemento columna existente en la estructura. (Villareal 2013)

El modelo de cálculo de la Figura 2.2 debe ser corregido, para el caso de la acción sísmica, bajo los siguientes principios: (Villareal 2013)

- La cimentación debe ser analizada como un cuerpo absolutamente rígido. (Villareal 2013)
- En el sistema dinámico suelo-estructura, la cimentación debe ser descrita como una masa puntual en el centro de gravedad de la zapata aislada. (Villareal 2013)
- En calidad de acción externa actúa el efecto sísmico. Para hacer más fácil el esquema de cálculo, puede ser descrito en forma de un vector espacial V
  (t), actuante en el centro de gravedad de la zapata aislada. Como esta acción es cinemática, se da en forma de un oscilograma de aceleraciones (oscilograma). (Villareal 2013)

En la práctica, mayormente se dan los datos de un componente de desplazamientos o aceleraciones en el plano horizontal. Por ello, en los cálculos sísmicos el componente externo, se da en forma de vector, actuante en el plano horizontal. (Villareal 2013)

## 2.2.2 MODELOS DE INTERACCIÓN SUELO-ESTRUCTURA

Para el presente estudio se tienen los modelos dinámicos de D.D. Barkan – OA. A Savinov, V.A. Ilichev y A.E. Sargsian los cuales asignan cinco rigideces al suelo, el modelo dinámico de la Norma Rusa SNIP 2.02.05-87 el cual asigna al suelo seis rigideces, tres traslacionales y tres rotacionales; y finalmente el modelo propuesto por el Federal Emergency Management Agency el cual también considera seis rigideces al suelo.

#### 2.2.2.1 MODELO DINÁMICO D.D. BARKAN – O.A. SAVINOV

Para obtener los coeficientes de rigidez, el científico ruso D.D. Barkan en 1948 propuso las fórmulas 2.1. (Villareal 2013)

$$K_z = C_z A$$

$$K_x = C_x A$$

$$K_{\varphi} = C_{\varphi} I$$
(2.1)

| $C_z, C_{\varphi}$ : | Coeficientes de compresión elástica uniforme y no uniforme;                |
|----------------------|----------------------------------------------------------------------------|
| $C_x$ :              | Coeficiente de desplazamiento elástico uniforme;                           |
| A:                   | Área de la base de la cimentación;                                         |
| <i>I</i> :           | Momento de inercia de la base de la cimentación respecto al eje principal, |
|                      | perpendicular al plano de vibración.                                       |

Por cuanto los coeficientes  $C_z, C_x, C_{\varphi}$  dependen no solo de las propiedades elásticas del suelo, sino de otros factores, es necesario analizarlos como ciertas características generalizadas de la base de fundación. (Villareal 2013)

Con el propósito de obtener las fórmulas de cálculo para los coeficientes  $C_z, C_x, C_{\varphi}$  se analizó dos modelos: modelo del semiespacio elástico isotrópico con poco peso y el modelo M.M. Filonenko-Borodich. (Villareal 2013



**Figura 2.3:** Perfiles de desplazamiento de superficie del modelo de Filonenko-Borodich: (a) modelo básico (b) carga concentrada, (c) carga rígida y (d) carga flexible uniforme. (Madhav, Abhidhek, Rajyalakshmi 2016)

Como resultado de la investigación se obtuvieron las siguientes expresiones:

$$C_{z} = \chi_{z} \cdot \frac{E}{1 - \mu^{2}} \cdot \frac{1}{\sqrt{A}}$$

$$C_{x} = \chi_{x} \cdot \frac{E}{(1 + \chi_{x}\mu)(1 + \mu)} \cdot \frac{1}{\sqrt{A}}$$

$$C_{\varphi} = \chi_{\varphi} \cdot \frac{E}{1 - \mu^{2}} \cdot \frac{1}{\sqrt{A}}$$
(2.2)

 $\chi_z, \chi_x, \chi_{\varphi}$ : Coeficientes, dependientes de la relación de las dimensiones de la base de la cimentación

#### $\mu$ : Coeficiente de Poisson

Los experimentos realizados por diversos investigadores mostraron que las fórmulas (2.2) nos llevan a ciertos errores, aunque estas dependencias en sentido general son cercanas a la realidad. (Villareal 2013)

Las principales deficiencias de este modelo, consiste en que no describe la dependencia entre los coeficientes  $C_z, C_x, C_{\varphi}$ , con las dimensiones de la base de la cimentación, y lo que es mucho más importante, no considera las propiedades inerciales de los suelos. (Villareal 2013)

Las siguientes precisiones de tal modelo se realizaron en base a las investigaciones teóricas, efectuadas por el científico O.A. Shejter para el problema de vibraciones forzadas de un cuño circular muy pesado, apoyado sobre un semiespacio elástico isotrópico pesado. (Villareal 2013)

Aunque la concepción de masa "adherida" del suelo, introducida por O.A. Shejter, no tuvo una repercusión directa, las investigaciones teóricas y experimentales permitieron identificar la dependencia de los coeficientes  $C_z, C_x, C_{\varphi}$ , con la presión estática  $\rho$ , que transmite la cimentación a la base. (Villareal 2013)

La forma final para determinar los coeficientes de compresión y desplazamiento de la base en el modelo D.D. Barkan-O.A. Savinov es:

$$C_{z} = C_{0} \left[ 1 + \frac{2(a+b)}{\Delta \cdot A} \right] \cdot \sqrt{\frac{\rho}{\rho_{0}}}$$

$$C_{x} = D_{0} \left[ 1 + \frac{2(a+b)}{\Delta \cdot A} \right] \cdot \sqrt{\frac{\rho}{\rho_{0}}}$$

$$C_{\varphi} = C_{0} \left[ 1 + \frac{2(a+3b)}{\Delta \cdot A} \right] \cdot \sqrt{\frac{\rho}{\rho_{0}}}$$
(2.3)

 $C_0, D_0$ : Coeficientes determinados a través de experimentos realizados para  $\rho = \rho_0$ ;

a, b: Dimensiones de la cimentación en el plano;

 $\Delta$ : Coeficiente empírico, asumido para cálculos prácticos igual a  $\Delta = 1 m^{-1}$ .

Para el coeficiente  $D_0$ , como se mostraron en los experimentos, se puede utilizar la dependencia empírica:

$$D_0 = \frac{1 - \mu}{1 - 0.5\mu} \cdot C_0 \tag{2.4}$$

Se pueden usar los valores del coeficiente  $C_0$  cuando  $\rho_0 = 0.2kg / cm^2$ , elegidos de acuerdo al tipo de suelo de la base de fundación, a través de la siguiente tabla.

| Tipo de    | Característica de la                               | Suelo                                                                                 | $C_0(kg/cm^3)$ |
|------------|----------------------------------------------------|---------------------------------------------------------------------------------------|----------------|
| perfil     | base de fundación                                  |                                                                                       |                |
| S1         | Roca o suelos muy<br>rígidos                       | Arcilla y arena arcillosa dura $(I_L < 0)$                                            | 3,0            |
|            |                                                    | Arena compacta $(I_L < 0)$                                                            | 2,2            |
|            |                                                    | Cascajo, grava, canto rodado, arena<br>densa                                          | 2,6            |
| S2         | Suelos intermedios                                 | Arcilla y arena arcillosa plástica $(0,25 < I_L \le 0,5)$                             | 2,0            |
|            |                                                    | Arena plástica $(0 < I_L \le 0.5)$                                                    | 1,6            |
|            |                                                    | Arena polvorosa medio densa y densa $(e \le 0.80)$                                    | 1,4            |
|            |                                                    | Arenas de grano fino, mediano y grueso,<br>independientes de su densidad y<br>humedad | 1,8            |
| S3         | Suelos flexibles o con<br>estratos de gran espesor | Arcilla y arena arcillosa de baja plasticidad ( $0.5 < I_L \le 0.75$ )                | 0,8            |
|            |                                                    | Arena plástica $(0,5 < I_L \le 1)$                                                    | 1,0            |
|            |                                                    | Arenas polvorosa, saturada, porosa<br>(e>0,80)                                        | 1,2            |
| <b>S</b> 4 | Condiciones                                        | Arcilla y arena arcillosa muy blanda $(I_L > 0,75)$                                   | 0,6            |
|            | excepcionales                                      | Arena movediza $(I_L > 1)$                                                            | 0,6            |

**Tabla 2.1:** Valores del coeficiente  $C_0$  cuando  $\rho_0 = 0.2kg / cm^2$ . (Villareal 2013)

Se puede indicar que el modelo dinámico analizado D.D. Barkan - O.A. Savinov es teórico-experimental, basado en la interacción de la cimentación con el suelo de cimentación en forma de proceso establecido de vibraciones forzadas. (Villarreal 2013)

Esta suposición permitió diversas críticas fundamentadas científicamente, tratándose de su aplicación del determinado modelo en el cálculo sísmico de edificaciones considerando la interacción suelo-estructura. Esto es mucho más claro, porque es conocido que el sistema suelo-estructura ante sismos se analiza como un proceso ondulatorio no estacionario. (Villareal 2013)

## 2.2.3 MODELO DINÁMICO V.A. ILICHEV

Este modelo fue elaborado para aplicarlo a problemas ondulatorios de interacción sueloestructura, modelado como un semiespacio elástico. En un inicio el esquema de cálculo de este modelo se aplicó a problemas de vibraciones verticales de cimentaciones circulares, apoyados sobre un semiespacio elástico isótropo. El esquema de cálculo se muestra en la Figura 2.4. (Villareal 2013)



Figura 2.4: Modelo dinámico V.A. Ilichev. (Villareal 2013)

El modelo dinámico descrito fue determinado como un sistema con 1,5 grados de libertad, donde un grado de libertad se determina en la parte inferior del sistema y medio grado de libertad se registra en la parte superior de la misma. (Villareal 2013)

La parte superior del sistema es una placa sin peso, donde el resorte con rigidez  $K_1$  y el amortiguador  $B_1$  modelan el efecto creado por las ondas longitudinales. Los parámetros  $K_1$  y  $B_1$  dependen del radio de la placa, densidad del material del semiespacio y velocidad de las ondas longitudinales; y no depende del coeficiente de Poisson y velocidad de ondas transversales. (Villareal 2013)

A la parte inferior del sistema le corresponde el comportamiento dinámico de la placa ante las ondas transversales y de Rayleigh. Los parámetros  $m_2$ ,  $B_2$ ,  $K_2$  también dependen de las dimensiones de la placa y densidad del medio, pero a diferencia de los parámetros del sistema superior, dependen de  $\mu$  y  $C_2$ ; más no dependen de la velocidad de las ondas longitudinales. (Villareal 2013)

Asimismo, en el modelo se ha dividido la influencia de las ondas longitudinales en las transversales, así como las ondas Rayleigh en el movimiento de la placa. (Villareal 2013)

Las ondas longitudinales crean la resistencia al movimiento de la placa (cimentación), dependiente de su desplazamiento y velocidad. Las ondas transversales y Rayleigh crean también resistencia, dependiente de la aceleración del movimiento de la placa, que tuvo su repercusión en el origen de la masa  $m_2$ . (Villareal, 2013)

Este modelo fue generalizado a las vibraciones horizontales y rotacionales de la cimentación, apoyado sobre base elástica con ley de variación lineal de las propiedades de deformación a través de la profundidad del suelo de fundación. En particular, la variación del módulo de deformación  $E_{(z)}$  de la base de fundación, se aproxima a la fórmula 2.6. (Villareal 2013)

$$E_{(z)} = E_0 \left[ tg\psi \cdot \frac{z}{a} + 1 \right]$$
(2.6)

Dónde:

 $E_0$ : Módulo de deformación del suelo en la superficie;

z: Coordenada de la profundidad del suelo de fundación, respecto a su superficie;

 $\psi$ : ángulo de fricción interna del suelo;

*a*: 1m

La aproximación definida, describe la variación de las propiedades de deformación de la base hasta una profundidad 5a para las vibraciones verticales, 3a para las rotacionales y 2a para las horizontales. (Villareal 2013)

Dónde:

$$a = \sqrt{\frac{A}{\pi}}$$
: Radio asumido de la base de la cimentación de área A.

Los cinco parámetros adimensionales del modelo mecánico de la base con 1,5 grados de libertad, representan una dependencia lineal de  $\sqrt{A}$ .

$$Y = Y_0 + Y_1 \cdot tg\psi \cdot \sqrt{\frac{A}{a}}$$
(2.7)

Y: Cualquier parámetro con índice o sin índice;

Los miembros  $Y_0, Y_1$  se determinan por las tablas 2.2 y 2.3, dependientes del tipo de vibración y coeficiente de Poisson ( $\mu$ ) de la base de fundación. (Villareal 2013)

|      | e e                            |                                |                               | ,                              | , , , , , , , , , , , , , , , , , , , |
|------|--------------------------------|--------------------------------|-------------------------------|--------------------------------|---------------------------------------|
| μ    | <i>b</i> <sub>0<i>Z</i>1</sub> | <i>K</i> <sub>0<i>Z</i>1</sub> | $m_{0Z}$                      | $b_{0Z2}$                      | $K_{0Z2}$                             |
| 0,25 | 5,34                           | 21,80                          | 2,80                          | 6,21                           | 7,50                                  |
| 0,35 | 6,44                           | 26,30                          | 3,12                          | 6,90                           | 8,40                                  |
| 0,45 | 10,53                          | 43,00                          | 3,29                          | 7,50                           | 9,20                                  |
| μ    | $b_{0\varphi 1}$               | $K_{0arphi 1}$                 | $m_{0\varphi}$                | $b_{0\varphi 2}$               | $K_{0\varphi 2}$                      |
| 0,25 | 1,36                           | 5,60                           | 1,00                          | 1,60                           | 7,50                                  |
| 0,35 | 1,63                           | 6,70                           | 1,03                          | 1,70                           | 7,90                                  |
| 0,45 | 2,50                           | 10,70                          | 0,84                          | 1,60                           | 7,30                                  |
| μ    | <i>b</i> <sub>0<i>X</i>1</sub> | <i>K</i> <sub>0<i>X</i>1</sub> | <i>m</i> <sub>0<i>X</i></sub> | <i>b</i> <sub>0<i>X</i>2</sub> | <i>K</i> <sub>0<i>X</i>2</sub>        |
| 0,25 | 3,10                           | 12,40                          | 1,80                          | 5,20                           | 7,60                                  |
| 0,35 | 3,10                           | 12,40                          | 1,90                          | 5,70                           | 8,30                                  |
| 0,45 | 3,10                           | 12,40                          | 2,10                          | 6,40                           | 9,20                                  |

Tabla 2.2: Valores de los coeficientes verticales, rotaciones y horizontales. (Villareal 2013)

Tabla 2.3. Valores de los coeficientes verticales, rotaciones y horizontales. (Villareal 2013)

| μ    | <i>b</i> <sub>1Z1</sub>        | $K_{1Z1}$                      | $m_{1Z}$               | $b_{1Z2}$        | $K_{1Z2}$                      |
|------|--------------------------------|--------------------------------|------------------------|------------------|--------------------------------|
| 0,25 | 0,87                           | 3,56                           | 0,56                   | 0,62             | 2,88                           |
| 0,35 | 1,06                           | 4,34                           | 0,62                   | 0,78             | 3,50                           |
| 0,45 | 1,81                           | 7,41                           | 0,69                   | 0,78             | 3,72                           |
| μ    | $b_{1\varphi 1}$               | $K_{1arphi 1}$                 | $m_{1\varphi}$         | $b_{1\varphi 2}$ | $K_{1arphi 2}$                 |
| 0,25 | 0,22                           | 1,16                           | 0,12                   | 0,12             | 1,34                           |
| 0,35 | 0,28                           | 1,41                           | 0,16                   | 0,12             | 1,81                           |
| 0,45 | 0,50                           | 1,97                           | 0,16                   | 0,12             | 1,81                           |
| μ    | <i>b</i> <sub>1<i>X</i>1</sub> | <i>K</i> <sub>1<i>X</i>1</sub> | <i>m</i> <sub>1X</sub> | $b_{1X2}$        | <i>K</i> <sub>1<i>X</i>2</sub> |
| 0,25 | 0,53                           | 2,09                           | 0,28                   | 0,75             | 1,53                           |
| 0,35 | 0,53                           | 2,09                           | 0,31                   | 0,84             | 1,87                           |
| 0,45 | 0,53                           | 2,09                           | 0,37                   | 0,84             | 1,91                           |

Los valores de las tablas 2.2 y 2.3 representan lo siguiente:

 $b_{z1}, K_{z1}, m_z, b_{z2}, K_{z2}$ : Coeficientes para las vibraciones verticales, donde el amortiguador  $b_{z1}$  y la rigidez  $K_{z1}$  corresponden a la parte superior del modelo (medio grado de libertad) y los coeficientes ,  $m_z, b_{z2}, K_{z2}$  a la parte inferior (un grado de libertad);  $b_{\varphi 1}, K_{\varphi 1}, m_{\varphi}, b_{\varphi 2}, K_{\varphi 2}$ : Parámetros análogos para las vibraciones rotacionales;  $b_{X1}, K_{X1}, m_X, b_{X2}, K_{X2}$ : coeficientes para las vibraciones horizontales.

Los parámetros adimensionales Y se determinan en forma dimensional por las siguientes fórmulas:

Para las vibraciones rotacionales:

$$K_{\varphi} = (C_2)^2 \cdot \rho \cdot k_{\varphi} \cdot a^3$$
  

$$B_{\varphi} = (C_2) \cdot \rho \cdot b_{\varphi} \cdot a^4$$
  

$$M_{\varphi} = \rho \cdot b^5 \cdot m_{\varphi}$$
(2.8)

Para las vibraciones horizontales (verticales):

$$K_{X(Z)} = (C_2)^2 \cdot \rho \cdot k_{X(Z)} \cdot a^3$$
  

$$B_{X(Z)} = (C_2) \cdot \rho \cdot b_{X(Z)} \cdot a^4$$
  

$$M_{X(Z)} = \rho \cdot b^3 \cdot m_{X(Z)}$$
(2.9)

Dónde:

 $C_2$ : Velocidad de propagación de la onda transversal;

ρ: Densidad del suelo de la base de fundación.

El modelo analizado puede ser simplificado eliminando la masa  $m_2$ , cuando el coeficiente de Poisson varía en el intervalo  $0 \le \mu \le 0,4$ . (Villareal 2013)

Considerando, que en el modelo analizado las conexiones con rigideces  $K_1 y K_2$  están unidas consecutivamente, en el cálculo vamos a ingresar la rigidez equivalente determinada por la fórmula 2.10. (Villareal 2013)

$$K = \frac{K_1 \cdot K_2}{K_1 + K_2}$$
(2.10)

El modelo dinámico V.A. Ilichev, descrito anteriormente, es estrictamente teórico, basado en la solución teórica del problema de interacción dinámica suelo-estructura, desde el punto de vista del modelo de semiespacio elástico. (Villareal 2013)

## 2.2.4 MODELO DINÁMICO A.E. SARGSIAN

En el análisis de este modelo se ingresan parámetros cuasiestáticos de rigidez de la base de fundación  $K_x$ ,  $K_{\varphi}$ ,  $K_Z$ ; que se determinan por las fórmulas 2.11. (Villareal 2013)

$$K_{x} = \frac{28.8 \cdot (1 - \mu^{2}) \cdot \rho \cdot C_{2}^{2} \cdot \sqrt{A}}{\pi \cdot (7 - 8\mu)}$$

$$K_{\varphi} = \frac{8.52 \cdot \rho \cdot C_{2}^{2} \cdot I}{\sqrt{\pi} \cdot (1 - \mu) \cdot \sqrt{A}}$$

$$K_{z} = \frac{\rho \cdot C_{1}^{2} \cdot \sqrt{A}}{\Phi \cdot (1 - \mu^{2})}$$
(2.11)

Dónde:

 $\rho$ : Densidad del suelo de fundación;

A : Área de la base de la cimentación;

*I* : Momento de inercia del área de la base de la cimentación respecto al eje horizontal, que pasa por el centro de gravedad perpendicular al plano de vibración;

$$\Phi = 0,833$$

C<sub>1</sub>: Velocidad de propagación de las ondas longitudinales en el suelo de fundación;

 $C_2$ : Velocidad de propagación de las ondas transversales.

De acuerdo a la concepción de semiespacio elástico, las velocidades de propagación de las ondas longitudinales y transversales se pueden calcular por fórmulas 2.12. (Villareal 2013)

$$C_{1}^{2} = \frac{(1-\mu) \cdot E}{(1+\mu) \cdot (1-2\mu) \cdot \rho}$$

$$C_{2}^{2} = \frac{E}{2 \cdot (1+\mu) \cdot \rho}$$
(2.12)

Dónde: E: Módulo de elasticidad de la base de fundación.
#### 2.2.5 MODELO DINÁMICO NORMA RUSA SNIP 2.02.05-87



Figura 2.5: Modelo zapata aislada interacción suelo-estructura. (Condori 2014)

El modelo muestra los grados de libertad utilizados para el modelo de la Norma Rusa, los cuales son seis, tres traslacionales y tres rotacionales. También muestra los coeficientes de rigidez para cada uno de los grados de libertad, teniendo Kx como coeficiente de rigidez en el eje X, Ky como coeficiente de rigidez en el eje Y, Kz como coeficiente de rigidez en el eje Z,  $K_{\varphi x}$  como coeficiente de rigidez rotacional alrededor del eje X,  $K_{\varphi y}$  como coeficiente de rigidez rotacional alrededor del eje X,  $K_{\varphi y}$  como coeficiente de rigidez rotacional alrededor del eje X,  $K_{\varphi y}$  como coeficiente de rigidez rotacional alrededor del eje Z,  $K_{\varphi y}$  como coeficiente de rigidez rotacional alrededor del eje Z.

Los coeficientes de rigidez de compresión elástica uniforme  $K_z$ , kN/m (T/m) desplazamiento elástico uniforme  $K_x$ , kN/m (T/m); compresión elástica no uniforme  $K_{\varphi}$ , kN. m (T. m) y desplazamiento elástico no uniforme  $K_{\Psi}$ , kN.m (T.m); se calculan por las fórmulas 2.14. (Villareal 2013)

$$K_{z} = C_{z}A$$

$$K_{x} = C_{x}A$$

$$K_{\varphi} = C_{\varphi}I_{\varphi}$$

$$K_{\psi} = C_{\psi}I_{\psi}$$
(2.14)

Dónde:

A: Área de la base de la cimentación (m2);

 $I_{\varphi}$ : Momento de inercia ( $m^4$ ) del área de la base de la cimentación respecto al eje horizontal, que pasa por el centro de gravedad perpendicular al plano de vibración;

 $I_{\psi}$ : Momento de inercia ( $m^4$ ) del área de la base de la cimentación respecto al eje vertical, que pasa por el centro de gravedad de la cimentación (momento polar de inercia).

La principal característica elástica de la cimentación, es decir el coeficiente de compresión elástica uniforme  $C_z$ , kN/m<sup>3</sup> (T/m<sup>3</sup>), se determina por medio de ensayos experimentales. En caso que no exista dicha información se puede determinar por la fórmula 2.15. (Villareal 2013)

$$C_z = b_0 E \left( 1 + \sqrt{\frac{A_{10}}{A}} \right) \tag{2.15}$$

Dónde:

 $b_0$ : Coeficiente ( $m^{-1}$ ) asumido para suelos arenosos igual a 1; para arenas arcillosas 1,2; para arcillas, cascajos, gravas, cantos rodados, arenas densas igual a 1,5;

*E*: Módulo de deformación del suelo en la base de la cimentación, kPa  $(T/m^2)$ , determinadas tablas o en forma experimental;

$$A_{10} = 10m^2$$

Los coeficientes de desplazamiento elástico uniforme  $C_x$ , kN/ $m^3$  (T/ $m^3$ ); compresión elástica no uniforme  $C_{\varphi}$ , kN/ $m^3$  (T/ $m^3$ ); y desplazamiento elástico no uniforme  $C_{\Psi}$ , kN/ $m^3$  (T/ $m^3$ ); se determinan por fórmulas 2.16. (Villareal 2013)

$$C_x = 0.7C_z$$

$$C_{\varphi} = 2C_z$$

$$C_{\psi} = C_z$$
(2.16)

En las propiedades de amortiguación de la base de la cimentación, se deben de considerar las amortiguaciones relativas  $\xi$ , determinado por ensayos de laboratorio. (Villareal 2013)

En el caso que no existan datos experimentales, la amortiguación relativa para las vibraciones verticales  $\xi_z$ , se puede determinar por las fórmulas 2.17 y 2.18. (Villareal 2013)

Para las vibraciones establecidas (armónicas) o conocidas:

$$\xi_z = \frac{2}{\sqrt{p_m}}$$

$$\left(\xi_z = \frac{0.7}{\sqrt{p_m}}\right)$$
(2.17)

Para las vibraciones no establecidas (impulsos) o desconocidas:

$$\xi_{z} = 6\sqrt{\frac{E}{C_{z}p_{m}}}$$

$$\left(\xi_{z} = 2\sqrt{\frac{E}{C_{z}p_{m}}}\right)$$
(2.18)

Dónde:

E: Módulo de deformación del suelo en la base de la cimentación;

 $C_z$ : Coeficiente de compresión elástica uniforme;

 $P_{m:}$  Presión estática media en la base de la cimentación.

$$p_m \le \gamma_{ts} R \tag{2.19}$$

Siendo:

 $\gamma_{ts}$ : Coeficiente de la condición de trabajo del suelo de fundación, asumido igual a 0,7 para arenas saturadas de grano fino o polvorosa y arcillas de consistencia movediza; y para el resto de suelos es igual a 1;

*R*: Resistencia de cálculo del suelo de fundación, determinado por la Norma Rusa SNIP 2.02.01-83 o por las tablas 2.4 – 2.8.

| Suelos grandes o de grano grueso | R, kPa (kg/cm²) |
|----------------------------------|-----------------|
| Cascajos con agregados de:       |                 |
| - Arenas                         | 600 (6,0)       |
| - Arcillas con índice de fluidez |                 |
| $I_L \leq 0.5$                   | 450 (4,5)       |
| $0,5 < I_L \le 0,75$             | 400 (4,0)       |
| Gravas con agregados de:         |                 |
| - Arenas                         | 500 (5,0)       |
| - Arcillas con índice de fluidez |                 |
| $I_L \leq 0,5$                   | 400 (4,0)       |
| $0,5 < I_L \le 0,75$             | 350 (3,5)       |

Tabla 2.4: Resistencia de cálculo R para suelos grandes o de grano grueso. (Villareal 2013)

Tabla 2.5: Resistencia de cálculo R para suelos arenosos. (Villareal 2013)

| Arenas                         | <i>R</i> , kPa (kg/cm²) |              |  |
|--------------------------------|-------------------------|--------------|--|
|                                | Densas                  | Medio densas |  |
| Grandes                        | 600 (6,0)               | 500 (5,0)    |  |
| Medianas                       | 500 (5,0)               | 400 (4,0)    |  |
| Pequeñas:                      |                         |              |  |
| - Poco húmedas                 | 400 (4,0)               | 300 (3,0)    |  |
| - Húmedas y saturadas con agua | 300 (3,0)               | 200 (2,0)    |  |
| Polvorosas:                    |                         |              |  |
| - Poco húmedas                 | 300 (3,0)               | 250 (2,5)    |  |
| - Húmedas                      | 200 (2,0)               | 150 (1,5)    |  |
| - Saturadas con agua           | 150 (1,5)               | 100 (1,0)    |  |

Tabla 2.6: Resistencia de cálculo R para arenas, arenas arcillosas y arcillas. (Villareal 2013)

| Suelos          | Coeficiente de | R , kPa (kg/cm²) |           |
|-----------------|----------------|------------------|-----------|
| Sucios          | porosidad e    | $I_L = 0$        | $I_L = 1$ |
| Arena           | 0,5            | 300 (3,0)        | 300 (3,0) |
| Люпа            | 0,7            | 250 (2,5)        | 200 (2,0) |
|                 | 0,5            | 300 (3,0)        | 250 (2,5) |
| Arena arcillosa | 0,7            | 250 (2,5)        | 180 (1,8) |
|                 | 1,0            | 200 (2,0)        | 100 (1,0) |
|                 | 0,5            | 600 (6,0)        | 400 (4,0) |
| Arcilla         | 0,6            | 500 (5,0)        | 300 (3,0) |
|                 | 0,8            | 300 (3,0)        | 200 (2,0) |
|                 | 1,1            | 250 (2,5)        | 100 (1,0) |

|                 | R , kPa (kg/cm²)                                         |                             |                          |                            |  |
|-----------------|----------------------------------------------------------|-----------------------------|--------------------------|----------------------------|--|
| Sucles          | Naturales con densidad en<br>estado seco $\rho_s$ , T/m³ |                             | Compactados con densidad |                            |  |
| Suelos          |                                                          |                             | en estado se             | eco $ ho_{s}$ , T/m $^{3}$ |  |
|                 | 1,35                                                     | 1,55                        | 1,60                     | 1,70                       |  |
| Arena           | <u>300(3,0)</u><br>150(1,5)                              | $\frac{350(3,5)}{180(1,8)}$ | 200(2,0)                 | 250(2,5)                   |  |
| Arena arcillosa | <u>350(3,5)</u><br><u>180(1,8)</u>                       | $\frac{400(4,0)}{200(2,0)}$ | 250(2,5)                 | 300(3,0)                   |  |

Tabla 2.7: Resistencia de cálculo R para suelos naturales y compactados. (Villareal 2013)

#### **Observación:**

En el numerador se dan los valores de R, relacionados con suelos no humedecidos con un grado de humedad  $S_h \le 0.5$  y en el denominador el valor de R, pero para suelos humedecidos o con grado de humedad  $S_h \ge 0.8$ . (Villareal 2013)

Tabla 2.8: Resistencia de cálculo R para suelos terraplenados o de relleno. (Villareal 2013)

|                                              |                                      | <i>R</i> , <b>kP</b> a | (kg/cm²)                     |               |  |
|----------------------------------------------|--------------------------------------|------------------------|------------------------------|---------------|--|
| Correctoriations del                         | Arenas de g                          | granos fino,           | Arena polvorosa, arena       |               |  |
|                                              | mediano y grueso; escoria y<br>otros |                        | arcillosa, arcilla, ceniza y |               |  |
| terrapien o relieno                          |                                      |                        | otros                        |               |  |
|                                              | $S_h \le 0,5$                        | $S_h \ge 0.8$          | $S_h \le 0,5$                | $S_h \ge 0,8$ |  |
| Relleno uniformemente esparcido y compactado | 250 (2,5)                            | 200 (2,0)              | 180 (1,8)                    | 150 (1,5)     |  |
| Suelos partidos y                            |                                      |                        |                              |               |  |
| desechos industriales                        |                                      |                        |                              |               |  |
| - Compactados                                | 250 (2,5)                            | 200 (2,0)              | 180 (1,8)                    | 150 (1,5)     |  |
| - Sin compactar                              | 180 (1,8)                            | 150 (1,5)              | 120 (1,2)                    | 100 (1,0)     |  |
| Suelos desprendidos y                        |                                      |                        |                              |               |  |
| desechos industriales                        |                                      |                        |                              |               |  |
| - Compactados                                | 150 (1,5)                            | 120 (1,2)              | 120 (1,2)                    | 100 (1,0)     |  |
| - Sin compactar                              | 120 (1,2)                            | 100 (1,0)              | 100 (1,0)                    | 80 (0,8)      |  |

#### **Observaciones:**

1. El valor de R se relaciona con suelos terraplenados o de relleno con sustancias orgánicas  $I_{om} \leq 0.1$ . (Villareal 2013)

2. Para suelos partidos o desprendidos no comprimidos y desechos industriales, el valor de *R* se toma con un coeficiente igual a 0,8. (Villareal 2013)

Las amortiguaciones relativas para las vibraciones horizontales y rotacionales respecto a sus ejes horizontal y vertical, se pueden determinar por fórmulas 2.20. (Villareal 2013)

$$\begin{aligned} \xi_x &= 0.6\xi_z \\ \xi_\varphi &= 0.5\xi_z \\ \xi_\psi &= 0.3\xi_z \end{aligned} \tag{2.20}$$

Como característica de amortiguación, también se puede usar el módulo de amortiguación para las vibraciones verticales  $\Phi_z$ , determinado por las fórmulas 2.21. (Villareal 2013) Para las vibraciones establecidas (armónicas) o conocidas:

$$\Phi_z = \frac{1.6}{\sqrt{C_z}}$$

$$\left(\Phi_z = \frac{0.5}{\sqrt{C_z}}\right)$$
(2.21)

Para las vibraciones no establecidas (impulsos) o desconocidas, el valor de  $\Phi_z$  se incrementa en dos veces, en comparación con las establecidas (armónicas) o conocidas. (Villareal 2013)

Los módulos de amortiguación para las vibraciones horizontales y rotacionales respecto a sus ejes horizontal y vertical, se pueden determinar por las fórmulas 2.22. (Villareal 2013)

$$\Phi_x = 0.6\Phi_z$$

$$\Phi_{\varphi} = 0.5\Phi_z$$

$$\Phi_{\psi} = 0.3\Phi_z$$
(2.22)

#### 2.2.6 FEDERAL EMERGENCY MANAGEMENT AGENCY (FEMA)

En sus códigos el FEMA 356, 357 y 440, los cuales toman información del capítulo 08 del ASCE/SEI 41-17; propone el planteamiento formal al efecto de la interacción suelo estructura mediante la incorporación de dos variables: a) La rigidez del suelo de fundación

por acción de resortes (Figuras 2.7 y 2.8) y b) el escalamiento del espectro de pseudo aceleraciones por los efectos cinético y amortiguamiento del suelo de fundación.



