T/625,7/C5

UNIVERSIDAD NACIONAL DE CAJAMARCA FACULTAD DE INGENIERÍA ESCUELA ACADEMICO PROFESIONAL DE INGENIERÍA CIVIL

PROYECTO PROFESIONAL

ELABORACIÓN DEL DOCUMENTO TÉCNICO DE APERTURA DE LA TROCHA CARROZABLE CASERÍO NÚMERO OCHO -CAPULIPAMPA - CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN)"

PARA OPTAR EL TÍTULO PROFESIONAL DE: INGENIERO CIVIL

PRESENTADO POR: Bach. Ing. CIEZA VÁSQUEZ, EDGAR

ASESORES

Ing. CUBAS BECERRA ALEJANDRO Mg. Ing. VÁSQUEZ RAMÍREZ LUIS Dra. Ing. LLIQUE MONDRAGÓN ROSA H.

CAJAMARCA PERÚ 2013

FACULTAD DE INGENIERÍA

CADÉMICO PROFESIONAL DE INGENIERÍA CIVIL "ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO

AGRADECIMIENTO

Mi agradecimiento por el apoyo constante y desinteresado a mis asesores, los ingenieros Alejandro Cubas Becerra, Rosa A LLique Mondragón y Luis Vásquez Ramírez quienes me brindaron la orientación necesaria, tanto a nivel metodológico como a nivel práctico, en el desarrollo y culminación del presente proyecto.

A los jurados, ingenieros Gaspar Méndez Cruz, Beniamín Torres Tafur, Manuel Rafael Urteaga Toro y Alejandro Claudio Lagos Manrique por sus recomendaciones para mejorar el presente proyecto.

A la Municipalidad Distrital de San Juan, al Sr. Alcalde Dr. Juan Carlos Aranda Crisólogo, al Ingeniero Leopoldo, Gerente de Infraestructura de la municipalidad distrital de San Juan, mi agradecimiento por la confianza que depositaron en mi persona, por su apoyo y preocupación en la culminación de este proyecto.

A todos mis profesores, mi agradecimiento quienes compartieron sus conocimientos y experiencias en el transcurso de mi formación profesional.

A mis familiares y amigos que de una u otra forma han contribuido en la realización del proyecto.

A mis compañeros de estudios que a lo largo de la vida universitaria supieron compartir y contribuir para engrandecerme como persona y profesional.

A mi Alma Mater, la Universidad Nacional de Cajamarca, representada en la Facultad de Ingeniería, por acogerme en sus claustros universitarios hasta verme formado profesionalmente.

EL AUTOR

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN)"

DEDICATORIA

"El presente, le dedico primordialmente a Dios, por iluminar el camino de mi superación, guiarme siempre por la senda del bien; y permitirme culminar mi profesión".

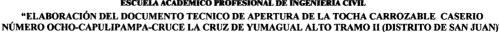
"Con todo amor, a mis padres,

Samuel Cieza y Doraliza Vásquez;

quienes con su apoyo moral y económico,
posibilitaron con ahínco la culminación

de mi carrera profesional.

A mis queridos hermanos Walter, Domira,


Neira, Ediht y Nelly por ser mis mejores

amigos, y brindarme su máximo apoyo, para
seguir adelante y lograr con éxito una de las
etapas más importantes y hermosas de mi vida.

Edgar.

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

RESUMEN

El presente Proyecto Profesional, titulado "ELABORACIÓN DEL DOCUMENTO TÉCNICO DE APERTURA DE LA TROCHA CARROZABLE CASERÍO NÚMERO OCHO - CAPULIPAMPA - CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN)", Km. 05+000 - 10+401.62, se encuentra ubicado en la Región Cajamarca, Provincia de Cajamarca, Distrito de San Juan, el punto de inicio es en la comunidad de Capulipampa y termina en el Cruce la Cruz de Yumaqual Alto, el trazo se realizó en su mayor longitud basándose en existencia de un camino de herradura, cumpliendo con el reglamento en el diseño geométrico tanto en planta como en perfil: el trabajo se inició con la recopilación de información existente y reconocimiento de la zona, para posteriormente diseñarse una carretera de tercera clase con las características siguientes: La longitud es 5.401.62 Km, velocidad directriz es 20 Km/hora, pendiente media es 2.42 %, radio mínimo normal es 12m. Mediante el diseño del pavimento se determinó un espesor de afirmado de 30cm. Según el estudio de suelos se determinó que el suelo más representativo en todo el tramo es el A-7-6, (CH) del cual se obtuvo un C.B.R (3.78%), el sistema de drenaje superficial se realizó el diseño de 26 aliviaderos, 3 alcantarillas además de 7690 m. de cunetas, en la señalización se consideró: 06 señales informativas, 04 señales reguladoras, 36 señales preventivas y 06 hitos kilométricos, el costo referencial de la obra al mes de Abril del 2013, asciende a DOS MILLONES QUINIENTOS NOVENTA Y CINCO NOVECIENTOS CUARENTA Y OCHO Y 90/100 NUEVOS SOLES (S/.2,595,948.90), el proyecto está programado para ser ejecutado en 6.0 meses (180 días); finalmente, el presente proyecto tiene por finalidad contribuir a la Integración y al Desarrollo Socio-económico de las comunidades beneficiadas así de esta manera estar dentro de la inclusión social la cual es parte de la política social del actual gobierno.

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN)"

INDICE GENERAL

				Pág
AGRA	DEC	IMIENTO		1
DEDIC	ATĆ	RIA		11
RESU	MEN	l		181
CAPÍT	ULC	I – INTR	ODUCCIÓN	
,	1.1	INTR	RODUCCIÓN	01
•	1.2	OBJI	ETIVOS	02
	1.3	ANT	ECEDENTES	02
	1.4	ALC	ANCES	03
•	1.5	ÇAR	ACTERÍSTICAS LOCALES	03
•	1.6	EST	JDIO SOCIO ECONÓMICO	. 05
•	1.7	JUST	TIFICACIÓN DEL ESTUDIO	09
CAPÍT	ULO	II – REVI	SIÓN DE LITERATURA	
2	2.1	EST	JDIO DEL TRAZO DEFINITIVO	10
:	2.2	LEVA	ANTAMIENTO TOPOGRÁFICO	10
;	2.3	DISE	ÑO GEOMÉTRICO DE LA VÍA	12
:	2.4	UBIC	ACIÓN DEL EJE LONGITUDINAL Y DISEÑO GEOMÉTRICO DE	
		LA V	ÍA	22
:	2.5	EST	JDIO DE SUELOS Y CANTERAS	25
:	2.6	DISE	ÑO DEL PAVIMENTO	35
:	2.7	EST	JDIO HIDROLÓGICO	42
2	2.8	DISE	ÑO DE OBRAS DE ARTE	48
2	2.9	SEÑ	ALIZACIÓN	57
2	2.10	PRO	GRAMACIÓN DE OBRA	58
2	2.11	IMPA	CTO AMBIENTAL	59
CAPÍT	ULO	III – REC	URSOS MATERIALES Y HUMANOS	
3	3.1	REC	JRSOS MATERIALES	61
3	3.2	REC	URSOS HUMANOS	62
CAPÍT	ULO	IV - MET	ODOLOGÍA Y PROCEDIMIENTO	
			O DEL TRAZO DEFINITIVO	63
	••	4.1.1	RECONOCIMIENTO DE LA ZONA EN ESTUDIO	63
		4.1.2	LEVANTAMIENTO TOPOGRÁFICO	63
		4.1.3	TIPO DE VEHÍCULO DE DISEÑO	64
		4.1.4	UBICACIÓN DE LOS PUNTOS TERMINALES Y DE UBICACIÓN	65

PACCONAL PORTOR

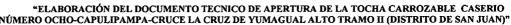
FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN)"

	4.1.5	SELECCIÓN DEL TIPO DE VÍA Y PARÁMETROS DE DISEÑO	67
	4.1.6	ESTABILIDAD DE TALUDES	69
	4.1.7	UBICACIÓN DEL EJE LONGITUDINAL Y DISEÑO GEOMÉTRICO	
		DE LA VÍA	73
4.2	ESTU	IDIO DE SUELOS Y CANTERAS	78
	4.2.1	DESCRIPCIÓN GEOLOGICA DEL EJE DE LA CARRETERA	78
	4.2.2	GEOLOGÍA	80
	4.2.3	ENSAYOS DE LABORATORIO Y CARACTERIZACIÓN DE	
		SUELOS	88
4.3	ESTUDIO	HIDROLÓGICO	95
	4.3.1	DETERMINACIÓN DEL CAUDAL DE DISEÑO	95
	4.3.2	DISEÑO DE OBRAS DE ARTE	95
, 4.4.	DISE	ÑO DE AFIRMADO	97
	4.4.1	INTRODUCCIÓN	97
	4.4.2	ANÁLISIS DE LA CAPACIDAD DE SOPORTE (C.B.R) DEL	
		SUELO DE CIMENTACIÓN	97
	4.4.3	ANÁLISIS DEL TRÁFICO.	97
	4.4.4	ÍNDICE MEDIO DIARIO (IMD)	97
	4.4.5	TASAS DE CRECIMIENTO (i)	97
	4.4.6	PERIODO DE DISEÑO (n)	97
	4.4.7	CALCULO DEL NÚMERO DE EJES SIMPLES EQUIVALENTES	97
	4.4.8	CALCULO DEL ESPESOR DEL PAVIMENTO	99
4.5 \$	SEÑALIZA(CIÓN	101
	4.5.1	SEÑALES PREVENTIVAS	101
	4.5.2	SEÑALES DE REGLAMENTACIÓN O REGULADORAS	101
	4.5.3	SEÑALES INFORMATIVAS.	101
	4.5.4	HITOS KILOMÉTRICOS.	102
	4.5.5	DISPOSICIONES GENERALES	102
4.6.	ESTUDIO I	DE IMPACTO AMBIENTAL (EIA)	103
	4.6.1	DESCRIPCIÓN DEL PROYECTO EN GENERAL	103
	4.6.2	DESCRIPCIÓN DEL AMBIENTE	104
	4.6.3	IDENTIFICACIÓN Y VALORACIÓN DE IMPACTOS	106
	4.6.4	MEDIDAS PROTECTORAS Y CORRECTORAS	110
	4.6.5	PROGRAMA DE CIERRE	112

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN)"


	4	.6.6.	PROGRAMA DE VIGILANCIA Y CONTROL AMBIENTAL	112
	4.	.6.7.	MATRICES DE LEOPOLD, IDENTIFICACIÓN DE IMPACTOS, Y	
			MEDIDAS CORECCTIVAS	114
CAPÍ	TULO V –	RESU	JLTADOS	
	5.1.	CARA	ACTERÍSTICAS DE LA VÍA	124
	5.2.	SUEL	OS Y CANTERAS	124
	5.3.	HIDR	OLOGIA	126
	5.4.	CARA	ACTERÍSTICAS DEL PAVIMENTO	126
	5.5.	SEÑA	LIZACION	126
CAPÍ	TULO VI -	- CON	CLUSIONES Y RECOMENDACIONES	
	6.1	CON	CLUSIONES Y RECOMENDACIONES	127
	6.2	RECO	DMENDACIONES	127
BIBL	IOGRAFÍA	.		128
ANE	cos			
	ANEXO N	№ 1 E	LEMENTOS DE CURVA	129
	ANEXO N	1º 2 P	ROGRESIVAS Y COORDENADAS	131
	ANEXO N	1°3 E	STUDIO DE SUELOS	134
	ANEXO N	√4 E	STUDIO HIDRLOLOGICO	153
	ANEXO N	1° 5 M	ETRADOS	189
	ANEXO N	1º6 C	COSTOS Y PRESUPUESTOS	227
	ANEXO N	1º 7 E	SPECIFICACIONES TÉCNICAS	246
	ANEXO N	1º8 F	OTOGRAFIAS	287
	ANEXO N	1º9 F	OEMA A TARAPOTO PERÚ (VIAJE PROMOCIONAL 2003-2008)	292
	ANEXO N	№ 10 I	PUNTOS DEL LEVANTAMIENTO TOPOGRÁFICO	
		ř	(m 0+000 - 5+000	298
TOM	O II C			

ANEXO Nº 11 PLANOS

ANEXO Nº 12 PROGRAMACIÓN DE OBRA

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

CAPÍTULO I INTRODUCCIÓN

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVI

"ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN

1. CAPITULO I

1.1 INTRODUCCIÓN.

Durante los últimos años la ingeniería a sufrido grandes cambios tecnológicos, los cuales conllevan a tener una nueva concepción de nuestra realidad y a descubrir nuevas medidas para enfrentar racionalmente a los diversos problemas que nos presenta en la vida, donde se busca incansablemente la **calidad**, atreves de la **eficiencia**, **eficacia y efectividad**, los cuales permiten ser competitivos a partir de la iniciativa individual frente a los inconvenientes que se nos presenten.

A lo largo de toda la historia, uno de los problemas prioritarios del país ha sido y sigue siendo la falta de infraestructura vial, la mayoría de los pueblos no cuenta con una red vial adecuada para cubrir las necesidades existentes de la población, especialmente en los distritos y centros poblados más alejados, originando así el subdesarrollo al no tener acceso a los mercados importantes ya sea para vender o comprar sus productos.

La falta de vías de comunicación y las malas condiciones en que se encuentran la mayoría de éstas; permiten que exista un incremento en el valor adquisitivo de sus productos y elevando el costo de vida de la población al no poder realizar una explotación racional de los recursos que la población posee, dando origen a las pérdidas de algunos recursos importantes y de esta manera dejando de lado la generación de progreso y desarrollo para el país en general.

En el distrito de San Juan, la economía de la población depende casi exclusivamente de la agricultura y ganadería, y en menor escala la actividad comercial, es por ello; para mejorar las condiciones de vida de la población deben construirse vías de comunicación adecuadas para intercomunicar con facilidad todas sus comunidades con la capital del distrito y con otros mercados más importantes tanto de Cajamarca como la costa; puesto que en épocas de lluvia muchas carreteras se convierten en intransitables afectando directamente la economía de la población.

Es por ello, el presente proyecto tiene por finalidad la "Elaboración del documento técnico de apertura de la trocha Carrozable Caserío Número Ocho – Capulipampa – Cruce la Cruz de Yumagual Alto" en el Tramo II Km. 5+000 al Km. 10+401.62, tratando de contribuir a la Integración y al Desarrollo Socio-económico de las comunidades beneficiadas, y de esta manera estar dentro de la inclusión social la cual es parte de la política social del actual gobierno.

Mediante la apertura de esta carretera las comunidades beneficiadas, se comunicarán con facilidad principalmente con la Provincia de Cajamarca, con la capital distrital y con las ciudades de la costa, elevando el nivel de vida de la población de las comunidades adyacentes a esta vía.

Finalmente, mi persona estoy dispuesto a aceptar las críticas que se realicen sobre dicho proyecto, las cuales servirán de refuerzo para corregir los errores cometidos.

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO
NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN

1.2. OBJETIVOS

1.2.1 OBJETIVOS GENERALES

- Elaborar, el documento técnico de apertura de la trocha Carrozable Tramo II Capulipampa - Cruce la Cruz de Yumagual Alto Km. 5+000 al Km. 10+402.

1.2.2 OBJETIVOS ESPECÍFICOS

- Realizar, el Levantamiento Topográfico.
- Realizar, el diseño geométrico de la carretera Capulipampa Cruce la Cruz de Yumagual Alto.
- Diseñar, el pavimento a nivel de afirmado de la carretera Capulipampa Cruce la Cruz de Yumagual Alto.
- Elaborar, el valor referencial del proyecto Capulipampa Cruce la Cruz de Yumagual Alto.

1.3 ANTECEDENTES:

El camino de herradura que une los lugares de la comunidad Capulipampa- Cruce la Cruz de Yumagual Alto, la cual a su vez comunica con la capital de la región como al distrito de San Juan. Perteneciente a la Red Vial Vecinal sin Código de Ruta, con este proyecto se estaría logrando la interconexión vial de San Juan y comunidades vecinales.

El trayecto actual está dado por un camino de herradura la cual ha sido aperturada por los pobladores vecinales del Distrito de San Juan hace ya muchos años.

Con el estudio y apertura de esta carretera, se estaría asegurando la integración y comunicación orientando los flujos socio - comerciales hacia la localidad de Cajamarca y en general una salida comercial con las ciudades costeras a su vez con la capital distrital; por cuanto en la actualidad no se evacua toda la producción a los mercados locales y regionales, al tener dificultad para el acceso de vehículos de carga y pasajeros que permitan la evacuación productiva y transporte de pasajeros para la población.

Las características actuales de la carretera son:

La longitud total de la carretera es 5.400 Km entre el Caserío Capulipampa – Cruce la Cruz de Yumagual Alto.

La topografía por donde se desarrolla la carretera es ondulada y accidentada.

Los pobladores beneficiados de la zona de influencia del proyecto, se han organizado en plantear su preocupación a los entes gubernamentales solicitando apoyo para que se les atienda y puedan contar con una vía con infraestructura en óptimas condiciones de transitabilidad.

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN

1.4 ALCANCES:

Con la ejecución de este estudio, se pretende mejorar el acceso a las zonas de influencia y lograr que el poblador se sienta impulsado a la producción agrícola, ganadera y al comercio a gran escala, logrando que los pobladores tengan una vida mejor.

La Universidad Peruana, en uno de sus objetivos es la de buscar realizar proyectos de desarrollo comunal, revalorar y cuidar la historia de nuestro pueblo, es por eso que la Universidad Nacional de Cajamarca con su graduado no es ajena a éste objetivo, porque gracias al proyecto se logrará el desarrollo comunal y regional.

1.5 CARACTERÍSTICAS LOCALES:

1.5.1. UBICACIÓN

	A. Política.
Departamento /Región :	Cajamarca/Cajamarca.
Provincia:	Cajamarca
Distrito :	San Juan
Localidad :	Capulipampa – Cruce la Cruz de Yumagual Alto.
Región Geográfica :	Sierra
Punto Inicial.	Comunidad de Capulipampa
Coordenadas UTM:	
Norte:	9199507 m
Este:	771928 m
Altitud :	3177 m.s.n.m.
DATUM DE REFERENCIA	WGS 84 - zona 17 S
Punto Final.	Cruce la Cruz de Yumagual Alto
Coordenadas UTM:	
Norte:	9200140 m
Este:	775318 m
Altitud :	3303 m.s.n.m.
DATUM DE REFERENCIA	WGS 84 - zona 17 S

1.5.2 **LÍMITES**:

- Este: La comunidad de Choropunta y Yotupampa
- Norte: La comunidad de Agomarca
- Oeste: Las comunidades de Tomacucho y Callaspampa (Distrito Magdalena)
- Sur: La comunidad de Chusac, Yumagual Bajo y el Porvenir.

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN

1.5.3 EXTENSIÓN

Presenta una extensión de 5401.62 m, empezando la comunidad de Capulipampa en la ecuación de empalme E.E.AT = Km. 05+000 - E.E.AD = Km. 10+401.62, terminando en el Cruce la Cruz de Yumagual Alto.

1.4.4 TOPOGRAFÍA

Tiene una topografía accidentada en su mayor recorrido y en tramos pequeños presenta una topografía ondulada.

1.5.5 ALTITUD

El proyecto se encuentra entre las altitudes de 3177 m.s.n.m y los 3303 m.s.n.m.

1.5.6 HIDROGRAFÍA

La cuenca hidrográfica de la zona está constituida por quebradas, constituyendo la línea divisoria de las aguas de precipitación; formando así parte de la cuenca del río Choropampa hasta desembocar en la represa gallito ciego.

1.5.7 TEMPERATURA

- Tiene una variación inversa a la pluviosidad, el clima es frío La temperatura varía de -4ºC a 20ºC, siendo la temperatura anual promedio de 12°C.
- Los meses más fríos del año son en junio, julio y agosto, en ellos las temperaturas bajas se presentan solo durante la noche y las primeras horas del día. Siendo notorio la presencia de las heladas con temperaturas bajo los 0°C.

1.5.8 PLUVIOSIDAD

- Está relacionada con la altitud existente y su distribución es más regular a mayor altura. Sin embargo en esta zona, la precipitación es relativamente baja en los meses de mayo – noviembre siendo las precipitaciones intensas durante los meses de diciembre – abril.
 - Según los datos generales de precipitaciones entre el año 1975 al 2009, la precipitación
 - máxima en el año 1976 fue de 72.90mm. y la mínima precipitación en el año 1978 fue de 14.80mm.

1.5.9 ACCESIBILIDAD

El acceso desde la ciudad de Cajamarca puede darse mediante 2 rutas:

Cuadro 1. Accesos desde el Distrito de San Juan

Ruta	A	Tipo de vía	Medio de transporte	Dist. Km.	Tiempo Hrs.	Frecuencia
San Juan	El Gavilán	Asfaltada	Vehículo	22km	35min	Diario
El Gavilán	Yumagual alto	Transitable	Vehículo	10km	30min	Casual
Cruce la cruz de Yumagual	Capulipampa	Camino de herradura	acémilas	5km	2.30 h	Diario.

FACULTAD DE INGENIERÍA

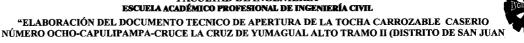
ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL "ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN

Accesos desde la ciudad de Cajamarca

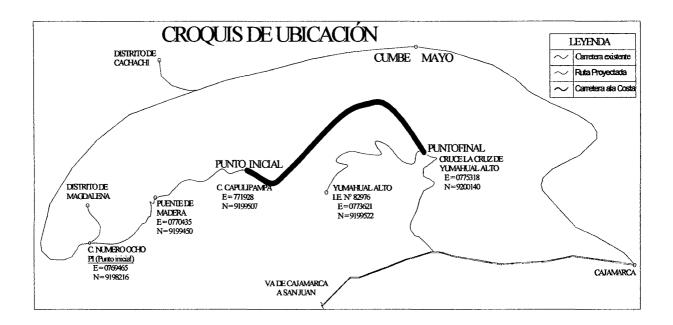
Ruta	Ruta A		Medio de transporte	Dist. Km.	Tiempo Hrs.	Frecuencia
San Juan	El Gavilán	Asfaltada	Vehículo	22km	35min	Diario
El Gavilán	Yumagual alto	Transitable	Vehículo	10km	30min	Casual
Cruce la cruz de Yumagual	Capulipampa	Camino de herradura	acémilas	5km	2.30 h	Diario.
Ruta	В	Tipo de vía	Medio de transporte	Dist. Km.	Tiempo Hrs.	Frecuencia
Cajamarca	Agomarca	Asfaltada	Vehículo	13km	20min	Diario
Agomarca	Yumagual alto	Transitable	Vehículo	8km	45min	Casual
Cruce la cruz de Yumagual	Capulipampa	Camino de herradura	acémilas	5km	2.30 h	Diario.
Ruta	С	Tipo de vía	Medio de transporte	Dist. Km.	Tiempo Hrs.	Frecuencia
Cajamarca	Cumbe Mayo	transitable	Vehículo	18km	1.30 h	Casual.
Cumbe Mayo Cumbe Mayo Número Ocho		Intransitable	Vehículo	12km	1.20 h	Casual
Comunidad Número Ocho Capulipampa		Camino de herradura	acémilas	5km	2.30 h	Diario.
Capulipampa	Cruce la Cruz de Yumagual	Camino de herradura	acémilas	5km	2.40 h	Diario.

1.6 ESTUDIO SOCIO ECONÓMICO

POBLACIÓN. 1.6.1


Los moradores del área de influencia del Proyecto, se ven restringidos para lograr un desarrollo coherente, debido a que no cuentan con una carretera para realizar un mejor manejo de sus recursos naturales que sobrelleva a una reducción progresiva de la producción forestal y agropecuaria, a un ritmo que se manifiesta en el deterioro de las condiciones socio económicas y desestabilizando la situación demográfica de la zona rural.

La población total directa beneficiada es:


FACULTAD DE INGENIERÍA

CUADRO 1.1

Centro Poblado	Población: Año 2005 (N° PERSONAS)	Población: Año 2008 (N° PERSONAS)
Localidad número Ocho	2120	2380
Localidad de Capulipampa	960	1106
Localidad Yumagual alto	1050	1220
TOTAL	4122	4706

FUENTE: (Municipalidad distrital de San Juan.)

1.6.2 **TECNOLOGÍA**

La tecnología usada por los moradores del área de influencia del proyecto en mención, es todavía la tradicional debido a que no cuentan con una carretera para realizar algunos cambios tecnológicos oportunos, así como la utilización del tractor en la agricultura a pesar que cuenta con algunas aéreas apropiadas, teniendo como consecuencia elevar el costo de producción y afectando directamente la economía de la población.

1.6.3 **AGRICULTURA Y GANADERÍA**

Las principales actividades económicas desarrolladas por la población en la zona de influencia del proyecto se encuentra la ganadería y la agricultura: En la actividad ganadera, la población principalmente se dedica a la crianza de ganado vacuno, aprovechando la leche para la elaboración de derivados lácteos (quesillo, queso, mantequilla, yoqur) y la crianza de animales menores en menor escala (ovinos, porcinos, aves, cuy). La actividad agrícola desarrollada por la población es otro de los sustentos importantes de su economía de las familias campesinas, dedicándose al sembrío de varios cultivos tales como: Papa, maíz, trigo, habas, lenteja, etc. en sus diferentes variedades y en menor escala la extracción forestal realizada por los campesinos con fines de autoconsumo de leña, madera y palos.

CUADRO 1.2

CULTIVOS	PAPA	ARVEJA (ALVERJON)	AVENA GRANO	COL O	Chocho
Código de Cultivo	2509	2401	2103	2315	2317
Total de unidades Agropecuarias	83	13	3	1	5
Unid. Agrop. Menores de 0,5 Has.	20	4	0	0	5
Unid. Agrop. De 0,5 - 4,9 Has.	50	7	2	1	0
Unid. Agrop. De 5,0 - 9,9 Has.	5	1	0	0	0
Unid. Agrop. De 10,0 - 19,9 Has.	3	1	0	0	0
Unid. Agrop. De 20,0 - 49,9 Has.	0	0	1	0	0
Unid. Agrop. De 50,0 y más Has.	0	0	0	0	0
Total Superficie (Has.)	55.04	4.75	0.45	1	5
Superficie Menores de 0,5 Has.	6.05	0.6	0	0	5
Superficie De 0,5 - 4,9 Has.	30.24	1.7	0.35	1	0
Superficie De 5,0 - 9,9 Has.	11.75	0.2	0	0	0
Superficie De 10,0 - 19,9 Has.	7	0.25	0	0	0
Superficie De 20,0 - 49,9 Has.	0	0	0.1	0	0
Superficie De 50,0 y más Has.	0	0	0	0	0
CULTIVOS	HABA	OLLUCO	OCA	ZANAHORIA	TRIGO
Código de Cultivo	2413	2108	2507	2330	2112
Total de unidades Agropecuarias	2	62	3	4	5
Unid. Agrop. Menores de 0,5 Has.	1	20	15	0	2
Unid. Agrop. De 0,5 - 4,9 Has.	1	35	8	4	1
Unid. Agrop. De 5,0 - 9,9 Has.	0	4	1	0	0
Unid. Agrop. De 10,0 - 19,9 Has.	0	3	0	0	0
Unid. Agrop. De 20,0 - 49,9 Has.	0	0	0	0	1
Unid. Agrop. De 50,0 y más Has.	0	0	0	0	1
Total Superficie (Has.)	0.85	27.47	14.85	0.85	12.7
Superficie Menores de 0,5 Has.	0.1	3.87	2.35	0	0.35
Superficie De 0,5 - 4,9 Has.	0.75	17.04	12.30	0.85	0.25
Superficie De 5,0 - 9,9 Has.	0	2.6	0.2	0	0
Superficie De 10,0 - 19,9 Has.	0	3.6	0	0	0
					~ 4
Superficie De 20,0 - 49,9 Has.	0	0	0	0	0.1

FUENTE: (Municipalidad distrital de San Juan.)

FACULTAD DE INGENIERÍA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN

1.6.4. SALUD, EDUCACIÓN Y VIVIENDA

Salud:

. El único puesto de salud existente está ubicado en la capital distrital, donde todos los moradores cuentan con el seguro integral de salud (SIS) y para sus controles acuden al mencionado puesto de salud teniendo como dificultad la accesibilidad por no contar con una vía Carrozable, entre las enfermedades predominantes tenemos las infecciones respiratorias agudas.

Educación:

En las comunidades Número Ocho, Capulipampa cuenta con los niveles de educación inicial y primaria, los alumnos egresados del nivel primario tiene que acudir a realizar sus estudios secundarios tanto a la capital distrital como al centro poblado de Pariamarca.

Vivienda

Las viviendas de la zona del proyecto son de materiales rústicos, adobe y tapial, con cobertura de calamina, teja y paja, la mayor parte de estas viviendas solo presentan 2 ambientes una sala - dormitorio y una pequeña cocina, dichas viviendas cuentan con servicio de electricidad recientemente inaugurado

En la actualidad los caseríos dentro de la zona del proyecto cuentan con servicios de abastecimiento de agua potable, y no cuentan con un sistema de alcantarillado, haciendo sus necesidades fisiológicas en letrinas y pozos ciegos.

1.6.5 TRANSPORTE

En la actualidad el transporte es vía camino de herradura teniendo como elemento de transporte acémilas de carga siendo una de las principales dificultades para el transporte de sus productos, afectando directamente las economías de los pobladores, es por ello la importancia del mencionado proyecto que aliviaría las necesidades tanto sociales como económicas de las diferentes comunidades directa e indirectamente beneficiadas.

1.6.6 CONCLUSIONES DEL ESTUDIO SOCIO - ECONÓMICO

Las comunidades Número Ocho, Capulipampa y Yumagual Alto, se encuentra íntimamente ligado a la agricultura y ganadería, las cuales son el eje para su desarrollo, por lo que el vehículo de diseño considerado para el presente estudio es el C2, de 2.60 m de ancho, 9.1 m de largo, 6.10 m de longitud entre ejes y 4.10 m de alto; con un peso bruto de 18 toneladas, permitiendo una mejora de las condiciones de vida de la población ya que tendrían un alivio económico, social y cultural.

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVI

ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO
NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN)

1.7 JUSTIFICACIÓN DEL ESTUDIO.

El proyecto "Elaboración del documento técnico de apertura de la trocha Carrozable Caserío

Número Ocho – Capulipampa – Cruce la Cruz de Yumagual Alto" en el Tramo II Km. 5+000 al Km.

10+400, se justifica porque contribuirá al mayor flujo comercial, entre esta parte mas alejada del distrito tanto con la capital distrital como también con la ciudad de Cajamarca, además unirá el circuito con el distrito de Magdalena, para dar facilidad de salida a los productos, ganado, etc.; por ende beneficiara en forma social y económica a las comunidades de la zona.

1.7.1 JUSTIFICACIÓN TÉCNICA

Es necesaria la apertura de una vía, de tal forma que se cumpla con las especificaciones técnicas para un tráfico cómodo y seguro. Además esta nueva vía unirá a las comunidades de la parte alta del distrito de San Juan y la capital distrital.

1.7.2. JUSTIFICACIÓN ECONÓMICA


Esta carretera integrará a las comunidades de la parte alta del distrito de San Juan, el distrito de Magdalena y además unirá los con la ciudad de Cajamarca dado que sus habitantes en su mayoría son agricultores y ganaderos.

1.7.3. JUSTIFICACIÓN SOCIAL.

La apertura de la carretera elevará el nivel socio económico y cultural de los habitantes, dicha vía permitirá generar puestos de trabajo directo a lo largo de su etapa constructiva como en la etapa de operación.

FACULTAD DE INGENIERIA
ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

CAPÍTULO II REVISIÓN DE LITERATURA

FACULTAD DE INGENIERÍA
ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN)

2. REVISIÓN DE LITERATURA

2.1 ESTUDIO DEL TRAZO DEFINITIVO.

2.1.1 RECONOCIMIENTO DE LA ZONA EN ESTUDIO.

El reconocimiento es el examen general de las fajas o zonas de terreno, su finalidad es la de descubrir las características sobresalientes de dicha región. Se debe tomar la mayor cantidad de datós útiles que permita apreciar la importancia de la ruta en estudio y su influencia sobre el futuro desarrollo de la región.

Céspedes, J. 2001.

2.1.2 EVALUACIÓN DE LA VÍA EXISTENTE.

Se refiere al estudio de las características de la vía existente, como son: longitud de la ruta existente, pendientes, radios de curvatura, ancho de la faja de rodadura; para luego determinar que es lo que se va a mejorar, para brindar mayor confort y seguridad a los usuarios de la vía.

Céspedes, J. 2001.

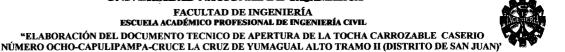
2.1.3 UBICACIÓN DE LOS PUNTOS DE CONTROL Y PUNTOS OBLIGADOS DE PASO.

La localización de una carretera y por ende su diseño, está altamente influenciada por la topografía, las características geológicas y de suelos, el drenaje, la necesidad de preservar la integridad física, social y ambiental de la zona perturbada por el paso de la vía.

Céspedes, J. 2001.

2.2 LEVANTAMIENTO TOPOGRÁFICO.

2.2.1 LEVANTAMIENTO TOPOGRÁFICO.


El levantamiento topográfico muestra las distancias horizontales y las diferentes cotas o elevaciones de los elementos representados en el plano mediante curvas de nivel, a escalas convenientes para la interpretación del plano y para la adecuada representación del camino y de las diversas estructuras que lo componen.

Manual para el Diseño de Caminos No Pavimentados de Bajo Volumen de Tránsito. 2005

FACULTAD DE INGENIERÍA

CUADRO 2.1 SELECCIÓN DE LA EQUIDISTANCIA PARA CURVAS DE NIVEL

ESCALA DEL PLANO	TIPO DE TOPOGRAFÍA	EQUIDISTANCIA (m)
Grande	Llana	0.10 , 0.25
(1/1 000 o menor)	Ondulada	0.25 , 0.50
(1/1 000 0 menor)	Accidentada	0.50 , 1.00
Mediana	Llana	0.25 , 0.50 , 1.00
(1/1 000 a 1/10 000)	Ondulada	0.50 , 1.00 , 2.00
(1/1 000 a 1/10 000)	Accidentada	2.00 , 5.00
	Llana	0.50 , 1.00 , 2.00
Pequeña	Ondulada	2.00 , 5.00
(1/10 000 o mayor)	Accidentada	5.00 , 10.00 , 20.00
	Montañosa	10.00 , 20.00 , 50.00

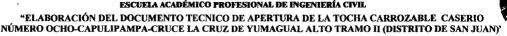
FUENTE: García, F. 2002.

2.2.2 DERECHO DE VÍA O FAJA DE DOMINIO.

2.2.2.1 NATURALEZA DEL DERECHO DE VÍA.

El derecho de vía es la franja de terreno de dominio público definida a lo largo y a ambos lados del eje de la vía, por la autoridad competente. En el derecho de la vía se ubican las calzadas de circulación vehicular, las bermas, las estructuras complementarias de las vías, las zonas de seguridad para los usuarios de las vías, las áreas necesarias para las intersecciones viales, estacionamientos vehiculares en las vías públicas, las estructuras de drenaje y de estabilización de la plataforma del camino y de los taludes del camino, la señalización vial del tránsito, los paraderos de transporte público, las áreas que permiten tener distancias de visibilidad segura para la circulación de las personas y vehículos, etc; y todo lo necesario, para que la vía incorpore áreas para el tratamiento ambiental paisajista cuando sea necesario.

Manual para el Diseño de Caminos No Pavimentados de Bajo Volumen de Tránsito. 2005


DIMENSIONAMIENTO DEL ANCHO MÍNIMO DEL DERECHO DE VÍA PARA 2.2.2.2 CAMINOS NO PAVIMENTADOS DE BAJO VOLUMEN DE TRÁNISTO.

El ancho mínimo debe considerar la Clasificación Funcional del Camino, en concordancia con las especificaciones establecidas por el Manual de Diseño Geométrico de Carreteras DG-2001 del MTC del Perú, que fijan las siguientes dimensiones:

FACULTAD DE INGENIERÍA

ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

CUADRO 2.2 ANCHO DEL DERECHO DE VÍA PARA CBVT

Descripción	Ancho mínimo absoluto *
Rutas Nacionales (RN) del Sistema Nacional de Carreteras	15 m
Carreteras Departamentales (CD)	15 m
Caminos Troncales Vecinales	15 m
Caminos Rurales Alimentadores	15 m

^{* 7.50} m a cada lado del eie

La faja de dominio dentro de la que se encuentra la carretera y sus obras complementarias, se extenderá como mínimo, para carreteras de bajo volumen de tránsito un (1.00) metro, más allá del borde de los cortes, del pie de los terraplenes o del borde más alejado de las obras de drenaje que eventualmente se construyan.

La distancia mínima absoluta entre pie de taludes o de obras de contención y un elemento exterior será de 2.00 m. La mínima deseable será de 5.00 m.

Manual para el Diseño de Caminos No Pavimentados de Bajo Volumen de Tránsito, 2005.

2.2.2.3 FAJA DE PROPIEDAD RESTRINGIDA.

A cada lado del Derecho de Vía habrá una faja de Propiedad Restringida. La restricción se refiere a la prohibición de ejecutar construcciones permanentes que afecten la seguridad o la visibilidad y que dificulten ensanches futuros del camino.

La Norma DG-2001, fija esta zona restringida para Carreteras de 3ra. Clase en diez (10) metros a cada lado del Derecho de Vía. De modo similar para los caminos de bajo volumen de tránsito el ancho de la zona restringida será de 10 m.

Manual para el Diseño de Caminos No Pavimentados de Bajo Volumen de Tránsito. 2005

2.2.2.4 MANTENIMIENTO DEL DERECHO DE VÍA.

Los presupuestos de ejecución y de mantenimiento de las obras viales, deberán incluir acciones de terminación y limpieza de las áreas laterales a la plataforma del camino, dentro del derecho de vía público, que comprenden, terrenos de pendientes laterales variadas.

Manual para el Diseño de Caminos No Pavimentados de Bajo Volumen de Tránsito. 2005

DISEÑO GEOMÉTRICO DE LA VÍA. 2.3

- SELECCIÓN DEL TIPO DE VÍA:
- **SEGÚN SU JURISDICCIÓN:**
- Carreteras del Sistema Nacional (RN): Que corresponde a la red de carreteras de interés nacional y que une los puntos principales de la nación con sus puertos y fronteras.

FACULTAD DE INGENIERÍA

ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO
NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN)

- Carreteras del Sistema Departamental (CD): Compuesto por aquellas carreteras que constituyen la red vial circunscrita a la zona de un departamento.
- Caminos Troncales Vecinales: Conformado por aquellas carreteras de carácter local y que unen las aldeas y pequeñas poblaciones entre sí.
- Caminos Rurales Alimentadores: son aquellas que alimentan a los caminos vecinales salen de aldeas y poblaciones pequeñas.

Manual para el Diseño de Caminos No Pavimentados de Bajo Volumen de Tránsito. 2005

POR EL TIPO DE OBRA A EJECUTARSE:

Es de aplicación para el diseño de proyectos de caminos no pavimentados: de tierra, y afirmados. Para obras que configuran la siguiente clasificación de trabajos:

Mantenimiento rutinario.

BACHEO: Consiste en la eliminación de huecos, ahuellamientos y depresiones menores, a ser rellenados con nuevo material granular.

Efecto: Reduce la rugosidad y elimina los pozos de agua superficial.

LIMPIEZA: Consiste en la limpieza de bordes y de áreas laterales y de estructuras de drenaje, eliminación de piedras grandes de la calzada, etc.

Efecto: Mantiene en funcionamiento las estructuras de drenaje, previene la formación de empozamientos de agua laterales y sobre la calzada, que afecten la plataforma del camino y la circulación vehicular.

RIEGO: Consiste en mantener un nivel de humedad superficial suficiente para evitar en lo posible el polvo del camino.

Efecto: Aumenta seguridad en el tránsito.

Mantenimiento periódico (en todo lo ancho del camino)

DESENCALAMINADO, PERFILADO Y NIVELACION: Consiste en rellenar ahuellamientos profundos y surcos, desencalaminar, escarificar y recuperar el perfil y el bombeo de la calzada; y realizar trabajos de compactación.

Efecto: Mejora el escurrimiento del agua superficial, reduce erosión y pérdida de material, mejora la resistencia de la superficie y de la sub rasante, al disminuir el exceso de su contenido de humedad.

PUENTES Y OBRAS DE ARTE: Consiste en hacer reparaciones y reposiciones mínimas necesarias para circulación peatonal y vehicular y de los cursos de agua: alineamientos encauzamientos, en muros, pontones y puentes, en (de madera, piedra o de concreto existentes); y reparaciones de huecos en el tablero y reparaciones o refuerzos en las barandas.

FACULTAD DE INGENIERÍA

ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL "ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN)

Efecto: Permite recuperar o alcanzar un nivel operativo aceptable de los puentes y estructuras similares.

REPOSICIÓN DE MATERIAL GRANULAR (Grava): En caminos de MATERIAL GRANULAR (exclusivamente), consiste en escarificado de la calzada, nivelación y recuperar el bombeo, mediante la reposición de Material granular en la cantidad deseada, perfilado y compactación.

Efecto: Permite recuperar o aumentar la resistencia del camino, reduce la rugosidad y mejora el drenaje.

Rehabilitación

Consiste en un trabajo mayor de re perfilado, reposición de grava, compactación, rehabilitación y complementación del drenaje, reparación y complementación de muros, pontones, etc.

Efecto: Permite recuperar y hasta mejorar, en algunos aspectos, la condición y/o resistencia original del camino

Mejoramiento

Consiste en realizar la REHABILITACIÓN del camino. incluvendo algunos MEJORAMIENTOS del trazo.

Efecto: Mejora el nivel operativo del camino.

También se incluye en este tipo de obra, la transformación de un camino de TIERRA, en un camino AFIRMADO.

Efecto: Mejora el nivel operativo del camino, haciéndolo utilizable todo el año

Nueva construcción.

Construcción de un camino nuevo con superficie de rodadura granular, en el total del ancho y de la longitud a través de un territorio sin camino previo o en la ruta de un camino existente con características de trocha. La obra tiene la finalidad de mejorar sustancialmente sus características en: alineamientos, ancho, drenajes, puentes, superficie de rodadura, etc.

Manual para el Diseño de Caminos No Pavimentados de Bajo Volumen de Tránsito. 2005

CLASIFICACIÓN POR EL TIPO DE RELIEVE Y CLIMA

Carreteras en terrenos: planos, ondulados, accidentados y muy accidentados; se ubican indistintamente en la Costa (poca lluvia), Sierra (lluvia moderada) y Selva (muy lluviosa).

Manual para el Diseño de Caminos No Pavimentados de Bajo Volumen de Tránsito. 2005

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN)'

CUADRO 2.3. RELACION ENTRE CLASIFICACIONES DE LA RED VIAL CON LA VELOCIDAD DE DISEÑO.

CLASIFICACIÓN DE LA RED VIAL PERUANA Y SU RELACION CON LA VELOCIDAD DEL DISEÑO

CLASIFICACIÓN SUPERIOR I					PRIMERA CLASE				SEGUNDA CLASE				TERCERA CLASE								
TRAFICO VEH/DIA (1) > 4000 4			400				2000-400				< 400										
CARACTERÍSTICAS	ΑF	2 (2)			MC	MC			DC	DC			DC				DC				
OROGRAFÍA TIPO	1	2	3	4	1	2	3	4	1	2		3	4	1	2	3	4	1	2	3	4
VELOCIDAD DE DISEÑO:	ı	İ	İ				İ	1	İ	Ì			İ	Ì	İ	Ì		İ	Ì	İ	ŀ
30 KPH	T	Ì	T		Π			1	1					Ī				İ	1		Ì
40 KPH		Ī	Ī	Τ	I^{-}		Π	Ī		Ì]
50 KPH	T		Ť	1	Π	1				Ť					1	Ĺ	1_	Γ			Ī
60 KPH	1	1	T											1][$L_{}$]	1
7C KPH	Ť	Ì																			Ì
80 KPH		1	1			1]							1	
90 KPH	Т	T	Т	1											Ï						
100 KPH		\mathbf{I}^{-}	L]_																	
110 KPH		I	1											1				1	1		
120 KPH																					
130 KPH	Ī	1	T		Π	Π		1						1							1
140 KPH]	İ							Ì	j			İ	İ	İ	1	1	ĺ	1	1
150 KPH	T	T	T	1	İ		Τ	1	1					1	i ···	İ	İ		1		••

AΡ : Autopista

MC : Carretera Multicarril O Dual (Dos calzadas)

MD : Carretera de Dos Carriles NOTA 2: En caso de que una vía clasifique como carretera de la 1ra. Clase y a pesar de ello se desee diseñar una vía multicarril, las características de ésta se deberán adecuar al orden superior inmediato. Igualmente si es una vía dual y se desea diseñar una

NOTA 1: En zona tipo 3 v/o 4, donde exista espacio autopista, se deberán utilizar los requerimientos mínimos del orden suficiente y se justifique por demanda la construcción de una superior inmediato.

autopista, puede realizarse con calzadas a diferente nivel NOTA 3. Los casos no contemplados en la presente clasificación, asegurándose que ambas calzadas las serán justificados de acuerdo con lo que disponda el MTC y sus tendan características de dicha clasificación.

características serán definidas por dicha entidad.

FACULTAD DE INGENIERÍA

ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO
NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN)?

a) VELOCIDAD DIRECTRIZ (V): La selección de la velocidad de diseño será una consecuencia de un análisis técnico-económico de alternativas de trazado, que deberán tener en cuenta la orografía del territorio. En territorios planos el trazado puede aceptar altas velocidades a bajo costo de construcción; pero en territorios muy accidentados será muy costoso mantener una velocidad alta de diseño, porque habría que realizar obras muy costosas para mantener un trazo seguro. Lo que solo podría justificarse si los volúmenes de la demanda de tránsito fueran muy altos.

En el particular caso de este Manual destinado al diseño de Caminos de Bajo Volumen de Tránsito, es natural en consecuencia, que el diseño se adapte en lo posible a las inflexiones del territorio y particularmente la velocidad de diseño deberá ser bastante baja cuando se trate de sectores o tramos de orografía más accidentada.

Manual para el Diseño de Caminos No Pavimentados de Bajo Volumen de Tránsito. 2005

b) RADIOS DE DISEÑO: El mínimo radio de curvatura es un valor límite que esta dado en función del valor máximo del peralte y el factor máximo de fricción seleccionados para una velocidad directriz. El valor del radio mínimo puede ser calculado por la expresión:

 $Rmin = V^2/(127 (0.01 \text{ emax} + fmax)) \dots (EC. - 01)$

Donde:

Rmin = Radio Mínimo en metros.

V = Velocidad de Diseño en Km./h.

emax = Peralte máximo de la curva en valor decimal.

fmax = Factor máximo de fricción.

Manual para el Diseño de Caminos No Pavimentados de Bajo Volumen de Tránsito. 2005

CUADRO 2.4 FRICCIÓN TRANSVERSAL MÁXIMA EN CURVAS

Velocidad Directriz (Km/h)	F
20	0.18
30	0.17
40	0.17
50	0.16
60	0.15
70	0.14
80	0.14

FUENTE: Manual para el Diseño de Camínos No Pavimentados de

Bajo Volumen de Tránsito - Cuadro Nº 3.2.6.1.A. 2005

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN)

CRIO

c) CALZADA: El diseño de caminos de muy bajo volumen de tráfico IMD< 50 veh/día. La calzada podrá estar dimensionada por un solo carril. Se estipula un ancho mínimo de 3.50 m. de calzada; pero es preferible dotarle de un mayor ancho, siempre que la topografía del terreno lo permita.

Manual para el Diseño de Caminos No Pavimentados de Bajo Volumen de Tránsito. 2005

d) BERMAS: A cada lado de la calzada se proveerán bermas con un ancho mínimo de 0.50 m. Este ancho deberá permanecer libre de todo obstáculo incluyendo señales y guardavías. Cuando se coloque guardavías se construirá un sobre ancho mínimo de 0.50 m.

En los tramos en tangentes las bermas tendrán una pendiente de 4% hacia el exterior de la plataforma.

La berma situada en el lado inferior del peralte seguirá la inclinación de este cuando su valor sea superior a 4%. En caso contrario la inclinación de la berma será igual al 4%.

La berma situada en la parte superior del peralte tendrá en lo posible una inclinación en sentido contrario al peralte igual a 4%, de modo que escurra hacia la cuneta.

Manual para el Diseño de Caminos No Pavimentados de Bajo Volumen de Tránsito. 2005

e) PLAZOLETAS: En carreteras de un solo carril con dos sentidos de tránsito, se construirán ensanches en la plataforma, cada 500 m. como mínimo, para que puedan cruzarse los vehículos opuestos, o adelantar los del mismo sentido.

Plazoletas de dimensiones mínimas de 3.00 x 30.00 m

Manual para el Diseño de Caminos No Pavimentados de Bajo Volumen de Tránsito. 2005

f) PENDIENTES. La pendiente es la relación en porcentaje del desnivel entre dos puntos y su distancia horizontal.

En los tramos en corte se evitará preferiblemente el empleo de pendientes menores a 0.5%. Podrá hacerse uso de rasantes horizontales en los casos en que las cunetas adyacentes puedan ser dotadas de la pendiente necesaria para garantizar el drenaje y la calzada cuente con un bombeo igual o superior a 2%.

En tramos carreteros con altitudes superiores a los 3,000 msnm, los valores máximos del Cuadro 2.6 para terreno montañoso o terreno escarpados se reducirán en 1%.

Manual para el Diseño de Caminos No Pavimentados de Bajo Volumen de Tránsito. 2005

FACULTAD DE INGENIERÍA
ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN)

OROGRAFÍA TIPO	Terreno Plano	Terreno Ondulado	Terreno Montañoso	Terreno Escarpado
VELOCIDAD DE DISEÑO:				
20	8	9	10	12
30	8	9	10	12
40	8	9	10	10
50	8	8	8	8
60	8	8	8	8
70	7	7	7	7
80	7	7	7	7

Fuente: Manual para el Diseño de Caminos No Pavimentados de Bajo Volumen de Tránsito Cuadro Nº 3.3.3ª. 2005

Pendiente media. Es el promedio de la pendiente de una carretera para tramos de longitud considerada. Y esta determinada por la formula:

 $I_m = (\Delta h \ acumulada / Longitud acumulada) x 100 ... (EC. - 02)$

g) CUNETAS. Las cunetas tendrán en general sección triangular y se proyectarán para todos los tramos al pie de los taludes de corte.

CUADRO 2.6 DIMENSIONES MÍNIMAS DE LAS CUNETAS

REGIÓN	PROFUNDIDAD (m)	ANCHO (m)
Seca	0.20	0.50
Lluviosa	0.30	0.75
Muy Iluviosa	0.50	1.00

Fuente: Manual para el Diseño de Caminos No Pavimentados de Bajo Volumen de Tránsito - Cuadro Nº 4.1.3a. 2005.

h) BOMBEO. Las carreteras no pavimentadas estarán provistas de bombeo con valores entre 2% y 3%. En los tramos en curva, el bombeo será sustituido por el peralte. En los caminos de bajo volumen de tránsito con IMDA inferior a 200 veh/día se puede sustituir el bombeo por una inclinación transversal de la superficie de rodadura de 2.5% á 3% hacia uno de los lados de la calzada.

Manual para el Diseño de Caminos No Pavimentados de Bajo Volumen de Tránsito. 2005

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

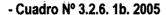
"ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN)

i) **PERALTES.** Se denomina peralte a la sobre elevación de la parte exterior de un tramo de la carretera en curva con relación a la parte interior del mismo, con el fin de contrarrestar la acción de la fuerza centrífuga, las curvas horizontales deben ser peraltadas.

El peralte máximo tendrá como valor máximo normal 8% y como valor excepcional 10%. En carreteras afirmadas bien drenadas en casos extremos podría justificarse un peralte máximo alrededor de 12%.

Manual para el Diseño de Caminos No Pavimentados de Bajo Volumen de Tránsito. 2005

CUADRO 2.7 RADIOS MÍNIMOS Y PERALTES MÁXIMOS


Velocidad	PERALTE MÁXIMO	Valor Límite de	Calculado	Redondeo
Directriz (km/h)	e(%)	fricción f _{max}	Radio mínimo (m)	Radio mínimo (m)
2	4.	0.18	14.3	15
0	0	0.17	33.7	35
3	4.	0.17	60.0	60
0	0	0.17	98.4	100
4	4.	0.15	149.1	150
0	0	0.13	214.2	215
5	4.	0.14	279.8	280
0	0	0.14	210.0	200
2	6.	0.18	13.1	15
0	0	0.17	30.8	30
3	6.	0.17	54.7	55
0	0	0.16	89.4	90
4	6.	0.15	134.9	135
0	0	0.14	192.8	195
5	6.	0.14	251.8	250
00	0	0.14	201.0	200
2	8.	0.18	12.1	10
0 3	0	0.17	28.3	30
	8.	0.17	50.4	50
0	0	0.16	82.0	80
4	8.	0.15	123.2	125
0	0	0.14	175.3	175
5	8.	0.14	228.9	230
. 0	0			
2	10.	0.18	11.2	10
0	0	0.17	26.2	25
3	10.	0.17	46.6	45
0	0	0.16	75.7	75
4	10.	0.15	113.3	115
0	0	0.14	160.7	160
5	10.	0.14	209.9	210
0	0			
2	12.	0.18	10.5	10
0	0	0.17	24.4	25
3	12.	0.17	43.4	45
0	0	0.16	70.3	70
4	12.	0.15	104.9	105
0	0	0.14	148.3	150
5	12.	0.14	193.7	195
0	0			
Fuente: Manual i	oara el Diseño de (Caminos No Pavin	nentados de Bajo Vo	olumen de Tránsifo

FACULTAD DE INGENIERÍA

ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN)

En caminos cuyo IMDA de diseño sea inferior a 200 vehículos por día y la velocidad directriz igual o menor a 30 km/h, el peralte de todas las curvas podrá ser igual al 2.5%.

LONGITUD DE TRANSICIÓN

Se define como la variación en tangente inmediatamente antes y después de una curva horizontal en la cual se logra el cambio gradual del bombeo de la sección transversal al peralte correspondiente a dicha curva.

La variación del peralte a lo largo de su desarrollo deberá obtenerse sin sobrepasar los siguientes incrementos de la pendiente del borde del pavimento:

0.5 % cuando el peralte es < 6%

0.7 % cuando el peralte es > 6%

Las fórmulas para calcular la Longitud mínima para la rampa del peralte, son:

Longitud por Bombeo:

 $Lb = (b * A/2)/(0.5 \circ 0.7)$

Longitud por Peralte:

Le = $(e * A/2)/(0.5 \circ 0.7)$

Luego la longitud de rampa es:

Lre = Lb + Le
Lre =
$$A/2*(e+b)$$
 (EC. – 03)
0.5 \(\text{0.7} \)

Donde:

Lre: Longitud de rampa de peralte (m).

A : Ancho de faja de rodadura (m).

e : Peralte de la faja de rodadura (%).

b : Bombeo de la faja de rodadura (%).

CUADRO 2.8 LONGITUDES MÍNIMAS DE TRANSICIÓN DE BOMBEO Y TRANSICIÓN DE PERALTE

Velocidad	Valor del Peralte						
Directriz	2%	4%	6%	8%	10%	12%	Transición de Bombeo
(km/h)	LONGITUD DE TRANSICIÓN DE PERALTE (M)*					Donnbeo	
20	9	18	27	36	45	54	9
30	10	19	29	38	48	57	10
40	10	21	31	41	51	62	10
50	11	22	32	43	54	65	11
60	12	24	36	48	60	72	12
70	13	26	39	52	66	79	13
80	14	29	43	58	72	86	14

Fuente: Manual para el Diseño de Caminos No Pavimentados de Bajo Volumen de Tránsito - Cuadro

Nº 3.2.6.1c, 2005.

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN)

... (EC. - 04)

 $Sa = n(R - \sqrt{R^2 + L^2}) + \frac{V}{10\sqrt{R}}$

Donde:

n: número de carriles.

R: radio de la curva (m)

L: distancia entre el eje delantero y el eje posterior de vehículo (m)

V: velocidad directriz (Km. /h.)

Normas Peruanas para Diseño de Carreteras. 2001

k) TALUDES. Se realizará una evaluación general de la estabilidad de los taludes existentes; se identificará los taludes críticos o susceptibles de inestabilidad, en este caso (se determinarán en lo posible, considerando los parámetros obtenidos de ensayos y cálculos o tomando en cuenta la experiencia del comportamiento de los taludes in situ y/o ejecutados en rocas o suelos de naturaleza y características geológicas, geotécnicas similares que se mantienen estables ante condiciones ambientales semejantes) determinará la inclinación de los taludes definiendo la relación H: V de diseño.

Manual para el Diseño de Caminos No Pavimentados de Bajo Volumen de Tránsito. 2005

CUADRO 2.9.1 TALUDES DE CORTE

TALUDES DE CORTE				
CLASE DE TERRENO	TALUD (V:H)			
	H < 5.00	5 <h<10< th=""><th>H > 10</th></h<10<>	H > 10	
Roca Fija	10 : 1	(*)	(*)	
Roca Suelta	6:1-4:1	(*)	(*)	
Conglomerados Cementados	4:1	(*)	(*)	
Suelos Consolidados Compactos	4:1	(*)	(*)	
Conglomerados Comunes	3:1	(*)	(*)	
Tierra Compacta	2:1-1:1	(*)	(*)	
Tierra Suelta	1:1	(*)	(*)	
Arenas Sueltas	1:2	(*)	(*)	
Zonas blandas con abundante arcillas o zonas	1:2	(*)	(*)	
humedecidas por filtraciones	hasta 1 : 3		(*)	

(*) Requiere Banqueta o análisis de estabilidad

FUENTE: Manual para el Diseño de Caminos No Pavimentados de Bajo Volumen de Tránsito - Cuadro Nº 5.2.1. 2005

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN)

SERIO AN HEAD?


CUADRO 2.9.2 TALUDES DE RELLENO

TALUDES DE RELLENO					
MATERIALES	TALUD (V:H)				
•	H < 5	5 <h<10< th=""><th>H >10</th></h<10<>	H >10		
Enrocado	1:1	(*)	(*)		
Suelos diversos compactados (mayoría de suelos)	1 : 1.5	(*)	(*)		
Arena Compactada	1:2	(*)	(*)		

^(*) Requiere Banqueta o análisis de estabilidad

FUENTE: Manual para el Diseño de Caminos No Pavimentados de Bajo Volumen de Tránsito - Cuadro Nº 5.2.1. 2005

2.4 UBICACIÓN DEL EJE LONGITUDINAL Y DISEÑO GEÓMÉTRICO DE LA VÍA.

ELEMENTOS DE UNA CURVA SIMPLE

Gráfico 2.1

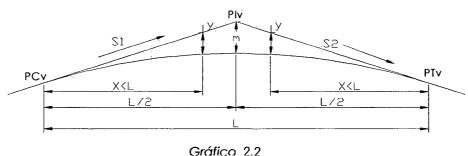
Las fórmulas para el cálculo de los elementos de curva son:

CUADRO 2.10.1

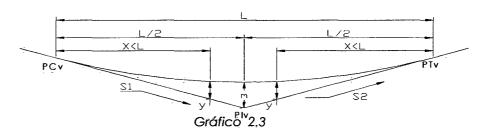
ELEMENTOS DE CURVAS HORIZONTALES SIMPLES.

Elemento	Símbolo	Fórmula
Ţangente	T	T = R Tan (1/2)
Longitud de curva	Lc	Lc = πRI/180°
Cuerda	С	C = 2 R Sen (1/2)
Externa	erna E E=R[Sec (I/	
Flecha	F	F = R[1 - Cos(1/2)]

FUENTE: Céspedes, J. 2001.


FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN)'



- B. PERFIL LONGITUDINAL. Viene a ser el eje de simetría de la sección transversal de la planta formada a nivel de la subrasante existente.
- C. SUB RASANTE: Es la línea de intersección del plano vertical que pasa por el eje de la carretera con el plano que pasa por la plataforma que se proyecta.
- D. RASANTE: Viene a ser la superficie que queda una vez que se ha concluido con el pavimento.
- E. AFIRMADO: Capa de material seleccionado que se ubica sobre la subrasante, con el objeto de servir de capa de rodadura.
- F. CURVAS VERTICALES: Los tramos consecutivos de rasante, serán enlazados con curvas verticales parabólicas cuando la diferencia algebraica de sus pendientes sea mayor a 1%, para carreteras pavimentadas y mayor a 2% para las afirmadas. Y estas pueden ser:
 - Por su forma: Convexas y Cóncavas.
 - Por la longitud de sus ramas: Simétricas y Asimétricas.

CURVA CONVEXA SIMÉTRICA

CURVA CÓNCAVA SIMÉTRICA

FUENTE: Manual para el Diseño de Caminos No Pavimentados de Bajo Volumen de Tránsito. 2005

F.1 Cálculo de las curvas verticales.

Para calcular las curvas verticales se sigue el siguiente procedimiento:

- > Determinar la necesidad de curvas verticales.
- Precisar el tipo de curva vertical a utilizar.
- > Calcular la longitud de la curva vertical.
- > Se corrigen las cotas de la sub rasante.

Céspedes, J. 2001.

FACULTAD DE INGENIERÍA

Longitud de las curvas verticales. F.2

> Curvas verticales convexas.

Cuando se desea contar con distancia de visibilidad de parada:

Para Dp > L
$$L = 2Dp - \frac{444}{A}$$
 ... (EC. - 05)

Para Dp < L
$$L = \frac{Dp^2A}{444}$$
 ... (EC. – 06)

Cuando se desea obtener visibilidad de sobrepaso:

Para Ds > L
$$L = 2Ds - \frac{1100}{A}$$

$$L = \frac{Ds^2A}{1100}$$

$$L = \frac{Ds^2A}{1100}$$
 ... (EC. – 08)

Donde:

Ds = Distancia de visibilidad de sobrepaso, m.

Dp = Distancia de visibilidad de parada, m.

V = Velocidad Directriz, Km/h.

A = Diferencia algebraica de pendiente, %.

Céspedes, J. 2001.

> Curvas verticales cóncavas (simétricas y asimétricas).

Para calcular la longitud de este tipo de curvas se lo hace con la lámina N° 5.5.3.4. de las Normas Peruanas de Diseño de Carreteras.

Céspedes, J. 2001.

F.3 Cálculo de las ordenadas de las curvas verticales.

$$m = \frac{LA}{80}$$
 $y = \frac{X^2A}{200L}$... (EC. – 09)

m = Ordenada máxima en m.

L = Longitud de la curva vertical, m.

A = cambio de pendiente en porcentaje.

Y = ordenada a una distancia X

X = Distancia parcial medida desde el PCV.

Céspedes, J. 2001.

FACULTAD DE INGENIERÍA

ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL
ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO NÚMERO
OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN)*

2.5 ESTUDIO DE SUELOS Y CANTERAS.

2.5.1 GENERALIDADES:

Se considera que suelo es un agregado natural de granos minerales, con o sin componentes orgánicos, que pueden separarse por medios mecánicos comunes, tales como la agitación en el agua. En la práctica no existe una diferencia tan simple entre roca y suelo, pues las rocas más rígidas y fuertes pueden debilitarse al sufrir el proceso de meteorización, y algunos suelos muy endurecidos pueden presentar resistencia comparables a las de la roca meteorizada.

Montejo, A. 1998

2.5.2 ENSAYOS DE LABORATORIO.

- A. ENSAYOS GENERALES. Estos ensayos se utilizan para identificar suelos de modo que puedan ser descritos y clasificados adecuadamente; los ensayos generales más comunes son:
 - ✓ Contenido de humedad.
 - ✓ Peso específico.
 - ✓ Análisis granulométrico.
 - ✓ Límites de consistencia.

Ramírez, P. 2000.

a. CONTENIDO DE HUMEDAD (W%).

Es un ensayo que permite determinar la cantidad de agua presente en una cantidad dada de suelo en términos de su peso seco. El conocimiento de la humedad natural de un suelo no solo permite definir a priori el tratamiento a darle, durante la construcción, sino que también permite estimar su posible comportamiento, como subrasante.

Montejo, F. 2001.

Generalmente se expresa en porcentaje.

Se calcula con la siguiente fórmula:

$$W(\%) = \frac{Ww}{Ws} * 100$$
 ... (EC. – 10)

Donde:

Wh : Peso del suelo húmedo. (gr.)

Ws : Peso del suelo seco. (gr.)

Ww : Peso del agua contenida en la muestra de suelo (gr.)

Llique, R. 2003.

FACULTAD DE INGENIERÍA

ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN)"

b. PESO ESPECÍFICO.

Es la relación entre el peso y el volumen de las partículas minerales de la muestra del suelo. Los ensayos se realizan según el tipo de material: grava gruesa o piedra, arena gruesa y/o grava, material fino.

Llique, R. 2003.

$$G = \frac{100}{\frac{\% Pasante del N^{\circ}4}{Gs} + \frac{\% Retenidoenel N^{\circ}4}{Ga}} \dots (EC. - 11)$$

 Para partículas menores a 4.75 mm (Tamiz № 4) (MTC E 113 - 2000 basado en las Normas ASTM-D-854 y AASHTO-T-100), comprende a los Limos y Arcillas, se determina mediante la siguiente fórmula:

$$Gs = \frac{Wo}{Wo + W_2 - W_1}$$
 (EC. – 12)

Donde:

W2: Peso del picnómetro (gr).

Wo: Peso del suelo seco (gr).

W1: Peso del picnómetro + agua + suelo (gr).

- Para partículas mayores a 4.75 mm (Tamiz № 4) (MTC E 206 - 2000, basado en las Normas ASTM-C-127 y AASHTO-T-85). Comprende a las Gravas.

$$Ga = \frac{A}{A - C} \qquad \text{(EC. - 13)}$$

Donde:

A: Peso en el aire de la muestra seca en gramos.

C: Peso sumergido en agua de la muestra saturada, en gramos.

Wihem, P. 1996.

c. ANÁLISIS GRANULOMÉTRICO.

Es una prueba para determinar cuantitativamente la distribución de los diferentes tamaños de partículas del suelo.

Existente diferentes procedimientos para la determinación de la composición granulométrica de un suelo. Por ejemplo, para clasificar por tamaños las partículas gruesas, el procedimiento más expedito es de tamizado. Sin embargo, al aumentar la finura de los granos, el tamizado se hace cada vez más difícil teniéndose entonces que recurrir a procedimientos de sedimentación.

Montejo, F. 2001.

Como una medida simple de la uniformidad de un suelo, se tiene el coeficiente de uniformidad (Cu).

FACULTAD DE INGENIERÍA

ESCUELA ACADÉMICO PROFESIONAL DE INGENTERÍA CIVIL

ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN)"

$$Cu = \frac{D_{60}}{D_{10}}$$
 (EC. – 14)

Donde:

D60 : Tamaño tal, que el 60% en peso del suelo sea igual o menor.

D10 : Llamado diámetro efectivo, es tamaño tal que sea igual o mayor que el 10%, en peso, del suelo.

Adicionalmente para definir la gradación, se define el coeficiente de curvatura del suelo con la expresión:

$$Cc = \frac{(D_{30})^2}{(D_{10} * D_{60})}$$
 (EC. – 15)

El coeficiente de curvatura tiene un valor entre 1 y 3 en suelos bien gradados.

Wihem, P. 1996.

d. LÍMITES DE CONSISTENCIA

LÍMITE LÍQUIDO (LL): Contenido de humedad que corresponde al límite arbitrario entre los estados de consistencia semilíquido y plástico de un suelo. El suelo con contenido de humedad menor a su límite líquido se comporta como material plástico.

El valor del límite líquido correspondiente es a los 25 golpes en la curva de fluidez de la ordenada correspondiente.

Llique, R. 2003.

LÍMITE PLÁSTICO (LP): Contenido de humedad que corresponde al límite arbitrario entre los estados de consistencia plástico y semisólido de un suelo. El suelo con contenido de humedad menor a su límite plástico se considera como material no plástico.

Llique, R. 2003.

ÍNDICE DE PLASTICIDAD (IP):

Se puede definir el índice de plasticidad de un suelo como la diferencia entre su límite líquido y su límite plástico.

Wihem, P. 1996.

CUADRO 2.12 CARACTERÍSTICAS DE SUELOS SEGÚN SUS ÍNDICES DE PLASTICIDAD

ΙP	CARACTERÍSTICAS	TIPOS DE SUELOS	COHESIVIDAD
0	No plástico	Arenoso	No cohesivo
< 7	Baja plasticidad	Limoso	Parcialmente cohesivo
7 - 17	Plasticidad media	Arcillo- limoso	Cohesivo
> 17	Altamente plástico	Arcilla	Cohesivo

FUENTE: Reglamento Nacional de Edificaciones, 2006.

FACULTAD DE INGENIERÍA

ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

LABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN)"

ENSAYOS DE CONTROL O INSPECCIÓN. Este ensayo se usa para asegurar que los suelos se В. compacten adecuadamente durante la etapa de construcción, de modo que cumplan las condiciones impuestas en el proyecto.

Ramirez, P. 2000.

a. ENSAYO DE COMPACTACIÓN Se entiende por compactación todo proceso que aumenta el peso volumétrico de un suelo. En general es conveniente compactar un suelo para incrementar su resistencia al esfuerzo cortante, reducir su compresibilidad y hacerlo más impermeable.

Montejo, F. 2001.

b. PROCTOR MODIFICADO: Es la modificación de la prueba Proctor Estandar, aumentando la energía de compactación, conservando el número de golpes por capa, elevando el número de capas a 5, aumentando el peso del pistón a 4.5 kg y la altura de caída del mismo a 45.7 cm, siendo la energía especifica de compactación de 27.2 kg cm/cm3. Resultando la densidad seca máxima obtenida, mayor que la obtenida en el Proctor Estandar y menor contenido óptimo de humedad.

Ramirez, P. 2000.

c. DENSIDAD SECA. La densidad seca que se realiza mediante un proceso de compactación de un suelo, puesto que es importante a la hora de construir carreteras y estructuras objetivo general determinar la relación entre la humedad y la densidad del suelo

$$Ds = \frac{Dh}{(100 + W\%)} *100$$
 (EC. - 17)

Donde:

Ds:

Densidad seca.

Dh:

Densidad húmeda.

W%:

Contenido de humedad.

Rodríguez, A. 1973.