*Figura 2.6:* (*a*) *Idealización del comportamiento de la carga elastoplástica – deformación para suelos y (b) Modelo desacoplado de resortes para fundaciones rígidas. (ASCE/SEI 41-17)* 



*Figura 2.7:* Modelos de base rígida y base flexible y efectos cinemático y amortiguamiento del suelo de fundación según el FEMA. (FEMA 356)

A continuación, se muestran las soluciones elásticas para las restricciones tipo resorte en fundaciones rígidas.

| Ejes orientados d                                | bottom center $B$<br>le tal manera que $L \ge B$                                                                |
|--------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| Rigidez Traslacional alrededor del eje<br>X (Kx) | $K_{x} = \frac{GB}{2 - \nu} \left[ 3.4 \left(\frac{L}{B}\right)^{0.65} + 1.2 \right] (2.23)$                    |
| Rigidez Traslacional alrededor del eje<br>Y (Ky) | $K_{y} = \frac{GB}{2 - v} \left[ 3.4 \left( \frac{L}{B} \right)^{0.65} + 0.4 \frac{L}{B} + 0.8 \right] $ (2.24) |
| Rigidez Traslacional alrededor del eje<br>Z (Kz) | $K_{z} = \frac{GB}{1 - v} \left[ 1.55 \left(\frac{L}{B}\right)^{0.75} + 0.8 \right] $ (2.25)                    |
| Rigidez Rotacional alrededor del eje<br>XX (Kxx) | $K_{xx} = \frac{GB^3}{1 - v} \left[ 0.4 \frac{L}{B} + 0.1 \right] $ (2.26)                                      |
| Rigidez Rotacional alrededor del eje<br>YY (Kyy) | $K_{yy} = \frac{GB^3}{1 - \nu} \left[ 0.47 \left(\frac{L}{B}\right)^{2.4} + 0.034 \right] $ (2.27)              |
| Rigidez Rotacional alrededor del eje<br>ZZ (Kzz) | $K_{zz} = GB^{3} \left[ 0.53 \left( \frac{L}{B} \right)^{2.45} + 0.51 \right] $ (2.28)                          |

 Tabla 2.9: Coeficiente de Rigidez de la cimentación en la superficie. (FEMA 356)
 Provinciente de Rigidez de la cimentación en la superficie.

|                                                                         | lad al contro del norolto                                                                                                                                         |
|-------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                         | ndidad da dagriante                                                                                                                                               |
| D= Proru                                                                |                                                                                                                                                                   |
| Factor de corrección de la rigidez<br>Traslacional alrededor del eje X. | $\beta_x = \left(1 + 0.21\sqrt{\frac{D}{B}}\right) \cdot \left[1 + 1.6\left(\frac{hd(B+L)}{BL^2}\right)^{0.4}\right]$                                             |
|                                                                         | (2.29)                                                                                                                                                            |
| Factor de corrección de la rigidez                                      | $\beta_y = \beta_x \ (2.30)$                                                                                                                                      |
| Traslacional alrededor del eje Y.                                       |                                                                                                                                                                   |
| Factor de corrección de la rigidez<br>Traslacional alrededor del eje Z. | $\beta_{z} = \left[1 + \frac{1}{21} \frac{D}{B} \left(2 + 2.6 \frac{B}{L}\right)\right] \cdot \left[1 + 0.32 \left(\frac{d(B+L)}{BL}\right)^{\frac{2}{3}}\right]$ |
|                                                                         | (2.31)                                                                                                                                                            |
| Factor de corrección de la rigidez                                      | $B_{-1+25}d\left[1+2d\left(d\right)^{-0.2}B\right]$ (2.32)                                                                                                        |
| Rotacional alrededor del eje XX.                                        | $p_{xx} = 1 + 2.5 \frac{B}{B} \begin{bmatrix} 1 + \frac{B}{B} \\ D \end{bmatrix}  \sqrt{L} \end{bmatrix} (2.52)$                                                  |
| Factor de corrección de la rigidez                                      | $e^{-1+1} d^{0.6} \left[ \frac{1}{15+27} d^{-0.6} \right]$                                                                                                        |
| Rotacional alrededor del eje YY.                                        | $p_{yy} = 1 + 1.4 \left( \frac{1}{L} \right) \left[ \frac{1.5 + 5.7}{L} \left( \frac{1}{D} \right) \right]$                                                       |
|                                                                         | (2.33)                                                                                                                                                            |
| Factor de corrección de la rigidez                                      | $a = 1 + 2\epsilon \left(1 + B\right) \left(d\right)^{0.9}$ (2.24)                                                                                                |
| Rotacional alrededor del eje ZZ.                                        | $\rho_{zz} = 1 + 2.0 \left( 1 + \frac{1}{L} \right) \left( \frac{B}{B} \right)  (2.34)$                                                                           |

Tabla 2.10: Factores de corrección por profundidad de desplante/empotramiento. (FEMA 356)

De acuerdo a los procedimientos que propone el FEMA 356 uno de los efectos a considerar es el efecto de amortiguamiento, el cual significa que se debe hacer el reajuste lineal del espectro de pseudoaceleraciones inicial debido al amortiguamiento del suelo.

Dicho lo anterior el FEMA 440 en los Artículos 6.3 y 8.3 nos proporciona los procedimientos y fórmulas necesarias para su obtención, las cuales son las siguientes:

$$(S_a)_B = \frac{S_a}{B}$$

$$B = \frac{4}{5.6 - \ln \beta_{eff} (en\%)}$$

$$\beta_{eff} = \beta_0 = \beta_f + \frac{\beta_i}{\left(\tilde{T}_{eff}/T_{eff}\right)^3}$$

$$\beta_f = a_1 \left(\frac{\tilde{T}_{eff}}{T_{eff}} - 1\right) + a_2 \left(\frac{\tilde{T}_{eff}}{T_{eff}} - 1\right)^2$$

$$\frac{\tilde{T}_{eff}}{T_{eff}} = \left\{1 + \frac{1}{\mu} \left[\left(\frac{\tilde{T}}{T}\right)^2 - 1\right]\right\}^{0.5}$$

$$a_1 = c_e \exp\left(4.7 - \frac{1.6h}{r_{\theta}}\right)$$

$$a_2 = c_e \left[25 \ln\left(\frac{h}{r_{\theta}}\right) - 16\right]$$

$$c_e = 1.5 \left(\frac{e}{r_x}\right) + 1$$

$$r_{\theta} = \left[\frac{3(1 - \upsilon)K_{\theta}}{8G}\right]^{\frac{1}{3}}$$

$$r_x = \sqrt{\frac{A_f}{\pi}}$$

$$K_{\theta} = \frac{K_{fixed}^*(h^*)^2}{\left(\frac{\tilde{T}}{T}\right)^2 - 1 - \frac{K_{fixed}^*}{K_x}}$$

$$K_x = \frac{8}{2 - \upsilon} Gr_x$$

$$K_{fixed}^* = M^* \left(\frac{2\pi}{T}\right)^2$$

(2.35)

Donde:

- $(S_a)_B$ : Espectro de pseudoaceleraciones reajustado por efecto de amortiguación del sueño de fundación.
- $S_a$ : Espectro de pseudoaceleraciones para base rígida.
- B: Factor de reajuste por efecto del amortiguamiento del suelo de fundación.

- $-\beta_{eff}$ : Razón de amortiguamiento de la fundación flexible.
- M\*: Masa efectiva para el primer modo de vibración.
- *a*: Largo de la estructura en cimentación.
- *b*: Ancho de la estructura en cimentación.
- *e*: Empotramiento de sótano, e=0.
- G: Módulo de corte.
- υ: Módulo de Poisson.
- $h^*$ : Altura efectiva, medida desde la mitad del primer piso hasta el último piso.
- $\mu$ : Es la demanda esperada de ductilidad para el sistema, asumimos  $\mu = 3$
- T: Periodo de vibración.
- $T_{eff}$ : Primer periodo de vibración, en modo de base fija.
- $\tilde{T}_{eff}$ : Primer periodo de vibración, en modo de base flexible.
- $K_{fixed}^*$ : Rigidez efectiva.
- $r_x$ : Radio equivalente de la cimentación.
- $r_{\theta}$ : Radio por rotación equivalente de la cimentación.
- $K_x$ : Rigidez traslacional de la cimentación.
- $K_{\theta}$ : Rigidez rotacional de la cimentación.
- $\beta_i$ : Amortiguamiento inicial (5%).

Además, otro de los efectos a considerar de acuerdo a los procedimientos que nos propone el FEMA 356 es el efecto cinemático, el cual nos indica que debemos hacer un reajuste del espectro de pseudoaceleraciones inicial debido al movimiento de la base de cimentación a través de las zapatas.

El FEMA 440 en el artículo 8.2 nos indica que el factor de escalamiento por efecto cinemático es necesario aunque el edificio esté empotrado 3 pies debajo del nivel del suelo (no es considerado como sótano). Y este efecto cinemático, o factor de espectro de respuesta promedio para zapatas " $RRS_{bsa}$ " se obtiene al aplicar las fórmulas siguientes.

$$(S_a)_{FIM} = S_a * RRS_{bas}$$

$$RRS_{bsa} = 1 - \frac{1}{14100} \left(\frac{b_e}{T}\right)^{1.2} \ge the value f or T = 0.2s$$

$$b_a = \sqrt{ab}$$
(2.36)

Donde:

- $(S_a)_{FIM}$ : Espectro de pseudo aceleraciones reajustado por efecto cinemático.
- $S_a$ : Espectro de pseudo aceleraciones en base rígida.
- *RRS*<sub>*bsa*</sub>: Factor de escalamiento por efecto cinemático.
- $b_e$ : Ancho efectivo.
- *T*: Periodo de vibración.
- *a*: Largo de la estructura en cimentación.
- *b*: Ancho de la estructura en cimentación.

### 2.2.7 ANÁLISIS SÍSMICO CON LA NT E030 2018.

## 2.2.7.1 ANÁLISIS SÍSMICO ESTÁTICO O DE FUERZAS ESTÁTICAS EQUIVALENTES

#### 2.2.7.1.1 FUERZA CORTANTE EN LA BASE

Según la NT E030 2018, este método representa las solicitaciones sísmicas mediante un conjunto de fuerzas actuando en el centro de masas de cada nivel de la edificación.

Pueden analizarse mediante este procedimiento todas las estructuras regulares o irregulares ubicadas en la zona sísmica 1. En las otras zonas sísmicas puede emplearse este procedimiento para las estructuras clasificadas como regulares, según el artículo 19 (de la NT E030 2018), de no más de 30 m de altura, y para las estructuras de muros portantes de concreto armado y albañilería armada o confinada de no más de 15 m de altura, aun cuando sean irregulares. (NT E030 2018)

La fuerza cortante total en la base se obtiene de la fórmula 2.37.

$$V = \frac{ZUCS}{R} \cdot P \tag{2.37}$$

Donde el valor C/R (2.38) no debe considerarse menor que:

$$\frac{C}{R} \ge 0.11 \tag{2.38}$$

## 2.2.7.1.2 DISTRIBUCIÓN DE LA FUERZA SÍSMICA EN ALTURA

Las Fuerzas Sísmica horizontales en cualquier nivel i, correspondientes a la dirección considerada, se calcula según la fórmula 2.39. (NT E.030 - 2018)

$$F_i = \alpha_i \cdot V \tag{2.39}$$

$$\alpha_{i} = \frac{P_{i}(h_{i})^{k}}{\sum_{j=1}^{n} P_{j}(h_{j})^{k}}$$
(2.40)

Donde *n* corresponde al número de niveles de la edificación, y k es un exponente que depende del periodo fundamental de vibración de la estructura, calculado según la fórmula 2.38. (NT E.030 - 2018)

Cuando 
$$T \le 0.5s, \ k=1$$
 (2.41)

Cuando 
$$T > 0.5s, k = (0.75 + 0.5T) \le 2.0s$$
 (2.42)

### 2.2.7.1.3 PERIODO FUNDAMENTAL DE VIBRACIÓN

La NT E030 2018 nos indica que el periodo fundamental de vibración para cada dirección se estima con la fórmula 2.43.

$$T = \frac{h_n}{C_T} \tag{2.43}$$

Donde:

 $C_T$ =35 Para edificios cuyos elementos resistentes en la dirección considerada sean únicamente:

a) Pórticos de concreto armado sin muros de corte.

 b) Pórticos dúctiles de acero con uniones resistentes a momentos, sin arriostramiento.

 $C_{T}$  =45 Para edificios cuyos elementos resistentes en la dirección considerada sean:

- a) Pórticos de concreto armado con muros en las cajas de ascensores y escaleras.
- b) Pórticos de acero arriostrados.

 $C_T$  =60 Para edificios de albañilería y para todos los edificios de concreto armado duales, de muros estructurales, y muros de ductilidad limitada.

#### 2.2.7.1.4 EXCENTRICIDAD ACCIDENTAL

La NT E30 2018 también nos dice que para estructuras con diafragmas rígidos, se supone que la fuerza en cada nivel (Fi) actúa en el centro de masas del nivel respectivo y se considera además de la excentricidad propia de la estructura el efecto de excentricidades accidentales (en cada dirección de análisis) como se indica a continuación:

 a) En el centro de masas de cada nivel, además de la fuerza lateral estática actuante, se aplica un momento torsor accidental (Mti) que se calcula como:

$$M_{ti} = \pm F_i \cdot e_i \tag{2.44}$$

Para cada dirección de análisis, la excentricidad accidental en cada nivel (ei), se considera como 0,05 veces la dimensión del edificio en la dirección perpendicular a la dirección de análisis. (NT E030 2018)

 b) Se puede suponer que las condiciones más desfavorables se obtienen considerando las excentricidades accidentales con el mismo signo en todos los niveles. Se consideran únicamente los incrementos de las fuerzas horizontales no así las disminuciones. (NT E030 2018)

## 2.2.7.1.5 FUERZAS SÍSMICAS VERTICALES

La fuerza sísmica vertical se considera como una fracción del peso igual a 2/3 Z  $\cdot$  U  $\cdot$  S.

En elementos horizontales de grandes luces, incluyendo volados, se requiere un análisis dinámico modal espectral. (NT E030 2018)

### 2.2.7.2 ANÁLISIS DINÁMICO MODAL ESPECTRAL

Cualquier estructura puede ser diseñada usando los resultados de los análisis dinámicos por combinación modal espectral especificada en la norma. (NT E.030 2018)

#### 2.2.7.2.1 MODOS DE VIBRACIÓN

Al hablar de modos de vibración se refiere al análisis modal, el cual estudia las propiedades dinámicas de una edificación, de este análisis se obtienen características como el Periodo Fundamental de Vibración de la Estructura, frecuencia, velocidad angular. Dichas características solamente dependen de las características de la edificación, no de acciones externas, incluido los sismos. (Chopra 2006)

Cada una de las formas de vibración de la estructura son conocidas como modos naturales de vibración, cada modo presenta un Periodo Natural de Vibración (T) característico. Este periodo representa el tiempo requerido para que la estructura complete un ciclo en movimiento armónico simple. (Chopra 2006)

La NT E030 2018 nos indica que en cada dirección de análisis se consideran aquellos modos de vibración cuya suma de masas participativas sea por lo menos el 90% de la masa total, pero, se toma por lo menos los tres primeros modos de vibración predominantes en la dirección de análisis. (NT E.030 2018)

### 2.2.7.2.2 ACELERACIÓN ESPECTRAL

La NT E030 2018 nos dice que para cada una de las direcciones analizadas se utiliza un espectro inelástico de pseudo-aceleraciones definido por:

$$S_a = \frac{Z \cdot U \cdot C \cdot S}{R} \cdot g \tag{2.45}$$

Además, para el análisis en la dirección vertical puede usarse un espectro con valores iguales a los 2/3 del espectro empleado para las direcciones horizontales. (NT E.030 2018)

$$T < 0.2T_p \qquad C = 1 + 7.5 \left(\frac{T}{T_p}\right) \tag{2.46}$$

Donde:

 $S_a$  = Aceleración Espectral en cada dirección de Análisis

#### Z = Factor de Zona

- U = Factor de Uso
- C = Factor de Amplificación Sísmica
- S = Factor de Suelo
- R = Coeficiente de Reducción de Fuerzas Sísmicas.
- g = Aceleración de la gravedad

#### • FACTOR DE ZONA (Z)

El factor de zona, es un valor obtenido en relación a la zonificación Sísmica. La cual se basa en la distribución espacial de la sismicidad observada, las características generales de los movimientos sísmicos, y la atenuación de estos con la distancia epicentral. (NT E.030 2018)

A cada zona se asigna un Factor Z, como se indica en la Tabla 2.11. Este factor se interpreta como la aceleración máxima horizontal en suelo rígido con una probabilidad de 10% de ocurrencia de un evento sísmico en 50 años de vida útil de la edificación. El factor Z se expresa como una fracción de la aceleración de la gravedad. (NT E.030 - 2018)

| ZONA | Z    |
|------|------|
| 4    | 0.45 |
| 3    | 0.35 |
| 2    | 0.25 |
| 1    | 0.10 |

Tabla 2.11: Factores de Zona. (NT E030 2018)

#### • PARÁMETROS DE SITIO

Se considera el Tipo de Perfil que mejor describa las condiciones locales, utilizándose los correspondientes valores de factor de Amplificación del Suelo S, y los periodos Tp y TL. (NT E030 2018)

#### • FACTOR DE SUELO "S"

El factor de Suelo "S" (Tabla 2.12), es un factor que está en función del factor de zona representado por "Z" y el tipo de suelo sobre el cual se va a Cimentar la estructura. La Norma técnica E030 contempla cinco tipos de suelos, cuyas propiedades se presentan en la Tabla 2.13. Los periodos Tp y Tl, dependen del tipo de suelo, y definen el espectro de pseudoaceleraciones, se muestran en la Tabla 2.14. (NTE E.030 - 2018)

| SUELO<br>ZONA | S0  | <b>S</b> 1 | <b>S</b> 2 | <b>S</b> 3 |
|---------------|-----|------------|------------|------------|
| <b>Z</b> 4    | 0.8 | 1.00       | 1.05       | 1.10       |
| Z3            | 0.8 | 1.00       | 1.15       | 1.20       |
| <b>Z</b> 2    | 0.8 | 1.00       | 1.20       | 1.40       |
| <b>Z</b> 1    | 0.8 | 1.00       | 1.60       | 2.00       |

*Tabla 2.12:* Factor de Suelo "S". (NT E030 2018)

Tabla 2.13: Clasificación de los perfiles de Suelo. (NT E030 2018)

| Perfil     | $\overline{V_s}$               | $ar{N}_{60}$ | $\overline{S}_u$ |
|------------|--------------------------------|--------------|------------------|
| So         | > 1500 m/s                     | -            | -                |
| <b>S</b> 1 | 500 m/s a 1500 m/s             | > 50         | >100 kPa         |
| <b>S</b> 2 | 180 m/s a 500 m/s              | 15 a 50      | 50 kPa a 100 kPa |
| <b>S</b> 3 | < 180 m/s                      | < 15         | 25 kPa a 50 kPa  |
| <b>S</b> 4 | Clasificación basada en el EMS |              |                  |

*Tabla 2.14: Periodos "T P " y "T L ". (NT E030 2018)* 

|        | <b>S0</b> | <b>S1</b> | <b>S2</b> | <b>S3</b> |
|--------|-----------|-----------|-----------|-----------|
| Tp (s) | 0.3       | 0.4       | 0.6       | 1.0       |
| TL (s) | 3.0       | 2.5       | 2.0       | 1.6       |

#### • FACTOR DE USO "U"

El factor de uso de la edificación está en función a la tolerancia de daño que puede llegar a sufrir la Estructura, y esto a su vez está en función a la continuidad del servicio, y de la cantidad de personas que puedan residir en la edificación durante y después de un evento sísmico. (NT E030 2018)

| CATEGORÍA DE LAS EDIFICACIONES Y FACTOR "U" |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |  |  |
|---------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--|--|
| CATEGORÍA                                   | DESCRIPCIÓN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | FACTOR U   |  |  |
|                                             | A1: Establecimientos del sector salud (públicos y privados)<br>del segundo y tercer nivel, según lo normado por el Ministerio<br>de Salud.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ver nota 1 |  |  |
| A<br>Edificaciones<br>Esenciales            | <ul> <li>A2: Edificaciones esenciales para el manejo de las<br/>emergencias, el funcionamiento del gobierno y en general<br/>aquellas edificaciones que puedan servir de refugio después<br/>de un desastre. Se incluyen las siguientes edificaciones:</li> <li>Establecimientos de salud no comprendidos en la categoría<br/>A1.</li> <li>Puertos, aeropuertos, estaciones ferroviarias de pasajeros,<br/>sistemas masivos de transporte, locales municipales,<br/>centrales de comunicaciones.</li> <li>Estaciones de bomberos, cuarteles de las fuerzas armadas<br/>y policía.</li> <li>Instalaciones de generación y transformación de electricidad,<br/>reservorios y plantas de tratamiento de agua.</li> <li>Instituciones educativas, institutos superiores tecnológicos<br/>y universidades.</li> <li>Edificaciones cuyo colapso puede representar un riesgo<br/>adicional, tales como grandes hornos, fábricas y depósitos de<br/>materiales inflamables o tóxicos.</li> <li>Edificios que almacenen archivos e información esencial<br/>del Estado.</li> </ul> | 1,5        |  |  |
| B<br>Edificaciones<br>Importantes           | Edificaciones donde se reúnen gran cantidad de<br>personas tales como cines, teatros, estadios, coliseos,<br>centros comerciales, terminales de buses de pasajeros,<br>establecimientos penitenciarios, o que guardan patrimonios<br>valiosos como museos y bibliotecas.<br>También se consideran depósitos de granos y otros<br>almacenes importantes para el abastecimiento.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1,3        |  |  |
| C<br>Edificaciones<br>Comunes               | Edificaciones comunes tales como: viviendas, oficinas,<br>hoteles, restaurantes, depósitos e instalaciones industriales<br>cuya falla no acarree peligros adicionales de incendios o fugas<br>de contaminantes.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1,0        |  |  |
| D<br>Edificaciones<br>Temporales            | Construcciones provisionales para depósitos, casetas y otras<br>similares.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ver nota 2 |  |  |

Tabla 2.15: Categoría de las Edificaciones y Factor "U". (NT E030 2018)

Nota 1: Las nuevas edificaciones de categoría A1 tiene aislamiento sísmico en la base cuando se encuentren en las zonas sísmicas 4 y 3.

Nota 2: En estas edificaciones se provee resistencia y rigidez adecuadas para acciones laterales, a criterio del proyectista.

#### • FACTOR DE AMPLIFICACIÓN SÍSMICA "C"

De acuerdo a las características de sitio, se define el factor de Amplificación Sísmica (C) por las expresiones de la Tabla 2.16. (NT E030 2018)

| T <tp< th=""><th colspan="2">C = 2.5</th></tp<>                                                           | C = 2.5                                            |  |
|-----------------------------------------------------------------------------------------------------------|----------------------------------------------------|--|
| T <t<tl< th=""><th><math display="block">C = 2.5 \left(\frac{T_p}{T_L}\right)</math></th></t<tl<>         | $C = 2.5 \left(\frac{T_p}{T_L}\right)$             |  |
| T <t1< th=""><th><math display="block">C = 2.5 \left( \frac{T_p \cdot T_L}{T^2} \right)</math></th></t1<> | $C = 2.5 \left( \frac{T_p \cdot T_L}{T^2} \right)$ |  |

Tabla 2.16: Factor de Amplificación Sísmica. (NT E030 2018)

Donde:

T: es el Periodo Fundamental de Vibración de la Estructura.

Este coeficiente se interpreta como el factor de amplificación de la aceleración estructural respecto de la aceleración en el suelo.

## • COEFICIENTE DE REDUCCIÓN DE FUERZAS SÍSMICAS "R"

El coeficiente de Reducción de Fuerzas Sísmicas, depende del Sistema Estructural y es un factor asociado a la capacidad de disipación de energía de la estructura, lo cual al aplicar este factor de Reducción Sísmica, nos permite suponer la incursión de la edificación en el rango inelástico del espectro de pseudoaceleraciones. (NT E030 2018)

Tabla 2.17: Sistemas Estructurales. (NT E030 2018)

| Sistema estructural            | Coef. Básico de Reducción |
|--------------------------------|---------------------------|
| Pórticos                       | 8                         |
| Dual                           | 7                         |
| Muros Estructurales            | 6                         |
| EMDL                           | 4                         |
| Albañilería Confinada O Armada | 3                         |

Donde:

Ro: Coeficiente básico de Reducción.

Ia: Irregularidad de la Estructura en Altura.

Ip: Irregularidad de la estructura en planta.

#### • ESTRUCTURAS DE CONCRETO ARMADO

De igual manera, en la Norma técnica E030, nos detallan los sistemas estructurales de concreto Armado en función al porcentaje de fuerza cortante basal actuante en los elementos estructurales resistentes (placas, columnas). (NT E030 2018)

- Pórticos: Por lo menos el 80% de la fuerza cortante es absorbida por las columnas. (NT E030 2018)

- **Sistema Dual:** La fuerza cortante que es Absorbida por los Muros es mayor al 20% y menor al 70%. (NT E030 2018)

- **Muros Estructurales:** Al menos el 70% de la fuerza Cortante es Absorbida por los muros. (NT E030 2018)

- **Muros de Ductilidad Limitada:** Edificaciones que se caracterizan por tener un sistema estructural donde la resistencia Sísmica y de Cargas de gravedad está dada por muros de concreto de espesores reducidos, en los que se prescinde de extremos confinados y el refuerzo vertical se dispone en una sola capa. (NT E030 2018)

## 2.3 DEFINICIÓN DE TÉRMINOS BÁSICOS

**Cortante Basal:** Es la fuerza resultante total ocurrida producto de la combinación de la raíz cuadrada de la suma de los cuadrados (SRSS) o combinación cuadrática completa (CQC), según sea el caso, de las componentes inerciales y convectivas. (ASCE 2001)

**Deriva de entrepiso:** Es el movimiento lateral de la edificación, medido entre dos puntos de dos niveles consecutivos. (USAID 2018)

**Elementos Estructurales:** Componentes de una edificación que contribuyen a la estabilidad de la estructura al dotarla de resistencia y rigidez. (USAID 2018)

**Ingeniería Sísmica:** La aplicación de los conocimientos de los sismos y las vibraciones del suelo al diseño y la construcción de obras civiles y obras públicas para proporcionar protección a vidas y a recursos en caso de un sismo. (López 2014)

**Interacción Suelo-Estructura:** Conjunto de efectos cinemáticos e inerciales producidos en la estructura y el suelo como resultado de la deformabilidad de este ante excitación sísmica. (Díaz, Espinoza, Sánchez & Huerta 2012)

**Irregularidad de Rigidez - Piso blando:** Fenómeno que se da cuando en cualquiera de las direcciones de análisis, en un entrepiso la rigidez lateral es menor al 70% de la rigidez del entrepiso inmediato superior, o es menor que 80% de la rigidez lateral promedio de los pisos superiores. (NT E030 2018)

**Módulo de elasticidad:** Relación entre el esfuerzo normal y la deformación unitaria correspondiente, para esfuerzos de tracción o compresión menores que el límite de proporcionalidad del material. (NT E030 2018)

**Periodo de vibración:** Tiempo requerido para que el sistema efectúe un ciclo completo de vibración. (Chopra 2014)

**Respuesta Estructural:** el término Respuesta se utiliza en general para incluir cualquier cantidad de respuesta, como el desplazamiento, la velocidad o la aceleración de la masa; una fuerza interna o el esfuerzo interno de la estructura. (Chopra. 2014)

**Sismo:** Un sismo es el movimiento brusco de la Tierra causado por la liberación de energía acumulada durante un largo tiempo. (CNE 2020)

**Suelo de fundación:** Capa de suelo bajo la estructura que soportan las cargas provenientes de la superestructura.

## **CAPÍTULO III: MATERIALES Y MÉTODOS**

### 3.1 UBICACIÓN

## 3.1.1 UBICACIÓN DE LA INVESTIGACIÓN

La investigación se realizó en la Institución Educativa N° 81703 Gran Unidad Escolar "Nuestra Señora de Guadalupe" con dirección Av. Industrial #130 del distrito de Guadalupe, provincia de Pacasmayo, región La Libertad.



Figura 3.1: Ubicación del estudio (Google Earth, 2022).

### 3.1.2 ÉPOCA DE LA INVESTIGACIÓN

La presente investigación se realizó desde el mes de abril del 2022 hasta el mes de junio del 2022.

## 3.2 DESCRIPCIÓN DE LA ESTRUCTURA EN ESTUDIO

## 3.2.1 DESCRIPCIÓN GENERAL

El expediente técnico de la Institución Educativa N° 81703 "Nuestra Señora de Guadalupe" fue elaborado en el año 2013 con la NT E030 2006, la construcción de la Institución educativa inició en marzo del 2016 e inició el funcionamiento en el año 2017.

La Institución Educativa completa cuenta con 10 pabellones, de los cuales se analizará el pabellón D correspondiente al nivel secundario, dicho pabellón cuenta con dos niveles; en el primer nivel hay aulas, escaleras y servicios higiénicos y en el segundo piso solamente aulas. El módulo en estudio corresponde solo a aulas y tiene un área construida de 205.1 m2 tanto para el primer nivel como para el segundo nivel.

El sistema estructural se compone de pórticos de concreto armado en una dirección y sistema dual en la otra dirección, la losa aligerada es de 20 cm de espesor con ladrillos de techo de 0.30x0.15x0.30 cm. También se han construido placas de concreto armado de 25cm de espesor.

En cuanto a las cimentaciones se tienen zapatas corridas de 40cm de espesor con vigas de cimentación y cimientos corridos de 70cm de espesor.

# 3.2.2 PROPIEDADES Y ESPECIFICACIONES TÉCNICAS DE LOS ELEMENTOS ESTRUCTURALES Y DEL SUELO PARA CIMENTACIÓN

Las propiedades de los elementos estructurales del módulo en estudio se obtuvieron directamente de las especificaciones técnicas del expediente técnico de la Institución Educativa en estudio. A continuación, se presentan las propiedades:

| PROPIED                                                                                                                                       | ADES                                                                                                                             |                                                          |
|-----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
|                                                                                                                                               | Vigas                                                                                                                            | 210 kg/cm2                                               |
|                                                                                                                                               | Columnas                                                                                                                         | 210 kg/cm2                                               |
| Resistencia a la Compresión (f'c)                                                                                                             | Placas                                                                                                                           | 210 kg/cm2                                               |
|                                                                                                                                               | Zapatas                                                                                                                          | 210 kg/cm2                                               |
|                                                                                                                                               | Vigas de cimentación                                                                                                             | 210 kg/cm2                                               |
|                                                                                                                                               | Losas Aligeradas                                                                                                                 | 210 kg/cm2                                               |
| Peso unitario del concreto                                                                                                                    | 2400 kg/m3                                                                                                                       |                                                          |
| Módulo de elasticidad (E)                                                                                                                     | 217371 kg/cm2                                                                                                                    | 2                                                        |
| Esfuerzo de fluencia del acero (fy)                                                                                                           | 4200 kg/cm2                                                                                                                      |                                                          |
| Módulo de poisson (µc)                                                                                                                        | 0.15                                                                                                                             |                                                          |
|                                                                                                                                               |                                                                                                                                  |                                                          |
|                                                                                                                                               | Zapatas                                                                                                                          | 7.5 cm                                                   |
|                                                                                                                                               | Zapatas<br>Columnas                                                                                                              | 7.5 cm<br>4.0 cm                                         |
| Recubrimiento Libre                                                                                                                           | Zapatas<br>Columnas<br>Placas                                                                                                    | 7.5 cm<br>4.0 cm<br>4.0 cm                               |
| Recubrimiento Libre                                                                                                                           | Zapatas<br>Columnas<br>Placas<br>Losas Aligeradas                                                                                | 7.5 cm<br>4.0 cm<br>4.0 cm<br>2.0 cm                     |
| Recubrimiento Libre                                                                                                                           | Zapatas<br>Columnas<br>Placas<br>Losas Aligeradas<br>Vigas                                                                       | 7.5 cm<br>4.0 cm<br>4.0 cm<br>2.0 cm<br>4.0 cm           |
| Recubrimiento Libre                                                                                                                           | Zapatas<br>Columnas<br>Placas<br>Losas Aligeradas<br>Vigas<br>Vigas de cimentación                                               | 7.5 cm<br>4.0 cm<br>4.0 cm<br>2.0 cm<br>4.0 cm<br>7.5 cm |
| Recubrimiento Libre<br>Peso unitario del acero                                                                                                | Zapatas<br>Columnas<br>Placas<br>Losas Aligeradas<br>Vigas<br>Vigas de cimentación<br>7850 kg/cm2                                | 7.5 cm<br>4.0 cm<br>2.0 cm<br>4.0 cm<br>7.5 cm           |
| Recubrimiento Libre<br>Peso unitario del acero<br>Módulo de elasticidad del acero                                                             | Zapatas<br>Columnas<br>Placas<br>Losas Aligeradas<br>Vigas<br>Vigas de cimentación<br>7850 kg/cm2<br>2000000 kg/cm               | 7.5 cm<br>4.0 cm<br>2.0 cm<br>4.0 cm<br>7.5 cm           |
| Recubrimiento Libre<br>Peso unitario del acero<br>Módulo de elasticidad del acero<br>Resistencia a compresión axial de la                     | Zapatas<br>Columnas<br>Placas<br>Losas Aligeradas<br>Vigas<br>Vigas de cimentación<br>7850 kg/cm2<br>2000000 kg/cm               | 7.5 cm<br>4.0 cm<br>2.0 cm<br>4.0 cm<br>7.5 cm           |
| Recubrimiento Libre<br>Peso unitario del acero<br>Módulo de elasticidad del acero<br>Resistencia a compresión axial de la<br>albañilería (fm) | Zapatas<br>Columnas<br>Placas<br>Losas Aligeradas<br>Vigas<br>Vigas de cimentación<br>7850 kg/cm2<br>2000000 kg/cm2<br>65 kg/cm2 | 7.5 cm<br>4.0 cm<br>2.0 cm<br>4.0 cm<br>7.5 cm<br>2      |

 

 Tabla 3.1: Propiedades y Especificaciones Técnicos de los Elementos Estructurales (Expediente técnico IE N° 81703).

### 3.2.3 PROPIEDADES Y ESPECIFICACIONES DEL SUELO DE FUNDACIÓN

Estas propiedades se obtuvieron directamente del estudio de mecánica de suelos anexado en el expediente técnico de la Institución Educativa N° 81703. A continuación se presenta la tabla de propiedades y especificaciones:

| PROPIEDADES                                          | VALOR               |
|------------------------------------------------------|---------------------|
| Tipo de Suelo (Clasificación SUCS)                   | SP (Arena Uniforme) |
| Módulo de corte del suelo (G)                        | 54 kg/cm2           |
| Módulo de elasticidad del suelo                      | 135 kg/cm2          |
| Coeficiente de Balasto                               | 2 kg/cm3            |
| Módulo de Poisson                                    | 0.25                |
| Densidad unitaria saturada                           | 2 g/cm3             |
| Ángulo de fricción Interna                           | 31°                 |
| Cohesión (C)                                         | 0 kg/cm2            |
| Asentamiento tolerable                               | 0.947 cm            |
| Profundidad de Desplante Zapatas                     | 2.00 m              |
| Profundidad de Desplante Cimientos Corridos          | 2.00 m              |
| Capacidad Portante del Suelo Cimientos Corridos (qa) | 0.82 kg/cm2         |
| Capacidad Portante del Suelo Zapatas (qa)            | 1.01 kg/cm2         |

 Tabla 3.2: Propiedades y especificaciones técnicas del Suelo de Cimentación (Expediente técnico IE N° 81703).

#### 3.2.4 CARGAS

El metrado de cargas se hizo acorde a la Norma Técnica E020 Cargas del Reglamento Nacional de Edificaciones, según el cual divide las cargas en cargas vivas y cargas muertas.

#### A. CARGAS VIVAS

La Norma Técnica E020 Cargas nos indica que para las aulas de centros de educación se tiene una sobrecarga de 250 kg/m2, para corredores y escaleras se tiene una sobrecarga de 400 kg/m2 y para la azotea de 100 kg/m2.

#### A. CARGAS MUERTAS

En cuanto a cargas muertas la Norma Técnica E020 Cargas nos indica que el peso de acabados es de 100 kg/m2, la tabiquería móvil es de 100 kg/m2.

También se tiene que para las losas aligeradas las cuales son de 20 cm de espesor según la Norma Técnica E020 Cargas el peso propio es de 300 kg/m2.

## 3.2.5 ANÁLISIS SÍSMICO ESTÁTICO O DE FUERZAS ESTÁTICAS EQUIVALENTES

Este método representa las solicitaciones sísmicas mediante un conjunto de fuerzas actuando en el centro de masas de cada nivel de la edificación.

Pueden analizarse mediante este procedimiento todas las estructuras regulares o irregulares ubicadas en la zona sísmica 1. En las otras zonas sísmicas puede emplearse este procedimiento para las estructuras clasificadas como regulares, según el artículo 19, de no más de 30m de altura y para estructuras de muros portantes de concreto armado y albañilería armada o confinada de no más de 15m de altura, aun cuando sean irregulares.

El módulo de la edificación en estudio cumple con estas condiciones. Además se tiene que el expediente técnico se hizo utilizando la norma E030 2006, por lo que para la zona antes considerada como zona 3, en el presente estudio se considera zona 4 de acuerdo a la normativa vigente.

| CARACTERÍSTICA                                       | DESCRIPCIÓN                               | PARÁMETRO                                               | VALOR    |
|------------------------------------------------------|-------------------------------------------|---------------------------------------------------------|----------|
| Factor de Zona                                       | Distrito de Guadalupe                     | Z = Zona 4                                              | 0.45     |
| Tipo de Suelo                                        | Suelo Intermedio                          | S2                                                      | -        |
| Factor de Suelo                                      | Suelo S2 y Zona sísmica = 4               | S                                                       | 1.05     |
| Periodo que define la plataforma del factor C        | Suelo S2                                  | Тр                                                      | 0.6      |
| Periodo que define el inicio de la zona del factor C | Suelo S2                                  | Tl                                                      | 2.0      |
|                                                      | Factor variable en función del perio      | odo fundamental, 7                                      | Гр у TL  |
|                                                      | $T < T_p \longrightarrow$                 | C=2.5                                                   |          |
| Factor de Amplificación Sísmica                      | $T_P < T < T_L \qquad \rightarrow \qquad$ | $C{=}2.5 \cdot \left(\frac{T_p}{T}\right)$              |          |
|                                                      | $T > T_L \longrightarrow$                 | $C=2.5\cdot\left(\frac{T_{P}\cdot T_{L}}{T^{2}}\right)$ |          |
| Factor de Uso                                        | Edificación Esencial A2                   | U                                                       | 1.5      |
| Sistema Estructural                                  | Pórticos y Dual                           | -                                                       | -        |
| Confiniento Régião do Roducción                      | Pórticos y Dual                           | Ro                                                      | 8        |
|                                                      |                                           | Ro                                                      | 7        |
| Regularidad Estructural en altura                    |                                           | Ia                                                      | 1        |
| Regularidad Estructural en planta                    |                                           | Ip                                                      | 1        |
| Coeficiente de Reducción de las Fuerzas Sísmicas     | Sistema de pórticos R=Ro*Ip*Ia            | R                                                       | 8 y 7    |
| Peso Sísmico de la estructura                        | Peso de todos los niveles                 | Р                                                       | 393.5 tn |

Tabla 3.3: Parámetros utilizados en Análisis Sísmico según NT E030 2018 (Expediente técnicoIE Nº 81703).

## 3.3 METODOLOGÍA DE LA INVESTIGACIÓN

#### A. TIPO DE INVESTIGACIÓN

El tipo de investigación es transversal.

## **B. DISEÑO DE LA INVESTIGACIÓN**

Corresponde a una investigación descriptiva, de nivel correlacional, con enfoque cuantitativo.

## C. POBLACIÓN DE ESTUDIO

Todos los pabellones I.E N° 81703, del distrito de Guadalupe, Pacasmayo, de la región La Libertad.

#### **D. MUESTRA**

Pabellón "D" de la I.E. N° 81703, del distrito de Guadalupe, Pacasmayo, de la región La Libertad.

## E. UNIDAD DE ANÁLISIS

Corresponde a una edificación dual de concreto armado y pórticos de concreto armado.



Figura 3.2: Planta Primer piso (Expediente técnico I.E N° 81703 E: 1/70).



*Figura 3.3: Planta Segundo piso (Expediente técnico I.E N° 81703 E: 1/70).* 



Figura 3.4: Corte de Elevación (Expediente técnico I.E N° 81703).

## 3.4 PROCEDIMIENTO

# 3.4.1 ANÁLISIS SÍSMO ESTÁTICO EQUIVALENTE UTILIZANDO EL PROGRAMA ETABS V18

- 1º. Definir los materiales (Concreto, Acero, Albañilería).
- 2°. Definir las secciones (Vigas, Columnas, Placas, Muros, Losa Aligerada).
- 3°. Modelado de la estructura.



Figura 3.5: Modelo finalizado de la estructura en estudio (ETABS V18).

- 4°. Asignar los Brazos Rígidos, el factor utilizado fue de 0.75 de tal manera que sea lo más real posible. Asignación de apoyos para el modelo empotrado en la base.
- 5°. Definir los patrones de carga. (Carga Muerta, Carga Viva, sismos estáticos tanto en X como en Y con + 0.05 excentricidad).

Se determina el periodo fundamental de vibración Estático para definir los patrones de carga sismo estático:

Los Periodos fundamentales de vibración para para cada dirección (X y Y) se obtiene de la siguiente manera:

$$T = \frac{h_n}{C_T}$$

Se tiene además que:

 $h_n = 6.30$  m es la altura total de la edificación.

 $C_T = 60$ , Para edificios de albañilería y para todos los edificios de concreto armado duales, de muros estructurales, y muros de ductilidad limitada.

$$T = \frac{6.30}{60} = 0.105$$

Entonces, como:

$$T = 0.105 \wedge T_p = 1.0 \qquad T < T_p \rightarrow C = 2.5$$

Luego, el Coeficiente del Cortante en la Base  $\left(\frac{Z \cdot U \cdot C \cdot S}{R}\right)$  es:

Para "x": 
$$\frac{Z \cdot U \cdot C \cdot S}{R} = \frac{(0.45)(1.5)(2.5)(1.1)}{7} = 0.26518$$
  
Para "y":  $\frac{Z \cdot U \cdot C \cdot S}{R} = \frac{(0.45)(1.5)(2.5)(1.1)}{8} = 0.23203$ 

Además, como T=0.105 < 0.5, se utilizará K=1.0.

- 6°. Asignar las Cargas (Cargas vivas y Cargas muertas).
- 7°. Asignar elementos piers en Columnas y Placas, para poder ver las fuerzas internas en estos elementos estructurales.
- 8°. Definición y Aplicación de Diafragmas rígidos.



Figura 3.6: Asignación de diafragma rígido (ETABS V18).

- 9°. Ensamblar las losas con vigas para una adecuada transferencia de cargas.
- 10°. Ensamblar las losas con muros para una adecuada transferencia de cargas.
- 11º. Definir el peso sísmico. En este caso el peso sísmico según el capítulo IV de la norma E030 Diseño sismorresistente para una edificación de categoría A, corresponde:

Peso Sísmico = 100% CM + 50% CV + 25% CVtecho

|                                                         | Load Pattern        | Multiplier      | 1      |
|---------------------------------------------------------|---------------------|-----------------|--------|
| ass Source                                              | TABIQUERIA          | ~ 1             | Add    |
| Element Self Mass                                       | ACABADOS<br>S/C     | 1 0.5           | Modify |
| Additional Mass                                         | S/C AZOTEA          | 0.25            | Delete |
| Specified Load Patterns                                 |                     |                 | ]      |
| Adjust Diaphragm Lateral Mass to Move Mass Centroid by: | Mass Options        |                 |        |
| This Ratio of Diaphragm Width in X Direction            | Include Lateral Mas | 35              |        |
| This Ratio of Diaphragm Width in Y Direction            | Include Vertical Ma | \$\$            |        |
|                                                         | Lump Lateral Mass   | at Story Levels |        |

Figura 3.7: Definición de la masa sísmica (ETABS V18).

12°. Discretización de los Muros. Se ha discretizado cada 0.5m para una mejor transferencia de cargas.

Cálculo del Cortante Sísmico Estático:

$$V_{X} = \frac{Z \cdot U \cdot C \cdot S}{R} \cdot P = \frac{(0.45)(1.5)(2.5)(1.1)}{7} \cdot 393.472tn = 104.341tn$$
$$V_{Y} = \frac{Z \cdot U \cdot C \cdot S}{R} \cdot P = \frac{(0.45)(1.5)(2.5)(1.1)}{8} \cdot 393.472tn = 91.299tn$$

# 3.4.2 ANÁLISIS SÍSMO DINÁMICO UTILIZANDO EL PROGRAMA ETABS V18

Para el análisis sismo dinámico se utilizan los mismos pasos que el análisis estático equivalente complementándolo con la utilización del espectro de respuesta en cada dirección de análisis, a continuación se muestra los pasos siguientes:

 1°. Se debe definir el espectro de pseudo aceleraciones para ambas direcciones ortogonales, de acuerdo a los parámetros antes definidos con la Norma Técnica E030.

|                               |              |                 |        | Function Dampi   | ng Ratio                                                   |
|-------------------------------|--------------|-----------------|--------|------------------|------------------------------------------------------------|
| Function Name SE              |              | ) XX            |        | 0.05             |                                                            |
| arameters                     |              |                 |        | Define Function  |                                                            |
| Seismic Zone                  |              | Zone 4          | $\sim$ | Period           | Acceleration                                               |
| Occupation Category           |              | A               | $\sim$ | 0                | 0.2052                                                     |
| Soil Type                     |              | S3              | $\sim$ | 0.1              | 0.2652                                                     |
| Irregularity Factor, la       |              | 1               |        | 0.2              | 0.2652                                                     |
| Irregularity Factor, Ip       |              | 1               |        | 0.4<br>0.5       | <ul> <li>0.2652</li> <li>0.2652</li> <li>0.2652</li> </ul> |
| Basic Response Modification F | actor, R0    | 7               |        |                  |                                                            |
|                               |              |                 |        | Plot Options     |                                                            |
|                               |              |                 |        | Linear X - Linea | ar Y                                                       |
|                               |              |                 |        | Unear X - Log    | r                                                          |
| Converte                      | - Haar Dafin | - 4             |        | O Log X - Linear | r                                                          |
| Convert to User Defined       |              | U Log X - Log Y |        |                  |                                                            |
| unction Graph                 |              |                 |        |                  |                                                            |
| E-3                           |              |                 |        |                  |                                                            |
| 280 -                         |              |                 |        |                  |                                                            |
| 240                           |              |                 |        |                  |                                                            |
| 160 -                         |              |                 |        |                  |                                                            |
| 120 -                         |              |                 |        |                  |                                                            |
| 80 -                          |              |                 |        |                  |                                                            |
| 00 -                          |              |                 |        |                  |                                                            |

Figura 3.8: Definición del Espectro de Pseudo Aceleraciones en ETABS V18 (Etabs V18).

2º. Luego, se procede a definir los casos espectrales acorde a los espectros definidos en el 1º paso, esto, para ambas direcciones ortogonales. Además, se consideró la fuerza sísmica en la dirección vertical, que según la Norma Técnica E.030 2018, es equivalente a una fracción del peso igual a 2/3 de ZUS, como en la figura siguiente:
| Load Case Name                                                                                                        |                                                 | SD XX                                                                                       |              | Des                       |
|-----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|---------------------------------------------------------------------------------------------|--------------|---------------------------|
| Load Case Type                                                                                                        |                                                 | Response Spec                                                                               | trum         | <ul> <li>✓ Not</li> </ul> |
| Mass Source                                                                                                           |                                                 | Previous (CATE                                                                              | GORÍA A)     |                           |
| Analysis Model                                                                                                        |                                                 | Default                                                                                     |              |                           |
| ads Applied                                                                                                           |                                                 |                                                                                             |              |                           |
| Load Type                                                                                                             | Load Name                                       | Function                                                                                    | Scale Factor | 0                         |
| Acceleration                                                                                                          | U1                                              | SD XX                                                                                       | 9.8067       | A                         |
|                                                                                                                       |                                                 |                                                                                             |              |                           |
| Acceleration                                                                                                          | U3                                              | SD XX                                                                                       | 6.5378       | De                        |
| Acceleration her Parameters Modal Load Case                                                                           | U3                                              | SD XX                                                                                       | 6.5378       | De<br>Ad                  |
| Acceleration<br>ner Parameters<br>Modal Load Case<br>Modal Combination Me                                             | U3                                              | SD XX                                                                                       | 6.5378       |                           |
| Acceleration<br>ner Parameters<br>Modal Load Case<br>Modal Combination Me                                             | U3                                              | SD XX<br>Modal<br>CQC<br>Bigid Frequency, f1                                                | 6.5378       |                           |
| Acceleration her Parameters Modal Load Case Modal Combination Me                                                      | U3<br>thod<br>I Response                        | Modal<br>CQC<br>Rigid Frequency, f1<br>Rigid Frequency, f2                                  | 6.5378       |                           |
| Acceleration er Parameters Modal Load Case Modal Combination Me Include Rigic                                         | U3<br>thod<br>I Response                        | Modal<br>CQC<br>Rigid Frequency, f1<br>Rigid Frequency, f2<br>Periodic + Rigid Type         | 6.5378       |                           |
| Acceleration her Parameters Modal Load Case Modal Combination Me Include Rigic Earthquake Dur                         | U3<br>thod<br>d Response<br>ation, td           | Modal<br>CQC<br>Rigid Frequency, f1<br>Rigid Frequency, f2<br>Periodic + Rigid Type         | 6.5378       |                           |
| Acceleration her Parameters Modal Load Case Modal Combination Me Include Rigic Earthquake Dur Directional Combination | U3<br>thod<br>d Response<br>ation, td<br>n Type | Modal<br>CQC<br>Rigid Frequency, f1<br>Rigid Frequency, f2<br>Periodic + Rigid Type<br>SRSS | 6.5378       |                           |

*Figura 3.9:* Definición de los casos de carga, acorde con los espectros de pseudoaceleraciones (ETABS V18).

### 3.4.3 MODELO DINÁMICO D.D. BARKAN – O.A. SAVINOV

Se obtuvieron los siguientes resultados al reemplazar en las ecuaciones correspondientes al modelo dinámico D.D. BARKAN – O.A. SAVINOV:

- Según el estudio de suelos del expediente técnico nos dice que es una Arena Uniforme (SP) y con mediana a baja plasticidad, por lo que según la Tabla 2.1 se ha asumido un coeficiente Co = 0.8.
- El siguiente paso es calcular la magnitud de la presión estática del suelo "ρ" para las zapatas:

$$\rho = \frac{P_{edificio} + P_{zapatas}}{A_{zapatas}} = \frac{393472 + 162528}{1653975} = 0.3362 kg / cm^2$$

3. Seguidamente hallamos Do aplicando la Fórmula 2.4, como se muestra a continuación:

$$D_0 = \frac{1 - \mu}{1 - 0.5\mu} \cdot C_0 = \frac{1 - 0.25}{1 - 0.5(0.25)} \cdot 0.8 = 0.685714$$

- 4. Luego calculamos los coeficientes de desplazamiento y compresión de la base (Cz, Cx, Cy, Cφ) según las Fórmulas 2.3, obteniendo los resultados de Tabla 3.4.
- Finalmente de las Fórmulas 2.1 se obtuvieron los coeficientes de rigidez para el Modelo Dinámico D.D. Barkan – O.A. Savinov, tal como se muestra en la Tabla 3.4.

|                        | Z1     | Z2     | Z3     | Z4     | ZS     | 9Z     | L7     | Z8     | 6Z     | Z10    | Z11    | Z12    | Z13    | Z14    | Z15    | Z16    | Z17    | CC1    |        |
|------------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| Co                     | 0.8    | 0.8    | 0.8    | 0.8    | 0.8    | 0.8    | 0.8    | 0.8    | 0.8    | 0.8    | 0.8    | 0.8    | 0.8    | 0.8    | 0.8    | 0.8    | 0.8    | 0.8    |        |
| β                      | 0.3362 | 0.3362 | 0.3362 | 0.3362 | 0.3362 | 0.3362 | 0.3362 | 0.3362 | 0.3362 | 0.3362 | 0.3362 | 0.3362 | 0.3362 | 0.3362 | 0.3362 | 0.3362 | 0.3362 | 0.3362 | kg/cm2 |
| ท่                     | 0.25   | 0.25   | 0.25   | 0.25   | 0.25   | 0.25   | 0.25   | 0.25   | 0.25   | 0.25   | 0.25   | 0.25   | 0.25   | 0.25   | 0.25   | 0.25   | 0.25   | 0.25   | oue    |
| $\mathbf{D}_{0}$       | 0.6857 | 0.6857 | 0.6857 | 0.6857 | 0.6857 | 0.6857 | 0.6857 | 0.6857 | 0.6857 | 0.6857 | 0.6857 | 0.6857 | 0.6857 | 0.6857 | 0.6857 | 0.6857 | 0.6857 | 0.6857 | 210    |
| а                      | 2.2    | 4.4    | 4.55   | 4.4    | 4.55   | 4.4    | 2.2    | 2.2    | 4.4    | 4.55   | 4.4    | 4.55   | 4.4    | 2.2    | 2      | 1.75   | 3      | 3.8    | m      |
| q                      | 1.8    | 1.8    | 1.8    | 1.8    | 1.8    | 1.8    | 1.8    | 2.5    | 2.5    | 2.5    | 2.5    | 2.5    | 2.5    | 2.5    | 2.75   | 1.75   | 2      | 1.45   | m      |
| $\mathbf{C}\mathbf{z}$ | 3.1324 | 2.6610 | 2.6455 | 2.6610 | 2.6455 | 2.6610 | 3.1324 | 2.8098 | 2.3383 | 2.3228 | 2.3383 | 2.3228 | 2.3383 | 2.8098 | 2.8286 | 3.4078 | 2.7658 | 3.0136 | kg/cm3 |
| CX                     | 2.4129 | 2.1856 | 2.1781 | 2.1856 | 2.1781 | 2.1856 | 2.4129 | 2.4129 | 2.1856 | 2.1781 | 2.1856 | 2.1781 | 2.1856 | 2.4129 | 2.4583 | 2.5298 | 2.2917 | 2.2215 | kg/cm3 |
| Cy                     | 2.4129 | 2.1856 | 2.1781 | 2.1856 | 2.1781 | 2.1856 | 2.4129 | 2.4129 | 2.1856 | 2.1781 | 2.1856 | 2.1781 | 2.1856 | 2.4129 | 2.4583 | 2.5298 | 2.2917 | 2.2215 | kg/cm3 |
| $C_{\phi}$             | 5.0182 | 3.6039 | 3.5573 | 3.6039 | 3.5573 | 3.6039 | 5.0182 | 4.6955 | 3.2812 | 3.2346 | 3.2812 | 3.2346 | 3.2812 | 4.6955 | 4.9030 | 5.7785 | 4.1487 | 4.1054 | kg/cm3 |
| A                      | 3.96   | 7.92   | 8.19   | 7.92   | 8.19   | 7.92   | 3.96   | 5.5    | 11     | 11.375 | 11     | 11.375 | 11     | 5.5    | 5.5    | 3.0625 | 6      | 5.51   |        |
| Kz                     | 3132   | 2661   | 2645   | 2661   | 2645   | 2661   | 3132   | 2810   | 2338   | 2323   | 2338   | 2323   | 2338   | 2810   | 2829   | 3408   | 2766   | 3014   | tn/m   |
| Kx                     | 2413   | 2186   | 2178   | 2186   | 2178   | 2186   | 2413   | 2413   | 2186   | 2178   | 2186   | 2178   | 2186   | 2413   | 2458   | 2530   | 2292   | 2221   | tn/m   |
| Ky                     | 2413   | 2186   | 2178   | 2186   | 2178   | 2186   | 2413   | 2413   | 2186   | 2178   | 2186   | 2178   | 2186   | 2413   | 2458   | 2530   | 2292   | 2221   | tn/m   |
| $K_{_{arphi x}}$       | 8015   | 46049  | 50262  | 46049  | 50262  | 46049  | 8015   | 10416  | 58231  | 63476  | 58231  | 63476  | 58231  | 10416  | 8989   | 4516   | 18669  | 27220  | tn/m   |
| $K_{_{arphi y}}$       | 8015   | 46049  | 50262  | 46049  | 50262  | 46049  | 8015   | 10416  | 58231  | 63476  | 58231  | 63476  | 58231  | 10416  | 6868   | 4516   | 18669  | 27220  | tn/m   |

**Tabla 3.4**: Coeficientes de Desplazamiento y Compresión & Coeficientes de Rigidez para elModelo Dinámico D.D. Barkan – O.A. Savinov.

## 3.4.3.1 INTRODUCCIÓN DE COEFICIENTES DEL MODELO D.D. BARKAN – O.A. SAVINOV EN ETABS V18.

Primero se debe asignar el material de las zapatas debiendo hacer que esta sea rígida, tal como se muestra en la Figura 3.10. Luego se asignan las secciones correspondientes tanto de las zapatas como de los cimientos corridos, como se muestra en la Figura 3.11.

| General Data                        |           |                 |                     |
|-------------------------------------|-----------|-----------------|---------------------|
| Material Name                       | Rigido    |                 |                     |
| Material Type                       | Other     |                 | ~                   |
| Directional Symmetry Type           | Isotropic |                 | ~                   |
| Material Display Color              |           | Change          |                     |
| Material Notes                      | Modify/   | /Show Notes     |                     |
| Material Weight and Mass            |           |                 |                     |
| Specify Weight Density              | O Speci   | fy Mass Density |                     |
| Weight per Unit Volume              |           | 0               | tonf/m <sup>3</sup> |
| Mass per Unit Volume                |           | 0               | tonf-s²/m4          |
| Mechanical Property Data            |           |                 |                     |
| Modulus of Elasticity, E            |           | 90000000        | tonf/m <sup>2</sup> |
| Poisson's Ratio, U                  |           | 0.05            |                     |
| Coefficient of Thermal Expansion, A |           | 0.000099        | 1/C                 |
| Shear Modulus, G                    |           | 428571428.57    | tonf/m <sup>2</sup> |

Figura 3.10: Asignación de material rígido.

Figura 3.11: Asignación de las secciones de zapatas y cimientos corridos.

| General Data                  |                           | General Data                  |                           |        |
|-------------------------------|---------------------------|-------------------------------|---------------------------|--------|
| Property Name                 | C,Corrido E=70cm          | Property Name                 | Zapata E=40cm             |        |
| Slab Material                 | Rigido 🗸                  | Slab Material                 | Rigido                    | × .    |
| Notional Size Data            | Modify/Show Notional Size | Notional Size Data            | Modify/Show Notional Size |        |
| Modeling Type                 | Shell-Thick $\lor$        | Modeling Type                 | Shell-Thin                | $\sim$ |
| Modifiers (Currently Default) | Modify/Show               | Modifiers (Currently Default) | Modify/Show               |        |
| Display Color                 | Change                    | Display Color                 | Change                    |        |
| Property Notes                | Modify/Show               | Property Notes                | Modify/Show               |        |
|                               |                           |                               |                           |        |
| Property Data                 |                           | Property Data                 |                           |        |
| Туре                          | Slab 🗸                    | Туре                          | Slab                      | $\sim$ |
| Thickness                     | 0.7                       | r Thickness                   | 0.4                       | m      |

Luego se deben asignar las propiedades de las masas para las zapatas y los cimientos corridos en sus respectivos centroides, estas se encontraron utilizando las Fórmulas 2.8, 2.9 y se utilizaron hojas de cálculo cuyos resultados se muestran en la Tabla 3.5. cuya última fila no se utilizará en el modelo dinámico de Barkan debido a su restricción de rotación alrededor del eje vertical. La asignación de las masas se muestra en la Figura 3.12.

|                 | Z1    | <b>Z</b> 2 | Z3    | Z4    | Z5    | Z6    | ĹZ    | Z8    | 6Z    | Z10   | Z11   | Z12   | Z13   | Z14   | Z15   | Z16   | Z17   | CC1   |         |
|-----------------|-------|------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|---------|
| $M_x$           | 0.599 | 1.742      | 1.834 | 1.742 | 1.834 | 1.742 | 0.599 | 0.993 | 2.893 | 3.047 | 2.893 | 3.047 | 2.893 | 0.993 | 0.993 | 0.404 | 1.135 | 0.996 | T.s^2/m |
| $M_y$           | 0.599 | 1.742      | 1.834 | 1.742 | 1.834 | 1.742 | 0.599 | 0.993 | 2.893 | 3.047 | 2.893 | 3.047 | 2.893 | 0.993 | 0.993 | 0.404 | 1.135 | 0.996 | T.s^2/m |
| $M_z$           | 0.971 | 2.843      | 2.995 | 2.843 | 2.995 | 2.843 | 0.971 | 1.615 | 4.738 | 4.992 | 4.738 | 4.992 | 4.738 | 1.615 | 1.615 | 0.653 | 1.848 | 1.620 | T.s^2/m |
| $M_{\varphi x}$ | 0.405 | 2.343      | 2.551 | 2.343 | 2.551 | 2.343 | 0.405 | 0.930 | 5.390 | 5.869 | 5.390 | 5.869 | 5.390 | 0.930 | 0.930 | 0.211 | 1.160 | 0.935 | T.s^2.m |
| $M_{\varphi y}$ | 0.405 | 2.343      | 2.551 | 2.343 | 2.551 | 2.343 | 0.405 | 0.930 | 5.390 | 5.869 | 5.390 | 5.869 | 5.390 | 0.930 | 0.930 | 0.211 | 1.160 | 0.935 | T.s^2.m |
| $M_{\psi z}$    | 0.403 | 3.280      | 3.660 | 3.280 | 3.660 | 3.280 | 0.403 | 0.918 | 6.175 | 6.844 | 6.175 | 6.844 | 6.175 | 0.918 | 0.957 | 0.206 | 1.230 | 1.372 | T.s^2.m |

 Tabla 3.5: Propiedades de masas utilizadas para el modelamiento en ETABS V18.

## *Figura 3.12:* Asignación de las propiedades de masas de zapatas y cimientos corridos en ETABS V18.

| Joi | nt Assignment - Additi  | onal Mass            |           |
|-----|-------------------------|----------------------|-----------|
|     | Masses in Global Direct | tions                |           |
|     | Direction X, Y          | 0.599                | tonf-s²/r |
|     | Direction Z             | 0.971                | tonf-s²/r |
|     | Mass Moment of Inertia  | in Global Directions |           |
|     | Rotation about X        | 0.405                | tonf-m-s  |
|     | Rotation about Y        | 0.405                | tonf-m-s  |
|     | Rotation about Z        | 0                    | tonf-m-s  |
|     |                         |                      |           |

Finalmente se procedió a modificar los apoyos de todas las zapatas y cimientos corridos para considerar la Rigidez tomando en cuenta los coeficientes obtenidos anteriormente de la Tabla 3.4. Se debe tener en cuenta también que para el modelo D.D. Barkan – O.A. Savinov se restringió la rotación alrededor del eje Z (del eje vertical), esto se hace a través del elemento Spring en el programa ETABS V18. el cual se muestra en la Figura 3.13.

Figura 3.13: Asignación de factores de rigidez en zapatas y cimientos corridos en ETABS V18.



#### 3.4.4 MODELO DINÁMICO V.A. ILICHEV

Se obtuvieron los siguientes resultados al reemplazar en las ecuaciones correspondientes al modelo dinámico V.A. ILICHEV.

- 1. El primer paso es determinar las velocidades de propagación de las ondas longitudinal y transversal utilizando para esto las Fórmulas 2.12. Los datos se muestran en las Tablas 3.6, 3.7,3.8.
- Luego calculamos Kz utilizando las Tablas 2.2 y 2.3 cuando μ=0.25, así como la fórmula 2.7 cuando ψ=31 y las Fórmulas 2.9 y 2.10. Los datos se muestran en las Tablas 3.6, 3.7, 3.8.
- 3. Análogamente procedemos a calcular Kx, calculando primero kx1, kx2 y kx para luego utilizar la fórmula 2.9. Los resultados se muestran en las Tablas 3.6, 3.7,3.8.
- Por la fórmula 2.7 determinamos los coeficientes kφ1, kφ2 y kφ para luego calcular Kφ utilizando la Fórmula 2.8. Los resultados se muestran en las Tablas 3.6, 3.7,3.8.
- Luego calculamos Bz utilizando las Tablas 2.2 y 2.3 cuando μ=0.25, así como la fórmula 2.7 cuando ψ=31 y la Fórmula 2.9. Los datos se muestran en las Tablas 3.6, 3.7, 3.8.
- 6. Análogamente procedemos a calcular Bx, calculando primero bx1, bx2 y bx para luego utilizar la Fórmula 2.9. Los resultados se muestran en la Tabla 3.6, 3.7, 3.8.
- Por la Fórmula 2.7 determinamos los coeficientes bφ1, bφ2 y bφ para luego calcular Bφ utilizando la Fórmula 2.8. Los resultados se muestran en las Tablas 3.6, 3.7, 3.8.
- Finalmente por las Tablas 2.2 y 2.3 obtenemos mz, mx y mφ, las que luego utilizando las Fórmulas 2.8 y 2.9 se obtienen Mz, Mx y Mφ. Los resultados se muestran en las Tablas 3.6, 3.7, 3.8.

|                    | Z1     | 22     | Z      | Z4     | Z5     | S6     | ĽZ     | Z8     | 6Z     | Z10    | Z11    | Z12    | Z13    | Z14    | Z15    | Z16    | Z17    | CC1    |
|--------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| ц                  | 0.25   | 0.25   | 0.25   | 0.25   | 0.25   | 0.25   | 0.25   | 0.25   | 0.25   | 0.25   | 0.25   | 0.25   | 0.25   | 0.25   | 0.25   | 0.25   | 0.25   | 0.25   |
| K0Z1               | 21.80  | 21.80  | 21.80  | 21.80  | 21.80  | 21.80  | 21.80  | 21.80  | 21.80  | 21.80  | 21.80  | 21.80  | 21.80  | 21.80  | 21.80  | 21.80  | 21.80  | 21.80  |
| K0X1               | 12.40  | 12.40  | 12.40  | 12.40  | 12.40  | 12.40  | 12.40  | 12.40  | 12.40  | 12.40  | 12.40  | 12.40  | 12.40  | 12.40  | 12.40  | 12.40  | 12.40  | 12.40  |
| $K_{_0 \varphi_1}$ | 5.60   | 5.60   | 5.60   | 5.60   | 5.60   | 5.60   | 5.60   | 5.60   | 5.60   | 5.60   | 5.60   | 5.60   | 5.60   | 5.60   | 5.60   | 5.60   | 5.60   | 5.60   |
| K0Z2               | 7.50   | 7.50   | 7.50   | 7.50   | 7.50   | 7.50   | 7.50   | 7.50   | 7.50   | 7.50   | 7.50   | 7.50   | 7.50   | 7.50   | 7.50   | 7.50   | 7.50   | 7.50   |
| K0X2               | 7.60   | 7.60   | 7.60   | 7.60   | 7.60   | 7.60   | 7.60   | 7.60   | 7.60   | 7.60   | 7.60   | 7.60   | 7.60   | 7.60   | 7.60   | 7.60   | 7.60   | 7.60   |
| $K_{0arphi 2}$     | 7.50   | 7.50   | 7.50   | 7.50   | 7.50   | 7.50   | 7.50   | 7.50   | 7.50   | 7.50   | 7.50   | 7.50   | 7.50   | 7.50   | 7.50   | 7.50   | 7.50   | 7.50   |
| KI Z1              | 3.56   | 3.56   | 3.56   | 3.56   | 3.56   | 3.56   | 3.56   | 3.56   | 3.56   | 3.56   | 3.56   | 3.56   | 3.56   | 3.56   | 3.56   | 3.56   | 3.56   | 3.56   |
| K1X1               | 2.09   | 2.09   | 2.09   | 2.09   | 2.09   | 2.09   | 2.09   | 2.09   | 2.09   | 2.09   | 2.09   | 2.09   | 2.09   | 2.09   | 2.09   | 2.09   | 2.09   | 2.09   |
| $K_{1arphi 1}$     | 1.16   | 1.16   | 1.16   | 1.16   | 1.16   | 1.16   | 1.16   | 1.16   | 1.16   | 1.16   | 1.16   | 1.16   | 1.16   | 1.16   | 1.16   | 1.16   | 1.16   | 1.16   |
| KI Z2              | 2.88   | 2.88   | 2.88   | 2.88   | 2.88   | 2.88   | 2.88   | 2.88   | 2.88   | 2.88   | 2.88   | 2.88   | 2.88   | 2.88   | 2.88   | 2.88   | 2.88   | 2.88   |
| K1X2               | 1.53   | 1.53   | 1.53   | 1.53   | 1.53   | 1.53   | 1.53   | 1.53   | 1.53   | 1.53   | 1.53   | 1.53   | 1.53   | 1.53   | 1.53   | 1.53   | 1.53   | 1.53   |
| $K_{1arphi 2}$     | 1.34   | 1.34   | 1.34   | 1.34   | 1.34   | 1.34   | 1.34   | 1.34   | 1.34   | 1.34   | 1.34   | 1.34   | 1.34   | 1.34   | 1.34   | 1.34   | 1.34   | 1.34   |
| ψ                  | 31.00  | 31     | 31     | 31     | 31     | 31     | 31     | 31     | 31     | 31     | 31     | 31     | 31     | 31     | 31     | 31     | 31     | 31     |
| а                  | 2.2    | 4.4    | 4.55   | 4.4    | 4.55   | 4.4    | 2.2    | 2.2    | 4.4    | 4.55   | 4.4    | 4.55   | 4.4    | 2.2    | 2      | 1.75   | 3      | 3.8    |
| q                  | 1.8    | 1.8    | 1.8    | 1.8    | 1.8    | 1.8    | 1.8    | 2.5    | 2.5    | 2.5    | 2.5    | 2.5    | 2.5    | 2.5    | 2.75   | 1.75   | 2      | 1.45   |
| Α                  | 3.96   | 7.92   | 8.19   | 7.92   | 8.19   | 7.92   | 3.96   | 5.5    | 11     | 11.375 | 11     | 11.375 | 11     | 5.5    | 5.5    | 3.0625 | 6      | 5.51   |
| α                  | 1.1227 | 1.5878 | 1.6146 | 1.5878 | 1.6146 | 1.5878 | 1.1227 | 1.3231 | 1.8712 | 1.9028 | 1.8712 | 1.9028 | 1.8712 | 1.3231 | 1.3231 | 0.9873 | 1.3820 | 1.3243 |
| kz1                | 25.82  | 26.58  | 26.62  | 26.58  | 26.62  | 26.58  | 25.82  | 26.16  | 26.99  | 27.03  | 26.99  | 27.03  | 26.99  | 26.16  | 26.16  | 25.57  | 26.26  | 26.16  |
| kz2                | 10.75  | 11.36  | 11.40  | 11.36  | 11.40  | 11.36  | 10.75  | 11.03  | 11.70  | 11.73  | 11.70  | 11.73  | 11.70  | 11.03  | 11.03  | 10.55  | 11.11  | 11.03  |
| kz                 | 7.59   | 7.96   | 7.98   | 7.96   | 7.98   | 7.96   | 7.59   | 7.76   | 8.16   | 8.18   | 8.16   | 8.18   | 8.16   | 7.76   | 7.76   | 7.47   | 7.80   | 7.76   |
| Е                  | 13.24  | 13.24  | 13.24  | 13.24  | 13.24  | 13.24  | 13.24  | 13.24  | 13.24  | 13.24  | 13.24  | 13.24  | 13.24  | 13.24  | 13.24  | 13.24  | 13.24  | 13.24  |
| ρ                  | 2.00   | 2.00   | 2.00   | 2.00   | 2.00   | 2.00   | 2.00   | 2.00   | 2.00   | 2.00   | 2.00   | 2.00   | 2.00   | 2.00   | 2.00   | 2.00   | 2.00   | 2.00   |
| C2                 | 51.46  | 51.46  | 51.46  | 51.46  | 51.46  | 51.46  | 51.46  | 51.46  | 51.46  | 51.46  | 51.46  | 51.46  | 51.46  | 51.46  | 51.46  | 51.46  | 51.46  | 51.46  |
| Kz                 | 4512   | 6694   | 6823   | 6694   | 6823   | 6694   | 4512   | 5436   | 8085   | 8243   | 8085   | 8243   | 8085   | 5436   | 5436   | 3904   | 5712   | 5441   |
| kx1                | 14.76  | 15.20  | 15.23  | 15.20  | 15.23  | 15.20  | 14.76  | 14.96  | 15.44  | 15.47  | 15.44  | 15.47  | 15.44  | 14.96  | 14.96  | 14.61  | 15.02  | 14.96  |
| kx2                | 9.33   | 9.65   | 9.67   | 9.65   | 9.67   | 9.65   | 9.33   | 9.47   | 9.83   | 9.85   | 9.83   | 9.85   | 9.83   | 9.47   | 9.47   | 9.22   | 9.52   | 9.48   |

Tabla 3.6: (a) Coeficientes de rigidez y amortiguamiento del Modelo Dinámico V.A. Ilichev.