- d. HUMEDAD ÓPTIMA. Es el contenido de aqua del terreno que permite obtener una densidad máxima mediante su compactación. Se define humedad óptima del suelo aquella con la que se consigue la máxima densidad seca para la energía de compactación.
- C. **ENSAYOS DE RESISTENCIA.**
- a. ENSAYO DE CALIFORNIA BEARING RATIO (CBR)
- C.B.R. es el índice de resistencia del terreno, sirve para evaluar la capacidad de soporte de los suelos de subrasante y de las capas de subbase, base y afirmado de un pavimento.

$$C.B.R. = \frac{C \arg aUnitaria del Ensayo}{C \arg aUnitaria Patr\'on} *100 (EC. – 18)$$

FACULTAD DE INGENIERÍA

ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

Para determinar el CBR de un suelo se realizan los siguientes ensayos:

- Ensayo de compactación C.B.R.
- Ensayo de Hinchamiento.
- Ensayo de Carga Penetración.

Llique, R. 2003.

CUADRO 2.13 VALORES CORRESPONDIENTES A LA MUESTRA PATRÓN (Macadán)

UNIDADE	S METRICAS	UNIDADES INGLESAS					
Penetración (mm)	Carga unitaria (Kg/cm²)	Penetración (pulg)	Carga unitaria (lbs/pulg²)				
2.54	70.31	0.10	1000				
5.08	5.08 105.46		1500				
7.62	133.58	0.30	1900				
10.16	161.71	0.40	2500				
12.70	182.80	0.50	2600				

FUENTE: Wihem, P. 1996.

b. ENSAYO DE DESGASTE POR ABRASIÓN. (Para muestras de Cantera)

Este método operativo está basado en las Normas ASTM-C-131, AASHTO-T-96 Y ASTM-C-535, utilizando la Máquina de los Ángeles y consiste en determinar el desgaste por Abrasión del agregado grueso, previa selección del material a emplear por medio de un juego de tamices aprobados.

$$D(\%) = \frac{peso\ inicial - peso\ final}{peso\ inicial} *100 \dots (EC. - 19)$$

Donde:

Peso inicial:

peso de la muestra lavada y secada al horno, antes del ensayo.

Peso final:

peso de la muestra que queda retenida en la malla N° 12 después del ensayo.

CUADRO 2.14 CARGA ABRASIVA PARA MÁQUINA DE LOS ÁNGELES

GRANULOMETRÍA	N° DE ESFERAS	PESO DE CARGA (gr)
A	12	5000 ± 25
B	11	4584 ± 25
C	8	3330 ±20
D	6	2500 ± 15

FUENTE: MANUAL DE ENSAYOS DE LABORATORIO EM 2000 V-I (MTC).

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

LABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN)"

CUADRO 2.15 GRANULOMETRÍA DE LA MUESTRA DE AGREGADO PARA ENSAYO

Pasa	tamiz	Retenido	en tamiz	Pesos y granulometrías de la muestra para ensayo (gr							
Malla	(mm)	Malla	(mm)	Α	В	С	D				
1 1/2"	37.5	1"	- 25.0	1250 ± 25		,					
1"	25.0	3/4"	-19.0	1250 ± 25							
3/4"	19.0	1/2"	- 12.5	1250 ± 10							
1/2"	12.0	3/8"	- 9.5	1250 ± 10							
3/8"	9.5	1/4"	- 6.3		2500 ± 10	2500 ± 10					
1 1/4"	6.3	N° 4	- 4.75		2500 ± 10	2500 ± 10					
N° 4	4.75	N°8	- 2.36				5000 ± 10				
	тот	ALES	***************************************	5000 ± 10	5000 ± 10	5000 ± 10	5000 ± 10				

FUENTE: MANUAL DE ENSAYOS DE LABORATORIO EM 2000 V-1 (MTC).

CUADRO 2.16 PORCENTAJE DE DESGASTE PARA EVALUAR RESULTADOS ENSAYO LO ÁNGELES. Especificaciones Técnicas para Materiales empleados en Construcción de Carreteras

			BASE IULAR			ASE NULAR				
ENSAYO	AFIRMADO	<3000	≥3000	<3000) msnm	≥3000	msnm			
		msnm		AGREGADO GRUESO	AGREGADO FINO	AGREGADO GRUESO	AGREGADO FINO			
Limite Líquido (%) ASTM D-4318	35% máx	25% máx	25% máx							
Indice Plástico (%)	4 2 9	6% máx	4% máx		4% máx		2% máx			
Abrasión (%) ASTM C-131	50% máx	50% máx	50% máx	40% máx		40% máx				
Equivalente de arena (%) ASTM D-2419	20% min	25% min	35% mln		35% mln		45% min			
CBR al 100% de la M.D.S. y 0.1" de penetración ASTM D-1883	40% mín	40% mín	40% min							
Pérdida con Sulfato de Sodio (%)						12% máx				
Pérdida con Sulfato de Magnesio (%)						18% máx				
Indice de Durabilidad					35% mln		35% mln			
Caras de fractura (%) 1 cara fracturada 2 caras fracturadas				80% min 40% min		80% mín 50% mín				
Partículas chatas y alargadas (%) Relación 1/3 (espesor/longitud) ASTM D-4791		20% máx	20% máx	15% máx		15% máx				
Sales Solubles Totales (%)		1% máx	1% máx	0.5% máx	0.5% máx	0.5% máx	0.5% máx			
Contenido de impurezas orgánicas (%)										

Especificaciones Técnicas Generales para Construcción de Carreteras EG-2000, Ministerio de Transportes, Comunicaciones, Vivienda y Cosntrucción, Oficina de Control de Calidad

FUENTE: Minaya, S. 2001.

FACULTAD DE INGENIERÍA

ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN)"

2.5.3 CLASIFICACIÓN E IDENTIFICACIÓN DE SUELOS.

SISTEMA AASHTO (Asociación Americana de Funcionarios de Carreteras a. Estatales y del Transporte).

Este método, divide a los suelos en dos grandes grupos: Una formada por los suelos granulares y otra constituida por los suelos de granulometría fina. Y estos a su vez son clasificados en sub grupos, basándose en la composición granulométrica, el límite líquido y el índice de plasticidad.

CUADRO 2.17

Clasificación General	Materiales Granulares (35% o menos del total pasa el tamiz N° 200)								Materiales limo-arcillosos (más del 35% del total pasa el tamiz N°200)			
	A-	-1	A-3		Α	-2		A-4	A-5	A-6	A-7	
Clasificación de grupo	A-1-a	A-1-b		A-2-4	A-2-5	A-2-6	A-2-7				A-7-5 A-7-6	
Porcentaje de material que pasa el tamiz N° 10 N° 40 N° 200	50 máx. 30 máx. 15 máx.	51 máx. 25 máx.	51 mín. 10 máx.	35 máx.	35 máx.	35 máx.	35 máx	36 min.	35 min.	36 min.	36 mín.	
Características de la fracción que pasa el tamiz N° 40 Limite Líquido, W _L	6 m	0 - (40 máx.	41 mín.	40 máx.	41 mín	40 máx.	41 mín.	40 máx.	41 mín. 11 mín.	
Índice Plástico, IP	0	un.	NP	10 máx.	10 máx.	11 min.	11 mín.	10 máx.	10 máx.	11 mín.	, , , , , , , , , , , , , , , , , , , ,	
Índice de Grupo	0)	0	()	4 m	iáx.			16 màx.	20 màx.	
Componentes significativos.	Fragmentos grava y	•	Arena fina	Gra		na limo: losa	sa o	T			uelos Ilosos.	
Tasa general de los subrasantes		DE I	EXELENTE	A BUE	10		_	DE	MEDIA	NO A P	OBRE	
										·	≤ LL - 30 > LL - 30	

FUENTE: Mora, S. 1988.

a. SISTEMA SUCS (Clasificación Unificada de Suelos).

Este sistema, como la clasificación anterior, divide a los suelos en dos grandes grupos: granulares y finos. Un suelo se considera grueso si más del 50% de sus partículas se retienen en el tamiz # 200, y finos, si más de la mitad de sus partículas, pasa el tamiz # 200.

Mora, S. 1988.

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN)"

CUADRO 2.18 SISTEMA UNIFICADO DE CLASIFICACION DE SUELOS (SUCS)

DIVI	ISIÓN	SIÓN PROCEDIMIENTO DE IDENTIFICACIÓN EN EL CAMPO					LO	NOMBRES TÍPICOS			CRITERIO DE CLASIFICACIÓN EN LAB	ORATORIO		
			gruesa es Nº4.	SRAVAS LIMPIAS (poco ó nada de partículas finas)	Amplia gama en los tamaños de las partículas y cantidades apreciables de tamaños imtermedios	GW		Gravas bien gradadas, mezclas de grava y arena con poco ó nada de finos		dobles.	Coeficiente de uniformidad Cu : mayor de 4 Cc : entre 1 y 3 Cu= D60/D10 ; Cc= (D30)			
			fracción g r la malla N GRAVAS (poco ó i		Predominio de un tamaño ó un tipo de tamaño , con ausencia de algunos intermedios.	GP		Gravas mal gradadas, mezclas de grava y arena con poco ó nada de finos	O C, SM, SC.	simbolos dob	No satisfacen todos los requisitos de gradación para GW.			
GRUESAS	en la malla numero	虚 K		GRAVAS CON INOS (cantidad apreciable de partículas finas)	Fracción fino poco ó nada plástica (para identificarla vease grupo Mt)	GM	n p.	Gravas limosas, mezclas de grava, arena y arcilla.	MALLA N° 200 12% : GM, GC,	el uso de sin	Debajo de "A" I.P. menor que 4	Arriba de "A" y con I.P. entre 4 y 7 casos de		
CULAS GRI	SULAS GRU TENIDO er Mas de la RET				Fracción fina plástica (para identificarla vease grupo CL)	GC	Gravas arcillosas, mezclas de grava, arena y arcilla.		POR LA M/ Más de 1	requiere el	Arriba de "A" I.P. mayor que 7	frontera, uso de simbolos dobles.		
DE PARTÍC	SUELO DE PARTÍCULAS GI Más de la mitad del material es RETENIDO ARENAS Mas de la malía N°4. Ri		sa PASA	LIMPIAS nada de is finas)	Amplia gama en los tamaños de las partículas y cantidades apreciables de tamaños imtermedios	sw		Gravas bien gradadas, mezclas de grava y arena con poco ó nada de finos	QUE PASA I GP, SW, SP.	Se	Coeficiente de uniformidad Cu : mayor de 6 Cc : entre 1 y 3 Cu= D60/D10	Coeficiente de curvatura ; Cc= (D30)²/D10*D60		
SUELO			racción grue alla Nº4.	ARENAS LIMPIAS (poco ó nada de partículas finas)	Predominio de un tamaño ó un tipo de tamaño , con ausencia de algunos intermedios.	SP		Gravas mal gradadas, mezclas de grava y arena con poco ó nada de finos		Casos de frontera	No satisfacen todos los requisitos de	gradación para SW.		
			nitad de la fi por la ma	ARENAS CON FINOS (cantidad apreciable de partículas finas)	Fracción fino poco ó nada plástica (para identificarla vease grupo Mt)	SM	d u	Gravas limosas, mezclas de grava, arena y arcilla.	FRACCIÓN Menos del 5% : GW,	5% al 12% :	Debajo de "A" I.P. menor que 4	Arriba de "A" y con I.P. entre 4 y 7 casos de		
			Mas de la m	ARENAS FINOS (car apreciable	Fracción fina plástica (para identificarla vease grupo CL)	sc		Gravas arcillosas, mezclas de grava, arena y arcilla.	=	De 5	Arriba de "A" I.P. mayor que 7	frontera, uso de simbolos dobles.		

d Si el límite liquido es de 28 ó menos y el I.P. es de 6 ó menos (caminos y aeropuertos)

u Si el límite liquido es mayor de 28 y el l.P. es mayor de 6 (caminos y aeropuertos)

LINEA U

I.P. = 0.90 (L.L. - 8)

LINEA A

I.P. = 0,73 (L.L. - 20)

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

'ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN)"

		PROCE	DIMIEN	ITO DE IDENTIFICAC	IÓN EN LA FRACCION G	QUE PASA LA MAL	LA Nº 40	
	ļ			RESISTENCIA EN ESTADO SECO (característica al rompimiento)	MOVILIDAD DEL AGUA (reacción al agitado)	TENACIDAD (consistencia cerca del limite plástico)	SIMBOLO	NOMBRES TÍPICOS
	0	LAS	nor de 50	Nula ó ligera	Rápida alenta	Nula	ML	Limos inorgánicos, polvo de roca, limos arenosos ó arcillosos ligeramente plásticos.
	SUELO DE PARTÍCULAS FINAS Más de la mitad del material PASA en la malla numero 200	LIMOS Y ARCILLAS	LIMITE LIQUIDO menor de	Media a alta	Nula a muy lenta	media	CL	Arcillas inorgánicas de baja a media plásticidad, arcillas con grava, arcillas arenosas, arcillas limosas, arcillas pobres.
SUELO DE PARTÍCULAS FINAS		TIMC	LIMITEL	Ligera a media	Lenta	Ligera	OL	Limos orgánicos y arcillas limosas orgánicas de baja plasticidad.
E PARTÍCU	terial PASA	LAS	yor de 50	Ligera a media	Lenta a nula	Ligera a media	MH	Limos inorgánicos, limos micaceos ó diatomeos, limo elásticos.
SUELO DI	Más de la mitad del material	S Y ARCIL	LIMITE LIQUIDO mayor de 50	Alta a muy aita	Nula a muy lenta	Alta	СН	Arcillas inorgánicas de alta plasticidad, arcillas francas.
the state of the s		FIMC	LIMITEL	Media a alta	Nula a muy lenta	Ligera a media	ОН	Arcillas orgánicas de media ó alta plasticidad, limos orgánicos de media plasticidad.
		SUELOS ALTAMENTE ORGANICOS			ntificable por su color, ol ecuentemente , por su te		Pt	Turbas y otros suelos altamente orgánicos.

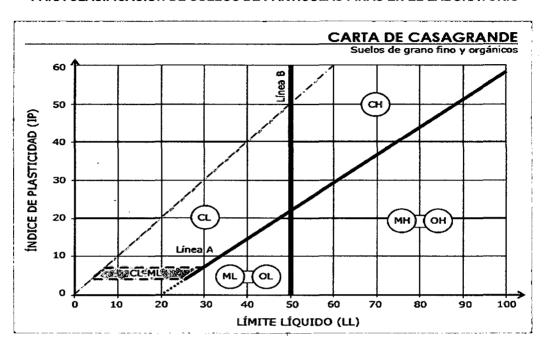

G = gravas, M = limo, O = orgánicos, W = bien gradadas, S = arenas, C = arcilla, P = mal gradado, L = baja compresibilidad, H = alta compresibilidad.

Gráfico 2.4 CARTA DE PLASTICIDAD

PARA CLASIFICACIÓN DE SUELOS DE PARTÍCULAS FINAS EN EL LABORATORIO

FUENTE: Mora, S. 1988.

2.5.4 ESTUDIO Y UBICACIÓN DE CANTERAS

Las canteras son lugares donde la roca se separa de sus lechos naturales y se prepara para su utilización en construcciones.

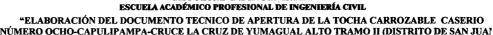
Wihem, P. 1996.

A. ESTUDIO.

Los puntos básicos en el estudio de una cantera, que luego regularan su explotación, son:

- a. Calidad.
- b. Cubicación.
- c. Economía.
- d. Impacto Ambiental.

B. UBICACIÓN.


Para la ubicación de canteras se debe tener en cuenta las siguientes consideraciones:

- Fácil accesibilidad y que se puedan explotar por los procedimientos más eficientes y menos costosos.
- Distancias mínimas de acarreo de los materiales a la obra.
- Su explotación no conduzca a problemas legales de difícil o lenta solución y que no perjudiquen a los habitantes de la región.

Wihem, P. 1996

FACULTAD DE INGENIERÍA

2.6 DISEÑO DEL PAVIMENTO.

2.6.1 **GENERALIDADES.**

La estructuración de un pavimento, o disposición de las diversas partes que lo constituyen, así como las características de los materiales empleados en su construcción, ofrecen una gran variedad de posibilidades, de tal suerte que puede estar formado por una sola capa o varias, y a su vez dichas capas pueden ser de materiales naturales seleccionados, procesados o sometidos a algún tipo de tratamiento o estabilización.

La superficie de rodadura propiamente dicha puede ser una carpeta asfáltica, un tratamiento superficial o la superficie de una capa de material granular con resistencia al desgate.

La actual tecnología de pavimentos contempla una gama muy diversa de secciones estructurales, las cuales están en función de los distintos factores que intervienen en la performance de una vía: tránsito, tipo de suelo, importancia de la vía, condiciones de drenaje, recursos disponibles, etc. Debe elegirse la solución más apropiada, de acuerdo a las facilidades y experiencias locales y a las condiciones específicas de cada caso, lo cual es una tarea que requiere de un balance técnico- económico de todas las alternativas.

Llorach, J. 1985.

AFIRMADO

Capa de material natural selecto procesado o semiprocesado de acuerdo a diseño, que se coloca sobre la subrasante de un camino. Funciona como capa de rodadura y de soporte al tráfico en carreteras no pavimentadas. Estas capas pueden tener tratamiento para su estabilización.

Manual para el Diseño de Caminos No Pavimentados de Bajo Volumen de Tránsito. 2005

2.6.2 CARGA PATRÓN.

Debido a la diversidad de ejes de diferentes pesos, se ha optado por referir todas estas cargas en función a un eje cuyo peso es de 18,000 lb. (8.2Tn)

❖ EJES EQUIVALENTES DE 18,000 lb.

Según el Manual de Diseño Estructural de Pavimentos de Javier Llorach Vargas esta dado por la siguiente formula:

 $EAL_{8.2 TON(10aRas)} = N^{\circ} de Vehiculos 365 \times Factor Camión \times Factor de Crecimiento$

..(EC.- 20)

ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

Donde:

Factor de Crecimiento: El crecimiento se cuantifica usando los valores del siguiente Cuadro 2.19

Factor Camión: Para el cálculo de este parámetro utilizaremos los Factores de Equivalencia de Carga, que están dados en el Cuadro 2.20.

CUADRO 2.19 FACTOR DE CRECIMIENTO

PERIODO		Т	ASA ANUAL	DE CRECIN	MENTO, POR	RCENTAJE (r)	
DE			ľ	I	·	·	, 	
DISEÑO	0	2	4	5	6	7.	8	10
AÑOS (n)					;			
1	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
2	2.00	2.02	2.04	2.05	2.06	2.07	2.08	2.10
3	3.00	3.06	3.12	3.15	3.18	3.21	3.25	3.31
4	4.00	4.12	4.25	4.31	4.37	4.44	4.51	4.64
5	5.00	5.20	5.42	5.53	5.64	5.75	5.87	6.11
6	6.00	6.31	6.63	6.80	6.98	7.15	7.34	7.72
7	7.00	7.43	7.90	8.14	8.39	8.65	8.92	9.49
8	8.00	8.58	9.21	9.55	9.90	10.26	10.64	1.44
9	9.00	9.75	10.58	11.03	11.49	11.98	12.49	13.58
10	10.00	10.95	12.01	12.58	13.18	13.82	14.49	15.94
11	11.00	12.17	13.49	14.21	14.97	15.78	16.65	18.53
12	12.00	13.41	15.03	15.92	16.87	17.89	18.98	21.38
13	13.00	14.58	16.63	17.71	18.88	20.14	21.50	24.52
14	14.00	15.97	18.29	19.16	21.01	22.55	24.21	27.97
15	15.00	17.29	20.02	21.58	23.28	25.13	27.15	31.77
16	16.00	18.64	21.82	23.66	25.67	27.89	30.32	35.95
17	17.00	20.01	23.70	25.84	26.21	30.84	33.75	40.55
18	18.00	21.41	25.65	28.13	30.91	34.00	37.45	45.60
19	19.00	22.84	27.67	30.54	33.76	37.38	41.15	51.16
20	20.00	24.30	29.78	33.06	36.79	41.00	45.78	57.28
25	25.00	32.03	41.65	47.73	54.88	63.29	73.11	98.35
30	30.00	40.57	58.08	66.44	79.06	94.46	113.28	164.49
35	35.00	49.99	73.65	90.32	111.43	138.24	172.32	271.02
40	40.00	60.40	95.02	120.80	154.76	199.84	259.06	442.59
50	50.00	84.58	152.70	209.3	290.34	406.53	573.77	

FUENTE: Llorach, J. 1985.

"ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUA)

CUADRO 2.20 FACTORES DE EQUIVALENCIA DE CARGA*

1	a total	equiva	res de alencia arga		_	a total eje	Factor equiva de c	lencia
Kgs	Lbs	Ejes Simples	Ejes Dobles	Kg	s	Lbs	Ejes Simples	Ejes Dobles
454	1000	0.00002		185	97	41000	23.27	2.29
907	2000	0.00018		190	51	42000	25.64	2.51
1361	3000	0.00072		195	04	43000	28.22	2.75
1814	4000	0.00209		199	58	44000	31.00	3.00
2268	5000	0.00500		204	11	45000	34.00	3.27
2722	6000	0.01043		208	65	46000	37.24	3.55
3175	7000	0.01960		213	19	47000	40.74	3.85
3629	8000	0.03430		217	72	48000	44.50	4.17
4082	9000	0.05620		222	26	49000	48.54	4.51
4536	10000	0.08770	0.00688	226	80	50000	52.88	4.86
4990	11000	0.13110	0.01008	231	33	51000	:	5.23
5443	12000	0.189	0.0144	235	87	52000	:	5.63
5897	13000	0.264	0.0199	240	40	53000		6.04
6350	14000	0.360	0.0270	244	94	54000		6.47
6804	15000	0.478	0.0360	249	43	55000		6.93
7257	16000	0.623	0.0472	254	01	56000		7.41
7711	17000	0.796	0.0608	258	55	57000		7.92
8165	18000	1.000	0.0773	263	80	58000		8.45
8618	19000	1.24	0.0971	267	62	59000		9.01
9072	20000	1.51	0.1206	272	16	60000		9.59
9525	21000	1.83	0.148	276	69	61000		10.20
9979	22000	2.18	0.180	281	23	62000		10.84
10433	23000	2.58	0.217	285	76	63000	,	11.52
10866	24000	3.03	0.260	290	30	64000	:	12.22
11340	25000	3.53	0.308	294	84	65000		12.96
11793	26000	4.09	0.364	299	37	66000		13.73
12247	27000	4.71	0.426	303	91	67000		14.54
12701	28000	5.39	0.495	308	44	68000		15.38
13154	29000	6.14	0.572	312	98	69000		16.26
13608	30000	6.97	0.658	317	51	70000		17.19
14061	31000	7.88	0.753	322	05	71000		18.15
14515	32000	8.88	0.857	326	59	72000	;	19.16
14969	33000	9.98	0.971	331	12	73000		20.22

"ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUA)

15422	34000	11.18	1.095	33566	74000	21.32
15876	35000	12.50	1.23	34019	75000	22.47
16329	36000	13.93	1.38	34473	76000	23.66
16783	37000	15.50	1.53	34927	77000	24.91
17237	38000	17.20	1.70	35380	78000	26.22
17690	39000	19.06	1.89	35834	79000	27.58
18144	40000	21.08	2.08	36287	80000	28.99

FUENTE: Manual Provisional de Diseño de Estructuras de Pavimento de AASHTO, 1972; Pavimento Flexible, AASHTO, 1974.

2.6.3 ELECCIÓN DEL TIPO DE PAVIMENTO.

Los criterios que se toman en cuenta para la selección del tipo de pavimento a emplearse en una vía son muy variados; pero puede aceptarse como criterio de primer orden los aspectos técnicos y económicos y de acuerdo al siguiente cuadro:

Llorach, J. 1985.

CUADRO 2.21 TIPO DE PAVIMENTO SEGÚN VOLUMEN PROMEDIO

VOLUMEN PROMEDIO DIARIO	TIPO DE PAVIMENTO
Menos de 400 vehículos	Económico
De 400 a 1000 vehículos	Intermedio
De 1000 a más vehículos	Costoso

FUENTE: Llorach, J. 1985.

2.6.4 MÉTODOS DE DISEÑO DE PAVIMENTO.

A. MÉTODO DE LA USACE (U.S. ARMY CORPS OF ENGINEERS)

La metodología de la USACE, considera los siguientes parámetros para determinar el espesor de la capa de rodadura:

El valor soporte de California o CBR, de la sub rasante, la intensidad de tránsito, en número de ejes equivalentes al eje estándar de 18,000 de carga para el periodo de diseño.

La condición es que el CBR del material de la capa superior sea mayor que el de la subyacente, el espesor obtenido mediante este método es tal que permite cierto número de repeticiones, antes de que la estructura alcance un nivel de deformación que corresponda a una serviciabilidad baja.

Llorach, J. 1985.

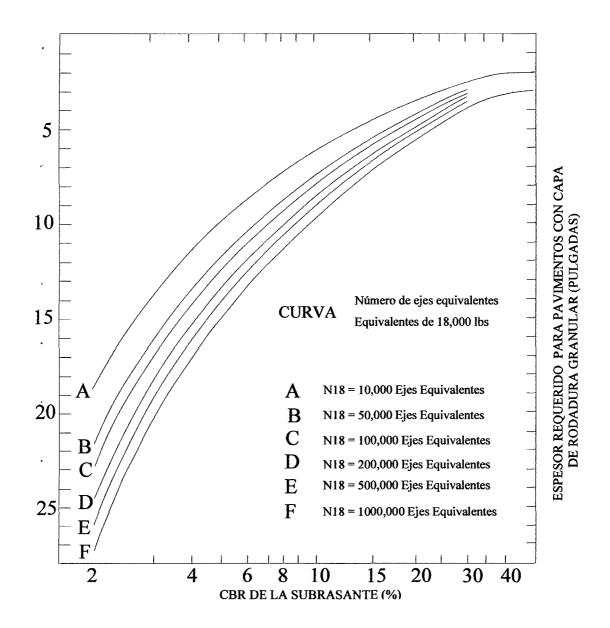


Gráfico 2.5 CURVAS PARA EL DISEÑO DE ESPESORES DE PAVIMENTOS CON SUPERFICIE DE RODADURA GRANULAR (METODO USACE)

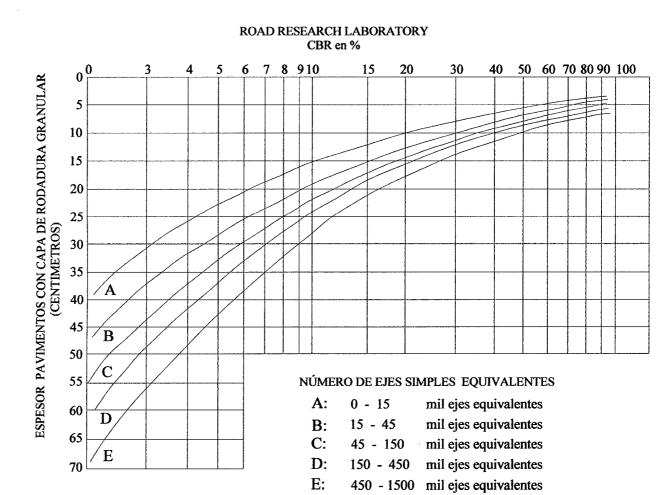
FUENTE: Llorach, J. 1985

"ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAI

CUADRO 2.22 CBR Requerido Para El Material De Afirmado (Us Armyb Corps Of Enginers)

Ejes	CBR de la			Es	pesor de A	firmado (Pulgada	s)		
Equivalentes a 18,000 lbs	subrasante	6	9	12	15	18	21	24	27	30
	2	96	62	48	40	34	31	28	26	24
	4	78	50	38	32	28	25	23	21	20
	6	69	44	34	28	25	22	20	19	17
10.000	8	63	41	31	26	23	20	18	17	16
	10	59	38	29	24	21	19	17	16	15
	15	52	33	26	21	19	17	15	14	13
1	20	48	31	24	20	17	15	14	13	12
:•	2	147	95	73	61	53	47	43	40	37
•	4	119	77	59	49	43	38	35	32	30
	6	105	68	52	43	38	34	31	28	27
50.000	8	96	62	48	40	35	31	28	26	24
	10	90	58	45	37	32	29	26	24	23
•	15	79	51	39	33	28	25	23	21	20
	20	73	47	36	30	26	23	21	20	18
	2	178	114	87	73	63	57	52	48	45
•	4	143	92	71	59	51	46	42	39	36
	6	126	82	63	52	45	41	37	34	32
100.000	8	116	75	57	48	41	37	34	31	29
	10	108	70	54	46	39	35	32	29	27
	15	95	62	47	39	34	31	28	26	24
	20	87	56	43	36	31	28	26	24	22
¥	2	270	175	134	11	97	87	79	73	68
	4	219	141	108	90	78	70	64	59	55
	6	194	125	96	80	69	62	57	52	49
500,000	8	177	115	88	73	64	57	52	48	45
	10	166	107	82	68	59	53	48	45	42
,	15	146	94	72	60	52	47	43	40	37
	20	134	86	66	55	48	43	39	36	34
	2	325	210	161	134	116	104	95	88	82
	4	263	170	130	108	91	84	77	71	67
41000 000	6	233	150	115	96	83	75	68	63	59
1'000,000	8	213	138	106	88	76	68	62	58	54
}	10	199	129	99	82	71	64	58	54	50

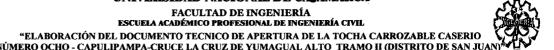
NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAI


B. MÉTODO DEL ROAD RESEARCH LABORATORY.

Este método, considera los siguientes parámetros para determinar el espesor de la capa de rodadura:

- El valor soporte de California o CBR, de la sub rasante en %.
- El número de ejes simples equivalentes al eje estándar de 18,000 de carga para el periodo de diseño.

Liorach, J. 1985.


Gráfico 2.6 CURVAS PARA EL DISEÑO DE ESPESORES DE PAVIMENTOS CON SUPERFICIE DE RODADURA GRANULAR (METODO ROAD RESEARCH LABORATORY)

FUENTE: Llorach, J. 1985.

FACULTAD DE INGENIERÍA

"ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO

ESTUDIO HIDROLÓGICO. 2.7

PARÁMETROS GEOMORFOLÓGICOS.

PARÁMETROS DE AREA.

Área de la Cuenca (A): Representa el área de la cuenca en proyección horizontal.

(Ortiz, O. 1994)

Pendiente del curso principal: El conocimiento de éste parámetro es también de suma importancia en el estudio del comportamiento del recurso hídrico con diversos fines, tales como: ubicación de obras de toma, evaluación y optimización del potencial hidroenergético, etc.

En general, la pendiente del cauce principal varía a lo largo de toda su longitud, siendo necesario usar un método adecuado para estimar una pendiente representativa. El concepto generalizado de que la pendiente es el cociente dado por la diferencia de altura entre la longitud del cauce principal es muy inexacto e impreciso...Para calcular la pendiente equivalente calculada mediante diversas expresiones. Algunas de estas expresiones son:

$$S = \left[\frac{\sum_{i=1}^{n} Li}{\sum_{i=1}^{n} \left(\frac{Li^{2}}{Si} \right)^{1/2}} \right]^{2} \dots \text{ (EC. -22)}$$

Donde:

Li= longitud de cada tramo de pendiente Si.

n= número de tramos en que se ha dividido el perfil del cauce.

Tiempo de Concentración (Tc): Llamado también tiempo de equilibrio o tiempo de viaje, es el tiempo que toma la partícula hidráulicamente más lejana en viajar hasta el punto emisor. Se supone que ocurre una lluvia uniforme sobre toda la cuenca durante un tiempo de, por lo menos, igual al tiempo de concentración.

$$Tc = C \left(\frac{\sum Li}{S^{0.25}}\right)^{0.76} *60 \qquad 0.3 \le C \le 0.4 \qquad \dots \text{ (EC. -23)}$$

Donde:

Tc= Tiempo de concentración en minutos.

L= Longitud de máximo recorrido del agua, en Km (distancia desde el punto en la divisoria de aguas hasta el punto emisor).

S= Pendiente del máximo recorrido.

C= Coeficiente que depende de la pendiente de la cuenca.

(Ortiz. O. 1994)

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA O

FAI
ESCUELA ACADÉ
"ELABORACIÓN DEL DOCUMENTO"

"ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO ÚMERO OCHO - CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN

A.2 EXTENDER Y COMPLETAR DE DATOS.

Proceso de completación de datos por regresión lineal simple

Para realizar el proceso de completación de datos de una estación en base a otra.

Completación de datos anuales

Los datos anuales se caracterizan por presentar sus parámetros constantes y pueden ser independientes o dependientes en el tiempo cronológico.

B. PARÁMETROS DE DISEÑO. (Ven Te Chow. 1994).

B.1. INTENSIDAD. Es la cantidad de agua caída (lluvias) por una unidad de tiempo; a menudo se expresa en mm/h

$$Pd = P_{24} \left(\frac{d}{1440}\right)^{0.25} \dots \text{(EC. - 24)}$$

Donde:

Pd: Precipitación total en mm.

d: Duración en minutos.

P24: Precipitación máxima en 24 horas en mm.

$$I = \frac{Pd}{T} \quad \dots \text{ (EC. -25)}$$

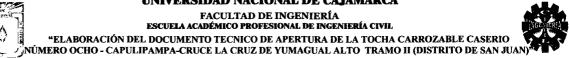
Donde:

Pd: Precipitación total en mm

T: Tiempo en horas.

B.2. TRANSPOSICIÓN DE INTENSIDAD.

$$\left|I_2 = I_1 \times \frac{\left(H_{media}\right)}{H_1}\right| \dots \text{(EC. - 26)}$$


Donde:

12: Intensidad de la microcuenca en estudio.

11: Intensidad de la estación Weberbawer.

Hmedia: Altitud media de la microcuenca.

H1: Altitud de la estación Weberbawer.

B.3. DURACIÓN. Es el tiempo transcurrido entre el comienzo y la finalización de la tormenta y es expresada en minutos u horas.

(Villón. M. 2002)

B.4. FRECUENCIA. Se refiere al número de veces que una tormenta de características similares puede repetirse dentro de un lapso de tiempo más o menos largo que generalmente, es tomada en años.

(Villón. M. 2002)

- C. DATOS DE DISEÑO
 - C.1. PRUEBA DE BONDAD DE AJUSTE (SMIRNOV KOLMOGOROV).

$$F_{(x)} = e^{(-e^{(-a(I-b))})}$$
 ... (EC. -27)

Estimación de los parámetros a, b se obtienen con las siguientes ecuaciones, teniendo en cuenta la cantidad de datos muestrales.

$$a = 1.2825 / Desv. S tan dar.$$
 ... (EC. – 28)

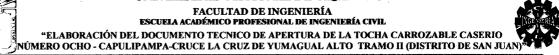
$$b = \text{Pr } omedio - (0.45 * Desv. S \tan dar.)$$
 ... (EC. - 29)

C.2. RIESGO DE FALLA (J). Representa el peligro a la probabilidad de que el gasto de diseño seá superado por otro evento de magnitudes mayores.

$$J = 1 - P^N$$
 ... (EC. – 30)

(Ven Te Chow. 1994)

C.3. TIEMPO O PERIODO DE RETORNO (Tr): Es el tiempo Transcurrido para que un evento de magnitud dada se repita en promedio.


$$Tr = \frac{1}{1 - P}$$
 ... (EC. – 31)

Eliminando el parámetro de las ecuaciones anteriores se tiene:

$$Tr = \frac{1}{1 - (1 - J)^{\frac{1}{N}}}$$
 ... (EC. – 32)

(Ven Te Chow. 1994)

C.4. VIDA ECONÓMICA O VIDA ÚTIL (N). Se define como el tiempo ideal durante el cual las estructuras e instalaciones funcionan al 100% de eficiencia.


CUADRO 2.23 TIEMPO DE RETORNO PARA DIFERENTES TIPOS DE ESTRUCTURAS

TIPOS DE ESTRUCTURA	PERIODOS DE RETORNO		
THE GODE ESTAGOTORS	(AÑOS)		
ALCANTARRILLAS DE CARRETERAS			
Volúmenes de tráfico bajos.	Ë 40		
Volúmenes de tráfico intermedios.	5 – 10		
Volúmenes de tráfico altos.	10 – 25		
PUENTES DE CARRETERAS	50 – 100		
Sistema secundario.	40 50		
Sistema primario	10 – 50		
DRENAJE AGRICOLA	50 – 100		
Culvets	5 50		
Surcos	5 – 50 5 – 50		
DRENAJE URBANO	5 – 50		
Alcantarillas en ciudades pequeñas.	0.05		
Alcantarillas en ciudades grandes.	2 – 25		
AEROPUERTOS	25 – 50		
Volúmenes bajos.	5 40		
Volúmenes intermedios.	5 – 10		
Volúmenes altos.	10 – 25		
DIQUES	50 – 100		
En fincas.	0 50		
Alrededor de ciudades.	2 – 50		
PRESAS CON POCA PROBABILIDAD DE	50 – 100		
PERDIDAS DE VIDA			
Presas pequeñas.	Ė0 400		
Presas intermedias.	50 – 100		
Presas grandes.	100+		
	,		
PRESAS CON PROBABILIDAD DE PERDIDAS DE			
VIDA			
Presas pequeñas.	100+		
Presas intermedias.	-		
Presas grandes.	_		
Presas Con Probabilidad De Altas Perdidas De Vida	-		
Presas pequeñas.	_		
Presas intermedias.	₹ _		
Presas grandes.	_		

FUENTE: (Ven Te Chow. 1994)

FACULTAD DE INGENIERÍA

del terreno y la total precipitada. Para estimar el valor del coeficiente de escorrentía se podrá usar el Cuadro 2.24.

CUADRO 2.24 COEFICIENTES DE ESCORRENTÍA

Características de la	Periodo de retorno (años)							
superficie	2	5	10	25	50	100	500	
Áreas desarrolladas								
Asfáltico	0.73	0.77	0.81	0.86	0.90	0.95	1.00	
Concreto / techo	0.75	0.80	0.83	0.88	0.92	0.97	1.00	
	Zonas v	erdes (jaro	lines, parq	ues, etc.)			· · · · · · · · · · · · · · · · · · ·	
Condid	ión pobre (C	Cubierta de	pasto meno	or del 50% (del área)			
Plano, 0 - 2%	0.32	0.34	0.37	0.40	0.44	0.47	0.58	
Promedio, 2 - 7%	0.37	0.40	0.43	0.46	0.49	0.53	0.61	
Pendiente superior a 7%	0.40	0.43	0.45	0.49	0.52	0.55	0.62	
Condició	n promedio	(Cubierta d	e pasto del	50% al 75%	6 del área)			
Plano, 0 - 2%	0.25	0.28	0.30	0.34	0.37	0.41	0.53	
Promedio, 2 - 7%	0.33	0.36	0.38	0.42	0.45	0.49	0.58	
Pendiente superior a 7%	0.37	0.40	0.42	0.46	0.49	0.53	0.60	
Condic	ión buena ((Cubierta de	pasto mayo	or del 75% (del área)			
Plano, 0 - 2%	0.21	0.23	0.25	0.29	0.32	0.36	0.49	
Promedio, 2 - 7%	0.29	0.32	0.35	0.39	0.42	0.46	0.56	
Pendiente superior a 7%	0.34	0.37	0.40	0.44	0.47	0.51	0.58	
Areas no desarroladas								
		Area de	cultivo					
Plano, 0 - 2%	0.31	0.34	0.36	0.40	0.43	0.47	0.57	
Promedio, 2 - 7%	0.35	0.38	0.41	0.44	0.48	0.51	0.60	
Pendiente superior a 7%	0.39	0.42	0.44	0.48	0.51	0.54	0.61	
		Past	izales			·		
Plano, 0 - 2%	0.25	0.28	0.30	0.34	0.37	0.41	0.53	
Promedio, 2 - 7%	0.33	0.36	0.38	0.42	0.45	0.49	0.58	
Pendiente superior a 7%	0.37	0.40	0.42	0.46	0.49	0.53	0.60	
Bosques								
Plano, 0 - 2%	0.22	0.25	0.28	0.31	0.35	0.39	0.48	
Promedio, 2 - 7%	0.31	0.34	0.36	0.40	0.43	0.47	0.56	
Pendiente superior a 7%	0.35	0.39	0.41	0.45	0.48	0.52	0.58	

FUENTE: (Ven Te Chow. 1994)

C.6. ÁREA TRIBUTARIA (A)

Las áreas tributarias se delimitan en el plano a curvas de nivel, con la finalidad de determinar el caudal de diseño con el que se diseñarán las cunetas, alcantarillas, pontones o puentes.

Ven Te Chow. 1994.)

C.7. DESCARGA DE DISEÑO (Q). Es el valor máximo del caudal instantáneo que se espera ocurrir con determinado periodo de recurrencia, durante los años de vida útil de un proyecto.

Formula del Método Racional:

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO

VÚMERO OCHO - CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN)"

$$Q = \frac{CIA}{360}$$
 ... (EC. - 33)

Donde:

Q: Descarga de diseño (m³/s).

C: Coeficiente de escorrentía superficial (ver cuadro).

I: Máxima intensidad de precipitación correspondiente al tiempo de concentración (mm/h).

A: Área a drenar o tributaria (Ha).

(Ven Te Chow. 1994)

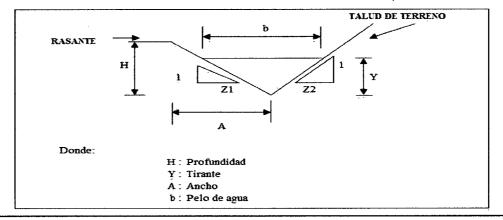
2.7.1 ESTUDIO Y DISEÑO DE DRENAJE.

El objetivo fundamental del drenaje es alejar las aguas de la carretera, para evitar la influencia de las mismas sobre su estabilidad y transitabilidad, así como también minimizar las operaciones de conservación.

(Ven Te Chow. 1994)

A. CLASIFICACIÓN DEL DRENAJE.

A.1 EL DRENAJE SUPERFICIAL


a) DRENAJE LONGITUDINAL. Quedan comprendidos en este tipo:

Cunetas: Son canales que se hacen en todos los tramos en ladera y corte cerrado de una carretera y sirven para interceptar el agua superficial que proviene de los taludes cuando existe corte y del terreno natural adyacente.

CUADRO 2.25 DIMENSIONES MÍNIMAS DE CUNETAS

REGIÓN	PROFUNDIDAD (m)	ANCHO (m)
Seco	0.20	0.50
Lluvioso	0.30	0.75
Muy Iluvioso	0.50	1.00

FUENTE: (Manual para el Diseño de Caminos No Pavimentados de Bajo Volumen de Tránsito – Cuadro 4.1.3a. 2005.)

Gráfico 2.7 Elementos Geométricos de una Cuneta

DRENAJE TRANSVERSAL. En estas obras de cruce están comprendidas las alcantarillas, los puentes, los pontones, los badenes y el bombeo de la corona.

Alcantarillas: Son estructuras de forma diversa que tienen la función de conducir y desalojar lo más rápidamente posible el aqua de las cunetas, hondonadas y partes bajas del terreno que atraviesan el camino.

Puente: Es una edificación de servicio, en el sentido que se proyecta para permitir que una vía de alguna índole, pueda continuar en sus mismas condiciones al verse interrumpida por un cruce natural.

Pontón: Puente de dimensiones pequeñas.

Badenes: Son estructuras hidráulicas que se construyen transversalmente al eje de la carretera con la finalidad de dar paso a un caudal de agua.

Bombeo: Inclinación lateral a partir del eje de la vía hacia los bordes, su función es eliminar el agua que cae sobre la corona y evitar en lo posible que penetre en las terracerías.

CUADRO 2.26 PRINCIPALES CRUCES DE AGUAS

NOMENCLATURA	ANCHO DE CAUCE		
Alcantarilla	1 m < L ≤ 4 m		
Pontón	4 m < L ≤ 10 m		
Puente	L >10 m		

FUENTE: (Separata "Diseño de Obras Hidráulicas", Huamán Vidaure, F.)

2.8 DISEÑO DE OBRAS DE ARTE. (Ven Te Chow. 1994)

A. DISEÑO DE CUNETAS.

- Las cunetas se diseñaran de acuerdo a las Normas Peruanas de Diseño de Carreteras, indicado en la tabla 6.1.1.4.1 de dichas normas, con pendientes no menores al 0.5%. Generalmente se adoptará de una pendiente igual a la de la subrasante.
- La velocidad ideal que lleva el agua sin causar obstrucciones ni erosienes es:

Velocidad Máxima: 7.00 m/s. (Para cunetas de mampostería)

Velocidad Mínima : 0.60 m/s.

El calculo se realiza de acuerdo a las fórmula de Manning.

$$V = \frac{R^{2/3} * S^{1/2}}{n}$$
 y $Q = A \frac{R^{2/3} * S^{1/2}}{n}$ (EC. -34)

Bach. Ing. CIEZA VÁSQUEZ, Edga

"ELABORACIÓN DE

FACULTAD DE INGENIERIA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVII

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

"ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO

ÚMERO OCHO - CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO H (DISTRITO DE SAN JUAN)

Donde:

Q: caudal (m3/seg)

S: pendiente de la cuneta (m/m)

R: radio hidráulico (m)

n: coeficiente de rugosidad

V: velocidad del agua (m/seg)

A: área de la sección de la cuneta (m2)

El valor "n" de Maning se obtiene de tablas de acuerdo al tipo de material.

(Ven Te Chow. 1994)

B. DISEÑO DE ALCANTARILLAS Y ALIVIADEROS DE CUNETAS.

Alineamiento.

El primer principio consiste en que la corriente debe entrar y salir en la misma línea recta.

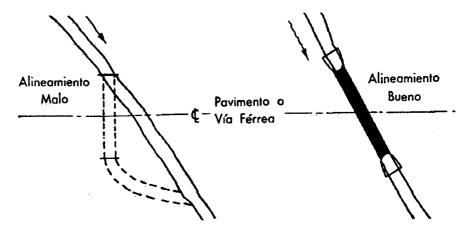


Gráfico 2.8 Alineamiento de Alcantarillas

Pendiente.

Se recomienda un declive de 1 a 2% para que resulte una pendiente igual o mayor que la crítica, hasta que ésta no sea perjudicial.

Longitud de las alcantarillas.

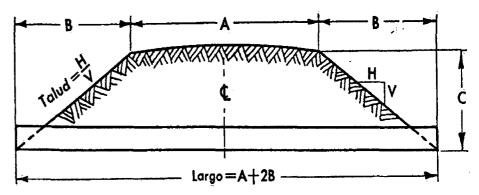


Gráfico 2.9 Cálculo de la longitud de una alcantarilla conpendiente suave.

"ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO

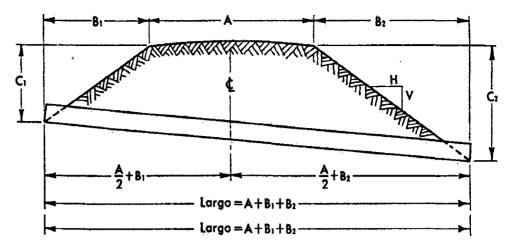


Gráfico 2.10 Cálculo de la longitud de una alcantarilla con pendiente fuerte.

Protección al ingreso y salida de las alcantarillas con empedrado (rip-rap).

Tipo 1: grava gruesa de 6" (15cm).

Tipo 2: grava gruesa de 12" (30cm).

Tipo 3: piedra de 12"sobre capa de 6" de arena-grava.

Tipo 4: piedra de 18" sobre capa de 6" de arena-grava.

CUADRO 2.27 LONGITUD DE PROTECCIÓN A LA SALIDA Y ENTRADA DE ALCANTARILLAS.

CAUDAL (m³/seg)	INGRESO	SALIDA	LONG. DE LA PROTECCIÓN EN LA SALIDA
• a 0.85		Tipo 1	2.50
0.86 a 2.55		Tipo 2	3.60
2.56 a 6.80	Tipo 1	Tipo 3	5.00
6.81 a 17.0	Tipo 2	Tipo 4	6.70

Fuente: (Manual Silvo Agropecuario. 1987)

Tipo de alcantarillas:

Existen tres tipos de alcantarilla:

TIPO I: Con una caja de entrada y un cabezal de salida con las respectivas entradas de cuneta en la caja de forma triangular; se construirá este tipo de alcantarilla para la evacuación de agua de cunetas y para pasar el flujo de un lado a otro de la vía.

TIPO II: Con cabezales de entrada y salida; se construirá este tipo de alcantarilla para la evacuación de agua de quebradas o manantiales.

FACULTAD DE INGENIERIA
ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO ÚMERO OCHO - CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN)

RIO NOTALE

TIPO III: Con una caja de entrada y dos cabezales uno de entrada y otro de salida; se construirá este tipo de alcantarilla para la evacuación de agua de cunetas, para pasar el flujo de un lado a otro de la vía (cambio de lado de cuneta), y para evacuar el agua de quebradas que atraviesan la vía.

El término alcantarilla también se referirá al término aliviadero con la finalidad de generalizar los conceptos de hidráulica de alcantarillas. Se deben notar las siguientes características:

La sección del canal de llegada suele definirse a un ancho de la alcantarilla aguas arriba de la entrada de ésta; la pérdida de energía en la vecindad de la entrada de la alcantarilla está relacionada con la contracción brusca del flujo que entra a la alcantarilla y la subsecuente expansión brusca del flujo dentro del barril de la alcantarilla. La geometría de la entrada de la alcantarilla puede tener gran influencia en la pérdida de entrada.

El gasto de la alcantarilla se determina aplicando las ecuaciones de continuidad y de energía entre las secciones de llegada y una sección aguas abajo que normalmente se encuentra dentro de la alcantarilla, aunque la sección de aguas abajo depende del tipo de flujo dentro de la alcantarilla.

(Ven Te Chow. 1994)

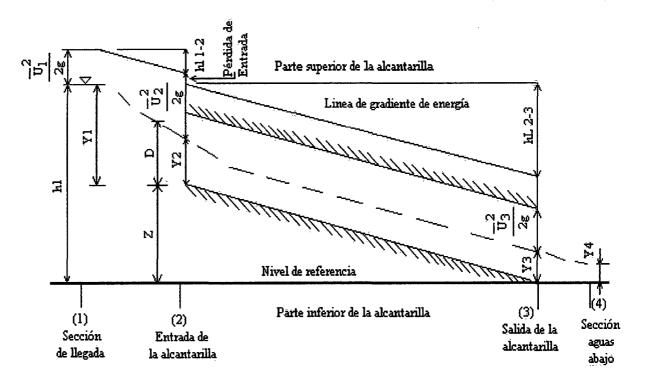


Gráfico 2.11 Definición esquemática del flujo de alcantarillas

FACULTAD DE INGENIERÍA
ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL
"ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO
NÚMERO OCHO - CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN)"

Donde:

D : Dimensión vertical máxima de la alcantarilla

Y1: Tirante en la sección de llegada

Yc: Tirante crítico

Z : Elevación de la entrada de la alcantarilla relativa a la salida.

Y4 : Tirante aguas abajo de la alcantarilla

So: Pendiente del terreno.

Sc : Pendiente critica

Tirante a la Entrada (Y1)

$$Y1=D+1.5V^2/2g$$
 ...(EC. – 35)

Tirante Crítico (Yc)

$$Y_C = (1.01 / D^{0.26}) (Q^2 / g)^{0.25}$$
 ...(EC. – 36)

Tirante a la Salida (Y4)

Pendiente Crítica (Sc)

$$Sc = (n Q_h / A R_h^{2/3})^2$$
 (EC. – 38)

Donde:

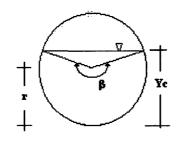
n : Coeficiente de Manning

Qh: Caudal hidrológico

Rh: Radio hidráulico

A : Área para el tirante crítico Yc.

Área para el Tirante Crítico (A)


$$A = 1/8 (\beta - Sen(\beta D^2)......(39)$$

Donde:

β : IIIIIIrad

Sen∥β: grad

D : m

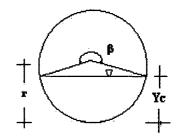
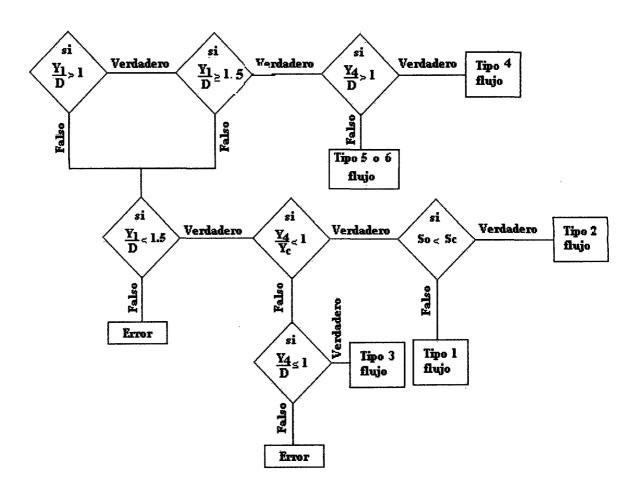


Gráfico 2.13 Tirante crítico

El gasto de una alcantarilla se determina aplicando las ecuaciones de continuidad y de energía entre las secciones de llegada y una sección aguas abajo que normalmente se encuentran dentro del barril de la alcantarilla. La ubicación de la sección aguas abajo depende del tipo de flujo dentro de la alcantarilla.

ESCUEIA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL


"ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO
RÚMERO OCHO - CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN)

CUADRO 2.29 CARACTERÍSTICAS DEL FLUJO EN ALCANTARILLAS

Tipo De Flujo	Flujo en el Barril de la Alcantarilla	Ubicación De la sección aguas abajo	Tipo de Control	Pendiente de la alcantarilla	Y1/D	Y4/Yc	Y4/D
1	Parcialmente lleno	Entrada	Tirante Crítico	Supercrítica	< 1.5	< 1.0	<= 1.0
2	Parcialmente lleno	Salida	Tirante Critico	Subcritica	< 1.5	< 1.0	<= 1.0
3	Parcialmente lleno	Salida	Remanso	Subcritica	<1.5	> 1.0	<= 1.0
4	Lleno	Salida	Remanso	Cualquiera	>1.0		< 1.0
5	Parcialmente lleno	Entrada	Geometría de entrada	Cualquiera	≥1.5		<= 1.0
6	Lleno	Salida	Geometria de entrada y del barril	Cualquiera	≥1.5		<= 1.0

FUENTE: (French, R. 1988)

Gráfico 2.12 Diagrama de flujo para determinar el tipo de flujo de la alcantarilla

FUENTE: (French, R. 1988.)

Bach. Ing. CIEZA VÁSQUEZ, Edga

53

FACULTAD DE INGENIERÍA

ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL "ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO NÚMERO OCHO - CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN

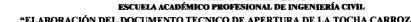
CUADRO 2.28 VALORES USUALES DE R/D Y W/D EN FUNCIÓN DE "D" PARA ALCANTARILLAS **ESTÁNDAR DE METAL CORRUGADO Y REMACHADO (BODHAINE, 1976)**

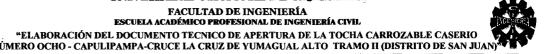
		-10	(D	
(pies)	(m)	r/D	w/D	
2	0.61	0.031	0.0125	
3	0.91	0.021	0.0083	
4	1.2	0.016	0.0062	
5	1.5	0.012	0.0050	
6	1.8	0.010	0.0042	

FUENTE: (French, R. 1988)

CUADRO 2.30 CLASIFICACIÓN DE LOS TIPOS DE FLUJO EN ALCANTARILLAS

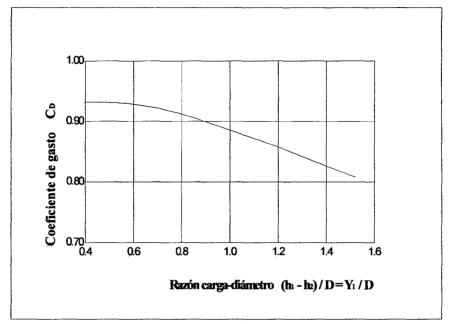
Tipo de Flujo de Alcantarilla	Ecuaciónd de Gasto
Tipo 1. Tirante Crítico a la entrada (h ₁ -z)/D<1.5 h ₄ /h _c <1.0 So > Sc	$Q = C_D A_C \sqrt{2g(h_1 - z + \alpha_1 \frac{\overline{U_1}^2}{2g} - yc - h_{f1.2})}$
Tipo 2 . Tirante Crítico a la salida (hl-z) / D < 1.5 h ₄ /h _c < 1.0 So < Sc	$Q = C_D A_C \sqrt{2g \left(h_1 + \alpha_1 \frac{\overline{U}_1^2}{2g} - yc - h_{f1.2} - h_{f2.3} \right)}$
Tipo 3 . Flujo subcrítico en todo la alcantarilla $ \begin{array}{c} \text{(h_1-z)/D} < 1.5 \\ \text{h_4/D} \leq 1.0 \\ \text{h_4/h_c} > 1.0 \end{array} $	$Q = C_D A_3 \sqrt{2g \left(h_1 + \alpha_1 \frac{\overline{U}_1^2}{2g} - h_3 - h_{f_{2.3}} - h_{f_{1.2}}\right)}$
Tipo 4 . Salida ahogada (hl-z) / D < 1.0 h4/ D > 1.0	$Q = C_D A_o \left[\frac{2g(h_1 - h_4)}{1 + (29 C^2 D_n^2 L/Ro^4/3)} \right]^{1/2}$
Tipe 5 . Flujo supercrítico a la entrada $ (h_1-z)/D \ge 1.5 \\ h_4/D \le 1.0 $	$Q = C_D A_0 \sqrt{2g(h_1 - z)}$
Tipe 6 . Flujo llenoo a la salida $ (h_1-z)/D \ge 1.5 $ $ h_4/D \le 1.0 $	$Q = C_D A_o \sqrt{2g(h_1 - h_3 - h_{123})}$


FUENTE: (French, R. 1988.)


Donde:

Coeficiente de gasto CD :

Área de flujo para un tirante crítico Ac

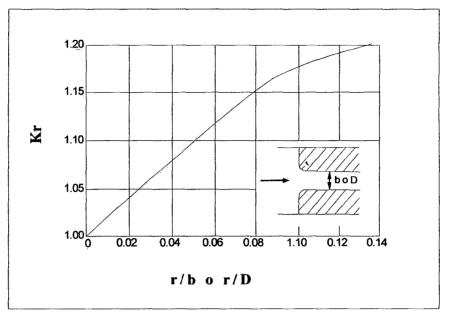

Velocidad media en la sección de llegada U1

GRÁFICOS PARA DETERMINAR EL COEFICIENTE DE GASTO (CD)

Gráfico 2.13 Coeficiente base de gasto para flujos tipo 1, 2 y 3 en alcantarillas circulares con entradas cuadradas montadas a paño en pared vertical (bodhaine, 1976)

FUENTE: French, R. 1988.

CUADRO 2.29. VALORES USUALES DE R/D Y W/D EN FUNCIÓN DE "D" PARA **ALCANTARILLAS** ESTÁNDAR DE METAL CORRUGADO Y REMACHADO


D		-/D	15		
(pies)	(m)	r/D	w/D		
2	0.61	0.031	0.0125		
3	0.91	0.021	0.0083		
4	1.2	0.016	0.0062		
5	1.5	0.012	0.0050		
6	1.8	0.010	0.0042		

FUENTE: French, R. 1988.

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIV

"ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO ÚMERO OCHO - CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN

Gráfico 2.14 Kr en función de r/b o r/d para flujos tipo 1, 2 y 3 en alcantarillas rectangulares o circulares colocadas a paño en paredes verticales.

FUENTE: French, R. 1988.

C. BADENES:

Estas estructuras serán de concreto fc = 210 Kg./cm2; de características indicadas en los planos correspondientes, con sus respectivos dispositivos de disipación de energía, según sea el caso. El diseño se lo desarrollará usando el Software de H-Canales.

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN)

2.9 SEÑALIZACIÓN.

Las señales de tránsito constituyen uno de los dispositivos más comunes para regular el tránsito por medios físicos. La función de una señal es la de controlar la operación de los vehículos en una carretera, propiciando el ordenamiento del flujo del tránsito o informando a los conductores de todo lo que se relaciona con la carretera que se recorre. Existen normalmente tres tipos de señales: Preventivas, De Reglamentación, e Informativas.

Céspedes, J. 2001.

2.9.1 SEÑALES PREVENTIVAS.

Para informar al conductor con anticipación de la existencia de una situación peligrosa ya sean éstas eventuales o permanentes. Generalmente suponen una reducción de velocidad.

Céspedes, J. 2001.

2.9.2 SEÑALES DE REGLAMENTACIÓN O REGULADORAS.

Tienen por objeto la regulación del tránsito automotor. Indican por lo general restricciones y reglamentaciones que afectan el uso de la carretera.

Céspedes, J. 2001.

2.9.3 SEÑALES INFORMATIVAS.

Son las que tienen por objeto guiar en todo momento al conductor e informarle, tanto sobre la ruta a seguir como las distancias que debe recorrer.

Céspedes, J. 2001.

2.9.4 UBICACIÓN DE LAS SEÑALES.

Las señales se colocarán a la derecha en el sentido del tránsito. En algunos casos es necesario colocarlas en alto sobre el camino, cuando no hay espacio suficiente al lado del camino o cuando se necesita algún control en una u otra vía que sea diferente a las demás.

Céspedes, J. 2001.

2.9.5 HITOS KILOMÉTRICOS.

Nos indica la longitud de la carretera para determinar las obras o reparaciones que se tendrán que efectuar, serán confeccionados de concreto con fierro de ¾", cuya sección preferida es la triangular, pintada de blanco y negro.

Céspedes, J. 2001.

2.9.6 DISEÑO DE LA SEÑALIZACIÓN A USAR.

La señalización se enmarca de acuerdo a la definición del manual de señalización del Ministerio de Transportes y Comunicaciones.

Céspedes, J. 2001.

VACIONAL STRUCTURE OF THE PARTY

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN)

2.10 PROGRAMACIÓN DE OBRA.

La ejecución de un proyecto no sólo implica vencer las dificultades técnicas, sino también el problema de coordinación y control de la cantidad de recursos y factores para lograr la eficacia del mismo bajo un nivel razonable de costo y tiempo.

López y Morán, 2001.

2.10.1 MÉTODOS DE PROGRAMACIÓN.

Existen métodos, como el Método de GANTT y la Programación PERT - CPM.

A. MÉTODO PERT Y CPM.

PERT: Project Evaluation and Review Technique (Técnica de Evaluación Supervisión de Programas).

CPM: Critical Path Meted (Método de la Ruta Critica).

El método PERT, es el más indicado para proyectos de investigación en los cuales existe problema de la estimación de tiempos y la posibilidad o riesgo de cumplir con determinados objetivos. Permite una mejor coordinación de los trabajos, disminución de los trabajos de ejecución, economía de costos de producción, conocimiento de la probabilidad de cumplir un plazo pre fijado de entrega.

El método PERT, estima la duración de cada tarea u operación de los proyectos basándose simplemente en un nivel de costo de lo cual se observa una diversidad de duraciones para cada tarea u operación, y la elección de una duración adecuada se hará de modo que el costo final del proyecto sea mínimo.

Ruta Crítica. En cualquier proyecto, algunas actividades son flexibles en cuanto a su inicio y determinación; mientras que otras no, de tal manera que si se retrasa alguna de ellas, se retrasará todo el proyecto. A estas actividades, que no pueden tener retraso alguno, se les denomina actividades críticas y a la cadena formada por ellas, se le conoce como ruta crítica que es la duración más larga a través del proyecto y marca la duración del mismo.

López y Morán, 2001.

Bach. Ing. CIEZA VÁSQUEZ, Edgar.

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO

NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN)

IMPACTO AMBIENTAL.

2.11.1 LINEAMIENTOS GENERALES

Los estudios de impacto ambiental deben tener como objetivo genérico la mejora de todo el entorno de la carretera de manera que el impacto negativo se reduzca a la mínima expresión, o incluso que se aumente la riqueza de flora y fauna de la zona.

Céspedes, J. 2001.

2.11.2 **MATRICES**

Las matrices pueden ser consideradas como listas de control bidimensionales: en una dimensión se muestran las características individuales de un proyecto (actividades propuestas, elementos de impacto, etc.), mientras que en la otra dimensión se identifican las categorías ambientales que pueden ser afectadas por el proyecto. De esta manera los efectos o impactos potenciales son individualizados confrontando las dos listas de control. Las diferencias entre los diversos tipos de matrices deben considerar la variedad, número y especificidad de las listas de control, así como el sistema de evaluación del impacto individualizado. Con respecto a la evaluación, ésta varía desde una simple individualización del impacto (marcada con una suerte de señal, una cruz, guión, asterisco, etc.) hasta una evaluación cualitativa (bueno, moderado, suficiente, razonable) o una evaluación numérica, la cual puede ser relativa o absoluta; en general una evaluación analiza el resultado del impacto (positivo o negativo). Frecuentemente, se critica la evaluación numérica porque aparentemente introduce un criterio de juicio objetivo, que en realidad es imposible de alcanzar.

Entre los ejemplos más conocidos de matrices está la Matriz de Leopold.

Céspedes, J. 2001.

MATRIZ DE LEOPOLD

Este sistema utiliza un cuadro de doble entrada (matriz). En las columnas pone las acciones humanas que pueden alterar el sistema y en las filas las características del medio que pueden ser alteradas.

Cuando se comienza el estudio se tiene la matriz sin rellenar las cuadrículas.

Se va mirando una a una las cuadrículas situadas bajo cada acción propuesta y se ve si puede causar impacto en el factor ambiental correspondiente. Si es así, se hace una diagonal. Cuando se ha completado la matriz se vuelve a cada una de las cuadrículas marcadas con diagonal y se pone en la parte superior izquierda un número del 1 al 10 que indica la magnitud del impacto (10 la máxima y 1 la mínima), colocando el signo "+" si el impacto es positivo y el signo "-" si es negativo. En la parte inferior derecha se califica del 1 al 10 la importancia del impacto, es decir si es regional o solo local.

Las sumas de columnas y filas permiten hacer posteriormente los comentarios que acompañan al estudio.

Céspedes, J. 2001.

"ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN)

Ventaias:

Son muy útiles cuando se desea identificar el origen de ciertos impactos.

Posibilitan tener un panorama general de las principales interacciones entre las acciones de un proyecto y los factores ambientales.

Céspedes, J. 2001.

Desventajas:

Tiene limitaciones cuando se trata de establecer interacciones entre varios efectos, a veces requieren de información que no existe de manera sistemática y esta se debe de producir elevando los costos del estudio.

Céspedes, J. 2001.

2.11.3 METODOLOGÍA DE ESTUDIO DE IMPACTO AMBIENTAL (E.I.A.) DE UNA CARRETERA.

Según el Libro "Carreteras Diseño Moderno" del Ing. José Céspedes Abanto, se tiene: Los estudios de impacto ambiental deben adaptarse a las normas legales especificadas por el Ministerio de Transporte, Comunicaciones, Vivienda y Construcción. Existen múltiples publicaciones especializadas que pueden servir de orientación de un E.I.A de carreteras.

Céspedes, J. 2001.

2.11.4 OBJETIVOS PRINCIPALES DE UN E.I.A. DE CARRETERAS.

CUADRO 2.30

FASE	ANÁLISIS DEL	VALORACIÓN	MEDIDAS
FASE	ESTADO INICIAL	IMPACTOS	CORRECTIVAS
	Elegir la solución de	Análisis de	Indicación de
ESTUDIOS	trazado más favorable entre	impactos generales en	tipos generales.
PREVIOS	varias alternativas	zonas amplias.	
		Análisis de	Elección de un
ANTE	Elección de soluciones	impactos detallados en	tipo de medidas
PROYECTO	estructurales concretas en las	zonas relativamente	correctoras por clase
	zonas localizadas	estrechas.	de impacto y zona.
	Elección y justificación	Análisis,	Diseño completo
	de cada parte del proyecto	medición,	y presupuesto de cada
PROYECTO	para reducir al máximo la	cuantificación de un	medida correctora en
PROTECTO	modificación del medio	impacto concreto en	cada punto.
		cada punto que sea	
		necesario.	

FUENTE: Céspedes, J. 2001.

FACULTAD DE INGENIERIA
ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

CAPÍTULO III

RECURSOS Y MATERIALES HUMANOS

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN)

3. RECURSOS MATERIALES Y HUMANOS

3.1. RECURSOS MATERIALES.

3.1.1. MATERIAL Y EQUIPO TOPOGRÁFICO:

MATERIAL:

- Pintura.
- 2 libretas de campo.
- 2 Lápiz 2B.

EQUIPO:

- 01 Estación Total LEICA TCR 407
- 03 Prismas.
- 05 Radios de transmisión.
- 01 Wincha de lona de 50 m.
- -01 Cordel de nailon de 50 m.

3.1.2. MATERIAL Y HERRAMIENTAS PARA LA RECOLECCIÓN DE MUESTRAS

(MECÁNICA DE SUELOS):

- 01 libreta de campo.
- 01 Picota.
- 01 Pico.
- 01 Pala.
- 01 Barreta.
- Bolsas.
- Sacos.
- Etiquetas y lapicero.

3.1.3. EQUIPO DE LABORATORIO DE MECANICA DE SUELOS:

- Juego Taras.
- Juego de tamices.
- Mortero.
- Copa de Casagrande.
- Espátula.
- Bomba de vacío.
- Moldes proctor.
- Moldes CBR.
- Balanzas Electrónicas.
- Estufa (110 °C).
- Máquina de los Ángeles.

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

ESCUEIA ACADÉMICO PROFESIONAL DE INGENIERIA CIVIL

"ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO
NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN)

3.1.4. MATERIAL Y EQUIPO DE GABINETE:

- -Carta nacional (1/100000, 1/25000)
- Carta Geológica
- Computadoras
- Impresoras
- Calculadoras
- Papel bond A4 (80 g).
- Papel A1.
- Útiles de dibujo y escritorio.

3.1.5. SERVICIOS:

- Transporte.
- Tipeos e impresión.
- Fotostáticas.
- Empastados.
- Fotografías.
- Ploteos.

3.2. RECURSOS HUMANOS.

3.2.1. EJECUTORES DEL PROYECTO PROFESIONAL:

- Bach. CIEZA VÁSQUEZ, Edgar.

3.2.2. ASESOR DEL PROYECTO PROFESIONAL:

- Ing. Alejandro Cubas Becerra.
- Dra. Mcs Ing. Rosa Llique Mondragón.
- Mcs Ing. Luis Vásquez Ramírez.

3.2.3. COLABORADORES:

- Catedráticos de la facultad de Ingeniería.
- Pobladores de la zona en estudio.

INSTITUCIONES:

- Universidad Nacional de Cajamarca
- Municipalidad distrital de San Juan.