| kx                     | 24.09  | 24.86  | 24.90  | 24.86  | 24.90  | 24.86  | 24.09  | 24.43  | 25.27  | 25.32  | 25.27  | 25.32  | 25.27  | 24.43  | 24.43  | 23.83 | 24.53  | 24.44  |
|------------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|-------|--------|--------|
| Kx                     | 14320  | 20901  | 21289  | 20901  | 21289  | 20901  | 14320  | 17121  | 25044  | 25512  | 25044  | 25512  | 25044  | 17121  | 17121  | 12460 | 17954  | 17138  |
| $k_{arphi^1}$          | 6.91   | 7.16   | 7.17   | 7.16   | 7.17   | 7.16   | 6.91   | 7.02   | 7.29   | 7.30   | 7.29   | 7.30   | 7.29   | 7.02   | 7.02   | 6.83  | 7.05   | 7.02   |
| $k_{\varphi^2}$        | 9.01   | 9.30   | 9.31   | 9.30   | 9.31   | 9.30   | 9.01   | 9.14   | 9.45   | 9.47   | 9.45   | 9.47   | 9.45   | 9.14   | 9.14   | 8.92  | 9.18   | 9.14   |
| $k_{\varphi}$          | 3.91   | 4.04   | 4.05   | 4.04   | 4.05   | 4.04   | 3.91   | 3.97   | 4.12   | 4.12   | 4.12   | 4.12   | 4.12   | 3.97   | 3.97   | 3.87  | 3.99   | 3.97   |
| $K_{\varphi}$          | 2931   | 8572   | 9030   | 8572   | 9030   | 8572   | 2931   | 4871   | 14280  | 15044  | 14280  | 15044  | 14280  | 4871   | 4871   | 1971  | 5574   | 4885   |
| b0Z1                   | 5.34   | 5.34   | 5.34   | 5.34   | 5.34   | 5.34   | 5.34   | 5.34   | 5.34   | 5.34   | 5.34   | 5.34   | 5.34   | 5.34   | 5.34   | 5.34  | 5.34   | 5.34   |
| b0X1                   | 3.10   | 3.10   | 3.10   | 3.10   | 3.10   | 3.10   | 3.10   | 3.10   | 3.10   | 3.10   | 3.10   | 3.10   | 3.10   | 3.10   | 3.10   | 3.10  | 3.10   | 3.10   |
| $b_{0arphi 1}$         | 1.36   | 1.36   | 1.36   | 1.36   | 1.36   | 1.36   | 1.36   | 1.36   | 1.36   | 1.36   | 1.36   | 1.36   | 1.36   | 1.36   | 1.36   | 1.36  | 1.36   | 1.36   |
| b0Z2                   | 6.21   | 6.21   | 6.21   | 6.21   | 6.21   | 6.21   | 6.21   | 6.21   | 6.21   | 6.21   | 6.21   | 6.21   | 6.21   | 6.21   | 6.21   | 6.21  | 6.21   | 6.21   |
| b0X2                   | 5.20   | 5.20   | 5.20   | 5.20   | 5.20   | 5.20   | 5.20   | 5.20   | 5.20   | 5.20   | 5.20   | 5.20   | 5.20   | 5.20   | 5.20   | 5.20  | 5.20   | 5.20   |
| $b_{0arphi 2}$         | 1.60   | 1.60   | 1.60   | 1.60   | 1.60   | 1.60   | 1.60   | 1.60   | 1.60   | 1.60   | 1.60   | 1.60   | 1.60   | 1.60   | 1.60   | 1.60  | 1.60   | 1.60   |
| b1Z1                   | 0.87   | 0.87   | 0.87   | 0.87   | 0.87   | 0.87   | 0.87   | 0.87   | 0.87   | 0.87   | 0.87   | 0.87   | 0.87   | 0.87   | 0.87   | 0.87  | 0.87   | 0.87   |
| b1X1                   | 0.53   | 0.53   | 0.53   | 0.53   | 0.53   | 0.53   | 0.53   | 0.53   | 0.53   | 0.53   | 0.53   | 0.53   | 0.53   | 0.53   | 0.53   | 0.53  | 0.53   | 0.53   |
| $b_{1arphi^1}$         | 0.22   | 0.22   | 0.22   | 0.22   | 0.22   | 0.22   | 0.22   | 0.22   | 0.22   | 0.22   | 0.22   | 0.22   | 0.22   | 0.22   | 0.22   | 0.22  | 0.22   | 0.22   |
| b1Z2                   | 0.62   | 0.62   | 0.62   | 0.62   | 0.62   | 0.62   | 0.62   | 0.62   | 0.62   | 0.62   | 0.62   | 0.62   | 0.62   | 0.62   | 0.62   | 0.62  | 0.62   | 0.62   |
| b1X2                   | 0.75   | 0.75   | 0.75   | 0.75   | 0.75   | 0.75   | 0.75   | 0.75   | 0.75   | 0.75   | 0.75   | 0.75   | 0.75   | 0.75   | 0.75   | 0.75  | 0.75   | 0.75   |
| $b_{1arphi 2}$         | 0.12   | 0.12   | 0.12   | 0.12   | 0.12   | 0.12   | 0.12   | 0.12   | 0.12   | 0.12   | 0.12   | 0.12   | 0.12   | 0.12   | 0.12   | 0.12  | 0.12   | 0.12   |
| bz1                    | 6.32   | 6.51   | 6.52   | 6.51   | 6.52   | 6.51   | 6.32   | 6.41   | 6.61   | 6.62   | 6.61   | 6.62   | 6.61   | 6.41   | 6.41   | 6.26  | 6.43   | 6.41   |
| bz2                    | 6.91   | 7.04   | 7.05   | 7.04   | 7.05   | 7.04   | 6.91   | 6.97   | 7.11   | 7.12   | 7.11   | 7.12   | 7.11   | 6.97   | 6.97   | 6.87  | 6.99   | 6.97   |
| bz                     | 3.30   | 3.38   | 3.39   | 3.38   | 3.39   | 3.38   | 3.30   | 3.34   | 3.43   | 3.43   | 3.43   | 3.43   | 3.43   | 3.34   | 3.34   | 3.27  | 3.35   | 3.34   |
| $\mathbf{B}\mathbf{z}$ | 42.83  | 87.75  | 90.85  | 87.75  | 90.85  | 87.75  | 42.83  | 60.14  | 123.44 | 127.82 | 123.44 | 127.82 | 123.44 | 60.14  | 60.14  | 32.85 | 65.81  | 60.25  |
| bx1                    | 3.70   | 3.81   | 3.82   | 3.81   | 3.82   | 3.81   | 3.70   | 3.75   | 3.87   | 3.88   | 3.87   | 3.88   | 3.87   | 3.75   | 3.75   | 3.66  | 3.76   | 3.75   |
| bx2                    | 6.05   | 6.21   | 6.21   | 6.21   | 6.21   | 6.21   | 6.05   | 6.12   | 6.29   | 6.30   | 6.29   | 6.30   | 6.29   | 6.12   | 6.12   | 5.99  | 6.14   | 6.12   |
| bx                     | 9.74   | 10.02  | 10.03  | 10.02  | 10.03  | 10.02  | 9.74   | 9.87   | 10.16  | 10.18  | 10.16  | 10.18  | 10.16  | 9.87   | 9.87   | 9.65  | 9.90   | 9.87   |
| Bx                     | 126.41 | 259.91 | 269.15 | 259.91 | 269.15 | 259.91 | 126.41 | 177.79 | 366.28 | 379.35 | 366.28 | 379.35 | 366.28 | 177.79 | 177.79 | 96.86 | 194.63 | 178.13 |

Tabla 3.7: (b) Coeficientes de rigidez y amortiguamiento del Modelo Dinámico V.A. Ilichev.

| 1.63          | 1.75          | 0.84        | 26.69       | 2.80 | 1.80 | 1.00           | 0.56 | 0.28 | 0.12           | 3.49 | 2.14 | 1.15          | 1.62 | 1.00 | 0.93           |
|---------------|---------------|-------------|-------------|------|------|----------------|------|------|----------------|------|------|---------------|------|------|----------------|
| 1.64          | 1.75          | 0.85        | 31.74       | 2.80 | 1.80 | 1.00           | 0.56 | 0.28 | 0.12           | 3.50 | 2.15 | 1.15          | 1.85 | 1.14 | 1.16           |
| 1.59          | 1.73          | 0.83        | 8.10        | 2.80 | 1.80 | 1.00           | 0.56 | 0.28 | 0.12           | 3.39 | 2.10 | 1.13          | 0.65 | 0.40 | 0.21           |
| 1.63          | 1.75          | 0.84        | 26.59       | 2.80 | 1.80 | 1.00           | 0.56 | 0.28 | 0.12           | 3.49 | 2.14 | 1.15          | 1.62 | 0.99 | 0.93           |
| 1.63          | 1.75          | 0.84        | 26.59       | 2.80 | 1.80 | 1.00           | 0.56 | 0.28 | 0.12           | 3.49 | 2.14 | 1.15          | 1.62 | 0.99 | 0.93           |
| 1.68          | 1.77          | 0.86        | 108.91      | 2.80 | 1.80 | 1.00           | 0.56 | 0.28 | 0.12           | 3.62 | 2.21 | 1.17          | 4.74 | 2.89 | 5.39           |
| 1.68          | 1.78          | 0.86        | 116.60      | 2.80 | 1.80 | 1.00           | 0.56 | 0.28 | 0.12           | 3.62 | 2.21 | 1.18          | 4.99 | 3.05 | 5.87           |
| 1.68          | 1.77          | 0.86        | 108.91      | 2.80 | 1.80 | 1.00           | 0.56 | 0.28 | 0.12           | 3.62 | 2.21 | 1.17          | 4.74 | 2.89 | 5.39           |
| 1.68          | 1.78          | 0.86        | 116.60      | 2.80 | 1.80 | 1.00           | 0.56 | 0.28 | 0.12           | 3.62 | 2.21 | 1.18          | 4.99 | 3.05 | 5.87           |
| 1.68          | 1.77          | 0.86        | 108.91      | 2.80 | 1.80 | 1.00           | 0.56 | 0.28 | 0.12           | 3.62 | 2.21 | 1.17          | 4.74 | 2.89 | 5.39           |
| 1.63          | 1.75          | 0.84        | 26.59       | 2.80 | 1.80 | 1.00           | 0.56 | 0.28 | 0.12           | 3.49 | 2.14 | 1.15          | 1.62 | 0.99 | 0.93           |
| 1.61          | 1.74          | 0.83        | 13.65       | 2.80 | 1.80 | 1.00           | 0.56 | 0.28 | 0.12           | 3.43 | 2.12 | 1.14          | 0.97 | 0.60 | 0.41           |
| 1.66          | 1.76          | 0.85        | 55.81       | 2.80 | 1.80 | 1.00           | 0.56 | 0.28 | 0.12           | 3.55 | 2.18 | 1.16          | 2.84 | 1.74 | 2.34           |
| 1.66          | 1.76          | 0.85        | 59.75       | 2.80 | 1.80 | 1.00           | 0.56 | 0.28 | 0.12           | 3.56 | 2.18 | 1.16          | 3.00 | 1.83 | 2.55           |
| 1.66          | 1.76          | 0.85        | 55.81       | 2.80 | 1.80 | 1.00           | 0.56 | 0.28 | 0.12           | 3.55 | 2.18 | 1.16          | 2.84 | 1.74 | 2.34           |
| 1.66          | 1.76          | 0.85        | 59.75       | 2.80 | 1.80 | 1.00           | 0.56 | 0.28 | 0.12           | 3.56 | 2.18 | 1.16          | 3.00 | 1.83 | 2.55           |
| 1.66          | 1.76          | 0.85        | 55.81       | 2.80 | 1.80 | 1.00           | 0.56 | 0.28 | 0.12           | 3.55 | 2.18 | 1.16          | 2.84 | 1.74 | 2.34           |
| 1.61          | 1.74          | 0.83        | 13.65       | 2.80 | 1.80 | 1.00           | 0.56 | 0.28 | 0.12           | 3.43 | 2.12 | 1.14          | 0.97 | 0.60 | 0.41           |
| $b_{arphi^1}$ | $b_{arphi^2}$ | $b_{arphi}$ | $B_{arphi}$ | m0Z  | m0X  | $m_{0\varphi}$ | m1Z  | m1X  | $m_{_{1}\phi}$ | тZ   | mX   | $m_{\varphi}$ | MZ   | MX   | $M_{_{arphi}}$ |

Tabla 3.8: (c) Coeficientes de rigidez y amortiguamiento del Modelo Dinámico V.A. Ilichev.

## 3.4.4.1 INTRODUCCIÓN DE COEFICIENTES DEL MODELO V.A. ILICHEV EN ETABS V18.

Al igual que con el modelo de D.D. Barkan – O.A. Savinov se debe asignar el material de las zapatas de tal manera que sea rígida.

Lo mismo ocurre con las asignaciones de las propiedades de las masas para las zapatas y los cimientos corridos las cuales se las asigna en sus centroides como en el modelo de D.D. Barkan – O.A. Savinov. Los datos a introducir son los de la Tabla 3.5.

Debido a que en este modelo, V.A. Ilichev, se considera la amortiguación se debe utilizar elementos Damper para poder asignar los coeficientes de amortiguación, esto de manera conjunta con los coeficientes de rigidez se debe insertar mediante propiedad Link del tipo Damper – Exponencial del ETABS V.18. para cada una de las zapatas y también para cada dirección considerada. Esto se muestra en las Figuras 3.14, 3.15.

*Figura 3.14:* Asignación de las propiedades tipo Link en el ETABS V.18. para el modelo dinámico V.A. Ilichev.

| General                                                                                                                                   |                                                          |                                                                                                                                                               |                                                                                                                                                                |                                                                                        |                       |           |                                                                                                                       |                                                         |
|-------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-----------------------|-----------|-----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|
| Link Prop                                                                                                                                 | erty Nam                                                 | e Z1                                                                                                                                                          |                                                                                                                                                                | P-Delta Pa                                                                             | arameters             |           | Modify/Show                                                                                                           |                                                         |
| Link Type                                                                                                                                 |                                                          | Da                                                                                                                                                            | mper - Exponential 🛛 🗸 🗸                                                                                                                                       | Acceptan                                                                               | ce Criteria           |           | Modify/Show                                                                                                           |                                                         |
| Link Prop                                                                                                                                 | erty Note                                                | s                                                                                                                                                             | Modify/Show Notes                                                                                                                                              |                                                                                        |                       | None      | specified                                                                                                             |                                                         |
| Total Mass a                                                                                                                              | nd Weig                                                  | ht                                                                                                                                                            |                                                                                                                                                                |                                                                                        |                       |           |                                                                                                                       |                                                         |
| Mass                                                                                                                                      |                                                          | 0                                                                                                                                                             | tonf-s²/m                                                                                                                                                      | Rotat                                                                                  | ional Inert           | ia 1      | 0                                                                                                                     | tonf-r                                                  |
| Weight                                                                                                                                    |                                                          | 0                                                                                                                                                             | tonf                                                                                                                                                           | Rotat                                                                                  | ional Inert           | ia 2      | 0                                                                                                                     | tonf-r                                                  |
|                                                                                                                                           |                                                          |                                                                                                                                                               |                                                                                                                                                                | Rotat                                                                                  | ional Inert           | ia 3      | 0                                                                                                                     | tonf-n                                                  |
| Factors for Li<br>Link/Supp<br>Link/Supp<br>Directional Pr                                                                                | ne and A<br>port Prop<br>port Prop<br>roperties          | vea Springs<br>erty is Defined<br>erty is Defined                                                                                                             | d for This Length When Used in a<br>d for This Area When Used in an                                                                                            | a Line Spring Prop<br>Area Spring Prope                                                | erty<br>rty           |           | 1                                                                                                                     | m<br>m²                                                 |
| Factors for Li<br>Link/Supp<br>Link/Supp<br>Directional Pr                                                                                | ne and A<br>port Prop<br>port Prop<br>roperties          | vea Springs<br>erty is Defined<br>erty is Defined                                                                                                             | d for This Length When Used in a<br>d for This Area When Used in an                                                                                            | a Line Spring Prope<br>Area Spring Prope                                               | erty<br>erty          |           | 1                                                                                                                     | m<br>m²                                                 |
| Factors for Li<br>Link/Supp<br>Link/Supp<br>Directional Pr<br>Direction                                                                   | ne and A<br>port Prop<br>port Prop<br>roperties<br>Fixed | vrea Springs –<br>erty is Defined<br>erty is Defined<br>NonLinear                                                                                             | d for This Length When Used in a<br>d for This Area When Used in an<br>Properties                                                                              | a Line Spring Prop<br>Area Spring Prope<br>Direction                                   | erty<br>erty<br>Fixed | NonLinear | 1<br>1<br>Propertie                                                                                                   | m<br>m²                                                 |
| Factors for Li<br>Link/Supp<br>Link/Supp<br>Directional Pr<br>Direction<br>Direction                                                      | ne and A<br>port Prop<br>port Prop<br>roperties<br>Fixed | vea Springs –<br>erty is Defined<br>erty is Defined<br>NonLinear                                                                                              | d for This Length When Used in a<br>d for This Area When Used in an<br>Properties<br>Modify/Show for U1                                                        | a Line Spring Prop<br>Area Spring Prope<br>Direction<br>I R1                           | erty<br>erty<br>Fixed | NonLinear | 1<br>1<br>Propertie<br>Modify/Show f                                                                                  | m<br>m²<br>es                                           |
| Factors for Li<br>Link/Supp<br>Link/Supp<br>Directional Pr<br>Direction<br>Direction<br>UI<br>UI                                          | ne and A<br>port Prop<br>port Prop<br>roperties<br>Fixed | vea Springs –<br>erty is Defined<br>erty is Defined<br>NonLinear                                                                                              | d for This Length When Used in a<br>d for This Area When Used in an<br>Properties<br>Modify/Show for U1<br>Modify/Show for U2                                  | a Line Spring Prope<br>Area Spring Prope<br>Direction<br>I R1<br>R2                    | erty<br>rty<br>Fixed  | NonLinear | 1<br>1<br>Propertie<br>Modify/Show f                                                                                  | m<br>m <sup>2</sup><br>m <sup>2</sup><br>s<br>for R1    |
| Factors for Li<br>Link/Supp<br>Link/Supp<br>Directional Pr<br>Direction<br>UI<br>U1<br>U1<br>U2<br>U2<br>U3                               | ne and A<br>port Prop<br>port Prop<br>roperties<br>Fixed | vea Springs<br>erty is Defined<br>erty is Defined<br>NonLinear                                                                                                | d for This Length When Used in a<br>d for This Area When Used in an<br>Properties<br>Modify/Show for U1<br>Modify/Show for U2<br>Modify/Show for U3            | a Line Spring Prope<br>Area Spring Prope<br>Direction<br>I R1<br>R2<br>R3              | erty<br>erty<br>Fixed | NonLinear | 1<br>Propertie<br>Modify/Show f<br>Modify/Show f                                                                      | m<br>m <sup>2</sup><br>m <sup>2</sup><br>m <sup>2</sup> |
| Factors for Li<br>Link/Supp<br>Link/Supp<br>Directional Pr<br>Direction<br>U1<br>U1<br>U2<br>U2<br>U3                                     | ne and A<br>port Prop<br>port Prop<br>roperties<br>Fixed | vea Springs<br>erty is Defined<br>erty is Defined<br>NonLinear                                                                                                | d for This Length When Used in a<br>d for This Area When Used in an<br>Properties<br>Modify/Show for U1<br>Modify/Show for U2<br>Fix All                       | a Line Spring Prope<br>Area Spring Prope<br>Direction<br>R1<br>R2<br>R3<br>Clear All   | Fixed                 | NonLinear | 1       1       Modify/Show f       Modify/Show f                                                                     | m<br>m²<br>es<br>for R1<br>for R2                       |
| Factors for Li<br>Link/Supp<br>Link/Supp<br>Directional Pr<br>Direction<br>U1<br>U1<br>U2<br>U2<br>U3<br>Stiffness Opti                   | ne and A<br>port Prop<br>port Prop<br>roperties<br>Fixed | vea Springs<br>erty is Defined<br>erty is Defined<br>NonLinear<br>                                                                                            | d for This Length When Used in a<br>d for This Area When Used in an<br>Properties<br>Modify/Show for U1<br>Modify/Show for U2<br>Modify/Show for U3<br>Fix All | a Line Spring Prope<br>Area Spring Prope<br>Direction<br>R1<br>R2<br>R3<br>Clear All   | erty<br>irty<br>Fixed | NonLinear | 1<br>Propertie<br>Modify/Show f<br>Modify/Show f                                                                      | m<br>m²<br>s<br>for R1<br>for R2                        |
| Factors for Li<br>Link/Supp<br>Link/Supp<br>Directional Pr<br>Direction<br>U1<br>U1<br>U2<br>U2<br>U3<br>Stiffness Opti<br>Stiffness Opti | ne and A<br>port Prop<br>port Prop<br>roperties<br>Fixed | vea Springs<br>erty is Defined<br>erty is Defined<br>NonLinear<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 | d for This Length When Used in a<br>d for This Area When Used in an<br>Properties<br>Modify/Show for U1<br>Modify/Show for U2<br>Modify/Show for U3<br>Fix All | a Line Spring Prope<br>Area Spring Prope<br>Direction<br>ØR1<br>ØR2<br>R3<br>Clear All | Fixed                 | NonLinear | 1         1         Propertie         Modify/Show f         Modify/Show f         Modify/Show f         Modify/Show f | m<br>m <sup>2</sup><br>es<br>for R1<br>for R2           |

*Figura 3.15:* Configuración de coeficientes de rigidez y de amortiguamiento por cada dirección en las propiedades tipo Link en el ETABS V.18. para el modelo dinámico V.A. Ilichev.

| Identification       |                      |
|----------------------|----------------------|
| Property Name        | Z1                   |
| Direction            | U1                   |
| Туре                 | Damper - Exponential |
| NonLinear            | Yes                  |
| Linear Properties    |                      |
| Effective Stiffness  | 14320 tonf/m         |
| Effective Damping    | 0 tonf-s/m           |
| Nonlinear Properties |                      |
| Stiffness            | 14320 tonf/m         |
| Damping              | 126.4 tonf*(s/m)^Cex |
| Damping Exponent     | 1                    |

Finalmente para asignar las configuraciones que incluyen los coeficientes de rigidez y amortiguamiento de cada apoyo procedemos a configurar mediante elemento tipo Spring en el programa ETABS V18. Tal como se muestra en la Figura 3.16.

*Figura 3.16:* Asignación de factores de rigidez y amortiguamiento en zapatas y cimientos corridos en ETABS V18. Para el modelo dinámico V.A. Ilichev.

| Point Spring Property Data                   |                            |                      | ╳╠╜╔╺╻ѵ╓┉╠╷╬が╗┉╹╻╺┇╺┇╺么╸ |
|----------------------------------------------|----------------------------|----------------------|--------------------------|
| General Data                                 |                            |                      |                          |
| Property Name                                | Z01                        |                      |                          |
| Display Color                                | Change                     |                      |                          |
| Property Notes                               | Modify/Show Notes          |                      |                          |
| Spring Stiffness Options                     |                            |                      |                          |
| User Specified/Link Properties               | O Based on Soil Profile an | d Footing Dimensions |                          |
| Simple Spring Stiffness in Global Directions |                            |                      |                          |
| Translation X                                | 0                          | tonf/m               |                          |
| Translation Y                                | 0                          | tonf/m               |                          |
| Translation Z                                | 0                          | tonf/m               |                          |
| Rotation about X-Axis                        | 0                          | tonf-m/rad           |                          |
| Rotation about Y-Axis                        | 0                          | tonf-m/rad           |                          |
| Rotation about Z-Axis                        | 0                          | tonf-m/rad           |                          |
| Single Joint Links at Point                  |                            |                      | 16 · · ·                 |
| Link Property Axia                           | Direction Axis 2 Angle     |                      | F 10 - E                 |
| Z01 ~ +Z                                     | 0                          | Add                  | ¥ 12 1216 *              |
|                                              |                            | Delete               | 1 1 1 1 1 209 - F        |
|                                              |                            |                      | 1716 ×                   |
|                                              |                            |                      |                          |
|                                              |                            |                      | A215                     |
|                                              |                            |                      |                          |

### 3.4.5 MODELO DINÁMICO A.E. SARGSIAN

Se obtuvieron los siguientes resultados al reemplazar en las ecuaciones correspondientes al modelo Dinámico A.E. Sargsian:

- Primero se determinaron las velocidades de propagación de las ondas longitudinales y transversales de acuerdo a la concepción de semiespacio elástico de acuerdo a las Fórmulas 2.12 del Modelo Dinámico A.E. Sargsian. Los datos se muestran en la Tabla 3.9.
- Seguidamente se determinaron los coeficientes K aplicando las Fórmulas 2.11. Los resultados se muestran en le Tabla 3.9.

| Z13 Z14 Z15 Z16 Z17 | 2 2 2 2 2 | 0.25 0.25 0.25 0.25 0.25 | 3.239 13.239 13.239 13.239 13.239 | 8 68 89 89 89 | 4.4 2.2 2 1.75 3 | 2.5 2.5 2.75 1.75 2 | 11 5.5 5.5 3.0625 6 | 0.833 0.833 0.833 0.833 0.833 | 6747 4771 4771 3560 4983 | 51 51 51 51 51 | 3019 2135 2135 1593 2230 | 17.75 2.22 1.83 0.78 4.50 |   |
|---------------------|-----------|--------------------------|-----------------------------------|---------------|------------------|---------------------|---------------------|-------------------------------|--------------------------|----------------|--------------------------|---------------------------|---|
| Z11 Z12             | 2 2       | 0.25 0.25 0              | 3.239 13.239 1:                   | 89 89         | 4.4 4.55         | 2.5 2.5             | 11 11.375           | 0.833 0.833 0                 | 5747 6861 6              | 51 51          | 3019 3070 3              | 7.75 19.62 1              |   |
| Z10                 | 2         | 0.25 (                   | 13.239 13                         | 89            | 4.55             | 2.5                 | 11.375              | 0.833 0                       | 6861 (                   | 51             | 3070 3                   | 19.62 1                   |   |
| Z8 Z9               | 2 2       | 0.25 0.25                | 13.239 13.239                     | 89 89         | 2.2 4.4          | 2.5 2.5             | 5.5 11              | 0.833 0.833                   | 4771 6747                | 51 51          | 2135 3019                | 2.22 17.75                |   |
| LZ                  | 2         | 0.25                     | 39 13.239                         | 68            | 2.2              | 1.8                 | 3.96                | 3 0.833                       | 5 4048                   | 51             | 2 1811                   | 8 1.60                    |   |
| ZS Z6               | 2 2       | 0.25 0.25                | 13.239 13.25                      | 89 89         | 4.55 4.4         | 1.8 1.8             | 8.19 7.92           | 0.833 0.83.                   | 5822 572                 | 51 51          | 2605 256.                | 14.13 12.7                |   |
| Z4                  | 2         | 0.25                     | 13.239                            | 68            | 4.4              | 1.8                 | 7.92                | 0.833                         | 5725                     | 51             | 2562                     | 12.78                     |   |
| Z3                  | 2         | 0.25                     | 13.239                            | 68            | 4.55             | 1.8                 | 8.19                | 0.833                         | 5822                     | 51             | 2605                     | 14.13                     |   |
| <b>Z</b> 2          | 2         | 0.25                     | 13.239                            | 89            | 4.4              | 1.8                 | 7.92                | 0.833                         | 5725                     | 51             | 2562                     | 12.78                     |   |
| IZ                  | 2         | 0.25                     | 13.239                            | 68            | 2.2              | 1.8                 | 3.96                | 0.833                         | 4048                     | 51             | 1811                     | 1.60                      |   |
|                     | d         | 'n                       | E                                 | CI            | а                | q                   | V                   | φ                             | Kz                       | C2             | КX                       | Ι                         | Δ |

Tabla 3.9: Coeficientes de Rigidez para el Modelo Dinámico A.E. Sargsian.

## 3.4.5.1 INTRODUCCIÓN DE COEFICIENTES DEL MODELO A.E. SARGSIAN EN ETABS V18.

Al igual que con los modelos de D.D. Barkan – O.A. Savinov y V. A. Ilichev se debe asignar el material de las zapatas de tal manera que sea rígida.

Lo mismo ocurre con las asignaciones de las propiedades de las masas para las zapatas y los cimientos corridos las cuales se las asigna en sus centroides como en los modelos de D.D. Barkan – O.A. Savinov y V. A. Ilichev. Los datos a introducir son los de la Tabla 3.5.

Luego se procedió a modificar los apoyos de todas las zapatas y cimientos corridos para considerar la Rigidez tomando en cuenta los coeficientes obtenidos anteriormente de la Tabla 3.9. Se debe tener en cuenta también que para este modelo también se restringió la rotación alrededor del eje Z (del eje vertical), esto se hace a través del elemento Spring en el programa ETABS V18. (El procedimiento es el mismo aplicado al modelo de Barkan) el cual se muestra en la Figura 3.13.

Figura 3.17: Asignación de factores de rigidez en zapatas y cimientos corridos en ETABS V18. Para el modelo dinámico A.E. Sargsian.



#### 3.4.6 MODELO DINÁMICO NORMA RUSA SNIP 2.02.05-87

Se obtuvieron los siguientes resultados al reemplazar en las ecuaciones correspondientes al modelo dinámico NORMA RUSA SNIP 2.02.05-87:

- 1. En primer lugar se determinaron los coeficientes de compresión elástica uniforme utilizando la Fórmula 2.15, obteniendo los datos de la Tabla 3.6.
- Seguidamente se determinaron los coeficientes de desplazamiento elástico uniforme Cx, los coeficientes de compresión elástica no uniforme Cφ y los coeficientes de desplazamiento elástico no uniforme Cψ utilizando las Fórmulas 2.16. Datos mostrados en la Tabla 3.6.
- 3. Luego se determinaron los coeficientes de rigidez de compresión elástica uniforme Kz, los coeficientes de desplazamiento elástico uniforme Kx, los coeficientes de compresión elástica no uniforme Kφ y los coeficientes de desplazamiento elástico no uniforme Kψ; las cuales se calcularon utilizando las Fórmulas 2.14. Dichos resultados se muestran en la Tabla 3.6.
- Luego se procedió a calcular las características de la amortiguación relativa para las vibraciones verticales ξ<sub>z</sub> utilizando la Fórmula 2.18. Datos mostrados en la Tabla 3.6.
- Se procedió a calcular las amortiguaciones relativas para las vibraciones horizontales y vertical utilizando las Fórmulas 2.20. Datos mostrados en la Tabla 3.6.
- 6. Dado que ahora existe vibración rotacional alrededor del eje vertical se procede finalmente a calcular los momentos de inercia de las masas de las zapatas respecto al eje vertical Mψ, los resultados se muestran en la Tabla 3.10. siguiente:

|                 | ZI    | <b>Z</b> 2 | Z3     | Z4     | ZS     | Z6     | Z     | Z8    | 62     | Z10    | Z11    | Z12    | Z13    | Z14   | Z15   | Z16    | Z17   | CC1   |       |
|-----------------|-------|------------|--------|--------|--------|--------|-------|-------|--------|--------|--------|--------|--------|-------|-------|--------|-------|-------|-------|
| 99              | 1     | 1          | 1      | 1      | 1      | 1      | 1     | 1     | 1      | 1      | 1      | 1      | 1      | 1     | 1     | 1      | 1     | 1     |       |
| E               | 1324  | 1324       | 1324   | 1324   | 1324   | 1324   | 1324  | 1324  | 1324   | 1324   | 1324   | 1324   | 1324   | 1324  | 1324  | 1324   | 1324  | 1324  |       |
| A10             | 10    | 10         | 10     | 10     | 10     | 10     | 10    | 10    | 10     | 10     | 10     | 10     | 10     | 10    | 10    | 10     | 10    | 10    |       |
| а               | 2.2   | 4.4        | 4.55   | 4.4    | 4.55   | 4.4    | 2.2   | 2.2   | 4.4    | 4.55   | 4.4    | 4.55   | 4.4    | 2.2   | 2     | 1.75   | 3     | 3.8   | m     |
| q               | 1.8   | 1.8        | 1.8    | 1.8    | 1.8    | 1.8    | 1.8   | 2.5   | 2.5    | 2.5    | 2.5    | 2.5    | 2.5    | 2.5   | 2.75  | 1.75   | 2     | 1.45  | m     |
| A               | 3.96  | 7.92       | 8.19   | 7.92   | 8.19   | 7.92   | 3.96  | 5.5   | 11     | 11.375 | 11     | 11.375 | 11     | 5.5   | 5.5   | 3.0625 | 6     | 5.51  | m2    |
| Cz              | 3428  | 2812       | 2787   | 2812   | 2787   | 2812   | 3428  | 3109  | 2586   | 2565   | 2586   | 2565   | 2586   | 3109  | 3109  | 3716   | 3033  | 3108  | tn/m3 |
| CX              | 2400  | 1968       | 1951   | 1968   | 1951   | 1968   | 2400  | 2176  | 1810   | 1796   | 1810   | 1796   | 1810   | 2176  | 2176  | 2602   | 2123  | 2175  | tn/m3 |
| $C_{\varphi}$   | 6856  | 5623       | 5574   | 5623   | 5574   | 5623   | 6856  | 6219  | 5173   | 5131   | 5173   | 5131   | 5173   | 6219  | 6219  | 7433   | 6067  | 6215  | tn/m3 |
| $C_{\psi}$      | 3428  | 2812       | 2787   | 2812   | 2787   | 2812   | 3428  | 3109  | 2586   | 2565   | 2586   | 2565   | 2586   | 3109  | 3109  | 3716   | 3033  | 3108  | tn/m3 |
| Kz              | 13575 | 22269      | 22826  | 22269  | 22826  | 22269  | 13575 | 17101 | 28450  | 29181  | 28450  | 29181  | 28450  | 17101 | 17101 | 11382  | 18200 | 17123 | tn/m  |
| Kx              | 9502  | 15588      | 15978  | 15588  | 15978  | 15588  | 9502  | 11971 | 19915  | 20427  | 19915  | 20427  | 19915  | 11971 | 11971 | 7967   | 12740 | 11986 | tn/m  |
| $I_{\varphi x}$ | 1.597 | 12.778     | 14.129 | 12.778 | 14.129 | 12.778 | 1.597 | 2.218 | 17.747 | 19.624 | 17.747 | 19.624 | 17.747 | 2.218 | 1.833 | 0.782  | 4.500 | 6.630 |       |
| $I_{\varphi_y}$ | 1.069 | 2.138      | 2.211  | 2.138  | 2.211  | 2.138  | 1.069 | 2.865 | 5.729  | 5.924  | 5.729  | 5.924  | 5.729  | 2.865 | 3.466 | 0.782  | 2.000 | 0.965 |       |
| $I_{\psi}$      | 2.666 | 14.916     | 16.341 | 14.916 | 16.341 | 14.916 | 2.666 | 5.083 | 23.476 | 25.549 | 23.476 | 25.549 | 23.476 | 5.083 | 5.299 | 1.563  | 6.500 | 7.596 |       |
| $K_{arphi}$     | 10950 | 71854      | 78758  | 71854  | 78758  | 71854  | 10950 | 13795 | 91799  | 100688 | 91799  | 100688 | 91799  | 13795 | 11401 | 5809   | 27299 | 41210 | tn.m  |
| $K_{\psi}$      | 9140  | 41940      | 45542  | 41940  | 45542  | 41940  | 9140  | 15804 | 60718  | 65543  | 60718  | 65543  | 60718  | 15804 | 16478 | 5809   | 19716 | 23605 | tn.m  |

**Tabla 3.10:** Coeficientes de Desplazamiento y Compresión, Coeficientes de Rigidez & Amortiguaciones Relativas para el Modelo Dinámico NORMA RUSA SNIP 2.02.05-87.

## 3.4.6.1 INTRODUCCIÓN DE COEFICIENTES DEL MODELO DINÁMICO NORMA RUSA SNIP 2.02.05-8 EN ETABS V18.

Al igual que con los modelos dinámicos anteriores se debe asignar el material de las zapatas de tal manera que sea rígida.

Lo mismo ocurre con las asignaciones de las propiedades de las masas para las zapatas y los cimientos corridos las cuales se las asigna en sus centroides como en el modelo de D.D. Barkan – O.A. Savinov. Los datos a introducir son los de la Tabla 3.5. Recordar que para el modelo dinámico de la Norma Rusa SNIP 2.02.05-8 es necesario insertar también el  $M_{w}$  ya que no hay restricción de rotación alrededor del eje Z.

Después se procedió a modificar los apoyos de todas las zapatas y cimientos corridos para considerar la Rigidez tomando en cuenta los coeficientes obtenidos anteriormente de la Tabla 3.10. Se debe tener en cuenta también que para este modelo no se tuvo que restringir la rotación alrededor del eje Z (del eje vertical) debido a que no hay restricción de rotación de rotación alrededor del eje Z. La introducción de los coeficientes de rigidez se hace a través del elemento Spring en el programa ETABS V18. (El procedimiento es el mismo aplicado al modelo de Barkan) el cual se muestra en la Figura 3.18.



*Figura 3.18:* Asignación de factores de rigidez en zapatas y cimientos corridos en ETABS V18. Para el modelo dinámico Norma Rusa SNIP 2.02.05-8.

## 3.4.7 MODELO DE BASE FLEXIBLE DE INTERACCIÓN SUELO ESTRUCTURA DEL FEDERAL MANAGEMENT AGENCY (FEMA)

Para este modelo de base flexible se considera la flexibilidad de la base de cimentación (suelo) introduciendo rigidez de tipo resorte a las zapatas y además se debe escalar el espectro de pseudo aceleraciones tanto para los efectos cinemáticos como para los efectos de amortiguamiento del suelo de fundación.

#### 3.4.7.1 CARACTERÍSTICAS DEL SUELO DE CIMENTACIÓN

Las características del suelo de fundación se obtuvieron del estudio de mecánica de suelos del expediente técnico (Ver Anexos) teniendo los siguientes resultados:

| • | Tipo de suelo:                                        | SP (arena uniforme)     |
|---|-------------------------------------------------------|-------------------------|
| • | Peso específico del suelo ( $\gamma_s$ ):             | $2.00 \text{ ton/m}^3$  |
| • | Módulo de Poisson del suelo (U):                      | 0.25                    |
| • | Ángulo de fricción interna del suelo ( $\varphi_s$ ): | 31°                     |
| • | Profundidad de cimentación (Df):                      | 2.00 m.                 |
| • | Módulo de Balasto (Ks):                               | 2.14 kg/cm <sup>3</sup> |
| • | Velocidad de Onda de Corte:                           | 181 m/s (593.83 ft/s)   |

#### 3.4.7.2 MÓDULO DE CORTE EFECTIVO DEL SUELO (G)

Con las características del suelo de fundación podemos inferir que el suelo tiene una clasificación **Tipo S**<sub>2</sub> según la norma E030 DISEÑO SISMORESISTENTE y una clasificación **Tipo E** según el FEMA 356.

Asimismo según el FEMA 356, para cimentaciones poco profundas podemos calcular el módulo de corte del suelo con las fórmulas siguientes:

$$G = rG_0 \qquad \qquad G_0 = \frac{\gamma_s \cdot v_s^2}{g}$$

2

Obteniendo los resultados siguientes:

| $\gamma_s$ | 1650       | kg/m3  | 93.445605  | lb/ft3 |
|------------|------------|--------|------------|--------|
| Vs         | 181        | m/s    | 593.83204  | ft/s   |
| g          | 9.81       | m/s    | 32.174     | ft/s2  |
| Go         | 5510259.94 | kg/m2  | 1724.71543 | lb/ft2 |
| Go         | 551.025994 | kg/cm2 |            |        |

Tabla 3.11: Módulo de corte inicial ( $G_{0}$ ).

Para poder determinar la razón del módulo de corte efectivo se utilizará la Tabla 4-7 del FEMA 356, en donde el valor de Sxs es la aceleración de la estructura en el 1° modo de vibración en el espectro elástico (en nuestro caso es T=0.160s), y que también este valor debe estar afectado por el coeficiente de reducción sísmica, en nuestro caso es R=7, obteniendo un valor de Sxs=0.2531. Este valor obtenido se divide entre 2.5 para luego ser interpolado con los valores de la Tabla 3.12 y finalmente multiplicado con el módulo de corte inicial.

Tabla 3.12: Razón del módulo de corte efectivo (r).

|            | Effective Peak Acceleration, S <sub>xs</sub> /2.5 |                    |                    |                    |  |  |  |
|------------|---------------------------------------------------|--------------------|--------------------|--------------------|--|--|--|
| Site Class | $S_{xs}/2.5 = 0$                                  | $S_{xs}/2.5 = 0.1$ | $S_{xs}/2.5 = 0.4$ | $S_{XS}/2.5 = 0.8$ |  |  |  |
| A          | 1.00                                              | 1.00               | 1.00               | 1.00               |  |  |  |
| В          | 1.00                                              | 1.00               | 0.95               | 0.90               |  |  |  |
| С          | 1.00                                              | 0.95               | 0.75               | 0.60               |  |  |  |
| D          | 1.00                                              | 0.90               | 0.50               | 0.10               |  |  |  |
| E          | 1.00                                              | 0.60               | 0.05               | *                  |  |  |  |
| F          | *                                                 | *                  | *                  |                    |  |  |  |

\*Site-specific geotechnical investigation and dynamic site response analyses shall be performed.

| Sxs:     | 0.2531  |
|----------|---------|
| Sxs/2.5: | 0.10124 |

Entonces, r=0.59773

| r | 0.59773 |        |
|---|---------|--------|
| G | 329.36  | kg/cm2 |

## 3.4.7.3 DETERMINACIÓN DE LAS RIGIDECES TRASLACIONALES Y ROTACIONALES EN LAS ZAPATAS

Para el proyecto se determinaron 17 tipos de zapatas y un tipo de cimiento corrido, teniendo el resumen en la Tabla 3.13 como se muestra a continuación:

| ZAPATA | LARGO(m) | ANCHO(m) | EJES           |
|--------|----------|----------|----------------|
| Z1     | 2.2      | 1.8      | A-7            |
| Z2     | 4.4      | 1.8      | A-8            |
| Z3     | 4.55     | 1.8      | A-9            |
| Z4     | 4.4      | 1.8      | A-10           |
| Z5     | 4.55     | 1.8      | A-11           |
| Z6     | 4.4      | 1.8      | A-12           |
| Z7     | 2.2      | 1.8      | A-13           |
| Z8     | 2.2      | 2.5      | B-7            |
| Z9     | 4.4      | 2.5      | B-8            |
| Z10    | 4.55     | 2.5      | B-9            |
| Z11    | 4.4      | 2.5      | B-10           |
| Z12    | 4.55     | 2.5      | B-11           |
| Z13    | 4.4      | 2.5      | B-12           |
| Z14    | 2.2      | 2.5      | B-13           |
| Z15    | 2        | 2.75     | C-7            |
| Z16    | 1.75     | 1.75     | C-8,9,10,11,12 |
| Z17    | 3        | 2        | C-13           |
| CC1    | 3.8      | 1.45     | 7-9-11-13      |

Tabla 3.13: Tipos de zapatas identificadas.

Para cada una de los tipos de zapatas identificadas se determinaron las rigideces traslacionales y rotacionales de sus respectivos resortes. Estas se lograron determinar con las fórmulas propuestas del FEMA 356, Art. 4.4.2.1.2, para soporte tipo resorte en suelo rígido. A continuación, en las Figuras 3.19, 3.20 y 3.21 se presentan las hojas de cálculo típicas utilizadas para el cálculo de las rigideces traslacionales y rotacionales en los apoyos tipo resorte.

Primero se debe obtener la rigidez en la superficie, como en la Figura 3.19.

Figura 3.19: Cálculo de las rigideces traslacionales y rotacionales en los apoyos tipo resorte.

#### 1. RIGIDEZ EN LA SUPERFICIE - CIMENTACIÓN RÍGIDA



Orient axes such that  $L \ge B$ 

| DATOS DE ZAPATA               | CC1           |             |
|-------------------------------|---------------|-------------|
|                               |               |             |
| Largo (L):                    | 3.80 m        | 149.61 pulg |
| Ancho (B):                    | 1.45 m        | 57.09 pulg  |
| Espesor (d):                  | 0.70 m        | 27.56 pulg  |
| Profundidad (D):              | 1.20 m        | 47.24 pulg  |
| Módulo de Poisson (v):        | 0.25          |             |
| Módulo de Corte Efectivo (G): | 329.36 kg/cm2 | 4684.64 psi |
| Alt. Centroide de Zapata (h): | 0.85 m        | 33.46 pulg  |

| Traslación Eje X: Kx                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C    | rado de Libertad      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------------------|
| $GB \begin{bmatrix} GB \end{bmatrix} \\ GB \end{bmatrix} \begin{bmatrix} GB \end{bmatrix} \begin{bmatrix} GB \end{bmatrix} \begin{bmatrix} GB \end{bmatrix} \\ GB B \\ GB \end{bmatrix} \\ GB B \\ GB$ | Kx=  | 1155281.01 lb/pulg    |
| $\begin{bmatrix} K_x - \frac{1}{2-\nu} \begin{bmatrix} 3.4 \\ B \end{bmatrix} + 1.2 \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Kx=  | 206310.08 kg/cm       |
| Traslación Eje Y: Ky                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C    | rado de Libertad      |
| $\begin{bmatrix} & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ky=  | 1254348.80 lb/pulg    |
| $\begin{bmatrix} x_{y} - 2 - v \begin{bmatrix} 3.4 \\ B \end{bmatrix} = \begin{bmatrix} 3.4 \\ B \end{bmatrix} = \begin{bmatrix} 3.4 \\ B \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Ky=  | 224001.61 kg/cm       |
| Traslación Eje Z: Kz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C    | rado de Libertad      |
| $K = \frac{GB}{1.55} \left( \frac{L}{2} \right)^{0.75} + 0.8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Kz=  | 1423653.56 lb/pulg    |
| $\begin{bmatrix} n_z \\ 1 - v \begin{bmatrix} 1.00 \\ B \end{bmatrix} + 0.0 \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Kz=  | 254236.05 kg/cm       |
| Rotacional Eje X: Kxx                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C    | rado de Libertad      |
| $K = -\frac{GB^3}{GB^3} \begin{bmatrix} 0 \\ 1 \\ - 1 \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Kxx= | 1334334403.99 lb-pulg |
| $\begin{bmatrix} K_{xx} - \frac{1}{1-v} \begin{bmatrix} 0.4 & B \end{bmatrix} \\ B \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Kxx= | 1537319517.89 kg/cm   |
| Rotacional Eje Y: Kyy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C    | rado de Libertad      |
| $K = -\frac{GB^3}{6} \left[ 0.47 \left( \frac{L}{L} \right)^{2.4} + 0.034 \right]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Kyy= | 5554105517.38 lb-pulg |
| $\begin{bmatrix} x_{yy} - \frac{1}{1-v} \begin{bmatrix} 0.47 \\ B \end{bmatrix} + 0.054 \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Kyy= | 6399021707.54 kg/cm   |
| Rotacional Eje Z: Kzz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C    | rado de Libertad      |
| $K = GR^3 \left[ 0.53 \left( \frac{L}{L} \right)^{2.45} + 0.51 \right]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Kzz= | 5338588298.06 lb-pulg |
| $\begin{bmatrix} \mathbf{x}_{zz} - \mathbf{G}B \\ \begin{bmatrix} 0.05 \\ B \end{bmatrix} \begin{bmatrix} 0.05 \\ B \end{bmatrix} + \begin{bmatrix} 0.05 \\ B \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Kzz= | 6150719013.17 kg/cm   |

Luego se obtienen los factores de corrección por profundidad, como se muestra en la Figura 3.20.

#### Traslación Eje X: Bx hd(B+L) $\beta_x = 1$ 1 + 0.21d = height of effective sidewall $\beta_x =$ 2.08 contact (may be less than total foundation height) Traslación Eje Y: By h = depth to centroid of effective sidewall contact $\beta_v = \beta_x$ For each degree of freedom, calculate $K_{emb} = \beta K_{sur}$ $\beta_{y} =$ 2.08 Rotación Eje X: Bxx Traslación Eje Z: Bz d $\beta_{\tau} =$ $\beta_{xx} = 1$ В $\beta_z =$ 1.39 $\beta_{xx} =$ 3.01 Rotación Eje X: Bxx Rotación Eje Y: Byy $\beta_{zz} = 1 + 2.6$ $\beta_{zz} =$ $\beta_{yy} =$ 1.87 2.87

#### 2. FACTOR DE CORRECCIÓN POR PROFUNDIDAD

Finalmente se obtienen los factores de rigidez corregidos por profundidad de empotramiento, tal como se muestra en la Figura 3.21.

Figura 3.21: Factores de rigidez corregidos por profundidad de empotramiento.

3. FACTORES DE RIGIDEZ CORREGIDOS POR PROFUNDIDAD DE EMPOTRAMIENTO

| Traslación Eje X: Bx | 2404549.13 lb/pulg     | 42940.44 Tn/m  |
|----------------------|------------------------|----------------|
| Traslación Eje Y: By | 2610744.31 lb/pulg     | 46622.67 Tn/m  |
| Traslación Eje Z: Bz | 1980301.23 lb/pulg     | 35364.22 Tn/m  |
| Rotación Eje X: Bxx  | 4014540493.34 lb-pulg  | 46252.51 Tn-m  |
| Rotación Eje Y: Byy  | 10360008428.86 lb-pulg | 119360.21 Tn-m |
| Rotación Eje Z: Bzz  | 15295680276.47 lb-pulg | 176225.30 Tn-m |

Estas mismas hojas de cálculo mostradas en las Figuras 3.19, 3.20 y 3.21 han sido utilizadas para los 18 tipos de zapatas mencionadas en la Tabla 3.13, obteniéndose los resultados en la tabla resumen siguiente:

| 740474 |            |            |          | CONSTANTE         |           | <b>RIGIDEZ/#</b> | DIRECCIÓN DE LA      |
|--------|------------|------------|----------|-------------------|-----------|------------------|----------------------|
| LAPAIA | LAKGO(III) | ANCHO(III) | # APU105 | <b>DE RIGIDEZ</b> | UNIDAD    | APOYOS           | RIGIDEZ              |
|        |            |            |          | 33644.21          | Ton/m     | 33644.20724      | Traslación Eje X: Bx |
|        |            |            |          | 34233.64          | Ton/m     | 34233.6377       | Traslación Eje Y: By |
| 71     | 2.2        | 1.0        | 1        | 26537.38          | Ton/m     | 26537.38202      | Traslación Eje Z: Bz |
|        |            | 1.0        |          | 27422.81          | Ton/m/rad | 27422.80921      | Rotación Eje X: Bxx  |
|        |            |            |          | 38143.24          | Ton/m/rad | 38143.23646      | Rotación Eje Y: Byy  |
|        |            |            |          | 58726.67          | Ton/m/rad | 58726.67164      | Rotación Eje Z: Bzz  |
|        |            |            |          | 41969.61          | Ton/m     | 41969.60631      | Traslación Eje X: Bx |
|        |            |            |          | 45301.22          | Ton/m     | 45301.21642      | Traslación Eje Y: By |
| 72     | 1.4        | 1.0        | 1        | 37278.37          | Ton/m     | 37278.36563      | Traslación Eje Z: Bz |
| 22     | 4.4        | 1.0        | 1        | 48065.30          | Ton/m/rad | 48065.29721      | Rotación Eje X: Bxx  |
|        |            |            |          | 157554.59         | Ton/m/rad | 157554.5907      | Rotación Eje Y: Byy  |
|        |            |            |          | 196083.82         | Ton/m/rad | 196083.819       | Rotación Eje Z: Bzz  |
|        |            |            |          | 38073.02          | Ton/m     | 38073.02234      | Traslación Eje X: Bx |
|        |            |            |          | 39426.67          | Ton/m     | 39426.6686       | Traslación Eje Y: By |
| 72     | 1 5 5      | 1.0        | 1        | 31749.91          | Ton/m     | 31749.91105      | Traslación Eje Z: Bz |
| 25     | 4.55       | 1.8        | 1        | 41611.74          | Ton/m/rad | 41611.73867      | Rotación Eje X: Bxx  |
|        |            |            |          | 75483.28          | Ton/m/rad | 75483.28404      | Rotación Eje Y: Byy  |
|        |            |            |          | 103218.28         | Ton/m/rad | 103218.279       | Rotación Eje Z: Bzz  |
|        |            | 1.8        | 1        | 42503.89          | Ton/m     | 42503.89319      | Traslación Eje X: Bx |
|        | 4.4        |            |          | 46008.10          | Ton/m     | 46008.10399      | Traslación Eje Y: By |
| 74     |            |            |          | 37968.44          | Ton/m     | 37968.43779      | Traslación Eje Z: Bz |
| Z4     |            |            |          | 49464.00          | Ton/m/rad | 49464.0002       | Rotación Eje X: Bxx  |
|        |            |            |          | 169339.72         | Ton/m/rad | 169339.7162      | Rotación Eje Y: Byy  |
|        |            |            |          | 210253.10         | Ton/m/rad | 210253.1019      | Rotación Eje Z: Bzz  |
|        | 4.55       | 18         |          | 42503.89          | Ton/m     | 42503.89319      | Traslación Eje X: Bx |
|        |            |            |          | 46008.10          | Ton/m     | 46008.10399      | Traslación Eje Y: By |
| Z5     |            |            |          | 37968.44          | Ton/m     | 37968.43779      | Traslación Eje Z: Bz |
|        | 4.55       | 1.0        |          | 49464.00          | Ton/m/rad | 49464.0002       | Rotación Eje X: Bxx  |
|        |            |            |          | 169339.72         | Ton/m/rad | 169339.7162      | Rotación Eje Y: Byy  |
|        |            |            |          | 210253.10         | Ton/m/rad | 210253.1019      | Rotación Eje Z: Bzz  |
|        |            |            |          | 42503.89          | Ton/m     | 42503.89319      | Traslación Eje X: Bx |
|        |            |            |          | 46008.10          | Ton/m     | 46008.10399      | Traslación Eje Y: By |
| 76     | 1.4        | 1.8        | 1        | 37968.44          | Ton/m     | 37968.43779      | Traslación Eje Z: Bz |
| 20     | 4.4        | 1.0        |          | 49464.00          | Ton/m/rad | 49464.0002       | Rotación Eje X: Bxx  |
|        |            |            |          | 169339.72         | Ton/m/rad | 169339.7162      | Rotación Eje Y: Byy  |
|        |            |            |          | 210253.10         | Ton/m/rad | 210253.1019      | Rotación Eje Z: Bzz  |
|        |            |            |          | 33644.21          | Ton/m     | 33644.20724      | Traslación Eje X: Bx |
|        |            | .2 1.8     |          | 34233.64          | Ton/m     | 34233.6377       | Traslación Eje Y: By |
| 77     | 2.2        |            | 1        | 26537.38          | Ton/m     | 26537.38202      | Traslación Eje Z: Bz |
| 27     | 2.2        |            | 1        | 27422.81          | Ton/m/rad | 27422.80921      | Rotación Eje X: Bxx  |
|        |            |            |          | 38143.24          | Ton/m/rad | 38143.23646      | Rotación Eje Y: Byy  |
|        |            |            |          | 58726.67          | Ton/m/rad | 58726.67164      | Rotación Eje Z: Bzz  |
|        |            |            |          | 38042.59          | Ton/m     | 38042.59114      | Traslación Eje X: Bx |
|        |            |            |          | 37620.77          | Ton/m     | 37620.7654       | Traslación Eje Y: By |
| 78     | 2.2        | 25         | 1        | 30418.52          | Ton/m     | 30418.51942      | Traslación Eje Z: Bz |
| 20     | 2.2        | 2.5        |          | 48398.17          | Ton/m/rad | 48398.17035      | Rotación Eje X: Bxx  |
|        |            |            |          | 48837.94          | Ton/m/rad | 48837.9399       | Rotación Eje Y: Byy  |
|        |            |            |          | 95491.24          | Ton/m/rad | 95491.24435      | Rotación Eje Z: Bzz  |

4. RESUMEN DEL CÁLCULO DE LAS RIGIDECES TRASLACIONALES Y ROTACIONALES

|     |      |      |    | 46649.84   | Ton/m             | 46649.84482 | Traslación Eje X: Bx             |
|-----|------|------|----|------------|-------------------|-------------|----------------------------------|
|     |      |      |    | 48970.97   | Ton/m             | 48970.96763 | Traslación Eje Y: By             |
| 70  | 4.4  | 2.5  | 1  | 41551.64   | Ton/m             | 41551.64208 | Traslación Eje Z: Bz             |
| 23  | 4.4  | 2.5  | 1  | 83495.77   | Ton/m/rad         | 83495.76947 | Rotación Eje X: Bxx              |
|     |      |      |    | 193813.95  | Ton/m/rad         | 193813.9521 | Rotación Eje Y: Byy              |
|     |      |      |    | 241154.07  | Ton/m/rad         | 241154.0683 | Rotación Eje Z: Bzz              |
|     |      |      |    | 47213.33   | Ton/m             | 47213.32607 | Traslación Eie X: Bx             |
|     |      |      |    | 49703.86   | Ton/m             | 49703 85752 | Traslación Eie Y <sup>.</sup> By |
|     |      |      |    | 42270.98   | Ton/m             | 42270 9776  | Traslación Eje 7: Bz             |
| Z10 | 4.55 | 2.5  | 1  | 85881.02   | Ton/m/rad         | 85881 02140 | Potación Eig V: Byy              |
|     |      |      |    | 208151.02  | Ton/m/rad         | 209151 0176 | Rotación Eje X. DA               |
|     |      |      |    | 208131.92  | Ton/m/rad         | 208131.9170 | Rotación Eje 1. byy              |
|     |      |      |    | 250430.53  |                   | 256436.5259 | Rotación Eje Z: BZZ              |
|     |      |      |    | 46649.84   | Ton/m             | 46649.84482 | Traslacion Eje X: Bx             |
|     |      |      |    | 489/0.9/   | Ton/m             | 48970.96763 | Traslación Eje Y: By             |
| Z11 | 4.4  | 2.5  | 1  | 41551.64   | Ton/m             | 41551.64208 | Traslación Eje Z: Bz             |
|     |      |      |    | 83495.77   | Ton/m/rad         | 83495.76947 | Rotación Eje X: Bxx              |
|     |      |      |    | 193813.95  | Ton/m/rad         | 193813.9521 | Rotación Eje Y: Byy              |
|     |      |      |    | 241154.07  | Ton/m/rad         | 241154.0683 | Rotación Eje Z: Bzz              |
|     |      |      |    | 47213.33   | Ton/m             | 47213.32607 | Traslación Eje X: Bx             |
|     |      |      |    | 49703.86   | Ton/m             | 49703.85752 | Traslación Eje Y: By             |
| 710 | 4.55 | 2.5  | 1  | 42270.98   | Ton/m             | 42270.9776  | Traslación Eje Z: Bz             |
| Z12 | 4.55 | 2.5  | 1  | 85881.02   | Ton/m/rad         | 85881.02149 | Rotación Eje X: Bxx              |
|     |      |      |    | 208151.92  | Ton/m/rad         | 208151.9176 | Rotación Eie Y: Bvy              |
|     |      |      |    | 256436.53  | Ton/m/rad         | 256436.5259 | Rotación Eie Z: Bzz              |
|     |      |      |    | 46649 84   | Ton/m             | 46649 84482 | Traslación Fie X: Bx             |
|     |      |      |    | 48070.07   | Ton/m             | 48070 96763 | Traslación Eje V: By             |
|     |      |      |    | 48970.97   | Ton/m             | 48970.90703 | Traslación Eje 7: Pz             |
| Z13 | 4.4  | 2.5  | 1  | 41551.04   | Ton/m             | 41551.04208 | Detection Ele Z. DZ              |
|     |      |      |    | 83495.//   | Ton/m/rad         | 83495.76947 | Rotación Eje A: Bxx              |
|     |      |      |    | 193813.95  | Ton/m/rad         | 193813.9521 | Rotacion Eje Y: Byy              |
|     |      |      |    | 241154.07  | Ton/m/rad         | 241154.0683 | Rotación Eje Z: Bzz              |
|     |      |      |    | 38042.59   | Ton/m             | 38042.59114 | Traslación Eje X: Bx             |
|     |      |      |    | 37620.77   | Ton/m             | 37620.7654  | Traslación Eje Y: By             |
| 714 | 2.2  | 2.5  | 1  | 30418.52   | Ton/m             | 30418.51942 | Traslación Eje Z: Bz             |
| 214 | 2.2  | 2.5  | 1  | 48398.17   | Ton/m/rad         | 48398.17035 | Rotación Eje X: Bxx              |
|     |      |      |    | 48837.94   | Ton/m/rad         | 48837.9399  | Rotación Eje Y: Byy              |
|     |      |      |    | 95491.24   | Ton/m/rad         | 95491.24435 | Rotación Eje Z: Bzz              |
|     |      |      |    | 38777.54   | Ton/m             | 38777.54352 | Traslación Eje X: Bx             |
|     |      |      |    | 37710.45   | Ton/m             | 37710.44519 | Traslación Eje Y: By             |
|     |      |      |    | 30702.07   | Ton/m             | 30702.07425 | Traslación Eje Z: Bz             |
| Z15 | 2    | 2.75 | 1  | 53892.36   | Ton/m/rad         | 53892.35843 | Rotación Eie X: Bxx              |
|     |      |      |    | 45039.25   | Ton/m/rad         | 45039 24543 | Rotación Fie Y. Byy              |
|     |      |      |    | 107741.83  | Ton/m/rad         | 107741 8277 | Rotación Eje 7: B77              |
|     |      |      |    | 31569.25   | Ton/m             | 31568 25/22 | Traslación Eig V. Dy             |
|     |      |      |    | 21569.25   | Ton/m             | 21569 25422 | Traslación Eig V. D.             |
|     |      |      |    | 22010.52   | Ton/m             | 31308.23432 | Traslación Eje Y: By             |
| Z16 | 1.75 | 1.75 | 1  | 23910.53   | Ton/m             | 23910.53235 | Trastación Eje Z: BZ             |
|     |      |      |    | 22107.71   | Ton/m/rad         | 22107.70925 | Rotacion Eje X: Bxx              |
|     |      |      |    | 24633.86   | Ton/m/rad         | 24633.85751 | Rotación Eje Y: Byy              |
|     |      |      |    | 43647.71   | Ton/m/rad         | 43647.70518 | Rotación Eje Z: Bzz              |
|     |      |      |    | 38073.02   | Ton/m             | 38073.02234 | Traslación Eje X: Bx             |
|     |      |      |    | 39426.67   | Ton/m             | 39426.6686  | Traslación Eje Y: By             |
| Z17 | 3    | 2    | 1  | 31749.91   | Ton/m             | 31749.91105 | Traslación Eje Z: Bz             |
|     |      |      |    | 41611.74   | Ton/m/rad         | 41611.73867 | Rotación Eje X: Bxx              |
|     |      |      |    | 75483.28   | Ton/m/rad         | 75483.28404 | Rotación Eje Y: Byy              |
|     |      |      |    | 103218.28  | Ton/m/rad         | 103218.279  | Rotación Eje Z: Bzz              |
|     |      |      |    | 42940.44   | Ton/m             | 3578.36987  | Traslación Eje X: Bx             |
|     |      |      |    | 46622.67   | Ton/m             | 3885.222653 | Traslación Eie Y: Rv             |
|     |      |      |    | 35364.22   | Ton/m             | 2947.018281 | Traslación Eie Z: Bz             |
| CC1 | 3.8  | 1.45 | 12 | 46252 51   | Ton/m/rad         | 3854 375783 | Rotación Eie X <sup>+</sup> Bvy  |
|     |      |      |    | 119360.21  | Ton/m/rad         | 9946 683077 | Rotación Fie V· Rvv              |
|     |      |      |    | 178125 30  | Ton/m/rad         | 14685 44152 | Rotación Fie 7. B77              |
| 1   | 1    | 1    |    | 1 10443.30 | 1 I UII/ III/ Iau | 17000.44102 | TOTACION ELC. DLL                |

## 3.4.7.4 DETERMINACIÓN DEL FACTOR DE REAJUSTE POR EL EFECTO DE AMORTIGUAMIENTO

Con lo expuesto anteriormente y aplicando las fórmulas que nos proporciona el FEMA 440 se tiene lo siguiente:

*Figura 3.22:* Determinación del factor de reajuste por efecto de amortiguamiento del suelo de fundación en X.

52791.5

Tn/m

#### 5. DETERMINACIÓN DEL FACTOR DE REAJUSTE POR EFECTO DE AMORTIGUAMIENTO

#### **RIGIDEZ EFECTIVA**

|                                      | 393      |          |
|--------------------------------------|----------|----------|
| Peso para el cálculo sísmico:        | 393.472  | Tn       |
| Masa para el cálculo sísmico:        | 40.12297 | Tn sg2/m |
| %Participación masa 1º Modo X:       | 85%      | %        |
| Periodo para el primer modo X, Teff: | 0.16     | s        |
|                                      |          |          |



2956.2 klb/pulg

#### RADIO EQUIVALENTE DE LA CIMENTACIÓN

Rigidez Efectiva (K\*fixed) en Y:

| Área de la cimentación: | 163.6625 | m2   |
|-------------------------|----------|------|
|                         | 1761.65  | pie2 |
|                         |          |      |
| rx(ru):                 | 7.22     | m    |



·υ)K

#### RIGIDEZ TRASLACIONAL DE LA CIMENTACIÓN

|                       |            | -         |                       |
|-----------------------|------------|-----------|-----------------------|
| Módulo de corte (G):  | 329.36     | kg/cm2    | 8                     |
|                       | 4.68       | klb/pulg2 | $K_x = \frac{G}{2}Gr$ |
| Módulo de Poisson:    | 0.25       |           | $2-\upsilon$          |
|                       |            |           | -                     |
| Rigidez Traslacional: | 1086741.65 | kg/cm     | 6085.39 klb/pulg      |

#### RIGIDEZ ROTACIONAL DE LA CIMENTACIÓN

| Altura Efectiva (h*):               | 5.125   | m        |                                 | $K^*_{fixed}(h^*)^2$                             |
|-------------------------------------|---------|----------|---------------------------------|--------------------------------------------------|
|                                     | 201.771 | pulg     | $\mathbf{\Lambda}_{\theta} = -$ | $(\tilde{\boldsymbol{\tau}})^2 \boldsymbol{k}^*$ |
| Periodo 1º Modo Base Fija Teff:     | 0.16    |          |                                 | $\frac{I}{-1}$ $-1-\frac{K_{fixed}}{-1}$         |
| Periodo 1º Modo Base Flexible Teff: | 0.243   |          |                                 | $(T)$ $K_r$                                      |
|                                     |         |          | - L                             |                                                  |
| Rigidez Traslacional KO:            | 1102205 | 48625.98 | kg/cm                           | 146621721 klb/pulg                               |

#### RADIO POR ROTACIÓN EQUIVALENTE DE LA CIMENTACIÓN

| r <del>O</del> : | 4.55   | m    |                | 3(1− <i>v</i> |
|------------------|--------|------|----------------|---------------|
|                  | 179.08 | pulg | $r_{\theta} =$ | 86            |

#### RELACIÓN PERIODO EFECTIVO/ALARGAMIENTO

| Periodo 1° Modo Base Fija Teff:<br>Periodo 1° Modo Base Flexible Ťeff:<br>µ: | 0.16<br>0.243<br>3 | $\frac{\tilde{T}_{eff}}{T_{eff}} = \left\{ 1 + \frac{1}{\mu} \left[ \left( \frac{\tilde{T}}{T} \right)^2 - 1 \right] \right\}^{0.5}$ |
|------------------------------------------------------------------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| Rigidez Traslacional KO:                                                     | 1.198              |                                                                                                                                      |

#### AMORTIGUAMIENTO EN LA CIMENTACIÓN

| a1:<br>a2:                                                                                                                        | 1<br>18.125<br>-13.01812874 | $a_1 = a_2$                                                              | $c_e \exp\left(4\right)$ | $\left(1.7 - \frac{1.6h}{r_c}\right)$      |
|-----------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--------------------------------------------------------------------------|--------------------------|--------------------------------------------|
| Bf:                                                                                                                               | 3.08 %                      |                                                                          | (                        |                                            |
| $\beta_{f} = a_{1} \left( \frac{\tilde{T}_{eff}}{T_{eff}} - 1 \right) + a_{2} \left( \frac{\tilde{T}_{eff}}{T_{eff}} - 1 \right)$ | $1\Big)^2$ $a_2 = c$        | $\int_{a}^{b} \left[ 25 \ln \left( \frac{h}{r_{\theta}} \right) \right]$ | -16]                     | $c_e = 1.5 \left(\frac{e}{r_x}\right) + 1$ |

RAZÓN DE AMORTIGUAMIENTO DE LA FUNDACIÓN FLEXIBLE

| Bi: | 5.00 %  |
|-----|---------|
| Bo: | 5.987 % |

$$\beta_{eff} = \beta_0 = \beta_f + \frac{\beta_i}{\left(\tilde{T}_{eff} \middle/ T_{eff} \right)^3}$$

FACTOR DE ES CALAMIENTO POR AMORTIGUAMIENTO EN LA CIMENTACIÓN

| B: | 1.050 |
|----|-------|
|    |       |

$$B = \frac{4}{5.6 - \ln \beta_{eff}(en\%)}$$

## *Figura 3.23:* Determinación del factor de reajuste por efecto de amortiguamiento del suelo de fundación en Y.

#### 5. DETERMINACIÓN DEL FACTOR DE REAJUSTE POR EFECTO DE AMORTIGUAMIENTO

#### **RIGIDEZ EFECTIVA**

| Peso para el cálculo sísmico:        | 393.472  | Tn       |
|--------------------------------------|----------|----------|
| Masa para el cálculo sísmico:        | 40.12297 | Tn sg2/m |
| % Participación masa 2º Modo Y:      | 96%      | %        |
| Periodo para el primer modo Y, Teff: | 0.092    | S        |
|                                      |          |          |

| Rigidez Efectiva (K*fixed) en Y: | 179228.3 | Tn/m |
|----------------------------------|----------|------|
|----------------------------------|----------|------|

#### RADIO EQUIVALENTE DE LA CIMENTACIÓN

| Área de la cimentación: | 163.6625 | m2   |
|-------------------------|----------|------|
|                         | 1761.65  | pie2 |
|                         |          |      |
| rx(ru):                 | 7.22     | m    |

#### RIGIDEZ TRASLACIONAL DE LA CIMENTACIÓN

| Módulo de corte (G):  | 329.36     | kg/cm2    |
|-----------------------|------------|-----------|
|                       | 4.68       | klb/pulg2 |
| Módulo de Poisson:    | 0.25       |           |
|                       |            |           |
| Rigidez Traslacional: | 1086741.65 | kg/cm     |



284.16 pulg

10036.2 klb/pulg

 $K^*_{fixed} = M$ 

6085.39 klb/pulg

#### RIGIDEZ ROTACIONAL DE LA CIMENTACIÓN

| Altura Efectiva (h*):               | 5.125   | m       |                               | $K^*_{fixed}(h^*)^2$                                               |
|-------------------------------------|---------|---------|-------------------------------|--------------------------------------------------------------------|
|                                     | 201.771 | pulg    | $\mathbf{\Lambda}_{\theta} =$ | $\frac{1}{\left(\tilde{\boldsymbol{x}}\right)^2} \boldsymbol{k}^*$ |
| Periodo 2º Modo Base Fija Teff:     | 0.092   |         |                               | $\left  \frac{I}{-} \right  -1 - \frac{\kappa_{fixed}}{-1}$        |
| Periodo 2º Modo Base Flexible Teff: | 0.243   |         |                               | $(T)$ $K_r$                                                        |
|                                     |         |         | ·                             |                                                                    |
| Rigidez Traslacional KO:            | 8100301 | 9453.72 | kg/cm                         | 94422972 klb/pulg                                                  |

#### RADIO POR ROTACIÓN EQUIVALENTE DE LA CIMENTACIÓN

| _                 |      |        |                  |
|-------------------|------|--------|------------------|
|                   | m    | 4.10   | r <del>O</del> : |
| $\Gamma_{\theta}$ | pulg | 161.61 |                  |



#### RELACIÓN PERIODO EFECTIVO/ALARGAMIENTO

| Periodo 1º Modo Base Fija Teff:       | 0.092 |
|---------------------------------------|-------|
| Periodo 1º Modo Base Flexible Ťeff:   | 0.141 |
| μ:                                    | 3     |
| · · · · · · · · · · · · · · · · · · · |       |
| Rigidez Traslacional KO:              | 1.20  |



#### AMORTIGUAMIENTO EN LA CIMENTACIÓN



RAZÓN DE AMORTIGUAMIENTO DE LA FUNDACIÓN FLEXIBLE

| Bi: | 5.00 %  | $\beta = \beta$       | $\beta_i$                                |
|-----|---------|-----------------------|------------------------------------------|
| Bo: | 5.473 % | $\rho_{eff} = \rho_0$ | $= \rho_f + \frac{1}{(\tilde{\pi}_f)/T}$ |
|     |         |                       | $(I_{eff} / I_{eff})$                    |

FACTOR DE ES CALAMIENTO POR AMORTIGUAMIENTO EN LA CIMENTACIÓN

| B: | 1.026 |
|----|-------|

| R –        | 4                                        |
|------------|------------------------------------------|
| <i>D</i> – | $\overline{5.6 - \ln \beta_{eff}(en\%)}$ |

## 3.4.7.5 DETERMINACIÓN DEL FACTOR DE REAJUSTE POR EL EFECTO CINEMÁTICO

A continuación se presentan las Figuras 3.24, 3.25, 3.26 y 3.27 las cuales muestran las hojas de cálculo utilizando las fórmulas dadas para la obtención del factor de reajuste y también se calcula el nuevo espectro de pseudoaceleraciones reajustado por los efectos del amortiguamiento del suelo de fundación y cinemático.