FACULTAD DE INGENIERIA
ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO ÍMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN)"

CAPÍTULO IV METODOLOGIA Y PROCEDIMIENTO

FACULTAD DE INGENIERÍA
ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN)

4. METODOLOGÍA Y PROCEDIMIENTO

4.1. ESTUDIO DEL TRAZO DEFINITIVO.

4.1.1 RECONOCIMIENTO DE LA ZONA EN ESTUDIO:

Una vez reconocido la zona en estudio se eligió la mejor ruta por las siguientes razones:

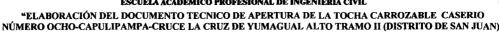
- La existencia de un camino de herradura, cumpliendo con el reglamento en el diseño geométrico de carreteras tanto en todo su trayecto, además favoreciendo de esta manera el permiso de paces en un 90% dicho proyecto.
- ➤ La topografía por otra zona era inaccesible los costos eran elevados y no había una verdadera iustificación costo beneficio(C/B)

Con la ayuda de las cartas Nacionales 1/100 000 y 1/25 000, se hizo el reconocimiento de la zona en estudio. Recorriendo el tramo en estudio se observo la topografía, los lugares obligados de paso y el posible trazo de la vía así como la geología más común que se presenta en la zona.

4.1.2 LEVANTAMIENTO TOPOGRÁFICO.

TRABAJO DE CAMPO.

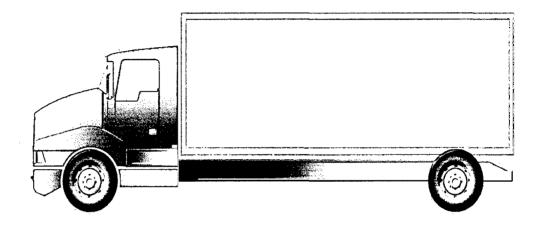
Utilizando el camino de herradura existente, del que se verificó que cumplía con las pendientes de acuerdo al manual de diseño de carreteras de caminos no pavimentados de bajo volumen de tránsito, y teniendo el inicio y final de la carretera y el reconocimiento adecuado de la zona, se procedió a realizar el levantamiento topográfico con instrumental adecuado (Estación Total LEICA FLEXLINE TSO6-5 POWER SERIE – 1351583 con sus respectivos accesorios). Levantándose una franja de 50 m. a la derecha e izquierda del ancho de la vía en estudio. Dicho levantamiento del proyecto en mención se realizo de la siguiente manera.


- Reconocimiento del terreno, para determinar: Extensión del trabajo, número de estaciones, equipo a utilizar y número de personas a utilizar.
 - Ubicar y monumentar los puntos de inicio, final y los BM correspondientes.
- En el trabajo de campo con los equipos que se determino en el reconocimiento. Se inicia el trabajo con la ubicación del Norte Magnético y la determinación de las coordenadas y cota del punto de inicio, con la ayuda de un navegador GPS, con estos datos y usando una estación total se tomaron todos los puntos de interés para dicho proyecto.
 - El proceso de gabinete esta descrito en el siguiente ítem.

A. TRABAJO DE GABINETE.

Concluido el trabajo de campo, se bajó los datos al computador a través del programa Auto CAD civil 3D 2012, los mismos que fueron procesados a través de éste programa dándonos la topografía existente en la zona.

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

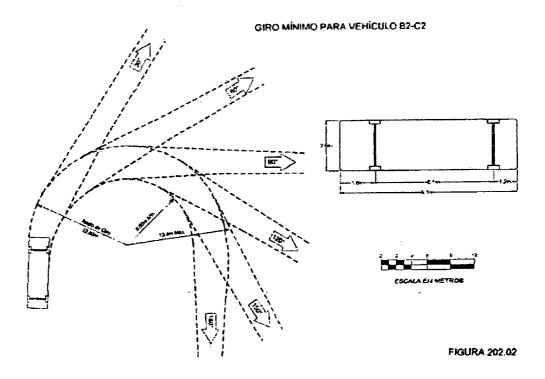


TOPOGRAFÍA

El ángulo de inclinación promedio de la topografía presentada en el área de estudio es de 25°, por lo que de acuerdo al Cuadro 2.1, la topografía en función a la inclinación del terreno respecto de la Horizontal se clasifica como **ACCIDENTADA**, por lo tanto de acuerdo al Cuadro 2.1 observamos que las curvas de nivel en los planos del proyecto (Escala del plano grande) deberán tener una equidistancia de **1.00 m.**

4.1.3 TIPO DE VEHICULO DE DISEÑO

Tipo de Vehículo	Nomenclatura	Alto Total	Ancho Total	Largo Total	Longitud entre Ejes	Radio Mínimo Rueda Externa Delantera	Radio Mínimo Rueda Interna Trasera
Camión Simple de 2 Ejes	C2	4.10	2.60	9.10	6.10	12.80	8.50



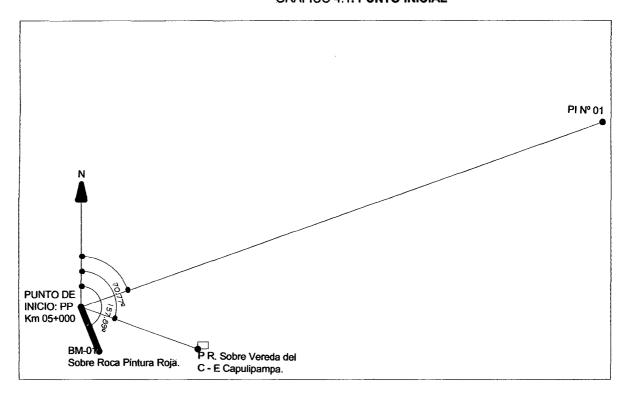
FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN)

4.1.4 UBICACIÓN DE LOS PUNTOS TERMINALES Y DE UBICACIÓN:

A. PUNTO INICIAL. Está ubicado en la entrada de la comunidad Capulipampa en el Km. 05 + 000.del Proyecto Profesional Elaboración del Documento Técnico de Apertura de la Trocha Carrozable Caserío Número Ocho – Capulipampa – Cruce la Cruz de Yumagual Alto.

Coordenadas Geográficas Punto Inicial:						
Punto de Partida: PP	Comunidad de Capulipampa					
Latitud:	7° 14' 6.95"					
longitud:	78° 32' 15.03"					
Coordenadas UTM Pur	nto Inicial:					
Norte: 9199507 m						
Este:	771928 m					
Altitud 3177 m.s.n.m.						

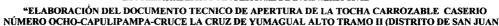

FACULTAD DE INGENIERÍA

ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

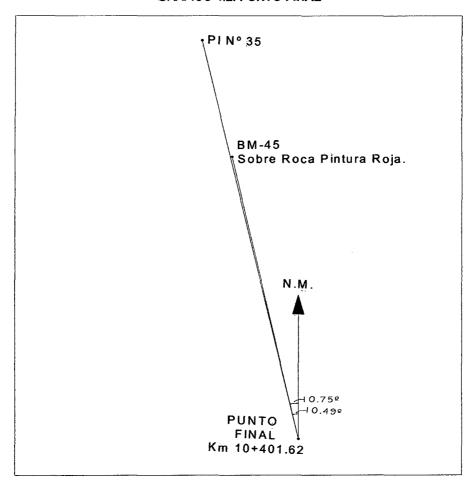
"ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO
NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN)

GRÁFICO 4.1. PUNTO INICIAL

El ángulo fue calculado haciendo uso del programa AUTOCAD CIVIL 3D 2012


B. PUNTO FINAL. Se encuentra ubicado en el Cruze la Cruz de Yumagual Alto en el Km. 10+401.62.

Coordenadas Geográficas Punto Final:					
Punto Final.	Cruce la Cruz de Yumagual Alto				
Latitud:	7° 13' 45.76"				
longitud:	78° 30' 24.69"				
Coordenadas UTM Pu	nto Final:				
Norte: 9200140 m					
Este:	775318 m				
Altitud :	3303 m.s.n.m.				



FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

GRÁFICO 4.2. PUNTO FINAL

El ángulo fue calculado haciendo uso del programa AUTOCAD CIVIL 3D 2012

4.1.5 SELECCIÓN DEL TIPO DE VÍA Y PARÁMETROS DE DISEÑO.

- A. SELECCIÓN DEL TIPO DE VÍA:
- > SEGÚN SU JURISDICCIÓN:

Esta carretera pertenece al Sistema Vecinal.

> SEGÚN EL TIPO DE OBRA:

La obra a realizarse en el presente proyecto profesional es de APERTURA, la ejecución de las obras necesarias se realizara con el fin de contar con una vía estándar, mediante actividades que implican el diseño geométrico y el diseño de pavimento a nivel de afirmado, de acuerdo a la clasificación del Manual de Carreteras no Pavimentados de Bajo Volumen de tránsito.

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN)"

B. PARÁMETROS DE DISEÑO:

a) VELOCIDAD DIRECTRIZ (V):

Por ser una carretera vecinal y tener una topografía mayormente accidentada; la velocidad directriz considerada para el presente proyecto es de **20 Km / hora.** (CUADRO 2.5)

b) RADIOS DE DISEÑO.

De acuerdo a la velocidad directriz y al peralte máximo (10%), el Radio Mínimo Normal es de 12 m (Ecuación 01).

c) ANCHO DE FAJA DE RODADURA:

d) El ancho de faja de rodadura, considerada de acuerdo a la topografía presentada en la zona del proyecto es de 3.50 m.

e) ANCHO DE BERMAS.

El Manual para el Diseño de Caminos No Pavimentados de Bajo Volumen de Tránsito estipula un ancho mínimo de berma de 0.50 m. a cada lado de la calzada.

f) PLAZOLETAS DE ESTACIONAMIENTO.

Se han considerado plazoletas de estacionamiento de 3.00 x 30.00 m cada 500.00 m.

g) PENDIENTES.

El presente estudio es a nivel de apertura de la trocha carrozable, se ha adaptado en gran parte al camino de herradura existente, obteniendo las pendientes, mostradas en la Tabla 4.1.2. y siempre comparando lo que dice la norma cuadro 2.5.

- Pendiente Mínima

: 1.30 %.

- Pendiente Máxima

: 11.00 %

h) BOMBEO.

El bombeo en los tramos en tangente es de 2%, y en los tramos en curva serán sustituidos por el peralte.

i) PERALTES.

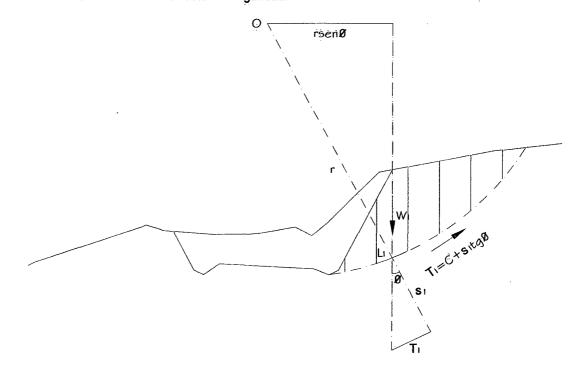
El peralte para las diferentes curvas en el presente proyecto, así como la longitud de transición para cada peralte fue hallado teniendo en cuenta el cuadro 2.8.

j) SOBREANCHO. Los sobre anchos calculados a través de la Ecuación 04 son presentados en los planos correspondientes.

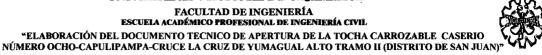
FACULTAD DE INGENIERÍA ESCUEIA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN)

4.1.6 ESTABILIDAD DE TALUDES


Las secciones transversales de la carretera en estudio mostradas en los planos, fueron elaboradas teniendo en cuenta los tipos de material existentes en la zona, tanto para taludes de Corte (Cuadro 2.9.1) como para los taludes de Relleno (Cuadro 2.9.2).

Para evaluar las condiciones de estabilidad de las zonas críticas se ha realizado un análisis de estabilidad de taludes en las zonas críticas en la apertura de la tocha Carrozable Capulipampa- Cruce la Cruz de Yumagual Alto. Previo al análisis se ha llevado a cabo la investigación geotécnica y geológica, además del Levantamiento Topográfico.


Para dicho análisis se debe tener en cuenta una serie de factores que influyen en la estabilidad de un talud. No todos estos factores se pueden cuantificar en un modelo matemático; a pesar de estas limitaciones, determinar el factor de seguridad asumiendo superficies probables de falla, permite tener una idea del comportamiento del talud. Además, se ha realizado el cálculo de las deformaciones permanentes por el método que a continuación se describe.

4.1.6.1 MÉTODO DE LAS DOVELAS (MOMENTO MOTOR) SUELOS MIXTOS

El suelo de superficie de falla se divide en varias dovelas verticales, el ancho de cada dovela no tiene que ser el mismo, se determina los momentos actuantes resistentes de cada dovela y con estos datos se determina el factor de seguridad.

 $Fs = \frac{Mrs}{Ma}$

Donde:

Fs : Factor de seguridad

Mr : Momento Resistenté

Ma : Momento Actuante

Hallando Ma

Mai = Wi r.sengi

Mai= $\sum_{i=1}^{n} W_i^i$ r.sengi

Hallando Mrs

$$\sigma_1 = \frac{Wi.cosai}{hi}$$

$$\tau_1 = \left(C + \frac{Wicosai}{Li} tg\emptyset\right) Li$$

Mrsi=τ,.r

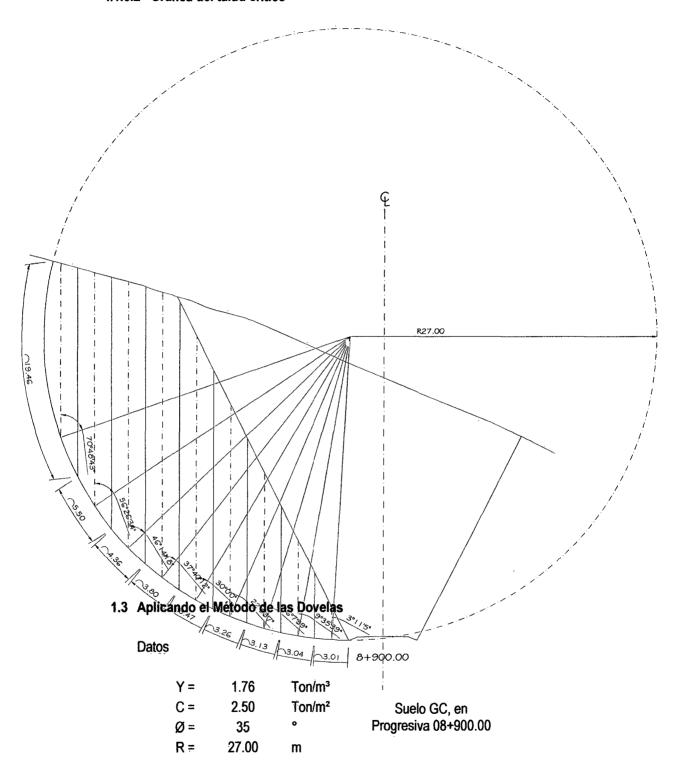
$$\tau_i = \left| \left(C + \frac{Wi \cdot cos\alpha i}{Li} tg \emptyset \right) Li \right| r$$

$$Mr_s = \sum_{i=1}^{n} \left[\left(C + \frac{Wi.cosai}{Li} tg \emptyset \right) Li \right] r$$

$$Mr_s = \sum_{i=1}^{n} [(C.Li + Wi.cosai.tg\emptyset)Li]r$$

$$F_s = \frac{\sum_{i=s}^{n} \lfloor (\textit{C.Li+Wi.cosai.tg0}) Li \rfloor r}{\sum_{i=s}^{n} \textit{Wi.r.senai}}$$

Donde: si Fs ≥ 1.50, no requiere de estabilidad de taludes.



FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVI

"ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO ÚMERO OCHO-CAPILI PAMPA-CRICE LA CRUZ DE VUMAGUAL ALTO TRAMO II DISTRITO DE SAN JUAN

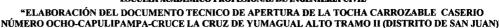
4.1.6.2 Gráfica del talud crítico

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN)"

1.4 Datos Obtenidos del Gráfico Anterior

N°	Vol (Vi)		-	Ang (d	αi)			Long (Li)	Wi	Sen (a)	Cos (a)	σί	Ti	Mr	Ma
1	42.266	70	•	48	,	43	-0	15.231	74.387	0.944	0.329	1.605	55.196	1490.287	1896.881
2	61.181	56	•	26		34	Ħ	20.478	107.679	0.833	0.553	2.907	92.871	2507.520	2422.770
3	70.141	46	۰	14	1	18	H	23.397	123.449	0.722	0.692	3.649	118.279	3193.532	2407.256
4	75.463	37	٥	40	1	12	*	25.187	132.815	0.611	0.792	4.174	136.579	3687.627	2191.445
5	70.084	30	۰	0	1	0	"	23.383	123.347	0.500	0.866	4.568	133.254	3597.868	1665.191
6	56.571	22	٥	53	1	7	"	18.875	99.564	0.389	0.921	4.860	111.415	3008.201	1045.422
7	41.765	16	۰	7	1	39	"	13.937	73.507	0.278	0.961	5.067	84.288	2275.774	551.297
8	25.824	.9	۰	35	,	39	"	8.622	45.450	0.167	0.986	5.197	52.935	1429.245	204.525
9	8.833	:3	۰	1.1	7	5	"	2.958	15.546	. 0.056	0.998	5.247	18.264	493.139	23.319
													Σ=	21683.193	12408.106


F.S. = 1.748

Como: FS = 1,748 > 1.500

→ No necesita estabilización de talud.

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

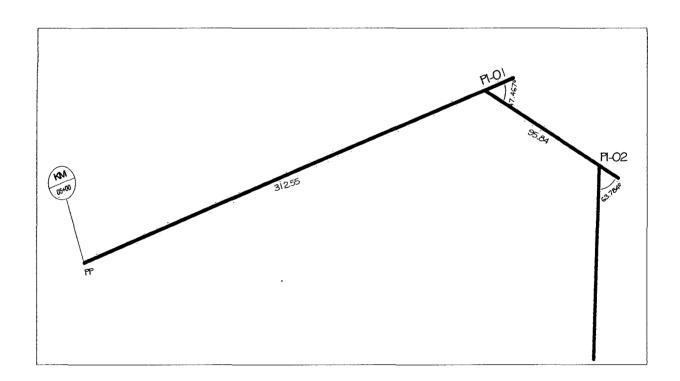
4.1.7 UBICACIÓN DEL EJE LONGITUDINAL Y DISEÑO GEOMÉTRICO DE LA VÍA.

- A. CURVAS HORIZONTALES. Los elementos de las curvas horizontales, fueron calculadas haciendo uso de las fórmulas mostradas en el Cuadro 2.10.1. los elementos de cada curva se presentan en los planos correspondientes.
- B. CURVAS VERTICALES: Una vez determinada la necesidad de el diseño de una curva vertical, convexa o cóncava, según corresponda, se calculó la longitud de dichas curvas verticales teniendo en cuenta las ecuaciones 05, 06, 07 y 08, posterior a ello se procedió a corregir las cotas de la sub rasante haciendo uso de la ecuación 09. Ver planos Planta y Perfil.

EJEMPLO PRÁCTICO DE CURVA HORIZONTAL

Para la figura mostrada realizar el estacado del eje, así como el cálculo de los elementos de curva. CARRETERA DE TERCERA CLASE

PP - PI1 =312.55 m.


11= 47.467°

P11 - P12 = 95.84 m.

12=63.784°

R1= 90.61 m

R2 = 90 m

FACULTAD DE INGENIERÍA ESCUEIA ACADÉMICO PROFESIONAL DE INGENIERÍA C

"ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN)

SOLUCIÓN:

Según las D.G.2001.

- > Velocidad Directriz = 20 Km/h (Carretera de tercera clase)
- \triangleright Bombeo = 2%.
- ➤ Peralte = 10%.
- ➤ Vehículo de diseño = C2
- > Ancho de vía = 4.50 m
- ➤ Número de carriles = 1

Hallando Cf:

$$Cf = \frac{1}{1.4\sqrt[3]{V}} = \frac{1}{1.4\sqrt[3]{20}} = 0.26$$

Hallamos R:

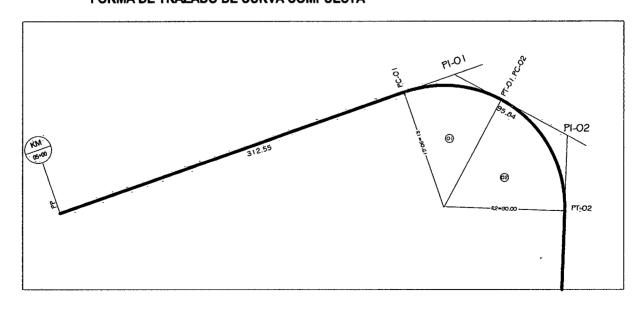
$$R = \frac{V^2}{127(Cf + P)} = \frac{20^2}{127(0.26 + 10/100)}$$

$$R = 8.75 \ m.$$

$$R = 12 m$$
.

Hallando Lp:

$$Lp = \frac{a * p}{0.014} = \frac{4.5 * 10/100}{0.014} = 32.44 m.$$


Hallando Lb:

$$Lb = \frac{a*b}{0.014} = \frac{4.5*2/100}{0.014} = 6.43 m.$$

$$Lt = Lp + Lb = 32.14 + 6.43 = 38.57 m.$$

$$L = 2(\frac{Lp}{2} + Lb) = 45.00 m.$$

FORMA DE TRAZADO DE CURVA COMPUESTA

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO

ELEMENTOS DE CURVA.

T1 = R1 tag(11/2)

T1= 90.61 tag (47.467/2)

TI = 39.84 m.

T2 = R2 tag(12/2)

T2= 90.00 tag (63.784/2)

T2 = 56.00 m.

	ELEMENTOS DE CURVA (KM 05+00.00 - KM 06+00.00)									
N° Curva	Sentido	Radio (m)	Delta	L. Curva (m)	Tangente (m)	Externa (m)	Peralte (%)	Sobreancho (m)		
C1	D	90.61	47°28'2"	75.07	39.84	8.37	5.00	0.55		
C2	D	90.00	63°47'4"	100.19	56.00	16.00	5.00	0.56		
C3	I	120.00	12°6'37"	25.36	12.73	0.67	5.00	0.44		
C4	1	25.00	100°4'38"	43.67	29.84	13.92	8.50	1.67		
C5	ĺ	120.00	12°35'40"	26.38	13.24	0.73	5.00	0.44		

ESTACADO.

PP - PI1 = 5312.55

5 + 312.55 m

PC1= PI1- T1

5312.55 - 39.84 m

PC1 = 5272.71

5+272.71 m.

 $Lc1=\pi (R1) (I1)/180$

Lc1= π *90.61*47.467/180

Lc1= 75.07 m.

Pt 1= PC1 + Lc1

Pt1= 5272.71 + 75.07 m.

Pt1= 5347.78 = 5+347.78 m.

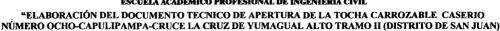
Pc2= Pt1

 $= 5+347.78 \, \text{m}$

 $Lc2 = \pi (R2) (I2)/180$

 $Lc2 = \pi (90) (63.784)/180$

Lc2= 100.19 m.


Pt2= Pc2 + Lc2

Pt2= 5347.78+100.19

Pt2= 5447.97 = 5+447.97 m.

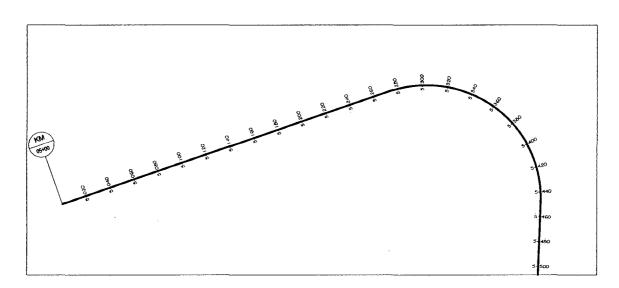
FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

VERIFICACIÓN DE RADIOS DE LA CURVA COMPUESTA.

 $R2 = \alpha R1$

 $0.667 \le \alpha \le 1.50$

Donde


R1= radio mayor y R2= radio menor

 $\alpha = 90/90.61$

a = 0.993

Por lo tanto: $0.667 \le 0.993 \le 1.50$ OK.

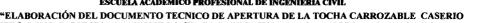
ESTACADO DE CARRETERA.

EJEMPLO PRÁCTICO DE CURVA VERTICAL

Una pendiente de +6.50 % de una carretera encuentra a otra de -3.0 % en la estaca PIV = 8 + 620.00 m de cota 3394.64 m. Determinar la longitud de la curva vertical convexa y calcular las cotas respectivas para estacas de 20 m.

Solución:

Cálculo de la longitud mínima de la curva vertical.


A = 6.5 + 3.0 = 9.5%, de donde L = 10 estaciones de 20 m. = $10 \times 20 = 200$ m.

- Para longitud de 100 m y m = +6.50%, se tiene :

FACULTAD DE INGENIERIA
ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

Diferencia de altura =
$$\frac{6.5x100}{100} = 6.50 m$$

- Para longitud de 100 m y n = -3.0%, se tiene :

Diferencia de altura =
$$\frac{-3.0x100}{100}$$
 = -3.00 m

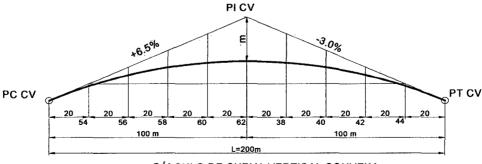
Cálculo de la ordenada media

$$d = \frac{LA}{800} = \frac{200x9.5}{800} = 2.38 \ m$$

Cálculo de las ordenadas paraes estacas cada 20 m.

Para
$$x = 20m$$
 $y1 = \frac{20^2 x9.5}{200x200} = 0.095 m$
Para $x = 40m$ $y2 = \frac{40^2 x9.5}{200x200} = 0.380 m$
Para $x = 60m$ $y3 = \frac{60^2 x9.5}{200x200} = 0.855 m$
Para $x = 80m$ $y4 = \frac{80^2 x9.5}{200x200} = 1.52 m$

Para
$$x = 100m$$
 $y5 = \frac{100^2 x9.5}{200x200} = 2.375 m$


$$PI = 62 + 0.00 = 52 + 100 m$$
 $Cota = 94.64 m$

$$= \frac{-100}{52 + 00} = \frac{-6.50}{88.14 m}$$

Estaca PC =
$$52 + 0.00 m$$

PI = $52 + 100 m$ Cota = $94.64 m$
 $+100$ -3.00

= 52 + 200 m

Estaca
$$PT = 72 + 0.00 m$$

CÁLCULO DE CURVA VERTICAL CONVEXA

91.64 m

NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN

FACULTAD DE INGENIERÍA

ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL
"ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO

4.2 ESTUDIO DE SUELOS Y CANTERAS

4.2.1 Descripción Geológica del Eje de la Carretera.

Para la ubicación geodésica se utilizado el sistema UTM WGS 84 (World Geodesic System 1984), siendo la ubicación de los puntos de inicio y del final los siguientes:

- PUNTO INICIAL. Coordenada UTM

Punto Inicial.	Comunidad de Capulipampa
Norte:	9199507 m
Este:	771928 m
Altitud :	3177 m.s.n.m.

PUNTO FINAL. Coordenada UTM

Punto Final.	Cruce la Cruz de Yumagual Alto
Norte:	9200140 m
Este:	775318 m
Altitud :	3303 m.s.n.m.

El Proyecto Profesional se desarrolla mayormente en roca suelta y en menor parte roca fija, fracturada y meteorizada pero también en suelos azonales de origen coluvial y fluvio glaciares del cuaternario y suelos zonales de poco desarrollo genético.

En términos generales, desde el inicio de la carretera estará cimentada en un depósito lacustre y a medida que avanza el desarrollo también cambia el material el cual es de origen coluvial hasta llegar a lugares donde en forma intermitente la roca es dura, otras veces roca fracturada y diaclasada del las Formaciones Chimu, Chulec, Farrat, Inca, Pariatambo y formación Yumagual, las cuales presenta caracteres peculiares de cada formación estratigráficas.

En los primeros kilómetros Km. 05+000 hasta el Km. 05+600 la carretera presenta una topografía llana, en una posición fisiográfica de llanura, pendiente casi a nivel (5-10 %) siendo los suelos lagunares, y coluviales; para luego continuar por un tramo moderadamente empinada hasta el Km. 05+740 siendo los suelos en este caso zonales y bien desarrollados.

A partir del Km. 05+740 al km 05+780 se inicia rocas fijas areniscas ferruginosas prácticamente la parte empinada con una pendiente natural empinada (26-50 % a muy empinado (51-70%).

Del Km. 05+780 al km 05+960 se inicia rocas sueltas prácticamente la parte empinada con una pendiente natural empinada (26-50 %).

Del Km. 05+960 al km 07+500 se inicia con material suelto y en pequeños tramos rocas sueltas prácticamente la parte empinada con una pendiente natural empinada (26-70 %).

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL "ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN)

Del Km. 07+500 al km 08+340 se inicia rocas sueltas prácticamente la parte empinada con una pendiente natural empinada (26-70 %).

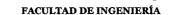
Del Km. 08+340 al km 08+400 se inicia rocas fijas calizas prácticamente la parte empinada con una pendiente natural empinada (26-70 %).

Del Km. 08+400 al km 10+401.62 se inicia con material suelto prácticamente la parte ondulada con una pendiente natural (10- 20 %).

En general, la mayor parte de la carretera se desarrollan en una geomorfología de laderas suaves y abruptas las mismas que presentan una vegetación arbustiva y arbórea de diversa taxonomía.

La geología sobre la cual se ha efectuado el Estudios Geológico- Geotécnico para la Estabilidad de la Trocha Carrozable (Km 05+000 al 10+401.62 respectivamente), pertenece al Cuaternario (depósitos Coluviales, Lagunares, Fluvioglaciares y al Cretáceo Superior las Formaciones Formaciones Chimú, Chulec, Farrat, Inca, Pariatambo y formación Yumagual.

A. OBJETIVOS


Los objetivos que se pretenden lograr con el estudio son los siguientes:

- 1º Conocer y evaluar el medio geológico sobre el cual se va a construir la trocha, de tal manera que nos permita proponer las medidas de estabilización de los taludes a fin de prever los procesos de geodinámica externa y poner en marcha el funcionamiento.
- 2º Conocer la geotecnia y las características naturales del suelo por donde se va aperturar la carretera, cuyo fin es analizar, evaluar y brindar las recomendaciones de solución a los problemas naturales que puedan comprometer su habilitación y posterior funcionamiento, tales como inestabilidad de taludes, erosión y otros. Igualmente, localizar y evaluar el suministro de materiales que se requerirán para su habilitación, determinar los puntos de agua para realizar la compactación de los agregados para la plataforma, etc.

B. ALCANCES

Los alcances propuestos en el estudio nos van a permitir lo siguiente:

- ➤ Interpretar la geología y geomorfología local, para conocer las diferentes formaciones geológicas que se emplazan a lo largo de la trocha Carrozable.
- ➤ Localización y análisis de los fenómenos de geodinámica externa existentes en el área y que comprometen la durabilidad de la carretera y la estabilidad de los taludes.
- > Determinar las características geológicas y geotécnicas de los suelos y rocas donde se va a construir la trocha Carrozable.

- \triangleright Ubicación de puntos de movimientos de masas de suelos y de rocas que afectan a la plataforma de la tocha Carrozable.
- Localizar y evaluar los lugares de canteras que han de suministrar los materiales requeridos para la construcción; así como los puntos de aprovechamiento de agua.
 - Evaluar la Sismicidad

4.2.2 GEOLOGÍA

4.2.2.1 GEOMORFOLOGÍA

La geomorfología del área de influencia es la misma en todo su trayecto es una vertiente montañosa empinada y escarpada (Vs 2 - e). Las unidades geomorfológicas es la misma en todos los niveles topográficos desde 3177 m.s.n.m hasta los 3303 m.s.n.m en una vertiente montañosa empinada y escarpada.

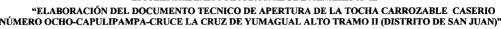
4.2.2.2 ESTRATIGRAFÍA

Tomando como base referencial al estudio geológico del INGEMMET, la prospección de campo hecha, podemos afirmar que la carretera se va a construir en las siguientes formaciones estratigráficas:

En general, la carretera estudiada, está conformadas por un zócalo sedimentario de la edad secundaria la cual se encuentra intensamente plegada, fracturada y diaclasada, en la cual se encuentran unidades litológicas muy variadas y de fósiles de origen marino.

La deformación ocurrió durante el terciario, cuando la orogénesis de los Andes se debió a causa de movimientos convectivos, epirogenéticos y vibratorios de la placa continental, esto produjo la formación de muchas intrusiones ígneas pero que aun no afloran en el lugar. Como consecuencia de estos eventos, la litología estudiada, presenta una gran heterogeneidad, pasando por faces líticas sedimentarias, areniscas de tamaño de grano diversos, calizas, etc.

Algunas zonas también han sido sometidas a glaciaciones intercaladas con periodos más cálidos durante el cuaternario que favorecieron un modelado fluvioglaciar, aluviocoluviales antiguos y recientes.


4.2.2.3 LITOLOGÍA DE LA CARRETERA

La geología de la carretera Capulipampa Cruce la Cruz de Yumagual Alto no es muy compleja desde el punto de vista geológico, presenta poca heterogeneidad de eventos litológicos, así como también estratigráfico, lo que está relacionado íntimamente al proceso geomorfológico y geodinámica activo que presenta la zona, estas formaciones geológicas son:

FACULTAD DE INGENIERÍA

ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

FORMACION CGULEC /INCA /PARIATAMBO (Ki - chu/in/pa)

Litológicamente consiste de areniscas, lutitas y margas con intercalaciones calcáreas.

Formación encontrada en los tramos siguientes:

Ki – chu: Km. 05+000 hasta 05+486

Ki - in: Km. 05+486 hasta 05+590

Km. 07+155 hasta 07+310

Ki – pa: Km. 07+310 hasta 07+560

Km. 08+770 hasta 09+445

FORMACION YUMAGUAL (Ks - yu)

Consiste en una secuencia de margas y calizas gris parduscas en bancos más o menos uniformes, destacando un miembro medio lutáceo margoso, amarillento, dentro de un conjunto homogéneo presenta escarpas debido a su dureza uniforme. En algunos horizontes se observan ondulaciones calcáreas. Tiene un grosor aproximado de 200 m.

Está Formación se encuentra presente en el siguiente tramo:

Km. 07+560 hasta 08+770

FORMACION FARRAT (Ki - f)

Consiste en una secuencia de areniscas grano medio a conglomerado fino, intercalación de areniscas ferruginosas con arcillitas gris amarillentas y gris rojizas. En algunos horizontes se observan ondulaciones areniscas. Tiene un grosor aproximado de 300 m.

FORMACION CHIMU (Ki - chim)

Consiste en una secuencia de areniscas grano fino, gris blanquecinas con niveles de oxidación, pasa en forma transicional a la formación inca. En algunos horizontes se observan ondulaciones areniscas. Tiene un grosor aproximado de 300 m.

DEPOSITOS CUATERNARIOS RECIENTES

FLUVIOGLACIARES (Q - fg)

Se encuentran morrenas glaciares compuestas por fragmentos de caliza del cretáceo superior los cuales se disponen como suelos brochazos en la siguiente progresiva:

Km. 08+340 al km 08+400

LAGUNARES (Q - la)

Los depósitos lagunares se encuentran en diferentes lugares y niveles, dispuestos en bancos sub horizontales constituidos por material fino areno- arcilloso, a los que algunas veces se intercalan gravas y delgados conglomerados encontrado en la progresiva siguiente:

Km. 05+000 hasta 05+700

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN)

COLUVIALES (Q - co)

Están representados por escombros de laderas que sin mayor transporte se ha depositado en el pie de monte de lugar donde se va a construir la carretera. Están constituidos por material detrítico sub anguloso, con un escaso matriz limo arcilloso y arenoso, algunas veces forman depósitos de deslizamiento que varían desde superficiales hasta una profundidad media (0.50 cm.) los cuales los encontramos en las progresivas siguientes:

Km. 06+100 hasta 06+300

Km. 09+000 hasta 10+400

4.2.2.4 GEODINÁMICA INTERNA

En toda la zona podemos apreciar la presencia del diastrofismo, donde fuerzas internas han permitido flexionar las capas sedimentarias produciendo anticlinales y sinclinales, producto de ello es que tenemos afloramientos con grandes pendientes y en algunos casos con buzamientos hasta de 35º en una dirección de este a oeste o de sur a norte. Esto lo podemos apreciar desde el Km. 07+560 hasta el km: 9+300 del tramo del proyecto.

A. RIESGO GEOLÓGICO

Considerando que el riesgo es la probabilidad de pérdida y daños ocasionados por la interacción de un peligro en una situación de vulnerabilidad, la obra si está en riesgos constante siempre y cuando no se practique trabajos de mantenimiento y no se aplique las recomendaciones que se hacen en las hojas de campo.

Las razones se deben a que la mayor extensión que comprende el desarrollo de la trocha y se encuentra dentro de estratos sedimentarios que al intemperizarse, se forman suelos arcillosos de estructura granular, expandibles; que al mojarse y en pendiente, se desprenden fácilmente de su yacimiento, provocando la colmatación de la plataforma, en fin todas las obras que se plantee ejecutar.

B. RIESGO DE ORIGEN SISMICO

METODOLOGÍA.

El estudio del riesgo sísmico se fundamenta en el establecimiento de los parámetros de sismicidad. Para el presente estudio se ha empleado la metodología determinística, basado en consideraciones de sismo tectónica regional, identificación de las fuentes generadoras de sismos (fuentes sismo génicas), sismicidad histórica que es la relación de los sismos más intensos ocurridos en el pasado y la sismicidad local. A continuación se explicarán los elementos utilizados en el estudio de riesgo sísmico.

C. SISMOTECTÓNICA

De acuerdo con la teoría de placas el Perú está ubicado cerca a la zona de convergencia de las placas litosféricas denominadas "Continental Sudamericana" y "Oceánica de Nazca", la que se considera como un margen sismológicamente activo.

FACILITAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN)

La referida convergencia determina la inflexión del borde oriental de la placa de Nazca bajo la placa Continental según la dirección NE; asimismo, la placa Continental resulta en un cabalgamiento sobre la capa de Nazca.

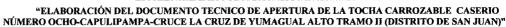
Los esfuerzos que se generan entre las dos placas en la zona de subducción y originan una intensa actividad sísmica. El sector que se extiende entre la fosa de Lima y la costa (corresponde a la zona de contacto entre placas), es una zona de sismicidad superficial pero intensa y asociada con el sistema de subducción, esta área es uno de los lugares donde se generan sismos de gran magnitud en el mundo. En el continente la profundidad focal de los sismos va creciendo de Oeste a Este.

Los focos delinean, en el perfil, la placa Oceánica buzando debajo de la placa Continental a la vez que las magnitudes de los sismos tienden a disminuir.

La sismicidad superficial en la placa Continental está limitada a la zona que abarca la costa, la Cordillera Occidental y parte de las altiplanicies; luego aumenta nuevamente en la zona de la Cordillera Oriental con focos muy superficiales y mecanismos que demuestran la existencia de un régimen de compresión.

La región Este se caracteriza por tener una expresión tectónica más joven que la Cordillera Occidental, con procesos neotectónicos que se reconocen por la deformación de terrazas cuaternarias y reactivación de fallas.

Esta actividad superficial en la placa Continental hace que algunos casos presente fallas en la cordillera que involucra al departamento de Cajamarca y por ende la zona en estudio, sin embargo a través del tiempo en Cajamarca y en el lugar de trabajo, no se ha registrado movimientos sísmicos severos que afecten a las carreteras, este caso probablemente se debe a que tanto en la cordillera oriental como en la occidental haya un sistema de graben y sirva como un elemento de amortiguamiento de los movimientos sísmicos, de tal forma que tanto en el Valle de Cajamarca y otros lugares no haya problemas de geodinámica interna que comprometa a la obra que se desea ejecutar.


4.2.2.5 ESTABILIDAD DE TALUDES

Los problemas de estabilidad de taludes, considerados en el estudio son aquellas que son provocadas por fenómenos gravitacionales como, deslizamientos, desplome y socavamiento de taludes de corte y relleno, y esporádicamente presión radicular de los árboles que se encuentran en el borde de los taludes y que han traído como consecuencia la colmatación de cunetas y en algunos socavamiento de la plataforma.

Las soluciones planteadas que contrarresten las acciones negativas de estos problemas de inestabilidad son: zanjas de coronación, disipadores de energía hidráulica a la salida de las cunetas y badenes, obras de drenaje longitudinal y transversal las mismas que se mantienen en su concepción.

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

TALUDES DE CORTE Y RELLENO RECOMENDADOS

TALUDES D	E CORTE			
MATERIAL	TALUD			
Material Común	3:1			
Conglomerados Cementados	4:1			
Conglomerados Comunes	3:1			
Tierra Compacta	2:1			
Roca Suelta	4:1			
Roca Fija	10:1			
TALUDES DE	RELLENO			
MATERIAL	TALUD			
Material Común	1:1,5			
Arena Compacta	1:2			
Enrocado	1:1			

Se ha tomado como referencia bibliográfica al Manual para el Diseño de Carreteras no Pavimentadas de bajo volumen de Tránsito RM 303-2008-MTC/02 del 4 de abril del año 2008.

4.2.2.6 METODOLOGÍA DE ESTUDIO

A. INFORMACIÓN BÁSICA

La metodología de estudio considera la recopilación de la información básica siguiente:

- a. Topográfica
- b. Hidrológica
- c. Geológica y Sismológica
- d. Mecánica de Suelos.

B. RIESGO GEOLÓGICO

Considerando que el riesgo es la probabilidad de pérdida y daños ocasionados por la interacción de un peligro en una situación de vulnerabilidad, la obra si está en riesgos constante siempre y cuando no se practique trabajos de mantenimiento y no se aplique las recomendaciones que se hacen en las hojas de campo.

Las razones se deben a que la mayor extensión que comprende el desarrollo de la trocha se encuentra dentro de estratos sedimentarios que al intemperizarse, se forman suelos arcillosos de estructura granular, expandibles; que al mojarse y en pendiente, se desprenden fácilmente de su yacimiento, provocando la colmatación de la plataforma, cunetas, en fin todas las obras que se plantee ejecutar.

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN)

C. RIESGO DE ORIGEN SÍSMICO

METODOLOGÍA

El estudio del riesgo sísmico se fundamenta en el establecimiento de los parámetros de sismicidad. Para el presente estudio se ha empleado la metodología determinística, basado en consideraciones de sismo tectónica regional, identificación de las fuentes generadoras de sismos (fuentes sismo génicas), sismicidad histórica que es la relación de los sismos más intensos ocurridos en el pasado y la sismicidad local. A continuación se explicarán los elementos utilizados en el estudio de riesgo sísmico.

SISMOTECTÓNICA

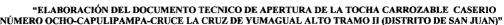
De acuerdo con la teoría de placas el Perú está ubicado cerca a la zona de convergencia de las placas litosféricas denominadas "Continental Sudamericana" y "Oceánica de Nazca", la que se considera como un margen sismológicamente activo.

La referida convergencia determina la inflexión del borde oriental de la placa de Nazca bajo la placa Continental según la dirección NE; asimismo, la placa Continental resulta en un cabalgamiento sobre la capa de Nazca.

La sismicidad superficial en la placa Continental está limitada a la zona que abarca la costa, la Cordillera Occidental y parte de las altiplanicies; luego aumenta nuevamente en la zona de la Cordillera Oriental con focos muy superficiales y mecanismos que demuestran la existencia de un régimen de compresión.

La región Este se caracteriza por tener una expresión tectónica más joven que la Cordillera Occidental, con procesos neo tectónicos que se reconocen por la deformación de terrazas cuaternarias y reactivación de fallas.

Esta actividad superficial en la placa Continental hace que algunos casos presente fallas en la cordillera que involucra al departamento de Cajamarca y por ende la zona en estudio, sin embargo a través del tiempo en Cajamarca y en el lugar de trabajo, no se ha registrado movimientos sísmicos severos que afecten a las carreteras, este caso probablemente se debe a que tanto en la cordillera oriental como en la occidental haya un sistema de graben y sirva como un elemento de amortiguamiento de los movimientos sísmicos, de tal forma que tanto en el Valle de Cajamarca y otros lugares no haya problemas de geodinámica interna que comprometa a la obra que se desea ejecutar.


4.2.2.7 ESTUDIO DE SUELOS

El presente informe reseña los resultados obtenidos en el Estudio Geológico de Suelos que se ha ejecutado en diversos puntos de la carretera.

Se describe brevemente a nivel de reconocimiento los suelos, siendo estos mayormente transportados o azonales y también lo hay residuales.

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

4.2.2.8 OBJETIVOS DEL ESTUDIO

- Realizar la investigación del suelo por donde se desplaza la vía, conocer las propiedades físicas y mecánicas, a fin de obtener los parámetros de resistencia y deformación, y labores de gabinete; en base a los cuales se definen los perfiles estratigráficos del suelo, secciones homogéneas, y actividades de mantenimiento y/o rehabilitación.
- Para el diseño de las obras se requiere conocer las propiedades físicas y mecánicas de los suelos, con la finalidad de evaluar su comportamiento por lo que se ha tomado en cuenta taludes de corte y relleno.

4.2.2.9 ANÁLISIS DE LA ESTABILIDAD

Con los resultados de los ensayos de laboratorio, se caracterizará el análisis de estabilidad de taludes, teniendo en cuenta las características geológicas del lugar.

En vista que los taludes de corte se ejecutaran en suelos azonales y zonales, se seguirá las pautas que se recomienda en el manual de Impacto Ambiental de Pro - Vías, capítulo IV - estabilización de taludes.

A. OBRAS DE ESTABILIZACIÓN DE TALUDES

Las obras básicas de estabilización de los taludes inestables lo constituyen las obras de drenaje. Se ha verificado que la resistencia de los suelos disminuye substancialmente con la saturación a valores bajos de cohesión y ángulo fricción.

Las obras de drenaje como las cunetas de coronación y drenaje de quebradas y cursos de agua que constituyen el drenaje natural de los taludes son las obras que permitirán estabilizar el depósito, evitando la infiltración de las aguas de drenaje a zonas profundas del talud, manteniendo niveles bajos de saturación para evitar las fallas del tipo profundo que signifique el movimiento masivo.

Las Iluvias afectarán la resistencia de los suelos superficiales generando pequeños socavamientos muy superficiales que involucrarán menos de un metro de profundidad. Para mantener la operatividad de los taludes se deberá implementar un programa de mantenimiento permanente.

Taludes de Corte

Para el caso de los taludes de corte se ha tomado en consideración las características de los suelos de corte y la geometría actual de los cortes de la trocha. Se debe resaltar la gran heterogeneidad de los depósitos de suelo y rocas que componen los taludes en las diferentes progresivas de la carretera, de allí que la geometría varia sobremanera. Sin embargo, para estos fines, en la medida de lo posible se ha considerado los criterios del Reglamento Nacional de Diseño de Carreteras de bajo volumen de transito y consideraciones de estabilidad de taludes.

NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN

FACULTAD DE INGENIERÍA

ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL
"ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO

TIPO DE MATERIAL
Roca Fija
Roca Suelta
Conglomerados
Tierra compacta
Tierra suelta

4.2.2.10 CONCLUSIONES Y RECOMENDACIONES PRELIMINARES

CONCLUSIONES

- a. Desde el punto de vista geológico la trocha Carrozable se emplaza mayormente en suelos que provienen de rocas sedimentarias y suelos aluvio coluviales y fluvio glaciares pertenecientes al Cretáceo y Cuaternario respectivamente, donde presenta una topografía plana y agreste, en una posición fisiográfica de llanura y lomadas fuertemente empinadas.
- b. En lo referente a la parte sísmica, debemos de recordar que Cajamarca se encuentra lejos de las zonas de las fuentes regionales generadoras de sismos (fuentes sismogénicas), no obstante que en concordancia con el mapa sismológico del Perú se encuentra en zona de sismicidad alta, por otro lado de acuerdo al estudio de geología de Cajamarca por el doctor Isaac Tafúr en 1979 afirma, que Cajamarca como sus alrededores tienen poca susceptibilidad a sufrir movimientos sísmicos de consideración debido a que se encuentra dentro de un sistema de Graben.
- c. Los taludes altos y de poca consolidación presentaran un elevado grado de inestabilidad debido a la naturaleza física de los suelos.
- d. Las obras básicas de estabilización de los taludes inestables lo constituyen las obras de drenaje, como las zanjas de coronación y drenaje de cunetas.
- e. Las lluvias de la zona afectan la resistencia de los suelos generando grandes problemas de estabilidad de taludes de corte y relleno, así como erosión.

RECOMENDACIONES

Las recomendaciones están dirigidas principalmente a la estabilidad de taludes, sistema de drenaje y mantenimiento de plataforma.

- a. Para lograr una eficiente estabilidad de taludes se recomienda dotarle al talud una inclinación de acuerdo al tipo de material.
- b. En lugares donde el movimiento de masas de suelos y de rocas sean significativos, se recomienda construir zanjas de coronación fuera del alcance del movimiento, para evitar que el agua de escorrentía llegue a la abertura de falla y ocasione el movimiento.
- c. En los taludes altos, se recomienda descargar el talud en banquetas a fin de disminuir la carga y dar mayor estabilidad al tramo de cada talud.

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN)

- d. En los cruces de los cursos de agua, se recomienda que las alcantarillas y aliviaderos, siempre tengan un sistema de amortiguamiento de energía tanto aguas arriba como aguas abajo. En aguas abajo el sistema debe ser tipo andenería, donde la plataforma tiene una inclinación de 5 % de contra pendiente y además se debe dotar de una cámara de amortiguamiento de energía, con ello anularemos el efecto erosivo del agua.
- e. Para aliviar la colmatación de cunetas, se tiene que realizar mantenimiento constante, sobre todo los tramos donde los materiales son muy deleznables.

4.2.3 ENSAYOS DE LABORATORIO Y CARACTERIZACIÓN DE SUELOS

Los ensayos realizados se hicieron siguiendo los métodos Standard AASHTO y el Sistema Unificado de Clasificación de Suelos (SUCS).

4.2.3.1 ENSAYOS DE LABORATORIO.

A. ENSAYOS GENERALES

a. CONTENIDO DE HUMEDAD

REFERENCIAS: ASTM D2216 -92, MTCE 108 -1999.NTP 339-127

Material:

Muestra alterada de cada uno de los estratos en las diferentes calicatas en estudio.

Equipo:

- Balanza de aproximación de 0.01 gr.
- Estufa con control de temperatura.
- Taras por cada estrato.

Procedimiento:

- Se pesó la tara (Wt).
- Se pesa la muestra húmeda en la tara (Wh+t).
- Se secó la muestra en la estufa, durante 24 horasa 105°C.
- Se pesó la muestra seca en la tara (Ws+t)
- Se determinó el peso del agua Ww = (Wh+t)- (Ws+t)
- Se determinó el peso de la muestra seca Ww = (Wh+t)- Wt).
- Finalmente se determinó el contenido de humedad: W% =(Ww/Ws) *100

b. PESO ESPECÍFICO.

REFERENCIAS: ASTM-D-854, AASHTO-T-100, MTC E 113 - 2000

PESO ESPECÍFICO DE GRAVA GRUESA O PIEDRA:

Se realizó para determinar el peso específico de la cantera.

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN

Material:

- Piedra lavada y seca.
- Agua.

Equipo:

• Balanza hidrostática de aproximación de 0.01 gr.

Procedimiento:

- Se determinó el peso de la piedra en el aire (A).
- Luego se determinó el peso de la piedra sumergida en el agua. (C)
- Finalmente se determinó el peso especifico:

$$Ga = \frac{A}{A - C}$$

PESO ESPECÍFICO DEL MATERIAL FINO:

Se realizó para determinar el peso específico de los diferentes estratos para cada calicata.

REFERENCIAS: ASTM D854, AASHTO T100, MTC E113-1999, NTP 339-131.

Material:

- Muestra seca que pase por el tamiz N° 4.
- Agua.

Equipo:

- Balanza de aproximación de 0.01 gr.
- Bomba de vacios
- Fiola de 500 ml.
- Tamiz N° 4

Procedimiento:

- Se pesó la muestra seca (Wo).
- Llenamos la fiola con agua hasta la marca de 500 ml, y determinamos el volumen que ocupa (W1)
- Se colocó la muestra seca previamente pesada en la fiola vacía se verte agua hasta cubrir la muestra, se agita, luego se conectó a la bomba de vacios durante 15 minutos.
- Luego se retiró la fiola de la bomba de vacios, inmediatamente se agrega agua hasta la marca de 500 ml para luego pesarle (W2).
- Finalmente se determinó el peso especifico a través de la ecuación N° 12

$$Gs = \frac{Wo}{Wo + W_2 - W_1}$$

Bach. Ing. CIEZA VÁSQUEZ, Edgar.

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN)

b. ANALISIS GARNULOMÉTRICO.

ENSAYO: ANÁLISIS GRANULOMÉTRICO MEDIANTE TAMIZADO LAVADO.

Teniendo en cuenta que los estratos de las calicatas el suelo es arcillosos.

REFERENCIAS: ASTM D421, AASHTO T88, MTC E107-1999.

Material:

• Muestra seca de 500 gr.

Equipo:

- Juego de tamices de 3", 2", 1", ½", ¼", N° 4, N° 10, N° 20, N° 40, N° 60, N° 100, N° 200, y cazoleta
- Balanza de aproximación de 0.01 gr.
- Estufa con control de temperatura.
- Taras

Procedimiento:

- Secamos la muestra.
- Pesamos la muestra seca (Ws)
- Colocamos la muestra en un recipiente, cubrimos con agua y dejamos secar por 2 horas
- Tamizamos la muestra por la malla Nº 200 mediante chorro de agua.
- La muestra retenida en la malla Nº 200 re retira en un recipiente dejándolo secar por 24 horas en la estufa.
- Luego se pasó la muestra seca por el juego de tamices, agitando en forma manual.
- Se peso el material retenido en cada uno de los tamices y en la cazoleta (PRP).
- luego se determina los porcentajes retenidos en cada tamiz
- Finalmente se determina los porcentajes retenidos acumulados en cada tamiz.

c. LIMITES DE CONSISTENCIA.

ENSAYO: LIMITE LÍQUIDO (LL).

REFERENCIAS: ASTM D4318, AASHTO T89, MTC E110-1999, NTP 339 -130

Material:

Suelo seco que pasa por la malla N° 40.

Equipo:

- Malla N° 40.
- Copa Casagrande.
- Ranurador o acanalador.

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN)

- Balanza de aproximación de 0.01 gr.
- Estufa con control de temperatura.
- Espátula.
- Probeta de 100 ml.
- Capsula de porcelana.
- Taras identificadas.

Procedimiento:

- En una capsula de porcelana se mezcló el suelo con agua mediante una espátula hasta obtener una pasta uniforme.
- Se colocó una porción de pasta en la copa de Casagrande, luego se nivelo mediante la espátula hasta obtener un espesor de 1 cm.
- Luego se hizo una ranura con el acanalador de tal manera que la muestra queda dividida en dos partes.
- Se elevó y dejó caer la copa mediante la manivela a razón de 2 caídas por segundo hasta que las dos mitades de suelo se pongan en contacto en la parte inferior de la ranura y a lo largo de 1.27 cm. Se registro el número de golpes.
- Mediante la espátula retirar la porción de suelo que se ha puesto en contacto en la arte inferior de la ranura y se colocó en una tara para luego determinar su contenido de humedad.
- Se retiró el suelo remanente de la copa de Casagrande y se colocó en la capsula de porcelana, se agregó agua para determinar los otros procedimientos. (el número de golpes encontrado es de 15 a 20, 20 a 25 y 25 a 35)
- Luego en se dibujó la curva de fluidez (la recta) en escala semilogaritmica, tomando como eje de las abscisas el número de golpes y en la escala logarítmica, en el eje de las ordenadas con los contenidos de humedad en escala natural.
- Finalmente la ordenada correspondiente a los 25 golpes en la curva de fluidez, este valor es el límite líquido del suelo.

ENSAYO: LIMITE PLASTICO (LP).

REFERENCIAS: ASTM D4318, AASHTO T90, MTC E111-1999.

Material:

Una porción de la mezcla preparada para el límite liquido.

Equipo:

- Balanza de aproximación de 0.01 gr.
- Estufa con control de temperatura.

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN)

- Espátula.
- Cápsula de porcelana.
- Placa de vidrio.
- Taras identificadas.

Procedimiento:

- A la porción de mezcla preparada para el límite líquido se agregó suelo seco de tal manera que la pasta baje su contenido de humedad.
- Luego enrolló con la mano sobre una placa de vidrio hasta obtener cilindros de 3 mm de diámetro y que presenten agrietamiento, luego se determinó su contenido de humedad.

B. ENSAYOS DE CONTROL O INSPECCIÓN

a. ENSAYO DE COMPACTACIÓN PROCTOR MODIFICADO: HUMEDAD ÓPTIMA Y DENSIDAD MÁXIMA.

REFERENCIAS: ASTM D1557, AASHTO T180, MTC E115-1999.

Material:

- Muestra alterada seca.
- Papel filtro

Equipo:

- Equipo proctor modificado (molde cilíndrico, placa de base y anillo de extensión).
- Pisón de proctor modificado.
- Balanza de precisión de 1gr.
- Estufa con control de temperatura.
- Probeta de 1000 ml.
- Recipiente de 6kg de capacidad.
- Espátula.
- Taras identificadas.

Procedimiento:

- Se obtuvo la muestra seca para el ensayo, el método utilizado es el método C
- Se preparó 5 muestras con una determinada cantidad de agua, de tal manera que el contenido de humedad de cada una de ellas varié aproximadamente 1 ½% entre ellas.
- Luego se ensambló el molde cilíndrico con la placa de base y el collar de extensión y el papel filtro.
- se compactó en 5 capas y cada capa de 56 golpes al finalizar la última capa se procedió a retirar el collar de extensión, se enrasó con la espátula y se determina la densidad húmeda (Dh).

FACULTAD DE INGENIERÍA

- Entonces se determinó el contenido de humedad de cada muestra compactada (W%) se utilizó muestras representativas de la parte superior e inferior.
- Con la muestra seca se procedió a determinar la densidad seca mediante la ecuación

$$Ds = \frac{Dh}{(100 + W\%)} * 100$$

- Luego se determinó la curva de compactación en escala natural teniendo como los datos del contenido de humedad en el eje de las abscisas y los datos de la densidad seca en el eje de las ordenadas.
- Finalmente se determinó la máxima densidad seca y el óptimo contenido de humedad.

C. ENSAYOS DE RESISTENCIA.

a. ENSAYO DE CALIFORNIA BEARING RATIO (CBR)

REFERENCIAS: ASTM D1883, ASTM D4429 - 99, AASHTO T190, MTC E132-1999.

Material:

- Muestra seca.
- Papel filtro

Equipo:

- Equipo CBR (3 moldes cilíndricos con placa de base y collar de extensión, 3 discos espaciadores, 3 placas de expansión, 3 sobrecargas cada una de 4.5 kg de peso y 3 trípodes).
- Pisón de proctor modificado.
- Balanza de precisión de 1gr.
- Estufa con control de temperatura.
- Probeta de 1000 ml.
- Recipiente de 6kg de capacidad.
- Espátula.
- Taras identificadas.

Procedimiento:

 Consta de tres fases: ensayo de compactación CBR, ensayo de hinchamiento y ensayo carga – penetración.

A. ENSAYO DE COMPACTACIÓN CBR.

 se compactó en 5 capas y cada capa de 25 golpes al finalizar la última capa se procedió a retirar el collar de extensión, se enrasó con la espátula y se determinó la densidad

FACULTAD DE INGENIERÍA

ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL "ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN)

- Entonces se determinó el contenido de humedad de cada muestra compactada (W%) se utilizó muestras representativas de la parte superior e inferior.
- Con la muestra seca se procedió a determinar la densidad seca mediante la ecuación

$$Ds = \frac{Dh}{(100 + W\%)} *100$$

- Luego se determinó la curva de compactación en escala natural, teniendo como los datos del contenido de humedad en el eje de las abscisas y los datos de la densidad seca en el eje de las ordenadas.
- Finalmente se determinó la máxima densidad seca y el óptimo contenido de humedad.

B. ENSAYO DE HINCHAMIENTO.

- Se invirtió las muestras quedando la parte superior libre.
- Se colocó el papel filtro, la placa de expansión, la sobrecarga, el trípode y el dial de expansión
- Luego se colocó en la poza previamente llena durante 4 días, las lecturas se realizaron cada 4 horas.

C. ENSAYO DE CARGA PENETRACIÓN.

- Después de los 4 días se sacó los moldes del tanque se dejo drenar durante 15 minutos.
- Se llevó a la prensa hidráulica previamente se colocó la sobrecarga respectiva y se procedió a realizar el ensayo de penetración aplicando una velocidad del pisón de 0.05 Pul/min, se registro las diferentes lecturas carga penetración de cada muestra.
- Se determinó nuevamente la densidad humedad y el contenido de humedad en cada molde.
- En gabinete se dibujó las curvas esfuerzo deformación correspondiente a las muestras de cada molde, en escala natural, los valores de penetración se registro en el eje de las abscisas y los valores de los esfuerzos en el eje de las ordenadas.
- Se determinó los esfuerzos correspondientes de 0.1" y 0.2" de penetración de cada una de la curvas esfuerzo – deformación.
- Luego se halló los índices de CBR para 0.1" y 0.2" de penetración.
- Se dibujó las dos curvas de densidad seca versus CBR correspondiente a 0.1" y 0.2" de penetración.
- Se tomó el menor valor obtenido correspondiente al 95% de densidad máxima como CBR.

FACULTAD DE INGENIERÍA

ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN

4.3 ESTUDIO HIDROLÓGICO.

4.3.1 DETERMINACIÓN DEL CAUDAL DE DISEÑO

La cuenca a la cual pertenece la vía en estudio no cuenta con información, por lo que se ha creído conveniente generar intensidades a partir de la estación AUGUSTO WEBERBAUER la misma que tiene de registro de intensidades y con ayuda del análisis dimensional y semejanza dinámica, se obtuvieron los principales parámetros geomorfológicos y variables de las microcuencas en estudio.

- Para el presente estudio la estación meteorológica AUGUSTO WEBERBAUER la cual contiene datos actualizados desde el año 1975 al año 2009 abarcando datos correspondientes a información de los últimos fenómenos del niño acaecidos en nuestro país (Ver cuadro 5.3.1), generando intensidades de 5,10,30,60 y 120 min.
- Haciendo uso del modelo Gumbel, se realiza el modelamiento de intensidades con diferentes tiempos de duración; la cual se considero valida ya que cumple con el valor estadístico de Smirnov Kolmogorov.
- Luego, con el modelo elegido, calculamos las intensidades máximas para diferentes periodos de retorno, vida útil y riesgo de falla, haciendo uso de la ecuación de la predicción del modelo.
- Para el calculo de las intensidades máximas de las diferentes estructuras hidráulicas se ha generado una curva modelada Intensidad - Duración - Frecuencia según el registro histórico de la estación Weberbauer para diferentes periodos de retorno, vida útil y riesgo de falla para 5, 10, 30,60 y120 min.
- El objeto de evaluación y determinación de los caudales de aporte es lá determinación de los caudales de escurrimiento de la microcuenca en cada área tributaria determinada para cada estructura de drenaje.

El estudio consistió en:

- Ajustar estos datos a distribuciones de valores extremos, haciendo uso del modelo Gumbel (Ecuación 30). En las siguientes tablas se muestran los modelamientos de intensidades para 5, 10, 30, 60 y 120 minutos de duración:
- Posteriormente se comparó las diferencias existentes entre la probabilidad empírica de los datos de la muestra y la probabilidad teórica, tomando el valor máximo del valor absoluto, de la diferencia entre el valor observado y el valor de la recta teórica del modelo, es decir:

 $\Delta max = max | F(x) - p(x) |$

A CHARLES

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVI

NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN[,]

ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL "ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO

Donde:

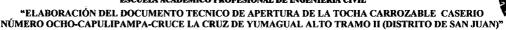
- Δ = Es el estadístico de Śmirnov Kolmogorov, cuyo valor es igual a la diferencia máxima existente entre la probabilidad ajustada y la probabilidad empírica.
- F(x) = Probabilidad de la distribución de ajuste.
- P(x) = Probabilidad de datos no agrupados, denominados también frecuencia acumulada.

En la Tabla 4.3.10 se muestran los valores críticos estadísticos, del cual usaremos un nivel de significación del 5 % (nivel de significación recomendado para estudios hidrológicos), y para un tamaño de muestra igual a 35 (datos hidrológicos desde 1975 al 2009) Obteniendo un Do = 0.23

La Tabla Nº 4.3.11. se muestra el criterio de decisión tomado, considerando que si el Máx |P(x<X)-F(x<X)| < Do, entonces el ajuste es bueno al nivel de significación seleccionado.

Luego calculamos las Intensidades máximas para diferentes periodos de retorno, vida útil y riesgo de falla, haciendo uso de la ecuación de predicción del modelo. (Ver Tabla 4.3.12)

Para el cálculo de las Intensidades máximas de las diferentes estructuras hidráulicas se ha generado una curva modelada de intensidades - duración - frecuencia según el registro histórico de la Estación Weberbauer para diferentes periodos de retorno, vida útil y riesgo de falla para 5, 10, 30, 60 y 120 mín


• Para el uso de la gráfica 4.3.1 se calculó previamente el tiempo de concentración mediante la ecuación 29.

4.3.2 DISEÑO DE OBRAS DE ARTE.

El diseño de cunetas, aliviaderos y badenes se realizó de acuerdo al ítem 2.8 del capítulo anterior.

FACILTAD DE INGENIERÍA

ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

4.4. DISEÑO DE AFIRMADO

4.4.1. INTRODUCCIÓN

Para el diseño del Afirmado se ha creído conveniente usar dos métodos, los cuales son:

- MÉTODO DE LA USACE (U.S. ARMY CORPS OF ENGINEERS)
- > MÉTODO DEL ROAD RESEARCH LABORATORY

4.4.2. ANÁLISIS DE LA CAPACIDAD DE SOPORTE (C.B.R) DEL SUELO DE CIMENTACIÓN.

Para calcular la capacidad de soporte relativo, se han efectuado los respectivos ensayos de las muestras representativas del suelo de cimentación teniendo en cuenta el Perfil Estratigráfico y analizando el tipo de suelo más desfavorable en la zona de estudio a la Calicata C - 01, (Km. 05+257), clasificada según la AASHTO un suelo A - 7 - 6 y según SUCS un suelo CH (Arsilla densa arenosa- terreno de fundación de regular a malo). El CBR de diseño es de 3.78% (al 95% de la Máxima Densidad Seca y a 0.1" de penetración).

4.4.3. ANÁLISIS DEL TRÁFICO.

Los procedimientos de diseño para carreteras de alto y bajo volúmenes de tráfico, están basadas en las cargas acumuladas de ejes simples equivalentes de 18,000 lbs (EALS) ó 8.2 toneladas durante el periodo de análisis o diseño.

4.4.4. ÍNDICE MEDIO DIARIO (IMD)

IMD = 8 Veh/día

Ver Cuadro 4.1.1

4.4.5. TASAS DE CRECIMIENTO (i)

Se ha considerado una tasa de crecimiento anual de 2%.

4.4.6. PERIODO DE DISEÑO (n)

Se ha considerado un periodo de diseño de 5 años.

4.4.7. CÁLCULO DEL NÚMERO DE EJES SIMPLES EQUIVALENTES (EAL 8.2ton)

 $EAL_{8.2 \, TON \, (10 \, a ilde{n} o s)} = N^{\circ} \, de \, Vehiculos \times 365 \times Factor \, Cami\'on \times Factor \, de \, Crecimiento$ Donde:

FACULTAD DE INGENIERÍA
ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVI

Factor de Crecimiento = 5.20 (Cuadro 2.19)

Factor Camión:

Vehículo de Diseño: C2

Longitud: 12.30 m

Carga por eje:

- Eje Delantero = 7 Tn (2 neumáticos)

- Eje Posterior = 11 Tn (4neumáticos)

Interpolando en el cuadro 2.20 (Factores de Equivalencia de Carga) tenemos:

Para 7000 Kg. tenemos un F.E.C. de 0.5407

Para 11000 Kg. tenemos un F.E.C. de 3.1714

Entonces tenemos:

TABLA 4.4.1. EQUIVALENCIAS DE CARGA

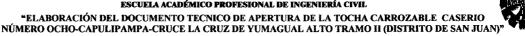
C2	Pes	o (Kg.)	Factor Equiv	alencia Carga
C2	Cargado	Descargado	Cargado	Descargado
Eje Delantero (simple)	7,000	7,000	0.5407	0.5407
Eje Posterior (Simple)	11,000	7,000	3.1714	0.5407
TOTAL	18,000	14,000	3.7121 (I)	1.0814 (II)

Factor Camión = Promedio (Factor Equivalencia Carga Cargado y Descargado)

Factor Camión = [(I) + (II)] / 2

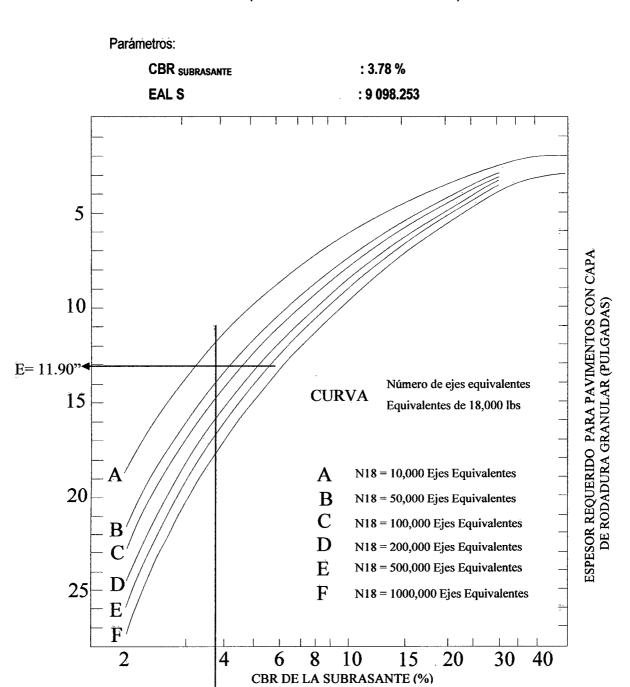
Factor Camión = (3.7121 + 1.0814) / 2

Factor Camión = 2.3968


Reemplazando la información disponible tenemos que el Número de Ejes Simples Equivalentes a 8.2 ton para un vehículo de 2 ejes con 6 ruedas, durante el periodo de diseño será:

$$EAL_{8.2 \, TON(5 \, a\bar{n}os)} = 2 \times 365 \times 2.3968 \times 5.20$$

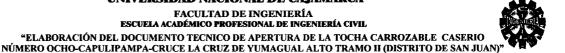
 $EAL_{(5 \text{ años})} = 9098.253$



FACULTAD DE INGENIERÍA

4.4.8. CÁLCULO DEL ESPESOR DEL PAVIMENTO

4.4.8.1. MÉTODO DE LA USACE (U.S. ARMY CORPS OF ENGINEERS)


Del gráfico se tiene:

E (Espesor del pavimento): 11.9" (30.23 cm.)

Como el CBR requerido es de 40.2 % < 57 % (Cuadro 2.22) obtenido en los Ensayos de Mecánica de Suelos, la cantera cumple como material de afirmado.

4.4.8.2. MÉTODO DEL ROAD RESEARCH LABORATORY.

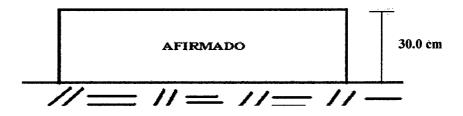
Parámetros:

CBR SUBRASANTE

: 3.78 %

EAL

: 9 098.253



Del Gráfico se tiene:

E (Espesor del pavimento) : 27.00 cm

Los espesores calculadores se han realizado con métodos que son específicos para el diseño de afirmados, si es que hubiésemos empleado métodos tradicionales para el Diseño de Pavimentos, se habrían obtenido valores mucho más altos, que no se justificaría para el presente proyecto. Por lo tanto recomendamos la siguiente estructura de afirmado:

GRÁFICO 4.4.1 ESTRUCTURA DEL AFIRMADO

FACULTAD DE INGENIERÍA
ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN)"

4.5 SEÑALIZACIÓN

4.5.1 SEÑALES PREVENTIVAS.

A lo largo de toda la vía se han considerado 54 señales preventivas indicando con anticipación la proximidad de un peligro, se ha considerado para curvas peligrosas, badenes y puentes.

4.5.2 SEÑALES DE REGLAMENTACIÓN O REGULADORAS.

Su ubicación ha sido considerada en lugares donde el diseño geométrico así lo exige; el contenido de la señal será VELOCIDAD MÁXIMA 20 Km/hr. Así mismo se detalla en el plano de señalización.

4.5.3 SEÑALES INFORMATIVAS.

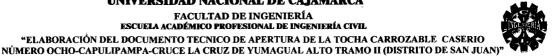
Son de carácter informativo respecto a los lugares más importantes por donde atraviesa la vía: éstas serán ubicadas en lugares donde brinden información necesaria. Se detalla en el plano de señalización.

ABRA AGOMARCA

ZONA DE NEBLINA

COMUNIDAD CAPULIPAMPA

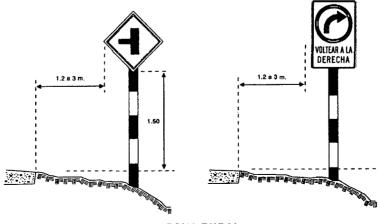
SEÑAL INFORMATIVA 11


SEÑAL INFORMATIVA 12

SEÑAL INFORMATIVA 13

FACULTAD DE INGENIERÍA

ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL "ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO


HITOS KILOMÉTRICOS. 4.5.4

Se ha proyectado 6 Hitos Kilométricos. Los mismos que deberán tener buena visibilidad en concordancia con la velocidad de diseño y estarán colocados a una distancia de 1.80 m del borde de la calzada lado derecho.

4.5.5 **DISPOSICIONES GENERALES:**

- Dimensiones: Serán las especificadas para cada tipo de señales, según el manual de Dispositivos de Control de Tránsito Automotor para Calles y Carreteras.
- Reflectorización: Las señales deben ser legibles tanto de día como de noche; la legibilidad nocturna en los lugares no iluminados se podrá obtener mediante el uso de material reflectorizante que cumpla con las especificaciones de la norma ASTM-4956-99.
- Localización: Las señales de tránsito por lo general deberán de estar colocadas a la derecha en el sentido del tránsito. (Ver Figura 4.5.1)
- Altura: (ver figura 4.5.1) En el caso de colocarse varias señales en el poste, el borde inferior de la señal más baja cumplirá la altura mínima permisible.
- Ángulo de colocación: Las señales deberán de formar con el eje del camino un ángulo de 90°, pudiéndose variar ligeramente en el caso de las señales con material reflectorizante, la cual será de 8° a 15° en relación a la perpendicularidad de la vía.
- Material de postes o soportes: De acuerdo a cada situación se podrá utilizar, como soporte de las señales, tubos de fierros redondos o cuadrados, perfiles omega perforados o tubos plásticos rellenos de concreto. Todos los postes para las señales preventivas o reguladoras deberán estar pintados de franjas horizontales blancas con negro, en anchos de 0.50 m. En el caso de las señales informativas, los soportes laterales de doble poste serán pintados de color gris.

FIGURA 4.5.1 COLOCACIÓN DE SEÑALES VERTICALES

ZONA RURAL

FACULTAD DE INGENIERÍA
ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN)

4.6. ESTUDIO DE IMPACTO AMBIENTAL (EIA)

4.6.1 DESCRIPCIÓN DEL PROYECTO EN GENERAL

En el presente ITEM nos dedicaremos a describir al proyecto en los diferentes factores correspondientes a un estudio de impacto ambiental.

A) OBJETIVOS DEL EIA

- Detectar con anticipación las posibles consecuencias ambientales, producidas por las actividades ha desarrollarse en las diferentes etapas de la ejecución del proyecto.
- Asegurar que las actividades de desarrollo sean satisfactorias y sostenibles desde el punto de vista del ambiente.
- Proponer soluciones para prevenir, mitigar y corregir los diferentes efectos desfavorables producidos por la ejecución del proyecto.

B) MARCO ADMINISTRATIVO

Cada sector ministerial desarrolla acciones de política en relación al ambiente.

La consecuencia inmediata de esto viene a ser la superposición de funciones y conflictos de estamentos. Adicionalmente a esto los ministerios no cuentan con una capacidad adecuada a la tarea de las acciones de política ambiental para la operación, planificación y gestión de acciones referentes a la conservación y gestión del ambiente y de los recursos naturales.

Es por esto, que el Consejo Nacional del Ambiente – CONAM, al más alto nivel, es la entidad que proporciona la normativa respecto a los temas ambientales y se encarga de armonizar las acciones de los diferentes ministerios.

Pero también, en muchos casos es el poder ejecutivo quien toma la iniciativa con cierto poder de envergadura relacionados con el ambiente y los recursos naturales, vía Decretos Supremos.

C) UBICACIÓN DEL PROYECTO

El presente proyecto se encuentra ubicado en:

Departamento

Cajamarca.

Provincia

Cajamarca.

Distrito

San Juan.

El proyecto en mención se encuentra entre las coordenadas geográficas: 7º 14' 6.95" y 7º 13' 45.76" de Latitud Sur y entre 78º 32' 15.03" y 78º 30' 24.69" de Longitud Oeste, donde:

FACULTAD DE INGENIERÍA

ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

Punto de partida: Se encuentra Km. 05.000 del proyecto "elaboración del documento técnico de apertura de la trocha carrozable Caserío Número Ocho – Capulipampa – Cruce la Cruz de Yumagual Alto específicamente en la Comunidad de Capulipampa (Distrito de San Juan) a 3177 m.s.n.m, cuyas coordenadas UTM son: 771928 m. E y 9199507 m. N.

Punto de llegada: Ubicado en el Cruce la Cruz de Yumagual Alto a 3003 m.s.n.m. cuyas coordenadas UTM son: 775318 m E y 9200140 m N.

D) DEFINICIÓN DEL PROYECTO EN GENERAL

El proyecto consiste en la elaboración del documento técnico de apertura de la trocha carrozable Comunidad Número Ocho - Capulipampa - Cruce la Cruz de Yumagual Alto y el diseño geométrico de la carretera de 5.400 Km de longitud por 3.5 m de ancho de superficie de rodadura, teniendo sus inicios en el Km 05 + 000 hasta el Km 10 + 401.62

4.6.2 DESCRIPCIÓN DEL AMBIENTE

A) MEDIO FÍSICO

a) CLIMA

Varía es frigido en la mayoría del año, con nubosidad relativa presente en la mayor parte del día en la época de lluvia, así como con lluvias y algunas heladas y granizadas en algunos meses.

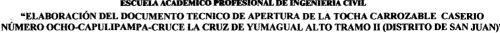
La tendencia general en esta zona es de una precipitación constante a lo largo del día. Teniendo los meses de más lluviosos Febrero a Marzo.

El clima de la zona es frígido, con una temperatura promedio anual de 12 °C y una máxima promedio anual de 18°C y una mínima promedio anual de -4°C.

b) SUELO

El relieve topográfico de la zona es variado, desde accidentado en las zonas rocosas y lomas redondeadas en las zonas de cultivo.

Los suelos profundos se mantienen húmedos durante 6 a 10 meses del año, aproximadamente desde Setiembre hasta Junio, y los suelos de poca profundidad de 4 a 6 meses. En la parte alta los suelos están bien provistos de materia orgánica en el horizonte superficial, que es de color pardo grisáceo muy oscuro a negro.


c) AGUÁ

La fuente de agua, en la zona de estudio, es principalmente a través de las lluvias, y que permiten el crecimiento y regeneración de innumerables especies vegetales.

FACULTAD DE INGENIERÍA

ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

d) **AIRE**

Tomando en cuenta la no existencia de la vía, el aire en la zona alta no presentan contaminación por emisión de gases del transito vehicular, ya que la vegetación y las lluvias aseguran su pureza.

B) MEDIO BIOLÓGICO

FLORA a)

A lo largo de toda la vía donde se hará la apertura de la trocha carrozable se observa la vegetación natural. La vegetación primaria ha sido eliminada para dar lugar a los cultivos y a una vegetación secundaria constituida por gramíneas, arbustos y árboles dispersos.

b) FAUNA.

En esta zona los animales silvestres han sido desplazados por el ganado y viviendas del hombre.

La fauna existente en la zona es: aves: Gallina, Pavo, Pato; mamíferos: Perro, Gato, Vacuno, Ovino y Porcino.

CI MEDIO SOCIOECONÓMICO

a) **POBLACIÓN**

Uno de los graves problemas que afronta la población peruana radica en el aumento de la población, que no sólo se incrementa naturalmente sino que está migrando hasta las zonas urbanas, debido a la falta de empleo y afán de buscar mejores niveles de vida que equivocadamente piensan encontrar.

Según los Censos efectuados, el departamento de Cajamarca es el tercero en mayor población del país después de Lima y Piura, siendo también el departamento de mayor población rural.

b) PRODUCCIÓN Y EMPLEO

La población de Cajamarca es pobre. En 1990 Cajamarca tuvo el tercer PBI más bajo de los departamentos del Perú. La agricultura es, de lejos, la actividad económica más importante. Sin embargo, su importancia esta decreciendo en términos absolutos y relativos, dado el ligero incremento de la población rural, esto significa un incremento en el empleo fuera de las chacras. La agricultura puede ser el principal empleador; sin embargo, esto no implica que genere más ingresos. Deere estimó para 1973, que el 49% de todos los ingresos de la provincia de Cajamarca fue de los salarios, en donde la producción de los cultivos y las crianzas representaron cada una el 10%.

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN)

c) SALUD Y VIVIENDA

En la zona de estudio, el servicio de electricidad es carente en los hogares, el abastecimiento de agua a través de manantiales cercanos, la eliminación de excretas se realiza principalmente en pozo ciego o negro, el material predominante de las viviendas es tapial y adobe, y en cuanto al material predominante en el piso de las viviendas del área rural es de tierra.

El único puesto de salud existente está ubicado en el la capital distrital.

d) EDUCACIÓN

San Juan como parte integral de la Realidad Peruana padece de los mismos problemas que el acelerado crecimiento de la población que trae con sigo, es decir la constante necesidad de proporcionar a la población la educación a la que tiene derecho, de manera que cada año es mayor el incremento de la población de edad escolar. Cajamarca es una de las regiones con el mayor número de analfabetos, sin embargo las tasas de analfabetismo han ido disminuyendo en las últimas décadas.

4.6.3 IDENTIFICACIÓN Y VALORACIÓN DE IMPACTOS

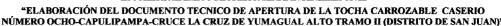
A. METODOLOGÍA

Para el E.I.A. de esta carretera, se adoptó la metodología basada en la MATRIZ DE LEOPOLD, que requiere, primero la definición secuencial de las actividades y sus efectos (RED CAUSA Y EFECTO). (Ver Graf. 4.6.1 al 4.6.4)

Este sistema utiliza una tabla de doble entrada (Ver Tabla 4.6.3.). Donde en las columnas se ubicaron las acciones humanas que pueden alterar el sistema y en las filas las características del medio que pueden ser alteradas.

Luego en cada cuadrícula se marcó una diagonal y se puso en la parte superior izquierda un número del 1 al 10 que indica la magnitud del impacto (10 la máxima y 1 la mínima), colocando el signo " + " si el impacto es positivo y el signo " - " si es negativo. En la parte inferior derecha se calificó del 1 al 10 la importancia del impacto, es decir si es regional o solo local para después sumar las filas y las columnas, lo que nos permitió comentar acerca de los impactos que producirá el proyecto.

Para lograr una interpretación más rápida y clara de los resultados finales, hicimos uso de la matriz Cromada (ver Tabla 4.6.4) que utiliza la siguiente escala de códigos de impactos:


TABLA 4.6.1

ÍNDICE DE IMPACTO	CATEGORÍA	COLOR
100 – 75	Crítico	Rojo
75 – 50	Severo	Amarillo
50 – 25	Moderado	Verde
0-25	Compatible	Azul

FACULTAD DE INGENIERÍA

ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

B. DESCRIPCIÓN DE LOS IMPACTOS

De la matriz de LEOPOLD y la Cromada observamos los siguientes impactos:

B.1) FASE DE CONSTRUCCIÓN

a) CAMPAMENTO

La construcción del campamento producirá un efecto negativo en el relieve del suelo de la zona, como también producirá la desaparición de parte de la flora y la fauna natural, se modificará el paisaje, pero ayudará en la organización de los trabajadores de la obra, y habrá empleo temporal para algunos pobladores de la zona.

b) CAMINOS DE ACCESO

En la construcción de los caminos de acceso se acrecentará el nivel de polvo y de ruido, y al compactar la tierra, se perjudicará a la flora y a la fauna subterránea, tales como arañas, gusanos de tierra, lombrices etc. Se producirá un beneficioso estilo de cambio de vida, aumentará el valor del suelo y habrá trabajo eventual para algunos trabajadores de la zona.

EXPLOTACIÓN DE CANTERAS c)

Canteras en Tierra

Al extraer el material se desprende a las medias particulas de polvo, lo cual afecta a los trabajadores. Además el paisaje se ve transformado, y en el caso de un inadecuado sistema de extracción, se produciría derrumbes en las áreas de corte lo que destruiría o dañaría a la flora y fauna del entorno.

La cantera seleccionada para ser utilizadas en la ejecución de la obra es la siguiente:

TABLA N ° 4.6.2 CANTERA SELECCIONADA

N°	NOMBRE	PROGRESIVA (Km)
1	EL Gavilán	12 + 360

EXCAVACIÓN POR MEDIOS MECÁNICOS d)

Al excavar haciendo uso de maquinaria pesada, se produce la existencia temporal de ruido, lo cual genera molestias auditivas, también se altera la calidad del aire, puesto que al remover el suelo (carga y descarga del material) se produce una considerable cantidad de polvo alterando la vida silvestre.

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN)

e) EXCAVACIÓN POR VOLADURAS

La excavación por voladuras produce un gran cambio en el medio, debido a que asiendo uso de material explosivo, se remueve gran cantidad de masa edáfica, esto influye en el relieve del suelo, modifica el paisaje natural, produce una gran cantidad de ruido y de polvo, como también genera la pérdida de considerable flora y fauna natural de la zona, aumentando el riesgo de su extinción. Esta acción es considerada como la más perjudicial del proyecto.

f) MOVIMIENTO DE TIERRAS

Debido a la gran masa de suelo que habría que remover se produce la existencia temporal de polvo y ruido, cambiando temporalmente la calidad del aire, lo cual alteraría la vida de la flora y fauna de la zona. Esta acción generaría aumento de empleo temporal, existiendo un mejor ingreso económico que mejoraría la calidad de vida del trabajador y su familia.

g) MAQUINARIA Y SU RESPECTIVO PATIO

Afectaría negativamente al suelo, flora y fauna por la posible expulsión o derrames de grasas, aceites lubricantes, gasolina y/o petróleo, así como también la contaminación del agua por lavado de vehículos y maquinarias.

h) CUNETAS Y ALIVIADEROS

Para la construcción de las cunetas y alcantarillas, será necesario la compactación del suelo lo cual perjudicaría a la fauna edáfica y haría que pierda su capacidad de infiltración, el agua empleada para la elaboración del concreto sería alterada, pero en pocas proporciones. Esta acción producirá empleo temporal lo cual resulta beneficioso para los trabaiadores de la zona.

i) AFIRMADO

Al construir el afirmado, se hará uso de maquinaria pesada tales como el rodillo vibrador lo cual producirá ruido, ocasionando molestias temporales auditivas. Al compactar el suelo se produce un cambio físico en su estructura, lo que repercutirá en la fauna del subsuelo.

i) EXPROPIACIONES

A lo largo de la carretera, será necesaria la expropiación de algunos terrenos, esto repercute en la calidad y estilo de vida de los pobladores del lugar, ya que no podrán hacer libre uso de estos terrenos.

FACULTAD DE INGENIERÍA
ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN)

B.2) FASE DE OPERACIÓN USO ESTÁTICO

a) CUNETAS Y ALIVIADEROS

Las cunetas y alcantarillas recogen el agua de las precipitaciones, protegen al suelo de la erosión producida al desplazarse el agua y la conducen hacia otras zonas. Esta obra de arte genera la pérdida de capacidad de infiltración del suelo.

USO DINÁMICO

b) CIRCULACIÓN-VELOCIDAD

Al desplazarse los vehículos por la vía, estos producen CO2 y ruido generado por el esfuerzo del motor, lo cual malogra la calidad del aire, perjudicando la vida silvestre. Pero a su vez el uso de esta vía, genera una considerable mejora sociocultural de la zona y el poblador.

c) RENOVACIÓN DE LA VIA

Influye en el aumento de empleo de algunos pobladores de la zona, mejorando su ingreso económico y estilo de vida.

d) ACCIDENTES

En el uso de la carretera se pueden producir accidentes, trayendo como consecuencia heridos y pérdidas de vidas, generando así un cambio negativo en el estilo de vida.

C. VALORIZACIÓN DEL IMPACTO MÁS DESFAVORABLE

El factor del medio más *impactado negativamente* es la flora y fauna, causada principalmente por las siguientes acciones:

- Las excavaciones por voladura, puesto que el ruido y el polvo producidos y a su vez la explosión en si, eliminan la flora y fauna existente en las de zonas de excavaciones.
- Cuando se hace uso de la carretera, los carros se desplazan a gran velocidad, lo que hace que muchas veces se atropelle animales silvestres que atraviesan la vía.

El factor del medio más *impactado positivamente* es la calidad de vida que tendría el poblador al realizarse el proyecto, puesto que la apertura de la carretera les permitirá que exista un considerable progreso socioeconómico, aumentando el turismo y a su vez el trabajo, lo cual generará desarrollo y bienestar de la población.

FACULTAD DE INGENIERÍA
ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN)

4.6.4. MEDIDAS PROTECTORAS Y CORRECTORAS

A) FASE DE CONSTRUCCIÓN

a) CAMPAMENTO

Al construir el campamento se debe tomar en cuenta las siguientes medidas:

- Racionalizar el uso de espacio, empleando para su construcción en lo posible material prefabricado dándole un diseño arquitectónico que combine con el entorno del paisaje circundante.
- Al diseñar el campamento se deberá tener máximo cuidado de evitar realizar grandes cortes y rellenos limitando al mínimo el movimiento de tierras, así como la remoción de la cobertura vegetal, que de ser necesaria, debe ser convenientemente almacenada y protegida para su empleo posterior en la restauración del área alterada
- Contará con posos sépticos, los cuales deberán ser excavados con herramientas manuales, y su construcción deberá cumplir con los requerimientos ambientales de impermeabilización y tubería de infiltración; por ningún motivo se verterán aguas negras en los cuerpos de agua.
- Para evitar problemas sociales, los campamentos deberán de estar ubicados lo más lejos posible de los centros poblados.

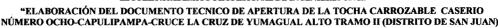
b) CAMINOS DE ACCESO

En el transporte de la maquinaria y del material de la cantera a la obra, la emisión de polvo se reducirá humedeciendo periódicamente los caminos de acceso y la superficie de los materiales transportados, cubriéndolos con toldo húmedo.

c) EXPLOTACIÓN DE CANTERAS

Localizadas en Tierra

Guardar la capa superficial de materia orgánica que se retira de la cantera, para que después de usar el material en la obra pueda volver a cubrirse, y así de esta manera facilitar la regeneración de la vegetación, como una de las medidas de restaurar la cantera.


Para su explotación puede aplicarse el sistema de terrazas, para evitar los derrumbes.

d) EXCAVACIONES POR MEDIOS MECÁNICO

En las excavaciones, haciendo uso de medios mecánicos se debe tener en cuenta las pendientes de los taludes formados al cortar el suelo, para evitar la erosión y derrumbes peligrosos que afecten a los trabajadores.

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

e) EXCAVACIONES POR VOLADURA

Se deben realizar de tal manera que no afecte en gran escala la erosión del suelo, no debe permitirse que la remoción sea más de la debida por malos cálculos, ya que grandes volúmenes de carga para voladura afectaría la tranquilidad y dispersión de los animales de su habita por las explosiones en la obra.

f) MOVIMIENTO DE TIERRAS

Debe de realizarse con riego, para evitar que el polvo afecte la salud de los pobladores del lugar, así como también de los trabajadores de la obra.

Las cunetas y las alcantarillas deben tener poca pendiente para evitar la erosión del suelo.

q) MAQUINARIA Y SU RESPECTIVO PATIO

El equipo móvil y la maquinaria pesada deben estar en buen estado mecánico y de carburación para que quemen el mínimo necesario de combustible, reduciendo así las emisiones de gases contaminantes.

Durante el abastecimiento de combustible y mantenimiento de maguinaria y equipo, incluyendo el lavado de vehículos, se tomarán las precauciones necesarias que eviten el derrame de hidrocarburos u otras sustancias contaminantes.

Los desechos de aceite serán almacenados en bidones para su posterior eliminación en un botadero.

Ubicar el patio de maguinaria aislado de cualquier curso de agua y de ser posible de áreas con vegetación, así mismo evitar los escapes de combustibles o lubricantes durante el mantenimiento del equipo.

h) CUNETAS Y ALIVIADEROS

En ningún caso se modificará o afectará la red hidrológica de la zona de actuación. Se respetarán fuentes y flujos de agua de carácter estacional o permanente existente.

Tanto en el diseño como en la ejecución de la obra civil, se tendrá en cuenta la obligatoriedad de eliminar todos aquellos obstáculos que pudieran impedir el libre flujo de las aguas. En consecuencia, la red de drenaje deberá diseñarse con la capacidad suficiente como para evacuar toda el agua de escorrentía procedente de las lluvias.

I) AL EXPROPIAR LOS TERRENOS DE LOS POBLADORES,

Se permitirá que estos puedan cultivar plantas de tallo bajo, para mantener el suelo productivo y a su vez dejar que el conductor tenga visibilidad.

FACULTAD DE INGENIERÍA
ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN)

B) FASE DE OPERACIÓN

CIRCULACIÓN Y VELOCIDAD

Se debe tomar las medidas convenientes para que los carros que circulen por la vía se encuentren en buen estado, así mismo deberá existir una buena señalización, para evitar la congestión y los accidentes de tránsito.

4.6.5 PROGRAMA DE CIERRE

Concluidas todas las obras se mantendrá personal básico que intervendrá en las tareas de abandono de la obra. Este equipo de personas se encargará del desmantelamiento de las estructuras construidas para albergar personal y equipo de construcción y la restitución de suelos de la cobertura vegetal de las áreas intervenidas.

Culminadas estas labores, se deberá iniciar la revegetación de las áreas alteradas con especies de la zona.

Botaderos

Los materiales excedentes del proceso de rehabilitación y mejoramiento de la carretera deben de ser acondicionados y colocados en los botaderos más cercanos.

Dicho material debe ser compactado para evitar su dispersión, por los menos con cuatro pasadas de tractor de orugas sobre capas de 40 cm de espesor. Asimismo para reducir las infiltraciones de agua en el botadero, deben densificarse las dos últimas capas anteriores a la superficie definitiva, mediante varias pasadas de tractor de orugas (por lo menos 10 pasadas)

La superficie del botadero se deberá perfilar con una pendiente suave de modo que permita darle un acabado final acorde con la morfología del entorno circundante, y efectuar el recubrimiento del material, una vez compactado con una capa superficial de suelo orgánico a fin de reforestar éstas áreas con especies propias de la zona.

La mayor parte por donde discurre la carretera pasa por zonas urbanas y terrenos de cultivo, es por esta razón que no se han encontrado a lo largo de la carretera ningún botadero.

4.6.6. PROGRAMA DE VIGILANCIA Y CONTROL AMBIENTAL

Como parte integrante del plan de restauración, se desarrollará un programa de vigilancia ambiental, con el fin de garantizar su cumplimiento y de observar la evolución de las variables ambientales en el perímetro de la carretera y en su entorno. Asimismo, se posibilita la detección de impactos no previstos y la eventualidad de constatar la necesidad de modificar, suprimir o añadir alguna medida correctora.

Este programa se pondrá en marcha cuando el promotor indique al órgano ambiental el inicio de las obras.

FACULTAD DE INGENIERÍA

ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL "ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO

Deberá darse traslado al interesado y al órgano sustantivo, de los informes ordinarios consecuencia de las inspecciones ya previstas en el EIA, en las cuales deberá estar presente, por parte del promotor, al menos el director ambiental.

Teniendo como base el Programa de Manejo ambiental, se debe presentar informes periódicos sobre los siguientes aspectos:

El manejo del campamento y el estado del personal

En este punto se deberá efectuar un seguimiento sobre la red de agua y desagüe, asimismo, las condiciones de los ambientes destinados a dormitorios y comedores.

Movimientos de Tierras

Se deberá hacer un a verificación sobre los volúmenes manejados en relación con los establecidos en el estudio respectivo.

Uso de canteras y botaderos

Se deberá verificar que el uso de las canteras y botaderos tengan relación con los volúmenes establecidos en el estudio y que estos se manejen de acuerdo a los alineamientos establecidos.

Uso de fuentes de agua

Durante las actividades de control se verificarán los problemas colaterales que puedan suscitarse.

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN)"

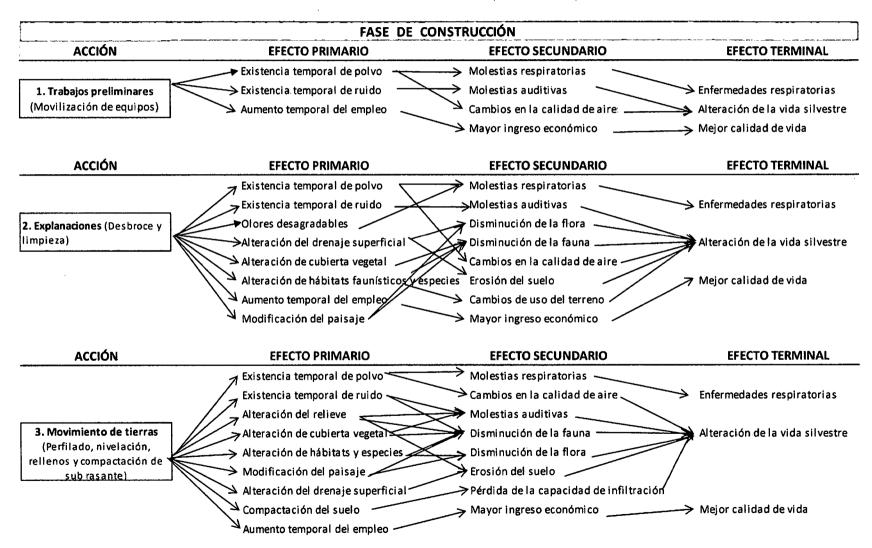
						,	,		ONSTR	ucaón					OF	ERACIÓ	N	CIE	RRE			
		MATRIZ DE E' NIVEL CUA Realiza 8ach: CIEZA VÁ	LITATIVO do por:	ACCIONES IMPACTANTES	. Trabejos preliminares (Movilización e equipos)	2. Explanadones (Destroce y limpleza)	3. Movimiento de tierras (Corte y Reilleno, Perflado, nivelación, relienos y compactación de rasanta)	4. Ettración material de centeras (Procesos de arranque, vertido, transporte, tratamiento)	s. Colocación de afirmado (material de cantera)	6. Obras de concreto (Obras de arte)	7. Drenaje (Ountas y alcantanitas)	 Transporte materiales (Transporte material a obra, material excedente) 	9. Botaderos (Biminación material excedenta)	10. Seffalzación (Seffales preventivas, reglamentarias, informativas,)	. Ocupatión espacial	. Volumen de tránsito	3. Mantenimiento (bacheo, limpiera de cunetas)	1. Restauradon (area de campamento y botaderos)	2. Abandono (Movilizacion de equipos)	·	SUMATORIA	
Т	\neg	**	a) Nivel de polvo		-4	-5	-5	-8	-4		. ~ =	4	-7	7 2 2		-2	-4	-1	-2	0 +16	-46	-162
			b) Nivel de olor		+1	+6 -1 +1	·1 +1	+1	+1			+5	+1			+3 -5 +5	+1 -1 +1	+3	+3	0 0	-8	29 +8
			c) Nivel de ruido		-1 +1	-4 +1	-2 +4	-4 +2	-4 +1	-4 +1		-2 +5				-3 +6	-4 +1	-2		0 +0	-30	26
	Ì		a) Relieve		7	-1 +1	-2 +3	-3 +3	71	71		*3	-3 +3			**	+1	74		+0 0 +0	-9	10
			b) Contaminación (física y quí	(mica)	-3 +3	-1 +1	-2 +2			-2 +3		-2 +2	-2 +2				·2 +1		-3 +2	0 +0	-17	16
	E E	2 SVELOS	c) Erosión			-2 +4	-3 +5	-3 +3		73		72	-5 +2							0 +0	-13	14
,	≥	:	d) Compactación				·5 +3	,,	-4 +1	-2 +3	-2 +3					1				0 +0	-13	10
	- 1		a) Disponibilidad			-1 +1	-1 +1		72	,,,	3 +5									0 +0	-2	,,
		3. AGUA	b) Balance		-2 +2	-1 +1	-1 +1				-2 +2									0 +0	-6	+6
•			c) Calidad		-2 +2	-1 +1	-1 +1				-2 +2							3 +1		0 +0	-6	+6
1		4. PROCESOS	a) Drenaje superficial			-4 +4	-1 +5	-5 +3		6 +6	5 +6		-2 +2				5 +1			16	-12	14 +
		1. FLORA	a) Cublerta vegetal		-6 +2	-4 +5	-4 +2	-3 +3					-2 +3						3 +2	3 +0	-19	15 -47
ł	ВОПОО		b) Cultivos			-2 +1	·2 +1	-1 +3											2 +1	+0	-5	+5
	[출	2. FAUNA	a) Diversidad de especies		-2 +1	-3 +5	-2 +2	-2 +3					-1 +2							0 +0	-10	13
L			b) Hábitats faunísitcos			-5 +5	-2 +2	-5 +3					-1 +2							0 +0		12
	TVAL.		a) Calidad paisajistica		-3 +1	-2 +5	-2 +3	-2 +3		-2 +6	6 +6		-2 +3	4 +5	6 +6		5 +2	4 +3	4 +2			-13 15
3	₹	1. USO TERRITORIO	a) Cambio de uso		-1 +1	-3 +4	-2 +2	-1 +3					-1 +3					2 +1		2 +0 +28		-8 13
	CULTURAL	2. CULTURAL	a) Estilo de vida											5 +6		6 +6	1 +4			12 +16		+0
	Q I	3. HÙMANO-	a) Calidad de vida				<u></u>						2 +2			6 +6	1 +4			9 +12		+0
} [ຶ		b) Organización		ļ		<u> </u>									5 +5						+0
3		1. ECONOMÍA	a) Valor del suelo				ļ						3 +3		6 +6	اا		2 +1		11 +59 +6		+3 D
2. CUI 3. HOM 1. ECC 1. ECC 2. POI	2 POBLACIÓN	a) Ocupación		1 +1	4 +4	1 +2	3 +2	3 +4	5 +4	5 +4	1 +1		2 +1		8 +5	4 +4	3 +3	2 +2	37 +32		+0	
•			b) Migración		<u> </u>	<u> </u>									3 +6	8 +5				+11	149 0	+0
	ACCIONES IMPACTANTES	POSITIVAS		1 +1 59	4 +4	1 +2	3 +2	3 +4	+16	19 +16	+1	5 +2	12	15 18 64	33 27		14 8 25	7	TOTAL +132	TOTAL	-230	
1				-24	-40	-30	-37 +30	-12	-10	-6 +1.2	-0 +12	-25	60 0 +0	0 +0	-10	11	-3	-5 -*				

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN)"

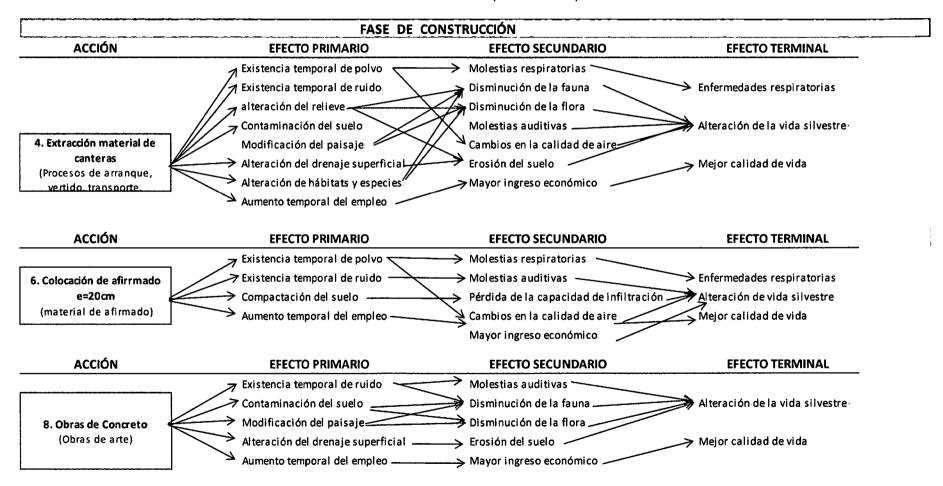
				abla №4.6					CONSTR	UCCIÓN					0	PERACIÓ	N	CIEI	RRE
	M B	DE IMPACTO AM ATRIZ DE EVALUACIÓ NIVEL CUALITATIVO Reallizado por: ach: CIEZA VÁSQUEZ, Edg	ON iar	ACCIONES IMPACTANTES	1. Trabajos preliminares (Movilización de equipos)	2. Explanationes (Destroce y limpieza)	3. Movimiento de tierras (Corte y Relleno, Perfilado, niveladón, rellenos y compactación)	 Extracción material de canteras Procesos de arranque, vertido, ransporte, tratamiento) 	s. Colocación de afirmado (Material de cantera)	5. Obras de Concreto Obras de arte, muros de contención)	7. Orenaje (Cunetas y alcantarillas)	8. Transporte materiales (Transporte material a obra, material excedenta, transporte mezda asfáltica)	9. Botaderos (Eliminación material excedente)	10. Sefisitación (Sefisies preventivas, reglamentarias, informativas, guartavias)	Ocupación espacial	Volumen de tránsito	3. Mantenimiento { bacheo,limpieza de cunetas}	l. Restauracion (area de campamento y botaderos)	2 Abandono
	FACTORE	S AMBIENTALES AF	a) Nivel de polvo	L	 + 8	~ ≛	₩. %. £.	45.	<u> </u>	. O. O.	<u> </u>	8 E 8 8	<u>6. n</u>	0.5 Fr	1		<u>е</u> э	# ²	
		1. AIRE	b) Nivel de olor		•	-	•	•	•			•	•			•	•		\vdash
			c) Nivel de ruido		•	-	•		•	•	-	•				•	•	•	-
			a) Relieve		_		•	•		•			•						H
MEDIO SOCIO ECONÓMICO			b) Contaminación (física y q	uímica)						•		•	•				•		H
	INERTE	2. SUELOS	c) Erosión			•	•	•					•						H
	×		d) Compactación						•	•	•								r
			a) Disponibilidad			•	•				•		•						r
		3. AGUA	b) Balance			•	•				· · · · · · · · · · · · · · · · · · ·								T
			c) Calidad		•	•	•				•		•					•	T
		4. PROCESOS	a) Drenaje superficial			•	•	•		•	•		•				•		T
		1	a) Cubierta vegetal		•	•	•	•					•						T
	ã	1. FLORA	b) Cultivos		•	•	•	•											T
MEDIO FISICO	вюною		a) Diversidad de es pecies				•	•	·				•						T
		2. FAUNA	b) Hábitats faunísitcos			•	•	•					•		•				Ī
	PERCEPTUAL	1. PAISAJE	a) Calidad paisajística		•	•	•	•		•	•		•	•	•		•	•	Γ
0	رد	1. USO TERRITORIO	a) Cambio de uso		•	•	•	•					•					•	Γ
S S	CULTURAL	2. CULTURAL	a) Estilo de vida											•		•			Γ
Š	socio ci	3, HUMANO	a) Calidad de vida										•			•	•		
بن 9	8	of Hotischion,	b) Organización													•			
Š		1. ECONOMIA	a) Valor del suelo			•	•	•					•		•			•	
负		2. POBLACIÓN	a) Ocupación		•	•		•	•	•	•	•		•		•	•	•	
Z			h		1		1					1		1		l			1

b) Migración



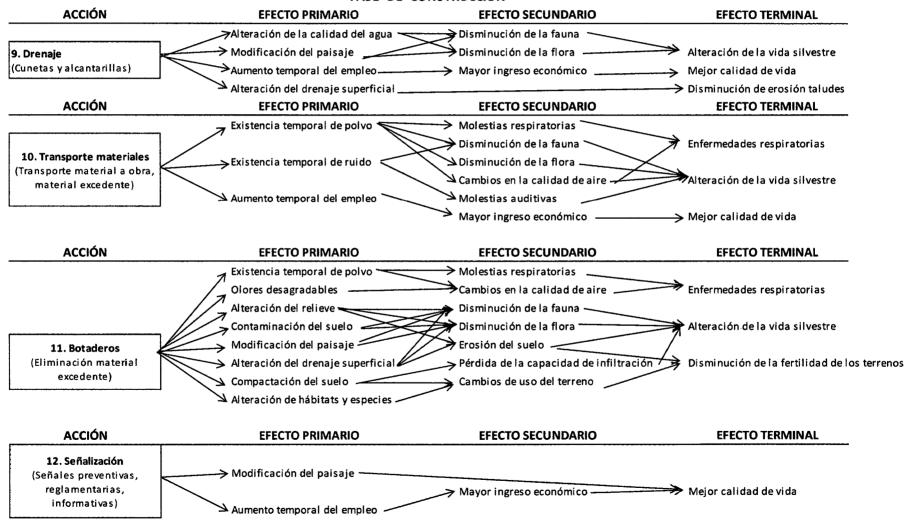
ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

RED CAUSA - EFECTO (GRAFICO 4.6.1)



FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL "ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO

RED CAUSA - EFECTO (GRAFICO 4.6.2)


FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

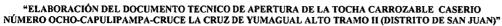
"ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN)"

RED CAUSA - EFECTO (GRAFICO 4.6.3)

FASE DE CONSTRUCCIÓN

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN)"


RED CAUSA - EFECTO (GRAFICO 4.6.4)

FACULTAD DE INGENIERÍA
ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

TABLAS DE CALIFICACIÓN DE LA MAGNITUD E IMPORTANCIA DEL IMPACTO AMBIENTAL PARA USO DE LA MATRIZ DE LEOPOLD

IMPACTOS NEGATIVOS

		IMPACTOS NE	GATIVOS		
	MAGNITUD		18	IPORTANCIA	
INTENSIDAD	IRREVERSIBILIDAD	CALIFICACIÓN	DURACIÓN	EXTENSIÓN	CALIFICACION
	Baja	-1	Temporal		+1
BAJA	Media	-2	Media	Puntual	+2
	Alta	-3	Permanente		+3
	Baja	-4	Temporal		+4
MEDIA	Media	-5	Media	Local	+5
	Alta	-6	Permanente		+6
	Baja	-7	Temporal		+7
ALTA	Media	-8	Media	Regional	+8
	Alta	-9	Permanente]	+9
MUY ALTA	Alta	-10	Permanente	Nacional	+10
		IMPACTOS P	OSITIVO		
	MAGNITUD		IN	IPORTANCIA	
INTENSIDAD	IRREVERSIBILIDAD	CALIFICACIÓN	DURACIÓN	EXTENSIÓN	CALIFICACIÓN
	Baja	+1	Temporal		+1
BAJA	Media	+ 2	Media	Puntual	+2
	Alta	+3	Permanente		+3
	Baja	+4	Temporal		+4
MEDIA	Media	+ 5	Media	Local	+5
	Alta	+6	Permanente	1	+6
	Ваја	+7	Temporal		+7
ALTA	Media	+ 8	Media	Regional	+8
	Alta	+9	Permanente]	+9
MUY ALTA	Alta	+ 10	Permanente	Nacional	+10

IMPORTANCIA DEL IMPACTO

NATU	JRALEZA	INTEN	ISIDAD (1)
		(Grado d	e destrucción)
- Impacto beneficio	+	- Baja	1
- Impacto perjudici		- Media	2
		- Alta	4
		- Muy alta	8
		- Total	12
EXTEN	SIÓN (EX)	MOM	ENTO (MO)
(Área de	influencia)		manifestación)
- Puntual	1	- Largo plazo	1
- Parcial	2	- Medio plazo	2
- Extenso	4	- Inmediato	4
- Total	. 8	- Crítico	(+4)
- Crítica	(+4)		<u> </u>
PERSIST	TENCIA (PE)	REVERS	BILIDAD (RV)
	icia del efecto)		
	· · · · · · · · · · · · · · · · · · ·		
- Fugaz	1	- Corto plazo	1
- Temporal	2	- Medio plazo	2
- Permanente	4	- Irreversible	4
7 (1770)	•		
SINE	RGIA (SI)	ACUMU	ILACIÓN (AC)
	e la manifestación)		nto progresivo)
(in Banking a	- 10 (((a) (() (a) () () () ()	(
- Sin sinergismo (sir	1	- Simple	1
- Sinérgico	2	- Acumulativo	4
- Muy sinérgico	4		
<u></u>	· · · · · · · · · · · · · · · · · · ·	1	
EFEC	TO (EF)	PERIOD	ICIDAD (PR)
	causa-efecto)		le la manifestación)
		1	
- Indirecto (secund	1	- Irregular o aperió	1
- Directo	4	- Periódico	2
25515	-	- Contínuo	4
			· · · · · · · · · · · · · · · · · · ·
RECUPERA	BILIDAD (MC)	IMPOI	RTACIA (Im)
	oor medios humanos)		
- Recuperable de m	1		
- Recuperable a me		im = ± (31 + 2EX + M	O + PE + RV + SI + AC + EF
- Mitigable	4	+ P.	R+MC)

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN)"

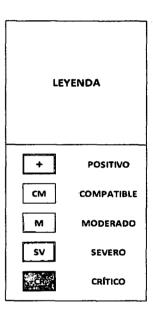
Tabla №4.6.3. MATRIZ DE IDENTIFICACIÓN DE IMPACTOS Y MEDIDAS CORRECTORAS

Γ				·		abia Nº	4.0.3. IV	CONSTR		IIFICAL	ION DE I	WIPACI	OS Y ME		PERACIÓ		CIE	RRE		(:	CHALFS	žiju korteš	7.S	
					T			2011311												ž,	_	N COLOR		
	ESTU	JDIO DE IMPACTO MATRIZ DE EVALUA		łowiizació		Corte y	canteras do,				material	rdente)	reglamentarias,			s	ideros)		e și	ves sono	del suelo	s secta	docultura	protección de la fauna
į .		NIVEL CUALITAT		¥) Sa	apg	de Su		ope		_	a g	ceder	met 3		2	cuinetas)	v Pota	Ŷ	de!	Aistor	Ş	2 2041	95 02	Ş
		Realizado por: Bach: CIEZA VÁSQUEZ	Edgar	1. Trabajos preliminares (Modiización de equipos)	2. Explanadones (Desbroce y limpieza)	3. Movimiento de tierras (Co Relleno, Perfilado, nivelación, rellenos y compactación de sub rasante)	4. Extracción material de (Procesos de arranque, vert transporte, tratamiento)	5. Colocación de afirmado (material de cantera)	6. Obras de concreto (Obras de arte)	7. Orenaje (Ometas y alcantarillas)	8. Transporte materia (Transporte material a e excedente)	9. Botaderos (Eliminación material ex	10. Se Ralización (Sefales preventivas, re informativas)	Ocupación espacial	2. Volumen de tránsito	3. Mantenimiento (bacheo,limpleza de ca	1. Restauradon (area de campamento y botaderos)	2. Abandono (Movilizacion de equipos)	Mejora de la calidad (Realizando regado)	Reducción de las en	Control de la alteración	Revegetadón de læ	Mejoras del entors	Medidas da proteo
	FA	CTORES AMBIENTALES	T		<u> </u>	1			€ نو	<u> </u>			3 S E	į.					e.		.6	- +	νi	_ ف
			a) Nivel de polvo	•	•	•	•	•			•	•			•	•	•	•						
]]	1. AIRE	b) Nivel de olor	ļ	•	•				ļ					•	•			•					\sqcup
			c) Nivel de ruido	•	<u> </u>	•	•	•	•		•				•	•	•			٠				
			a) Relieve		•	•	•					•									•			
	ш	2. SUELOS	b) Contaminación (física v química)	•	<u> </u>	•			•		•	٠				•		•			•			
	INERTE		c) Erosión		•	•	•					•									•	•		
8	1		d) Compactación			•		•	•	•														
SE.			a) Disponibilidad		•	•				•		•												
MEDIO FÍSICO		3. AGUA	b) Balance	•	•	•																		
Σ			c) Calidad	•	•	•				•		•					•							
		4 PROCESOS	a) Drenaje superficial		•	•	•		•	•		•				•								
		e faceza	a) Cublerta vegetal	•	•	•	•					•						•				•		
	8		b) Cultivos	•	•	•	•											•						
	волсов	2 FAUNA	a) Diversidad de especies		•	•	•					•								•				
		12.7.0.0	b) Hábitats faunísitcos		•	•	•					•		•										
	PERCEP	1. PAISAJE	a) Calidad paisajistica	•	•	•	•		•	•		•	•	•		•	•	•						
0		1. USO TERRITORIO	a) Cambio de uso	•	•	•	•					•					•							
MIC	125	2 CULTURAL	a) Estilo de vida						l	ļ	<u> </u>		•		•									
MEDIO SOCIO ECONÓMICO	SOCIO CULTURAL	e contro	a) Calidad de vida									•			•	•								
9	%	p warene	b) Organización												•									
So	·~	1. ECONOMÍA	a) Valor del suelo		•	•	•		[•		•			•						•	
EDS	1.6	F. POS 40-01	rj o reprator	•	•		•	•	•	•	•		•		•	•	•	•						
Σ			Filograpiaton											•	•									

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN)"

L											Tab	ia №4	.6.4. M	ATRIZ	DE IM	PORTA	NCIA														
	ESTU	JDIO DE IN						CONSTR							PERACIÓ	N		RRE		TAL			EDIDA		EGTOR	ΔÇ ,			IMPACT	O FINA	L
EAC	OPE	AMBIENT	AL S S S S S S S S S S S S S S S S S S S	1. Trabel	cote	into de	, ž <u>,</u>	5. Coloca ción de	, Š	7. Drenaj	. E 5	9. Botade ros	10. Seflakiz ación	1.00	2. en de	mien.	1. Restau radon	2. Aband ono	IMPAC TOS PERMA		Mejo .	Z. Reduc	i g	Reveg	Melor	Medi	Estable		e e	ABS.	
	J	3 ANDLANA	S ALECANDOS 4 O	- F 0	2 @ #	m 2.3	4 0 3	5 O T	<u>e 0 e</u>	0 0	∞ F 6	6 d 2	- v - a	I	e < 2	m 2 z	- e E	N 4 0	3 4		- 2	7 22	50	SP 02	dn Z	. 2 0	0 - 30 7			AB3.	COAC
		1. AIRE	a) Nivel de polvo	-28 *	-26*	-30 *	-27 *	-27 *			-25 *	-24 *			-16	-19	-18	-24	-35	М	33			**************************************				o		-2	СМ
			b) Nivel de olor		-19 *	-21 *									-19	-19			-38	М	33							0	1	-5	СМ
	WERTE		c) Nivel de ruido	-21 *	-28 *	-21 *	-24 *	-25 *	-25 *		-17 *				-31	-19	-20	-25	-50	М		25						0]	-25	М
	=		a) Relieve		-24 *	-24	-25					-37							-86				46					0	ŀ	-40	CR
MEDIO FÍSICO		2 SUEL08	b) Contaminación (física y	-30 *	-29 *	-27			-30 *		-17 *	-27				-31		-28	-54	CR			65		ļ			0		11	M
엺			c) Erosión		-39 *	-37	-28					-29							-94				23	43				0]	-28	М
Σ			d) Compactación			-47 *		-23	-23	-30 *									-47	CR				12				0		-35	sv
			a) Disponibilidad		-14 *	-18 *				23									23	+								23		23	•
	ŀ	3. AGUA	b) Balance	-27 *	-19 *	-18 *				-18 *							<u>.</u>										<u> </u>	0		0	
	l		c) Calidad	-27 *	-16 *	-18 *				-18 *							15			.							ŀ	0		0	
		4 PROCESOS	a) Drenaje superficial		-36 *	-23 *	-34		-21	35		-26				17			-29	М				10				52	+75	-19	СМ
	Į	1. FLORA	a) Cublerta vegetal	-42 *	-42	-29	-32					-27						15	-130					68			15	0		-47	М
	волсов		b) Cultivos	-15	-21	j 	-32											15	-53	5V					ł		15	0	}	-38	М
	<u>8</u>	2 FAUNA	a) Diversidad de especies	-15 *	-21	-24	-26					-27							-98			30		26		18		0		-24	СМ
		LINOW	b) Hábitats faunísitcos		-22	-24	-32					-25		-34					-137					26	ł	56	15	0	+0	-40	М
	TUAL	1. PAISAJE	a) Calidad paisajística	-18	-41	-28	-37		36	32		-35	30	50		17	18	16	40	-								165	+165	40	+
0	,	1. USO TERRITORIO	a) Cambio de uso	-16 *	-23 °	-38	-36					-27					15		-86								48	0		-38	М
ğ	A,TUR	2 CULTURAL	a) Estilo de vida												21	13			34	+								34	1	34	1
Įğ	SOCIO CIR,TURAL	3. HUMANO	a) Calidad de vida									-27	18		19	13			23									50]	23	+
100	8		b) Organización												22				22									22	+106	22	-
i i	900	1. ECONOMÍA	a) Valor del suelo									-27		50			25		23	+					25			50		48	-
МЕВІО SOCIO ЕСОИÓМІСО	0)0 0	2. POBLACIÓN	a) Ocupación	17 *	26 *	28 *	26 *		28 *	25 *	15 •		26 *		23	16	20	18	39	-								230	1	39	-
Σ			b) Migración											38	16			30	34	-								54	+334	54	-
	_	.0741	ABSOLUTO	-222	-394	-399	-307	-75	-35	49	-44	-338	74	104	35	-12	55	17	-679		!							TOTAL	+680	-47	
1	1	OTAL	CUALITATIVO																												



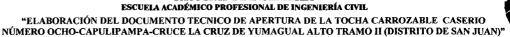
FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN)"

		·		To	abla N	⁹ 4.6.5.												
ĺ	EST	UDIO DE IN							SUCCIÓN				,		PERACIÓ			RRE
FA	TORE	AMBIENT S AMBIENTALI	AL S AFECTADOS & O	1 to See	2 gg	M M	Se Pa	1 5 E	~ 6 8	6 6 8	10. Trans porte	er Se ta	25 Se 12	1 0	2 Vote	3. Mant enimi	T See 2	2. Aban dono
		1. AIRE	a) Nivel de polvo	м	М	М	м	М			М	см			СМ	см	СМ	СМ
			b) Nivel de olor		CM	СМ									СМ	СМ		<u> </u>
ĺ	NERTE		c) Nivel de ruido	СМ	М	СМ	СМ	М	м		СМ				м	СМ	СМ	М
	2		a) Relieve		СМ	СМ	М					M						
8		2 SUELOS	b) Contaminación (física y	М	М	м			М		СМ	М				М		м
MEDIO FÍSICO		Z SUELUS	c) Erosión		М	М	М					М						
Ž			d) Compactación			м		СМ	СМ	М				-				
			a) Disponibilidad		СМ	СМ				+					· · · · · · · · · · · · · · · · · · ·			
		3. AGUA	b) Balance	Μ	СМ	СМ				СМ								
			c) Calidad	М	СМ	СМ				СМ					 -		+	
		4 PROCESOS	a) Drenaje superficial		М	СМ	м		СМ	+		М				+		
!		1. FLORA	a) Cubierta vegetal	СМ	М	М	М					М						+
	8	1. PEURA	b) Cuitivos		СМ		М											+
	вошов	2 FAUNA	a) Diversidad de especies	СМ	СМ	СМ	м				-	М					_	
		Z FAURA	b) Hábitats faunísitcos		СМ	СМ	М					М		М				
	PERCE	1. PAISAJE	a) Calidad paisajística	CM	М	М	М		+	+		М	+	+		+	+	+
0	J	1. USO TERRITORIO	a) Cambio de uso	СМ	СМ	М	м					м					+	
M	LTURA	2 CULTURAL	a) Estilo de vida												+	+		
S	SOGO CULTURAL		a) Calidad de vida									М	+		+	+		
S R	8	3. HUMANO:	b) Organización												+			
MEDIO SOCIO ECONÓMICO	· (3)	1. ECONOMÍA	a) Valor del suelo									М					+	
ğ	ij.		a) Ocupación	+	М	+	+		+	+	+		+		+	+	+	+
i 🖳		2 POBLACIÓN	1							•								

FACULTAD DE INGENIERIA
ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO



CAPÍTULO V RESULTADOS

FACULTAD DE INGENIERÍA

5.1. CARACTERÍSTICAS DE LA VÍA

Topografía del terreno

: Accidentada

Tipo de vía

: Tercera Clase.

Número de carriles

: 1

Longitud total de la carretera

: 5.402 Km

Velocidad directriz

: 20 Km / hora.

Pendiente media

: 2.42 %

Ancho de la capa de rodadura

: 3.50 m

Ancho de bermas

: 0.50 m

Número de curvas horizontales

: 35

Número de curvas verticales

: 15

Radio mínimo normal

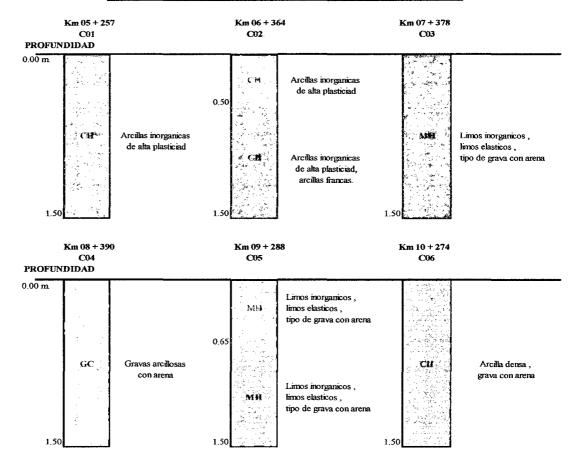
: 12 m

5.2. SUELOS Y CANTERAS

TABLA 5.2.1 RESUMEN DE CALICATAS

Descripción Calicata	Ubicación	Nº de Estratos
C1	Km 05 + 257	1
C2	Km 06 + 364	2
C3	Km 07 + 378	1
C4	Km 08 + 390	1
C5	Km 09 + 288	2
C6	Km 10 + 274	1

	% PASA	LL	LP	IP		CLASIFIC	CACIÓN
CALICATA	MALLA 200	(%)	(%)	(%)	IG	AASHTO	SUCS
Calicata Nº1	84.90	61.40	27.10	34.30	32	A-7-6	CH
Calicata Nº2	95.86	72.80	31.60	41.20	47	A-7-5	CH
Calicata N°2	90.42	78.20	31.87	46.33	49	A-7-5	CH
Calicata Nº3	96.48	53.40	34.02	19.38	24	A-7-5	MH
Calicata Nº4	38.69	35.23	20.45	14.78	2	A-6	GC
Calicata Nº5	98.56	55.10	35.36	19.74	25	A-7-5	MH
Calicata N°3	97.22	56.50	34.71	21.79	27	A-7-5	MH
Calicata Nº6	97.60	54.80	23.30	31.50	35	A-7-6	CH


FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO
NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN)

GRÁFICO Nº 4.2.3. PERFIL ESTRATIGRAFICO LONGITUDINAL

Resultado más representativo:

CALIC	ATA	CLASIFIC	CACIÓN	ENSAY COMPAC		CBR	PESO ESPECÍFICO
Nº de calicata	Estrato	ASHTO	sucs	Dsmáx g/cm3	W %	%	g/cm ³
Calicata Nº1	único	A-7-6	(CH)	1.83	16.47	3.78	2.50

Resultado de cantera:

	% PASA	LL	LP	IP		CLASIFICACIÓN		
CANTERA	MALLA 200	(%)	(%)	(%)	IG	AASHTO	sucs	
El Gavilán	6.34	22.34	0.00	0.00	0	A-1-b	SP	

Resultado representativo:

CANTERA		ENSAYO DE COMPACTACIÓN		СВІ	R %	USO
	Dsmáx g/cm ³	W %	- %	AI (0.1")	Al (0.2")	
GAVILAN	2.35	10.13	42.44	57.00	61.00	Material de Afirmado

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

ESCUEIA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL "ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN)"

5.3. HIDROLOGÍA

5.3.1. OBRAS DE ARTE

Tipo de cuneta

: Triangular

Número de aliviaderos

: 26

Número de alcantarillas

: 3

5.4. CARACTERÍSTICAS DEL PAVIMENTO

Terreno de fundación

Afirmado

: 0.30 m.

Teniendo en cuenta la estratigrafía del terreno se observa que el material de corte puede ser usado como material de relleno en el momento de la conformación de los terraplenes.

5.5. SEÑALIZACION

Señales Informativas

: 06

Señales Reguladoras

: 04

Señales preventivas

: 36

Hitos Kilométricos

: 06

CUADRO 4.1.1 EVALUACIÓN DE LA VÍA

PARÁMETROS	KM 05 – KM 06	KM 06 - KM 07	KM 07 - KM 08	KM 08 - KM 09	KM 09 - KM 10	KM 10 - KM 10+400		
		TOPOGRA	\FÍA					
TIPO	LA T	LA TOOGRAFÍA PREDOMINANTE ES LA ACCIDENTADA						
N° CURVAS	05	10	08	06	7	2		
RADIO MÍNIMO (m)	25.00	12.00	60.00	60.00	60.00	120		
PENDIENTE MÁXIMA (%)	8.28	9.50	11.00	6.50	5.71	8.50		
DERRUMBES	DERRUMBES NO PRESENTA							
		DRENA	JE					
CURSOS DE AGUA (QDAS.)	1.00	1.00	1.00	0.00	0.00	0.00		
ALIVIADEROS	6.00	0.00	8.00	7.00	4.00	1.00		
ALCANTARILAS	1.00	1.00	0.00	1.00	0.00	0.00		
		PAVIMEN	то					
ANCHO	3.5	3.5	3.5	3.5	3.5	3.5		
ANCHO DE BERMAS			0.50 m a ca	da lado				
TRÁFICO DE DISEÑO			8 Véh./	dia				
LONGITUD DE LA VÍA			5.402 k	m.				

FACULTAD DE INGENIERÍA

CAPÍTULO VI CONCLUSIONES Y RECOMENDACIONES

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN)

6. CONCLUSIONES Y RECOMENDACIONES.

6.1. CONCLUSIONES.

- El documento técnico se elaboró considerando el manual de diseño geométrico de carreteras DG 2001 y el manual para el diseño de caminos no pavimentados de bajo volumen de transito.
- El diseño geométrico en los km 05+000 10+401.62 de longitud brinda un sistema de transporte vial seguro y menos vulnerable a peligros.
 - El espesor del pavimento a nivel de afirmado de la carretera según el método USACE es de 30cm.
 - El valor referencial de la obra es de S/.2,893,207.39.

El mayor impacto negativo ocurrirá en la acción correspondiente al movimiento de tierras y el mayor impacto positivo ocurrirá en la acción correspondiente al volumen de tránsito, el cual beneficiará a los moradores de la comunidad brindando empleo, mejor calidad de vida y ocupación. El factor medio ambiental más afectado negativamente corresponderá al medio físico, sub medio aire, el cual se verá afectado en gran medida por el nivel de polvo, el factor medio ambiental afectado positivamente en mayor medida corresponderá al medio socio- económico, sub medio económico, en el cual se encuentra la ocupación de la población, la misma que encontrará una fuente importante de ingresos económicos y una mejora en la calidad de vida por las ventajas socio-económicas que una carretera presenta para el desarrollo de su comunidad.

6.2. RECOMENDASIONES

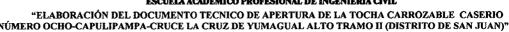
- La Municipalidad Distrital de San Juan debe elaborar el Perfil Técnico del presente proyecto con la finalidad de verificar su viabilidad y si los beneficios son mayores que los costos a mediano y largo plazo.
- Se debe aplicar estrictamente el programa de vigilancia y control ambiental, de tal manera de reducir al mínimo los impactos ambientales negativos producidos por el proyecto.
- La ubicación de las señales de tránsito se ubicarán en lugares visibles por el conductor, libres de obstáculos, cumpliendo con las indicaciones dadas en el presente proyecto.
- La calidad de los materiales a utilizar en la obra deberán ser controlados antes y durante la ejecución de la obra, de tal manera que cumplan estrictamente con las Especificaciones Técnicas.
- La ejecución deberá realizarse en época de verano de lo contrario el contratista tendrá serias dificultades debido a las condiciones climáticas y a la naturaleza de los suelos que presenta la zona.

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN)"

BIBLIOGRAFÍA

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL



ELAVORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN)"

BIBLIOGRAFÍA

- Carreteras Diseño Moderno José Céspedes Abanto Editorial Universitaria UNC Año 2001.
- Manual para el Diseño de Caminos no Pavimentados de Bajo Volumen de Tránsito Año 2005.
- Manual de Diseño Geométrico de Carreteras DG- 2001. Año 2001.
- Los Pavimentos en las Vías Terrestres Calles, Carreteras y Aeropistas José Céspedes Abanto –
 Editorial Universitaria UNC Año 2002.
- Técnicas de Levantamiento Topográfico Félix García Gálvez Año 2002.
- Manual de Laboratorio de Mecánica de Suelos Rosa Haydee Llique Mondragón Editorial Universitaria UNC – Año 2003.
- Mecánica de Suelos Meter Huyen Wihem Año 1996.
- Manual de Ensayos de Laboratorio EM 200 V-I (MTC) Año 2000.
- Mecánica de Suelos y Diseño de Pavimentos Ing. Samuel Mora Quiñones –Año 1998.
- Costos y Presupuestos de Obras Miguel Salinas Seminario Editorial Miano Año 2004.
- Auto CAD Civil 3D 2012, Survey, Raster Design 2005 Augusto Garcia Editorial Macro Año 2010.
- Manual de Diseño Estructural de Pavimentos Javier Llorac Vargas Año 1985.
- Manual Provisional de Diseño de Estructuras de Pavimento de AASHTO, Año 1972.
- Hidrología Aplicada Ven Te Chow Año 1994.
- Hidrología de Superficie Oswaldo Ortiz Vera Año 1994.
- Guía práctica de Auto CAD 2010 Orlando Huanuco López Editorial Ritisa Año 2010.
- Elaboración de Costos y Presupuestos con S10 2003 Olger Ugarte Contreras Editorial Macro Año 2005.

ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

CUADRO ANEXO 4.1.1

	ELEMENTOS DE CURVA (KM 05+00.00 - KM 06+00.00)											
N° Curva	Sentido	Radio (m)	Delta	L. Curva (m)	Tangente (m)	Externa (m)	Peralte (%)	Sobre ancho (m)				
C1	D	90.61	47°28'2"	75.07	39.84	8.37	5.00	0.55				
C2	D	90.00	63°47'4"	100.19	56.00	16.00	5.00	0.56				
C3	I	120.00	12°6'37"	25.36	12.73	0.67	5.00	0.44				
C4	1	25.00	100°4'38"	43.67	29.84	13.92	8.50	1.67				
C5	ı	120.00	12°35'40"	26.38	13.24	0.73	5.00	0.44				

	ELEMENTOS DE CURVA (KM 06+00.00 - KM 07+00.00)											
N° Curva	Sentido	Radio (m)	Delta	L. Curva (m)	Tangente (m)	Externa (m)	Peralte (%)	Sobre ancho (m)				
C6	D	120.00	16°12'59"	33.96	17.10	1.21	5.00	0.44				
C7	D	30.00	77°40'15"	40.67	24.15	8.51	7.00	1.41				
C8	D	120.00	13°14'42"	27.74	13.93	0.81	5.00	0.44				
C9	1	12.00	177°21'58"	37.15	521.96	510.10	10.00	3.51				
C10	ı	120.00	7°10'5"	15.01	7.52	0.24	5.00	0.44				
C11	D	12.00	166°37'7"	34.90	102.30	91.00	10.00	3.51				
C12	D	60.00	18°54'25"	19.80	9.99	0.83	5.00	0.78				
C13	1	12.00	173°55'56"	36.43	226.41	214.72	10.00	3.51				
C14	1	80.00	22°44'21"	31.75	16.09	1.60	5.00	0.61				
C15	D	60.00	36°4'27"	37.78	19.54	3.10	5.00	0.78				

	ELEMENTOS DE CURVA (KM 07+00.00 - KM 08+00.00)											
N° Curva	Sentido	Radio (m)	Delta	L. Curva (m)	Tangente (m)	Externa (m)	Peralte (%)	Sobre ancho (m)				
C15	D	60.00	36°4'27"	37.78	19.54	3.10	5.00	0.78				
C16	D	60.00	30°55'10"	32.38	16.59	2.25	5.00	0.78				
C17	I	60.00	15°22'22"	16.10	8.10	0.54	5.00	0.78				
C18	D	120.00	17°59'6"	37.67	18.99	1.49	5.00	0.44				
C19	D	60.00	22°53'52"	23.98	12.15	1.22	5.00	0.78				
C20	ı	80.00	13°52'39"	19.38	9.74	0.59	5.00	0.61				
C21	1	60.00	17°22'13"	18.19	9.17	0.70	5.00	0.78				
C22	D	80.00	39°48'24"	55.58	28.97	5.08	5.00	0.61				

"ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN)"

		El	LEMENTOS DI	E CURVA (KM 0	3+00.00 - KM 09+	00.00)		
N° Curva	Sentido	Radio (m)	Delta	L. Curva (m)	Tangente (m)	Externa (m)	Peralte (%)	Sobre ancho (m)
C22	D	80.00	39°48'24"	55.58	28.97	5.08	5.00	0.61
C23	1	120.00	25°8'24"	52.65	26.76	2.95	5.00	0.44
C24	D	60.00	55°44'35"	58.37	31.73	7.87	5.00	0.78
C25	1	80.00	26°57'59"	37.65	19.18	2.27	5.00	0.61
C26	D	80.00	25°49'35"	36.06	18.34	2.08	5.00	0.61
C27	1	120.00	18°35'2"	38.92	19.63	1.60	5.00	0.44

		El	EMENTOS DI	E CURVA (KM 09	9+00.00 - KM 10+	00.00)		
N° Curva	Sentido	Radio (m)	Delta	L. Curva (m)	Tangente (m)	Externa (m)	Peralte (%)	Sobre ancho (m)
C28	ı	120.00	13°49'3"	28.94	14.54	0.88	5.00	0.44
C29	D	100.00	46°49'15"	81.72	43.30	8.97	5.00	0.51
C30	D	80.00	31°1'13"	43.31	22.20	3.02	5.00	0.61
C31	ı	60.00	53°7'11"	55.63	29.99	7.08	5.00	0.78
C32	1	60.00	30°42'19"	32.15	16.47	2.22	5.00	0.78
C33	D	120.00	34°25'37"	72.10	37.18	5.63	5.00	0.44
C34	D	120.00	48°59'40"	102.61	54.68	11.87	5.00	0.44

		EL	EMENTOS DE	CURVA (KM 10	+00.00 - KM 10+	234.01)		
N° Curva	Sentido	Radio (m)	Delta	L. Curva (m)	Tangente (m)	Externa (m)	Peralte (%)	Sobre ancho (m)
C34	D	120.00	48°59'40"	102.61	54.68	11.87	5.00	0.44
C35	D	120.00	24°59'18"	52.34	26.59	2.91	5.00	0.44

"ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN)"

CUADRO ANEXO 4.1.2

			PRO	GRESIVAS Y COO	RDENADAS (KM 05	+00.00 - KM 06+00	00)		
N°	PC	PI	PT		PC	PI		PT	
Curva	PC	FI	PI	Este (m)	Norte (m)	Este (m)	Norte (m)	Este (m)	Norte (m)
C1	5+272.71	5+312.55	5+347.78	772185.562	9199596.817	772223.180	9199609.936	772258.278	9199591.084
C2	5+347.78	5+403.78	5+447.97	772258.278	9199591.084	772307.614	9199564.584	772305.635	9199508.615
C3	5+605.35	5+618.08	5+630.71	772300.071	9199351.340	772299.621	9199338.619	772301.850	9199326.086
C4	5+733.55	5+763.38	5+777.22	772319.856	9199224.835	772325.080	9199195.461	772353.087	9199205.744
C5	5+837.52	5+850.77	5+863.90	772409.698	9199226.529	772422.129	9199231.094	772433.265	9199238.259

	· · · · · · · · · · · · · · · · · · ·	<u> </u>	PRO	GRESIVAS Y COO	RDENADAS (KM 06-	+00.00 - KM 07+00.	.00)		
N°	PC	PI	DT		PC	PI		PT	
Curva	PC	PI	PT	Este (m)	Norte (m)	Este (m)	Norte (m)	Este (m)	Norte (m)
C6	6+017.74	6+034.83	6+051.70	772562.638	9199321.493	772577.015	9199330.743	772593.404	9199335.610
C7	6+165.64	6+189.79	6+206.31	772702.631	9199368.047	772725.783	9199374.922	772737.443	9199353.773
C8	6+267.20	6+281.13	6+294.94	772766.843	9199300.447	772773.569	9199288.247	772777.322	9199274.829
C9	6+354.84	6+876.79	6+391.98	772793.452	9199217.149	772934.028	9198714.478	772816.702	9199223.078
C10	6+461.03	6+468.55	6+476.04	772801.181	9199290.358	772799.492	9199297.682	772796.902	9199304.738
C11	6+588.03	6+690.32	6+622.92	772758.312	9199409.860	772723.060	9199505.889	772779.579	9199420.625
C12	6+708.73	6+718.72	6+728.53	772826.988	9199349.105	772832.508	9199340.777	772835.031	9199331.111
C13	6+783.94	7+010.35	6+820.37	772849.030	9199277.496	772906.224	9199058.432	772872.507	9199282.314
C14	6+880.22	6+896.30	6+911.97	772863.594	9199341.495	772861.198	9199357.402	772852.840	9199371.147
C15	6+971.23	6+990.77	7+009.01	772822.046	9199421.787	772811.894	9199438.481	772813.519	9199457.951

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN)"

*			PRO	GRESIVAS Y COO	RDENADAS (KM 07	+00.00 - KM 08+00.	00)		
N°	DO.	Б.	DT	ļ ,	PC	PI		PT	
Curva	PC	PI	PT	Este (m)	Norte (m)	Este (m)	Norte (m)	Este (m)	Norte (m)
C15	6+971.23	6+990.77	7+009.01	772822.046	9199421.787	772811.894	9199438.481	772813.519	9199457.951
C16	7+108.14	7+124.74	7+140.52	772821.763	9199556.740	772823.143	9199573.276	772832.824	9199586.754
C17	7+220.15	7+228.24	7+236.24	772879.276	9199651.423	772884.000	9199658.000	772886.812	9199665.594
C18	7+527.02	7+546.01	7+564.69	772987.774	9199938.283	772994.367	9199956.091	773006.137	9199970.994
C19	7+684.81	7+696.96	7+708.78	773080.586	9200065.255	773088.117	9200074.791	773098.765	9200080.645
C20	7+773.58	7+783.32	7+792.96	773155.550	9200111.863	773164.081	9200116.553	773171.239	9200123.153
C21	7+924.15	7+933.31	7+942.34	773267.684	9200212.080	773274.422	9200218.293	773278.998	9200226.235
C22	7+979.69	8+008.66	8+035.27	773297.649	9200258.601	773312.110	9200283.698	773339.286	9200293.719

			PRO	GRESIVAS Y COO	RDENADAS (KM 08-	+00.00 - KM 09+00.	00)		
N°	D¢.	PI	DT	PC		PI		PT	
Curva	PC	Pi	PT	Este (m)	Norte (m)	Este (m)	Norte (m)	Este (m)	Norte (m)
C22	7+979.69	8+008.66	8+035.27	773297.649	9200258.601	773312.110	9200283.698	773339.286	9200293.719
C23	8+138.18	8+164.94	8+190.83	773435.837	9200329.322	773460.942	9200338.580	773479.736	9200357.625
C24	8+331.40	8+363.13	8+389.77	773578.468	9200457.681	773600.754	9200480.266	773631.967	9200474.559
C25	8+450.13	8+469.32	8+487.79	773691.344	9200463.703	773710.213	9200460.253	773728.594	9200465.734
C26	8+574.98	8+593.32	8+611.04	773812.154	9200490.652	773829.731	9200495.894	773847.836	9200492.955
C27	8+815.92	8+835.55	8+854.84	774050.062	9200460.123	774069.442	9200456.977	774088.814	9200460.170

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN)"

			PRO	GRESIVAS Y COO	RDENADAS (KM 09	+00.00 - KM 10+00	.00)		
N°	DC	DI	DT	PC		Pl		PT	
Curva	PC	PI	PT	Este (m)	Norte (m)	Este (m)	Norte (m)	Este (m)	Norte (m)
C28	9+038.34	9+052.88	9+067.28	774269.874	9200490.022	774284.220	9200492.388	774297.587	9200498.111
C29	9+253.17	9+296.46	9+334.88	774468.463	9200571.278	774508.263	9200588.320	774547.925	9200570.958
C30	9+523.58	9+545.78	9+566.89	774720.785	9200495.291	774741.123	9200486.388	774753.964	9200468.277
C31	9+622.52	9+652.52	9+678.15	774786.143	9200422.894	774803.491	9200398.428	774833.474	9200397.621
C32	9+726.60	9+743.07	9+758.75	774881.901	9200396.317	774898.368	9200395.874	774912.753	9200403.901
C33	9+875.46	9+912.64	9+947.57	775014.670	9200460.775	775047.134	9200478.892	775084.154	9200475.481
C34	9+993.42	10+048.10	10+096.04	775129.817	9200471.275	775184.267	9200466.258	775216.207	9200421.877

			PROG	RESIVAS Y COOF	RDENADAS (KM 10+	00.00 - KM 10+234	l.01)					
N°	N° PC PI PT PC PI PT											
Curva	PC	Pi	"	Este (m)	Norte (m)	Este (m)	Norte (m)	Este (m)	Norte (m)			
C34	9+993.42	10+048.10	10+096.04	775129.817	9200471.275	775184.267	9200466.258	775216.207	9200421.877			
C35	10+181.68	10+208.27	10+234.01	775266.233	9200352.366	775281.766	9200330.784	775286.727	9200304.660			

FACULTAD DE INGENIERÍA

ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN)

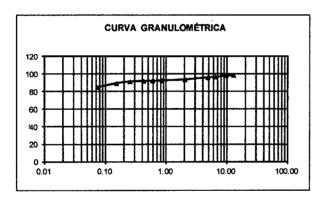
: "APERTURA DE LA TROCHA CARROZABLE CAPULIPAMA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN)" PROYECTO

TRAMO

: CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO : DIST. SAN JUAN - PROV. CAJAMARCA - DPTO. CAJAMARCA

UBICACIÓN

CALICATA

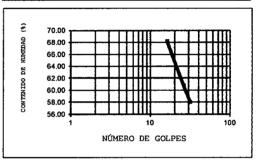

MUESTRA **ESTRATO**

: KM 05 + 257 : ÚNICO

PROF FECHA : 1.50 m : C/23/11/2011

ANÁLISIS GRANULOMÉTRICO POR LAVADO MUESTRA: 500.00 g NORMA: ASTM D 421

	MUESTRA:	500.00	gr.		
TAI	VIIZ.	PRP	% RP	%RA	% QUE
N°	ABER.(mm)	(gr)		1	PASA
1 1/2"	38.10			1	
1"	25.00		T	1	
3/4"	19.05			T	
1/2"	12.70	7.00	1.40	1.40	98.60
3/8"	9.53	1,70	0.34	1.74	98.26
1/4"	6.35	7.20	1.44	3.18	96.82
Nº 4	4.76	2,90	0.58	3.76	96.24
N 10	2.00	12.30	2.46	6.22	93.78
N 20	0.84	5.90	1.18	7.40	92.60
N 30	0.59	1.60	0.32	7.72	92.28
N 40	0.42	1.40	0.28	8.00	92.00
N 60	0.25	2.70	0.54	8.54	91.46
N 100	0.15	10.10	2.02	10.56	89.44
N 200	0.07	22.70	4.54	15.10	84,90
CAZOLETA	-,-	0.90	0.18	15.28	84.72
PERDIDA POR		423.60	84.72	100.00	0.00



CONTENIDO NATURAL DE HUMEDAD NORMA: ASTM D 2216

Wt(gr)	29.80
Wmh+t(gr)	234.20
Wms + t (gr)	205.30
Wms	175.50
Ww	28.90
W(%)	16.47

LÍMITES DE CONSISTENCIA NORMA ASTM D 4318

PESOS	LÍ	MITELÍQUID	LÍMITEPLÁSTICO		
resus	LLI	112	LL3	LIP1	LP2
Wt (gr)	29.40	26.20	25.50	27.60	28.20
Wmh+t(gr)	43.20	41.00	40.20	33.20	34.80
Wms + t (gr)	37.60	35.40	34.80	32.00	33,40
Wms (gr)	8.20	9.20	9.30	4.40	5.20
Ww(gr)	5.60	5.60	5.40	1.20	1.40
W(%)	68.29	60.87	58,06	27.27	26.92
N.GOLPES	16	26	31		
LL/LP		61.40	•	27.	10

CLASIFICACIÓN DEL SUELO POR LOS SISTEMAS SUCS Y AASHTO NORMA: ASTM D2487 AASHTO M 145

	% PASA	LL	LP	IP	IG	CLASIFIC	CACION
,	MALLA 200	(%)	(%)	(%)		AASHTO	SUCS
	84 90	61 40	27 10	34.30	32	A-7-6	CH

PESO ESPECIFICO

PESO ESPECIFICO DE MATERIAL

NORMA: ASTM D854, AASHTO T100, MTC El 13-1999, NTP 339-131

MUESTRA	Mı	M2	
Wms (g)	100.00	100.00	
Wfw (g)	663.00	664.00	
Wfws (g)	724.00	723.00	
Pe (g/cm3)	2.56	2.44	
Pe prom (g/cm3)	2.50		

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN)

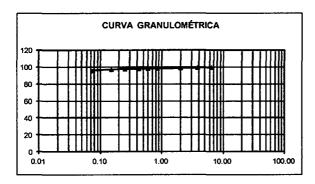
PROYECTO: "APERTURA DE LA TROCHA CARROZABLE CAPULIPAMA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN)"

TRAMO UBICACIÓN

: CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO : DIST. SAN JUAN - PROV. CAJAMARCA - DPTO, CAJAMARCA

CALICATA

MUESTRA ESTRATO

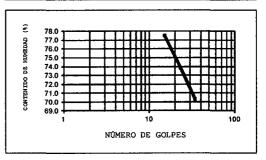

: KM 06+364 : UNO

FECHA

: C/23/11/2011

ANÁLISIS GRANULOMÉTRICO POR LAVADO MUESTRA: 500.00 g NORMA: ASTM D 421

	MUESTRA:	500.00	gr.]	
TA	TAMIZ		%RP	%RA	% QUE
N°	ABER (mm)	(gr)			PASA
1 1/2"	38.10		.1		
1"	25.00				
3/4"	19.05			Ĭ	
1/2"	12.70				
3/8"	9.53		T	1	
1/4"	6.35	1,20	0.24	0.24	99.76
Nº 4	3.76	0,90	0.18	0.42	99.58
N 10	2.00	3,10	0.62	1.04	98.96
N 20	0.84	2.60	0.52	1.56	98.44
N 30	0.59	0.90	0.18	1.74	98.26
N 40	0.42	0.80	0.16	1.90	98.10
N 60	0.25	1,80	0,36	2.26	97.74
N 100	0.15	3,30	0.66	2.92	97.08
N 200	0.07	6.10	1.22	4.14	95.86
CAZOLETA	-,-	0,3	0.06	4.20	95.80
PERDIDA POR					
LAVADO		479.00	95.80	00,001	0.00



CONTENIDO NATURAL DE HUMEDAD NORMA: ASTM D 2216

Wt(gr)	27.20
Wmh+t(gr)	199.70
Wms + t (gr)	172,50
Wms	145.30
Ww	27.20
W(%)	18.72

LÍMITES DE CONSISTENCIA NORMA ASTM D 4318

PESOS	Lt	MITELIQUID	LÍMITEPLÁSTICO		
1 200	LLI	1.1.2	LL3	LP1	LP2
Wt (gr)	27.30	26.90	25.80	27.70	29.30
Wmh+t(gr)	43.10	42.20	41,30	33.50	36.00
Wms + t (gr)	36,20	35.70	34,90	32,10	34.40
Wms (gr)	8.90	8,80	9.10	4.40	5.10
Ww(gr)	6.90	6.50	6.40	1.40	1.60
W(%)	77.53	73.86	70.33	31.82	31.37
N.GOLPES	15	23	34		
LL/LP	72.80			31.6	50

CLASIFICACIÓN DEL SUELO POR LOS SISTEMAS SUCS Y AASHTO NORMA: ASTM D2487 AASHTO M145

% PASA	ᄔ	LP	IP .	IG	CLASI	FICACION
MALLA 200	(%)	(%)	(%)		AASHTO	SUCS
95.86	72.80	31.60	41.20	47	A-7-5	CH.

PESO ESPECIFICO

MUESTRA	M1	M2	
Wms (g)	100.00	100,00	
Wfw (g)	675.00	675,00	
Wfws (g)	738,00	738.00	
Pe (g/cm3)	2.70	2.70	
Pe prom (g/cm3)	2,70		

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

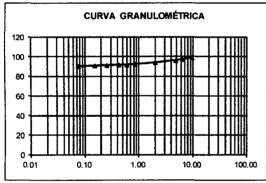
"ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN)"

UBICACIÓN

: DIST. SAN JUAN - PROV. CAJAMARCA - DPTO. CAJAMARCA

CALICATA

MUESTRA : KM 06+ 364 ESTRATO

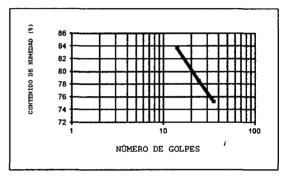

PROF

: DOS : 1.50 m

FECHA : C / 23 / 11/ 2011

ANÁLISIS GRANULOMÉTRICO POR LAVADO MUESTRA: 500.00 g LÍMITES DE CONSISTENCIA NORMA: ASTM D 421

	MUESTRA:	500,00	gr.		
TAMIZ		PRP	% RP	%RA	% QUE
N°	ABER (mm)	(gr)			PASA
1 1/2"	38.10				
1"	25.00				
3/4"	19.05				1
1/2"	12.70				
3/8"	9.53	4.30	0.86	0.86	99.14
1/4"	6.35	8.90	1.78	2.64	97.36
Nº 4	4.76	4.40	0.88	3.52	96.48
N 10	2,00	11.50	2.30	5.82	94,18
N 20	0.84	8.40	1.68	7.50	92.50
N 30	0.59	2.00	0.40	7.90	92.10
N 40	0.42	1.30	0.26	8,16	91.84
N 60	0.25	1.70	0.34	8.50	91.50
N 100	0,15	2,10	0.42	8.92	91.08
N 200	0.07	3.30	0.66	9.58	90.42
CAZOLETA	-,-	0.4	0.08	9.66	90.34
PERDIDA POR LAVADO		451.70	90.34	100.00	0.00
D10 0.017		D60	3.50	Cu=	205.88
D30	0.15			Cc=	0.38



CONTENIDO NATURAL DE HUMEDAD NORMA: ASTM D 2216

Wt(gr)	27.30
Wmh+t(gr)	218.20
Wms + t (gr)	194.10
Wms	166.80
Ww	24.10
W(%)	14,45

NORMA ASTM D 4318

PESOS	LÍ	MITE LÍQUII	LÍMITE PLÁSTICO		
resus	IJLI	1.1.2	IJ.3	LPi	LP2
Wt (gr)	29.20	30,80	27.70	26.80	27,20
Wmmh+t(gr)	43,90	45.80	41.20	32.60	33.40
Wms+t(gr)	37.20	39.20	35,40	31.20	31.90
Wms (gr)	8.00	8.40	7,70	4.40	4.70
₩w(gr)	6.70	6.60	5.80	1.40	1.50
W(%)	83.75	78,57	75.32	31.82	31.91
N.GOLPES	14	24	35		
LL/LP	78.20			31	.87

CLASIFICACIÓN DEL SUELO POR LOS SISTEMAS SUCS Y AASHTO NORMA: ASTM D2487 AASHTO M 145

% PASA	ш	LP	IP	IG	CLASIFICA	CION
MALLA 200	(%)	(%)	(%)		AASHTO	SUCS
90.42	78.20	31.87	46.33	49	A-7-5	CH

PESO ESPECIFICO

MUESTRA	M1	M2
Wms (g)	100.00	100,00
Wfw (g)	675,00	675.00
Wfws (g)	739.00	739.00
Pe (g/cm3)	2.78	2.78
Pe prom (g/cm3)	2.	78

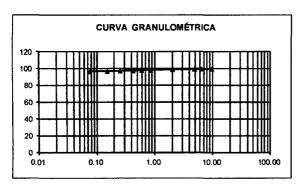
FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

PROYECTO: "APERTURA DE LA TROCHA CARROZABLE CAPULIPAMA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN)"

TRAMO UBICACIÓN : CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO : DIST. SAN JUAN - PROV. CAJAMARCA - DPTO. CAJAMARCA

CALICATA

MUESTRA : KM 07+378

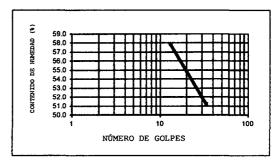

ESTRATO

: ÚNICO

PROF FECHA : 1.50 m : C/23/11/2011

ANÁLISIS GRANULOMÉTRICO POR LAVADO MUESTRA: 500.00 g NORMA: ASTM D 421

	MUESTRA:	500,00	gr.	1	
TA	MIZ	PRP	% RP	% RA	% QUE
No	ABER (mm)	(gr)			PASA
1 1/2"	38.10				
1"	25.00				
3/4"	19.05				
1/2"	12.70			i i	
3/8"	9.53	1,70	0.34	0.34	99.66
1/4"	6.35	1,30	0.26	0.60	99.40
Nº 4	4.76	0.90	0.18	0.78	99.22
N 10	2,00	2,40	0.48	1.26	98.74
N 20	0.84	2,70	0.54	1.80	98.20
N 30	0.59	1.30	0.26	2.06	97.94
N 40	0.42	2,40	0.48	2.54	97.46
N 60	0.25	1,60	0.32	2.86	97,14
N 100	0,15	1.40	0.28	3.14	96.86
N 200	0.07	1.90	0.38	3,52	96.48
CAZOLETA	-,-	0.1	0.02	3.54	96.46
PERDIDA POR					1
LAVADO		482.30	96.46	100.00	0.00



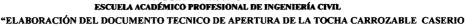
CONTENIDO NATURAL DE HUMEDAD NORMA: ASTM D 2216

Wt(gr)	28.60
Wmh+t(gr)	231.20
Wms + t (gr)	200,40
Wms	171.80
Ww	30.80
W (%)	17.93

LÍMITES DE CONSISTENCIA NORMA ASTM D 4318

PESOS	LÍN	ATTELLÍQUID	0	LÍMITEP	LÁSTICO
12303	ILI	11.2	113	LP1	LP2
Wt (gr)	26,90	27.80	27.90	27.00	27.80
Wmh + t (gr)	38.90	40.50	40,00	33.30	34.50
Wms + t(gr)	34.50	36,00	35.90	31.70	32.80
Wms (gr)	7.60	8.20	8,00	4.70	5.00
Ww(gr)	4.40	4.50	4.10	1.60	1.70
W(%)	57.89	54.88	51.25	34.04	34.00
N.GOLPES	13	20	33		
LL/LP		53.40		34,	02

CLASIFICACIÓN DEL SUELO POR LOS SISTEMAS SUCS Y AASHTO NORMA: ASTM D2487 AASHTO M 145


% PASA	LL	LP	IP	IG	CLASII	FICACION
MALLA 200	(%)	(%)	(%)		AASHTO	SUCS
96.48	53,40	34.02	19.38	24	A-7-5	MH

PESO ESPECIFICO

MUESTRA	M1	M2
Wms (g)	100.00	100.00
Wfw (g)	664.00	668.00
Wfws (g)	725.00	728.00
Pe (g/cm3)	2.56	2.50
Pe prom (g/cm3)	2.	53

FACULTAD DE INGENIERÍA

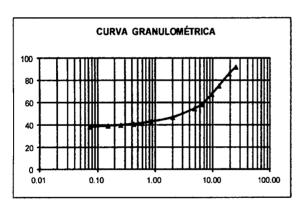
PROYECTO: "APERTURA DE LA TROCHA CARROZABLE CAPULIPAMA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN)"

TRAMO UBICACIÓN

: CAPULIPAMPA-CRUCELA CRUZ DE YUMAGUAL ALTO : DIST. SAN JUAN - PROV. CAJAMARCA - DPTO. CAJAMARCA

CALICATA

MUESTRA ESTRATO

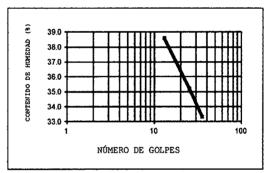

· KM 08+390 ·ÚNICO : 1.50 m

PROF FECHA

: C/23/11/2011

ANÁLISIS GRANULOMÉTRICO POR LAVADO MUESTRA: 800.00 g NORMA: ASTM D 421

	MUESTRA:	800.00	gr.		
TAI	MIZ	PRP	% RP	% RA	% QUE
N°	ABER.(mm)	(gr)			PASA
1 1/2"	38.10				
1"	25.00	59.80	7.48	7.48	92.53
3/4"	19.05	49.50	6.19	13.66	86.34
1/2"	12.70	88.90	11.11	24.78	75.23
3/8"	9.53	59.20	7.40	32.18	67.83
1/4"	6.35	74.40	9.30	41.48	58,53
Nº 4	4.76	28.80	3.60	45.08	54.93
N 10	2.00	62.70	7.84	52.91	47.09
N 20	0.84	31.00	3.88	56.79	43.21
N 30	0.59	9.60	1.20	57.99	42.01
N 40	0.42	6.50	0.81	58.80	41.20
N 60	0.25	7.50	0.94	59.74	40.26
N 100	0.15	5,70	0.71	60.45	39.55
N 200	0.07	6.90	0.86	61.31	38,69
CAZOLETA	-,-	0.4	0.05	61.36	38.64
PERDIDA POR					
LAVADO		309.10	38.64	100.00	0.00

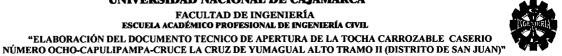


CONTENIDO NATURAL DE HUMEDAD NORMA: ASTM D 2216

Wt(gr)	27.50
Wmh+t(gr)	273.90
Wms+t(gr)	252,10
Wms	224.60
Ww	21.80
W(%)	9.71

LÍMITES DE CONSISTENCIA NORMA ASTM D 4318

PESOS	LÍN	ITTE LÍQUID	0	LÍMITEP	LÁSTICO
1203	LL1	LL2	ШЗ	LP1	LP2
Wt (gr)	26.90	28.60	26.30	28.20	29.80
Wmh+t(gr)	40.90	40.50	39.50	33.50	35,10
Wms + t (gr)	37.00	37.40	36,20	32,60	34,20
Wms (gr)	10.10	8.80	9.90	4.40	4.40
Ww(gr)	3.90	3.10	3.30	0,90	0.90
W(%)	38.61	35.23	33,33	20.45	20.45
N.GOLPES	13	25	35		
LL/LP	35.23 20.45		45		


CLASIFICACIÓN DEL SUELO POR LOS SISTEMAS SUCS Y AASHTO NORMA: ASTM D2487 AASHTO M 145

% PASA	IL	LP	IP	IG	CLASI	FICACION
MALLA 200	(%)	(%)	(%)		AASHTO	SUCS
38.69	35.23	20.45	14.78	2	A-6	GC C

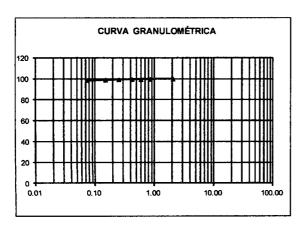
PESO ESPECIFICO

MUESTRA	M1	M2
Wms (g)	100,00	100.00
Wfw (g)	665.00	663.00
Wfws (g)	727,00	723.00
Pe (g/cm3)	2.63	2.50
Pe prom (g/cm3)	2.	57

PROYECTO : "APERTURA DE LA TROCHA CARROZABLE CAPULIPAMA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN)" TRAMO

: CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO : DIST. SAN JUAN - PROV. CAJAMARCA - DPTO. CAJAMARCA

UBICACIÓN CALICATA

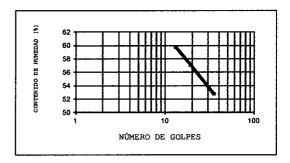

: KM 09+288

MUESTRA ESTRATO

PROF : 0.65 m : C/23/11/2011 FECHA

ANÁLISIS GRANULOMÉTRICO POR LAVADO MUESTRA: 500.00 g NORMA: ASTM D 421

	MUESTRA:	500.00	gr.		
TA	MIZ	PRP	%RP	%RA	% QUE
Nº	ABER.(mm)	(gr)			PASA
1 1/2"	38.10		T		
1"	25.00		I		
3/4"	19.05		I	l	
1/2"	12,70			1	
3/8"	9.53				
1/4"	6.35		1	1	
Nº 4	4.76				
N 10	2.04	0.70	0.14	0.14	99.86
N 20	0.84	1,00	0,20	0.34	99.66
N 30	0.59	0.40	0.08	0.42	99.58
N 40	0.42	0.50	0.10	0.52	99.48
N 60	0.25	0,90	0.18	0.70	99.30
N 100	0.15	1.50	0.30	1.00	99.00
N 200	0.07	2.20	0.44	1,44	98,56
CAZOLETA		0.1	0.02	1.46	98.54
PERDIDA POR LAVADO		492.70	98,54	100.00	0.00



CONTENIDO NATURAL DE HUMEDAD NORMA: ASTM D 2216

Wt(gr)	27,40
Wmh+t(gr)	215.70
Wms +t (gr)	171.80
Wms	144.40
Ww	43.90
W(%)	30.40

LÍMITES DE CONSISTENCIA NORMA ASTM D 4318

PESOS	LÍ	MITTE LÍQUID	LIMITEPLÁSTICO		
	LLI	LL2	11.3	LP1	LP2
Wt (gr)	27.00	27.50	26,30	28,40	29.80
Wmh+t(gr)	42.50	40.70	39.90	34.90	36.70
Wms + t (gr)	36.70	35.90	35.20	33,20	34.90
Wms (gr)	9.70	8.40	8.90	4.80	5.10
Ww(gr)	5.80	4.80	4.70	1.70	1.80
W(%)	59,79	57,14	52.81	35.42	35.29
N.GOLPES	13	19	35		
LL/LP	55,10			35.	36

CLASIFICACIÓN DEL SUELO POR LOS SISTEMAS SUCS Y AASHTO NORMA: ASTM D2487 AASHTO M 145

	% PASA	LL	LP	IP	IG	CLASIF	CACION
	MALLA 200	(%)	(%)	(%)		AASHTO	SUCS
1	98.56	55,10	35.36	19.74	25	A-7-5	MH

PESO ESPECIFICO

MUESTRA	M1	M2
Wms (g)	100.00	100.00
Wfw (g)	675.00	675.00
Wfws (g)	736.00	737.00
Pe (g/cm3)	2.56	2.63
Pe prom (g/cm3)	2.	60

ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN)

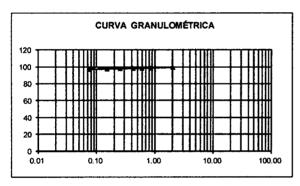
PROYECTO: "APERTURA DE LA TROCHA CARROZABLE CAPULIPAMA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN)"

TRAMO UBICACIÓN : CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO : DIST. SAN JUAN - PROV. CAJAMARCA - DPTO. CAJAMARCA

CALICATA

MUESTRA

: KM 09+288 ESTRATO : DOS

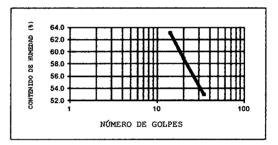

PROF

: 1.50 m

: C/23/11/2011 FFCHA

ANÁLISIS GRANULOMÉTRICO POR LAVADO MUESTRA: 500.00 g NORMA: ASTM D 421

	MUESTRA:	500.00	gr.]	
TA	MIZ	PRP	% RP	%RA	% QUE
N°	ABER (mm)	(gr)		1	PASA
1 1/2"	38.10				
1"	25,00		T		İ
3/4"	19.05		Ī		
1/2"	12.70			T	T
3/8"	9.53				
1/4"	6.35				
Nº 4	4.76				
N 10	2,00	2.30	0,46	0,46	99.54
N 20	0.84	3.30	0,66	1,12	98,88
N 30	0.59	1.30	0.26	1.38	98.62
N 40	0.42	1.00	0.20	1.58	98.42
N 60	0.25	1.50	0.30	1.88	98.12
N 100	0.15	1.80	0.36	2.24	97.76
N 200	0.07	2.70	0.54	2.78	97.22
CAZOLETA	-,-	0.3	0.06	2.84	97.16
PERDIDA POR					
LAVADO		485,80	97.16	100.00	0.00



CONTENIDO NATURAL DE HUMEDAD NORMA: ASTM D 2216

Wt(gr)	28.20		
Wmh+t(gr)	236.40		
Wms + t (gr)	189.60		
Wms	161.40		
Ww	46.80		
W(%)	29.00		

LÍMITES DE CONSISTENCIA NORMA ASTM D 4318

PESOS	LÍN	ATTE LÍQUID	LÍMITEPLÁSTICO		
	LLi	LL2	11.3	LP1	LP2
Wt (gr)	26.90	31.30	28.00	26.20	27.50
Wmh + t (gr)	39.30	42.90	40.70	33.60	33.30
Wms + t (gr)	34.50	38.60	36.30	31.70	31.80
Wms (gr)	7.60	7.30	8.30	5.50	4.30
Ww(gr)	4.80	4.30	4,40	1.90	1.50
W(%)	63.16	58.90	53.01	34.55	34.88
N.GOLPES	14	20	34		
LL/LP		56.50	34.	71	

CLASIFICACIÓN DEL SUELO POR LOS SISTEMAS SUCS Y AASHTO NORMA: ASTM D2487 AASHTO M 145

% PASA	LL	LP	IP	IG	CLASIFICACION	
MALLA 200	(%)	(%)	(%)		AASHTO	SUCS
97.22	56,50	34.71	21.79	27	A-7-5	MH

PESO ESPECIFICO

MUESTRA	M1	M2		
Wms (g)	100.00	100.00		
Wfw (g)	672.00	671.00		
Wfws (g)	736,00	734.00		
Pe (g/cm3)	2.78	2.70		
Pe prom (g/cm3)	2.	2.74		

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN)"

PROYECTO: "APERTURA DE LA TROCHA CARROZABLE CAPULIPAMA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN)"

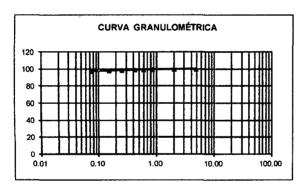
UBICACIÓN

: CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO : DIST. SAN JUAN - PROV. CAJAMARCA - DPTO. CAJAMARCA

CALICATA

MUESTRA

: KM 10+274 ESTRATO : ÚNICO : 1.50 m

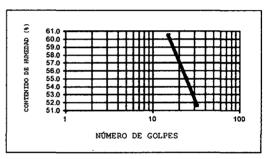

. 6

PROF FECHA

: C/23/11/2011

ANÁLISIS GRANULOMÉTRICO POR LAVADO MIUESTRA: 500.00 g NORMA: ASTM D 421

	MUESTRA:	500.00	gr.		
TA	MIZ	PRP	% RP	%RA	% QUE
Nº	ABER (mm)	(gr)			PASA
1 1/2"	38,10			T	
1"	25.00		1		
3/4"	19.05			I .	
1/2"	12.70			ľ	
3/8"	9.53				
1/4"	6.35			1	
Nº 4	4.76	0.50	0,10	0.10	99.90
N 10	2,00	0,90	0.18	0.28	99.72
N 20	0.84	1.60	0.32	0.60	99.40
N 30	0.59	1.00	0.20	0.80	99,20
N 40	0.42	1.30	0,26	1.06	98.94
N 60	0,25	2.20	0.44	1.50	98.50
N 100	0.15	2.30	0.46	1.96	98.04
N 200	0,07	2.20	0.44	2.40	97.60
CAZOLETA	-,-	0.2	0.04	2,44	97.56
PERDIDA POR					
LAVADO		487.80	97.56	100.00	0.00



CONTENIDO NATURAL DE HUMEDAD NORMA: ASTM D 2216

Wt(gr)	27.50
Wmb + t (gr)	229.10
Wms+t(gr)	205.90
Wms	178.40
Ww	23.20
W(%)	13.00

LÍMITES DE CONSISTENCIA NORMA ASTM D 4318

PESOS	LÍN	TTE LÍQUID	LÍMITEPLÁSTICO		
	LLI	112	1.1.3	LPI	LP2
Wt (gr)	29.50	25.50	29.40	28.20	27.60
Wmh + t (gr)	47.00	40.70	47.60	34.50	34.00
Wms + t (gr)	40.40	35.30	41.40	33.30	32.80
Wms (gr)	10.90	9,80	12.00	5.10	5.20
Ww(gr)	6.60	5.40	6.20	1.20	1.20
W(%)	60.55	55.10	51.67	23.53	23.08
N.GOLPES	15	24	32		
IJ/LP	54.80			23.	30

CLASIFICACIÓN DEL SUELO POR LOS SISTEMAS SUCS Y AASHTO NORMA: ASTM D2487 AASHTO M 145

% PASA	IL.	LP	IP	IG	CLASIFICACION	
MALLA 200	(%)	(%)_	(%)		AASHTO	SUCS
97.60	54,80	23.30	31.50	35	A-7-6	CH

PESO ESPECIFICO

MUESTRA	M1	M2
Wms (g)	100.00	100.00
Wfw (g)	670,00	672.00
Wfws (g)	734,00	735.00
Pe (g/cm3)	2.78	2.70
Pe prom (g/cm3)	2.	74

"ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN)'

PROYECTO: "APERTURA DE LA TROCHA CARROZABLE CAPULIPAMA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN)"

: CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO UBICACIÓN : DIST. SAN JUAN - PROV. CAJAMARCA - DPTO. CAJAMARCA

MUESTRA : CANTERA GAVILAN

ESTRATO : ÚNICO : C/23/11/2011 FECHA

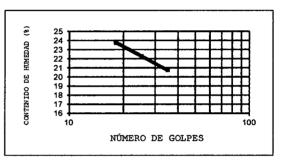
ANÁLISIS GRANULOMÉTRICO

NORMA: ASTM D 421

	MUESTRA:	350.00	gr.]	
TAMIZ		PRP	% RP	%RA	% QUE
Nº	ABER (mm)	(gr)			PASA
3"	75.00			I	
2 1/2"	63.00				
2"	50.00				
1 1/2"	38.10				100,00
1"	25.00	18.30	5.23	5.23	94.77
1/2"	12.70	31.10	8.89	14.11	85.89
1/4"	6.35	78.80	22.51	36.63	63.37
№4	4.76	22.50	6.43	43.06	56.94
N 10	2.04	53.40	15.26	58.31	41.69
N 20	0.84	35,50	10.14	68.46	31.54
N 40	0.42	18.40	5.26	73.71	26.29
N 60	0.25	17,10	4.89	78.60	21,40
N 100	0.15	20.30	5.80	84.40	15.60
N 200	0.07	32.40	9.26	93.66	6.34
CAZOLETA	-,-	12.30	3.51	97.17	2.83
PERIDA POR	1			1	
TAMIZADO	1.	9.90	2.83	100.00	0.00

CURVA GRANULOMÉTRICA 100 90 80 70 USO 60 GRANULOMÉTRICO 50 30 20 10 0.01 1.00 10.00 100.00 0.10

CONTENIDO NATURAL DE HUMEDAD NORMA: ASTM D 2216


Wt(gr)	28.60
Wmh + t (gr)	215.60
Wms + t (gr)	198,40
Wms	169.80
Ww	17.20
W(%)	10.13

PESO ESPECIFICO DE ARENA GRUESA Y GRAVA NORMA: MTC-E-206-2000

MUESTRA	M1	M2
Ws (g)	72.51	76.29
Vi (cm3)	608.00	518.00
Vf (cm3)	646.00	539.00
Pe (g/cm3)	1.91	3.63
Pe prom (g/cm3)	2.77	

LÍMITES DE CONSISTENCIA NORMA ASTM D 4318

PESOS	LÍMITE	LÍQUIDO	DO LÍMITE PLÁSTICO				
Г	LL1	1.1.2	11.3	LP1	LP2		
Wt (gr)	37.40	37.50	37.40	0.00	0.00		
Wmh+t(gr)	47.80	43.25	43.56	0.00	0.00		
Wms + t (gr)	45,80	42,20	42,50	0.00	0.00		
W w(gr)	8.40	4.70	5.10	0.00	0.00		
W w(gr)	2.00	1.05	1.06	0.00	0.00		
W(%)	23,81	22.34	20.78	0.00	0.00		
N.GOLPES	18	25	35				
LL/LP	22.34			0.00			

CLASIFICACIÓN DEL SUELO POR LOS SISTEMAS SUCS Y AASHTO NORMA: ASTM D2487 AASHTO M145

% PASA	LL	LP	IP	Ю	CLASIF	ICACION
MALLA 200	(%)	(%)	(%)]	AASHTO	SUCS
634	22.34	NP	NP	0	A-I-b	SP

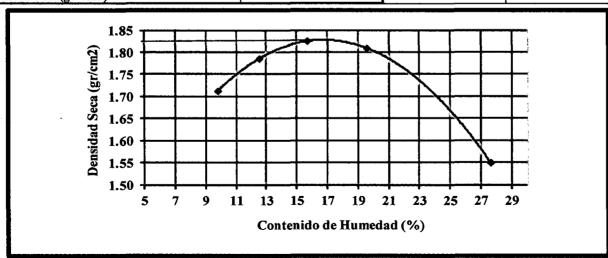
PESO ESPECIFICO

PESO ESPECIFICO DE MATERIAL FINO NORMA: ASTM D854, AASHTO T100, MTC El 13-1999, NTP 339-131

MUESTRA	M1	M2
Wms (g)	100.00	100.00
Wfw (g)	675.00	675.00
Wfws (g)	727.00	726.00
Pe (g/cm3)	2.08	2.04
Pe prom (g/cm3)	2.06	

PESO ESPECIFICO DE PIEDRA NORMA: MTC-E-206-2000

MUESTRA	MI	M2		
Waire (g)	120.50	125.30		
Wsum (g)	75.04	78.44		
Pe (g/cm3)	2,65	2.67		
Pe prom (g/cm3)	2.66			

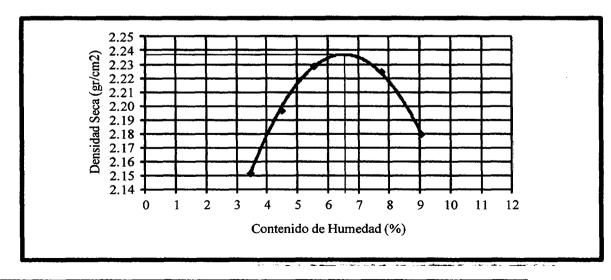

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN)"

PROCTOR Km 05+257

	ASTM D1:	557-91 (98)	AASHTO'	T 180-70 N	/TC E 115	-2000				
PUNTO	P1		P	1	P2		P3		P4	
Nº Capas	5			5		5	5		5	
Nº Golpes por capa	56	5	5	6	5	6		56	5	6
Pmolde(gr)	6300	.00	630	0.00	630	0.00	630	00.00	6300	0.00
Pmolde+muestra humeda(gr)	10220	0.00	1049	00.00	1070	05.00	108	10.00	1042	5.00
Pmuestra húmeda(gr)	3920	.00	419	0.00	440	5.00	451	10.00	412:	5.00
Vmuestra húmeda(cm3)	2085	.71	208	5.71	208	5.71	208	35.71	208:	5.71
Densidad húmeda(gr/cm3)	1.8	8	2.	01	2.	2.11		2.16		98
Recipiente			a	b	c	d	e	f	g	h
Precipiente	25.50	29.60	29.50	26.80	27.70	26.20	26.80	28.20	27.30	27.70
Precipiente+muestra humeda(gr)	252.20	232.60	250.10	234.20	227.20	208.10	228.30	220.60	212.20	208.80
Precipiente+muestra seca(gr)	232.30	214.30	225.80	210.90	200.40	183.20	195.70	188.80	172.50	169.30
Pagua	19.90	18.30	24.30	23.30	26.80	24.90	32.60	31.80	39.70	39.50
Pmuestra seca	206.80	184.70	196.30	184.10	172.70	157.00	168.90	160.60	145.20	141.60
Contenido de Humedad(%)	9.62	9.91	12.38	12.66	15.52	15.86	19.30	19.80	27.34	27.90
Contenido de Humedad Promedio(%)	9.77		12	.52	15.69		19.55		27.62	
Densida Seca(gr/cm3)	1.7	1	1.	79	1.	83	1	.81	1.	55

Ds Máx (gr/cm2) =	1.83
W% (óptimo) =	17


FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN)"

PROCTOR DE CANTERA GAVILAN

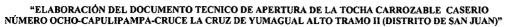
ASTM D 155	7-91 (98) AA	SHTO T 18	80-70 MTC	E115-200	0 (METOD	0 C)					
PUNTO	P	P1		2	P3		P4		P5		
Nº Capas		5		5		5	5			5	
Nº Golpes por capa	5	6	5		5	6	5	6		56	
Pmolde(gr)	632	4.00	632	4.00	632	4.00	6324	4.00	63	24.00	
Pmolde+muestra humeda(gr)	1088	86.00	1107	72.00	1114	16.00	1123	8.00	11	196.00	
Pmuestra húmeda(gr)	456	2.00	470	5.00	482	2.00	4914	4.00	48	4872.00	
Vmuestra húmeda(cm3)	204	9.89	204	9.89	2049.89		2049.89		2049.89		
Densidad húmeda(gr/cm3)	2.	23	2.	30	2.	35	2.40		2.38		
Recipiente	а	b	С	d	e	f	g	h	j	k	
Precipiente	37.50	37.50	37.60	37.80	37.40	37.50	40.40	37.90	37.50	37.60	
Precipiente+muestra humeda(gr)	276.9	315.7	317	327.8	378.1	391.5	349.7	480.5	332.2	357.3	
Precipiente+muestra seca(gr)	267.3	308.4	304.2	316.2	355.9	377.5	326.6	449.9	303.5	335.6	
Pagua	9.60	7.30	12.80	11.60	22.20	14.00	23.10	30.60	28.70	21.70	
Pmuestra seca	229.80	270.90	266.60	278.40	318.50	340.00	286.20	412.00	266.00	298.00	
Contenido de Humedad(%)	4.18	2.69	4.80	4.17	6.97	4.12	8.07	7.43	10.79	7.28	
Contenido de Humedad Promedio(%)	3.	3.44		48	5.54		7.75		9.04		
Densida Seca(gr/cm3)	2.	15	2.	20	2.	23	2.2	22	2	2.18	

Ds $Máx (gr/cm2) =$	2.237
W% (óptimo) =	6.60%

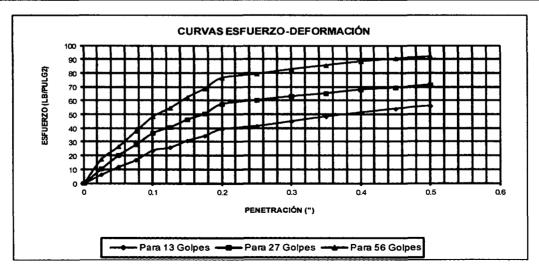
FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN)"

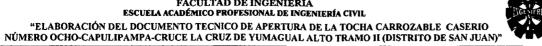
CUADRO Nº 3.11. CALIFORNIA BEARING RATIO (CBR) - Km 06+257


				AASHTO T	193-63					
MOLDE N°			1			2			3	
Nº Capas			5		5			5		
Nº Golpes			13			27		56		
CONDICION DE MUESTRA		Antes de	Empapar	Después	Antes de	Empapar	Después	Antes de	Empapar	Des pués
Pmolde(gr)	·	7145	5.00	7145.00	7090	0.00	7090.00	7115	5.00	7115.00
Pmolde+mues tra humeda(gr)		1092	0.00	11135.00	1112	5.00	11255.00	1134	5.00	11395.00
Pmuestra húmeda(gr)		3775	5.00	3990.00	4035	5.00	4165.00	4230	0.00	4280.00
Vmuestra húmeda(cm3)		2104	1.92	2104.92	2104	1.92	2104.92	2104	4.92	2104.92
Densidad húmeda(gr/cm3)		1.7	79	1.90	1.9	92	1.98	2.0	D1	2.03
			CON	TENIDO DE	HUMEDAD					
Recipiente		1-a	1-b	1-c	2-a	2-b	2-c	3-a	3-b	3-c
Precipiente		24.40	30.20	28.90	31.60	25.90	31.60	25.10	29.10	29.10
Precipiente+muestra humeda(gr)	142.70	173.40	180.10	179.90	125.80	166.20	136.10	154.10	170.40
Precipiente+muestra seca(gr)		113.70	137.90	128.80	143.20	100.80	122.70	108.40	123.30	127.50
Pagua		29.00	35.50	51.30	36.70	25.00	43.50	27.70	30.80	42.90
Pmuestra seca		89.30	107.70	99.90	111.60	74.90	91.10	83.30	94.20	98.40
Contenido de Humedad(%)		32.47	32.96	51.35	32.89	33.38	47.75	33.25	32.70	43.60
Contenido de Humedad Promedio	(%)	32.	72	51.35	33.	.13	47.75	32.	97	43.60
Densida Seca(gr/cm3)		1.3	35	1.25	1.4	44	1.34	1	51	1.42
			ENS	AYO DE INC	HAMIENTO					
TIEMPO ACUMULADO	1		DE Nº 1 (hm	=11.6)		DE Nº 1 (hm	=11.6)		DE Nº 1 (hm	=11.6)
THAVII O ACCIVICIADO		LECTURA	HINCHA	MIENTO	LECTURA	HINCHA	MIENTO	LECTURA	HINCHA	MIENTO
HORAS	DIAS	DEFORM.	(mm)	(%)	DEFORM	(mm)	(%)	DEFORM	(mm)	(%)
0	0	0.000	0.000	0.00	0.000	0.000	0.00	0.000	0.000	0.00
24	1	0.256	0.256	0.20	0.356	0.356	0.28	0.736	0.736	0.64
48	2	0.863	0.863	0.69	0.956	0.956	0.76	1.568	1.568	1.36
72	3	1.586	1.586	1.27	1.362	1.362	1.09	2.564	2.564	2.23
96	4	2.153	2.153	1.72	1.893	1.893	1.51	2.867	2.867	2.49

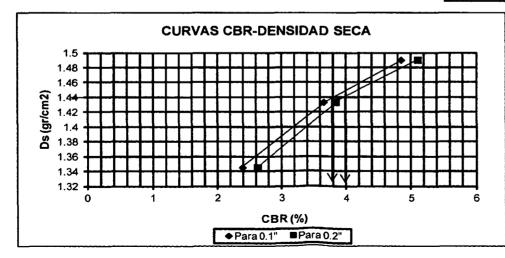
Bach. Ing. CIEZA VÁSQUEZ, Edgar.



FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL


PENETRACIÓN			MOLDE Nº 1			MOLDE N° 2			MOLDEN°	3
		CARGA	ESFU	ERZO	CARGA	ESFU	ERZO	CARGA	ESFU	ERZO
(mm)	(Pulg.)	(Kg)	(Kg/cm2)	(Lb/pulg2)	(Kg)	(Kg/cm2)	(Lb/pulg2)	(Kg)	(Kg/cm2)	(Lb/pulg2)
0.000	0.000	0	0.00	0.00	0	0.00	0.00	0	0.00	0.00
0.640	0.025	9	0.45	6.32	15	0.74	10.53	25	1.24	17.55
1.270	0.050	17	0.84	11.93	29	1.43	20.36	38	1.88	26.67
1.910	0.075	24	1.19	16.85	40	1.98	28.08	54	2.67	37.91
2.540	0.100	34	1.68	23.87	52	2.57	36.50	69	3.41	48.43
3.180	0.125	37	1.83	25.97	58	2.87	40.71	78	3.86	54.75
3.810	0.150	44	2.18	30.89	66	3.26	46.33	89	4.40	62.47
4.450	0.175	49	2.42	34.40	72	3.56	50.54	98	4.85	68.79
5.080	0.200	56	2.77	39.31	82	4.06	57.56	109	5.39	76.51
6.350	0.250	59	2.92	41.42	86	4.25	60.37	113	5.59	79.32
7.620	0.300	64	3.17	44.93	90	4.45	63.18	118	5.84	82.83
8.890	0.350	69	3.41	48.43	93	4.60	65.28	122	6.03	85.64
10.160	0.400	73	3.61	51.24	97	4.80	68.09	126	6.23	88.45
11.430	0.450	77	3.81	54.05	99	4.90	69.49	129	6.38	90.55
12.700	0.500	80	3.96	56.16	102	5.04	71.60	131	6.48	91.96

FACULTAD DE INGENIERÍA


CUADROS Nº 3.13. CBR DE DISEÑO

	ESFUER	ZOS PARA	0.1" Y 0.2"			
MOLDE N°	MOLI	DE Nº 1	MOLI	EN° 2	MOLI	DE N° 3
Penetración(")	0.1"	0.2"	0.1"	0.2"	0.1"	0.2"
Esfuerzo Terreno (Lb/Pulg2)	23.87	39.31	36.50	57.56	48.43	76.51
Esfuerzo Patrón (Lb/Pulg2)	1000.00	1500.00	.1000.00	1500.00	1000.00	1500.00
CBR (%)	2.39	2.62	3.65	3.84	4.84	5.10

C.B.R. Y DENSIDAD SECA

MOLDE N°	MOLI	MOLDE N° 1 MOLDE N° 2				DE N° 3
Penetración(")	0.1"	0.2"	0.1"	0.2"	0.1"	0.2"
CBR (%)	2.39	2.62	3.65	3.84	4.84	5.10
Ds (gr/cm2)	1.35	1.35	1.44	1.44	1.51	1.51

GRAFICO								
PARA	0.1"	PARA 0.2"						
CBR	Ds	CBR	Ds					
2.39	1.35	2.62	1.35					
3.65	1.44	3.84	1.44					
4.84	1.51	5.10	1.51					

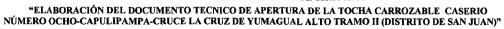
Ds Máx=	1.51	gr/cm2	
95% Ds Máx=	1.44	gr/cm3	

CBR (0.1")	3.78%
CBR (0.2")	3.97%

CBR DE DISEÑO = 3.78%

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

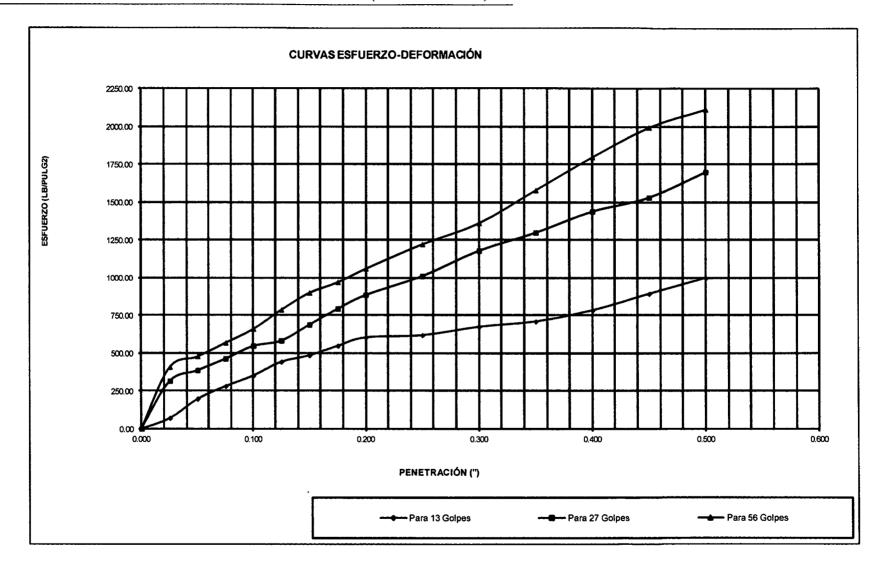
"ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN)"


CALIFORNIA BEARING RATIO (CBR) - CANTERA GAVILAN

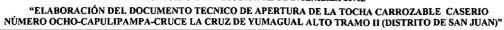
		·	 	AASHTO T	193-63		· · · · · · · · · · · · · · · · · · ·				
MOLDE N°			1			2			3		
Nº Capas			5		5				5		
Nº Golpes			13			27			56		
CONDICION DE MUESTRA		Antes de	Empapar	Después	Antes de	Empapar	Después	Antes de	Empapar	Des pués	
Pmolde(gr)		7426	5.00	7426.00	706	0.00	7060.00	6920	0.00	6920.00	
Pmolde+muestra humeda(gr)		1211	0.00	12330.00	1201	0.00	12167.00	1201	0.00	12061.00	
Pmuestra húmeda(gr)		4684	1.00	4904.00	4950	0.00	5107.00	5090	0.00	5141.00	
Vmuestra húmeda(cm3)		2104	1.92	2104.92	210-	4.92	2104.92	210-	4.92	2104.92	
Densidad húmeda(gr/cm3)		2.2	23	2.33	2	35	2.43	2.4	42	2.44	
			CON	TENIDO DE	HUMEDAD						
Recipiente		1-a	1-b	1-c	2-a	2-b	2-c	3-a	3-b	3-c	
Precipiente		26.70	26.10	26.60	74.40	36.30	25.60	26.70	32.10	43.40	
Precipiente+muestra humeda(gr) .	133.28	86.27	103.80	132.75	101.30	108.10	109.40	109.40	130.15	
Precipiente+muestra seca(gr)		126.30	83.40	97.75	128.78	96.90	100.90	107.05	107.20	126.20	
Pagua		6.98	2.87	6.05	3.97	4.40	7.20	2.35	2.20	3.95	
Pmuestra seca		99.60	57.30	71.15	54.38	60.60	75.30	80.35	75.10	82.80	
Contenido de Humedad(%)		7.01	5.01	8.50	7.30	7.26	9.56	2.92	2.93	4.77	
Contenido de Humedad Promedio	(%)	6.0	01	8.50	7	28	9.56	2.9	93	4.77	
Densida Seca(gr/cm3)		2.1	10	2.15	2.	19	2.21	2.3	35	2.33	
			ENS A	AYO DE INC	HAMIENTO						
TIEMPO ACUMULADO	a		DE Nº 1 (hm	=11.5)	 	DE Nº 1 (hm	=11.5)	MOL	DE Nº 1 (hm	=11.5)	
THE O ACCIDICATE		LECTURA	HINCHA	MIENTO	LECTURA	HINCHA	MIENTO	LECTURA	HINCHA	MIENTO	
HORAS	DIAS	DEFORM	(mm)	(%)	DEFORM.	(mm)	(%)	DEFORM	(mm)	(%)	
0	0	0.000	0.000	0.00	0.000	0.000	0.00	0.000	0.000	0.00	
24	1	0.211	0.211	0.18	2.550	2.550	2.22	1.400	1.400	1.22	
48	2	0.298	0.298	0.26	3.450	3.450	3.00	2.600	2.600	2.26	
72	3	0.404	0.404	0.35	3.700	3.700	3.22	2.650	2.650	2.30	
96	4	0.512	0.512	0.45	3.750	3.750	3.26	2.720	2.720	2.37	

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

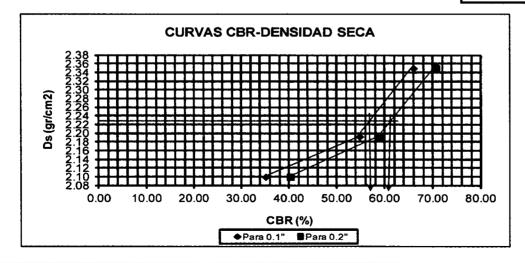
ENSAYO DE CARGA-PENETRACIÓN


PENETRACIÓN			MOLDE N° 1			MOLDE Nº 2		MOLDE N° 3		
		CARGA	ESFU	ERZO	CARGA	ESFU	ERZO	CARGA	ESFU	ERZO
(mm)	(Pulg.)	(Kg)	(Kg/cm2)	(Lb/pulg2)	(Kg)	(Kg/cm2)	(Lb/pulg2)	(Kg)	(Kg/cm2)	(Lb/pulg2)
0.000	0.000	0	0.00	0.00	0	0.00	0.00	0	0.00	0.00
0.640	0.025	100	4.95	70.20	450	22.26	315.88	580	28.68	407.13
1.270	0.050	280	13.85	196.55	550	27.20	386.07	680	33.63	477.33
1.910	0.075	400	19.78	280.78	660	32.64	463.29	810	40.06	568.58
2.540	0.100	500	24.73	350.98	780	38.58	547.52	940	46.49	659.84
3.180	0.125	630	31.16	442.23	830	41.05	582.62	1120	55.39	786.19
3.810	0.150	690	34.12	484.35	980	48.47	687.92	1280	63.30	898.50
4.450	0.175	780	38.58	547.52	1130	55.89	793.21	1380	68.25	968.70
5.080	0.200	860	42.53	603.68	1260	62.31	884.46	1510	74.68	1059.95
6.350	0.250	880	43.52	617.72	1440	71.22	1010.81	1740	86.05	1221.40
7.620	0.300	960	47.48	673.88	1680	83.09	1179.28	1940	95.94	1361.79
8.890	0.350	1010	49.95	708.97	1850	91.49	1298.62	2250	111.28	1579.40
10.160	0.400	1115	55.14	782.68	2050	101.38	1439.01	2560	126.61	1797.00
11.430	0.450	1270	62.81	891.48	2180	107.81	1530.26	2840	140.45	1993.55
12.700	0.500	1420	70.23	996.78	2420	119.68	1698.73	3010	148.86	2112.88

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL


"ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN)"

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL


C.B.R DE DISEÑO

ESFUERZOS PARA 0.1" Y 0.2"							
MOLDE N°	MOLI	ENº 1	MOLI	DE N° 2	MOLI	EN°3	
Penetración(")	0.1"	0.2"	0.1"	0.2"	0.1"	0.2"	
Esfuerzo Terreno (Lb/Pulg2)	350.98	603.68	547.52	884.46	659.84	1059.95	
Es fuerzo Patrón (Lb/Pulg2)	1000.00	1500.00	1000.00	1500.00	1000.00	1500.00	
CBR(%)	35.10	40.25	54.75	58.96	65.98	70.66	

C.B.R. Y DENSIDAD SECA

MOLDE N°	MOLDE Nº 1		MOLI	DE N° 2	MOLDE N° 3		
Penetración(")	0.1"	0.2"	0.1"	0.2"	0.1"	0.2"	
CBR (%)	35.10	40.25	54.75	58.96	65.98	70.66	
Ds (gr/cm2)	2.10	2.10	2.19	2.19	2.35	2.35	

GRAFICO								
PARA 0.1" PARA 0.2"								
CBR	Ds	CBR	Ds					
35.10	2.10	40.25	2.10					
54.75	2.19	58.96	2.19					
65.98	2.35	70.66	2.35					

Ds Máx=	2.35	gr/cm2
95% Ds Máx=	2.23	gr/cm3

CBR (0.1")	57.00%
CBR (0.2")	61.00%

CBR	DEDIS	EÑO =	57.00%

FACULTAD DE INGENIERÍA
ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL
"ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO
NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN)"

ABRACION

PESO INICIAL

5000 gr.

PESO FINAL

2878 gr.

Retenido tamiz Nº 12

ABRACION =

5000 - 2878 *100

5000

ABRACION =

42.44%

4.3 ESTUDIO HIDROLÓGICO.

4.3.1 DETERMINACIÓN DEL CAUDAL DE DISEÑO

Para determinar el caudal de diseño para las diferentes obras de arte, y por no contar con datos mismos de la zona se ha creído conveniente hacer una transposición de datos de la Estación Weberbauer, aplicando la ecuación 26, por lo que nos apoyamos en la ecuación 24, 25, y también teniendo la altitud media de la zona a transponer los datos.

CÁLCULO PARA EL DISEÑO DE CUNETAS

➢ MICROCUENCA (q-01):

TABLA 4.3.1 CÁLCULO DE LA ALTITUD MEDIA (CUNETAS)

MICROCUENCA	COTAS		COTA	AREA	AREA	Hi*Ai	ALTITUD
	(m. s.	n. m.)	PROMEDIO	PARCIAL	PARCIAL		MEDIA
Cn	Но	Hf	Hi (m)	Ai (m2)	Ai (Ha)	(m*Ha)	H (m)
	3177.00	3200.00	3188.50	15564.30	1.556	4962.677	
	3200.00	3250.00	3225.00	13702.07	1.370	4418.918	
	3250.00	3300.00	3275.00	16867.12	1.687	5523.982	
q-01	3300.00	3350.00	3325.00	15822.87	1.582	5261.104	3294.131
·	3350.00	3400.00	3375.00	11115.98	1.112	3751.643	
	3400.00	3450.00	3425.00	5939.90	0.594	2034.416	
	3450.00	3500.00	3475.00	4142.71	0.414	1439.592	

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL "ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO IÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN)'

TABLA 4.3.2

DATOS GENERALES - ESTACIÓN AUGUSTO WEBWERBAUER

INFORMACION METEOROLOGICA

ESTACION: AUGUSTO WEBERBAUER

CUENCA: GALLITO CIEGO

Dpto: Cajamarca Prov: Cajamarca

CUADRO Nº 3.38. DATOS GENERALES

Precip. Má	xima en 24 horas
AÑO	MAXIMA
1975	37.90
1976	72.90
1977	40.50
1978	14.80
1979	28.00
1980	28.80
1981	39.30
1982	30.50
1983	29.80
1984	27.60
1985	19.80
1986	27.40
1987	24.30
1988	18.20
1989	30.00
1990	24.70
1991	29.70
1992	17.70
1993	22.50
1994	28.50
1995	20.60
1996	35.10
1997	27.60
1998	31.70
1999	38.80
2000	36.10
2001	28.20
2002	22.30
2003	20.80
2004	28.10
2005	20.20
2006	20.60
2007	25.40
2008	27.00
2009	22.20

FUENTE: SENAMHI

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN)"

TABLA 4.3.3

LLUVIAS MAXIMAS (mm), ESTACION WEBERBAUER

AÑO	P.Máx.24h.	DURACION EN MINUTOS						
ANO	r.Wax.z-II.	5	10	15	30	60	120	
1975	37.90	9.20	10.94	12.11	14.40	17.12	20.36	
1976	72.90	17.70	21.04	23.29	27.70	32.94	39.17	
1977	40.50	9.83	11.69	12.94	15.39	18.30	21.76	
1978	14.80	3.59	4.27	4.73	5.62	6.69	7.95	
1979	28.00	6.80	8.08	8.95	10.64	12.65	15.04	
1980	28.80	6.99	8.31	9.20	10.94	13.01	15.47	
1981	39.30	9.54	11.34	12.56	14.93	17.76	21.12	
1982	30.50	7.40	8.80	9.74	11.59	13.78	16.39	
1983	29.80	7.23	8.60	9.52	11.32	13.46	16.01	
1984	27.60	6.70	7.97	8.82	10.49	12.47	14.83	
1985	19.80	4.81	5.72	6.33	7.52	8.95	10.64	
1986	27.40	6.65	7.91	8.75	10.41	12.38	14.72	
1987	24.30	5.90	7.01	7.76	9.23	10.98	13.06	
1988	18.20	4.42	5.25	5.81	6.91	8.22	9.78	
1989	30.00	7.28	8.66	9.58	11.40	13.55	16.12	
1990	24.70	6.00	7.13	7.89	9.38	11.16	13.27	
1991	29.70	7.21	8.57	9.49	11.28	13.42	15.96	
1992	17.70	4.30	5.11	5.65	6.72	8.00	9.51	
1993	22.50	5.46	6.50	7.19	8.55	10.17	12.09	
1994	28.50	6.92	8.23	9.10	10.83	12.88	15.31	
1995	20.60	5.00	5.95	6.58	7.83	9.31	11.07	
1996	35.10	8.52	10.13	11.21	13.34	15.86	18.86	
1997	27.60	6.70	7.97	8.82	10.49	12.47	14.83	
1998	31.70	7.70	9.15	10.13	12.04	14.32	17.03	
1999	38.80	9.42	11.20	12.40	14.74	17.53	20.85	
2000	36.10	8.76	10.42	11.53	13.72	16.31	19.40	
2001	28.20	6.85	8.14	9.01	10.71	12.74	15.15	
2002	22.30	5.41	6.44	7.12	8.47	10.08	11.98	
2003	20.80	5.05	6.00	6.65	7.90	9.40	11.18	
2004	28.10	6.82	8.11	8.98	10.68	12.70	15.10	
2005	20.20	4.90	5.83	6.45	7.67	9.13	10.85	
2006	20.60	5.00	5.95	6.58	7.83	9.31	11.07	
2007	25.40	6.17	7.33	8.11	9.65	11.48	13.65	
2008	27.00	6.55	7.79	8.63	10.26	12.20	14.51	
2009	22.20	5.39	6.41	7.09	8.43	10.03	11.93	

TABLA 4.3.4

INTENSIDADES MAXIMAS ORDENADAS (mm/h): ESTACION WEBERBAUER

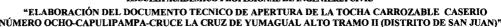
LATITUD: 07°10' DEP. CAJAM. CAJAM. LONGITUD: 28°30' PROV. ALTITUD: 2536 DIST. CAJAM.