Figura 3.24: Factor de reajuste por efecto cinemático en X.

6. FACTOR DE REAJUSTE POR EFECTO CINEMÁTICO Y ESPECTRO DE PSEUDO ACELERACIONES REAJUSTADO POR LOS EFECTOS DEL AMORGITUAMIENTO DEL SUELO DE FUNDACIÓN Y CINEMÁTICO

| Zona Sísmica:                                                           | 4                                               |       | Z:     | 0.45   |         | S:  |       | 1.05         |
|-------------------------------------------------------------------------|-------------------------------------------------|-------|--------|--------|---------|-----|-------|--------------|
| Categoría del Edificio:                                                 | A2                                              |       | U:     | 1.5    |         | R:  |       | 7            |
| Tipo de Suelo:                                                          | S2                                              |       | Tp:    | 0.6    |         |     |       |              |
| Sistema estructural:                                                    | s estructu                                      |       | TL:    | 2.0    |         |     |       |              |
|                                                                         |                                                 |       |        |        |         |     |       |              |
| Ancho de la estructura en c                                             | imentación (b                                   | ):    | 8.4    | 45 m   | 27.72 p | ies |       |              |
| Largo de la estructura en ci                                            | mentación (a)                                   | :     | 26.    | 41 m   | 86.65 p | ies |       |              |
| Ancho efectivo                                                          | be):                                            |       | 14.    | 94 m   | 49.01 p | ies |       |              |
| Velocidad de ondas de                                                   | Velocidad de ondas de corte (Vs): 593.83 pies/s |       |        |        |         |     |       |              |
| $RRS_{bsa} = 1 - \frac{1}{14,100} \left(\frac{b_e}{T}\right)^{1.2} \ge$ | el valor calcu                                  | ılado | cuando | T=0.2s |         |     | $b_e$ | $=\sqrt{ab}$ |

# Figura 3.25: Espectro de Pseudoaceleraciones reajustado por los efectos del amortiguamiento del suelo de fundación y cinemático en X.

| T (seg) | С    | Sa (E030 2018) | bo    | Bbsa  | RRSbsa | RRSe      | Sa (Int. Cinem.) | Sa (Int. Cinem.)/B |
|---------|------|----------------|-------|-------|--------|-----------|------------------|--------------------|
| 0       | 2.50 | 0.2531250      | 1.093 | 5.339 | 0.740  | 0.9922582 | 0.1859559        | 0.177139891        |
| 0.02    | 2.50 | 0.2531250      | 1.093 | 5.339 | 0.740  | 0.9922582 | 0.1859559        | 0.177139891        |
| 0.04    | 2.50 | 0.2531250      | 1.093 | 5.339 | 0.740  | 0.9922582 | 0.1859559        | 0.177139891        |
| 0.06    | 2.50 | 0.2531250      | 1.093 | 5.339 | 0.740  | 0.9922582 | 0.1859559        | 0.177139891        |
| 0.08    | 2.50 | 0.2531250      | 1.093 | 5.339 | 0.740  | 0.9922582 | 0.1859559        | 0.177139891        |
| 0.1     | 2.50 | 0.2531250      | 1.093 | 5.339 | 0.740  | 0.9922582 | 0.1859559        | 0.177139891        |
| 0.12    | 2.50 | 0.2531250      | 1.093 | 5.339 | 0.740  | 0.9922582 | 0.1859559        | 0.177139891        |
| 0.14    | 2.50 | 0.2531250      | 1.093 | 5.339 | 0.740  | 0.9922582 | 0.1859559        | 0.177139891        |
| 0.16    | 2.50 | 0.2531250      | 1.093 | 5.339 | 0.740  | 0.9922582 | 0.1859559        | 0.177139891        |
| 0.18    | 2.50 | 0.2531250      | 1.093 | 5.339 | 0.740  | 0.9922582 | 0.1859559        | 0.177139891        |
| 0.2     | 2.50 | 0.2531250      | 1.093 | 5.339 | 0.740  | 0.9922582 | 0.1859559        | 0.177139891        |
| 0.25    | 2.50 | 0.2531250      | 0.875 | 2.681 | 0.805  | 0.9950421 | 0.2028338        | 0.193217639        |
| 0.3     | 2.50 | 0.2531250      | 0.729 | 1.912 | 0.849  | 0.9965559 | 0.2142575        | 0.204099698        |
| 0.35    | 2.50 | 0.2531250      | 0.625 | 1.579 | 0.881  | 0.9974691 | 0.2225511        | 0.21200016         |
| 0.4     | 2.50 | 0.2531250      | 0.547 | 1.404 | 0.905  | 0.9980620 | 0.2286111        | 0.217772815        |
| 0.45    | 2.50 | 0.2531250      | 0.486 | 1.299 | 0.922  | 0.9984686 | 0.2331146        | 0.222062792        |
| 0.5     | 2.50 | 0.2531250      | 0.437 | 1.232 | 0.936  | 0.9987595 | 0.2365261        | 0.225312618        |
| 0.55    | 2.50 | 0.2531250      | 0.398 | 1.185 | 0.946  | 0.9989748 | 0.2391593        | 0.227820953        |
| 0.6     | 2.50 | 0.2531250      | 0.364 | 1.152 | 0.954  | 0.9991385 | 0.2412272        | 0.229790832        |
| 0.65    | 2.31 | 0.2336538      | 0.336 | 1.127 | 0.960  | 0.9992659 | 0.2241942        | 0.213565285        |
| 0.7     | 2.14 | 0.2169643      | 0.312 | 1.108 | 0.965  | 0.9993670 | 0.2093246        | 0.199400647        |
| 0.75    | 2.00 | 0.2025000      | 0.292 | 1.093 | 0.970  | 0.9994486 | 0.1962449        | 0.186941071        |
| 0.8     | 1.88 | 0.1898438      | 0.273 | 1.080 | 0.973  | 0.9995154 | 0.1846599        | 0.175905293        |
| 0.85    | 1.76 | 0.1786765      | 0.257 | 1.071 | 0.976  | 0.9995707 | 0.1743338        | 0.16606881         |
| 0.9     | 1.67 | 0.1687500      | 0.243 | 1.063 | 0.979  | 0.9996171 | 0.1650769        | 0.157250715        |
| 0.95    | 1.58 | 0.1598684      | 0.230 | 1.056 | 0.981  | 0.9996563 | 0.1567346        | 0.149303899        |
| 1       | 1.50 | 0.1518750      | 0.219 | 1.050 | 0.983  | 0.9996898 | 0.1491802        | 0.142107702        |
| 1.1     | 1.36 | 0.1380682      | 0.199 | 1.041 | 0.986  | 0.9997436 | 0.1360340        | 0.129584704        |
| 1.2     | 1.25 | 0.1265625      | 0.182 | 1.034 | 0.988  | 0.9997846 | 0.1249900        | 0.119064304        |
| 1.3     | 1.15 | 0.1168269      | 0.168 | 1.029 | 0.990  | 0.9998165 | 0.1155866        | 0.110106742        |
| 1.4     | 1.07 | 0.1084821      | 0.156 | 1.025 | 0.991  | 0.9998417 | 0.1074869        | 0.102390992        |
| 1.5     | 1.00 | 0.1012500      | 0.146 | 1.022 | 0.992  | 0.9998621 | 0.1004393        | 0.095677585        |
| 1.6     | 0.94 | 0.0949219      | 0.137 | 1.019 | 0.993  | 0.9998788 | 0.0942529        | 0.089784462        |
| 1.7     | 0.88 | 0.0893382      | 0.129 | 1.017 | 0.994  | 0.9998927 | 0.0887798        | 0.084570855        |
| 1.8     | 0.83 | 0.0843750      | 0.121 | 1.015 | 0.995  | 0.9999043 | 0.0839041        | 0.079926281        |
| 1.9     | 0.79 | 0.0799342      | 0.115 | 1.013 | 0.995  | 0.9999141 | 0.0795335        | 0.075762857        |
| 2       | 0.75 | 0.0759375      | 0.109 | 1.012 | 0.996  | 0.9999224 | 0.0755937        | 0.072009828        |
| 2.2     | 0.62 | 0.0627583      | 0.099 | 1.010 | 0.996  | 0.9999359 | 0.0625231        | 0.059558966        |
| 2.4     | 0.52 | 0.0527344      | 0.091 | 1.008 | 0.997  | 0.9999461 | 0.0525682        | 0.050075991        |
| 2.6     | 0.44 | 0.0449334      | 0.084 | 1.007 | 0.997  | 0.9999541 | 0.0448127        | 0.04268817         |
| 2.8     | 0.38 | 0.0387436      | 0.078 | 1.006 | 0.998  | 0.9999604 | 0.0386538        | 0.036821269        |
| 3       | 0.33 | 0.0337500      | 0.073 | 1.005 | 0.998  | 0.9999655 | 0.0336818        | 0.032084992        |
| 4       | 0.19 | 0.0189844      | 0.055 | 1.003 | 0.999  | 0.9999806 | 0.0189628        | 0.018063763        |
| 5       | 0.12 | 0.0121500      | 0.044 | 1.002 | 0.999  | 0.9999876 | 0.0121411        | 0.011565544        |
| 6       | 0.08 | 0.0084375      | 0.036 | 1.001 | 1.000  | 0.9999914 | 0.0084332        | 0.008033416        |
| 7       | 0.06 | 0.0061990      | 0.031 | 1.001 | 1.000  | 0.9999937 | 0.0061967        | 0.005902894        |
| 8       | 0.05 | 0.0047461      | 0.027 | 1.001 | 1.000  | 0.9999952 | 0.0047447        | 0.004519797        |
| 9       | 0.04 | 0.0037500      | 0.024 | 1.001 | 1.000  | 0.9999962 | 0.0037492        | 0.003571411        |
| 10      | 0.03 | 0.0030375      | 0.022 | 1.000 | 1.000  | 0.9999969 | 0.0030369        | 0.002892967        |

## VALORES DEL ESPECTRO DE SISMO CONSIDERANDO LA FLEXIBILIDAD DEL SUELO DE FUNDACIÓN

### Figura 3.26: Factor de reajuste por efecto cinemático en Y.

#### 6. FACTOR DE REAJUSTE POR EFECTO CINEMÁTICO Y ESPECTRO DE PSEUDO ACELERACIONES REAJUSTADO POR LOS EFECTOS DEL AMORGITUAMIENTO DEL SUELO DE FUNDACIÓN Y CINEMÁTICO

| Zona Sísmica:                                                                                                             | 4          |      | Z:  | 0.45    |            | S:   |   | 1.05 |
|---------------------------------------------------------------------------------------------------------------------------|------------|------|-----|---------|------------|------|---|------|
| Categoría del Edificio:                                                                                                   | A2         |      | U:  | 1.5     |            | R:   |   | 8    |
| Tipo de Suelo:                                                                                                            | S2         |      | Tp: | 0.6     |            |      |   |      |
| Sistema estructural:                                                                                                      | Pórticos   |      | TL: | 2.0     |            |      |   |      |
|                                                                                                                           |            |      |     |         |            |      | _ |      |
| Ancho de la estructura en cin                                                                                             | entación   | (b): | 8.4 | 45 m    | 27.72 pi   | es   |   |      |
| Largo de la estructura en cim                                                                                             | entación ( | a):  | 26. | 26.41 m |            | es   |   |      |
| Ancho efectivo (b                                                                                                         | e):        |      | 14. | 94 m    | 49.01 pi   | es   |   |      |
| Velocidad de ondas de co                                                                                                  | orte (Vs): |      |     |         | 593.83 pie | es/s |   |      |
| $RRS_{bsa} = 1 - \frac{1}{14,100} \left(\frac{b_e}{T}\right)^{1.2} \ge \text{ el valor calculado cuando T} = 0.2\text{s}$ |            |      |     |         |            |      |   |      |

# Figura 3.27: Espectro de Pseudoaceleraciones reajustado por los efectos del amortiguamiento del suelo de fundación y cinemático en Y.

| T (seg) | С    | Sa (E030 2018) | bo    | Bbsa  | RRSbsa | RRSe      | Sa (Int. Cinem.) | Sa (Int. Cinem.)/B |
|---------|------|----------------|-------|-------|--------|-----------|------------------|--------------------|
| 0       | 2.50 | 0.2214844      | 1.093 | 5.339 | 0.740  | 0.9922582 | 0.1627114        | 0.154997404        |
| 0.02    | 2.50 | 0.2214844      | 1.093 | 5.339 | 0.740  | 0.9922582 | 0.1627114        | 0.154997404        |
| 0.04    | 2.50 | 0.2214844      | 1.093 | 5.339 | 0.740  | 0.9922582 | 0.1627114        | 0.154997404        |
| 0.06    | 2.50 | 0.2214844      | 1.093 | 5.339 | 0.740  | 0.9922582 | 0.1627114        | 0.154997404        |
| 0.08    | 2.50 | 0.2214844      | 1.093 | 5.339 | 0.740  | 0.9922582 | 0.1627114        | 0.154997404        |
| 0.1     | 2.50 | 0.2214844      | 1.093 | 5.339 | 0.740  | 0.9922582 | 0.1627114        | 0.154997404        |
| 0.12    | 2.50 | 0.2214844      | 1.093 | 5.339 | 0.740  | 0.9922582 | 0.1627114        | 0.154997404        |
| 0.14    | 2.50 | 0.2214844      | 1.093 | 5.339 | 0.740  | 0.9922582 | 0.1627114        | 0.154997404        |
| 0.16    | 2.50 | 0.2214844      | 1.093 | 5.339 | 0.740  | 0.9922582 | 0.1627114        | 0.154997404        |
| 0.18    | 2.50 | 0.2214844      | 1.093 | 5.339 | 0.740  | 0.9922582 | 0.1627114        | 0.154997404        |
| 0.2     | 2.50 | 0.2214844      | 1.093 | 5.339 | 0.740  | 0.9922582 | 0.1627114        | 0.154997404        |
| 0.25    | 2.50 | 0.2214844      | 0.875 | 2.681 | 0.805  | 0.9950421 | 0.1774796        | 0.169065434        |
| 0.3     | 2.50 | 0.2214844      | 0.729 | 1.912 | 0.849  | 0.9965559 | 0.1874753        | 0.178587235        |
| 0.35    | 2.50 | 0.2214844      | 0.625 | 1.579 | 0.881  | 0.9974691 | 0.1947322        | 0.18550014         |
| 0.4     | 2.50 | 0.2214844      | 0.547 | 1.404 | 0.905  | 0.9980620 | 0.2000347        | 0.190551214        |
| 0.45    | 2.50 | 0.2214844      | 0.486 | 1.299 | 0.922  | 0.9984686 | 0.2039753        | 0.194304943        |
| 0.5     | 2.50 | 0.2214844      | 0.437 | 1.232 | 0.936  | 0.9987595 | 0.2069604        | 0.197148541        |
| 0.55    | 2.50 | 0.2214844      | 0.398 | 1.185 | 0.946  | 0.9989748 | 0.2092644        | 0.199343334        |
| 0.6     | 2.50 | 0.2214844      | 0.364 | 1.152 | 0.954  | 0.9991385 | 0.2110738        | 0.201066978        |
| 0.65    | 2.31 | 0.2044471      | 0.336 | 1.127 | 0.960  | 0.9992659 | 0.1961699        | 0.186869625        |
| 0.7     | 2.14 | 0.1898438      | 0.312 | 1.108 | 0.965  | 0.9993670 | 0.1831590        | 0.174475566        |
| 0.75    | 2.00 | 0.1771875      | 0.292 | 1.093 | 0.970  | 0.9994486 | 0.1717143        | 0.163573437        |
| 0.8     | 1.88 | 0.1661133      | 0.273 | 1.080 | 0.973  | 0.9995154 | 0.1615774        | 0.153917131        |
| 0.85    | 1.76 | 0.1563419      | 0.257 | 1.071 | 0.976  | 0.9995707 | 0.1525421        | 0.145310208        |
| 0.9     | 1.67 | 0.1476563      | 0.243 | 1.063 | 0.979  | 0.9996171 | 0.1444423        | 0.137594375        |
| 0.95    | 1.58 | 0.1398849      | 0.230 | 1.056 | 0.981  | 0.9996563 | 0.1371427        | 0.130640912        |
| 1       | 1.50 | 0.1328906      | 0.219 | 1.050 | 0.983  | 0.9996898 | 0.1305327        | 0.124344239        |
| 1.1     | 1.36 | 0.1208097      | 0.199 | 1.041 | 0.986  | 0.9997436 | 0.1190297        | 0.113386616        |
| 1.2     | 1.25 | 0.1107422      | 0.182 | 1.034 | 0.988  | 0.9997846 | 0.1093662        | 0.104181266        |
| 1.3     | 1.15 | 0.1022236      | 0.168 | 1.029 | 0.990  | 0.9998165 | 0.1011383        | 0.096343399        |
| 1.4     | 1.07 | 0.0949219      | 0.156 | 1.025 | 0.991  | 0.9998417 | 0.0940510        | 0.089592118        |
| 1.5     | 1.00 | 0.0885938      | 0.146 | 1.022 | 0.992  | 0.9998621 | 0.0878844        | 0.083717887        |
| 1.6     | 0.94 | 0.0830566      | 0.137 | 1.019 | 0.993  | 0.9998788 | 0.0824713        | 0.078561404        |
| 1.7     | 0.88 | 0.0781710      | 0.129 | 1.017 | 0.994  | 0.9998927 | 0.0776824        | 0.073999498        |
| 1.8     | 0.83 | 0.0738281      | 0.121 | 1.015 | 0.995  | 0.9999043 | 0.0734161        | 0.069935496        |
| 1.9     | 0.79 | 0.0699424      | 0.115 | 1.013 | 0.995  | 0.9999141 | 0.0695918        | 0.0662925          |
| 2       | 0.75 | 0.0664453      | 0.109 | 1.012 | 0.996  | 0.9999224 | 0.0661445        | 0.0630086          |
| 2.2     | 0.62 | 0.0549135      | 0.099 | 1.010 | 0.996  | 0.9999359 | 0.0547077        | 0.052114095        |
| 2.4     | 0.52 | 0.0461426      | 0.091 | 1.008 | 0.997  | 0.9999461 | 0.0459972        | 0.043816493        |
| 2.6     | 0.44 | 0.0393168      | 0.084 | 1.007 | 0.997  | 0.9999541 | 0.0392111        | 0.037352149        |
| 2.8     | 0.38 | 0.0339007      | 0.078 | 1.006 | 0.998  | 0.9999604 | 0.0338221        | 0.03221861         |
| 3       | 0.33 | 0.0295313      | 0.073 | 1.005 | 0.998  | 0.9999655 | 0.0294716        | 0.028074368        |
| 4       | 0.19 | 0.0166113      | 0.055 | 1.003 | 0.999  | 0.9999806 | 0.0165924        | 0.015805793        |
| 5       | 0.12 | 0.0106313      | 0.044 | 1.002 | 0.999  | 0.9999876 | 0.0106235        | 0.010119851        |
| 6       | 0.08 | 0.0073828      | 0.036 | 1.001 | 1.000  | 0.9999914 | 0.0073791        | 0.007029239        |
| 7       | 0.06 | 0.0054241      | 0.031 | 1.001 | 1.000  | 0.9999937 | 0.0054221        | 0.005165032        |
| 8       | 0.05 | 0.0041528      | 0.027 | 1.001 | 1.000  | 0.9999952 | 0.0041516        | 0.003954823        |
| 9       | 0.04 | 0.0032813      | 0.024 | 1.001 | 1.000  | 0.9999962 | 0.0032805        | 0.003124985        |
| 10      | 0.03 | 0.0026578      | 0.022 | 1.000 | 1.000  | 0.9999969 | 0.0026573        | 0.002531346        |

## VALORES DEL ESPECTRO DE SISMO CONSIDERANDO LA FLEXIBILIDAD DEL SUELO DE FUNDACIÓN

Con estos resultados obtenidos se tiene listo el modelo de base flexible según el FEMA, estos incluyen el nuevo espectro de pseudoaceleraciones el cual será incorporado en el programa ETABS V18.

## 3.4.7.6 INTRODUCCIÓN DE COEFICIENTES DEL MODELO DE BASE FLEXIBLE DE INTERACCIÓN SUELO ESTRUCTURA DEL FEDERAL MANAGEMENT AGENCY (FEMA) EN ETABS V18.

Primero se procedió a modificar los apoyos de todas las zapatas y cimientos corridos para considerar la Rigidez tomando en cuenta los coeficientes obtenidos anteriormente de la Tabla 3.14. Se debe tener en cuenta también que para este modelo no se tuvo que restringir la rotación alrededor del eje Z (del eje vertical) debido a que la metodología del FEMA indica que no hay restricción de rotación de rotación alrededor del eje Z. La introducción de los coeficientes de rigidez se hace a través del elemento Spring en el programa ETABS V18. (El procedimiento es el mismo aplicado a los modelos anteriores) el cual se muestra en la Figura 3.28.

*Figura 3.28:* Asignación de factores de rigidez en zapatas y cimientos corridos en ETABS V18. Para el modelo de base flexible de interacción suelo estructura del FEMA.



Luego se debe definir el nuevo espectro de pseudo aceleraciones modificado, el cual se muestra en la última columna de la Figura 3.25. el que a su vez se basa en el FEMA 356

y que tiene la modificación de su espectro por amortiguamiento. La asignación se muestra en las Figuras 3.29 y 3.30.

| T di locioi                             | n Name FEMA XX            |             |
|-----------------------------------------|---------------------------|-------------|
| unction Dampin                          | ig Ratio                  |             |
|                                         | 0.05987                   |             |
| Defined Function                        | 1                         |             |
| Period                                  | Value                     |             |
| 0                                       | 0.186                     |             |
| 0                                       | ∧ 0.186 ∧                 | Add         |
| 0.02                                    | 0.186                     | Aud         |
| 0.06                                    | 0.186                     | Modify      |
| 0.08                                    | 0.186                     | Delete      |
| 0.12                                    | ✓ 0.186                   | Delete      |
| E-3<br>280 -<br>240 -<br>200 -<br>160 - |                           |             |
| 120 -<br>80 -<br>40 -<br>0 -<br>0.0 1.0 | 2.0 3.0 4.0 5.0 6.0 7.0 8 | .0 9.0 10.0 |

# *Figura 3.29:* Definición del espectro de pseudo aceleraciones considerando el ISE según el *FEMA 356.*

*Figura 3.30:* Definición de los casos de carga con el espectro de pseudo aceleraciones del *FEMA 356.* 

| Load Case Name<br>Load Case Type<br>Mass Source                                                                                                                  |                                                              | FEMA XX                                                                                               | Design<br>Notes                        |        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|----------------------------------------|--------|
|                                                                                                                                                                  |                                                              | Response Spectru                                                                                      |                                        |        |
|                                                                                                                                                                  |                                                              | Previous (CATEG                                                                                       |                                        |        |
| Analysis Model                                                                                                                                                   |                                                              | Default                                                                                               |                                        |        |
| oads Applied                                                                                                                                                     |                                                              |                                                                                                       |                                        |        |
| Load Type                                                                                                                                                        | Load Name                                                    | Function                                                                                              | Scale Factor                           | 0      |
| Acceleration                                                                                                                                                     | U1                                                           | FEMA                                                                                                  | 9.8067                                 | Add    |
| Acceleration                                                                                                                                                     | U1                                                           | FEMA                                                                                                  | <ul> <li>6.5378</li> </ul>             | Dele   |
| ther Parameters<br>Modal Load Case                                                                                                                               | _                                                            | Modal                                                                                                 | ~                                      | Adva   |
| ther Parameters<br>Modal Load Case<br>Modal Combination Met                                                                                                      | hod                                                          | Modal                                                                                                 | ~                                      | Adva 🗌 |
| ther Parameters<br>Modal Load Case<br>Modal Combination Met                                                                                                      | hod<br>Response                                              | Modal<br>CQC<br>Rigid Frequency, f1                                                                   | ~<br>~                                 | Adva   |
| ther Parameters<br>Modal Load Case<br>Modal Combination Met                                                                                                      | hod<br>Response                                              | Modal<br>CQC<br>Rigid Frequency, f1<br>Rigid Frequency, f2                                            | ~                                      | Adva   |
| ther Parameters<br>Modal Load Case<br>Modal Combination Met<br>Include Rigid                                                                                     | hod<br>Response                                              | Modal<br>CQC<br>Rigid Frequency, f1<br>Rigid Frequency, f2<br>Periodic + Rigid Type                   | ~                                      | Adva   |
| ther Parameters<br>Modal Load Case<br>Modal Combination Met<br>Include Rigid<br>Earthquake Dura                                                                  | hod<br>Response                                              | Modal<br>CQC<br>Rigid Frequency, f1<br>Rigid Frequency, f2<br>Periodic + Rigid Type                   | ~                                      | Adva   |
| ther Parameters<br>Modal Load Case<br>Modal Combination Met<br>Include Rigid<br>Earthquake Dura<br>Directional Combination                                       | hod<br>Response<br>tion, td<br>Type                          | Modal<br>COC<br>Rigid Frequency, f1<br>Rigid Frequency, f2<br>Petiodic + Rigid Type<br>SRSS           | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | Adva   |
| ther Parameters<br>Modal Load Case<br>Modal Combination Met<br>Include Rigid<br>Earthquake Dura<br>Directional Combination<br>Absolute Directio                  | hod<br>Response<br>tion, td<br>Type<br>nal Combination Scale | Modal<br>OCC<br>Rigid Frequency, f1<br>Rigid Frequency, f2<br>Periodic + Rigid Type<br>SRSS<br>Factor |                                        | Adva   |
| ther Parameters<br>Modal Load Case<br>Modal Combination Met<br>Include Rigid<br>Earthquake Dura<br>Directional Combination<br>Absolute Directio<br>Modal Damping | hod<br>Response<br>tion, td<br>Type<br>Constant at 0.05      | Modal<br>COC<br>Rigid Frequency, f1<br>Rigid Frequency, f2<br>Periodic + Rigid Type<br>SRSS<br>Factor |                                        | Adva   |

## 3.5 TRATAMIENTO Y ANÁLISIS DE DATOS Y PRESENTACIÓN DE RESULTADOS

#### 3.5.1 TRATAMIENTO Y ANÁLISIS DE DATOS

Se ordenaron y clasificaron los resultados obtenidos del ETABS V18 y del análisis para posteriormente comparar los resultados entre los modelos de base empotrada utilizando la norma E030 con los modelos de interacción suelo estructura. Este tratamiento y comparación se ha hecho para los desplazamientos, las derivas, las fuerzas internas en columnas, las fuerzas internas en vigas, fuerzas cortantes en muros de albañilería, fuerzas internas en placas, fuerzas cortantes en pisos y en los periodos de vibración de la estructura.

#### 3.5.2 PRESENTACIÓN DE RESULTADOS

#### 3.5.2.1 DESPLAZAMIENTOS

Para el análisis de los desplazamientos se hizo tanto para el sismo estático como para el sismo dinámico que propone la Norma E030 2018 utilizando a su vez las características y parámetros propias de la estructura. A continuación se muestran dichos resultados obtenidos.

#### 3.5.2.1.1 DESPLAZAMIENTOS EN LA DIRECCIÓN X

| X máx   | Desplazamiento de entrepiso (en cm) - Dirección X |        |         |          |            |        |
|---------|---------------------------------------------------|--------|---------|----------|------------|--------|
| Nivel   | Empotrado                                         | Barkan | Ilichev | Sargsian | Norma Rusa | FEMA   |
| Nivel 2 | 0.2444                                            | 0.5494 | 0.2989  | 0.5110   | 0.3055     | 0.5358 |
| Nivel 1 | 0.1125                                            | 0.3817 | 0.1543  | 0.3532   | 0.1619     | 0.3017 |

Tabla 3.15: Desplazamiento de entrepiso en X para el análisis sismo estático con la NormaE030 2018.



Figura 3.31: Gráfico de columnas de desplazamientos de entrepiso en la dirección X para el análisis sismo estático

Tabla 3.16: Desplazamiento de entrepiso en X para el análisis sismo dinámico con la NormaE030 2018.

| X máx   | Desplazamiento de entrepiso (en cm) - Dirección X |        |         |          |            |        |
|---------|---------------------------------------------------|--------|---------|----------|------------|--------|
| Nivel   | Empotrado                                         | Barkan | Ilichev | Sargsian | Norma Rusa | FEMA   |
| Nivel 2 | 0.2184                                            | 0.5493 | 0.2750  | 0.5104   | 0.2829     | 0.3916 |
| Nivel 1 | 0.0997                                            | 0.3911 | 0.1418  | 0.3618   | 0.1500     | 0.2207 |

*Figura 3.32: Gráfico de columnas de desplazamientos de entrepiso en la dirección X para el análisis sismo dinámico.* 


## 3.5.2.1.2 DESPLAZAMIENTOS EN LA DIRECCIÓN Y

Tabla 3.17: Desplazamiento de entrepiso en Y para el análisis sismo estático con la NormaE030 2018.

| Y máx   | Desplazamiento de entrepiso (en cm) - Dirección Y |        |         |          |            |        |  |  |  |
|---------|---------------------------------------------------|--------|---------|----------|------------|--------|--|--|--|
| Nivel   | Empotrado                                         | Barkan | Ilichev | Sargsian | Norma Rusa | FEMA   |  |  |  |
| Nivel 2 | 0.0857                                            | 0.6689 | 0.2867  | 0.6444   | 0.2119     | 0.1994 |  |  |  |
| Nivel 1 | 0.0552                                            | 0.4964 | 0.2095  | 0.4747   | 0.1440     | 0.1294 |  |  |  |

*Figura 3.33:* Gráfico de columnas de desplazamientos de entrepiso en la dirección Y para el análisis sismo estático.



Tabla 3.18: Desplazamiento de entrepiso en Y para el análisis sismo dinámico con la NormaE030 2018.

| Y máx   | Despl     | Desplazamiento de entrepiso (en cm) - Dirección Y |         |          |            |        |  |  |  |  |
|---------|-----------|---------------------------------------------------|---------|----------|------------|--------|--|--|--|--|
| Nivel   | Empotrado | Barkan                                            | Ilichev | Sargsian | Norma Rusa | FEMA   |  |  |  |  |
| Nivel 2 | 0.0599    | 0.5048                                            | 0.2139  | 0.4851   | 0.1541     | 0.1019 |  |  |  |  |
| Nivel 1 | 0.0395    | 0.3815                                            | 0.1596  | 0.3638   | 0.1064     | 0.0669 |  |  |  |  |



*Figura 3.34:* Gráfico de columnas de desplazamientos de entrepiso en la dirección Y para el sismo dinámico.

#### 3.5.2.2 DERIVAS

Al igual que para el análisis de los desplazamientos se hizo tanto para el sismo estático como para el sismo dinámico según la Norma E030 2018 utilizando a su vez las características y parámetros propias de la estructura. A continuación, se muestran dichos resultados obtenidos.

#### 3.5.2.2.1 DERIVAS EN LA DIRECCIÓN X

Tabla 3.19: Derivas en la Dirección X para el análisis Sismo Estático E030 2018.

|         | Derivas ΔD/H - Dirección X |         |         |          |            |         |  |  |
|---------|----------------------------|---------|---------|----------|------------|---------|--|--|
| Nivel   | Empotrado                  | Barkan  | Ilichev | Sargsian | Norma Rusa | FEMA    |  |  |
| Nivel 2 | 0.00043                    | 0.00055 | 0.00047 | 0.00052  | 0.00047    | 0.00076 |  |  |
| Nivel 1 | 0.00030                    | 0.00090 | 0.00037 | 0.00082  | 0.00038    | 0.00077 |  |  |

*Figura 3.35:* Gráfico de columnas de derivas de entrepiso en la dirección X para el análisis sismo estático.



Tabla 3.20: Derivas en la Dirección X para el análisis Sismo Dinámico E030 2018.

|         | Derivas ΔD/H - Dirección X |         |         |          |            |         |  |  |
|---------|----------------------------|---------|---------|----------|------------|---------|--|--|
| Nivel   | Empotrado                  | Barkan  | Ilichev | Sargsian | Norma Rusa | FEMA    |  |  |
| Nivel 2 | 0.00039                    | 0.00052 | 0.00044 | 0.00049  | 0.00044    | 0.00056 |  |  |
| Nivel 1 | 0.00027                    | 0.00092 | 0.00034 | 0.00083  | 0.00035    | 0.00057 |  |  |

*Figura 3.36:* Gráfico de columnas de derivas de entrepiso en la dirección X para el análisis sismo dinámico.



## 3.5.2.2.2 DERIVAS EN LA DIRECCIÓN Y

|         | Derivas ΔD/H - Dirección Y |         |         |          |            |         |  |  |
|---------|----------------------------|---------|---------|----------|------------|---------|--|--|
| Nivel   | Empotrado                  | Barkan  | Ilichev | Sargsian | Norma Rusa | FEMA    |  |  |
| Nivel 2 | 0.00012                    | 0.00057 | 0.00027 | 0.00057  | 0.00024    | 0.00026 |  |  |
| Nivel 1 | 0.00017                    | 0.00121 | 0.00053 | 0.00114  | 0.00039    | 0.00038 |  |  |

Tabla 3.21: Derivas en la Dirección Y para el análisis Sismo Estático E030 2018.

*Figura 3.37: Gráfico de columnas de derivas de entrepiso en la dirección Y para el análisis sismo estático.* 



Tabla 3.22: Derivas en la Dirección Y para el análisis Sismo Dinámico E030 2018.

|         |           | Derivas △D/H - Dirección Y |         |          |            |         |  |  |  |
|---------|-----------|----------------------------|---------|----------|------------|---------|--|--|--|
| Nivel   | Empotrado | Barkan                     | Ilichev | Sargsian | Norma Rusa | FEMA    |  |  |  |
| Nivel 2 | 0.00008   | 0.00041                    | 0.00019 | 0.00040  | 0.00017    | 0.00013 |  |  |  |
| Nivel 1 | 0.00012   | 0.00093                    | 0.00041 | 0.00087  | 0.00029    | 0.00020 |  |  |  |

*Figura 3.38:* Gráfico de columnas de derivas de entrepiso en la dirección Y para el análisis sismo dinámico.