ALIII		SIDADES MAX	(IMAS (mm/h): ESTACION	WEBERBAUE	R	
AÑO	D 445 245			URACION EN	MINUTOS		
ANU	P.Máx.24h.	5	10	15	30	60	120
1	72.90	212.35	126.27	93.16	55.39	32.94	19.58
2	40.50	117.97	70.15	51.75	30.77	18.30	10.88
3	39.30	114.48	68.07	50.22	29.86	17.76	10.56
4	38.80	113.02	67.20	49.58	29.48	17.53	10.42
5	37.90	110.40	65.64	48.43	28.80	17.12	10.18
6	36.10	105.16	62.53	46.13	27.43	16.31	9.70
7	35.10	102.24	60.79	44.85	26.67	15.86	9.43
8	31.70	92.34	54.91	40.51	24.09	14.32	8.52
9	30.50	88.84	52.83	38.98	23.17	13.78	8.19
10	30.00	87.39	51.96	38.34	22.80	13.55	8.06
11	29.80	86.81	51.62	38.08	22.64	13.46	8.01
12	29.70	86.51	51.44	37.95	22.57	13.42	7.98
13	28.80	83.89	49.88	36.80	21.88	13.01	7.74
14	28.50	83.02	49.36	36.42	21.66	12.88	7.66
15	28.20	82.15	48.84	36.04	21.43	12.74	7.58
16	28.10	81.85	48.67	35.91	21.35	12.70	7.55
17	28.00	81.56	48.50	35.78	21.28	12.65	7.52
18	27.60	80.40	47.80	35.27	20.97	12.47	7.41
19	27.60	80.40	47.80	35.27	20.97	12.47	7.41
20	27.40	79.81	47.46	35.01	20.82	12.38	7.36
21	24.70	71.95	42.78	31.56	18.77	11.16	6.64
22	24.30	70.78	42.09	31.05	18.46	10.98	6.53
23	22.50	65.54	38.97	28.75	17.10	10.17	6.04
24	22.30	64.96	38.62	28.50	16.94	10.08	5.99
25	20.80	60.59	36.03	26.58	15.80	9.40	5.59
26	20.60	60.01	35.68	26.32	15.65	9.31	5.53
27	20.20	58.84	34.99	25.81	15.35	9.13	5.43
28	19.80	57.68	34.29	25.30	15.04	8.95	5.32
29	18.20	53.02	31.52	23.26	13.83	8.22	4.89
30	17.70	51.56	30.66	22.62	13.45	8.00	4.75
31	14.80	43.11	25.63	18.91	11.25	6.69	3.98
32	11.90	34.66	20.61	15.21	9.04	5.38	3.20
33	9.00	26.22	15.59	11.50	6.84	4.07	2.42
34	6.10	17.77	10.57	7.80	4.63	2.76	1.64
35	3.20	9.32	5.54	4.09	2.43	1.45	0.86

FACULTAD DE INGENIERÍA

TABLA 4.3.5

DATOS TRANSPUESTOS A LA ZONA DE ESTUDIO DE CARRETERA CON UNA ALTITUD MEDIA


3300 35

H:		m						
	INTENSIDA	ADES MAXIN	MAS (mm/h):		STUDIO (CU			
AÑO	P.Máx.24h.	DURACION EN MINUTOS						
		5	10	15	30	60	120	
1	72.90	276.36	164.32	121.24	72.09	42.86	25.49	
2	40.50	153.53	91.29	67.35	40.05	23.81	14.16	
3	39.30	148.98	88.59	65.36	38.86	23.11	13.74	
4	38.80	147.09	87.46	64.53	38.37	22.81	13.56	
5	37.90	143.68	85.43	63.03	37.48	22.28	13.25	
6	36.10	136.85	81.37	60.04	35.70	21.23	12.62	
7	35.10	133.06	79.12	58.37	34.71	20.64	12.27	
8	31.70	120.17	71.45	52.72	31.35	18.64	11.08	
9	30.50	115.62	68.75	50.72	30.16	17.93	10.66	
10	30.00	113.73	67.62	49.89	29.67	17.64	10.49	
11	29.80	112.97	67.17	49.56	29.47	17.52	10.42	
12	29.70	112.59	66.95	49.39	29.37	17.46	10.38	
13	28.80	109.18	64.92	47.90	28.48	16.93	10.07	
14	28.50	108.04	64.24	47.40	28.18	16.76	9.96	
15	28.20	106.90	63.57	46.90	27.89	16.58	9.86	
16 ·	28.10	106.52	63.34	46.73	27.79	16.52	9.82	
17	28.00	106.15	63.11	46.57	27.69	16.46	9.79	
18	27.60	104.63	62.21	45.90	27.29	16.23	9.65	
19	27.60	104.63	62.21	45.90	27.29	16.23	9.65	
20	27.40	103.87	61.76	45.57	27.09	16.11	9.58	
21	24.70	93.64	55.68	41.08	24.42	14.52	8.64	
22	24.30	92.12	54.77	40.41	24.03	14.29	8.50	
23	22.50	85.30	50.72	37.42	22.25	13.23	7.87	
24	22.30	84.54	50.27	37.09	22.05	13.11	7.80	
25	20.80	78.85	46.89	34.59	20.57	12.23	7.27	
26	20.60	78.09	46.43	34.26	20.37	12.11	7.20	
27	20.20	76.58	45.53	33.59	19.97	11.88	7.06	
28	19.80	75.06	44.63	32.93	19.58	11.64	6.92	
29	18.20	68.99	41.02	30.27	18.00	10.70	6.36	
30	17.70	67.10	39.90	29.44	17.50	10.41	6.19	
31	14.80	56.11	33.36	24.61	14.63	8.70	5.17	
32	11.90	45.11	26.82	19.79	11.77	7.00	4.16	
33	9.00	34.12	20.29	14.97	8.90	5.29	3.15	
34	6.10	23.12	13.75	10.14	6.03	3.59	2.13	
35	3.20	12.13	7.21	5.32	3.16	1.88	1.12	

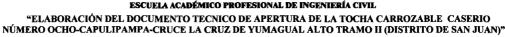
El estudio consistió en: Ajustar estos datos a distribuciones de valores extremos, haciendo uso del modelo Gumbel (ecuación 27, 28, 29,30, 31 y 32). En las siguientes tablas se muestran los modelamientos de intensidades para 5, 10, 30, 60 y 120 minutos de duración:

Nacronal Control of the Control of t

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

TABLA 4.3.6 MODELO GUMBEL PARA 5 MINUTOS

Intensidades P(x<X)P(x < X)|P(x<X)-Tr años F(x<X)m Ord. Desc. F(x<X)1/P(x)m/(N+1)1-P(x>X) 275.84 0.9722 0.0235 36.00 1 0.0278 0.9958 2 153.24 0.0556 0.9444 0.8781 0.0663 18.00 3 148.70 0.0833 0.9167 0.8629 0.0538 12.00 0.8560 4 146.81 0.1111 0.8889 0.0329 9.00 5 143.40 0.1389 0.8611 0.8428 0.0183 7.20 6 136.59 0.1667 0.8333 0.8132 0.0202 6.00 7 132.81 0.1944 0.8056 0.7946 0.0109 5.14 8 119.95 0.2222 0.7778 0.7195 4.50 0.0583 9 0.2500 0.7500 0.6882 0.0618 4.00 115.40 10 113.51 0.2778 0.7222 0.0479 3.60 0.6744 11 112.76 0.3056 0.0257 3.27 0.6944 0.6687 12 112.38 0.3333 0.0008 3.00 0.6667 0.6659 13 2.77 108.97 0.3611 0.6389 0.6394 0.0005 14 107.84 0.3889 0.6111 2.57 0.6303 0.0191 15 106.70 0.4167 0.5833 0.6210 0.0376 2.40 16 106.32 0.4444 0.5556 0.6178 0.0623 2.25 17 105.95 0.4722 0.5278 0.6147 0.0869 2.12 18 104.43 0.5000 0.5000 0.6019 0.1019 2.00 19 104.43 0.5278 0.4722 0.1297 1.89 0.6019 20 103.68 0.5556 0.4444 0.5954 0.1510 1.80 21 93.46 0.5833 0.4167 0.5018 0.0851 1.71 22 91.95 0.6111 0.38890.4870 0.0982 1.64 23 85.13 0.6389 1.57 0.3611 0.4189 0.0578 24 84.38 0.6667 0.3333 0.4112 0.0779 1.50 25 78.70 0.6944 0.3056 0.3530 0.0475 1.44 26 77.95 0.7222 0.2778 0.3453 0.0675 1.38 27 76.43 0.7500 0.2500 0.3298 0.0798 1.33 28 74.92 0.7778 0.2222 0.3144 0.0921 1.29 29 68.86 0.8056 0.1944 0.2540 0.0596 1.24 1.20 30 66.97 0.8333 0.1667 0.2358 0.0692 31 56.00 0.1389 0.0016 0.8611 0.1405 1.16 32 1.13 45.03 0.8889 0.1111 0.0695 0.0416 33 0.0267 0.0566 1.09 34.05 0.9167 0.0833 34 1.06 23.08 0.9444 0.0556 0.0073 0.0483 35 12.11 0.9722 0.0278 0.0013 0.0265 1.03


Max|P(x<X)-F(x<X)|

0.1510

Promedio	100.8213		
Desv. Est.	45.9370		
а	0.0279		
b	80.1496		

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

TABLA 4.3.7

MODELO GUMBEL PARA 10 MINUTOS

	Intensidades	P(x <x)< th=""><th>P(x<x)< th=""><th>E/v/V)</th><th>IP(x<x)-< th=""><th>Tr años</th></x)-<></th></x)<></th></x)<>	P(x <x)< th=""><th>E/v/V)</th><th>IP(x<x)-< th=""><th>Tr años</th></x)-<></th></x)<>	E/v/V)	IP(x <x)-< th=""><th>Tr años</th></x)-<>	Tr años
m	Ord. Desc.	m/(N+1)	1-P(x>X)	F(x <x)< th=""><th>F(x<x) < th=""><th>1/P(x)</th></x) <></th></x)<>	F(x <x) < th=""><th>1/P(x)</th></x) <>	1/P(x)
1	164.01	0.0278	0.9722	0.9958	0.0235	36.00
2	91.12	0.0556	0.9444	0.8781	0.0663	18.00
3	88.42	0.0833	0.9167	0.8629	0.0538	12.00
4	87.29	0.1111	0.8889	0.8560	0.0329	9.00
5	85.27	0.1389	0.8611	0.8428	0.0183	7.20
6	81.22	0.1667	0.8333	0.8132	0.0202	6.00
7	78.97	0.1944	0.8056	0.7946	0.0109	5.14
8	71.32	0.2222	0.7778	0.7195	0.0583	4.50
9	68.62	0.2500	0.7500	0.6882	0.0618	4.00
10	67.50	0.2778	0.7222	0.6744	0.0479	3.60
11	67.05	0.3056	0.6944	0.6687	0.0257	3.27
12	66.82	0.3333	0.6667	0.6659	0.0008	3.00
13	64.80	0.3611	0.6389	0.6394	0.0005	2.77
14	64.12	0.3889	0.6111	0.6303	0.0191	2.57
15	63.45	0.4167	0.5833	0.6210	0.0376	2.40
16	63.22	0.4444	0.5556	0.6178	0.0623	2.25
17	63.00	0.4722	0.5278	0.6147	0.0869	2.12
18	62.10	0.5000	0.5000	0.6019	0.1019	2.00
19	62.10	0.5278	0.4722	0.6019	0.1297	1.89
20	61.65	0.5556	0.4444	0.5954	0.1510	1.80
21	55.57	0.5833	0.4167	0.5018	0.0851	1.71
22	54.67	0.6111	0.3889	0.4870	0.0982	1.64
23	50.62	0.6389	0.3611	0.4189	0.0578	1.57
24	50.17	0.6667	0.3333	0.4112	0.0779	1.50
25	46.80	0.6944	0.3056	0.3530	0.0475	1.44
26	46.35	0.7222	0.2778	0.3453	0.0675	1.38
27	45.45	0.7500	0.2500	0.3298	0.0798	1.33
28	44.55	0.7778	0.2222	0.3144	0.0921	1.29
29	40.95	0.8056	0.1944	0.2540	0.0596	1.24
30	39.82	0.8333	0.1667	0.2358	0.0692	1.20
31	33.30	0.8611	0.1389	0.1405	0.0016	1.16
32	26.77	0.8889	0.1111	0.0695	0.0416	1.13
33	20.25	0.9167	0.0833	0.0267	0.0566	1.09
34	13.72	0.9444	0.0556	0.0073	0.0483	1.06
35	7.20	0.9722	0.0278	0.0013	0.0265	1.03
			Max P(x<	X)-F(x <x) < td=""><td>0.1510</td><td></td></x) <>	0.1510	

Promedio	59.9487
Desv. Est.	27.3143
а	0.0470
b	47.6572

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

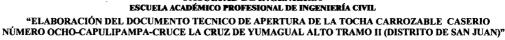
"ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN)"

TABLA 4.3.8

MODELO GUMBEL PARA 15 MINUTOS

	Intensidades	P(x <x)< th=""><th>P(x<x)< th=""><th>F/ 4V)</th><th>IP(x<x)-< th=""><th>Tr años</th></x)-<></th></x)<></th></x)<>	P(x <x)< th=""><th>F/ 4V)</th><th>IP(x<x)-< th=""><th>Tr años</th></x)-<></th></x)<>	F/ 4V)	IP(x <x)-< th=""><th>Tr años</th></x)-<>	Tr años
m	Ord. Desc.	m/(N+1)	1-P(x>X)	F(x <x)< th=""><th>F(x<x) < th=""><th>1/P(x)</th></x) <></th></x)<>	F(x <x) < th=""><th>1/P(x)</th></x) <>	1/P(x)
1	121.01	0.0278	0.9722	0.9958	0.0235	36.00
2	67.23	0.0556	0.9444	0.8781	0.0663	18.00
3	65.23	0.0833	0.9167	0.8629	0.0538	12.00
4	64.40	0.1111	0.8889	0.8560	0.0329	9.00
. 5	62.91	0.1389	0.8611	0.8428	0.0183	7.20
6	59.92	0.1667	0.8333	0.8132	0.0202	6.00
7	58.26	0.1944	0.8056	0.7946	0.0109	5.14
8	52.62	0.2222	0.7778	0.7195	0.0583	4.50
9	50.63	0.2500	0.7500	0.6882	0.0618	4.00
10	49.80	0.2778	0.7222	0.6744	0.0479	3.60
11	49.47	0.3056	0.6944	0.6687	0.0257	3.27
12	49.30	0.3333	0.6667	0.6659	0.0008	3.00
13	47.81	0.3611	0.6389	0.6394	0.0005	2.77
14	47.31	0.3889	0.6111	0.6303	0.0191	2.57
15	46.81	0.4167	0.5833	0.6210	0.0376	2.40
16	46.64	0.4444	0.5556	0.6178	0.0623	2.25
17	46.48	0.4722	0.5278	0.6147	0.0869	2.12
18	45.81	0.5000	0.5000	0.6019	0.1019	2.00
19	45.81	0.5278	0.4722	0.6019	0.1297	1.89
20	45.48	0.5556	0.4444	0.5954	0.1510	1.80
21	41.00	0.5833	0.4167	0.5018	0.0851	1.71
22	40.34	0.6111	0.3889	0.4870	0.0982	1.64
23	37.35	0.6389	0.3611	0.4189	0.0578	1.57
24	37.02	0.6667	0.3333	0.4112	0.0779	1.50
25	34.53	0.6944	0.3056	0.3530	0.0475	1.44
26	34.19	0.7222	0.2778	0.3453	0.0675	1.38
27	33.53	0.7500	0.2500	0.3298	0.0798	1.33
28	32.87	0.7778	0.2222	0.3144	0.0921	1.29
29	30.21	0.8056	0.1944	0.2540	0.0596	1.24
30	29.38	0.8333	0.1667	0.2358	0.0692	1.20
31	24.57	0.8611	0.1389	0.1405	0.0016	1.16
32	19.75	0.8889	0.1111	0.0695	0.0416	1.13
33	14.94	0.9167	0.0833	0.0267	0.0566	1.09
34	10.13	0.9444	0.0556	0.0073	0.0483	1.06
35	5.31	0.9722	0.0278	0.0013	0.0265	1.03
			Max P(x<)	X)-F(x <x) < td=""><td>0.1510</td><td></td></x) <>	0.1510	

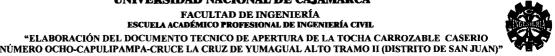
 Promedio
 44.2294


 Desv. Est.
 20.1522

 a
 0.0636

 b
 35.1609

FACULTAD DE INGENIERÍA


TABLA 4.3.9

MODELO GUMBEL PARA 30 MINUTOS

m	Intensidades	P(x <x)< th=""><th>P(x<x)< th=""><th>E/v./V\</th><th> P(x<x)-< th=""><th>Tr años</th></x)-<></th></x)<></th></x)<>	P(x <x)< th=""><th>E/v./V\</th><th> P(x<x)-< th=""><th>Tr años</th></x)-<></th></x)<>	E/v./V\	P(x <x)-< th=""><th>Tr años</th></x)-<>	Tr años
111	Ord. Desc.	m/(N+1)	1-P(x>X)	F(x <x)< th=""><th>F(x<x) < th=""><th>1/P(x)</th></x) <></th></x)<>	F(x <x) < th=""><th>1/P(x)</th></x) <>	1/P(x)
1	71.95	0.0278	0.9722	0.9958	0.0235	36.00
2	39.97	0.0556	0.9444	0.8781	0.0663	18.00
3	38.79	0.0833	0.9167	0.8629	0.0538	12.00
4	38.30	0.1111	0.8889	0.8560	0.0329	9.00
5	37.41	0.1389	0.8611	0.8428	0.0183	7.20
6	35.63	0.1667	0.8333	0.8132	0.0202	6.00
7	34.64	0.1944	0.8056	0.7946	0.0109	5.14
8	31.29	0.2222	0.7778	0.7195	0.0583	4.50
9	30.10	0.2500	0.7500	0.6882	0.0618	4.00
10	29.61	0.2778	0.7222	0.6744	0.0479	3.60
11	29.41	0.3056	0.6944	0.6687	0.0257	3.27
12	29.31	0.3333	0.6667	0.6659	0.0008	3.00
13	28.43	0.3611	0.6389	0.6394	0.0005	2.77
14	28.13	0.3889	0.6111	0.6303	0.0191	2.57
15	27.83	0.4167	0.5833	0.6210	0.0376	2.40
16	27.73	0.4444	0.5556	0.6178	0.0623	2.25
17	27.64	0.4722	0.5278	0.6147	0.0869	2.12
18	27.24	0.5000	0.5000	0.6019	0.1019	2.00
19	27.24	0.5278	0.4722	0.6019	0.1297	1.89
20	27.04	0.5556	0.4444	0.5954	0.1510	1.80
21	24.38	0.5833	0.4167	0.5018	0.0851	1.71
22	23.98	0.6111	0.3889	0.4870	0.0982	1.64
23	22.21	0.6389	0.3611	0.4189	0.0578	1.57
24	22.01	0.6667	0.3333	0.4112	0.0779	1.50
25	20.53	0.6944	0.3056	0.3530	0.0475	1.44
26	20.33	0.7222	0.2778	0.3453	0.0675	1.38
27	19.94	0.7500	0.2500	0.3298	0.0798	1.33
28	19.54	0.7778	0.2222	0.3144	0.0921	1.29
29	17.96	0.8056	0.1944	0.2540	0.0596	1.24
30	17.47	0.8333	0.1667	0.2358	0.0692	1.20
31	14.61	0.8611	0.1389	0.1405	0.0016	1.16
32	11.75	0.8889	0.1111	0.0695	0.0416	1.13
33	8.88	0.9167	0.0833	0.0267	0.0566	1.09
34	6.02	0.9444	0.0556	0.0073	0.0483	1.06
35	3.16	0.9722	0.0278	0.0013	0.0265	1.03
				X)-F(x <x) < td=""><td>0.1510</td><td></td></x) <>	0.1510	

26.2990 Promedio Desv. Est. 11.9825 0.1070 а 20.9068

TABLA 4.3.10

MODELO GUMBEL PARA 60 MINUTOS

	Intensidades	P(x <x)< th=""><th>P(x<x)< th=""><th></th><th>[P(x<x)-< th=""><th>Tr</th></x)-<></th></x)<></th></x)<>	P(x <x)< th=""><th></th><th>[P(x<x)-< th=""><th>Tr</th></x)-<></th></x)<>		[P(x <x)-< th=""><th>Tr</th></x)-<>	Tr	
m	Ord. Desc.	m/(N+1)	1-P(x>X)	F(x <x)< th=""><th>F(x<x) < th=""><th colspan="2">años 1/P(x)</th></x) <></th></x)<>	F(x <x) < th=""><th colspan="2">años 1/P(x)</th></x) <>	años 1/P(x)	
1	42.78	0.0278	0.9722	0.9958	0.0235	36.00	
2	23.77	0.0556	0.9444	0.8781	0.0663	18.00	
3	23.06	0.0833	0.9167	0.8629	0.0538	12.00	
4	22.77	0.1111	0.8889	0.8560	0.0329	9.00	
5	22.24	0.1389	0.8611	0.8428	0.0183	7.20	
6	21.19	0.1667	0.8333	0.8132	0.0202	6.00	
7	20.60	0.1944	0.8056	0.7946	0.0109	5.14	
8	18.60	0.2222	0.7778	0.7195	0.0583	4.50	
9	17.90	0.2500	0.7500	0.6882	0.0618	4.00	
10	17.61	0.2778	0.7222	0.6744	0.0479	3.60	
11	17.49	0.3056	0.6944	0.6687	0.0257	3.27	
12	17.43	0.3333	0.6667	0.6659	0.0008	3.00	
13	16.90	0.3611	0.6389	0.6394	0.0005	2.77	
14	16.73	0.3889	0.6111	0.6303	0.0191	2.57	
15	16.55	0.4167	0.5833	0.6210	0.0376	2.40	
16	16.49	0.4444	0.5556	0.6178	0.0623	2.25	
17	16.43	0.4722	0.5278	0.6147	0.0869	2.12	
18	16.20	0.5000	0.5000	0.6019	0.1019	2.00	
19	16.20	0.5278	0.4722	0.6019	0.1297	1.89	
20	16.08	0.5556	0.4444	0.5954	0.1510	1.80	
21	14.50	0.5833	0.4167	0.5018	0.0851	1.71	
22	14.26	0.6111	0.3889	0.4870	0.0982	1.64	
23	13.20	0.6389	0.3611	0.4189	0.0578	1.57	
24	13.09	0.6667	0.3333	0.4112	0.0779	1.50	
25	12.21	0.6944	0.3056	0.3530	0.0475	1.44	
26	12.09	0.7222	0.2778	0.3453	0.0675	1.38	
27	11.85	0.7500	0.2500	0.3298	0.0798	1.33	
28	11.62	0.7778	0.2222	0.3144	0.0921	1.29	
29	10.68	0.8056	0.1944	0.2540	0.0596	1.24	
30	10.39	0.8333	0.1667	0.2358	0.0692	1.20	
31	8.69	0.8611	0.1389	0.1405	0.0016	1.16	
32	6.98	0.8889	0.1111	0.0695	0.0416	1.13	
33	5.28	0.9167	0.0833	0.0267	0.0566	1.09	
34	3.58	0.9444	0.0556	0.0073	0.0483	1.06	
35	1.88	0.9722	0.0278	0.0013	0.0265	1.03	
				X)-F(x <x) < td=""><td>0.1510</td><td>1</td></x) <>	0.1510	1	

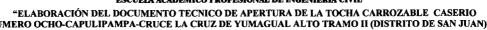
Promedio 15.6375

Desv. Est. 7.1249

a 0.1800

b 12.4313

TABLA 4.3.11


MODELO GUMBEL PARA 120 MINUTOS

m	Intensidades Ord. Desc.	P(x <x)< th=""><th>P(x<x)< th=""><th>F(x<x)< th=""><th>IP(x<x)-< th=""><th>Tr años</th></x)-<></th></x)<></th></x)<></th></x)<>	P(x <x)< th=""><th>F(x<x)< th=""><th>IP(x<x)-< th=""><th>Tr años</th></x)-<></th></x)<></th></x)<>	F(x <x)< th=""><th>IP(x<x)-< th=""><th>Tr años</th></x)-<></th></x)<>	IP(x <x)-< th=""><th>Tr años</th></x)-<>	Tr años
		m/(N+1)	1-P(x>X)	` `	F(x <x) < th=""><th>1/P(x)</th></x) <>	1/P(x)
1	25.44	0.0278	0.9722	0.9958	0.0235	36.00
2	14.13	0.0556	0.9444	0.8781	0.0663	18.00
3	13.71	0.0833	0.9167	0.8629	0.0538	12.00
4	13.54	0.1111	0.8889	0.8560	0.0329	9.00
5	13.23	0.1389	0.8611	0.8428	0.0183	7.20
6	12.60	0.1667	0.8333	0.8132	0.0202	6.00
7	12.25	0.1944	0.8056	0.7946	0.0109	5.14
8	11.06	0.2222	0.7778	0.7195	0.0583	4.50
9	10.64	0.2500	0.7500	0.6882	0.0618	4.00
10	10.47	0.2778	0.7222	0.6744	0.0479	3.60
11	10.40	0.3056	0.6944	0.6687	0.0257	3.27
12	10.36	0.3333	0.6667	0.6659	0.0008	3.00
13	10.05	0.3611	0.6389	0.6394	0.0005	2.77
14	9.95	0.3889	0.6111	0.6303	0.0191	2.57
15	9.84	0.4167	0.5833	0.6210	0.0376	2.40
16	9.81	0.4444	0.5556	0.6178	0.0623	2.25
17	9.77	0.4722	0.5278	0.6147	0.0869	2.12
18	9.63	0.5000	0.5000	0.6019	0.1019	2.00
19	9.63	0.5278	0.4722	0.6019	0.1297	1.89
20	9.56	0.5556	0.4444	0.5954	0.1510	1.80
21	8.62	0.5833	0.4167	0.5018	0.0851	1.71
22	8.48	0.6111	0.3889	0.4870	0.0982	1.64
23	7.85	0.6389	0.3611	0.4189	0.0578	1.57
24	7.78	0.6667	0.3333	0.4112	0.0779	1.50
25	7.26	0.6944	0.3056	0.3530	0.0475	1.44
26	7.19	0.7222	0.2778	0.3453	0.0675	1.38
27	7.05	0.7500	0.2500	0.3298	0.0798	1.33
28	6.91	0.7778	0.2222	0.3144	0.0921	1.29
29	6.35	0.8056	0.1944	0.2540	0.0596	1.24
30	6.18	0.8333	0.1667	0.2358	0.0692	1.20
31	5.16	0.8611	0.1389	0.1405	0.0016	1.16
32	4.15	0.8889	0.1111	0.0695	0.0416	1.13
33	3.14	0.9167	0.0833	0.0267	0.0566	1.09
34	2.13	0.9444	0.0556	0.0073	0.0483	1.06
35	1.12	0.9722	0.0278	0.0013	0.0265	1.03
	<u> </u>		MaxIP(x<)	X)-F(x <x)[< td=""><td>0.1510</td><td></td></x)[<>	0.1510	

9.2981 Promedio Desv. 4.2365 Est. 0.3027 а 7.3917 b

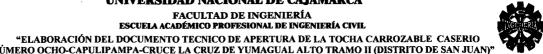
FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

Posteriormente se comparó las diferencias existentes entre la probabilidad empírica de los datos de la muestra y la probabilidad teórica, tomando el valor máximo del valor absoluto, de la diferencia entre el valor observado y el valor de la recta teórica del modelo, es decir: Δ máx= máx | F(x) - p(x) |

Donde:

- Δ = Es el estadístico de Smirnov Kolmogorov, cuyo valor es igual a la diferencia máxima existente entre la probabilidad ajustada y la probabilidad empírica.
- F(x) = Probabilidad de la distribución de ajuste.
- P(x) = Probabilidad de datos no agrupados, denominados también frecuencia acumulada.

En la Tabla 4.3.12 se muestran los valores críticos estadísticos, del cual usaremos un nivel de significación del 5 % (nivel de significación recomendado para estudios hidrológicos), y para un Obteniendo un tamaño de muestra igual a 35 (datos hidrológicos desde 1975 al 2009) Do = 0.2300


TABLA 4.3.12

Valores críticos de Do del estadístico Smirnov - Kolmogorov, para varios valores de N y valores de significación

TAMAÑO MUESTRAL	NIVEL DE SIGNIFICACIÓN					
N	0.20	0.10	0.05	0.01		
5	0.45	0.51	0.56	0.67		
10	0.32	0.37	0.41	0.49		
15	0.27	0.30	0.34	0.40		
20	0.23	0.26	0.29	0.36		
25	0.21	0.24	0.27	0.32		
30	0.19	0.22	0.24	0.29		
35	0.18	0.20	0.23	0.27		
40	0.17	0.19	0.21	0.25		
45	0.16	0.18	0.20	0.24		
50	0.15	0.17	0.19	0.23		
N > 50	$\frac{1.07}{\sqrt{N}}$	$\frac{1.22}{\sqrt{N}}$	1.36 √N	1.63 √N		

FUENTE: Hidrología Estadística, Máximo Villón B. Pag. 108

En la Tabla 4.3.13 se muestra el criterio de decisión tomado, considerando que si el Máx |P(x<X)-F(x<X) | < Do, entonces el ajuste es bueno al nivel de significación seleccionado.

TABLA 4.3.13 PRUEBA DE BONDAD DE AJUSTE PARA 5,10,15,30,60 y 120 MINUTOS

Si:	N = 35		
Periodo de Duración (min)	Estadístico	Valor Crítico Do Para a =	Criterio de
	Smirnov-Kolmogorov	0,05	Decisión
5	0.1510	0.2300	O. K.
10	0.1510	0.2300	O. K.
15	0.1510	0.2300	O. K.
30	0.1510	0.2300	O. K.
60	0.1510	0.2300	O. K.
120	0.1510	0.2300	O. K.

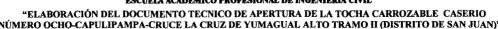
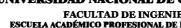

Luego calculamos las Intensidades máximas para diferentes periodos de retorno, vida útil y riesgo de falla, haciendo uso de la ecuación de predicción del modelo. (Ver Tabla 4.3.14)

TABLA 4.3.14 MODELAMIENTO DE INTENSIDADES EN FUNCIÓN DE "N" y "J"

	ESTACIÓN ZONA DE ESTUDIO								
PARÁMETROS	5 MIN	10 MIN	15 MIN	30 MIN	60 MIN	120 MIN			
Promedio	100.82	59.95	44.23	26.30	15.64	9.30			
Desv. Est.	45.94	27.31	20.15	11.98	7.12	2.95			
а	0.03	0.05	0.06	0.11	0.18	0.44			
b	80.15	47.66	35.16	20.91	12.43	7.97			

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

TABLA 4.3.15 CÁLCULO DE INTENSIDADES


VIDA ÚTIL AÑOS	RIESGO DE FALLA J(%)	TIEMPO DE RETORNO	INTENSIDADES		$X = \beta - \frac{1}{\alpha} \times Ln \times \left[-Ln \times \left(1 - \frac{1}{Tr} \right) \right]$				
"N"	J(%)	Tr(AÑOS)	5 MIN	10 MIN	15 MIN	30 MIN	60 MIN	120 MIN	
	10	47.96	218.40	129.86	95.81	56.97	33.87	16.84	
	20	22.91	191.52	113.88	84.02	49.96	29.71	15.12	
5	30	14.52	174.72	103.89	76.65	45.58	27.10	14.04	
J	40	10.30	161.86	96.24	71.01	42.22	25.10	13.21	
	50	7.73	150.92	89.74	66.21	39.37	23.41	12.51	
	60	5.97	140.93	83.80	61.82	36.76	21.86	11.87	
	10	95.41	243.23	144.62	106.70	63.45	37.72	18.43	
	20	45.32	216.35	128.64	94.91	56.43	33.56	16.71	
10	30	28.54	199.55	118.65	87.54	52.05	30.95	15.63	
10	40	20.08	186.68	111.00	81.90	48.70	28.95	14.81	
	50	14.93	175.75	104.50	77.10	45.84	27.26	14.10	
	60	11.42	165.76	98.56	72.72	43.24	25.71	13.46	
	10	190.32	268.06	159.39	117.59	69.92	41.58	20.03	
	20	90.13	241.18	143.40	105.80	62.91	37.41	18.30	
20	30	56.57	224.38	133.42	98.43	58.53	34.80	17.22	
20	40	39.65	211.51	125.77	92.79	55.17	32.81	16.40	
	50	29.36	200.58	119.27	87.99	52.32	31.11	15.70	
	60	22.33	190.58	113.32	83.61	49.71	29.56	15.06	

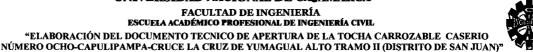

Para el cálculo de las Intensidades máximas de las diferentes estructuras hidráulicas se ha generado una curva modelada de intensidades - duración - frecuencia según el registro histórico de la Estación Weberbauer para diferentes periodos de retorno, vida útil y riesgo de falla para 5, 10, 15, 30, 60 y 120 mín.

TABLA 4.3.16

MODELAMIENTO DE INTENSIDADES

MODELA	MODELAMIENTO DE INTENSIDADES PARA UNA CARRETERA EN FUNCIÓN DE LA VIDA ÚTIL Y TIEMPO DE RETORNO							
OBRA DE ARTE	VIDA ÚTIL (años)	TIEMPO DE RETORNO (años)	5 MIN	10 MIN	15 MIN	30 MIN	60 MIN	120 MIN
Cunetas	5	7.73	150.92	89.74	66.21	39.37	23.41	12.51

Para el uso de la gráfica 4.3.1 se calculó previamente el tiempo de concentración mediante la ecuación 23.

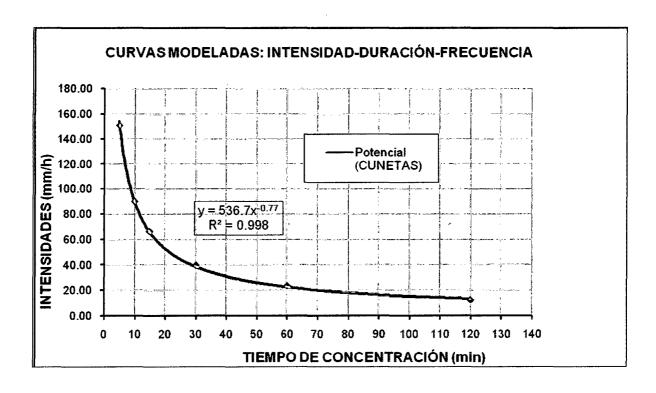
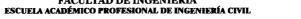

Con el valor obtenido entramos por el eje de las abscisas y de allí a la curva de dicha estructura hidráulica, para luego salir por el eje de las ordenadas con el dato de la Intensidad Máxima en mm/hr.

TABLA 4.3.17 TIEMPO DE CONCENTRACIÓN PARA LA MICROCUENCA q-01 (CUNETAS)


MICROCUENCA	COTAS (r	n. s. n. m.)	Li	Li Li	0:	(Li ² /Si) ^{1/2}		Tc
Cn	Но	Hf	(m)	(Km)	Si	(Km)	S	(min)
	3177.00	3200.00	89.92	0.090	0.256	0.178		
	3200.00	3250.00	87.63	0.088	0.571	0.116		
	3250.00	3300.00	109.14	0.109	0.458	0.161		•
q-01	3300.00	3350.00	133.35	0.133	0.375	0.218	0.415	17.029
	3350.00	3400.00	112.12	0.112	0.446	0.168		1
	3400.00	3450.00	85.04	0.085	0.588	0.111		
	3450.00	3500.00	128.85	0.129	0.388	0.207		

qn = Área de la micrcuenca correspondiente a la cuneta "n"

GRAFICO 4.3.1 CURVA MODELADA PARA LA CARRETERA

FACULTAD DE INGENIERÍA

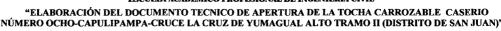
"ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN)

TABLA 4.3.18

COEFICIENTES DE ESCORRENTÍA PARA SER USADOS EN EL MÉTODO RACIONAL

Características de la			Per	iodo de re	etorno (añ	os)		
superficie	2	5	7.73	10	25	50	100	500
		Área	s desarro	ladas				
Asfáltico	0.73	0.77	0.79	0.81	0.86	0.90	0.95	1.00
Concreto / techo	0.75	0.80	0.82	0.83	0.88	0.92	0.97	1.00
			(jardines					
			ta de pasto				*****	
Plano, 0 - 2%	0.32	0.34	0.36	0.37	0.40	0.44	0.47	0.58
Promedio, 2 - 7%	0.37	0.40	0.42	0.43	0.46	0.49	0.53	0.61
Pendiente superior a 7%	0.40	0.43	0.44	0.45	0.49	0.52	0.55	0.62
Condic	ión prome		rta de pas					
Plano, 0 - 2%	0.25	0.28	0.29	0.30	0.34	0.37	0.41	0.53
Promedio, 2 - 7%	0.33	0.36	0.37	0.38	0.42	0.45	0.49	0.58
Pendiente superior a 7%	0.37	0.40	0.41	0.42	0.46	0.49	0.53	0.60
	Condición buena (Cubierta de pasto mayor del 75% del área)							
Plano, 0 - 2%	0.21	0.23	0.24	0.25	0.29	0.32	0.36	0.49
Promedio, 2 - 7%	0.29	0.32	0.34	0.35	0.39	0.42	0.46	0.56
Pendiente superior a 7%	0.34	0.37	0.39	0.40	0.44	0.47	0.51	0.58
Areas no desarroladas								
			ea de cult			·		y
Plano, 0 - 2%	0.31	0.34	0.35	0.36	0.40	0.43	0.47	0.57
Promedio, 2 - 7%	0.35	0.38	0.40	0.41	0.44	0.48	0.51	0.60
Pendiente superior a 7%	0.39	0.42	0.43	0.44	0.48	0.51	0.54	0.61
			Pastizale:					.
Plano, 0 - 2%	0.25	0.28	0.29	0.30	0.34	0.37	0.41	0.53
Promedio, 2 - 7%	0.33	0.36	0.37	0.38	0.42	0.45	0.49	0.58
Pendiente superior a 7%	0.37	0.40	0.41	0.42	0.46	0.49	0.53	0.60
			Bosques		,	······································	 	-
Plano, 0 - 2%	0.22	0.25	0.27	0.28	0.31	0.35	0.39	0.48
Promedio, 2 - 7%	0.31	0.34	0.35	0.36	0.40	0.43	0.47	0.56
Pendiente superior a 7%	0.35	0.39	0.40	0.41	0.45	0.48	0.52	0.58

Para determinar el caudal de diseño (Ver Tabla 4.3.19), se aplicó la ecuación 33 del método racional, teniendo en cuenta la Tabla 4.3.18 para determinar el coeficiente de escorrentía.


TABLA 4.3.19

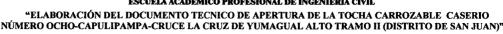
CÁLCULO DE CAUDAL DE APORTE DE LA MICROCUENCA q-01 (CUNETAS)

MICR.	PROGRESIVAS		AREA TRIB.	Тс	lmáx	Coef. Escor.	Qn
q-n	DE	Α	(Ha)	(min)	(mm/h)	C	(m³/s)
q-01	5+000	5+180	8.315	17.029	59.64	0.43	0.594

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

• CÁLCULO PARA EL DISEÑO DE ALCANTARILLAS

➤ MICROCUENCA (Q-01):


TABLA 4.3.20

ALTITUD MEDIA ALCANTARILLA

MICROCUENCA	co.	TAS	COTA	AREA	AREA	Hi*Ai	ALTITUD
	(m. s.	n. m.)	PROMEDIO	PARCIAL	PARCIAL		MEDIA
Cn	Но	Hf	Hi (m)	Ai (m2)	Ai (Ha)	(m*Ha)	H (m)
	3188.84	3200.00	3194.42	4240.640	0.424	1354.639	
	3200.00	3250.00	3225.00	8241.490	0.824	2657.881	
	3250.00	3300.00	3275.00	16455.590	1.646	5389.206	
	3300.00	3350.00	3325.00	19233.280	1.923	6395.066	
0.01	3350.00	3400.00	3375.00	40557.490	4.056	13688.153	3528.085
Q-01	3400.00	3450.00	3425.00	46321.260	4.632	15865.032	3526.065
	3450.00	3500.00	3475.00	57908.520	5.791	20123.211	
	3500.00	3550.00	3525.00	57081.930	5.708	20121.380	
	3550.00	3600.00	3575.00	316361.450	31.636	113099.218	
	3600.00	3650.00	3625.00	117376.540	11.738	42548.996	

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

TABLA 4.3.21

DATOS TRANSPUESTOS A LA ZONA DE ESTUDIO DE CARRETERA CON UNA ALTITUD MEDIA

H = 3528.09 m

	INTENSID	ADES MAXII	MAS (mm/h)	ZONA DE E	יטי טימוודפי	INETAS)	INTENSIDADES MAXIMAS (mm/h): ZONA DE ESTUDIO (CUNETAS)							
				DURACION										
AÑO	P.Máx.24h.	5	10	15	30	60	120							
1	72.90	295.43	175.66	129.60	77.06	45.82	27.25							
2	40.50	164.13	97.59	72.00	42.81	25.46	15.14							
3	39.30	159.26	94.70	69.87	41.54	24.70	14.69							
4	38.80	157.24	93.49	68.98	41.01	24.39	14.50							
5	37.90	153.59	91.32	67.38	40.06	23.82	14.16							
6	36.10	146.30	86.99	64.18	38.16	22.69	13.49							
7	35.10	142.24	84.58	62.40	37.10	22.06	13.12							
8	31.70	128.46	76.39	56.36	33.51	19.92	11.85							
9	30.50	123.60	73.49	54.22	32.24	19.17	11.40							
10	30.00	121.57	72.29	53.33	31.71	18.86	11.21							
11	29.80	120.76	71.81	52.98	31.50	18.73	11.14							
12	29.70	120.36	71.57	52.80	31.40	18.67	11.10							
13	28.80	116.71	69.40	51.20	30.44	18.10	10.76							
14	28.50	115.50	68.67	50.67	30.13	17.91	10.65							
15	28.20	114.28	67.95	50.13	29.81	17.72	10.54							
16	28.10	113.88	67.71	49.96	29.70	17.66	10.50							
17	28.00	113.47	67.47	49.78	29.60	17.60	10.46							
18	27.60	111.85	66.51	49.07	29.18	17.35	10.32							
19	27.60	111.85	66.51	49.07	29.18	17.35	10.32							
20	27.40	111.04	66.02	48.71	28.96	17.22	10.24							
21	24.70	100.10	59.52	43.91	26.11	15.53	9.23							
22	24.30	98.48	58.55	43.20	25.69	15.27	9.08							
23	22.50	91.18	54.22	40.00	23.78	14.14	8.41							
24	22.30	90.37	53.73	39.64	23.57	14.02	8.33							
25	20.80	84.29	50.12	36.98	21.99	13.07	7.77							
26	20.60	83.48	49.64	36.62	21.78	12.95	7.70							
27	20.20	81.86	48.67	35.91	21.35	12.70	7.55							
28	19.80	80.24	47.71	35.20	20.93	12.45	7.40							
29	18.20	73.76	43.86	32.36	19.24	11.44	6.80							
30	17.70	71.73	42.65	31.47	18.71	11.13	6.62							
31	14.80	59.98	35.66	26.31	15.64	9.30	5.53							
32	11.90	48.22	28.67	21.16	12.58	7.48	4.45							
33	9.00	36.47	21.69	16.00	9.51	5.66	3.36							
34	6.10	24.72	14.70	10.84	6.45	3.83	2.28							
35	3.20	12.97	7.71	5.69	3.38	2.01	1.20							

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

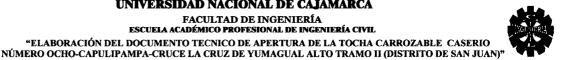
"ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN)"

TABLA 4.3.22

MODELO GUMBEL PARA 5 MINUTOS

	Intensidades	P(x <x)< th=""><th>P(x<x)< th=""><th>E/w/V)</th><th> P(x<x)-< th=""><th>Tr años</th></x)-<></th></x)<></th></x)<>	P(x <x)< th=""><th>E/w/V)</th><th> P(x<x)-< th=""><th>Tr años</th></x)-<></th></x)<>	E/w/V)	P(x <x)-< th=""><th>Tr años</th></x)-<>	Tr años
m	Ord. Desc.	m/(N+1)	1-P(x>X)	F(x <x)< th=""><th>F(x<x) < th=""><th>1/P(x)</th></x) <></th></x)<>	F(x <x) < th=""><th>1/P(x)</th></x) <>	1/P(x)
1	295.43	0.0278	0.9722	0.9958	0.0235	36.00
2	164.13	0.0556	0.9444	0.8781	0.0663	18.00
3	159.26	0.0833	0.9167	0.8629	0.0538	12.00
4	157.24	0.1111	0.8889	0.8560	0.0329	9.00
5	153.59	0.1389	0.8611	0.8428	0.0183	7.20
6	146.30	0.1667	0.8333	0.8132	0.0202	6.00
7	142.24	0.1944	0.8056	0.7946	0.0109	5.14
8	128.46	0.2222	0.7778	0.7195	0.0583	4.50
9	123.60	0.2500	0.7500	0.6882	0.0618	4.00
10	121.57	0.2778	0.7222	0.6744	0.0479	3.60
11	120.76	0.3056	0.6944	0.6687	0.0257	3.27
12	120.36	0.3333	0.6667	0.6659	0.0008	3.00
13	116.71	0.3611	0.6389	0.6394	0.0005	2.77
14	115.50	0.3889	0.6111	0.6303	0.0191	2.57
15	114.28	0.4167	0.5833	0.6210	0.0376	2.40
16	113.88	0.4444	0.5556	0.6178	0.0623	2.25
17	113.47	0.4722	0.5278	0.6147	0.0869	2.12
18	111.85	0.5000	0.5000	0.6019	0.1019	2.00
19	111.85	0.5278	0.4722	0.6019	0.1297	1.89
20	111.04	0.5556	0.4444	0.5954	0.1510	1.80
21	100.10	0.5833	0.4167	0.5018	0.0851	1.71
22	98.48	0.6111	0.3889	0.4870	0.0982	1.64
23	91.18	0.6389	0.3611	0.4189	0.0578	1.57
24	90.37	0.6667	0.3333	0.4112	0.0779	1.50
25	84.29	0.6944	0.3056	0.3530	0.0475	1.44
26	83.48	0.7222	0.2778	0.3453	0.0675	1.38
27	81.86	0.7500	0.2500	0.3298	0.0798	1.33
28	80.24	0.7778	0.2222	0.3144	0.0921	1.29
29	73.76	0.8056	0.1944	0.2540	0.0596	1.24
30	71.73	0.8333	0.1667	0.2358	0.0692	1.20
31	59.98	0.8611	0.1389	0.1405	0.0016	1.16
32	48.22	0.8889	0.1111	0.0695	0.0416	1.13
33	36.47	0.9167	0.0833	0.0267	0.0566	1.09
34	24.72	0.9444	0.0556	0.0073	0.0483	1.06
35	12.97	0.9722	0.0278	0.0013	0.0265	1.03
			Max P(x<	X)-F(x <x) < td=""><td>0.1510</td><td></td></x) <>	0.1510	

Promedio 107.9817


Desv. Est. 49.1995

a 0.0261

b 85.8420

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

TABLA 4.3.23

MODELO GUMBEL PARA 10 MINUTOS

m	Intensidades	P(x <x)< th=""><th>P(x<x)< th=""><th>F(x<x)< th=""><th>IP(x<x)-< th=""><th>Tr años</th></x)-<></th></x)<></th></x)<></th></x)<>	P(x <x)< th=""><th>F(x<x)< th=""><th>IP(x<x)-< th=""><th>Tr años</th></x)-<></th></x)<></th></x)<>	F(x <x)< th=""><th>IP(x<x)-< th=""><th>Tr años</th></x)-<></th></x)<>	IP(x <x)-< th=""><th>Tr años</th></x)-<>	Tr años
m	Ord. Desc.	m/(N+1)	1-P(x>X)	F(X\^)	F(x <x) < th=""><th>1/P(x)</th></x) <>	1/P(x)
1	175.66	0.0278	0.9722	0.9958	0.0235	36.00
2	97.59	0.0556	0.9444	0.8781	0.0663	18.00
3	94.70	0.0833	0.9167	0.8629	0.0538	12.00
4	93.49	0.1111	0.8889	0.8560	0.0329	9.00
5	91.32	0.1389	0.8611	0.8428	0.0183	7.20
6	86.99	0.1667	0.8333	0.8132	0.0202	6.00
7	84.58	0.1944	0.8056	0.7946	0.0109	5.14
8	76.39	0.2222	0.7778	0.7195	0.0583	4.50
9	73.49	0.2500	0.7500	0.6882	0.0618	4.00
10	72.29	0.2778	0.7222	0.6744	0.0479	3.60
11	71.81	0.3056	0.6944	0.6687	0.0257	3.27
12	71.57	0.3333	0.6667	0.6659	0.0008	3.00
13	69.40	0.3611	0.6389	0.6394	0.0005	2.77
14	68.67	0.3889	0.6111	0.6303	0.0191	2.57
15	67.95	0.4167	0.5833	0.6210	0.0376	2.40
16	67.71	0.4444	0.5556	0.6178	0.0623	2.25
17	67.47	0.4722	0.5278	0.6147	0.0869	2.12
18	66.51	0.5000	0.5000	0.6019	0.1019	2.00
19	66.51	0.5278	0.4722	0.6019	0.1297	1.89
20	66.02	0.5556	0.4444	0.5954	0.1510	1.80
21	59.52	0.5833	0.4167	0.5018	0.0851	1.71
22	58.55	0.6111	0.3889	0.4870	0.0982	1.64
23	54.22	0.6389	0.3611	0.4189	0.0578	1.57
24	53.73	0.6667	0.3333	0.4112	0.0779	1.50
25	50.12	0.6944	0.3056	0.3530	0.0475	1.44
26	49.64	0.7222	0.2778	0.3453	0.0675	1.38
27	48.67	0.7500	0.2500	0.3298	0.0798	1.33
28	47.71	0.7778	0.2222	0.3144	0.0921	1.29
29	43.86	0.8056	0.1944	0.2540	0.0596	1.24
30	42.65	0.8333	0.1667	0.2358	0.0692	1.20
31	35.66	0.8611	0.1389	0.1405	0.0016	1.16
32	28.67	0.8889	0.1111	0.0695	0.0416	1.13
33	21.69	0.9167	0.0833	0.0267	0.0566	1.09
34	14.70	0.9444	0.0556	0.0073	0.0483	1.06
35	7.71	0.9722	0.0278	0.0013	0.0265	1.03
			Max P(x<	X)-F(x <x) < td=""><td>0.1510</td><td></td></x) <>	0.1510	

Promedio 64.2063 29.2542 Desv. Est. 0.0438 а 51.0419 b

FACULTAD DE INGENIERÍA
ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN)"

TABLA 4.3.24

MODELO GUMBEL PARA 15 MINUTOS

	Intensidades	P(x <x)< th=""><th>P(x<x)< th=""><th>F(x<x)< th=""><th> P(x<x)-< th=""><th>Tr años</th></x)-<></th></x)<></th></x)<></th></x)<>	P(x <x)< th=""><th>F(x<x)< th=""><th> P(x<x)-< th=""><th>Tr años</th></x)-<></th></x)<></th></x)<>	F(x <x)< th=""><th> P(x<x)-< th=""><th>Tr años</th></x)-<></th></x)<>	P(x <x)-< th=""><th>Tr años</th></x)-<>	Tr años
m	Ord. Desc.	m/(N+1)	1-P(x>X)	F(X^A)	F(x <x) < th=""><th>1/P(x)</th></x) <>	1/P(x)
1	129.60	0.0278	0.9722	0.9958	0.0235	36.00
2	72.00	0.0556	0.9444	0.8781	0.0663	18.00
3	69.87	0.0833	0.9167	0.8629	0.0538	12.00
4	68.98	0.1111	0.8889	0.8560	0.0329	9.00
5	67.38	0.1389	0.8611	0.8428	0.0183	7.20
6	64.18	0.1667	0.8333	0.8132	0.0202	6.00
7	62.40	0.1944	0.8056	0.7946	0.0109	5.14
8	56.36	0.2222	0.7778	0.7195	0.0583	4.50
9	54.22	0.2500	0.7500	0.6882	0.0618	4.00
10	53.33	0.2778	0.7222	0.6744	0.0479	3.60
11	52.98	0.3056	0.6944	0.6687	0.0257	3.27
12	52.80	0.3333	0.6667	0.6659	0.0008	3.00
13	51.20	0.3611	0.6389	0.6394	0.0005	2.77
14	50.67	0.3889	0.6111	0.6303	0.0191	2.57
15	50.13	0.4167	0.5833	0.6210	0.0376	2.40
16	49.96	0.4444	0.5556	0.6178	0.0623	2.25
17	49.78	0.4722	0.5278	0.6147	0.0869	2.12
18	49.07	0.5000	0.5000	0.6019	0.1019	2.00
19	49.07	0.5278	0.4722	0.6019	0.1297	1.89
20	48.71	0.5556	0.4444	0.5954	0.1510	1.80
21	43.91	0.5833	0.4167	0.5018	0.0851	1.71
22	43.20	0.6111	0.3889	0.4870	0.0982	1.64
23	40.00	0.6389	0.3611	0.4189	0.0578	1.57
24	39.64	0.6667	0.3333	0.4112	0.0779	1.50
25	36.98	0.6944	0.3056	0.3530	0.0475	1.44
26	36.62	0.7222	0.2778	0.3453	0.0675	1.38
27	35.91	0.7500	0.2500	0.3298	0.0798	1.33
28	35.20	0.7778	0.2222	0.3144	0.0921	1.29
29	32.36	0.8056	0.1944	0.2540	0.0596	1.24
30	31.47	0.8333	0.1667	0.2358	0.0692	1.20
31	26.31	0.8611	0.1389	0.1405	0.0016	1.16
32	21.16	0.8889	0.1111	0.0695	0.0416	1.13
33	16.00	0.9167	0.0833	0.0267	0.0566	1.09
34	10.84	0.9444	0.0556	0.0073	0.0483	1.06
35	5.69	0.9722	0.0278	0.0013	0.0265	1.03
•	_ -		MaxIP(x<)	X)-F(x <x) < td=""><td>0.1510</td><td></td></x) <>	0.1510	

Promedio 47.3707

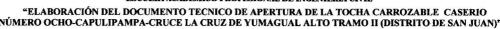
Desv. Est. 21.5834

a 0.0594

b 37.6581

ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

TABLA 4.3.25


MODELO GUMBEL PARA 30 MINUTOS

m	Intensidades	P(x <x)< th=""><th>P(x<x)< th=""><th>F(x<x)< th=""><th>IP(x<x)-< th=""><th>Tr años</th></x)-<></th></x)<></th></x)<></th></x)<>	P(x <x)< th=""><th>F(x<x)< th=""><th>IP(x<x)-< th=""><th>Tr años</th></x)-<></th></x)<></th></x)<>	F(x <x)< th=""><th>IP(x<x)-< th=""><th>Tr años</th></x)-<></th></x)<>	IP(x <x)-< th=""><th>Tr años</th></x)-<>	Tr años
111	Ord. Desc.	m/(N+1)	1-P(x>X)	F(X-X)	F(x <x) < th=""><th>1/P(x)</th></x) <>	1/P(x)
1	77.06	0.0278	0.9722	0.9958	0.0235	36.00
2	42.81	0.0556	0.9444	0.8781	0.0663	18.00
3	41.54	0.0833	0.9167	0.8629	0.0538	12.00
4	41.01	0.1111	0.8889	0.8560	0.0329	9.00
5	40.06	0.1389	0.8611	0.8428	0.0183	7.20
6	38.16	0.1667	0.8333	0.8132	0.0202	6.00
7	37.10	0.1944	0.8056	0.7946	0.0109	5.14
8	33.51	0.2222	0.7778	0.7195	0.0583	4.50
9)	32.24	0.2500	0.7500	0.6882	0.0618	4.00
10	31.71	0.2778	0.7222	0.6744	0.0479	3.60
11	31.50	0.3056	0.6944	0.6687	0.0257	3.27
12	31.40	0.3333	0.6667	0.6659	0.0008	3.00
13	30.44	0.3611	0.6389	0.6394	0.0005	2.77
14	30.13	0.3889	0.6111	0.6303	0.0191	2.57
15	29.81	0.4167	0.5833	0.6210	0.0376	2.40
16	29.70	0.4444	0.5556	0.6178	0.0623	2.25
17	29.60	0.4722	0.5278	0.6147	0.0869	2.12
18	29.18	0.5000	0.5000	0.6019	0.1019	2.00
19	29.18	0.5278	0.4722	0.6019	0.1297	1.89
20	28.96	0.5556	0.4444	0.5954	0.1510	1.80
21	26.11	0.5833	0.4167	0.5018	0.0851	1.71
22	25.69	0.6111	0.3889	0.4870	0.0982	1.64
23	23.78	0.6389	0.3611	0.4189	0.0578	1.57
24	23.57	0.6667	0.3333	0.4112	0.0779	1.50
25	21.99	0.6944	0.3056	0.3530	0.0475	1.44
26	21.78	0.7222	0.2778	0.3453	0.0675	1.38
27	21.35	0.7500	0.2500	0.3298	0.0798	1.33
28	20.93	0.7778	0.2222	0.3144	0.0921	1.29
29	19.24	0.8056	0.1944	0.2540	0.0596	1.24
30	18.71	0.8333	0.1667	0.2358	0.0692	1.20
31	15.64	0.8611	0.1389	0.1405	0.0016	1.16
32	12.58	0.8889	0.1111	0.0695	0.0416	1.13
33	9.51	0.9167	0.0833	0.0267	0.0566	1.09
34	6.45	0.9444	0.0556	0.0073	0.0483	1.06
35	3.38	0.9722	0.0278	0.0013	0.0265	1.03
			Max P(x<)	X)-F(x <x) < td=""><td>0.1510</td><td></td></x) <>	0.1510	

Promedio	28.1668
Desv. Est.	12.8336
а	0.0999
b	22.3917

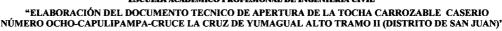
FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

TABLA 4.3.26

MODELO GUMBEL PARA 60 MINUTOS

	Intensidades	P(x <x)< th=""><th>P(x<x)< th=""><th>F(x<x)< th=""><th> P(x<x)-< th=""><th>Tr años</th></x)-<></th></x)<></th></x)<></th></x)<>	P(x <x)< th=""><th>F(x<x)< th=""><th> P(x<x)-< th=""><th>Tr años</th></x)-<></th></x)<></th></x)<>	F(x <x)< th=""><th> P(x<x)-< th=""><th>Tr años</th></x)-<></th></x)<>	P(x <x)-< th=""><th>Tr años</th></x)-<>	Tr años
	Ord. Desc.	m/(N+1)	1-P(x>X)	F(X-X)	F(x <x) < th=""><th>1/P(x)</th></x) <>	1/P(x)
1	45.82	0.0278	0.9722	0.9958	0.0235	36.00
2	25.46	0.0556	0.9444	0.8781	0.0663	18.00
3	24.70	0.0833	0.9167	0.8629	0.0538	12.00
4	24.39	0.1111	0.8889	0.8560	0.0329	9.00
5	23.82	0.1389	0.8611	0.8428	0.0183	7.20
6	22.69	0.1667	0.8333	0.8132	0.0202	6.00
7	22.06	0.1944	0.8056	0.7946	0.0109	5.14
8	19.92	0.2222	0.7778	0.7195	0.0583	4.50
9	19.17	0.2500	0.7500	0.6882	0.0618	4.00
10	18.86	0.2778	0.7222	0.6744	0.0479	3.60
11	18.73	0.3056	0.6944	0.6687	0.0257	3.27
12	18.67	0.3333	0.6667	0.6659	0.0008	3.00
13	18.10	0.3611	0.6389	0.6394	0.0005	2.77
14	17.91	0.3889	0.6111	0.6303	0.0191	2.57
15	17.72	0.4167	0.5833	0.6210	0.0376	2.40
16	17.66	0.4444	0.5556	0.6178	0.0623	2.25
17	17.60	0.4722	0.5278	0.6147	0.0869	2.12
18	17.35	0.5000	0.5000	0.6019	0.1019	2.00
19	17.35	0.5278	0.4722	0.6019	0.1297	1.89
20	17.22	0.5556	0.4444	0.5954	0.1510	1.80
21	15.53	0.5833	0.4167	0.5018	0.0851	1.71
22	15.27	0.6111	0.3889	0.4870	0.0982	1.64
23	14.14	0.6389	0.3611	0.4189	0.0578	1.57
24	14.02	0.6667	0.3333	0.4112	0.0779	1.50
25	13.07	0.6944	0.3056	0.3530	0.0475	1.44
26	12.95	0.7222	0.2778	0.3453	0.0675	1.38
27	12.70	0.7500	0.2500	0.3298	0.0798	1.33
28	12.45	0.7778	0.2222	0.3144	0.0921	1.29
29	11.44	0.8056	0.1944	0.2540	0.0596	1.24
30	11.13	0.8333	0.1667	0.2358	0.0692	1.20
31	9.30	0.8611	0.1389	0.1405	0.0016	1.16
32	7.48	0.8889	0.1111	0.0695	0.0416	1.13
33	5.66	0.9167	0.0833	0.0267	0.0566	1.09
34	3.83	0.9444	0.0556	0.0073	0.0483	1.06
35	2.01	0.9722	0.0278	0.0013	0.0265	1.03
1200			MaxiP(x<	AMERICAN COMMON AND ADDRESS OF THE PARTY OF	0.1510	

Promedio 16.7481


Desv. Est. 7.6309

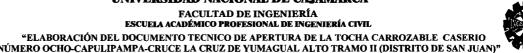
a 0.1681

b 13.3142

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

TABLA 4.3.27

MODELO GUMBEL PARA 120 MINUTOS


	Intensidades	P(x <x)< th=""><th>P(x<x)< th=""><th>F(x<x)< th=""><th> P(x<x)-< th=""><th>Tr años</th></x)-<></th></x)<></th></x)<></th></x)<>	P(x <x)< th=""><th>F(x<x)< th=""><th> P(x<x)-< th=""><th>Tr años</th></x)-<></th></x)<></th></x)<>	F(x <x)< th=""><th> P(x<x)-< th=""><th>Tr años</th></x)-<></th></x)<>	P(x <x)-< th=""><th>Tr años</th></x)-<>	Tr años
	Ord. Desc.	m/(N+1)	1-P(x>X)	F(X\A)	F(x <x) < th=""><th>1/P(x)</th></x) <>	1/P(x)
1	27.25	0.0278	0.9722	0.9958	0.0235	36.00
2	15.14	0.0556	0.9444	0.8781	0.0663	18.00
3	14.69	0.0833	0.9167	0.8629	0.0538	12.00
4	14.50	0.1111	0.8889	0.8560	0.0329	9.00
5	14.16	0.1389	0.8611	0.8428	0.0183	7.20
6	13.49	0.1667	0.8333	0.8132	0.0202	6.00
7	13.12	0.1944	0.8056	0.7946	0.0109	5.14
8	11.85	0.2222	0.7778	0.7195	0.0583	4.50
9	11.40	0.2500	0.7500	0.6882	0.0618	4.00
10	11.21	0.2778	0.7222	0.6744	0.0479	3.60
11	11.14	0.3056	0.6944	0.6687	0.0257	3.27
12	11.10	0.3333	0.6667	0.6659	0.0008	3.00
13	10.76	0.3611	0.6389	0.6394	0.0005	2.77
14	10.65	0.3889	0.6111	0.6303	0.0191	2.57
15	10.54	0.4167	0.5833	0.6210	0.0376	2.40
16	10.50	0.4444	0.5556	0.6178	0.0623	2.25
17	10.46	0.4722	0.5278	0.6147	0.0869	2.12
18	10.32	0.5000	0.5000	0.6019	0.1019	2.00
19	10.32	0.5278	0.4722	0.6019	0.1297	1.89
20	10.24	0.5556	0.4444	0.5954	0.1510	1.80
21	9.23	0.5833	0.4167	0.5018	0.0851	1.71
22	9.08	0.6111	0.3889	0.4870	0.0982	1.64
23	8.41	0.6389	0.3611	0.4189	0.0578	1.57
24	8.33	0.6667	0.3333	0.4112	0.0779	1.50
25	7.77	0.6944	0.3056	0.3530	0.0475	1.44
26	7.70	0.7222	0.2778	0.3453	0.0675	1.38
27	7.55	0.7500	0.2500	0.3298	0.0798	1.33
28	7.40	0.7778	0.2222	0.3144	0.0921	1.29
29	6.80	0.8056	0.1944	0.2540	0.0596	1.24
30	6.62	0.8333	0.1667	0.2358	0.0692	1.20
31	5.53	0.8611	0.1389	0.1405	0.0016	1.16
32	4.45	0.8889	0.1111	0.0695	0.0416	1.13
33	3.36	0.9167	0.0833	0.0267	0.0566	1.09
34	2.28	0.9444	0.0556	0.0073	0.0483	1.06
35	1.20	0.9722	0.0278	0.0013	0.0265	1.03
				X)-F(x <x) < td=""><td>0.1510</td><td></td></x) <>	0.1510	

 Promedio
 9.9585

 Desv. Est.
 4.5374

 a
 0.2827

 b
 7.9166

TABLA 4.3.28

Valores críticos de Do del estadístico Smirnov - Kolmogorov, para varios valores de N y valores de significación

TAMAÑO MUESTRAL		NIVEL DE SIGNIFICACIÓN							
N	0.20	0.10	0.05	0.01					
5	0.45	0.51	0.56	0.67					
10	0.32	0.37	0.41	0.49					
15	0.27	0.30	0.34	0.40					
20	0.23	0.26	0.29	0.36					
25	0.21	0.24	0.27	0.32					
30	0.19	0.22	0.24	0.29					
35	0.18	0.20	0.23	0.27					
40	0.17	0.19	0.21	0.25					
45	0.16	0.18	0.20	0.24					
50	0.15	0.17	0.19	0.23					
N > 50	$\frac{1.07}{\sqrt{N}}$	1.22 √N	1.36 √N	1.63 √N					

FUENTE: Hidrología Estadística, Máximo Villón B. Pag. 108

TABLA 4.3.29

PRUEBA DE BONDAD DE AJUSTE PARA 5,10,15,30,60 y 120 MINUTOS

6I.	N = 31		
Periodo de Duración	Estadístico Smirnov-	Valor Crítico Do	Criterio de
(min)	Kolmogorov	Para a = 0,05	Decisión
5	0.1510	0.2300	O. K.
10	0.1510	0.2300	O. K.
15	0.1510	0.2300	O. K.
30	0.1510	0.2300	O. K.
60	0.1510	0.2300	O. K.
120	0.1510	0.2300	O. K.

TABLA 4.3.30 MODELAMIENTO DE INTENSIDADES EN FUNCIÓN DE "N" y "J"

	ESTACIÓN ZONA DE ESTUDIO										
PARÁMETROS	5 MIN	10 MIN	15 MIN	30 MIN	60 MIN	120 MIN					
Promedio	107.98	64.21	47.37	28.17	16.75	9.96					
Desv. Est.	49.20	29.25	21.58	12.83	7.63	3.16					
а	0.03	0.04	0.06	0.10	0.17	0.41					
b	85.84	51.04	37.66	22.39	13.31	8.54					

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

TABLA 4.3.31

CÁLCULO DE INTENSIDADES

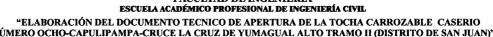

VIDA ÚTIL AÑOS	RIESGO DE FALLA J(%)	TIEMPO DE RETORNO	INTENS	IDADES	DES $X = \beta - \frac{1}{\alpha} \times Ln \times \left[-Ln \times \left(1 - \frac{1}{Tr} \right) \right]$				
"N"	J(%)	Tr(AÑOS)	5 MIN	10 MIN	15 MIN	30 MIN	60 MIN	120 MIN	
	10	47.96	233.91	139.09	102.62	61.02	36.28	18.04	
	20	22.91	205.12	121.97	89.99	53.51	31.81	16.19	
5	30	14.52	187.13	111.27	82.09	48.81	29.02	15.04	
3	40	10.30	173.35	103.08	76.05	45.22	26.89	14.15	
	50	7.73	161.64	96.11	70.91	42.16	25.07	13.40	
	60	5.97	150.94	89.75	66.21	39.37	23.41	12.71	
	10	95.41	260.50	154.90	114.28	67.95	40.40	19.74	
	20	45.32	231.72	137.78	101.65	60.44	35.94	17.90	
10	30	28.54	213.72	127.08	93.76	55.75	33.15	16.74	
10	40	20.08	199.94	118.89	87.71	52.15	31.01	15.86	
	50	14.93	188.23	111.92	82.58	49.10	29.20	15.11	
	60	11.42	177.53	105.56	77.88	46.31	27.53	14.42	
	10	190.32	287.09	170.71	125.95	74.89	44.53	21.45	
	20	90.13	258.31	153.59	113.32	67.38	40.06	19.60	
20	30	56.57	240.31	142.89	105.42	62.69	37.27	18.45	
20	40	39.65	226.53	134.70	99.38	59.09	35.14	17.56	
	50	29.36	214.83	127.74	94.24	56.04	33.32	16.81	
	60	22.33	204.12	121.37	89.55	53.24	31.66	16.13	

TABLA 4.3.32

MODELAMIENTO DE INTENSIDADES

MODELAMIENTO DE INTENSIDADES PARA UNA CARRETERA EN FUNCIÓN DE LA VIDA ÚTIL Y TIEMPO DE RETORNO									
OBRA DE ARTE	VIDA ÚTIL (años)	TIEMPO DE RETORNO (años)	5 MIN	10 MIN	15 MIN	30 MIN	60 MIN	120 MIN	
Alcantarillas	10	14.93	188.23	111.92	82.58	49.10	29.20	15.11	

FACULTAD DE INGENIERÍA

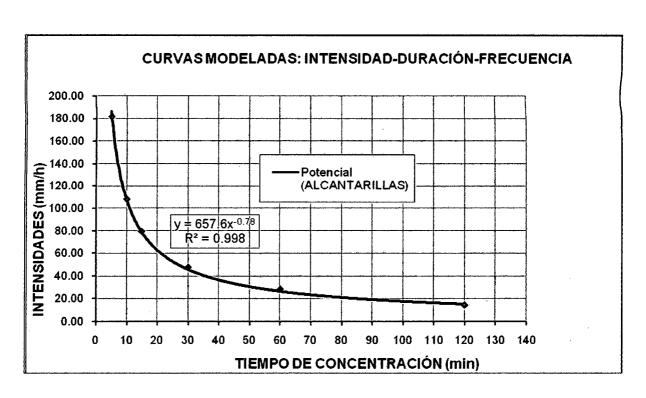


TABLA 4.3.33 TIEMPO DE CONCENTRACIÓN PARA LA MICROCUENCA Q-01 (ALCANTARILLA)

	COTAS	(m. s. n.								
MICROCUENCA	m.)		CUENCA m.)		Li	Li	Si	(Li ² /Si) ^{1/2}	S	Tc
Cn	Но	Hf	(m)	(Km)		(Km)		(min)		
	3188.84	3200.00	98.31	0.098	0.114	0.292		38.311		
	3200.00	3250.00	76.64	0.077	0.652	0.095				
	3250.00	3300.00	116.45	0.116	0.429	0.178	0.474			
	3300.00	3350.00	63.94	0.064	0.782	0.072				
Q-01	3350.00	3400.00	136.34	0.136	0.367	0.225				
Q-01	3400.00	3450.00	91.84	0.092	0.544	0.124	0.171			
	3450.00	3500.00	108.70	0.109	0.460	0.160				
	3500.00	3550.00	130.24	0.130	0.384	0.210				
	3550.00	3600.00	585.67	0.586	0.085	2.004				
	3600.00	3650.00	328.50	0.329	0.152	0.842				

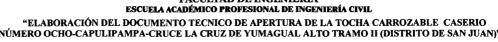

Qn = Área de la microcuenca correspondiente a la obra de arte "n"

GRAFICO 4.3.2 CURVA MODELADA PARA LA CARRETERA

FACULTAD DE INGENIERÍA

TABLA 4.3.34

COEFICIENTES DE ESCORRENTÍA PARA SER USADOS EN EL MÉTODO RACIONAL

Características de la superficie			Perio	odo de ref	orno (a	ños)				
Características de la superficie	2	5	10	14.93	25	50	100	500		
Á	reas de	sarrolla	das							
Asfáltico	0.73	0.77	0.81	0.83	0.86	0.90	0.95	1.00		
Concreto / techo	0.75	0.80	0.83	0.85	0.88	0.92	0.97	1.00		
Zonas vere										
Condición pobre (Cul	pierta de		nenor de	el 50% del	área)					
Plano, 0 - 2%	0.32	0.34	0.37	0.38	0.40	0.44	0.47	0.58		
Promedio, 2 - 7%	0.37	0.40	0.43	0.44	0.46	0.49	0.53	0.61		
Pendiente superior a 7%	0.40	0.43	0.45	0.46	0.49	0.52	0.55	0.62		
Condición promedio (Cubierta de pasto del 50% al 75% del área)										
Plano, 0 - 2%	0.25	0.28	0.30	0.31	0.34	0.37	0.41	0.53		
Promedio, 2 - 7%	0.33	0.36	0.38	0.39	0.42	0.45	0.49	0.58		
Pendiente superior a 7%	0.37	0.40	0.42	0.43	0.46	0.49	0.53	0.60		
Condición buena (Cul	Condición buena (Cubierta de pasto mayor del 75% del área)									
Plano, 0 - 2%	0.21	0.23	0.25	0.26	0.29	0.32	0.36	0.49		
Promedio, 2 - 7%	0.29	0.32	0.35	0.36	0.39	0.42	0.46	0.56		
Pendiente superior a 7%	0.34	0.37	0.40	0.41	0.44	0.47	0.51	0.58		
Areas no desarroladas										
		e cultiv								
Plano, 0 - 2%	0.31	0.34	0.36	0.37	0.40	0.43	0.47	0.57		
Promedio, 2 - 7%	0.35	0.38	0.41	0.42	0.44	0.48	0.51	0.60		
Pendiente superior a 7%	0.39	0.42	0.44	0.45	0.48	0.51	0.54	0.61		
		izales				·				
Plano, 0 - 2%	0.25	0.28	0.30	0.31	0.34	0.37	0.41	0.53		
Promedio, 2 - 7%	0.33	0.36	0.38	0.39	0.42	0.45	0.49	0.58		
Pendiente superior a 7%	0.37	0.40	0.42	0.43	0.46	0.49	0.53	0.60		
		ques								
Plano, 0 - 2%	0.22	0.25	0.28	0.29	0.31	0.35	0.39	0.48		
Promedio, 2 - 7%	0.31	0.34	0.36	0.37	0.40	0.43	0.47	0.56		
Pendiente superior a 7%	0.35	0.39	0.41	0.42	0.45	0.48	0.52	0.58		

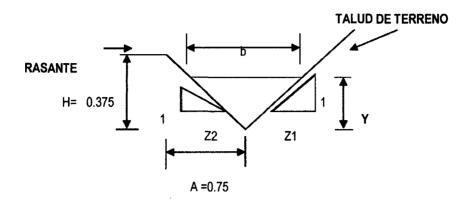
TABLA 4.3.35

CÁLCULO DE CAUDAL DE APORTE DE LA MICROCUENCA Q-01 (ALCANTARILLA)

OBRA DE	PROGRESIVA	MICROCUENCA	AREA TRIB.	Тс	lmáx	Coef. Escor.	Qn	
ARTE	Km)	Q-n	(Ha)	(min)	(mm/h)	С	(m³/s)	
a1	5+180	Q-01	68.378	38.311	36.24	0.45	3.119	

an = Alcantarilla

NACCONAL COMMUNE


FACULTAD DE INGENIERÍA ESCUEIA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN)

4.3.2 DISEÑO DE OBRAS DE ARTE.

DETERMINACION DE LA CAPACIDAD DE CUNETAS

DATOS

Z1 = 0.500

Z2 = 2.000

Para (ML, MH, CH)

n = 0.030

(Tierra excavada mecánicamente)

SOLUCION

Y= 0.9H

Y= 0.338

b = Y(Z1 + Z2)

b = 0.844

Cálculo del Área Hidráulica

Ah= bY/2

Ah= 0.142

Cálculo del Radio Hidráulico

Rh= Ah/Pm

; Pm= Perímetro mojado

$$Pm = Y(\sqrt{1+Z_1^2} + \sqrt{1+Z_2^2})$$

Pm= 1.132

Rh= 0.126

Cálculo del Caudal

$$Q = \frac{AhRh^{\frac{2}{3}}S^{\frac{1}{2}}}{n}$$

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN)

TABLA 4.3.36

CÁLCULO DE CAUDAL DE APORTE DE LAS MICROCUENCAS (OBRAS DE ARTE)

OBRA DE	PROGRESIVA	PROGRESIVA	AREA TRIB.	Tc	lmáx	Coef. Escor.	Qn
ARTE	INICIAL (Km)	FINAL (Km)	(Ha)	(min)	(mm/h)	С	(m³/s)
q-01	5+000	5+180	8.315	17.029	59.64	0.37	0.511
q-02	5+180	5+470	14.64	24.856	45.62	0.37	0.688
q-03	5+470	6+180	15.357	20.550	51.49	0.37	0.815
q-04	6+180	7+210	4.366	10.202	89.05	0.37	0.401
q-05	7+210	8+140	31.122	17.751	60.74	0.29	1.527
q-06	8+140	8+660	15.332	13.389	74.87	0.37	1.183
q-07	8+660	9+310	8.929	8.842	102.61	0.37	0.944
q-08	9+310	10+402	4.650	4.770	162.76	0.37	0.780
Q1	5+180	Q-01	68.378	38.311	36.24	0.39	2.706
Q2	6+180	Q-02	14.103	19.160	60.93	0.43	1.034
Q3	8+140	Q-03	45.628	31.950	41.52	0.39	2.069

TABLA 4.3.37 CÁLCULO DE CAUDALES (CAPACIDAD DE CUNETAS)

Usaremos los valores obtenidos en el cálculo anterior:

Ah = 0.142

Rh = 0.126

n = 0.030

AREA	PROGRESIVA	PROGRESIVA	PENDIENTE	Cap.cuneta	VELOCIDAD
TRIBUTARIA	INICIAL	FINAL	%	(m³/s)	(m/s)
q-01	5+000.00	5+180.00	6.33	0.30	1.74
q-02	5+180.00	5+391.16	6.33	0.30	1.74
q-02	5+391.16	5+470.00	8.28	0.31	1.82
	5+470.00	5+717.00	8.28	0.31	1.82
q-03	5+717.00	5+953.46	1.93	0.19	1.08
	5+953.46	6+180.00	11.00	0.36	1.98
	6+180.00	6+240.00	11.00	0.36	1.98
ļ	6+240.00	6+320.00	8.50	0.33	1.91
q-04	6+320.00	6+640.00	2.00	0.19	1.10
q-04	6+640.00	6+760.00	9.50	0.34	1.96
	6+760.00	6+840.00	2.00	0.19	1.10
	6+840.00	7+210.00	11.00	0.36	1.98
	7+210.00	7+230.00	11.00	0.36	1.98
q-05	7+230.00	8+000.00	1.30	0.17	0.97
	8+000.00	8+140.00	6.50	, 0.30	1.77
a 06	8+140.00	8+620.00	6.50	0.30	1.77
q-06	8+620.00	8+660.00	3.00	0.21	1.20
q-07	8+660.00	9+310.00	3.00	0.21	1.20
	9+310.00	9+992.79	5.71	0.29	1.66
q-08	9+992.79	10+334.41	8.50	0.33	1.91
	10+334.41	10+401.62	4.00	0.24	1.39

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN)*

TABLA 4.3.38

COMPARACIÓN DE CAUDALES (A EVACUAR VS. CAPACIDAD DE CUNETA) PARA UBICACIÓN DE ALIVIADEROS

Ah= 0.142

Rh= 0.126

n = 0.03

ÁREAS DE	TRAMOR	E CUNETA	PENDIENTE	Qt a evacuar	Q a evacuar	Cap. cuneta
INFLUENCIA	IRAMOD	ECUNEIA	%	Cn (m ³ /s)	por tramo (m³/s)	(m³/s)
		5+000.00				0.30
q-01	5+000.00	5+095.00	6.33	0.511	0.270	0.30
	5+095.00	5+180.00	6.33	0.511	0.241	0.30
	5+180.00	5+290.00	6.33		0.261	0.30
~ 00	5+290.00	5+391.16	6.33	0.000	0.240	0.30
q-02	5+391.16	5+400.00	8.28	0.688	0.021	0.31
	5+400.00	5+470.00	8.28		0.108	0.31
	5+470.00	5+625.00	8.28		0.178	0.31
	5+625.00	5+640.00	8.28		0.017	0.31
- 00	5+640.00	5+717.00	8.28	0.045	0.082	0.31
q-03	5+717.00	5+780.00	1.93	0.815	0.057	0.19
	5+780.00	5+953.46	1.93		0.121	0.19
	5+953.46	6+180.00	11.00		0.260	0.36
	6+180.00	6+240.00	11.00		0.023	0.36
	6+240.00	6+370.00	8.50		0.051	0.33
	6+370.00	6+640.00	2.00		0.130	0.19
q-04	6+640.00	6+760.00	9.50	0.401	0.047	0.34
	6+760.00	6+840.00	2.00		0.031	0.19
	6+840.00	7+010.00	11.00		0.066	0.36
	7+010.00	7+210.00	11.00		0.078	0.36
	7+210.00	7+230.00	11.00		0.033	0.36
	7+230.00	7+300.00	1.30		0.115	0.17
	7+300.00	7+320.00	1.30		0.033	0.17
	7+320.00	7+418.00	1.30		0.161	0.17
	7+418.00	7+512.00	1.30		0.154	0.17
q-05	7+512.00	7+610.00	1.30	1.527	0.161	0.17
1	7+610.00	7+708.00	1.30		0.161	0.17
	7+708.00	7+805.00	1.30		0.159	0.17
	7+805.00	7+902.00	1.30		0.159	0.17
	7+902.00	8+000.00	1.30		0.161	0.17
	8+000.00	8+140.00	6.50		0.230	0.30
	8+140.00	8+260.00	6.50		0.273	0.30
	8+260.00	8+380.00	6.50		0.273	0.30
q-06	8+380.00	8+500.00	6.50	1.183	0.273	0.30
4 00	8+500.00	8+620.00	6.50		0.273	0.30
	8+620.00	8+660.00	3.00		0.091	0.21
	8+660.00	8+730.00	3.00		0.112	0.21
	8+730.00	8+860.00	3.00		0.208	0.21
	8+860.00	8+990.00	3.00		0.208	0.21
q-07	8+990.00	9+120.00	3.00	0.944	0.208	0.21
	9+120.00	9+250.00	3.00		0.208	0.21
	9+250.00	9+310.00	3.00		0.087	0.21
	9+310.00	9+580.00	5.71	_	0.193	0.29
_	9+580.00	9+992.79	5.71		0.195	0.23
q-08	9+992.79	10+334.41	8.50	0.78	0.244	0.33
	10+334.41	10+401.62	4.00		0.048	0.24

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN)"

TABLA 4.3.39 COMPARACIÓN DE CAUDALES (A EVACUAR VS. CAPACIDAD DE CUNETA) PARA UBICACIÓN DE ALIVIADEROS

ÁREAS DE			Qt a evacuar		Cap. cuneta	PEND.		NDIENTE N				ENDIENTE F			Cauda
INFLUENCIA	TRAMO DE		Cn (m³/s)	por tramo (m³/s)	(m³/s)	%	Oparcial	Qacumut.	Cap.cun	nº aliv	Qparcial	Qacumul.	Cap.cun	n° aliv	Diseño
		5000													
q-01	5+000.00	5+095.00	0.511	0.270	0.30	6.33					0.270	0.270	0.30	1	0.27
	5+095.00	5+180.00	0.011	0.241	0.30	6.33					0.241	0.241	0.30	1	0.24
	5+180.00	5+290.00		0.261	0.30	6.33					0.261	0.261	0.30		ALCAN
q-02	5+290.00	5+391.16	0.688	0.240	0.30	6.33	_				0.240	0.261	0.30	1	0.261
4-02	5+391.16	5+400.00	0.000	0.021	0.31	8.28					0.021	0.021	0.31		
	5+400.00	5+470.00		0.108	0.31	8.28					0.108	0.303	0.31	1	0.30
	5+470.00	5+625.00		0.178	0.31	8.28					0.178	0.195	0.31		
	5+625.00	5+640.00		0.017	0.31	8.28					0.017	0.017	0.31		
q-03	5+640.00	5+717.00	0.815	0.082	0.31	8.28					0.082	0.259	0.31	1	0.259
4.00	5+717.00	5+780.00	0.010	0.057	0.19	1.93				<u> </u>	0.057	0.178	0.19		
	5+780.00	5+953.46		0.121	0.19	1.93					0.121	0.121	0.19		
	5+953.46	6+180.00		0.260	0.36	11.00					0.260	0.260	0.36	1	0.260
	6+180.00	6+240.00		0.023	0.36	11.00					0.023	0.348	0.36		ALCAN
	6+240.00	6+370.00		0.051	0.33	8.50					0.051	0.181	0.33		
	6+370.00	6+640.00		0.130	0.19	2.00					0.130	0.162	0.19		
q-04	6+640.00	6+760.00	0.401	0.047	0.34	9.50					0.047	0.144	0.34		
	6+760.00	6+840.00		0.031	0.19	2.00				L	0.031	0.097	0.19		
	6+840.00	7+010.00		0.066	0.36	11.00					0.066	0.066	0.36		
	7+010.00	7+210.00		0.078	0.36	11.00					0.078	0.258	0.36	1	0.25
	7+210.00	7+230.00		0.033	0.36	11.00					0.033	0.181	0.36		
	7+230.00	7+300.00		0.115	0.17	1.30					0.115	0.148	0.17		
	7+300.00	7+320.00		0.033	0.17	1.30					0.033	0.033	0.17		
	7+320.00	7+418.00		0.161	0.17	1.30			L		0.161	0.161	0.17	1	0.161
	7+418.00	7+512.00		0.154	0.17	1.30			<u> </u>		0.154	0.154	0.17	1	0.154
q-05	7+512.00	7+610.00	1.527	0.161	0.17	1.30					0.161	0.161	0.17	1	0.16
	7+610.00	7+708.00		0.161	0.17	1.30					0.161	0.161	0.17	1	0.16
	7+708.00	7+805.00		0.159	0.17	1.30					0.159	0.159	0.17	1	0.159
	7+805.00	7+902.00		0.159	0.17	1.30				l	0.159	0.159	0.17	1	0.159
	7 +9 02.00	8+000.00		0.161	0.17	1.30					0.161	0.161	0.17	1	0.161
	8+000.00	8+140.00		0.230	0.30	6.50					0.230	0.230	0.30	1	0.230
	8+140.00	8+260.00		0.273	0.30	6.50					0.273	0.273	0.30		aLCAI
	8+260.00	8+380.00		0.273	0.30	6.50					0.273	0.273	0.30	1	0.273
q-06	8+380.00	8+500.00	1.183	0.273	0.30	6.50					0.273	0.273	0.30	1	0.273
	8+500.00	8+620.00		0.273	0.30	6.50					0.273	0.273	0.30	1	0.273
	8+620.00	8+660.00		0.091	0.21	3.00	0.091	0.091	0.21						
	8+660.00	8+730.00		0.112	0.21	3.00	0.112	0.203	0.21	1					0.20
	8+730.00	8+860.00		0.208	0.21	3.00	0.208	0.208	0.21	1					0.20
a 07	8+860.00	8+990.00	0.944	0.208	0.21	3.00	0.208	0.208	0.21	1					0.20
q-07	8+990.00	9+120.00		0.208	0.21	3.00	0.208	0.208	0.21	1					0.20
	9+120.00	9+250.00		0.208	0.21	3.00	0.208	0.208	0.21	1					0.20
	9+250.00	9+310.00		0.087	0.21	3.00	0.087	0.087	0.21						
	9+310.00	9+580.00		0.193	0.29	5.71	0.193	0.280	0.29	1					0.28
- 00	9+580.00	9+992.79	0.70	0.295	0.33	5.71	0.295	0.295	0.33	1			<u> </u>		0.29
q-08	9+992.79	10+334.41	0.78	0.244	0.33	8.50	0.244	0.244	0.33	1			<u> </u>		0.24
	10+334.41	10+401.62	1	0.048	0.24	4.00	0.048	0.048	0.24						
		·	L				 	PARCIAL 1		8	·	PARCIAL 2		18	

Dal Tan OTEMA VILONTEM BULL

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN)"

TABLA 4.3.40 CAUDALES DE DISEÑO PARA ALIVIADEROS

ALIVIADERO	UBICACIÓN DE	Tramo	de cuneta	Q diseño
N°	ALIVIADERO	P. INICIAL	P. FINAL	(m³/s)
ALIV. 01	5+000.00	5+000.00	5+095.00	0.270
ALIV. 02	5+095.00	5+095.00	5+180.00	0.241
ALIV. 03	5+290.00	5+290.00	5+400.00	0.261
ALIV. 04	5+400.00	5+400.00	5+640.00	0.303
ALIV. 05	5+640.00	5+640.00	5+953.46	0.259
ALIV. 06	5+953.46	5+953.46	6+180.00	0.260
ALIV. 07	7+010.00	7+010.00	7+320.00	0.258
ALIV. 08	7+320.00	7+320.00	7+418.00	0.161
ALIV. 09	7+418.00	7+418.00	7+512.00	0.154
ALIV. 10	7+512.00	7+512.00	7+610.00	0.161
ALIV. 11	7+610.00	7+610.00	7+708.00	0.161
ALIV. 12	7+708.00	7+708.00	7+805.00	0.159
ALIV. 13	7+805.00	7+805.00	7+902.00	0.159
ALIV. 14	7+902.00	7+902.00	8+000.00	0.161
ALIV. 15	8+000.00	8+000.00	8+140.00	0.230
ALIV. 16	8+260.00	8+260.00	8+380.00	0.273
ALIV. 17	8+380.00	8+380.00	8+500.00	0.273
ALIV. 18	8+500.00	8+500.00	8+660.00	0.273
ALIV. 19	8+730.00	8+660.00	8+730.00	0.203
ALIV. 20	8+860.00	8+730.00	8+860.00	0.208
ALIV. 21	8+990.00	8+860.00	8+990.00	0.208
ALIV 22	9+120.00	8+990.00	9+120.00	0.208
ALIV. 23	9+250.00	9+120.00	9+250.00	0.208
ALIV. 24	9+580.00	9+250.00	9+580.00	0.280
ALIV. 25	9+992.79	9+580.00	9+992.79	0.295
ALIV. 26	10+334.41	9+992.79	10+334.41	0.244

TABLA 4.3.41
CAUDALES DE DISEÑO PARA ALCANTARILLAS

ALCANTAR.	UDIOAGIÓN	Q microc.(An)	Tramo de	e cuneta .	Q cuneta.(Cn)	Q diseño
N°	UBICACIÓN	An (m³/s)	P. INICIAL	P. FINAL	(m³/s)	(m³/s)
ALC. 01	5+180.00	3.119	5+180.00	5+290.00	0.300	0.261
ALC. 02	6+180.00	1.082	6+180.00	6+370.00	0.360	0.348
ALC. 03	8+140.00	2.385	8+140.00	8+260.00	0.300	0.273

"ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN)'

RESUMEN CAUDALES DE MICROCUENCAS

CÁLCULO DE CAUDALES DE APORTE DE LAS MICROCUENCAS (CUNETAS)

MICR.	PROGR	RESIVAS	AREA TRIB.	Tc	lmáx	Coef. Escor.	Qn
q-n	DE	Α	(Ha)	(min)	(mm/h)	C	(m³/s)
q-01	5+000.00	5+180.00	8.315	17.029	59.64	0.37	0.511
q-02	5+180.00	5+470.00	14.637	24.856	45.62	0.37	0.688
q-03	5+470.00	6+180.00	15.357	20.550	51.49	0.37	0.815
q-04	6+180.00	7+210.00	4.366	10.202	89.05	0.37	0.401
q-05	7+210.00	8+140.00	31.122	17.751	60.74	0.29	1.527
q-06	8+140.00	8+660.00	15.332	13.389	74.87	0.37	1.183
g-07	8+660.00	9+310.00	8.929	8.842	102.61	0.37	0.944
q-08	9+310.00	10+402.00	4.650	4.770	162.76	0.37	0.780

CÁLCULO DE CAUDALES DE APORTE DE LAS MICROCUENCAS (ALCANTARILLAS)

OBRA DE ARTE	PROGRESIVA Km)	MICROCUENCA Q-n	AREA TRIB. (Ha)	Tc (min)	lmáx (mm/h)	Coef. Escor.	Qn (m³/s)
a1	5+180.00	Q-01	68.378	38.311	36.235	0.39	2.706
a2	6+180.00	Q-02	14.103	19.160	60.93	0.43	1.034
a3	8+140.00	Q-03	45.627993	31.95044676	41.52	0.39	2.069

an = Alcantarilla

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN)"

TABLA 4.3.43

TIPO DE FLUJO EN ALIVIADEROS

OBRA.ARTE		Q Diseño	Longitud	Pendiente		Ø	Coef. Rug.	Y1	Y1/D	Y4	Yc	Yċ/D	Y4/Yc	Y4/D	L/D	(So*D¹/3)/n²	TIPO
N°	PROGRESIVA	(m3/s)	(m)	So	(")	(m)	n	(m)	טווז	(m)	(m)	TUD	14/16	1470	טט	(30 0 "4) 14	FLUJO
ALIV. 01	5+000.00	0.270	8.10	0.02	36	0.914	0.024	0.93	1.01	0.61	0.30	0.33	2.01	0.67	8.86	114.65	3
ALIV. 02	5+095.00	0.241	5.10	0.02	36	0.914	0.024	0.92	1.01	0.61	0.29	0.31	2.13	0.67	5.58	114.65	3
ALIV. 03	5+290.00	0.261	5.10	0.02	36	0.914	0.024	0.93	1.01	0.61	0.30	0.33	2.04	0.67	5.58	114.65	3
ALIV. 04	5+400.00	0.303	5.10	0.02	36	0.914	0.024	0.93	1.02	0.61	0.32	0.35	1.90	0.67	5.58	114.65	3
ALIV. 05	5+640.00	0.259	5.70	0.02	36	0.914	0.024	0.93	1.01	0.61	0.30	0.33	2.05	0.67	6.23	114.65	3
ALIV. 06	5+953.46	0.260	5.10	0.02	36	0.914	0.024	0.93	1.01	0.61	0.30	0.33	2.05	0.67	5.58	114.65	3
ALIV. 07	7+010.00	0.258	5.10	0.02	36	0.914	0.024	0.93	1.01	0.61	0.30	0.32	2.05	0.67	5.58	114.65	3
ALIV. 08	7+320.00	0.161	5.50	0.02	36	0.914	0.024	0.92	1.01	0.61	0.23	0.26	2.60	0.67	6.01	114.65	3
ALIV. 09	7+418.00	0.154	5.10	0.02	36	0.914	0.024	0.92	1.00	0.61	0.23	0.25	2.66	0.67	5.58	114.65	3
ALIV. 10	7+512.00	0.161	5.50	0.02	36	0.914	0.024	0.92	1.01	0.61	0.23	0.26	2.60	0.67	6.01	114.65	3
ALIV. 11	7+610.00	0.161	5.10	0.02	36	0.914	0.024	0.92	1.01	0.61	0.23	0.26	2.60	0.67	5.58	114.65	3
ALIV. 12	7+708.00	0.159	5.10	0.02	36	0.914	0.024	0.92	1.00	0.61	0.23	0.25	2.62	0.67	5.58	114.65	3
ALIV. 13	7+805.00	0.159	8.10	0.02	36	0.914	0.024	0.92	1.00	0.61	0.23	0.25	2.62	0.67	8.86	114.65	. 3
ALIV. 14	7+902.00	0.161	5.10	0.02	36	0.914	0.024	0.92	1.01	0.61	0.23	0.26	2.60	0.67	5.58	114.65	3
ALIV. 15	8+000.00	0.230	5.10	0.02	36	0.914	0.024	0.92	1.01	0.61	0.28	0.31	2.18	0.67	5.58	114.65	3
ALIV. 16	8+260.00	0.273	5.50	0.02	36	0.914	0.024	0.93	1.01	0.61	0.31	0.33	2.00	0.67	6.01	114.65	3
ALIV. 17	8+380.00	0.273	5.10	0.02	36	0.914	0.024	0.93	1.01	0.61	0.31	0.33	2.00	0.67	5.58	114.65	3
ALIV. 18	8+500.00	0.273	5.10	0.02	36	0.914	0.024	0.93	1.01	0.61	0.31	0.33	2.00	0.67	5.58	114.65	3
ALIV. 19	8+730.00	0.203	5.50	0.02	36	0.914	0.024	0.92	1.01	0.61	0.26	0.29	2.32	0.67	6.01	114.65	3
ALIV. 20	8+860.00	0.208	5.10	0.02	36	0.914	0.024	0.92	1.01	0.61	0.27	0.29	2.29	0.67	5.58	114.65	3
ALIV. 21	8+990.00	0.208	5.10	0.02	36	0.914	0.024	0.92	1.01	0.61	0.27	0.29	2.29	0.67	5.58	114.65	3
ALIV.22	9+120.00	0.208	8.10	0.02	36	0.914	0.024	0.92	1.01	0.61	0.27	0.29	2.29	0.67	8.86	114.65	3
ALIV. 23	9+250.00	0.208	5.10	0.02	36	0.914	0.024	0.92	1.01	0.61	0.27	0.29	2.29	0.67	5.58	114.65	3
ALIV. 24	9+580.00	0.280	5.10	0.02	36	0.914	0.024	0.93	1.02	0.61	0.31	0.34	1.97	0.67	5.58	114.65	3
ALIV. 25	9+992.79	0.295	5.50	0.02	36	0.914	0.024	0.93	1.02	0.61	0.32	0.35	1.92	0.67	6.01	114.65	3
ALIV. 26	10+334.41	0.244	5.10	0.02	36	0.914	0.024	0.92	1.01	0.61	0.29	0.32	2.11	0.67	5.58	114.65	3

Y1=	D+1.5V2/(2g)
V=	Q/A
Q=	Caudal
A=	Area

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN)"

TABLA 4.3.44

ALIVIADEROS DE FLUJO TIPO 3

ALC.	r/D	bc Rad	Ac (m2)	Rhc (m)	Kc	CD₁	Kr	CD ₂	A ₁ (m2)	Rh₁ (m)	K ₁	Y2 (m)	b₂ Rad	A ₂ (m2)	Rh₂ (m)	K₂	m	CD	V₁²/2g	b₃ Rad	A ₃ (m2)	Rh₃ (m)	K ₃	h ₁₁₋₂	h ₁₂₋₃	Caud. (m³/s)	Pend. Sc
ALIV. 01	0.021	2.46	0.19	0.17	1.95	0.882	1.04	0.92	1.39	0.41	25.78	0.334	2.60	0.22	0.18	2.91	0.84	0.91	0.002	3.82	0.47	0.27	8.02	0.003	0.025	1.02	0.27
ALIV. 02	0.021	2.38	0.18	0.16	1.75	0.882	1.04	0.92	1.39	0.41	25.69	0.315	2.51	0.20	0.17	2.62	0.86	0.91	0.002	3.82	0.47	0.27	8.02	0.003	0.014	1.03	0.35
ALIV. 03	0.021	2.43	0.19	0.17	1.88	0.881	1.04	0.92	1.39	0.41	25.75	0.328	2.57	0.21	0.18	2.82	0.85	0.91	0.002	3.82	0.47	0.27	8.02	0.003	0.015	1.03	0.30
ALIV. 04	0.021	2.54	0.21	0.18	2.17	0.883	1.04	0.92	1.40	0.42	25.90	0.354	2.68	0.23	0.19	3.24	0.83	0.92	0.002	3.82	0.47	0.27	8.02	0.003	0.018	1.04	0.23
ALIV. 05	0.021	2.43	0.19	0.17	1.87	0.883	1.04	0.92	1.39	0.41	25.74	0.327	2.56	0.21	0.18	2.80	0.85	0.91	0.002	3.82	0.47	0.27	8.02	0.003	0.017	1.03	0.30
ALIV. 06	0.021	2.43	0.19	0.17	1.88	0.883	1.04	0.92	1.39	0.41	25.75	0.328	2.57	0.21	0.18	2.81	0.85	0.91	0.002	3.82	0.47	0.27	8.02	0.003	0.015	1.03	0.30
ALIV. 07	0.021	2.42	0.18	0.17	1.86	0.883	1.04	0.92	1.39	0.41	25.74	0.326	2.56	0.21	0.18	2.79	0.85	0.91	0.002	3.82	0.47	0.27	8.02	0.003	0.015	1.03	0.31
ALIV. 08	0.021	2.12	0.13	0.14	1.18	0.883	1.04	0.92	1.38	0.41	25.48	0.258	2.24	0.15	0.15	1.78	0.89	0.91	0.001	3.82	0.47	0.27	8.02	0.002	0.010	1.03	0.76
ALIV. 09	0.021	2.10	0.13	0.13	1.13	0.883	1.04	0.92	1.38	0.41	25.47	0.252	2.21	0.15	0.15	1.70	0.89	0.91	0.001	3.82	0.47	0.27	8.02	0.002	0.009	1.03	0.83
ALIV. 10	0.021	2.12	0.13	0.14	1.18	0.883	1.04	0.92	1.38	0.41	25.48	0.258	2.24	0.15	0.15	1.78	0.89	0.91	0.001	3.82	0.47	0.27	8.02	0.002	0.010	1.03	0.76
ALIV. 11	0.021	2.12	0.13	0.14	1.18	0.883	1.04	0.92	1.38	0.41	25.48	0.258	2.24	0.15	0.15	1.78	0.89	0.91	0.001	3.82	0.47	0.27	8.02	0.002	0.009	1.03	0.76
ALIV. 12	0.021	2.12	0.13	0.14	1.16	0.883	1.04	0.92	1.38	0.41	25.48	0.256	2.23	0.15	0.15	1.75	0.89	0.91	0.001	3.82	0.47	0.27	8.02	0.002	0.009	1.03	0.78
ALIV. 13	0.021	2.12	0.13	0.14	1.16	0.883	1.04	0.92	1.38	0.41	25.48	0.256	2.23	0.15	0.15	1.75	0.89	0.91	0.001	3.82	0.47	0.27	8.02	0.002	0.015	1.02	0.76
ALIV. 14	0.021	2.12	0.13	0.14	1.18	0.882	1.04	0.92	1.38	0.41	25.48	0.258	2.24	0.15	0.15	1.78	0.89	0.91	0.001	3.82	0.47	0.27	8.02	0.002	0.009	1.02	0.76
ALIV. 15	0.021	2.35	0.17	0.16	1.67	0.882	1.04	0.92	1.39	0.41	25.65	0.308	2.48	0.19	0.17	2.50	0.86	0.91	0.001	3.82	0.47	0.27	8.02	0.002	0.013	1.03	0.38
ALIV. 16	0.021	2.46	0.19	0.17	1.97	0.882	1.04	0.92	1.39	0.41	25.79	0.336	2.60	0.22	0.18	2.94	0.84	0.91	0.002	3.82	0.47	0.27	8.02	0.003	0.017	1.03	0.27
ALIV. 17	0.021	2.46	0.19	0.17	1.97	0.882	1.04	0.92	1.39	0.41	25.79	0.336	2.60	0.22	0.18	2.94	0.84	0.91	0.002	3.82	0.47	0.27	8.02	0.003	0.016	1.03	0.28
ALIV. 18	0.021	2.46	0.19	0.17	1.97	1.882	1.04	1.96	1.39	0.41	25.79	0.336	2.60	0.22	0.18	2.94	0.84	2.01	0.002	3.82	0.47	0.27	8.02	0.003	0.016	2.27	1.33
ALIV. 19	0.021	2.27	0.16	0.15	1.48	2.882	1.04	3.00	1.38	0.41	25.58	0.290	2.39	0.18	0.16	2.22	0.87	3.18	0.001	3.82	0.47	0.27	8.02	0.002	0.013	3.57	5.83
ALIV. 20	0.021	2.28	0.16	0.15	1.51	3.882	1.04	4.04	1.38	0.41	25.59	0.293	2.41	0.18	0.16	2.27	0.87	4.30	0.001	3.82	0.47	0.27	8.02	0.002	0.012	4.84	10.23
ALIV. 21	0.021	2.28	0.16	0.15	1.51	4.882	1.04	5.08	1.38	0.41	25.59	0.293	2.41	0.18	0.16	2.27	0.87	5.43	0.001	3.82	0.47	0.27	8.02	0.002	0.012	6.12	16.31
ALIV.22	0.021	2.28	0.16	0.15	1.51	5.882	1.04	6.12	1.38	0.41	25.59	0.293	2.41	0.18	0.16	2.27	0.87	6.56	0.001	3.82	0.47	0.27	8.02	0.002	0.019	7.30	23.24
ALIV. 23	0.021	2.28	0.16	0.15	1.51	6.882	1.04	7.16	1.38	0.41	25.59	0.293	2.41	0.18	0.16	2.27	0.87	7.69	0.001	3.82	0.47	0.27	8.02	0.002	0.012	8.66	32.71
ALIV. 24	0.021	2.48	0.20	0.17	2.01	7.882	1.04	8.20	1.39	0.41	25.82	0.340	2.62	0.22	0.19	3.01	0.84	8.56	0.002	3.82	0.47	0.27	8.02	0.003	0.017	9.67	23.05
ALIV. 25	0.021	2.52	0.20	0.18	2.12	8.882	1.04	9.24	1.39	0.42	25.87	0.349	2.66	0.23	0.19	3.16	0.83	9.60	0.002	3.82	0.47	0.27	8.02	0.003	0.019	10.83	26.18
ALIV. 26	0.021	2.39	0.18	0.16	1.77	9.882	1.04	10.28	1.39	0.41	25.70	0.317	2.52	0.20	0.18	2.65	0.85	10.91	0.002	3.82	0.47	0.27	8.02	0.003	0.014	12.30	48.46


FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN)"

PRO	OYECTO:	_	LABORACIÓN DEI O OCHO-CAPULIP							N)"
MEI	TRADOS:	ł	ABORACIÓN DEL RO OCHO-CAPULI							N)
Partida		Especificaciones		No	N	ledidas (m)		Parcial	Total	Unidad
N°		Especificaciones		veces	Largo	Ancho	Alto	- Farciai	10031	Unitiad
01.00.00		BRAS PRELIMINAR		:						
01.01.00	Movilización y des m	ovilización de equipos	3						1.00	glb
01.02.00	Campamento provis i	onal de la obra			10.00	6.00			60.00	m2
01.03.00	Cartel de obra (2.40	x 5.40 m)		:					1.00	und
01.04.00	Trazo y Replanteo			1		<u> </u>		5.40	5.40	km
	Progr		Distancia	Trazo y Replanteo						
	Km.	Km.	m.	Km.						1
	5,000.00	6,000.00	1,000.00	1.00						1
	6,000.00	7,000.00	1,000.00	1.00						1
	7,000.00	8,000.00	1,000.00	1.00						!
	8,000.00	9,000.00	1,000.00	1.00						
	9,000.00	10,000.00	1,000.00	1.00						ł
	10,000.00	10,401.62	401.62 TOTAL =	0.40 5.40						
					··········					
01.05.00	LIMPIEZA Y DEFO	RESTACION		1.00				2.10	2.10	Ha
	Progresiva		Distancia	Ancho	Area	Area				
	Km.	Km.	m.	m.	m2.	На.				1
	5,400.00	6,000.00	600.00	6.40	3,840.00	0.38				
	6,000.00	6,300.00	300.00	6.40	1,920.00	0.19		-		
	7,320.00	8,000.00	680.00	6.40	4,352.00	0.44				
	8,000.00	9,000.00	1,000.00	6.40	6,400.00	0.64				
	9,000.00	9,700.00	700.00	6.40	4,480.00	0.45				
				TOTAL =	20,992.00	2.10				

"ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN)"

" ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERÍO PROYECTO: NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN)"

METRADOS: ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERÍO NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN)

Partida	Es pecificaciones	N°	1	Medidas (m)		Parcial	Total	Unidad
No	Especificaciones	veces	Largo	Ancho	Alto	- Farciai	10121	Circac
02.00.00	MOVIMIENTO DE TIERRAS							
02.01.00	Corte de Material Suelto	r					177,857.55	m3
02.02.00	Corte de Roca Suelta	!					102,769.50	m3
02.03.00	Corte de Roca Fija						4,414.60	
02.04.00	Conformación de Terraplenes						83,204.80	m3
02.05.00	Perfilado y Compactado de Subrasante						27,487.80	m2
02.06.00	Eliminación de Material Excedente			Coef.=	1.25		10,389.77	m3
03.00.00	AFIRMADO E=0.30 m							
03.01.00	Derecho de Extracción de Cantera	,					5,113.20	m3
03.02.00	Extracción de Material para Afirmado						6,391.50	m3
03.03.00	Transporte de Material de Afirmado (Carguío)						6,391.50	m3
03.04.00	Extendido, Regado y Compactado						27,487.80	m2
04.00.00	OBRAS DE ARTE Y DRENAJE							
04.01.00	ALIVIADEROS Y ALCANTARILLAS							
04.01.01 04.01.01.01	TRABAJOS PRELIMINARES Trazo y replanteo preliminar ALCANTARILLA TMC Ø 36" ALIVIADERO TMC Ø 36"	3 26	7.70 7.70	1.91 1.91		14.71 14.71	426.50 44.12 382.38	m2

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN)"

PROYECTO:

" ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERÍO NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN)"

METRADOS:

ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERÍO NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN)

Partida		Es pecificaciones	. No		M	ledidas (m)		Parcial	Total	Unidad
Nº		Experimentationes	veces	3	Largo	Ancho	Alto	I ai Ciai	IVIAI	Circau
04.01.02 04.01.02.01	Excavación para obras de	ero T1 KM 05+00.00						358.13	m3	
		Cota Terreno Cota Subrasante Altura de excavación	1	8.10	1.91	3,177.00 3,175.45 1.55	23.98	23.98		
		ro T2 KM 05+095.00 Cota Terreno Cota Subrasante Altura de excavación urilla A1 KM 05+180	1	8.10	1.91	3,177.00 3,175.45 1.55	23.98	23.98		
		Cota Terreno Cota Subrasante Altura de excavación	1	5.10	1.91	3,188.84 3,187.29 1.55	15.10	15.10		
		dero T3 KM 5+290 Cota Terreno Cota Subrasante Altura de excavación ero T4 KM 5+400.00	1	5.10	1.91	3,208.29 3,206.74 1.55	15.10	15.10		
		Cota Terreno Cota Subrasante Altura de excavación ero T5 KM 5+640.00	1	5.10	1.91	3,238.46 3,236.91 1.55	15.10	15.10		
		Cota Terreno Cota Subrasante Altura de excavación	1	5.10	1.91	3,327.45 3,325.90 1.55	15.10	15.10		
		Cota Terreno Cota Subrasante Altura de excavación	1	5.10	1.91	3,327.45 3,325.90 1.55	15.10	15.10		
		arilla A2 KM6+180 Cota Terreno Cota Subrasante Altura de excavación	1	6.30	1.91	3,260.18 3,258.63 1.55	18.65	18.65		
		dero T7 KM7+010 Cota Terreno Cota Subrasante Altura de excavación	1	5.10	1.91	3,327.45 3,325.90 1.55	15.10	15.10		
	Allwad	ero T8KM 7+320.00 Cota Terreno Cota Subrasante Altura de excavación	1	5.70	1.91	3,349.64 3,348.09 1.55	16.87	16.87		

FACULTAD DE INGENIERÍA. ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN)"

PROYECTO:

" ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERÍO NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN)"

METRADOS:

ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERÍO NÚMERO OCHO-CAPULIPAMPA-CRUCELA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN)

Partida	Es pecificaciones	N°	N	Aedidas (m)	Parcial	Total	Unidad
No	Es pecificaciones	veces	Largo	Ancho	Alto	Farciai	TOTAL	Untusiu
	Aliviadero T9 KM 7+418.00							
	Cota Terreno				3,359.20			
	Cota Subrasante	1	5.10	1.91	3,357.65	15.10	15.10	
	Altura de excavación				1.55 :			
	Aliviadero T10 KM 7+512.00			1				
İ	Cota Terreno				3,350.58			
1	Cota Subrasante	1	5.10	1.91	3,349.03	15.10	15.10	
	Altura de excavación		ŀ	1	1.55			
İ	Aliviadero T11 KM 7+610.00							
	Cota Terreno				3,350.51		44.00	
	Cota Subrasante	1	5.50	1.91	3,348.96	16.28	16.28	
	Altura de excavación				1.55			
	Aliviadero T12 KM 7+708.00				2 240 51			
	Cota Terreno		£ 10	101	3,349.51	16 10	15 10	
	Cota Subrasante	1	5.10	1.91	3,347.96	15.10	15.10	
	Aliviadero T13 KM 7+805.00				1.55			
	Cota Terreno				3,355.49			
]	Cota Subrasante	1	5.50	1.91	3,353.94	16.28	16.28	
	Altura de excavación	ı	3.30	1.91	1.55	10.26	10.26	
	Aliviadero T14 KM 7+902.00			}	1.55			
	Cota Terreno			į	3,355.49			
	Cota Subrasante	1	5.10	1.91	3,353.94	15.10	15.10	
	Altura de excavación	•	3.10	1.51	1.55	15.10	15.10	
	Aliviadero T15 KM8+000				1.55			
	Cota Terreno				3,354.82			
	Cota Subrasante	1	5.10	1.91	3,353.27	15.10	15.10	
	Altura de excavación	-			1.55			
	Alcantarilla A3 KM 8+140		İ					
	Cota Terreno				3,375.78			
	Cota Subrasante	1	5.43	1.91	3,374.23	16.08	16.08	
	Altura de excavación				1.55			
	Aliviadero T16 KM 8+260.00			1				
	Cota Terreno				3,383.42			
	Cota Subrasante	1	8.10	1.91	3,381.87	23.98	23.98	
	Altura de excavación				1.55			
	Aliviadero T17 KM 8+380.00							
	Cota Terreno				3,401.65			
	Cota Subrasante 1	1	5.10	1.91	3,400.10	15.10	15.10.	
	Altura de excavación				1.55			

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL "ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN)"

PROYECTO:

" ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERÍO NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN)"

METRADOS:

ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERÍO NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN)

Partida	Es pecificaciones	N°	N	Medidas (m)	Parcial	Total	Unidad
No	Especificaciones	veces	Largo	Ancho	Alto	Tarciai,	IOLAI	Omdau
	Aliviadero T18 KM8+500.00 Cota Terreno Cota Subrasante Alturia de excavación	i 1	5.10	1.91	3,390.99 3,389.44 1.55	15.10	15.10	
	Aliviadero T19 KM 8+730.00 Cota Terreno Cota Subrasante Altura de excavación Aliviadero T20 KM 8+860.00	1 . 1	5.50	1.91	3,346.31 3,344.76 1.55	16.28	16.28	
	Cota Terreno Cota Subrasante Altura de excavación Aliviadero T21 KM8+990.00	1	5.10	1.70	3,309.88 3,308.33 1.55	13.44	13.44	
	Cota Terreno Cota Subrasante Altura de excavación Aliviadero T22 KM 9+120.00	1	5.43	1.91	3,375.78 3,374.23 1.55	16.08	16.08	·
	Cota Terreno Cota Subrasante Altura de excavación Aliviadero T23 KM9+250.00	1	8.10	1.91	3,383.42 3,381.87 1.55	23.98	23.98	
	Cota Terreno Cota Subrasante Altura de excavación Aliviadero T24 KM 9+580.00	1	5.10	1.91	3,401.65 3,400.10 1.55	15.10	15.10	
	Cota Terreno Cota Subrasante Altura de excavación Aliviadero T25 KM 9+992.79	1	5.10	1.91	3,390.99 3,389.44 1:55	15.10	15.10	
	Cota Terreno Cota Subrasante Altura de excavación Aliviadero T26 KM 10+334.41	1	5.50	1.91	3,346.31 3,344.76 1.55	16.28	16.28	
	Cota Terreno Cota Subrasante Altura de excavación	1	5.10	1.70	3,309.88 3,308.33 1.55	13.44	13,44	

ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN)"

PROYECTO:

"ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERÍO NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN)"

METRADOS:

ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERÍO NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN)

Partida -	Especificaciones	N°		Medidas (m)	D	75-4-3	T1.14.4
N°	<u> </u>	veces	Largo	Ancho	Alto	Parcial	Total	Unidad
04.01.02.02 R	elleno compactado con material de cantera	VECES	LARGO	ANCHO	AREA TUB	PARCIAL	198.18	m3
	Aliviadero T1 KM 05+00.00	1	8.10	1.91	5:15	16.34	16.34	
	Alcantarilla A1 KM 05+180	1	5.10	1.91	3.24	10.29	10.29	
	Aliviadero T3 KM 5+290	1	5.10	1.91	3.24	10.29	10.29	
	Aliviadero T4 KM 5+400.00	1	5.10	1.91	3.24	10.29	10.29	
	Alcantarilla A2 KM 6+180	1	6.30	1.91	4.01	12,71	12.71	
	Aliviadero T7 KM 7+010	1	5.10	1.91	3.24	10.29	10.29	
	Aliviadero T8KM 7+320.00	1	5.70	1.91	3.63	11.50	11.50	
	Aliviadero T9 KM 7+418.00	1	5.10	1.91	3.24	10.29	10.29	
	Aliviadero T10 KM 7+512.00	1	5.10	1.91	3.24	10.29	10.29	
	Aliviadero T11 KM 7+610.00	: 1	5.50	1.91	3.50	11.10	11.10	
	Aliviadero T12 KM 7+708.00	. 1	5.10	1.91	3.24	10.29	10.29	
	Aliviadero T13 KM 7+805.00	1	5.50	1.91	3.50	11.10	11.10	
	Aliviadero T14 KM 7+902.00	1	5.10	1.91	3.24	10.29	10.29	
	Aliviadero T15 KM 8+000	, 1	5.10	1.91	3.24	10.29	10.29	
	Alcantarilla A3 KM 8+140	. 1	5.43	1.91	3.45	10.95	10.95	
	Aliviadero T16 KM 8+260.00	. 1	8.10	1.91	5.15	16.34	16.34	
	Aliviadero T17 KM 8+380.00	1	5.10	1.91	3.24	10.29	10.29	
	Aliviadero T18 KM 8+500.00	1	5.10	1.91	3.24	10.29	10.29	
	Aliviadero T19 KM 8+730.00	1	5.50	1.91	3.50	11.10	11.10	
	Aliviadero T20 KM 8+860.00	1	5.10	1.70	3.24	8.79	8.79	
	Aliviadero T21 KM 8+990.00	1	5.43	1.91	3.45	10.95	10.95	
	Aliviadero T22 KM 9+120.00	1	8.10	1.91	5.15	16.34	16.34	}
	Aliviadero T23 KM 9+250.00	1	5.10	1.91	3.24	10.29	10.29	
	Aliviadero T24 KM 9+580.00	1	5.10	1.91	3.24	10.29	10.29	
	Aliviadero T25 KM 9+992.79	1	5.50	1.91	3.50	11.10	11.10	
	Aliviadero T26 KM 10+334.41	1	5.10	1.70	3.24	8.79	8.79	
	Ally lauciu 120 Kiyi 10+334.41		5.10	1.70	92.66	8.79	8.79 290.84	

"ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL, ALTO TRAMO II (DISTRITO DE SAN JUAN)"

"ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERÍO PROYECTO: NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN)" **METRADOS:** ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERÍO

NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN)

Partida	Fancifications	N°	N	fedidas (m))	Bonsiel	T-4-1	15.2.3
N°	Especificaciones	veces	Largo	Ancho Alt		Parcial	Total	Unidad
04.01.02.03	Afirmado compactado Fondo Tubería E=0.15m				· · · · · · · · · · · · · · · · · · ·		276.07	m²
	Aliviadero T1 KM 05+00.00	i 1	8.10	1.91		15.47	15.47	
	Alcantarilla A1 KM 05+180	, 1	5.10	1.91		9.74	9.74	
	Aliviadero T3 KM 5+290	1	5.10	1.91		9.74	9.74	
	Aliviadero T4 KM 5+400.00	; 1	5.10	1.91		9.74	9.74	
	Alcantarilla A2 KM 6+180	1	6.30	1.91		12.03	12.03	
	Aliviadero T7 KM 7+010	1	5.10	1.91		9.74	9.74	ĺ
	Aliviadero T8KM 7+320.00	. 1	5.70	1.91		10.89	10.89	
	Aliviadero T9 KM 7+418.00	1	5.10	1.91		9.74	9.74	1
	Aliviadero T10 KM 7+512.00	1	5.10	1.91		9.74	9.74	1
	Aliviadero T11 KM 7+610.00	1	5.50	1.91		10.51	10.51	
	Aliviadero T12 KM 7+708.00	: 1	5.10	1.91		9.74	9.74	
	Aliviadero T13 KM 7+805.00	<u>f</u> 1	5.50	1.91		10.51	10.51	
	Aliviadero T14 KM 7+902.00	1	5.10	1.91		9.74	9.74	
	Aliviadero T15 KM 8+000	1	5.10	1.91		9.74	9.74	
	Alcantarilla A3 KM 8+140	1	5.43	1.91		10.37	10.37	
	Aliviadero T16 KM 8+260.00	1	8.10	1.91		15.47	15.47	
	Aliviadero T17 KM 8+380.00	1	5.10	1.91		9.74	9.74	
	Aliviadero T18 KM 8+500.00	1	5.10	1.91		9.74	9.74	
	Aliviadero T19 KM 8+730.00	1	5.50	1.91		10.51	10.51	
	Aliviadero T20 KM 8+860.00	1	5.10	1.70		8.67	8.67	
	Aliviadero T21 KM 8+990.00	1	5.43	1.91		10.37	10.37	
	Aliviadero T22 KM 9+120.00	1	8.10	1.91		15.47	15.47	
	Aliviadero T23 KM 9+250.00	1	5.10	1.91		9.74	9.74	
	Aliviadero T24 KM 9+580.00	1	5.10	1.91		9.74	9.74	
	Aliviadero T25 KM 9+992.79	1	5.50	1.91		10.51	10.51	
	Aliviadero T26 KM 10+334.41	1	5.10	1.70		8.67	8.67	
04.01.02.04	Eliminación de material excedente hasta botadero mas cercano		+	Coef.=	1.25	 	447.66	m3

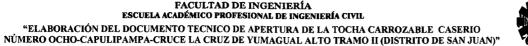
FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN)"

PROYECTO:

"ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERÍO NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN)"

METRADOS:


ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERÍO

ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERÍO NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN

Partida -	Es pecificaciones	N°	N	ledidas (m)		Parcial	Total	Unidad
N°	Es pecificaciones	veces	Largo	Ancho	Alto	- Parciai	Totai	Unitak
04.01.03	CONCRETO SIMPLE						205.12	
04.01.03.01	Concreto para aliviaderos f c=175 kg/cm2 CAJA RECEPTORA	29	VOLUMEN	6.47		6,47	327.12 187.63	m3
	ALAS ABIERTAS		VOLUMEN	4.81		4.81	139.49	
04.01.03.02	Encofrado y Desencofrado de aliviaderos CAJA RECEPTORA	29	AREA	18.03		18.03	1,382.14 522.87	m2
	ALAS ABIERTAS	29	AREA	29.63		29.63	859.27	
04.01.04	TUBERIA TMC 36"							
04.01.04.01	Tubería TMC 36"	, 1	8.10			9 10	145.66	m.
	Aliviadero T1 KM 05+00.00	, 1	1			8.10	8.10	
	Alcantarilla A1 KM 05+180	. 1	5.10			5.10	5.10	
	Aliviadero T3 KM 5+290	1	5.10			5.10	5.10	
	Aliviadero T4 KM 5+400.00	1	5.10			5.10	5.10	
	Alcantarilla A2 KM 6+180	; 1	6.30			6.30	6.30	
	Aliviadero T7 KM 7+010	1	5.10			5.10	5.10	
	Aliviadero T8KM 7+320.00	1	5.70			5.70	5.70	
	Aliviadero T9 KM 7+418.00	; 1	5.10			5.10	5.10	
	Aliviadero T10 KM 7+512.00	1	5.10			5.10	5.10	
	Aliviadero T11 KM 7+610.00	1	5.50			5.50	5.50	
	·	1						
	Aliviadero T12 KM 7+708.00	1	5.10			5.10	5.10	
	Aliviadero T13 KM 7+805.00	1	5.50			5.50	5.50	
	Aliviadero T14 KM 7+902,00	1	5.10			5.10	5.10	
	Aliviadero T15 KM 8+000	1	5.10			5.10	5.10	
	Alcantarilla A3 KM 8+140	1	5.43			5.43	5.43	
	Aliviadero T16 KM 8+260.00	. 1	8.10			8.10	8.10	
	Aliviadero T17 KM 8+380.00	. 1	5.10			5.10	5.10	ļ
	Aliviadero T18 KM 8+500.00	1	5.10			5.10	5.10	
	Aliviadero T19 KM 8+730.00	1	5.50			5.50	5.50	
		:	1			5.10	5.10	
	Aliviadero T20 KM 8+860.00	1	5.10			1		
	Aliviadero T21 KM 8+990.00		5.43			5.43	5.43	
	Aliviadero T22 KM 9+120.00	1	8.10			8.10	8.10	
	Aliviadero T23 KM 9+250.00	1	5.10			5.10	5.10	
	Aliviadero T24 KM 9+580.00	1	5.10			5.10	5.10	
	Aliviadero T25 KM 9+992.79	1	5.50			5.50	5.50]
	Aliviadero T26 KM 10+334.41	1	5.10	1		5.10	5.10	

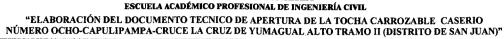
METRADOS:

" FLABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERÍO PROYECTO: NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN)"

> ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERÍO NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN HIAN)

Partida	Especificaciones	: N°	1	Medidas (m)		Parcial	T-4-1	TT-1-1-
N°	-	veces	Largo	Ancho	Alto	Parciai	Total	Unidad
04.01.05	EMBOQUILLADO							
04.01.05.01 Emboq	uillado de salida Aliviadero T1 KM 05+00.00	1	4.05	3.82		15.47	278.21	m2
		1:	· I	1		15.47	15.47	
	Alcantarilla A1 KM 05+180	1	2.55	3.82		9.74	9.74	
	Aliviadero T3 KM 5+290	1	2.55	3.82		9.74	9.74	
	Aliviadero T4 KM 5+400.00	1	2.55	3.82		9.74	9.74	
	Alcantarilla A2 KM 6+180	: 1	3.15	3.82		12.03	12.03	
	Aliviadero T7 KM 7+010	. 1	2.55	3.82		9.74	9.74	
	Aliviadero T8KM 7+320.00	1	2.85	3.82		10.89	10.89	
	Aliviadero T9 KM 7+418.00	1	2.55	3.82		9.74	9.74	
	Aliviadero T10 KM 7+512.00	. 1	2.55	3.82		9.74	9.74	
	Aliviadero T11 KM 7+610.00	1	2.75	3.82		10.51	10.51	
_	Aliviadero T12 KM 7+708.00	1	2.55	3.82		9.74	9.74	
	Aliviadero T13 KM 7+805.00	1	2.75	3.82		10.51	10.51	
	Aliviadero T14 KM 7+902.00	1	2.55	3.82		9.74	9.74	
	Aliviadero T15 KM 8+000	1	2.55	3.82		9.74	9.74	
	Alcantarilla A3 KM 8+140	1	2.72	3.82		10.37	10.37	
	Aliviadero T16 KM 8+260.00	1	4.05	3.82		15.47	15.47	
	Aliviadero T17 KM 8+380.00	1	2.55	3.82		9.74	9.74	
	Aliviadero T18 KM 8+500.00	1	2.55	3.82		9.74	9.74	
	Aliviadero T19 KM 8+730.00	1	2.75	3.82		10.51	10.51	
	Aliviadero T20 KM 8+860.00	1	2.55	3.82		9.74	9.74	
	Aliviadero T21 KM 8+990.00	1	2.72	3.82		10.37	10.37	
	Aliviadero T22 KM 9+120.00	1	4.05	3.82		15.47	15.47	
	Aliviadero T23 KM 9+250.00	1	2.55	3.82		9.74	9.74	
	Aliviadero T24 KM 9+580.00		2.55	3.82		9.74	9.74	
	Aliviadero T25 KM 9+992.79			1		10.51	10.51	
			2.75	3.82				
	Aliviadero T26 KM 10+334.41	1	2.55	3.82		9.74	9.74	<u> </u>

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL


"ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN)"

" ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERÍO PROYECTO: NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN)"

METRADOS: ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERÍO NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN)

Partida	Es pecificaciones	Nº.		Medidas (m)		Parcial	Total	Unida
N°	Especificaciones	veces	Largo	Ancho	Alto	T ar Crai	Iotai	Unitati
04.02.00	CUNETAS	1						
04.02.01	MOVIMIENTO DE TIERRAS							
04.02.01.01	Conformación de cunetas en material suelto E=0.10m	1					12,911.51	m2
05.00.00	SEÑALIZACIÓN	•						
05.01.00	Hitos Kilométricos						6.00	und.
	05+000.000 DERECHA	1				1.00	1.00	
	06+000.000 DERECHA	1				1.00	1.00	
	07+000.000 DERECHA	1		1		1.00	1.00	
	08+000.000 DERECHA	1				1.00	1.00	
	09+000,000 DERECHA	1				1.00	1.00	
	10+000.000 DERECHA	1				1.00	1.00	
05.02.00	Señales Informativas				· · · · · · · · · · · · · · · · · · ·		6.00	unc
	05+000.000 DERECHA	1				1.00	1.00	
	07+240.000 DERECHA.	1		i		1.00	1.00	
	07+260.000 IZQUIERDA	1				1.00	1.00	
	09+300.000 DERECHA	1				1.00	1.00	
	09+320.000 IZQUIERDA	1				1.00	1.00	
	10+401.62 IZQUIERDA	: 1				1.00	1.00	
05.03.00	Señales Preventivas	1					36.00	und
	05+250.000	1				1.00	1.00	
	05+470.000	1		1 1		1.00	1.00	
	05+7100.000	1				1.00	1.00	
	05+800.000,	1				1.00	1.00	
	05+995.000	1				1.00	1.00	
	06+075.000	1	1			1.00	1.00	
	06+145.000	1				1.00	1.00	
	06+228.000	1	1			1.00	1.00	
	06+332.000	1	1			1.00	1.00	
	06+412.000 i	1				1.00	1.00	
	06+565.000	1				1.00	1.00	
	06+645.000	1				1.00	1.00	1

FACULTAD DE INGENTERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

PROYECTO:

" ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERÍO NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN)"

METRADOS:

ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERÍO NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN)

Partida	FamaiGassianes	N°		Medidas (m)		Donotal	77-4-1	Unidad	
Nº	Es pecificaciones	veces	Largo.	Ancho	Alto	Parcial	Total	Unicad	
	06+762.000	1				1.00	1.00		
	06+840.000	1		1		1.00	1.00		
	06+858.000	1				1.00	1.00		
	07+030.000	1		1		1.00	1.00		
	07+075.000	1				1.00	1.00		
	07+282.000	1		1 1		1.00	1.00		
	07+505.000	1. 1				1.00	1.00		
	07+730.000	1				1.00	1.00		
	07+902.000	i	1	1		1.00	1.00		
	08+410.000	1				1.00	1.00		
	08+430.000	1		1 1		1.00	1.00		
	08+634.000	1				1.00	1.00		
	08+796.000	1 1	İ			1.00	1.00		
	08+877,000	i				1.00	1.00		
	09+020.000	1. 1		1 1		1.00	1.00		
	09+090.000	- i				1.00	1.00		
	09+231.000	i	1			1.00	1.00		
	09+358.000	i i				1.00	1.00		
	09+502.000	1				1.00	1.00		
	09+780.000	1				1.00	1.00		
	09+854.000	1 1				1.00	1.00		
	10+118.000	. 1				1.00	1.00		
	10+160.000	1 1				1.00	1.00		
	10+257.000	1				1.00	1.00		
	10+257.000	1 1				1.00	1.00		
05.04.00	Señales reguladoras	; · · · · · · · · · · · · · · · · · · ·					4.00	und.	
	05+050.000	1				1.00	1.00		
	06+615.000	1				1.00	1.00		
	07+060.000	1				1.00	1.00		
	10+350.000	1				1.00	1.00		
06.00.00	MITIGACIÓN DE IMPACTO AMBIENTAL					<u> </u>			
06.01.00	Mitigación de áreas en Cantera						1.70	ha.	
06.02.00	Restauración de áreas asignadas como Botaderos						2.13	ha.	
06.03.00	Restauración de áreas utilizadas como Campamento y patio	de Maminarias					2.13	ha	
07.00.00	FLETE TERRES TRE		T	T		1			
07.01.00	FLETE TERRESTRE		 	+		 	1.00	Glb	

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN)"

· · · · · · · · · · · · · · · · · · ·			····	PL	ANILLA D	E METRA	DOS							
02.00 MO\	VIMIENTO	DE TIERRAS												
TIPO DE SUI	ELO		TIPO DE SU	ELO	PROYECTO:	TROCHA CARR	OZABLE CAPULI	PAMPA - CRUCE	LA CRUZ DE YUN	AGUAL ALTO				
MATERIALS	SUELTO		1		UBICACIÓN:	COM. CAPULIP	AMPA, DIST. SA	N JUAN, PROV.	CAJAMARCA, DP	to. Cajamarca				
ROCA SUEL	TA		2		FECHA:	JULIO DEL 2012	2							
ROCA FIJA			3		PROYECTISTA:	BACH. CIEZA V	ÁSQUEZ, Edgar	KILOMETRO:	5.000	- 6.000				
LONGITUD	TOTAL:		1000	M.	M3.	M3.	M3.	M3.	M3.	M 3.				
Totales de l	Movimient	de Tierras (m3.):			4184.35	13295	2990	20469.35	12726.45	7136.05				
Dist.	Dist.	AREA	AREA		VOLUMEN	VOLUMEN	VOLUMEN	Volumen	VOLUMEN	RELLENO				
entre	Acumul	DE	DE	Tipo	MATERIAL	ROCA	ROCA	disponible	RELLENO	TRANSP.				
Estac.		CORTE	RELLENO	Suelo	SUELTO	SUELTA	FUA	para relleno	TELECTIO	110(113)				
					ļ									
0.00	5000.00	3.21	12.22	1	0.00	0.00		0.00	0.00					
20.00	5020.00	2.97	12.46	1	61.80	0.00		61.80	246.80	185.00				
20.00	5040.00	3.42	2.20	1		0.00	0.00	63.90	146.60	82.70				
20.00	5060.00	5.52	0.38	1		0.00	0.00	89.40	25.80					
20.00	5080.00	9.51	0.12	1		0.00		150.30	5.00					
20.00	5100.00	14.40	0.00	1	239.10	0.00	0.00	239.10	0.60					
20.00	5120.00	16.60	0.00	1	310.00	0.00	0.00	310.00	0.00					
20.00	5140.00	8.58	0.16	1	251.80	0.00	0.00	251.80	0.80					
20.00	5160.00	6.78	0.25	1	153.60	0.00	0.00	153.60	4.10					
20.00	5180.00	5.23	0.14	1	120.10	0.00	0.00	120.10	3.90					
20.00	5200.00	2.91	1.40	1	81.40	0.00	0.00	81.40	15.40					
20.00	5220.00	0.70	5.39	1	36.10	0.00	0.00	36.10	67.90	31.80				
20.00	5240.00	0.00	4.95	1	3.50	0.00	0.00	3.50	103.40	99.90				
20.00	5260.00	2.36	0.10	1	11.80	0.00	0.00	11.80	50.50	38.70				
20.00	5280.00	8.77	0.00	1	111.30	0.00	0.00	111.30	0.50					
20.00	5300.00	8.29	0.00	1	170.60	0.00	0.00	170.60	0.00					
20.00	5320.00	4.55	0.06	1	128.40	0.00	0.00	128.40	0.30					
20.00	5340.00	2.61	0.03	1	71.60	0.00	0.00	71.60	0.90					
20.00	5360.00	3.77	0.01	1	63.80	0.00	0.00	63.80	0.40					
20.00	5380.00	2.86	0.45	1	66.30	0.00	0.00	66.30	4.60					
20.00	5400.00	1.98	0.39	1	48.40	0.00	0.00	48.40	8.40					
20.00	5420.00	4.47	0.18	1	64.50	0.00	0.00	64.50	5.70					
20.00	5440.00	1.03	1.09	1	55.00	0.00	0.00	55.00	12.70					
20.00	5460.00	2.76	1.93	1	37.90	0.00	0.00	37.90	30.20					
20.00	5480.00	6.93	0.41	1	96.90	0.00	0.00	96.90	23.40					
20.00	5500.00	15.27	0.00	1	222.00	0.00	0.00	222.00	2.05					
20.00	5520.00	16.18	0.00	1	314.50	0.00	0.00	314.50	0.00					
20.00	5540.00	14.27	0.00	1	304.50	0.00	0.00	304.50	0.00					
20.00	5560.00	13.02	0.00	1	272.90	0.00		272.90	0.00					
20.00	5580.00	12.89	0.00	1	259.10	0.00	0.00	259.10	0.00					
20.00	5600.00	12.95	0.00	1	258.40	0.00	0.00	258.40	0.00					
20.00	5620.00 5640.00	14.47 0.00	0.00 12.32	2	0.00	274.20 144.70	0.00	274.20 144.70	0.00 61.60					
20.00	5660.00	0.00	62.25	2	0.00	0.00	0.00	144.70	745.70					
20.00	5680.00	0.00	82.76	2	0.00	0.00	0.00		1450.10					
20.00	5700.00	0.00	58.82	2	0.00	0.00	0.00		1430.10					
20.00	5720.00	0.00	31.06	2	0.00	0.00	0.00		898.80					
20.00	5740.00	9.45	0.00	2	0.00	94.50	0.00	94.50	155.30	60.80				
20.00	5760.00	83.47	0.00	3	0.00	0.00	929.20	929.20	0.00	00.80				
20.00	5780.00	122.62	0.00	3	0.00	0.00	2060.90	2060.90	0.00					
20.00	5800.00	119.96	0.00	2	0.00	2425.80	0.00	2425.80	0.00					
20.00	5820.00	119.37	0.00	2	0.00	2393.30	0.00	2393.30	0.00					
20.00	5840.00	78.12	0.00	2	0.00	1974.90	0.00	1974.90	0.00					
20.00	5860.00	51.88	0.00	2	0.00	1300.00	0.00	1300.00	0.00					
20.00	5880.00	61.14	0.00	2	0.00	1130.20	0.00	1130.20	0.00					
20.00	5900.00	62.31	0.00	2	0.00	1234.50	0.00	1234.50	0.00					
20.00	5920.00	57.02	0.00	2	0.00	1193.30	0.00	1193.30	0.00					
	5940.00													
20.00		23.34	42.14	2	0.00	803.60	0.00	803.60	210.70	1104.40				
20.00	5960.00 5980.00	9.25	106.89	2	0.00	325.90	0.00	325.90	1490.30	1164.40				
	~400 I (E	0.00	150.43	1	46.25	0.00	0.00	46.25	2573.20	2526.95				

"ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN)"

				PL	ANILLA D	E METRA	DOS		······································	
T00 55 5111			TIPO DE SU	ELO	ppovere	TROCUL CASE	074 DIE 04 DI ""	DALADA 00110-	I A COLUZ DE LOCA	
TIPO DE SU			<u> </u>		PROYECTO:				LA CRUZ DE YUN	
MATERIALS			1		UBICACIÓN:	 		N JUAN, PROV. (CAJAMARCA, DP	TO. CAJAMARCA
ROCA SUEL	1A		2		FECHA:	JULIO DEL 2012				
ROCA FIJA	TOTAL		3		X	1		KILOMETRO:	6.000	
LONGITUD			1000	M.	M3.	M3.	M3.	M3.	M3.	M3.
	· · · · · · · · · · · · · · · · · · ·	de Tierras (m3.):			82772.40	13249	0	96021.50	3219.00	1936.20
Dist.	Dist.	AREA	AREA	 	VOLUMEN	VOLUMEN	VOLUMEN	Volumen	VOLUMEN	RELLENO
entre	Acumul	DE	DE	Tipo	MATERIAL	ROCA	ROCA	disponible	RELLENO	TRANSP.
Estac.		CORTE	RELLENO	Suelo	SUELTO	SUELTA	FIJA	para relleno		
				<u> </u>						
0.00	6000.00	3.84	146.07	1	0.00	0.00	0.00	0.00	0.00	
20.00	6020.00	18.24	61.38	1	220.80	0.00	0.00	220.80	2074.50	1853.70
20.00	6040.00	79.38	0.00	1	976.20	0.00	0.00	976.20	306.90	
20.00	6060.00	134.18	0.00	1	2135.60	0.00	0.00	2135.60	0.00	
20.00	6080.00	188.32	0.00	1	3225.00	0.00	0.00	3225.00	0.00	
20.00	6100.00	231.45	0.00	1	4197.70	0.00	0.00	4197.70	0.00	
20.00	6120.00	251.21	0.00	1	4826.60	0.00	0.00	4826.60	0.00	
20.00	6140.00	246.61	0.00	1	4978.20	0.00	0.00	4978.20	0.00	
20.00	6160.00	100.01	0.00	1	3466.20	0.00	0.00	3466.20	0.00	***************************************
20.00	6180.00	16.05	0.00	1	1160.60	0.00	0.00	1160.60	0.00	
20.00	6200.00	5.71	31.62	1	217.60	0.00	0.00	217.60	158.10	
20.00	6220.00	18.00	0.34	1	237.10	0.00	0.00	237.10	319.60	82.50
20.00	6240.00	14.25	0.61	1	322.50	0.00	0.00	322.50	9.50	
20.00	6260.00	14.12	0.09	1	283.70	0.00	0.00	283.70	7.00	
20.00	6280.00	22.13	0.00	1	362.50	0.00	0.00	362.50	0.45	
20.00	6300.00	20.13	0.00	1	422.60	0.00	0.00	422.60	0.00	
20.00	6320.00	10.92	1.16	1	310.50	0.00	0.00	310.50	5.80	
20.00	6340.00	5.65	5.37	1	165.70	0.00	0.00	165.70	65.30	
20.00	6360.00	10.16	5.75	2	0.00	158.10	0.00	158.10	111.20	
20.00	6380.00	74.56	0.00	2	0.00	847.20	0.00	847.20	28.75	
20.00	6400.00	114.58	0.00	1	1891.40	0.00	0.00	1891.40	0.00	
20.00	6420.00	108.02	0.00	1	2226.00	0.00	0.00	2226.00	0.00	
20.00	6440.00	98.41	0.00	1	2064.30	0.00	0.00	2064.30	0.00	
20.00	6460.00	70.30	0.00	1	1687.10	0.00	0.00	1687.10	0.00	
20.00	6480.00	27.08	0.00	1	973.80	0.00	0.00	973.80	0.00	
20.00	6500.00	12.19	4.12	1	392.70	0.00	0.00	392.70	20.60	
20.00	6520.00	15.04	0.00	1	272.30	0.00	0.00	272.30	20.60	
20.00	6540.00	15.01	0.02	1	300.50	0.00	0.00	300.50	0.10	
20.00	6560.00	23.93	0.29	1	389.40	0.00	0.00	389.40	3.10	
20.00	6580.00	20.80	5.64	1	447.30	0.00	0.00	447.30	59.30	
20.00	6600.00	45.37	0.00	1	661.70	0.00	0.00	661.70	28.20	
20.00	6620.00	221.46	0.00	1	2668.30	0.00	0.00	2668.30	0.00	
20.00	6640.00	327.71	0.00	1	5491.70	0.00	0.00	5491.70	0.00	
20.00	6660.00	260.21	0.00	1	5879.20	0.00	0.00	5879.20	0.00	
20.00	6680.00	148.33	0.00	1	4085.40	0.00	0.00	4085.40	0.00	
20.00	6700.00	90.89	0.00	1	2392.20	0.00	0.00	2392.20	0.00	
20.00	6720.00	92.57	0.00	1	1834.60	0.00	0.00	1834.60	0.00	
20.00	6740.00	60.80	0.00	1	1533.70	0.00	0.00	1533.70	0.00	
20.00	6760.00	51.67	0.00	1	1124.70	0.00	0.00	1124.70	0.00	
20.00	6780.00	68.45	0.00	1	1201.20	0.00	0.00	1201.20	0.00	
20.00	6800.00	116.15	0.00	1	1846.00	0.00	0.00	1846.00	0.00	
20,00	6820.00	222.92	0.00	1	3390.70	0.00	0.00	3390.70	0.00	
20.00	6840.00	185.63	0.00	2	0.00	4085.50	0.00	4085.50	0.00	
20.00	6860.00	145.84	0.00	2	0.00	3314.70	0.00	3314.70	0.00	
20.00	6880.00	116.64	0.00	2	0.00	2624.80	0.00	2624.80	0.00	
20.00	6900.00	105.24	0.00	2	0.00	2218.80	0.00	2218.80	0.00	
20.00	6920.00	81.84	0.00	1	1870.80	0.00	0.00	1870.80	0.00	
20.00	6940.00	105.78	0.00	1	1876.20	0.00	0.00	1876.20	0.00	
20.00	6960.00	141.93	0.00	1	2477.10	0.00	0.00	2477.10	0.00	
20.00	6980.00	179.64	0.00	1	3215.70	0.00	0.00	3215.70	0.00	
20.00	7000.00	127.29	0.00	1	3069.30	0.00	0.00	3069.30	0.00	

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN)"