#### 3.5.2.3 FUERZAS INTERNAS EN COLUMNAS

En cuanto a la evaluación de las fuerzas en columnas se tomó como muestra la columna 12-B y se evaluaron las fuerzas axiales, las cortantes y los momentos tanto para el modelo empotrado del sismo dinámico como para los modelos de interacción suelo estructura estudiados. A su vez se analizó para la dirección Y. A continuación se muestran tales resultados obtenidos.

# 3.5.2.3.1 FUERZAS AXIALES EN LA DIRECCIÓN Y DEL SISMO HORIZONTAL

|         | Fuerzas Axiales en Columnas 12-B |         |         |          |            |         |  |  |
|---------|----------------------------------|---------|---------|----------|------------|---------|--|--|
| Nivel   | Empotrado                        | Barkan  | Ilichev | Sargsian | Norma Rusa | FEMA    |  |  |
| Nivel 2 | 0.04860                          | 0.60100 | 0.56940 | 0.69500  | 0.41920    | 1.10470 |  |  |
| Nivel 1 | 0.37160                          | 2.13120 | 1.74780 | 2.22100  | 1.33670    | 2.40660 |  |  |

Tabla 3.23: Fuerzas Axiales en la columna 12-B (en Tn).



Figura 3.39: Gráfico de columnas de fuerzas axiales en la columna 12-B (en Tn).

#### 3.5.2.3.2 CORTANTES EN LA DIRECCIÓN Y DEL SISMO HORIZONTAL

|         | Cortantes en Columnas 12-B |         |         |          |            |         |  |  |
|---------|----------------------------|---------|---------|----------|------------|---------|--|--|
| Nivel   | Empotrado                  | Barkan  | Ilichev | Sargsian | Norma Rusa | FEMA    |  |  |
| Nivel 2 | 0.50810                    | 0.93980 | 0.90220 | 0.99810  | 0.79910    | 0.68660 |  |  |
| Nivel 1 | 0.91820                    | 1.16320 | 1.12830 | 1.17310  | 1.06380    | 1.27730 |  |  |

Tabla 3.24: Cortantes en la columna 12-B (en Tn).

Figura 3.40: Gráfico de columnas de fuerzas axiales en la columna 12-B (en Tn).



## 3.5.2.3.3 MOMENTOS EN LA DIRECCIÓN Y DEL SISMO HORIZONTAL

|         | Momentos en Columnas 12-B |         |         |          |            |         |  |  |  |
|---------|---------------------------|---------|---------|----------|------------|---------|--|--|--|
| Nivel   | Empotrado                 | Barkan  | Ilichev | Sargsian | Norma Rusa | FEMA    |  |  |  |
| Nivel 2 | 0.73210                   | 1.21690 | 1.20070 | 1.29660  | 1.07730    | 1.00290 |  |  |  |
| Nivel 1 | 1.82560                   | 2.15570 | 2.11220 | 2.16030  | 2.02760    | 2.51380 |  |  |  |

Tabla 3.25: Momentos en la columna 12-B (en Tn-m).





# 3.5.2.3.4 TABLAS COMPARATIVAS EN PORCENTAJES DE LAS FUERZAS INTERNAS DE LA COLUMNA 12-B.

Tabla 3.26: Porcentajes de variación de fuerzas internas de la columna 12-B en la dirección Y -Primer Nivel.

| Euorzo Intorno       | Modelo Dínámico |         |         |          |            |         |  |  |
|----------------------|-----------------|---------|---------|----------|------------|---------|--|--|
| ruerza mierna        | Empotrado       | Barkan  | Ilichev | Sargsian | Norma Rusa | FEMA    |  |  |
| Fuerzas Axiales (Tn) | 0.37160         | 2.13120 | 1.74780 | 2.22100  | 1.33670    | 2.40660 |  |  |
| Cortantes (Tn)       | 0.91820         | 1.16320 | 1.12830 | 1.17310  | 1.06380    | 1.27730 |  |  |
| Momentos (Tn-m)      | 1.82560         | 2.15570 | 2.11220 | 2.16030  | 2.02760    | 2.51380 |  |  |
| % Variación F.A      | 100%            | 574%    | 470%    | 598%     | 360%       | 648%    |  |  |
| % Variación V        | 100%            | 127%    | 123%    | 128%     | 116%       | 139%    |  |  |
| % Variación M        | 100%            | 118%    | 116%    | 118%     | 111%       | 138%    |  |  |

| Euorza Intorna       | Modelo Dínámico |         |         |          |            |         |  |  |
|----------------------|-----------------|---------|---------|----------|------------|---------|--|--|
| ruerza mierna        | Empotrado       | Barkan  | Ilichev | Sargsian | Norma Rusa | FEMA    |  |  |
| Fuerzas Axiales (Tn) | 0.04860         | 0.60100 | 0.56940 | 0.69500  | 0.41920    | 1.10470 |  |  |
| Cortantes (Tn)       | 0.50810         | 0.93980 | 0.90220 | 0.99810  | 0.79910    | 0.68660 |  |  |
| Momentos (Tn-m)      | 0.73210         | 1.21690 | 1.20070 | 1.29660  | 1.07730    | 1.00290 |  |  |
| % Variación F.A      | 100%            | 1237%   | 1172%   | 1430%    | 863%       | 2273%   |  |  |
| % Variación V        | 100%            | 185%    | 178%    | 196%     | 157%       | 135%    |  |  |
| % Variación M        | 100%            | 166%    | 164%    | 177%     | 147%       | 137%    |  |  |

Tabla 3.27: Porcentajes de variación de fuerzas internas de la columna 12-B en la dirección Y -Segundo Nivel.

#### 3.5.2.4 FUERZAS INTERNAS EN VIGAS

En cuanto a la evaluación de las fuerzas en vigas se tomó como muestra la viga 12-B-C y se evaluaron las cortantes y los momentos tanto para el modelo empotrado del sismo dinámico como para los modelos de interacción suelo estructura estudiados. A su vez se analizó para la dirección Y. A continuación se muestran tales resultados obtenidos.

#### 3.5.2.4.1 CORTANTES EN LA DIRECCIÓN Y DEL SISMO HORIZONTAL

|         | Cortantes en Vigas 12-B-C |         |         |          |            |         |  |  |
|---------|---------------------------|---------|---------|----------|------------|---------|--|--|
| Nivel   | Empotrado                 | Barkan  | Ilichev | Sargsian | Norma Rusa | FEMA    |  |  |
| Nivel 2 | 0.30970                   | 0.81810 | 0.80450 | 0.90350  | 0.66570    | 0.34790 |  |  |
| Nivel 1 | 0.76130                   | 1.93720 | 1.57390 | 1.92250  | 1.32650    | 0.96860 |  |  |

Figura 3.42: Gráfico de columnas de cortantes en la viga 12-B-C (en Tn).

Tabla 3.28: Cortantes en la viga 12-B-C (en Tn).



# 3.5.2.4.2 MOMENTOS FLECTORES EN LA DIRECCIÓN Y DEL SISMO HORIZONTAL

|         |                  | Momentos flectores en Vigas 12-B-C |         |                     |         |         |  |  |  |  |
|---------|------------------|------------------------------------|---------|---------------------|---------|---------|--|--|--|--|
| Nivel   | Empotrado Barkan |                                    | Ilichev | Sargsian Norma Rusa |         | FEMA    |  |  |  |  |
| Nivel 2 | 0.50120          | 0.40950                            | 0.42580 | 0.40200             | 0.46100 | 0.81240 |  |  |  |  |
| Nivel 1 | 1.08570          | 1.00120                            | 1.03700 | 0.99880             | 1.05420 | 1.64800 |  |  |  |  |

Tabla 3.29: Momentos Flectores en la viga 12-B-C (en Tn-m).

Figura 3.43: Gráfico de columnas de Momentos Flectores en la viga 12-B-C (en Tn-m).



# 3.5.2.4.3 TABLAS COMPARATIVAS EN PORCENTAJES DE LAS FUERZAS INTERNAS DE LA VIGA 12-B-C.

**Tabla 3.30:** Porcentajes de variación de fuerzas internas de la viga 12-B-C en la dirección Y -<br/>Primer Nivel.

| Fuerza Interna  |           | Modelo Dínámico |         |          |            |         |  |  |  |  |
|-----------------|-----------|-----------------|---------|----------|------------|---------|--|--|--|--|
|                 | Empotrado | Barkan          | Ilichev | Sargsian | Norma Rusa | FEMA    |  |  |  |  |
| Cortantes (Tn)  | 0.76130   | 1.93720         | 1.57390 | 1.92250  | 1.32650    | 0.96860 |  |  |  |  |
| Momentos (Tn-m) | 1.08570   | 1.00120         | 1.03700 | 0.99880  | 1.05420    | 1.64800 |  |  |  |  |
| % Variación V   | 100%      | 254%            | 207%    | 253%     | 174%       | 127%    |  |  |  |  |
| % Variación M   | 100%      | 92%             | 96%     | 92%      | 97%        | 152%    |  |  |  |  |

| Fuerza Interna  | Modelo Dínámico |         |         |          |            |         |  |  |  |  |  |
|-----------------|-----------------|---------|---------|----------|------------|---------|--|--|--|--|--|
|                 | Empotrado       | Barkan  | Ilichev | Sargsian | Norma Rusa | FEMA    |  |  |  |  |  |
| Cortantes (Tn)  | 0.30970         | 0.81810 | 0.80450 | 0.90350  | 0.66570    | 0.34790 |  |  |  |  |  |
| Momentos (Tn-m) | 0.50120         | 0.40950 | 0.42580 | 0.40200  | 0.46100    | 0.81240 |  |  |  |  |  |
| % Variación V   | 100%            | 264%    | 260%    | 292%     | 215%       | 112%    |  |  |  |  |  |
| % Variación M   | 100%            | 82%     | 85%     | 80%      | 92%        | 162%    |  |  |  |  |  |

Tabla 3.31: Porcentajes de variación de fuerzas internas de la viga 12-B-C en la dirección Y -Segundo Nivel.

#### 3.5.2.5 FUERZAS INTERNAS EN MUROS DE ALBAÑILERÍA

Para la evaluación de las fuerzas internas en los muros de albañilería se tomó como muestra el muro 11-B-C y se evaluó las fuerzas axiales y cortantes para los modelos empotrados sometido a análisis sismo dinámico y para los modelos de interacción suelo estructura ya mencionados. La dirección analizada fue la dirección Y. A continuación se muestran los resultados obtenidos.

# 3.5.2.5.1 FUERZAS AXIALES EN LA DIRECCIÓN Y DEL SISMO HORIZONTAL

|         | Fuerzas Axiales en Muros de Albañilería |         |         |          |            |         |  |  |  |
|---------|-----------------------------------------|---------|---------|----------|------------|---------|--|--|--|
| Nivel   | Empotrado                               | Barkan  | Ilichev | Sargsian | Norma Rusa | FEMA    |  |  |  |
| Nivel 2 | 1.40340                                 | 1.36300 | 1.37180 | 1.35080  | 1.40320    | 1.00370 |  |  |  |
| Nivel 1 | 2.21620                                 | 2.16800 | 2.22680 | 2.18630  | 2.23500    | 2.34340 |  |  |  |

Tabla 3.32: Fuerzas axiales en el muro de albañilería 11-B-C (en Tn).



Figura 3.44: Gráfico de columnas de Fuerzas axiales en el muro de albañilería 11-B-C (en Tn).

## 3.5.2.5.2 CORTANTES EN LA DIRECCIÓN Y DEL SISMO HORIZONTAL

|         | Cortantes en Muros de Albañilería |         |         |          |            |         |  |  |  |
|---------|-----------------------------------|---------|---------|----------|------------|---------|--|--|--|
| Nivel   | Empotrado                         | Barkan  | Ilichev | Sargsian | Norma Rusa | FEMA    |  |  |  |
| Nivel 2 | 4.97640                           | 4.62170 | 4.68710 | 4.57380  | 4.88860    | 3.19570 |  |  |  |
| Nivel 1 | 7.29750                           | 7.43450 | 7.55460 | 7.47880  | 7.47600    | 4.96940 |  |  |  |

Tabla 3.33: Cortantes en el Muro de albañilería 11-B-C (en Tn).

Figura 3.45: Gráfico de columnas de Cortantes en el Muro de albañilería 11-B-C (en Tn).



# 3.5.2.5.3 TABLAS COMPARATIVAS EN PORCENTAJES DE LAS FUERZAS INTERNAS DEL MURO DE ALBAÑILERÍA 11-B-C.

Tabla 3.34: Porcentajes de variación de fuerzas internas del muro de albañilería 11-B-C en la<br/>dirección Y - Primer Nivel.

| Fuerza Interna       |           | Modelo Dínámico |         |          |            |         |  |  |  |  |
|----------------------|-----------|-----------------|---------|----------|------------|---------|--|--|--|--|
| rueiza interna       | Empotrado | Barkan          | Ilichev | Sargsian | Norma Rusa | FEMA    |  |  |  |  |
| Fuerzas Axiales (Tn) | 2.21620   | 2.16800         | 2.22680 | 2.18630  | 2.23500    | 2.34340 |  |  |  |  |
| Cortantes (Tn)       | 7.29750   | 7.43450         | 7.55460 | 7.47880  | 7.47600    | 4.96940 |  |  |  |  |
| % Variación F.A      | 100%      | 98%             | 100%    | 99%      | 101%       | 106%    |  |  |  |  |
| % Variación V        | 100%      | 102%            | 104%    | 102%     | 102%       | 68%     |  |  |  |  |

| Fuerza Interna       | Modelo Dínámico |         |         |          |            |         |  |  |  |
|----------------------|-----------------|---------|---------|----------|------------|---------|--|--|--|
|                      | Empotrado       | Barkan  | Ilichev | Sargsian | Norma Rusa | FEMA    |  |  |  |
| Fuerzas Axiales (Tn) | 1.40340         | 1.36300 | 1.37180 | 1.35080  | 1.40320    | 1.00370 |  |  |  |
| Cortantes (Tn)       | 4.97640         | 4.62170 | 4.68710 | 4.57380  | 4.88860    | 3.19570 |  |  |  |
| % Variación F.A      | 100%            | 97%     | 98%     | 96%      | 100%       | 72%     |  |  |  |
| % Variación V        | 100%            | 93%     | 94%     | 92%      | 98%        | 64%     |  |  |  |

Tabla 3.35: Porcentajes de variación de fuerzas internas del muro de albañilería 11-B-C en la<br/>dirección Y - Segundo Nivel.

## 3.5.2.6 FUERZAS INTERNAS EN PLACAS

Para la evaluación de las fuerzas internas en las placas se tomó como muestra el muro C-12-13 y se evaluó las fuerzas axiales y cortantes para los modelos empotrados sometido a análisis sismo dinámico y para los modelos de interacción suelo estructura ya mencionados. La dirección analizada fue la dirección X. A continuación se muestran los resultados obtenidos.

# 3.5.2.6.1 FUERZAS AXIALES EN LA DIRECCIÓN X DEL SISMO HORIZONTAL

|         | Fuerzas Axiales en Placas |          |          |          |            |          |  |  |  |
|---------|---------------------------|----------|----------|----------|------------|----------|--|--|--|
| Nivel   | Empotrado                 | Barkan   | Ilichev  | Sargsian | Norma Rusa | FEMA     |  |  |  |
| Nivel 2 | 3.17530                   | 3.74530  | 3.57120  | 3.57280  | 3.65780    | 3.42740  |  |  |  |
| Nivel 1 | 17.07900                  | 19.27470 | 19.34170 | 19.02950 | 17.49150   | 16.72580 |  |  |  |

Tabla 3.36: Fuerzas axiales en la placa C-12-13 (en Tn).



Figura 3.46: Gráfico de columnas de Fuerzas axiales en la placa C-12-13 (en Tn).

## 3.5.2.6.2 CORTANTES EN LA DIRECCIÓN X DEL SISMO HORIZONTAL

|         | Cortantes en Placas |          |          |          |            |          |  |  |
|---------|---------------------|----------|----------|----------|------------|----------|--|--|
| Nivel   | Empotrado           | Barkan   | Ilichev  | Sargsian | Norma Rusa | FEMA     |  |  |
| Nivel 2 | 10.54890            | 9.23980  | 10.22140 | 9.32100  | 10.59470   | 5.02790  |  |  |
| Nivel 1 | 21.82650            | 22.35100 | 20.93440 | 22.45600 | 22.98640   | 20.45950 |  |  |

Tabla 3.37: Cortantes en la placa C-12-13 (en Tn).

Figura 3.47: Gráfico de columnas de Cortantes en la placa C-12-13 (en Tn).



# 3.5.2.6.3 TABLAS COMPARATIVAS EN PORCENTAJES DE LAS FUERZAS INTERNAS DE LA PLACA C-12-13.

Tabla 3.38: Porcentajes de variación de fuerzas internas de la placa C-12-13 en la dirección X- Primer Nivel.

| Fuerza Interna       |           | Modelo Dínámico |          |          |            |          |  |  |  |  |
|----------------------|-----------|-----------------|----------|----------|------------|----------|--|--|--|--|
| rueiza interna       | Empotrado | Barkan          | Ilichev  | Sargsian | Norma Rusa | FEMA     |  |  |  |  |
| Fuerzas Axiales (Tn) | 17.07900  | 19.27470        | 19.34170 | 19.02950 | 17.49150   | 16.72580 |  |  |  |  |
| Cortantes (Tn)       | 21.82650  | 22.35100        | 20.93440 | 22.45600 | 22.98640   | 20.45950 |  |  |  |  |
| % Variación F.A      | 100%      | 113%            | 113%     | 111%     | 102%       | 98%      |  |  |  |  |
| % Variación V        | 100%      | 102%            | 96%      | 103%     | 105%       | 94%      |  |  |  |  |

| Fuerza Interna       | Modelo Dínámico |         |          |          |            |         |  |  |  |
|----------------------|-----------------|---------|----------|----------|------------|---------|--|--|--|
|                      | Empotrado       | Barkan  | Ilichev  | Sargsian | Norma Rusa | FEMA    |  |  |  |
| Fuerzas Axiales (Tn) | 3.17530         | 3.74530 | 3.57120  | 3.57280  | 3.65780    | 3.42740 |  |  |  |
| Cortantes (Tn)       | 10.54890        | 9.23980 | 10.22140 | 9.32100  | 10.59470   | 5.02790 |  |  |  |
| % Variación F.A      | 100%            | 118%    | 112%     | 113%     | 115%       | 108%    |  |  |  |
| % Variación V        | 100%            | 88%     | 97%      | 88%      | 100%       | 48%     |  |  |  |

 Tabla 3.39: Porcentajes de variación de fuerzas internas de la placa C-12-13 en la dirección X

 - Segundo Nivel.

#### 3.5.2.7 FUERZAS CORTANTES DE PISO

Se evaluó también las fuerzas cortantes de piso para los niveles 1 y 2 tanto para la dirección X como Y. Los resultados obtenidos muestran los resultados para el modelo empotrado sometido a análisis sismo dinámico y para los modelos de interacción suelo estructura estudiados. A continuación se muestran dichos resultados.

## 3.5.2.7.1 CORTANTES DE PISO EN LA DIRECCIÓN X

| Tabla 3.40: | <i>Cortantes</i> | de j | piso | en Di | irecció | n X | (en | Tn) | • |
|-------------|------------------|------|------|-------|---------|-----|-----|-----|---|
|-------------|------------------|------|------|-------|---------|-----|-----|-----|---|

|         | Cortantes de Piso - Dirección X                |           |          |           |          |          |  |  |
|---------|------------------------------------------------|-----------|----------|-----------|----------|----------|--|--|
| Nivel   | Empotrado Barkan Ilichev Sargsian Norma Rusa F |           |          |           |          |          |  |  |
| Nivel 2 | 51.86750                                       | 48.64110  | 52.23770 | 48.72510  | 52.16610 | 40.28500 |  |  |
| Nivel 1 | 90.10400                                       | 104.25650 | 94.63370 | 104.15530 | 95.54780 | 76.59750 |  |  |

Figura 3.48: Gráfico de columnas de cortantes de piso en la Dirección X (en Tn).



## 3.5.2.7.2 CORTANTES DE PISO EN LA DIRECCIÓN Y

|         | Cortantes de Piso - Dirección Y |          |          |          |            |          |  |  |
|---------|---------------------------------|----------|----------|----------|------------|----------|--|--|
| Nivel   | Empotrado                       | Barkan   | Ilichev  | Sargsian | Norma Rusa | FEMA     |  |  |
| Nivel 2 | 42.39150                        | 41.55820 | 41.89550 | 41.72760 | 43.06050   | 30.36750 |  |  |
| Nivel 1 | 87.54110                        | 92.19970 | 91.96520 | 92.10030 | 90.30580   | 63.41710 |  |  |

Tabla 3.41: Cortantes de piso en Dirección Y (en Tn).

Figura 3.49: Gráfico de columnas de cortantes de piso en la Dirección Y (en Tn).



# 3.5.2.7.3 TABLAS COMPARATIVAS EN PORCENTAJES DE LAS CORTANTES DE PISO

|                      |           | Modelo Dínámico |           |          |            |          |          |  |
|----------------------|-----------|-----------------|-----------|----------|------------|----------|----------|--|
|                      | Empotrado | Barkan          | Ilichev   | Sargsian | Norma Rusa | FEMA     |          |  |
| Contente de nice     | 1° Nivel  | 90.10400        | 104.25650 | 94.63370 | 104.15530  | 95.54780 | 76.59750 |  |
| Cortante de piso     | 2° Nivel  | 51.86750        | 48.64110  | 52.23770 | 48.72510   | 52.16610 | 40.28500 |  |
| % Variación 1° Nivel |           | 100%            | 116%      | 105%     | 116%       | 106%     | 85%      |  |
| % Variación 2° Nivel |           | 100%            | 94%       | 101%     | 94%        | 101%     | 78%      |  |

Tabla 3.42: Porcentajes de variación de cortantes de piso en la dirección X.

Tabla 3.43: Porcentajes de variación de cortantes de piso en la dirección Y.

|                      | Modelo Dínámico |           |          |          |          |            |          |
|----------------------|-----------------|-----------|----------|----------|----------|------------|----------|
|                      |                 | Empotrado | Barkan   | Ilichev  | Sargsian | Norma Rusa | FEMA     |
| Cortante de piso     | 1° Nivel        | 87.54110  | 92.19970 | 91.96520 | 92.10030 | 90.30580   | 63.41710 |
|                      | 2° Nivel        | 42.39150  | 41.55820 | 41.89550 | 41.72760 | 43.06050   | 30.36750 |
| % Variación 1° Nivel |                 | 100%      | 105%     | 105%     | 105%     | 103%       | 72%      |
| % Variación 2° Nivel |                 | 100%      | 98%      | 99%      | 98%      | 102%       | 72%      |

#### 3.5.2.8 PERIODOS DE VIBRACIÓN

Finalmente se evaluó también los periodos de vibración para los cuales se han considerado 3 por piso, por lo que se tiene 6 periodos de vibración. Los resultados obtenidos muestran los resultados para el modelo empotrado sometido a análisis sismo dinámico y para los modelos de interacción suelo estructura estudiados. A continuación se muestran dichos resultados.

#### 3.5.2.8.1 PERIODOS DE VIBRACIÓN

|      | PERIODOS DE VIBRACIÓN |         |         |          |            |         |  |  |  |
|------|-----------------------|---------|---------|----------|------------|---------|--|--|--|
| Modo | Empotrado             | Barkan  | Ilichev | Sargsian | Norma Rusa | FEMA    |  |  |  |
| 1    | 0.16000               | 0.27100 | 0.18000 | 0.26500  | 0.18200    | 0.24300 |  |  |  |
| 2    | 0.09200               | 0.26100 | 0.17600 | 0.25200  | 0.14800    | 0.14100 |  |  |  |
| 3    | 0.08200               | 0.09800 | 0.09500 | 0.09800  | 0.11500    | 0.12900 |  |  |  |
| 4    | 0.03900               | 0.07100 | 0.04600 | 0.06900  | 0.04800    | 0.06100 |  |  |  |
| 5    | 0.03300               | 0.06300 | 0.04400 | 0.06200  | 0.03800    | 0.05300 |  |  |  |
| 6    | 0.02800               | 0.03100 | 0.03000 | 0.03100  | 0.03400    | 0.04900 |  |  |  |

Tabla 3.44: Periodos de vibración (en seg).

Figura 3.50: Gráfico de columnas de los Periodos de vibración (en seg).



#### CAPÍTULO IV: ANÁLISIS Y DISCUSIÓN DE RESULTADOS

#### 4.1 **DESPLAZAMIENTOS**

- A. De la Tabla 3.15: Desplazamiento de entrepiso en X para el análisis sismo estático y la Figura 3.31: Gráfico de columnas de desplazamientos de entrepiso en la dirección X para el análisis sismo estático, se tiene lo siguiente:
  - El mayor desplazamiento en el primer nivel corresponde al Modelo Dinámico de Barkan con un 0.3817 cm mientras que el menor corresponde al Modelo Dinámico de Ilichev con 0.1543 cm.
  - Y, el mayor desplazamiento en el segundo nivel también corresponde al Modelo Dinámico de Barkan con un 0.5494 cm mientras que el menor corresponde al Modelo Dinámico de Ilichev con 0.2989 cm.
- B. De la Tabla 3.16: Desplazamiento de entrepiso en X para el análisis sismo dinámico y la Figura 3.32: Gráfico de columnas de desplazamientos de entrepiso en la dirección X para el análisis sismo dinámico., se tiene lo siguiente:
  - El mayor desplazamiento en el primer nivel corresponde al Modelo Dinámico de Barkan con un 0.3911 cm mientras que el menor corresponde al Modelo Dinámico de Ilichev con 0.1418 cm.
  - Y, el mayor desplazamiento en el segundo nivel también corresponde al Modelo Dinámico de Barkan con un 0.5493 cm mientras que el menor corresponde al Modelo Dinámico de Ilichev con 0.2750 cm.
- C. De la Tabla 3.17: Desplazamiento de entrepiso en Y para el análisis sismo estático y la Figura 3.33: Gráfico de columnas de desplazamientos de entrepiso en la dirección Y para el análisis sismo estático, se tiene lo siguiente:
  - El mayor desplazamiento en el primer nivel corresponde al Modelo Dinámico de Barkan con un 0.4964 cm mientras que el menor corresponde al Modelo Dinámico del FEMA con 0.1294 cm.

- Y, el mayor desplazamiento en el segundo nivel también corresponde al Modelo Dinámico de Barkan con un 0.6689 cm mientras que el menor corresponde al Modelo Dinámico del FEMA con 0.1994 cm.
- D. De la Tabla 3.18: Desplazamiento de entrepiso en Y para el análisis sismo dinámico y la Figura 3.34: Gráfico de columnas de desplazamientos de entrepiso en la dirección Y para el sismo dinámico., se tiene lo siguiente:
  - El mayor desplazamiento en el primer nivel corresponde al Modelo Dinámico de Barkan con un 0.3815 cm mientras que el menor corresponde al Modelo Dinámico del FEMA con 0.0669 cm.
  - Y, el mayor desplazamiento en el segundo nivel también corresponde al Modelo Dinámico de Barkan con un 0.5048 cm mientras que el menor corresponde al Modelo Dinámico del FEMA con 0.1019 cm.

## 4.2 DERIVAS

- A. De la Tabla 3.19: Derivas en la Dirección X para el análisis Sismo Estático y la Figura 3.35: Gráfico de columnas de derivas de entrepiso en la dirección X para el análisis sismo estático, se tiene lo siguiente:
  - El mayor valor de la deriva en el primer nivel corresponde al Modelo Dinámico de Barkan con un valor de 0.00090 mientras que el menor valor corresponde al Modelo Dinámico de la Norma Rusa con 0.00037 cm.
  - Y, El mayor valor de la deriva en el segundo nivel corresponde al Modelo Dinámico del FEMA con un valor de 0.00076 mientras que el menor valor corresponde al Modelo Dinámico de la Norma Rusa con 0.00047 cm.
- B. De la Tabla 3.20: Derivas en la Dirección X para el análisis Sismo Dinámico y la Figura 3.36: Gráfico de columnas de derivas de entrepiso en la dirección X para el análisis sismo dinámico, se tiene lo siguiente:

- El mayor valor de la deriva en el primer nivel corresponde al Modelo Dinámico de Barkan con un valor de 0.00092 mientras que el menor valor corresponde al Modelo Dinámico de Ilichev con 0.00034 cm.
- Y, El mayor valor de la deriva en el segundo nivel corresponde al Modelo Dinámico del FEMA con un valor de 0.00056 mientras que el menor valor corresponde al Modelo Dinámico de Ilichev con 0.00044 cm.
- C. De la Tabla 3.21: Derivas en la Dirección Y para el análisis Sismo Estático y la Figura 3.37: Gráfico de columnas de derivas de entrepiso en la dirección Y para el análisis sismo estático, se tiene lo siguiente:
  - El mayor valor de la deriva en el primer nivel corresponde al Modelo Dinámico de Barkan con un valor de 0.00121 mientras que el menor valor corresponde al Modelo Dinámico del FEMA con 0.00038 cm.
  - Y, El mayor valor de la deriva en el segundo nivel corresponde a los Modelo Dinámico de Barkan y Sargsian con un valor de 0.00057 mientras que el menor valor corresponde al Modelo Dinámico de la Norma Rusa con 0.00024 cm.
- D. De la Tabla 3.22: Derivas en la Dirección Y para el análisis Sismo Dinámico y la Figura 3.38: Gráfico de columnas de derivas de entrepiso en la dirección Y para el análisis sismo dinámico, se tiene lo siguiente:
  - El mayor valor de la deriva en el primer nivel corresponde al Modelo Dinámico de Barkan con un valor de 0.00093 mientras que el menor valor corresponde al Modelo Dinámico del FEMA con 0.00020 cm.
  - Y, El mayor valor de la deriva en el segundo nivel corresponde al Modelo Dinámico de Barkan con un valor de 0.00041 mientras que el menor valor corresponde al Modelo Dinámico del FEMA con 0.00013 cm.

#### 4.3 FUERZAS INTERNAS EN COLUMNAS

- A. De la Tabla 3.23: Porcentajes de variación de fuerzas internas de la columna 12-B en la dirección Y - Primer Nivel, se tiene lo siguiente:
  - En cuanto a las Fuerzas axiales se tiene que el mayor valor obtenido corresponde al Modelo Dinámico del FEMA con un 648% del Modelo Empotrado, y se tiene también que el menor valor obtenido corresponde al Modelo Dinámico de la Norma Rusa con un 360% del Modelo Empotrado.
  - En cuanto a las Cortantes se tiene que el mayor valor obtenido corresponde al Modelo Dinámico del FEMA con un 139% del Modelo Empotrado, y se tiene también que el menor valor obtenido corresponde al Modelo Dinámico de la Norma Rusa con un 116% del Modelo Empotrado.
  - Y, en cuanto a los Momentos se tiene que el mayor valor obtenido corresponde al Modelo Dinámico del FEMA con un 138% del Modelo Empotrado, y se tiene también que el menor valor obtenido corresponde al Modelo Dinámico de la Norma Rusa con un 111% del Modelo Empotrado.
- B. De la Tabla 3.24: Porcentajes de variación de fuerzas internas de la columna 12-B en la dirección Y - Segundo Nivel, se tiene lo siguiente:
  - En cuanto a las Fuerzas axiales se tiene que el mayor valor obtenido corresponde al Modelo Dinámico del FEMA con un 2273% del Modelo Empotrado, y se tiene también que el menor valor obtenido corresponde al Modelo Dinámico de la Norma Rusa con un 863% del Modelo Empotrado.
  - En cuanto a las Cortantes se tiene que el mayor valor obtenido corresponde al Modelo Dinámico de Sargsian con un 196% del Modelo Empotrado, y se tiene también que el menor valor obtenido corresponde al Modelo Dinámico del FEMA con un 135% del Modelo Empotrado.
  - Y, en cuanto a los Momentos se tiene que el mayor valor obtenido corresponde al Modelo Dinámico de Sargsian con un 177% del Modelo

Empotrado, y se tiene también que el menor valor obtenido corresponde al Modelo Dinámico del FEMA con un 147% del Modelo Empotrado.

#### 4.4 FUERZAS INTERNAS EN VIGAS

- **A.** De la Tabla 3.25: Porcentajes de variación de fuerzas internas de la viga 12-B-C en la dirección Y Primer Nivel, se tiene lo siguiente:
  - En cuanto a las Cortantes se tiene que el mayor valor obtenido corresponde al Modelo Dinámico de Barkan con un 254% del Modelo Empotrado, y se tiene también que el menor valor obtenido corresponde al Modelo Dinámico del FEMA con un 127% del Modelo Empotrado.
  - Y, en cuanto a los Momentos se tiene que el mayor valor obtenido corresponde al Modelo Dinámico del FEMA con un 152% del Modelo Empotrado, y se tiene también que el menor valor obtenido corresponde a los Modelos Dinámicos de Barkan y Sargsian con un 92% del Modelo Empotrado, es decir, es menor que el modelo tradicional de Base Empotrada.
- B. De la Tabla 3.26: Porcentajes de variación de fuerzas internas de la viga 12-B-C en la dirección Y Segundo Nivel, se tiene lo siguiente:
  - En cuanto a las Cortantes se tiene que el mayor valor obtenido corresponde al Modelo Dinámico de Sargsian con un 292% del Modelo Empotrado, y se tiene también que el menor valor obtenido corresponde al Modelo Dinámico del FEMA con un 112% del Modelo Empotrado.
  - Y, en cuanto a los Momentos se tiene que el mayor valor obtenido corresponde al Modelo Dinámico del FEMA con un 162% del Modelo Empotrado, y se tiene también que el menor valor obtenido corresponde al Modelo Dinámico de Sargsian con un 80% del Modelo Empotrado, es decir, es menor que el modelo tradicional de Base Empotrada.

## 4.5 FUERZAS INTERNAS EN MUROS DE ALBAÑILERÍA

- **A.** De la Tabla 3.27: Porcentajes de variación de fuerzas internas del muro de albañilería 11-B-C en la dirección Y Primer Nivel, se tiene lo siguiente:
  - En cuanto a las Fuerzas axiales se tiene que el mayor valor obtenido corresponde al Modelo Dinámico del FEMA con un 106% del Modelo Empotrado, y se tiene también que el menor valor obtenido corresponde al Modelo Dinámico de Barkan con un 98% del Modelo Empotrado.
  - Y, en cuanto a las Cortantes se tiene que el mayor valor obtenido corresponde al Modelo Dinámico de Ilichev con un 104% del Modelo Empotrado, y se tiene también que el menor valor obtenido corresponde al Modelo Dinámico del FEMA con un 68% del Modelo Empotrado, es decir, es menor incluso que el modelo tradicional de Base Empotrada.
- **B.** De la Tabla 3.28: Porcentajes de variación de fuerzas internas del muro de albañilería 11-B-C en la dirección Y Segundo Nivel, se tiene lo siguiente:
  - En cuanto a las Fuerzas axiales se tiene que el mayor valor obtenido corresponde al Modelo Dinámico de la Norma Rusa con un 100% del Modelo Empotrado, y se tiene también que el menor valor obtenido corresponde al Modelo Dinámico del FEMA con un 72% del Modelo Empotrado. Es decir, en general no hay variación alguna de los diferentes Modelos Dinámicos con respecto al Modelo de Base Empotrada.
  - Y, en cuanto a las Cortantes se tiene que el mayor valor obtenido corresponde al Modelo Dinámico de la Norma Rusa con un 98% del Modelo Empotrado, y se tiene también que el menor valor obtenido corresponde al Modelo Dinámico del FEMA con un 64% del Modelo Empotrado, es decir, todos los valores disminuyen con respecto al Modelo de Base Empotrada.

#### 4.6 FUERZAS INTERNAS EN PLACAS

 A. De la Tabla 3.29: Porcentajes de variación de fuerzas internas de la placa C-12-13 en la dirección X - Primer Nivel, se tiene lo siguiente:

- En cuanto a las Fuerzas axiales se tiene que el mayor valor obtenido corresponde a los Modelos Dinámicos de Barkan e Ilichev con un 113% del Modelo Empotrado, y se tiene también que el menor valor obtenido corresponde al Modelo Dinámico del FEMA con un 98% del Modelo Empotrado.
- Y, en cuanto a las Cortantes se tiene que el mayor valor obtenido corresponde al Modelo Dinámico de la Norma Rusa con un 105% del Modelo Empotrado, y se tiene también que el menor valor obtenido corresponde al Modelo Dinámico del FEMA con un 94% del Modelo Empotrado, es decir, es menor incluso que el modelo tradicional de Base Empotrada.
- B. De la Tabla 3.30: Porcentajes de variación de fuerzas internas de la placa C-12-13 en la dirección X - Segundo Nivel, se tiene lo siguiente:
  - En cuanto a las Fuerzas axiales se tiene que el mayor valor obtenido corresponde al Modelo Dinámico de Barkan con un 118% del Modelo Empotrado, y se tiene también que el menor valor obtenido corresponde al Modelo Dinámico del FEMA con un 108% del Modelo Empotrado.
  - Y, en cuanto a las Cortantes se tiene que el mayor valor obtenido corresponde al Modelo Dinámico de la Norma Rusa con un 100% del Modelo Empotrado, y se tiene también que el menor valor obtenido corresponde al Modelo Dinámico del FEMA con un 48% del Modelo Empotrado, es decir, ningún valor sobrepasa los valores del modelo tradicional de Base Empotrada.

#### 4.7 FUERZAS CORTANTES DE PISO

- **A.** De la Tabla 3.31: Porcentajes de variación de cortantes de piso en la dirección X, se tiene lo siguiente:
  - Para las cortantes de piso del primer nivel se tiene que los mayores valores de variación porcentual corresponden a los modelos Dinámicos de Barkan y Sargsian con un 116% con respecto al modelo tradicional de Base Empotrada. Y en cuanto al menor valor corresponde al Modelo Dinámico del FEMA con

un valor porcentual del 85% con respecto al modelo tradicional de Base Empotrada, es decir disminuye.

- Para las cortantes de piso del segundo nivel se tiene que los mayores valores de variación porcentual corresponden a los modelos Dinámicos de Ilichev y la Norma Rusa con un 101% con respecto al modelo tradicional de Base Empotrada. Y en cuanto al menor valor corresponde al Modelo Dinámico del FEMA con un valor porcentual del 78% con respecto al modelo tradicional de Base Empotrada, es decir también disminuye.
- **B.** De la Tabla 3.32: Porcentajes de variación de cortantes de piso en la dirección Y, se tiene lo siguiente:
  - Para las cortantes de piso del primer nivel se tiene que los mayores valores de variación porcentual corresponden a los modelos Dinámicos de Barkan, Ilichev y Sargsian con un 105% con respecto al modelo tradicional de Base Empotrada. Y en cuanto al menor valor corresponde al Modelo Dinámico del FEMA con un valor porcentual del 72% con respecto al modelo tradicional de Base Empotrada.
  - Para las cortantes de piso del segundo nivel se tiene que el mayor valor de variación porcentual corresponde a los modelos Dinámicos de la Norma Rusa con un 102% con respecto al modelo tradicional de Base Empotrada. Y en cuanto al menor valor corresponde al Modelo Dinámico del FEMA con un valor porcentual del 72% con respecto al modelo tradicional de Base Empotrada.

## 4.8 PERIODOS DE VIBRACIÓN

- A. De la Tabla 3.33: Periodos de vibración y la Figura 4.56: Gráfico de columnas de los Periodos de vibración., se tiene lo siguiente:
  - Los mayores periodos de vibración con respecto a los 2 primeros modos de vibración corresponden al Modelo Dinámico de Barkan siendo de 0.271s para el primero modo y de 0.261s para el segundo modo.

- Para el tercer modo de vibración se tiene que el mayor valor corresponde al modelo Dinámico del FEMA con un valor de 0.129s.
- Para el cuarto modo de vibración se tiene que el mayor valor corresponde al modelo Dinámico de Barkan con un valor de 0.071s.
- Para el quinto modo de vibración se tiene que el mayor valor corresponde al modelo Dinámico de Barkan con un valor de 0.063s.
- Y, para el sexto modo de vibración se tiene que el mayor valor corresponde al modelo Dinámico del FEMA con un valor de 0.049s.
- Además, se tiene que para todos los modos de vibración los menores valores corresponden al modelo tradicional de Base Empotrada con 0.16s, 0.092s, 0.082s, 0.039s, 0.033s y 0.028s respectivamente.

## 4.9 CONTRASTACIÓN DE LA HIPÓTESIS

Se tiene que la hipótesis planteada "Las variaciones de las respuestas estructurales de los modelos de cálculo de interacción suelo estructura disminuyen con respecto a la NTP E030 2018 del Pabellón "D" de la I.E. N° 81703, distrito de Guadalupe, provincia de Pacasmayo, región de La Libertad", no es verdadera debido a que no todas las respuestas estructurales de los modelos de cálculo de interacción suelo estructura disminuyen.

#### **CAPÍTULO V: CONCLUSIONES Y RECOMENDACIONES**

#### 5.1 CONCLUSIONES

Luego de cumplir con el objetivo general y los objetivos específicos se puede llegar a concluir lo siguiente:

- A. Acorde con la contrastación de la hipótesis, no todas las variaciones de las respuestas estructurales de los modelos de cálculo de interacción suelo estructura disminuyen con respecto a la NTP E030 2018.
- B. El Modelo de interacción Suelo Estructura propuesto por el FEMA ha generado la menor respuesta en algunos casos, tales como los desplazamientos en "Y" para el análisis Sismo Estático como el Sismo Dinámico, las derivas en "Y", las cortantes y momentos en columnas, las cortantes en vigas, las cortantes y fuerzas axiales en muros de albañilería, las fuerzas axiales y cortantes en placas, y finalmente las cortantes de piso en "X" y "Y". Cabe indicar que el modelo propuesto por el FEMA utiliza el reajuste del espectro de pseudoaceleraciones.
- C. El Modelo de interacción Suelo Estructura propuesto por el FEMA ha generado la mayor respuesta en algunos casos, tales como las derivas en "X" para el análisis Sismo Estático como el Sismo Dinámico, con valores de 0.00076 y 0.00056 respectivamente. Si bien estos valores han aumentado, cabe indicar que sigue siendo sustancialmente baja respecto al límite  $\Delta$ =0.007 estipulado en la norma E030.
- D. Otro de los aspectos donde el Modelo de interacción suelo estructura del FEMA ha dado la mayor respuesta estructural es en las fuerzas internas en columnas, con incrementos del 548% en las fuerzas axiales, 39% en las cortantes y 38% en los momentos respecto del modelo de base empotrada. Y también en las fuerzas internas en vigas, con incrementos del 62% en las cortantes en el segundo nivel y 52% en los momentos en el primer nivel respecto del modelo de base empotrada. Cabe indicar que el alto porcentaje de incremento en las fuerzas axiales en la columna es debido a que las fuerzas axiales en el modelo empotrado son muy bajas y la incorporación que el reajuste del espectro de pseudoaceleraciones tiene incidencia notable en esta variación.

- E. El modelo ISE con respuesta estructural mayor es el modelo de Barkan, debido a que tienen los desplazamientos más grandes con respecto al modelo de base empotrada siendo 0.668cm en "Y" el más grande en comparación con los 0.085cm del modelo de base empotrada, también las derivas en "Y" son las mayores siendo de 0.00121 en comparación a 0.00017 del modelo de base empotrada y finalmente los periodos de vibración son los mayores para el 1°,2°,4° y 5° modo siendo el mayor el primer modo con 0.271s en el modelo de Barkan y de 0.16s para el modelo de Base Empotrada. Cabe indicar que los coeficientes de rigidez traslacionales verticales de Barkan son los menores en comparación con resto de modelos dinámicos de interacción suelo estructura.
- F. Existe mucha variación en algunos de los resultados presentados para los diversos Modelos de interacción suelo estructura estudiados, esto debido a la complejidad del efecto de la interacción suelo estructura y a los métodos y consideraciones para hallar los parámetros que definen cada modelo de interacción suelo estructura.
- G. El efecto de la interacción suelo estructura es relevante y por esto no se debe omitir su inclusión en el análisis y diseño de estructuras.

## 5.2 RECOMENDACIONES

- A. Se recomienda tomar en cuenta la interacción suelo estructura en futuros proyectos de análisis y diseño de estructuras.
- B. Se recomienda fomentar información sobre interacción suelo estructura a fin de que se tome en cuenta en posteriores actualizaciones de la norma sismo resistente.

#### **REFERENCIAS BIBLIOGRÁFICAS**

- Arancibia Abarca, D. A. (2020). Estudio del efecto de la interacción suelo-estructura en edificios bajos de albañilería. Santiago de Chile.
- Arquiñego Laulate, J. J., & Velásquez Barrios, N. I. (2020). Evaluación de la interacción suelo - estructura en una edificación de 4 pisos, en el distrito de Cercado de Lima. Lima.
- Avilés, J. 1991. Respuesta Sísmica de un Sistema Suelo-Estructura: Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería, v. 1, España.
- Avilés, J; Pérez-Rocha L.E. 2004a. Bases para las Nuevas Disposiciones Reglamentarias sobre Interacción Dinámica Suelo – Estructura: Revista de Ingeniería Sísmica. N°: 71 México.
- Borda Flores, J. L. (2012). Análisis de los efectos de la Interacción suelo estructura en un edificio de Hormigón Armado ubicado en Cochabamba, Bolivia: Boletín Informativo ASOCEM. Lima.
- Estela Luna, J. J. (2019). Comparación de la respuesta estructural de una edificación regular con zapatas aisladas en la ciudad de Cajamarca, considerando y obviando el efecto de interacción sísmica suelo-estructura. Cajamarca.
- FEMA 357. (2000). Global topics report on the Prestandard and commentary for the seismic rehabilitation of buildings. Washington D.C. USA. Federal emergency Management Agency.
- FEMA 440. (2005). Improvement of nonlinear static seismic analysis procedures. Washington D.C. USA. Federal Emergency Management Agency.
- Garay Chávez, R. K. (2017). Influencia de la interacción suelo-estructura en el comportamiento sísmico de un edificio de 7 niveles del proyecto "Multifamiliar Los Balcones del Valle" barrio Columbo-Cajamarca. Cajamarca.

- García García, J. A. (2006). Interacción suelo-estructura en el análisis y diseño sísmico de estructuras de mampostería no reforzada: Memorias del XV Congreso Nacional de Ingeniería Estructural. Jalisco.
- Huamán Mendoza, G. C. (2018). Respuesta dinámica por los modelos de cálculo de interacción suelo estructura del FEMA y norma E030-2016 del edificio de comando de control ribereño Iquitos. Cajamarca.
- López Sotelo, E. M. (2013). Análisis de interacción sísmica suelo estructura para reducir esfuerzos en los elementos estructurales en edificaciones regulares e irregulares con zapatas aisladas en Huaraz. Huaraz.
- Villarreal Castro Genner. (2013). Interacción sísmica suelo estructura en edificaciones con zapatas aisladas, Lima Perú.

ANEXOS

# ANEXO 01: ESTUDIO DE MECÁNICA DE SUELOS



# INFORME TÉCNICO

# ESTUDIO DE SUELOS CON FINES DE CIMENTACION

**OBRA:** 

## MEJORAMIENTO DE LA INSTITUCION EDUCATIVA G.U.E. NUESTRA SEÑORA DE GUADALUPE (NIVEL PRIMARIA Y SECUNDARIA), DISTRITO DE GUADALUPE, PROVINCIA DE PACASMAYO, LA LIBERTAD

SOLICITANTE:

# ARQ. JAIME OJEDA SOTO

**UBICACIÓN:** 

DISTRITO : Guadalupe

PROVINCIA : PACASMAYO

DEPARTAMENTO : LA LIBERTAD

GENIEROS é Huertas Polo 34570

NOVIEMBRE del 2013



# CONCLUSIONES Y RECOMENDACIONES DE LAS CONDICIONES DE LA CIMENTACION

#### 1.0 GENERALIDADES:

#### **1.1 OBJETIVO DEL ESTUDIO**

El objetivo del presente Informe Técnico, es realizar un Estudio de Suelos con fines de cimentación para la obra denominada: MEJORAMIENTO DE LA INSTITUCION EDUCATIVA G.U.E. NUESTRA SEÑORA DE GUADALUPE (NIVEL PRIMARIA Y SECUNDARIA), DISTRITO DE GUADALUPE, PROVINCIA DE PACASMAYO, LA LIBERTAD

Estudio efectuado por medio de trabajos de exploración en campo y ensayos de Laboratorio, necesarios para definir el Perfil Estratigráfico de los suelos conforme a Normas vigentes, así como determinar la característica de esfuerzos y deformación de los suelos, proporcionando los parámetros más importantes de los suelos de apoyo de la cimentación, para la mejor realización de la obra.

#### 1.2 NORMATIVIDAD:

Los trabajos de investigación se ha realizado según Norma Peruana EMS E 050, la cual se basa en la aplicación de la Mecánica de Suelos que indica ensayos fundamentales y necesarios para predecir el comportamiento de un suelo bajo la acción de sistemas de carga y que, con la ayuda del análisis matemático, ensayos de laboratorio, ensayos de campo y de datos experimentales recogidos en obras anteriores, permite proyectar y ejecutar trabajos de fundaciones de toda índole. 

El área de estudio está ubicada en la G.U.E. Nuestra Señora de Guadalupe distrito de Guadalupe, provincia de Pacasmayo, departamento de La Libertad. Posee un área



total de 0.5 há aproximadamente, donde se proyecta construir mediante el sistema de albañilería confinada y pórticos aislados un edificio de 02 (dos) niveles. Las luces entre columnas varían entre 4.00 y 5.0 m en ambos ejes.

El terreno presenta un perfil del tipo heterogéneo, donde por debajo de un material orgánico se encuentran suelos finos de 1.70 m de espesor parcialmente humedo y de suelos gruesos limpios de finos en contacto con el agua de espesor indeterminado. En los alrededores existen construcciones de material noble y rustico, no observando problemas en la cimentación de estas edificaciones. La profundidad de la napa freática fue ubicada a la profundidad de 1.55 m desde el nivel del terreno natural.

Las pruebas de Sales Solubles Totales nos otorgan valores de Moderada Exposición a Sulfatos por lo recomendamos cemento Adicionado tipo MS o similar en el diseño para el concreto en las cimentaciones. Los cálculos de la capacidad admisible que fueron analizados por corte y asentamiento, nos otorgan valores de capacidad de trabajo mínimo de 0.82 kg/cm<sup>2</sup> para cualquier tipo de cimiento a partir de una profundidad de desplante mínima Df de 2.00 m, contados a partir del terreno natural.

## 2.0 GEOLOGIA Y SISMICIDAD DEL AREA EN ESTUDIO

#### 2.1 GEOLOGIA

Geológicamente en el ámbito de la ciudad de Contumazá aflora secuencia de cuarcitas conformado en gruesos bancos perteneciente a la formación cretáceo inferior Farrat, tectónicamente imbricada con plegamiento se alinea en dirección este oeste, encontrándose estructuras volcadas, en el cual los sistemas de falla tectónica han sido saturadas por flujos lávicos de dacitas y metacuarcitas.

Formaciones geológicas de la más antigua a la reciente:

Formación Ki - Farrat

Consta de cuarcitas y areniscas blancas de grano medio a grueso en gruesos bancos con intercalación de lechos de arenisca cuarzosa color gris, representa la parte clástica del cretáceo inferior, por su resistencia a la intemperie aflora con plegado volcado dando forma de prominencias conformando una amplia franja desde el este hasta la ciudad de Contumazá.

Formación Km - Inca

Está conformada por lutitas calcáreas color gris claro en bancos delgados, meteoriza en coloración gris amarillenta, contiene fósiles mal conservados, aflora en una delgada franja discordante al Norte de la ciudad de Contumazá.

Formación Km - Chulec

Consiste de caliza arenosa gris oscura y lutita calcárea nodulares, intemperiza en gris amarillento, se encuentra bien representado en cerro La Concha al Noreste de Contumazá.

Grupo Calipuy Ti-vch Chilete

Secuencia volcánica piroclástica estudiada ampliamente entre Chilete y el río Huertas, consiste de areniscas tobáceas en colores desde verde-violáceo hasta gris claro, se extiende con amplia cobertura hacia la margen izquierda de Río Contumazá, en el área del estudio ha saturado fallas con tobas de arenisca feldespáticas, meteoriza en limo arcilloso.



#### Mapa Geológico de La Libertad

Urb. Monserrate V Etapa Mz. C2 Lte. 4 - Trujillo R.U.C. 20477653741 Oficina @ 285934 § 949650866 - RPM \*425642 RESOLUCION Nº 017504-2012 / DSD - INDECOPI



#### 2.2 SISMICIDAD

Estructuras imbricadas cortadas transversalmente por graven de río Contumazá ha generado un complejo sistema de fallas significativo en el acantilado que hace flanco derecho al Río, reflejada en fallas locales que da marco paleotectónico al sistema de drenaje local y regional, manifestado en planos discordantes volcados sobre la formación Inca, la cubre detritus de tobas volcánicas.

Según el Mapa Sísmico del Instituto Geofísico del Perú (IGP) en un radio de 50 km no se ha registrado actividad sísmica con una Magnitud VI, consecuentemente la sismicidad de Contumazá se relaciona con sismos regionales que atenuados por la distancia a estos epicentros alcance la magnitud de 6,0, se estima que en 66 años se puede alcanzar una aceleración máxima (cm/seg<sup>2</sup>) de 0,035 g en roca de fondo firme y 0,053 g para condiciones medias de cimentación en relación a los focos sísmicos de magnitud regional.



Mapa de Sismicidad en el Perú

Urb. Monserrate V Etapa Mz. C2 Lte. 4 - Trujillo R.U.C. 20477653741 Oficina @ 285934 § 949650866 - RPM \*425642 RESOLUCION N\* 017504-2012 / DSD - INDECOPI


### 3.0 INVESTIGACIONES DE CAMPO

### 3.1 CALICATAS REALIZADAS:

Se realizaron 03 sondajes de exploración subterránea, distribuidos en el terreno de acuerdo al proyecto de arquitectura. Las cotas del terreno están referenciadas a cotas absolutas referenciadas al nivel del mar.

### 3.2 ENSAYOS DE LABORATORIO

Se realizaron los siguientes ensayos de Laboratorio

| Contenido de Humedad                                             | NTP 339.127 |
|------------------------------------------------------------------|-------------|
| Análisis Granulométrico                                          | NTP 339.128 |
| Clasificación Unificada de Suelos (SUCS)                         | NTP 339.134 |
| Descripción Visual-Manual                                        | NTP 339.150 |
| Contenido de Sales Solubles Totales en Suelos y Agua Subterránea | NTP 339.152 |
| Prueba de DPL                                                    | NTP 339.159 |

### 3.3 NIVEL FREATICO:

En los trabajos de campo y a la profundidad estudiada que alcanzó 3.00 m de profundidad, se ubicaron aguas freáticas a la profundidad de 1.55 metros.

### 4.0 ANALISIS DE LA CIMENTACION

El suelo de apoyo estudiado se desarrolla a partir de - 1.90 m desde el nivel de terreno natural, identificándose como una Arena Uniforme (SP), se encuentra en un estado de compacidad semi densa con estructura tipo compuesta y partículas sub angulosas. Generalmente estos materiales en este estado poseen de mala a regular capacidad de carga, el diseño estructural será proyectado en base a las cargas que llegan en cada columna. Existe evidencia de moderada cantidad de sales solubles totales, por lo que recomendamos utilizar cemento Adicionado tipo MS o similar en el diseño de las cimentaciones. En los cálculos el agua freática no satura el suelo de apoyo, por lo que estimamos que la cimentación estará en la condición de saturada y drenada en toda su vida útil ( $c = 0, \phi \neq 0$ ).





Principales Parámetros de los suelos: Contendido de humedad: 11.486 % Densidad Unitaria Saturada: 2.00 g/cm<sup>3</sup> Cohesión: 0.00 kg/cm<sup>2</sup> Angulo de Fricción interna: 31° Permeabilidad: 2.10E-02 cm/seg Sales Solubles Totales: 1,200 ppm (agresividad moderada) Módulo Elástico: 135 kg/cm<sup>2</sup> Módulo de Poissón: 0.25 Módulo de Corte: 54 kg/cm<sup>2</sup> Coeficiente de Balasto: 2.14 kg/cm<sup>3</sup> Velocidad de Onda de Corte: 181 m/seg.

### Geometría de la Cimentación:

Tipo de Cimiento: Superficial (Df/B ≤ 2) Ancho de los Cimientos Corridos (opcional): **B** = 0.60 m Ancho de los Cimientos Cuadrados (opcional): **B** = 1.50 m Profundidad de Desplante: **Df** = 2.00 m para los cimientos corridos y **Df** = 2.00 m para los cimientos cuadrados.

### Capacidades Admisibles (o de trabajo, ver Anexos):

Para los cimientos corridos: qa = 0.82 kg/cm<sup>2</sup> (obtenido por esfuerzos de corte). Para los cimientos cuadrados: qa = 1.01 kg/cm<sup>2</sup> (obtenido por esfuerzos de corte).

# Asentamientos de los suelos, ver Anexos:

Asentamiento Total Instantáneo = 0.947 cm Luces entre columnas (L): 4.00 m Distorsión Angular (α) = S/L = 1.097/400 = 0.0024 Distorsión Angular máximo según norma E.050 = 1/150 = 0.0067



Parámetros Sísmicos: Las zonas sísmicas del Perú se pueden observar en el siguiente mapa:



Para nuestro caso, se deben considerar los siguientes parámetros: Z = 0.40 g, U = 1.50, C = 2.50 (Chequear estructuralmente, con Tp = 0.90 seg), S = 1.40, R = 6.0.

## 5.0 CONCLUSIONES Y RECOMENDACIONES:

El terreno estudiado arroja los siguientes valores para ser considerados en los planos de proyecto:

Suelos de Apoyo: SP (Arena Uniforme).

Desarrollo: A partir de -1.90 m desde el nivel de terreno natural (NTN).

Posición de la napa freática: Se encontró a la profundidad de 1.55 m.

Material para ser usado como relleno compactado: Regular.

Tipo de Cimentación recomendada: Superficial (Cimientos Corridos y Cuadrados).

Ancho de los cimientos: Corridos, B = 0.60 m, Cuadrados, B = 1.50 m

Profundidad de desplante:

Cimientos Corridos, Df = 2.00 m, desde el nivel de terreno natural.

Cimientos Cuadrados, Df = 2.00 m, desde el nivel de terreno natural.



Valores de capacidad admisible:

Cimientos Corridos, qa = 0.82 kg/cm<sup>2</sup>,

Cimientos cuadrados, qa = 1.01 kg/cm2.

Deformaciones del suelo:

Asentamiento tolerable: 0.947 cm

Distorsión Angular: 0.0024

Agresividad de los suelos al cimiento:

Moderada, usar cemento Adicionado tipo MS o similar.

Parámetros Sísmicos:

Z = 0.40 g, U = 1.50, Tp = 0.90 seg, S = 1.40

Trujillo, 20 de Noviembre del 2013

NIEROS S HUER ertas Polo CIP 34570 Peolechico y Ensayos de Materiales



## DETERMINACION DE LA CAPACIDAD ADMISIBLE (qa)

OBRA: MEJORAMIENTO DE LA INSTITUCION EDUCATIVA GUE NUESTRA SEÑORA DE GUADALUPE (NIVEL PRIMARIA Y SECUNDARIA), DISTRITO DE GUADALUPE, PROVINCIA DE PACASMAYO, LA LIBERTAD SOLICITA: ARQ. JAIME OJEDA SOTO UBICACIÓN: GUADALUPE - LA LIBERTAD FECHA: TRUJILLO, 20 DE NOVIEMBRE DEL 2013 SUELO DE APOYO: ARENA UNIFORME (SP) DESARROLLO: A PARTIR DE -1.90 m DEL TERRENO ESTUDIADO FORMULA UTILIZADA: qa = 2.15 N Cw (ton/m³) Donde: N = Número de Golpes prueba SPT Cw = Corrección por humedad

RESULTADOS OBTENIDOS:

| No | Prof<br>(mts) | Y<br>(ton/m³) | N  | Cw   | qa<br>(ton/m²) | qa<br>(kg/cm²) | Esf.Transm.<br>aprox.(kg/cm <sup>2</sup> ) | SUCS |
|----|---------------|---------------|----|------|----------------|----------------|--------------------------------------------|------|
| 1  | 0.00          | 1.45          | 0  | 0.50 | 0.00           | 0.00           | 0.00                                       | OL   |
| 2  | 0.75          | 1.56          | 9  | 0.50 | 9.94           | 0.99           | 1.50                                       | CL   |
| 3  | 1.50          | 1.56          | 4  | 0.50 | 4.57           | 0.46           | 1.50                                       | CL   |
| 4  | 2.25          | 2.00          | 15 | 0.50 | 16.49          | 1.65           | 1.50                                       | SP   |
| 5  | 3.00          | 2.00          | 15 | 0.50 | 15.99          | 1.60           | 1.50                                       | SP   |
| 6  | 3.75          | 2.00          | 22 | 0.50 | 23.41          | 2.34           | 1.50                                       | SP   |
| 7  | 4.50          | 2.00          | 23 | 0.50 | 25.07          | 2.51           | 1.50                                       | SP   |
| 8  | 5.25          | 2.00          | 25 | 0.50 | 26.36          | 2.64           | 1.50                                       | SP   |
| 9  | 6.00          | 2.00          | 25 | 0.50 | 26.39          | 2.64           | 1.50                                       | SP   |



Urb. Monserrate V Etapa Mz. C2 Lte. 4 - Trujillo R.U.C. 20477653741 Oficina @ 285934 § 949650866 - RPM \*425642 RESOLUCION N\* 017504-2012 / DSD - INDECOPI



## PARAMETROS DE LOS SUELOS

OBRA: MEJORAMIENTO DE LA INSTITUCION EDUCATIVA GUE NUESTRA SEÑORA DE GUADALUPE (NIVEL PRIMARIA Y SECUNDARIA), DISTRITO DE GUADALUPE, PROVINCIA DE PACASMAYO, LA LIBERTAD SOLICITA: ARQ. JAIME OJEDA SOTO UBICACIÓN: GUADALUPE - LA LIBERTAD FECHA: TRUJILLO, 20 DE NOVIEMBRE DEL 2013 DATOS GENERALES: SUELO IDENTIFICADO: ARENA UNIFORME (SP) DESARROLLO: A PARTIR DE -1.90 m DESDE EL NIVEL DE TERRENO (105.00 msnm)

### 1) Densidad Relativa (Dr) y Angulo de fricción (φ)

Dr(%) = 11.7 + 0.76(222Ncampo + 1600 - 7.68 G'o - 50Cu^2)^0.50



Urb. Monserrate V Etapa Mz. C2 Lte. 4 - Trujillo R.U.C. 20477653741 Oficina © 285934 § 949650866 - RPM \*425642 RESOLUCION Nº 017504-2012 / DSD - INDECOPI



# CALCULO DE LA CAPACIDAD DE CARGA POR CORTE EN CIMIENTOS CORRIDOS Y CUADRADOS

OBRA: MEJORAMIENTO DE LA INSTITUCION EDUCATIVA GUE NUESTRA SEÑORA DE GUADALUPE (NIVEL PRIMARIA Y SECUNDARIA), DISTRITO DE GUADALUPE, PROVINCIA DE PACASMAYO, LA LIBERTAD SOLICITA: ARQ. JAIME OJEDA SOTO UBICACIÓN: GUADALUPE - LA LIBERTAD FECHA: TRUJILLO, 20 DE NOVIEMBRE DEL 2013 SUELO IDENTIFICADO: ARENA UNIFORME (SP) DESARROLLO: A PARTIR DE -1.90 m DESDE EL NIVEL DE TERRENO (105.00 msnm)

## CIMENTACION CORRIDA (desde el nivel de terreno natural):

| qa (ton/m2) =  |                          | 8.23         | 0.82 kg/cm <sup>3</sup> |
|----------------|--------------------------|--------------|-------------------------|
| Ng =           |                          | 10           |                         |
| Nc =           |                          | 15           |                         |
| N& =           |                          | 17           |                         |
| F =            |                          | 3.00         |                         |
| Df (mts) =     |                          | 2.00         |                         |
| Nq =           | tg^4(0)                  |              |                         |
| Nc =           | 2tg^3(0) + 2tg(0)        |              |                         |
| N& =           | tg^5(θ)                  | θ = (45+φ/2) |                         |
| \$\$ (grados)= | 31                       |              |                         |
| c (ton/m2) =   |                          | 0.00         |                         |
| B (mts) =      |                          | 0.60         |                         |
| &2 ( ton/m3) = |                          | 1.00         |                         |
| &1 ( ton/m3) = |                          | 1.00         |                         |
| Donde:         |                          |              |                         |
| FORMULA: 0     | a = [0.5 & B N& + c Nc + | & Df Nq] 1/F |                         |

### CIMENTACION CUADRADA (desde el nivel de terreno natural):

FORMULA: qa = [0.42 & B N& + 1,2 c Nc + & Df Nq] 1/F

| 10.13 |                              |
|-------|------------------------------|
| 2.00  |                              |
| 1.50  |                              |
|       | 1.50<br>2.00<br><b>10.13</b> |

HUERTAS INGENIEROS e Huertas Polo 34570

Urb. Monserrate V Etapa Mz. C2 Lte. 4 - Trujillo R.U.C. 20477653741 Oficina @ 285934 1 949650866 - RPM \*425642 RESOLUCION Nº 017504-2012 / DSD - INDECOPI

1.01 kg/cm3



## ASENTAMIENTO INMEDIATO EN ARENAS

OBRA: MEJORAMIENTO DE LA INSTITUCION EDUCATIVA GUE NUESTRA SEÑORA DE GUADALUPE (NIVEL PRIMARIA Y SECUNDARIA), DISTRITO DE GUADALUPE, PROVINCIA DE PACASMAYO, LA LIBERTAD SOLICITA: ARQ. JAIME OJEDA SOTO UBICACIÓN: GUADALUPE - LA LIBERTAD FECHA: TRUJILLO, 20 DE NOVIEMBRE DEL 2013 SUELO IDENTIFICADO: ARENA UNIFORME (SP) DESARROLLO: A PARTIR DE -1.90 m DESDE EL NIVEL DE TERRENO (105.00 msm)

## ASENTAMIENTO INMEDIATO



| and designed on the local data and the locae data a |      | _ |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---|
| B (cm):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 150  |   |
| L (cm):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 150  |   |
| m :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1    |   |
| qa (kg/cm²) :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.01 |   |
| u :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.25 |   |
| E (kg/cm²):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 135  |   |
| a :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.12 |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | _ |



Urb. Monserrate V Etapa Mz. C2 Lte. 4 - Trujillo R.U.C. 20477653741 Oficina © 285934 § 949650866 - RPM \*425642 RESOLUCION Nº 017504-2012 / DSD - INDECOPI



# CAPACIDAD DE CARGA POR ASENTAMIENTO EN CIMIENTOS CUADRADOS (B > 1.20)

OBRA: MEJORAMIENTO DE LA INSTITUCION EDUCATIVA GUE NUESTRA SEÑORA DE SOLICITA: ARQ. JAIME OJEDA SOTO UBICACIÓN: GUADALUPE - LA LIBERTAD FECHA: TRUJILLO, 20 DE NOVIEMBRE DEL 2013 DATOS GENERALES: SUELO IDENTIFICADO: SP (ARENA UNIFORME) DESARROLLO: A PARTIR DE -1.90 m DESDE EL NIVEL DE TERRENO NATURAL

### PRESION ADMISIBLE EN ARENAS BASADAS EN CONSIDERACIONES DE ASENTAMIENTC

#### a) Para 25 mm de asentamiento:

qa (neta) = 7.99 Ncor ((3.28B+1)/3.28B)<sup>2</sup> Cw

(kN /m2) B > 1.20 m

b) La presión en función del Asentamiento Tolerable:

qa (neta) = 11.98 Ncor ((3.28B+1)/3.28B)<sup>2</sup> Fd (Se/25)Cw (kN /m2) B > 1.20 m

#### Donde:

qa(neta) = qa -  $\gamma$ Df qa = Presión Admisible  $\gamma$  = peso especifico del suelo Df = Profundidad de desplante Ncor = Número de penetración dinámica corregida. Se = Asentamiento Tolerable Fd = 1 + 0.33 (Df/B) ≤ 1.33 Se = qa (neta) /0.25 Ncor Cw = 0.50+0.50\*(Dw/(Df + B)) Dw = Nivel Freático (m)

### Para nuestro caso, con B > 1.20 m (desde el nivel de terreno natural):

|                | qa =  | 1.02     | ka/cm <sup>2</sup> |           |                        |
|----------------|-------|----------|--------------------|-----------|------------------------|
| qa =           | 1.81  | (kg/cm2) | 177.63             | (kN/m2)   | Se: 22.24 mm           |
| Luego:<br>qa = | 1.02  | (kg/cm2) | 100.15             | (kN/m2)   | Se: 25.00 mm           |
| Cw =           | 0.72  | 1000000  |                    |           | $\bigcirc$             |
| Se =           | 22.24 | mm       |                    |           | CIP 34570              |
| Fd =           | 1.44  | ≤ 1,33 → | 1.33               |           | Ing. Jose Huertas Polo |
| Dw (m) =       | 1.55  |          |                    |           | A statement            |
| Df (m) =       | 2.00  |          |                    |           | HUERTAL                |
| y (ton/m³)=    | 1.65  |          |                    |           | LAN INGENIEROS SAC     |
| B (m) =        | 1.50  |          |                    |           |                        |
| Ncor =         | 12    |          |                    |           |                        |
| qa (neta) =    | 0.68  | (kg/cm2) | 66.71              | (kN/m2)   |                        |
| an (nota) =    | 0.68  | Ikala    | m21                | m2) 66.71 | m2) 66.71 (kN/m2)      |

Urb. Monserrate V Etapa Mz. C2 Lte. 4 - Trujillo R.U.C. 20477653741 Oficina © 285934 § 949650866 - RPM \*425642 RESOLUCION Nº 017504-2012 / DSD - INDECOPI ANEXO 02: PANEL FOTOGRÁFICO



Fotografía 1: Fachada principal de la Institución Educativa I.E. Nº 81703 "Gran Unidad Escolar Nuestra Señora de Guadalupe".



Fotografía 2: Vista panorámica del Pabellón "D" de la Institución Educativa I.E. N° 81703 "Gran Unidad Escolar Nuestra Señora de Guadalupe".



**Fotografía 3:** Vista lateral del primer piso del Pabellón "D" de la Institución Educativa I.E. N° 81703 "Gran Unidad Escolar Nuestra Señora de Guadalupe".



**Fotografía 4:** Vista lateral del segundo piso del Pabellón "D" de la Institución Educativa I.E. Nº 81703 "Gran Unidad Escolar Nuestra Señora de Guadalupe".



Fotografía 5: Vista posterior del Pabellón "D" de la Institución Educativa I.E. N° 81703 "Gran Unidad Escolar Nuestra Señora de Guadalupe".



Fotografía 6: Vista lateral panorámica del Pabellón "D" de la Institución Educativa I.E. N° 81703 "Gran Unidad Escolar Nuestra Señora de Guadalupe".

## **ANEXO 03: PLANOS**



LOSAS ALIGERADAS SEGUNDO NIVEL



LOSAS ALIGERADAS PRIMER NIVEL



CIMENTACIONES