				PL	ANILLA D	E METRA	DOS			
			TIPO DE SU	ELO						
TIPO DE SU					PROYECTO:	 			LA CRUZ DE YUN	
MATERIAL: ROCA SUEL			1 2		UBICACIÓN: FECHA:	JULIO DEL 2012		N JUAN, PROV. (CAJAMARCA, DP	TO. CAJAMARCA
ROCA FIJA	./A		3			·		KILOMETRO:	7 000	8.000
LONGITUD	TOTAL ·		1000		M3.	M3.	M3.	M3.	M3.	M3.
		o de Tierras (m3.):	1 2000		31650.10	23279	0	54929.00	12027.15	5175.40
Dist.	Dist.	AREA	AREA	Γ	VOLUMEN	VOLUMEN	VOLUMEN	Volumen		
entre	Acumul	DE	DE	Tipo	MATERIAL	ROCA	ROCA	disponible	VOLUMEN	RELLENO
Estac.		CORTE	RELLENO	Suelo	SUELTO	SUELTA	FIJA	para relleno	RELLENO	TRANSP.
								•		
0.00	7000.00	127.29	0.00	1	0.00	0.00	0.00	0.00	0.00	
20.00	7020.00	68.49	0.00	1	1957.80	0.00	0.00	1957.80	0.00	
20.00	7040.00	61.77	0.00	1	1302.60	0.00	0.00	1302.60	0.00	
20.00	7060.00	103.49	0.00	1	1652.60	0.00	0.00	1652.60	0.00	
20.00	7080.00	152.83	0.00	1	2563.20	0.00	0.00	2563.20	0.00	
20.00	7100.00	130.19	0.00	1	2830.20	0.00	0.00	2830.20	0.00	
20.00	7120.00	94.57	0.00	1	2247.60	0.00	0.00	2247.60	0.00	
20.00	7140.00	97.92	0.00	1	1924.90	0.00	0.00	1924.90	0.00	
20.00	7160.00	68.58	0.00	1	1665.00	0.00	0.00	1665.00	0.00	
20.00	7180.00	55.31	0.00	1	1238.90	0.00	0.00	1238.90	0.00	
20.00	7200.00	56.50	0.00	1	1118.10	0.00	0.00	1118.10	0.00	
20.00	7220.00	68.58	0.00	1	1250.80	0.00	0.00	1250.80	0.00	
20.00	7240.00	98.64	0.00	1	1672.20	0.00	0.00	1672.20	0.00	
20.00	7260.00	81.32	0.00	2		1799.60	0.00	1799.60	0.00	
20.00	7280.00	28.00	0.00	2	0.00	1093.20	0.00	1093.20	0.00	
20.00	7300.00	39.00	0.00	2	0.00	670.00	0.00	670.00	0.00	
20.00	7320.00	88.43	0.00	1	1274.30	0.00	0.00	1274.30	0.00	
20.00	7340.00	187.54	0.00	1	2759.70	0.00	0.00	2759.70	0.00	
20.00	7360.00 7380.00	90.86	0.00 6.72	1	2784.00 922.10	0.00	0.00	2784.00	0.00	
20.00 20.00	7400.00	1.35 0.00	54.05	1	6.75	0.00	0.00	922.10 6.75	33.60 607.70	600.95
20.00	7420.00	0.00	24.84	1		0.00	0.00	0.73	788.90	000.95
20.00	7440.00	29.57	0.00	1	147.85	0.00	0.00	147.85	124.20	
20.00	7460.00	44.02	0.00	1	735.90	0.00	0.00	735.90	0.00	
20.00	7480.00	41.06	0.00	1	850.80	0.00	0.00	850.80	0.00	
20.00	7500.00	33.42	0.00	1	744.80	0.00	0.00	744.80	0.00	
20.00	7520.00	31.68	0.00	2	0.00	651.00	0.00	651.00	0.00	
20.00	7540.00	30.85	0.00	2	0.00	625.30	0.00	625.30	0.00	
20.00	7560.00	19.86	0.89	2		507.10	0.00	507.10	4.45	
20.00	7580.00	13.78	0.66	2	0.00	336.40	0.00	336.40	15.50	
20.00	7600.00	34.58	0.00	2	0.00	483.60	0.00	483.60	3.30	
20.00	7620.00	129.75	0.00	2	0.00	1643.30	0.00	1643.30	0.00	
20.00	7640.00	175.62	0.00	2		3053.70	0.00	3053.70	0.00	
20.00	7660.00	48.51	0.00	2		2241.30	0.00	2241.30	0.00	
20.00	7680.00	0.00	104.79	2	0.00	485.10	0.00	485.10	523.95	38.85
20.00	7700.00	0.00	152.80	2		0.00	0.00		2575.90	4840.00
20.00	7720.00	24.67	25.89	2	0.00	246.70	0.00	246.70	1786.90	1540.20
20.00	7740.00	45.32	0.00	2	}	699.90	0.00	699.90	129.45	
20.00	7760.00	13.21	7.54	2		585.30	0.00	585.30	37.70	
20.00	7780.00	44.05	0.00	2		572.60	0.00	572.60 758.40	37.70 0.00	
20.00 20.00	7800.00 7820.00	31.79 5.58	0.00 21.38	2		758.40 373.70	0.00	373.70	106.90	
		0.00	75.96	2		55.80	0.00	55. 80	973.40	917.60
20.00	7840.00 7860.00	0.00	75.96 86.57	2		0.00	0.00	33.00	1625.30	317.00
20.00	7880.00	5.30	58.35	2	0.00	53.00	0.00	53.00	1449.20	1396.20
20.00	7900.00	16.61	21.68	2		219.10	0.00	219.10	800.30	581.20
20.00	7920.00	85.46	0.00	2		1020.70	0.00	1020.70	108.40	361.20
20.00	7940.00	153.40	0.00	2	 	2388.60	0.00	2388.60	0.00	*****
20.00	7960.00	44.23	0.00	2	 	1976.30	0.00	1976.30	0.00	
20.00	7980.00	12.91	5.24	2		571.40	0.00	571.40	26.20	
20.00	8000.00	3.87	21.58	2		167.80	0.00	167.80	268.20	100.40

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL "ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN)"

				PL	ANILLA D	E METRA	DOS			
TIDO DE CHI	ELO		TIPO DE SU	ELO	DROVECTO.	TOOCHA CARD	OZADLE CADUUL	DAMADA COLICE	I A CDUZ DE VIII.	AACUA! AITO
TIPO DE SU					PROYECTO:	 		PAMPA - CRUCE		
MATERIAL: ROCA SUEL			2	_	UBICACIÓN: FECHA:	JULIO DEL 2012		N JUAN, PROV. C	AJAMAKCA, DP	TO. CAJAMARCA
ROCA FIJA	.14		3			BACH. CIEZA V		KILOMETRO:	8.000	- 9.000
LONGITUD	TOTAL ·		1000		M3.	M3.	M3.	M3.	M3.	M3.
		o de Tierras (m3.):			41793.90	50286	1425	93504.70	20802.20	3203.15
Dist.	Dist.	AREA	AREA		VOLUMEN	VOLUMEN	VOLUMEN	Volumen		
entre	Acumul	DE	DE	Tipo	MATERIAL	ROCA	ROCA	disponible	VOLUMEN	RELLENO
Estac.		CORTE	RELLENO	Suelo	SUELTO	SUELTA	FIJA	para relieno	RELLENO	TRANSP.
0.00	8000.00	3.87	21.58	2	0.00	0.00	0.00	0.00	0.00	
20.00	8020.00	13.76	2.75	2	0.00	176.30	0.00	176.30	243.30	67.00
20.00	8040.00	11.85	0.35	2	0.00	256.10	0.00	256.10	31.00	
20.00	8060.00	12.30	4.59	2		241.50	0.00	241.50	49.40	
20.00	8080.00	104.50	0.00	2	0.00	1168.00	0.00	1168.00	22.95	
20.00	8100.00	247.90	0.00	2	0.00	3524.00	0.00	3524.00	0.00	
20.00	8120.00	231.40	0.00	2	0.00	4793.00	0.00	4793.00	0.00	
20.00	8140.00	200.62	0.00	2		4320.20	0.00	4320.20	0.00	
20.00	8160.00	142.98	0.00	2		3436.00	0.00	3436.00	0.00	
20.00	8180.00	143.76	0.00	2	0.00	2867.40	0.00	2867.40	0.00	
20.00	8200.00	122.48	0.00	2	0.00	2662.40	0.00	2662.40	0.00	
20.00	8220.00	34.13	10.38	2	0.00	1566.10	0.00	1566.10	51.90	
20.00	8240.00	0.00	57.66	2	0.00	341.30	0.00	341.30	680.40	339.10
20.00	8260.00	0.00	120.33	2	0.00	0.00	0.00		1779.90	
20.00	8280.00	0.00	192.42	2	0.00	0.00	0.00	74.50	3127.50	007.50
20.00	8300.00	7.45 116.29	0.00	2	0.00	74.50	0.00	74.50	962.10	887.60
20.00	8320.00		0.00		0.00	1237.40	0.00	1237.40	0.00	
20.00	8340.00 8360.00	124.17 0.00	0.00 51.74	3	0.00	2404.60	0.00 1241.70	2404.60 1241.70	0.00 258.70	
20.00	8380.00	0.00	31.91	3	0.00	0.00	0.00	1241.70	836.50	
20.00	8400.00	18.28	4.09	3	0.00	0.00	182.80	182.80	360.00	177.20
20.00	8420.00	12.35	1.02	2	0.00	306.30	0.00	306.30	51.10	177.20
20.00	8440.00	5.27	9.00	2	0.00	176.20	0.00	176.20	100.20	
20.00	8460.00	21.31	0.00	2	0.00	265.80	0.00	265.80	45.00	
20.00	8480.00	78.02	0.00	2		993.30	0.00	993.30	0.00	
20.00	8500.00	179.11	0.00	2	0.00	2571.30	0.00	2571.30	0.00	
20.00	8520.00	95.00	0.00	2	0.00	2741.10	0.00	2741.10	0.00	
20.00	8540.00	38.72	28.66	2	0.00	1337.20	0.00	1337.20	143.30	
20.00	8560.00	0.00	60.54	2	0.00	387.20	0.00	387.20	892.00	504.80
20.00	8580.00	0.00	154.61	2	0.00	0.00	0.00		2151.50	
20.00	8600.00	0.00	118.94	2	0.00	0.00	0.00		2735.50	
20.00	8620.00	0.00	75.96	2	0.00	0.00	0.00		1949.00	
20.00	8640.00	0.00	40.64	2		0.00	0.00		1166.00	
20.00	8660.00	4.74	0.74	2	0.00	47.40	0.00	47.40	413.80	366.40
20.00	8680.00	32.69	0.00	2	0.00	374.30	0.00	374.30	3.70	
20.00	8700.00	80.05	0.00	2	0.00	1127.40	0.00	1127.40	0.00	
20.00	8720.00	142.71	0.00	2	0.00	2227.60	0.00	2227.60	0.00	
20.00	8740.00	167.10	0.00	2	0.00	3098.10	0.00	3098.10	0.00	
20.00	8760.00	162.19	0.00	2	0.00	3292.90 2271.40	0.00	3292.90	0.00	
20.00	8780.00 8800.00	64.95	0.00 10.11	1	0.00 754.40	0.00	0.00	2271.40 754.40	0.00 50.55	
20.00	8820.00	10.49 0.00	69.60	1	754.40 52.45	0.00	0.00	754.40 52.45	797.10	744.65
20.00	8840.00	0.00	78.89	1	0.00	0.00	0.00	32.43	1484.90	/44,03
20.00	8860.00	55.61	0.00	1	278.05	0.00	0.00	278.05	394.45	116.40
20.00	8880.00	230.35	0.00	1	2859.60	0.00	0.00	2859.60	0.00	110,40
20.00	8900.00	452.44	0.00	1	6827.90	0.00	0.00	6827.90	0.00	
20.00	8920.00	584.33	0.00	1	10367.70	0.00	0.00	10367.70	0.00	
20.00	8940.00	396.47	0.00	1	9808.00	0.00	0.00	9808.00	0.00	
20.00	8960.00	230.78	0.00	1	6272.50	0.00	0.00	6272.50	0.00	
20.00	8980.00	98.84	0.00	1	3296.20	0.00	0.00	3296.20	0.00	
20.00	9000.00	28.87	4.09	1	1277.10	0.00	0.00	1277.10	20.45	

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN)"

				PL	ANILLA D	E METRA	DOS			
			TIPO DE SU	ELO						
TIPO DE SU			<u> </u>		PROYECTO:			PAMPA - CRUCE		
MATERIAL			1		UBICACIÓN:			N JUAN, PROV. C	AJAMARCA, DP	TO. CAJAMARCA
ROCA SUEL	-IA		3		FECHA:	JULIO DEL 2012		/// ON 1570 O	0.000	40.000
ROCA FIJA LONGITUD	TOTAL .				M3.	BACH. CIEZA V		KILOMETRO:	9.000 - M3.	
		. d. T / 2 \	1000	M.		M3.	M3.	M3.		M3.
		de Tierras (m3.):	ADEA		11868.70	2660	0	14529.00	11554.70	5075.70
Dist.	Dist.	AREA	AREA	T:	VOLUMEN	VOLUMEN	VOLUMEN	Volumen	VOLUMEN	RELLENO
entre	Acumul	DE	RELLENO	Tipo	MATERIAL	ROCA	ROCA	disponible	RELLENO	TRANSP.
Estac.		CORTE	RELLENU	Suelo	SUELTO	SUELTA	FIJA	para relleno		
0.00	0000 00	20.07	4.09		0.00	0.00	0.00		0.00	
20.00	9000.00	28.87 1.15	44.28	1	0.00 300.20		0.00	0.00	483.70	183.50
20.00		0.00	79.29	1		0.00	0.00	300.20 5.75	1235.70	1229.95
20.00					5.75	-		40.90		
	9060.00 9080.00	8.18 56.69	42.73 0.00	1	40.90 648.70	0.00	0.00	648.70	1220.20 213.65	1179.30
20.00 20.00	9100.00	142.29	0.00	1	1989.80	0.00	0.00	1989.80	0.00	
20.00	9120.00	· · · · · · · · · · · · · · · · · · ·	0.00	1		0.00	0.00		0.00	
20.00	9140.00	110.32 83.29	0.00	1	2526.10 1936.10	0.00	0.00	2526.10 1936.10	0.00	
20.00	9160.00	66.69	0.00	2	0.00	1499.80	0.00	1499.80	0.00	
20.00	9180.00	19.43	0.00	2	0.00	861.20	0.00	861.20	0.00	
20.00	9200.00	4.26	17.08	2	0.00	236.90	0.00	236.90	85.40	
20.00	9220.00	0.99	49.91	2	0.00	52.50	0.00	52.50	669.90	617.40
20.00	9240.00	0.99	82.05	2	0.00	9.90	0.00	9.90	1319.60	1309.70
20.00	9260.00	0.00	36.31	1	0.00	0.00	0.00	3.30	1183.60	1303.70
20.00	9280.00	0.00	8.89	1	0.00	0.00	0.00		452.00	
20.00	9300.00	4.41	0.00	1	22.05	0.00	0.00	22.05	44.45	22.40
20.00	9320.00	0.69	1.48	1	51.00	0.00	0.00	51.00	7.40	
20.00	9340.00	0.00	38.07	1	3.45	0.00	0.00	3.45	395.50	392.05
20.00	9360.00	0.00	71.73	1	0.00	0.00	0.00	3.43	1098.00	332.03
20.00	9380.00	0.00	45.81	1	0.00	0.00	0.00	-	1175.40	
20.00	9400.00	0.00	19.63	1	0.00	0.00	0.00		654.40	
20.00	9420.00	0.00	5.12	1	0.00	0.00	0.00		247.50	
20.00	9440.00	6.06	0.00	1	30.30	0.00	0.00	30.30	25.60	
20.00	9460.00	13.34	0.00	1	194.00	0.00	0.00	194.00	0.00	
20.00	9480.00	21.91	0.00	1	352.50	0.00	0.00	352.50	0.00	
20.00	9500.00	38.74	0.00	1	606.50	0.00	0.00	606.50	0.00	
20.00	9520.00	30.76	0.00	1	695.00	0.00	0.00	695.00	0.00	
20.00	9540.00	14.99	0.00	1	457.50	0.00	0.00	457.50	0.00	
20.00	9560.00	7.22	0.00	1	222.10	0.00	0.00	222.10	0.00	
20.00	9580.00	1.36	1.67	1	85,80	0.00	0.00	85.80	8.35	
20.00	9600.00	0.00	13.15	1	6.80	0.00	0.00	6.80	148.20	141.40
20.00	9620.00	0.00	12.63	1	0.00	0.00	0.00		257.80	
20.00	9640.00	0.00	11.88	1	0.00	0.00	0.00		245.10	
20.00	9660.00	0.00	3.61	1	0.00	0.00	0.00		154.90	
20.00	9680.00	0.00	2.02	1	0.00	0.00	0.00		56.30	
20.00	9700.00	0.00	3.17	1	0.00	0.00	0.00		51.90	
20.00	9720.00	0.00	1.84	1	0.00	0.00	0.00		50.10	
20.00	9740.00	2.99	0.00	1	14.95	0.00	0.00	14.95	9.20	
20.00	9760.00	4.22	0.00	1	72.10	0.00	0.00	72.10	0.00	
20.00	9780.00	3.33	0.00	1	75.50	0.00	0.00	75.50	0.00	
20.00	9800.00	2.50	0.00	1	58.30	0.00	0.00	58.30	0.00	
20.00	9820.00	1.28	0.08	1	37.80	0.00	0.00	37.80	0.40	
20.00	9840.00	1.08	0.25	1	23.60	0.00	0.00	23.60	3.30	
20.00	9860.00	1.69	0.05	1	27.70	0.00	0.00	27.70	3.00	
20.00	9880.00	1.44	0.40	1	31.30	0.00	0.00	31.30	4.50	
20.00	9900.00	1.89	0.81	1	33.30	0.00	0.00	33.30	12.10	
20.00	9920.00	3.01	1.45	1	49.00	0.00	0.00	49.00	22.60	
20.00	9940.00	7.22	0.03	1	102.30	0.00	0.00	102.30	14.80	
20.00	9960.00	17.52	0.00	1	247.40	0.00	0.00	247.40	0.15	
20.00	9980.00	23.15	0.00	1	406.70	0.00	0.00	406.70	0.00	
20.00	10000.00	28.27	0.00	1	514.20	0.00	0.00	514.20	0.00	

"ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN)"

				PL	ANILLA D	E METRA	DOS			
TIPO DE SU	IELO		TIPO DE SU	ELO	PROYECTO:	TROCHA CARR	OZABLE CAPULI	PAMPA - CRUCE	LA CRUZ DE YUN	1AGUAL ALTO
MATERIAL	SUELTO		1		UBICACIÓN:	COM. CAPULIP.	AMPA, DIST. SA	N JUAN, PROV. 0	CAJAMARCA, DP	TO. CAJAMARCA
ROCA SUEL	.TA		2		FECHA:	JULIO DEL 2012				
ROCA FIJA			3		PROYECTISTA:	BACH. CIEZA V	ÁSQUEZ, Edgar	KILOMETRO:	10.000	10.402
LONGITUD	TOTAL:		402	M.	M3.	M3.	M3.	M3.	M3.	M3.
Totales de	Movimiento	o de Tierras (m3.):			5588.10	0	0	5588.10	286.10	62.70
Dist.	Dist.	AREA	AREA		VOLUMEN	VOLUMEN	VOLUMEN	Volumen	VOLUMEN	RELLENO
entre	Acumul	DE	DE	Tipo	MATERIAL	ROCA	ROCA	disponible	RELLENO	TRANSP.
Estac.		CORTE	RELLENO	Suelo	SUELTO	SUELTA	FIJA	para relleno	KELLENO	IRANSP.
0.00	10000.00	28.27	0.00	1	0.00	0.00	0.00	0.00	0.00	
20.00	10020.00	38.40	0.00	1	666.70	0.00	0.00	666.70	0.03	
20.00	10040.00	28.04	0.00	1	664.40	0.00	0.00	664.40	0.00	
20.00	10060.00	24.61	0.00	1	526.50	0.00	0.00	526.50	0.00	
20.00	10080.00	33.92	0.00	1	585.30	0.00	0.00	585.30	0.00	
20.00	10100.00	36.58	0.00	1	705.00	0.00	0.00	705.00	0.00	
20.00	10120.00	39.97	0.00	1	765.50	0.00	0.00	765.50	0.00	
20.00	10140.00	35.24	0.00	1	752.10	0.00	0.00	752.10	0.00	
20.00	10160.00	16.23	0.00	1	514.70	0.00	0.00	514.70	0.00	
20.00	10180.00	3.08	1.02	1	193.10	0.00	0.00	193.10	5.10	
20.00	10200.00	1.39	2.98	1	44.70	0.00	0.00	44.70	40.00	
20.00	10220.00	6.30	0.11	1	76.90	0.00	0.00	76.90	30.90	
20.00	10240.00	0.00	4.07	1	31.50	0.00	0.00	31.50	41.80	10.30
20.00	10260.00	5.45	0.00	1	27.25	0.00	0.00	27.25	20.35	
20.00	10280.00	0.00	4.73	1	27.25	0.00	0.00	27.25	23.65	
20.00	10300.00	0.00	1.74	1	0.00	0.00	0.00		64.70	
20.00	10320.00	0.72	1.17	1	3.60	0.00	0.00	3.60	29.10	25.50
20.00	10340.00	0.00	1.88	1	3.60	0.00	0.00	3.60	30.50	26.90
20.00	10360.00	0.00	3.93	1	0.00	0.00	0.00		58.10	
20.00	10380.00	0.00	8.45	1	0.00	0.00	0.00		123.80	
20.00	10400.00	0.54	1.33	1	2.70	0.00	0.00	2.70	97.80	95.10
1.62	10401.62	0.80	0.85	1	1.08	0.00	0.00	1.08	1.76	0.68

RESUMEN DE EXPLANACIONES

VAA	V8.4		CORTE		RELLE	NO
KM -	· KIVI	Mat. Suelto	Roca Suelta	Roca Fija	Propio	Prestamo
5.00	- 6.00	4,184.35	13,294.90	2,990.10	12,726.45	7,136.05
6.00	- 7.00	82,772.40	13,249.10	0.00	3,219.00	1,936.20
7.00	- 8.00	31,650.10	23,278.90	0.00	12,027.15	5,175.40
8.00	- 9.00	41,793.90	50,286.30	1,424.50	20,802.20	3,203.19
9.00	- 10.00	11868.70	2660.30	0.00	11554.70	5075.70
10.00	- 10.40	5,588.10	0.00	0.00	286.10	62.70
TO	AL	177.857.55	102.769.50	4.414.60	60.615.60	22,589,20

PARTIDA	DESCRIPCION	UNIDAD	CANTIDAD
2.01	CORTE EN MATERIAL SUELTO	M3	177,857.55
2.02	CORTE ROCA SUELTA	M3	102,769.50
2.03	CORTE ROCA FIJA	M3	4,414.60
2.04	RELLENO CON MATERIAL PI KM 6.84	M3	60,615.60
2.05	RELLENO CON MATERIAL DE PRESTAMO	M3	22,589.20
2.06	ELIMINACION DE MATERIAL EXCEDENTE	M3	10,389.77

FACULTAD DE INGENIERÍA

ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL "ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN)"

500

03.00 Partida 03.01

PAVIMENTO

Sub-Partida: Afirmado e=0.30mt

0.2

			PLANII	LA DE	RASANTE	;				L		l
		IZQUIE					DEF	RECHA		PLAZO L	T. DECRUC.	VOLUMEN (m3)
	Cotas	Ancho	S/A	· P %	EJE	P%	S/A	Ancho	Cotas	IZQ.	DER.	
05+000.000	3177.153	2.350	0.000	-2.000	3177.200	-2.000	3.000	5.350		0.000	3.000	15.400
05+010.000	3177.783	2.350	0.000	-2.000	3177.830	-2.000	3.000	5.350	3177.723	0.000	3.000	15.400
05+020.000	3178.423	2.350	0.000	-2.000	3178.470	-2.000	2.990	5.340	3178.363	0.000	3.000	15.380
05+030.000	3179.053	2.350	0.000	-2.000	3179.100	-2.000	0.000	2.350	3179.053	0.000	0.000	9.400
05+040.000	3179.683	2.350	0.000	-2.000 -2.000	3179.730	-2.000	0.000	2.350	3179.683	0.000	0.000	9.400 9.400
05+050.000	3180.313 3180.953	2.350	0.000	-2.000	3180.360 3181.000	-2.000 -2.000	0.000	2.350	3180.313	0.000	0.000	9.400
05+060.000	3181.583	2.350	0.000	-2.000	3181.630	-2.000	0.000	2.350	3180.953 3181.583	0.000	0.000	9.400
05+070.000 05+080.000	3182.213	2.350	0.000	-2.000	3182.260	-2.000	0.000	2.350	3182.213	0.000	- 0.000	- 9.400
05+090.000	3182.853	2.350	0.000	-2.000	3182.900	-2.000	0.000	2.350	3182.853	0.000	0.000	9.400
05+100.000	3183.483	2.350	0.000	-2.000	3183.530	-2.000	0.000	2.350	3183.483	0.000	0,000	9,400
05+110.000	3184.113	2.350	0.000	-2.000	3184.160	-2.000	0.000	2.350	3184.113	0.000	0.000	9.400
05+120.000	3184.753	2.350	0.000	-2.000	3184.800	-2.000	0.000	2.350	3184.753	0.000	0.000	9.400
05+130.000	3185.383	2.350	0.000	-2.000	3185.430	-2.000	0.000	2.350	3185.383	0.000	0.000	9.400
05+140.000	3186.013	2.350	0.000	-2.000	3186.060	-2.000	0.000	2.350	3186.013	0.000	0.000	9.400
05+150.000	3186.643	2.350	0.000	-2.000	3186.690	-2.000	0.000	2.350	3186.643	0.000	0.000	9.400
05+160.000	3187.283	2.350	0.000	-2.000	3187.330	-2.000	0.000	2.350	3187.283	0.000	0.000	9.400
05+170.000	3187.913	2.350	0.000	-2.000	3187.960	-2.000	0.000	2.350	3187.913	0.000	0.000	9.400
05+180.000	3188.543	2.350	0.000	-2.000	3188.590	-2.000	0.000	2.350	3188.543	0.000	0.000	9.400
05+190.000	3189.183	2.350	0.000	-2.000	3189.230	-2.000	0.000	2.350	3189.183	0.000	0.000	9.400
05+200.000	3189.813	2.350	0.000	-2.000	3189.860	-2.000	0.000	2.350	3189.813	0.000	0.000	9.400
05+210.000	3190.443 3191.073	2.350 2.350	0.000	-2.000 -2.000	3190.490 3191.120	-2.000 -2.000	0.000	2.350	3190:443	0.000	0.000	9.400
05+220.000	3191.073	2.350	0.000	-2.000	3191.760	-2.000	0.000	2.350	3191.073 3191.713	0.000	0.000	9.400
05+230.000 05+240.000	3192,343	2,350	0.000	-2.000	3192.390	-2.000	0.000	2.350	3192.343	0.000	0.000	9.400
05+250.000	3192.978	2.350	0.000	-1.800	3193.020	-2.000	0.000	2.350	3192.973	0.000	0.000	9.400
05+260.000	3193.646	2.350	0.000	-0.600	3193.660	-2.000	0.000	2.350	3193.613	0.000	0.000	9.400
05+270.000	3194.323	2.350	0.000	1.400	3194.290	-2.000	0.180	2.530	3194.239	0.000	0.000	9.760
05+280.000	3194.983	2.350	0.000	2.700	3194.920	-3.000	0.400	2.750	3194.838	0.000	0.000	10.200
05+290.000	3195.621	2.350	0.000	3.000	3195.550	-3.000	0.390	2.740	3195.468	0.000	0.000	10.180
05+300.000	3196.261	2.350	0.000	3.000	3196.190	-3.000	0.400	2.750	3196.108	0.000	0,000 ~	10.200
05+310.000	3196.891	2.350	0.000	3.000	3196.820	-3.000	0.390	2.740	3196.738	0.000	0.000	10.180
05+320.000	3197.521	2.350	0.000	3.000	3197.450	-3.000	0.390	2.740	3197.368	0.000	0.000	10.180
05+330.000	3198.161	2.350	0.000	3.000	3198.090	-3.000	0.390	2.740	3198.008	0.000	0.000	10.180
05+340.000	3198.791	2.350	0.000	3.000	3198.720	-3.000	0.400	2.750	3198.638	0.000	0.000	10.200
05+350.000	3199.431	2.350	0.000	3.000	3199.360 3200.020	-3.000	0.430	2.780 2.740	3199.277	0.000	0.000	10.260 10.180
05+360.000	3200.091 3200.771	2.350	0.000	3.000	3200.020	-3.000 -3.000	0.390	2.740	3199.938 3200.618	0.000	0.000	10.180
05+370.000 05+380.000	3201.471	2.350	0.000	3.000	3201.400	-3.000	0.390	2.740	3200.818	0.000	0.000	10.180
05+390.000	3202.191	2.350	0.000	3.000	3202.120	-3.000	0.390	2.740	3202.038	0.000	0,000	10.180
05+400.000	3202.921	2.350	0.000	3.000	3202.850	-3.000	0.390	2.740	3202.768	0.000	0.000	10,180
05+410.000	3203.681	2.350	0.000	3.000	3203.610	-3.000	0.390	2.740	3203.528	0.000	-0.000 ~	10.180 ***
05+420.000	3204.461	2.350	0.000	3.000	3204.390	-3.000	0.390	2.740	3204.308	0.000	0.000	10.180
05+430.000	3205.261	2.350	0.000	3.000	3205.190	-3,000	0.400	2.750	3205.108	0.000	0.000	10.200
05+440.000	3206.066	2.350	0.000	2.800	3206.000	-3.000	0.390	2.740		0.000	0.000	10.180
05+450.000	3206.865	2.350	0.000	1.500	3206.830	-2.000	0.200	2.550		0.000	0.000	9.800
05+460.000	3207.648	2.350	0.000	-0.500	3207.660	-2.000	0.000	2.350		0.000	0.000	9.400
05+470.000	3208.448	2.350	0.000	-1.800	3208.490	-2.000	0.000	2.350		0.000	0.000	9.400
05+480.000	3209.273	2.350	0.000	-2.000 -2.000	3209.320	-2,000	0.000	2.350	3209.273	0.000	0.000 3.000	9.400 15.400
05+490.000	3210.093 3210.923	2.350	0.000	-2.000	3210.140 3210.970	-2.000 -2.000	3.000	5.350	3210.033 3210.863	0.000	3.000	15.400
05+500.000	3210.923	2.350	0.000	-2.000	3210.970	-2.000	0.000	2.350	3210.863	0.000	0.000	9.400
05+510.000 05+520.000	3212.583	2.350	0.000	-2.000	3217.800	-2.000	0.000	2.350		0.000	0.000	9.400
05+520.000	3213.413	2.350	0.000	-2.000	3213.460	-2.000	0.000	2.350		0.000	0.000	9.400
05+540.000	3214.243	2.350	0.000	-2.000	3214.290	-2.000	0,000	2.350	3214.243	0.000	0.000	9.400
05+550.000	3215.063	2.350	0.000	-2.000	3215.110	-2.000	0.000	2.350	3215.063	0.000	0.000	9.400
05+560.000	3215.893	2.350	0.000	-2.000	3215.940	-2.000	0.000	2.350	3215.893	0.000	0.000	9.400
05+570.000	3216.723	2.350	0.000	-2.000	3216.770	-2.000	0.000	2.350		0.000	0.000	9.400
05+580.000	3217.553	2.350	0.000	-2.000	3217.600	-2.000	0.000	2.350	3217.553	0.000	0.000	9.400
05+590.000	3218.383	2.350	0.000	-2.000	3218.430	-1.400	0.000	2.350		0.000	0.000	9.400
05+600.000	3219.202	2.420	0.070	-2.000	3219.250	0.300	0.000	2.350	3219.257	0.000	0.000	9.540
05+610.000	3220.017	2.750	0.400	-2.300	3220.080	1.900	0.000	2.350	3220.125	0.000	0.000	10.200
05+620.000	3220.847	2.750	0.400	-2.300	3220.910	2.300	0.000	2.350	3220.964	0.000	0.000	10.200
031020.000					1 2221 740	1.400	1 0 000	12260	12001 772	0.000	0.000	9.980
05+630.000 05+640.000	3221.687 3222.523	2.640	0.290	-2.000 -2.000	3221.740 3222.570	-0.500	0.000	2.350	3221.773 3222.558	0.000	0.000	9.400

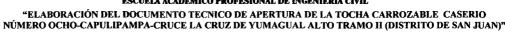
FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN)"

				LLA DE	RASANTE	<u> </u>	·			PLAZOI	T. DECRUC.	VOLUMEN (m3)
	Cotas	IZQUIE Ancho	RDA S/A	P%	EJE	P %	DEF S/A	RECHA Ancho		IZQ.	DER.	VOLUMEN (m3)
05+650.000	3223.353	2.350	0.000	-2.000	3223.400	-1.800	0.000	2.350	3223.358	0.000	0.000	9.400
05+660.000	3224.173	2.350	0.000	-2.000	3224.220	-2.000	0.000	2.350	3224.173		0.000	9.400
05+670.000	3225.003	2.350	0.000	-2.000	3225.050	-2.000	0.000	2.350	3225.003	0.000	0.000	9.400
05+680.000	3225.783	2.350	0.000	-2.000	3225.830	-2.000	0.000	2.350	3225.783	0.000	0.000	9.400
05+690.000	3226.493	2.350	0.000	-2.000	3226.540	-2.000	0.000	2.350	3226.493	0.000	0.000	9.400
05+700.000	3227.143	2.350	0.000	-2.000	3227.190	-1.700	0.000	2.350	3227.150	0.000	0.000	9.400
05+710.000	3227.732	2.420	0.070	-2.000	3227.780	-0.400	0.000	2.350	3227.771	0.000	0.000	9.540
05+720.000	3228.232	2.850	0.500	-2.400	3228.300	1.700	0.000	2.350	3228.340	0.000	0.000	10.400
05+730.000	3228.630	3.260 3.670	0.910 1.320	-4.000 -6.000	3228.760 3229.160	3.900	0.000	2.350	3228.852	0.000	0.000	11.220 12.040
05+740.000 05+750.000	3228.940 3229.214	3.950	1.600	-7.000	3229.100	7.000	0.000	2.350	3229.301 3229.655	0.000	0.000	12.600
05+760.000	3229.484	3.940	1.590	-7.000	3229.760	7.000	0.000	2.350	3229.925	0.000	0.000	12.580
05+770.000	3229.738	3.800	1.450	-6.100	3229.970	6.100	0.000	2.350	3230.113	0.000	0.000	12.300
05+780.000	3230.025	3.300	0.950	-4.100	3230.160	4.100	0.000	2.350	3230.256	0.000	-0.000	11:300
05+790.000	3230.288	2.880	0.530	-2.500	3230.360	1.900	0.000	2.350	3230.405	0.000	0.000	10.460
05+800.000	3230.501	2.450	0.100	-2.000	3230.550	-0.300	0.000	2.350	3230.543	0.000	. 0.000	9.600
05+810.000	3230.693	2.350	0.000	-2.000	3230.740	-1.700	0.000	2.350	3230.700	0.000	0.000	· - 9.400 · -
05+820.000	3230.893	2.350	0.000	-2.000	3230.940	-1.600	0.000	2.350	3230.902	0.000	0.000	9.400
05+830.000	3231.083	2.350	0.000	-2.000	3231.130	-0.200	0.000	2.350	3231.125	0.000	0.000	9.400
05+840.000	3231.263	2.700	0.350	-2.100	3231.320	1.600	0.000	2.350	3231.358	0.000	0.000	10.100
05+850.000	3231.457 3231.647	2.750 2.750	0.400	-2.300 -2.300	3231.520 3231.710	2.300 1.800	0.000	2.350	3231.574	0.000	0.000	10.200
05+860.000 05+870.000	3231.852	2.750	0.400	-2.000	3231.710	0.100	0.000	2.350	3231.752 3231.902	0.000	0.000	9.480
05+870.000	3231.832	2.350	0.040	-2.000	3232.100	-1.500	0.000	2.350	3231.902	0.000	0.000	9.400
05+890.000	3232.243	2.350	0.000	-2.000	3232.290	-2.000	0.000	2.350	3232.243	0.000	0.000	9.400
05+900.000	3232.433	2.350	0.000	-2.000	3232.480	-2.000	0.000	2.350	3232.433	0.000	0.000	9.400
05+910.000	3232.653	2.350	0.000	-2.000	3232.700	-2.000	0.000	2.350	3232.653	0.000	0.000	9.400
05+920.000	3232.943	2.350	0.000	-2.000	3232.990	-2.000	0.000	2.350	3232.943	0.000	0.000	9.400
05+930.000	3233.333	2.350	0.000	-2.000	3233.380	-2.000	0.000	2.350	3233.333	0.000	0.000	9.400
05+940.000	3233.813	2.350	0.000	-2.000	3233.860	-2.000	0.000	2.350	3233.813	0.000	0.000	9.400
05+950.000	3234.343	4.350	2.000	-2.000	3234.430	-2.000	0.000	2.350	3234.383	2.000	0.000	13.400
05+960.000	3234.983	5.350	3.000	-2.000	3235.090	-2.000	0.000	2.350	3235.043	3.000	0.000	15.400
05+970.000	3235.753 3236.643	4.350 2.350	0.000	-2.000 -2.000	3235.840 3236.690	-2.000 -2.000	0.000	2.350	3235.793 3236.643	0.000	0.000	13.400 9.400
05+980.000	3237.573	2.350	0.000	-2.000	3237.620	-2.000	0.000	2.350	3230.643	0.000	0.000	9.400
06+000.000	3238.600	2.350	0.000	-1.700	3238.640	-2.000	0.000	2.350	3238.593	0.000	0.000	9.400
06+010.000	3239.735	2.350	0.000	-0.200	3239.740	-2.000	0.000	2.350	3239.693	0.000	0.000	9.400 -
06+020.000	3240.878	2.350	0.000	1.600	3240.840	-2.100	0.350	2.700	3240.783	0.000	0.000	10.100
06+030.000	3241.994	2.350	0.000	2.300	3241.940	-2.300	0.390	2.740	3241.877	0.000	0.000	10.180
06+040.000	3243.094	2.350	0.000	2.300	3243.040	-2.300	0.400	2.750	3242.977	0.000	0.000	10.200
06+050.000	3244.175		0.000						3244.087		0.000	10.040
06+060.000	3245.233	2.350	0.000		3245.240	-2.000			3245.193	0.000	0.000	9.400
06+070.000	3246.300	2.350	0.000	-1.700	3246.340 3247.440	-2.000	0.000	2.350	3246.293	0.000	0.000	9.400 9.400
06+080.000	3247.393 3248.493	2.350 2.350	0.000	-2.000 -2.000	3247.440	-2.000 -2.000	0.000	2.350	3247.393 3248.493	0.000	0.000	9.400
06+090.000	3249.593	2.350	0.000	-2.000	3249.640	-2.000	0.000	2.350	3249.593	0.000	0.000	9.400
06+110.000	3250.693	2.350	0.000	-2.000	3250.740	-2.000	0.000		3250.693	0.000	0.000	9.400
06+120.000	3251.793	2.350	0.000	-2.000	3251.840	-2.000	0.000	2.350	3251.793		0.000	9.400
06+130.000	3252.893	2.350	0.000	-2.000	3252.940	-2.000	0.000		3252.893	0.000	0.000	9.400
06+140.000	3254.009	2.350	0.000	-1.300	3254.040	-2.000	0.000		3253.993	0.000	0.000	9.400
06+150.000	3255:152	2.350	0.000	0.500	3255.140	-2.100	0.180	2.530	3255.087	0.000	0.000 -	9.760
06+160.000	3256.303	2.350	0.000	2.700	3256.240	-3.000	0.570	2.920	3256.152	0.000	0.000	10.540
06+170.000	3257.450	2.350	0.000	4.700	3257.340 3258.440	-4.700	1.020		3257.182		0.000	11.440
06+180.000	3258.576 3259.679	2.350 2.350	0.000	5.800 5.900	3259.540	-5.800 -5.900	1.200	3.550 3.540	3258.234 3259.331	0.000	0.000	11.780
06+190.000	3260.758	2.350	0.000	5.000	3260.640	-5.000	1.110	3.460	3260.467	0.000	0.000	. 11.620
06+210.000	3261.813	2.360	0.010	3.100	3261:740	-3.300	0.650	3.000	3261.641	0.000	- 0.000	10.720 -
06+220.000	3262.831	2.350	0.000	0.900	3262.810	-2.100	0.260	2.610	3262.755	0.000	0.000	9.920
06+230.000	3263.827	2.350	0.000	-1.000	3263.850	-2.000	0.000	2.350	3263.803	0.000	0.000	9.400
06+240.000	3264.795	2.350	0.000	-1.900	3264.840	-2.000	0.000	2.350	3264.793	0.000	0.000	9.400
06+250.000	3265.762	2.350	0.000	-1.600	3265.800	-2.000	0.000	2.350	3265.753	0.000	0.000	9.400
06+260.000	3266.708	2.350	0.000	-0.100	3266.710	-2.000	0.000	2.350	3266.663	0.000	0.000	9.400
06+270.000	3267.620	2.350	0.000	1.700	3267.580	-2.200	0.360	2.710	3267.520	0.000	0.000	10.120
06+280.000	3268.484	2.350	0.000	2.300	3268.430	-2.300	0.390	2.740	3268.367	0.000	0.000	10.180
06+290.000	3269.325	2.350	0.000	1.900	3269.280	-2.300	0.400	2.750	3269.217	0.000	0.000	10.200

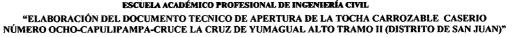
FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL "ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN)"

			PLANI	LLA DE	RASANTE	E				PI 4701	T DECDUC	
		IZQUIE			EJE		DEA	RECHA		FLAZOL	JI. DECRUC.	VOLUMEN (m3)
	Cotas	Ancho	S/A	P %		P%	S/A	Ancho	Cotas	IZQ.	DER.	
06+300.000	3270.079	2.350	0.000	0.400	3270.070	-2.000	0.070	2.420	3270.022	0.000	0.000	9.540
06+310.000	3270.727	2.350	0.000	-1.400	3270.760	-2.000	0.000	2.350	3270.713	0.000	0.000	9.400
06+320.000	3271.293	2.350	0.000	-2.000	3271.340	-1.900	0.000	2.350	3271.295	0.000	0.000	. 9.400
06+330.000	3271.762	2.390	0.040	-2.000	3271.810		0.000	2.350	3271.794	0.000	0.000	9.480
06+340.000	3272.088 3272.259	3.280 4.180	0.930 1.830	-2.500 -4.100	3272.170 3272.430	1.600 4.100	0.000	2.350	3272.208	0.000	0.000	11.260
06+350.000	3272.290	5.230	2.880	-6.500	3272.430	6.500	0.000	2.350	3272.526 3272.783	0.000	0.000	15.160
06+370.000	3272.382	5.740	3.390	-7.800	3272.830	7.800	0.000	2.350	3273.013	0.000	0.000	16.180
06+380.000	3272.647	5.770	3.420	-7.500	3273.080	7.500	0.000	2.350	3273.256	0.000	0.000	16.240
06+390.000	3273.149	~5.020	2.670	-5.800	3273.440	5.800	0.000	2.350	3273.576	0.000	- 0.000	14.740
06+400.000	3273.784	3.890	1.540	-3.500	3273.920	3.300	0.000	2.350	3273.998	0.000	0.000	12.480
06+410.000	3274.424	3.000	0.650	-2.200	3274.490	0.800	0.000	2.350	3274.509	0.000	0.000	10.700
06+420.000	3275.133	2.350	0.000	-2.000	3275.180	-1.200	0.000	2.350	3275.152	0.000	0.000	9.400
06+430.000	3275.933	2.350	0.000	-2.000	3275.980	-2.000	0.000	2.350	3275.933	0.000	0.000	9.400
06+440.000	3276.783	2.350	0.000	-2.000	3276.830	-1.900	0.000	2.350	3276.785	0.000	0.000	9.400
06+450.000	3277.633	2.350	0.000	-2.000	3277.680	-0.800	0.000	2.350	3277.661	0.000	0.000	9.400
06+460.000	3278.479	2.570	0.220	-2.000	3278.530	1.300	0.000	2.350	3278.561	0.000	0.000	9.840
06+470.000	3279.317	2.740	0.390	-2.300	3279.380	2.300	0.000	2.350	3279.434	0.000	0.000	10.180
06+480.000	3280.181 3280.993	2.470	0.120	-2.000 -2.000	3280.230 3281.080	0.600	0.000	2.350	3280.244	0.000	0.000	9.640
06+490.000	3280.993	4.350 5.350	2.000 3.000	-2.000	3281.080	-1.300 -2.000	0.000	2.350 2.350	3281.049	2.000 3.000	0.000	13.400 15.400
06+500.000 06+510.000	3282.693	4.340	1.990	-2.000	3282.780	-2.000	0.000	2.350	3281.883 3282.733	2.000	0.000	13.380
06+520.000	3283.583	2.350	0.000	-2.000	3283.630	-2.000	0.000	2.350	3283.583	0.000	0.000	9.400
06+530.000	3284.433	2.350	0.000	-2.000	3284.480	-2.000	0.000	2.350	3284,433	0.000	0.000	9.400
06+540.000	3285.223	2.350	0.000	-2.000	3285.270	-2.000	0.000	2.350	3285.223	0.000	0.000	9.400
06+550.000	3285.913	2.350	0.000	-2.000	3285.960	-2.000	0.000	2.350	3285.913	0.000	0.000	9.400
06+560.000	3286.512	2.350	0.000	-1.200	3286.540	-2.000	0.000	2.350	3286.493	0.000	0.000	9.400
06+570.000	3287.029	2.350	0.000	0.800	3287.010	-2.200	0.650	3.000	3286.944	0.000	0.000	10.700
06+580.000	3287.448	2.350	0.000	3.300	3287.370	-3.500	1.530	3.880	3287.234	0.000	0.000	12.460
06+590.000	3287.766	2.350	0.000	5.800	3287.630	-5.800	2.660	5.010	3287.339	0.000	0.000	14.720
06+600.000	3288.006	2.350	0.000	7.500	3287.830	-7.500	3.420	5.770	3287.397	0.000	0.000	16.240
06+610.000	3288.209	2.350	0.000	7.600	3288.030	-7.600	3.390	5.740	3287.594	0.000	0.000	16.180
06+620.000	3288.431	2.350	0.000	6.000	3288.290	-6.000	2.780	5.130	3287.982	0.000	0.000	14.960
06+630.000	3288.765	2.350	0.000	3.600	3288.680	-3.700	1.630	3.980	3288.533	0.000	- 0.000	12.660
06+640.000	3289.216 3289.804	2.350	0.000	1.100	3289.190 3289.830	-2.200 -2.000	0.730	3.080 2.350	3289.122	0.000	0.000	10.860 9.400
06+650.000	3290.543	2.350	0.000	-2.000	3290.590	-2.000	0.000	2.350	3289.783 3290.543	0.000	0.000	9.400
06+660.000 06+670.000	3291.433	2.350	0.000	-2.000	3291.480	-2.000	0.000	2.350	3291.433	0.000	0.000	9.400
06+680.000	3292.383	2.350	0.000	-2.000	3292.430	-2.000	0.000	2.350	3292.383	0.000	0.000	9,400
06+690.000	3293.352	2.350	0.000	-1.200	3293.380	-2.000	0.000	2.350	3293.333	0.000	0.000	9.400
06+700.000	3294.346	2.350	0.000	0.700	3294.330	-2.000	0.140	2.490		0.000	0.000	9.680
06+710.000	3295.351	2.350	0.000	3.000	3295.280	-3.000	0.460	2.810	3295.196	0.000	- 0.000	. 10.320
06+720.000	3296.326	~2.350	0.000	4.100	3296.230	-4:100	0.600	2.950	3296.109	0.000	~ 0.000	10.600
06+730.000	3297.236	2.350	0.000	2.400	3297.180	-2.400		2.700	3297.115	0.000	0.000	10.100
06+740.000	3298.079	2.350	0.000	0.400	3298.070	-2.000	0.050		3298.022	0.000	0.000	9.500
06+750.000	3298.809	2.350	0.000	-0.900	3298.830	-1.100		2.350	3298.804	0.000	0.000	9.400
06+760.000	3299.426	2.470 3.360	0.120 1.010	-1.800 -2.000	3299.470	1.900	0.000	2.350	3299.470	0.000	0.000	9.640 - 11.420
06+770.000 06+780.000	3299.913 3300.187	4.260	1.010	-4.300	3299.980 3300.370	4.300		2.350	3300.025 3300.471	0.000	0.000	13.220
06+780.000	3300.187	5.190	2.840	-6.700	3300.570	6.700		2.350	3300.47	0.000	0.000	15.080
06+790.000	3300.282	5.750	3.400	-7.900	3300.830	7.900		2.350	3301.016	0.000	0.000	16.200
06+810.000	3300.610	5.750	3.400	-7.300	3301.030	7.300		2.350	3301.202	0.000	0.000	16.200
06+820.000	3301.046	4.710	2.360	-5.400	3301.300	5.400		2.350	3301.427	0.000	0.000	14.120
06+830.000	3301.610	3.750	1.400	-3.200	3301.730	2.900		2.350	3301.798	0.000	0.000	12.200
06+840.000	3302.240	2.860	0.510	-2.100	3302.300	0.400	0.000	2.350	3302.309	0.000	0.000	10.420
06+850.000	3302.983	2.350	0.000	-2.000	3303.030	-1.400		2.350	3302.997	0.000	0.000	9.400
06+860.000	3303.853	2.350	0.000	-2.000	3303.900	-1.600		2.350	3303.862	0.000	0.000	9.400
06+870.000	3304.883	2.350	0.000	-2.000	3304.930	0.000		2.350	3304.930	0.000	0.000	9.400
06+880.000	3305.973	2.610	0.260	-2.200	3306.030	2.000	$\overline{}$	2.350	3306.077	0.000	0.000	9.920
06+890.000	3307.040	2.740	0.390	-3.300	3307.130	3.200		2.350	3307.205	0.000	0.000	10.180
06+900.000	3308.140	2.740	0.390	-3.300	3308.230	3.200	0.000	2.350	3308.305	0.000	0.000	10.180
06+910.000	3309.261	2.670	0.320	-2.600	3309.330	2.400		2.350	3309.386	0.000	0.000	10.040
06+920.000	3310.382	2.400 2.350	0.050	-2.000 -2.000	3310.430 3311.530	0.400		2.350	3310.439	0.000	0.000	9.500 9.400
06+930.000	3311.483	2.350	0.000	-2.000	3311.530	-1.300		2.350	3311.499		0.000	9.400
06+940.000	3312.583	∠.330	0.000	-2.000	3312.030	-2.000	0.000	2.350	3312.583	0.000	0.000	7.400


FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL "ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN)"

No. Processor				PLANII	LA DE	RASANTE	2				PLAZOI	T DECRUC	
Cotas Cota			IZQUIE			EJE							VOLUMEN (m3
Ger-990,000 314.818 2350 0,000 200 314.830 2,000 0,000 240 3314.762 0,000 0,000 1,000 1,000 0,000 1,00												}	
											└─ ─		
											<u> </u>		
	· · · · · · · · · · · · · · · · · · ·											I	
		·····											
07-100.00 3120.389 2.590 0.000 2.500 3320.380 2.500 0.070 2.200 3220.382 0.000													
07-190.000 332-895 2.350 0.000 -1.000 3322-391 2.000 0.000 2.350 3.822_883 0.000 0.000 9.400		3321.435	2.350	0.000	0.200	3321.430	-2.000	0.070	2.420		0.000	0.000	9.540
		3322.495	2.350	0.000	-1.500	3322.530	-2.000	0.000	2.350	3322.483	0.000	0.000	9.400
07-690.000 3335.6781 3.00 2.900 3326.3781 3.000 0.000 2.503 3325.7831 3.000 0.000 0.000 15.380	07+040.000						-2.000	0.000		3323.583			
	07+050.000												
197-180.000 3327.983 2350 0.000 0.200 3329.104 2350 0.000 0.000 0.900 0.	07+060.000												
07-190.000 3339.191 2.350 0.000 0.000 3.100 3309.000 3				<u> </u>								1	
07+100.000 3331 401 2350 0.000 0.900 330230 2.000 0.140 2.490 3303.180 0.000 0.000 0.000 10.340 07+120.000 3331 401 2.350 0.000 3.000 3303 330 0.000 2.000 330243 0.100 0.590 2.440 3332.309 0.000 0.000 10.580 07+130.000 3332.524 2.350 0.000 3.000 3332.340 0.100 0.590 2.440 3332.309 0.000 0.000 10.580 07+140.000 3333.4673 2.350 0.000 2.000 3334.530 0.000 2.000 3334.530 0.000 2.000 3335.530 0.000 2.000 3335.530 0.000 2.000 3335.530 0.000 2.000 0.000 0.000 10.340 07+150.000 3335.699 2.350 0.000 0.000 0.000 10.340 07+150.000 3335.699 0.000 0.000 0.000 10.340 07+150.000 3335.699 0.000 0.000 2.000 3335.730 0.000 1.000 0.000 2.350 3335.691 0.000 0.000 9.400 07+180.000 3339.893 0.000 0.000 2.000 3339.930 0.000 0.000 2.000 3339.930 0.000 0.000 2.000 3339.930 0.000 0.000 2.000 3339.930 0.000													
07+110.000 3331.401 2.550 0.000 3.000 3331.330 3.200 0.470 2.820 3331.240 0.000 0.000 0.000 0.040 0.7+120.000 3332.524 2.350 0.000 3.000 3332.630 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 0.									-				
07+120.000 3333.622 23.50 0.000 4.000 3334.630 4.100 0.590 2.940 3332.200 0.000 0.000 0.000 10.580 07+140.000 3334.693 2.350 0.000 3.000 0.000 3334.693 2.350 0.000 3.000 0.													
07-120.000 3334.622 2.350 0.000 3.900 3333.530 4.100 0.590 2.401 3333.405 0.000 0.000 10.580													
07+150.000 3335.744 2.350 0.000 -0.600 3335.730 -2.000 0.100 2.450 3335.881 0.000 0.000 9.620 07+160.000 3337.883 2.350 0.000 -2.000 3335.730 -2.000 0.000 2.350 3336.7883 0.000 0.000 9.400 07+180.000 3337.883 2.350 0.000 -2.000 3337.990 -2.000 0.000 2.350 3339.8983 0.000 0.000 9.400 07+190.000 3348.813 2.350 0.000 -2.000 3349.890 -2.000 0.000 2.350 3339.893 0.000 0.000 9.400 07+200.000 3340.813 2.350 0.000 -2.000 3340.860 -1.400 0.000 2.350 3339.823 0.000 0.000 9.400 07+200.000 3342.346 2.450 0.000 -2.000 3341.880 0.400 0.000 2.350 3334.887 0.000 0.000 9.600 07+200.000 3342.346 2.740 0.390 -2.700 3342.340 2.700 0.000 2.350 3344.830 0.000 0.000 0.000 9.600 07+200.000 3342.346 2.740 0.390 -2.700 3342.340 4.100 3343.970 4.100 0.000 2.350 3343.896 0.000 0.000 10.80 07+200.000 3344.993 2.350 0.000 -2.000 3344.90 1.900 0.000 2.350 3343.896 0.000 0.000 10.80 07+200.000 3344.930 2.350 0.000 -2.000 3344.50 1.700 0.000 2.350 3344.830 0.000 0.000 9.400 07+200.000 3344.843 3.250 0.000 -2.000 3344.50 1.700 0.000 2.350 3344.830 0.000 0.000 9.400 07+200.000 3344.830 2.350 0.000 -2.000 3344.50 1.700 0.000 2.350 3344.830 0.000 0.000 9.400 07+200.000 3345.533 2.350 0.000 -2.000 3345.400 -2.000 3345.800 0.000 0.000 9.400 07+200.000 3345.533 2.350 0.000 -2.000 3345.400 -2.000 3345.800 0.000 0.000 9.400 07+200.000 3345.533 2.350 0.000 -2.000 3345.400 -2.000 3345.800 0.000 0.000 9.400 07+300.000 3345.533 2.350 0.000 -2.000 3345.800 -2.000 0.000 2.350 3345.800 0.000 0.000 9.400 07+300.000 3345.533 2.350 0.000 -2.000 3345.800 -2.000 0.000 2.350 3345.800 0.000 0.000 9.400 07+300.000 3345.533 2.350 0.													
07+120,000 3337,893 2.350 0,000 -1,000 3338,830 2,000 0,000 2,350 3336,830 0,000 0,000 9,400 07+120,000 3338,931 2.350 0,000 -2,000 3338,930 2,000 0,000 2,350 3339,932 0,000 0,000 9,400 07+120,000 3339,931 2,350 0,000 -2,000 3338,930 2,000 0,000 2,350 3339,932 0,000 0,000 9,400 07+20,0000 3340,813 2,350 0,000 -2,000 3340,810 3,350 0,000 -2,000 3340,810 3,330 0,000 -2,000 3440,800 0,400 0,500 2,350 3,348,827 0,000 0,000 9,400 0,000 0,000 0,000 9,400 0,000													L
07+120,000													
07+180.000 338,943 2.350 0.000 2.000 3338,990 2.000 0.000 0.000 0.000 9.400 07+200.000 3340,813 2.350 0.000 2.000 3340,801 2.350 0.000 9.000 9.400 07+20.0000 3341,631 2.450 0.100 2.000 3341,680 0.400 0.000 2.350 3341,689 0.000 0.000 9.400 07+20.0000 3341,631 2.450 0.100 2.000 3341,680 0.400 0.000 2.350 3341,689 0.000 0.000 0.000 0.000 0.000 1.018 07+20.0000 3344,997 2.500 0.590 4.100 3343,093 3.341,689 0.000 0.000 2.350 3343,381 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 9.400 07+260.000 3344,532 2.350 0.000 2.000 3344,540 2.000 3.345,540 0.000<				0.000		3337.930		0.000					9.400
07+200.000 3340.813 2.350 0.000 2.000 3340.860 1.400 0.000 2.350 3340.827 0.000 0.000 9.600 07+210.000 3342.346 2.740 0.390 2.700 3342.420 2.700 0.000 2.350 3341.869 0.000 0.000 9.600 07+220.000 3342.346 2.740 0.390 2.700 3342.420 2.700 0.000 2.350 3342.486 0.000 0.000 0.000 10.180 07+230.000 3343.597 2.630 0.280 2.000 3343.630 1.900 0.000 2.350 3343.686 0.000 0.000 0.000 10.180 07+250.000 3344.503 2.350 0.000 2.000 3344.550 1.700 0.000 2.350 3344.133 0.000 0.000 9.400 07+250.000 3344.503 2.350 0.000 2.000 3344.589 0.000 0.000 9.400 07+250.000 3345.503 3.350 0.000 2.000 3344.890 2.000 0.000 2.350 3344.813 0.000 0.000 9.400 07+250.000 3345.203 3.350 0.000 2.000 3345.890 2.000 0.000 2.350 3344.813 0.000 0.000 9.400 07+250.000 3345.203 3.350 0.000 2.000 3345.890 2.000 0.000 2.350 3344.803 0.000 0.000 9.400 07+300.000 3345.393 3.350 0.000 2.000 3345.404 2.000 0.000 2.350 3345.993 0.000 0.000 9.400 07+300.000 3345.593 3.350 0.000 2.000 3345.404 2.000 0.000 2.350 3345.933 0.000 0.000 9.400 07+300.000 3345.593 2.350 0.000 2.000 3345.404 2.000 0.000 2.350 3345.933 0.000 0.000 9.400 07+300.000 3345.593 2.350 0.000 2.000 3345.570 2.000 0.000 2.350 3345.933 0.000 0.000 9.400 07+300.000 3345.393 2.350 0.000 2.000 3345.570 2.000 0.000 2.350 3345.933 0.000 0.000 9.400 07+300.000 3345.393 2.350 0.000 2.000 3345.830 2.000 0.000 2.350 3345.933 0.000 0.000 9.400 07+300.000 3345.393 2.350 0.000 2.000 3345.800 0.000 2.350 3345.933 0.000 0.000 9.400 07+300.000 3346.633 2.350 0.000 2.000 3346.800 0.000 2.350 3346.933 0.000 0.000 9.400 07+300.000 3346.633 2.350 0.000 2.000 3346.800 0.000 2.35		3338.943		0.000		3338.990	-2.000	0.000	2.350		0.000	0.000	9.400
07+210.000 3341.631 2.450 0.100 -2.000 3342.946 2.740 0.390 -2.700 3342.900 2.350 3342.848 0.000 0.000 10.180 07+220.000 3342.946 2.740 0.390 -2.700 3343.070 4.100 0.000 2.350 3342.488 0.000 0.000 10.180 07+240.000 3343.597 2.630 0.280 -2.000 3344.591 1.900 0.000 2.350 3343.909 0.000 2.303 3344.933 0.000 0.000 9.960 07+250.000 3344.830 2.350 0.000 2.000 3344.850 1.700 0.000 2.350 3344.910 0.000 0.000 0.000 0.000 0.000 0.000 9.400 07+200.000 3344.831 2.350 0.000 2.200 3344.890 2.000 0.000 2.350 3344.900 0.000 9.400 07+300.000 3345.933 2.350 0.000 2.2003 3345.910 2.000	07+190.000	3339.923	2.350	0.000	-2.000	3339.970	-2.000	0.000	2.350	3339.923	0.000	0.000	9.400
07+220.000 3342,949 2.940 0.390 2.700 3342,420 2.700 0.000 2.350 3342,483 0.000 0.000 10.180 07+230.000 3343,597 6.260 0.280 2.000 3343,650 1.900 0.000 2.350 3345,660 0.000 0.000 1.0580 07+250.000 3344,803 2.350 0.000 2.000 3344,840 0.000 0.000 2.350 3344,133 0.000 0.000 9.960 07+250.000 3344,803 2.350 0.000 2.000 3344,840 0.000 0.000 2.350 3344,133 0.000 0.000 9.960 07+250.000 3344,830 2.350 0.000 2.000 3344,890 2.000 0.000 2.350 3344,133 0.000 0.000 9.400 07+250.000 3344,843 2.350 0.000 2.000 3344,890 2.000 0.000 2.350 3344,133 0.000 0.000 9.400 07+250.000 3345,803 2.350 0.000 2.000 3344,890 2.000 0.000 2.350 3344,130 0.000 0.000 9.400 07+250.000 3345,393 2.350 0.000 2.000 3344,890 2.000 0.000 2.350 3345,803 0.000 0.000 9.400 07+250.000 3345,393 2.350 0.000 2.000 3345,340 2.000 0.000 2.350 3345,263 0.000 0.000 9.400 07+300.000 3345,393 2.350 0.000 2.000 3345,440 2.000 0.000 2.350 3345,263 0.000 0.000 9.400 07+300.000 3345,333 2.350 0.000 2.000 3345,440 2.000 0.000 2.350 3345,263 0.000 0.000 9.400 07+320.000 3345,333 0.350 0.000 2.000 3345,570 2.000 0.000 2.350 3345,633 0.000 0.000 9.400 07+330.000 3345,533 2.350 0.000 2.000 3345,570 2.000 0.000 2.350 3345,633 0.000 0.000 9.400 07+330.000 3345,783 2.350 0.000 2.000 3345,700 2.000 0.000 2.350 3345,633 0.000 0.000 9.400 07+330.000 3345,733 2.350 0.000 2.000 3345,800 2.000 0.000 2.350 3345,633 0.000 0.000 9.400 07+330.000 3345,033 2.350 0.000 2.000 3346,800 2.000 0.000 2.350 3345,633 0.000 0.000 9.400 07+330.000 3346,333 2.350 0.000 2.000 3346,800 2.000 0.000 2.350 3346,933 0.000 0.000 9.400 07+330.000 3346,333 2.350 0.000 2.000 3346,800 2.000 0.000 2.350 3346,933 0.000 0.000 9.400 07+330.000 3346,333 2.350 0.000 2.000 3346,800 2.000 0.000 2.350 3346,933 0.000 0.000 9.400 07+330.000 3346,333 2.350 0.000 2.000 3346,800 2.000 0.000 2.350 3346,933 0.000 0.000 9.400 07+300.000 3346,803 2.350 0.000 2.000 3346,800 2.000 3346,803 0.000 0.000 9.400 07+300.000 3346,303 2.350 0.000 2.000 3346,800 2.000 0.000 2.350 3346,933 0.000 0.000 9.400 07+300.000 3346,803 2.350 0.000	07+200.000		2.350	0.000	-2.000	3340.860	-1.400	0.000	2.350	3340.827	0.000		
07+230.000 3342.949 2.940 0.590 4.100 3343.070 4.100 0.000 2.350 3343.166 0.000 0.000 10.580 07+240.000 3344.597 2.630 0.280 -2.000 3344.510 0.000 0.000 0.000 9.960 07+250.000 3344.503 2.350 0.000 -2.000 3344.550 -1.000 0.000 9.960 07+270.000 3344.843 2.350 0.000 -2.000 3344.850 -1.700 0.000 2.350 0.000 0.000 07+280.000 3345.932 2.350 0.000 -2.000 3345.932 3.350 0.000 -2.000 3345.330 3.000 0.000 9.400 07+290.000 3345.333 2.350 0.000 -2.000 3345.431 -2.000 0.002 2.350 3.000 -9.000 9.400 07+30.000 3345.733 2.350 0.000 -2.000 3345.570 2.000 0.000 2.350 3.000 0.000 <t< td=""><td>07+210.000</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>3341.689</td><td></td><td></td><td></td></t<>	07+210.000									3341.689			
07+220,000 3344,093 2.350 0.000 -2.000 3344,140 -0.300 0.000 2.350 3343,695 0.000 0.000 9.400 0.07250,000 3344,093 2.350 0.000 -2.000 3344,590 -2.000 0.000 2.350 3344,133 0.000 0.000 9.400 0.07420,000 3344,503 2.350 0.000 -2.000 3344,590 -2.000 0.000 2.350 3344,143 0.000 0.000 9.400 0.07420,000 3344,503 2.350 0.000 -2.000 3344,590 2.000 0.000 2.350 3344,143 0.000 0.000 9.400 0.000 0.000 3345,003 2.350 0.000 -2.000 3345,140 2.000 0.000 2.350 3344,143 0.000 0.000 9.400 0.000 0.000 3345,003 2.350 0.000 -2.000 3345,140 2.000 0.000 2.350 3345,093 0.000 0.000 9.400 0.000 0.000 3345,533 2.350 0.000 -2.000 3345,340 2.000 0.000 2.350 3345,593 0.000 0.000 9.400 0.003 0.000 0.000 3.345,333 2.350 0.000 -2.000 3345,340 2.000 0.000 2.350 3345,593 0.000 0.000 9.400 0.003 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	07+220.000												
07+250.000					_								
07+260.000 3344.503 2.350 0.000 -2.000 3344.550 -1.700 0.000 2.350 3344.510 0.000 0.000 9.400 07+280.000 3345.93 2.350 0.000 -2.000 3345.930 -2.000 0.000 2.350 3344.843 0.000 0.000 9.400 07+290.000 3345.523 2.350 0.000 -2.000 3345.310 -2.000 0.000 2.350 3345.263 0.000 0.000 9.400 07+390.000 3345.393 2.350 0.000 -2.000 3345.310 -2.000 0.000 2.350 3345.263 0.000 0.000 9.400 07+300.000 3345.393 2.350 0.000 -2.000 3345.540 -2.000 0.000 2.350 3345.523 0.000 0.000 9.400 07+300.000 3345.533 2.350 0.000 -2.000 3345.570 -2.000 0.000 2.350 3345.523 0.000 0.000 9.400 07+300.000 3345.583 2.350 0.000 -2.000 3345.570 -2.000 0.000 2.350 3345.663 0.000 0.000 9.400 07+300.000 3345.783 2.350 0.000 -2.000 3345.570 -2.000 0.000 2.350 3345.663 0.000 0.000 9.400 07+300.000 3345.783 2.350 0.000 -2.000 3345.570 -2.000 0.000 2.350 3345.663 0.000 0.000 9.400 07+300.000 3345.783 2.350 0.000 -2.000 3345.590 -2.000 0.000 2.350 3345.663 0.000 0.000 9.400 07+300.000 3346.73 2.350 0.000 -2.000 3345.590 -2.000 0.000 2.350 3345.913 0.000 0.000 9.400 07+300.000 3346.73 2.350 0.000 -2.000 3346.590 -2.000 0.000 2.350 3346.043 0.000 0.000 9.400 07+300.000 3346.73 2.350 0.000 -2.000 3346.590 -2.000 0.000 2.350 3346.043 0.000 0.000 9.400 07+300.000 3346.33 2.350 0.000 -2.000 3346.480 -2.000 0.000 2.350 3346.330 0.000 0.000 9.400 07+300.000 3346.563 2.350 0.000 -2.000 3346.480 -2.000 0.000 2.350 3346.330 0.000 0.000 9.400 07+300.000 3346.693 2.350 0.000 -2.000 3346.801 -2.000 0.000 2.350 3346.333 0.000 0.000 9.400 07+400.000 3346.563 2.350 0.000 -2.000 3346.801 -2.000 0.000 2.350 3346.363 0.000 0.000 9.400 07+400.000 3346.593 2.350 0.000 -2.000 3346.801 -2.000 0.000 2.350 3346.693 0.000 0.000 9.400 07+400.000 3346.803 2.350 0.000 -2.000 3346.807 -2.000 0.000 2.350 3346.933 0.000 0.000 9.400 07+400.000 3346.803 2.350 0.000 -2.000 3346.807 -2.000 0.000 2.350 3346.933 0.000 0.000 9.400 07+400.000 3347.831 2.350 0.000 -2.000 3347.807 -2.000 0.000 2.350 3346.933 0.000 0.000 9.400 07+400.000 3347.832 2.350 0.000 -2.000 3347.930 -2.000 0.000 2.350 3347.933 0													
07+270.000 3344.843 2.350 0.000 -2.000 3344.890 -2.000 0.000 2.350 3344.093 0.000 9.400 07+280.000 3345.093 2.350 0.000 -2.000 3345.10 -2.000 0.000 2.350 3000 0.000 9.400 07+390.000 3345.233 2.350 0.000 2.000 3345.430 2.303 3345.233 0.000 0.000 9.400 07+310.000 3345.523 2.350 0.000 2.000 3345.707 -2.000 0.000 2.350 3045.233 0.000 0.000 9.400 07+310.000 3345.563 2.350 0.000 2.000 3345.707 -2.000 0.000 2.350 3040 0.000 9.400 07+340.000 3345.653 2.350 0.000 2.000 3345.932 3345.933 0.000 0.000 9.400 07+340.000 3346.6043 2.350 0.000 2.000 3345.933 3345.933 0.000 0.000													
07+280.000 3345.093 2.350 0.000 -2.000 3345.140 -2.000 0.000 2.350 3.000 0.000 9.400 07+290.000 3345.263 2.350 0.000 -2.000 3345.310 -2.000 0.000 3.345.263 0.000 0.000 9.400 07+300.000 3345.523 2.350 0.000 -2.000 3345.570 2.200 0.000 2.350 3.000 0.000 9.400 07+320.000 3345.633 2.350 0.000 -2.000 3345.573 2.350 0.000 -2.000 3.345.633 0.000 0.000 9.400 07+320.000 3345.783 2.350 0.000 -2.000 3345.960 -2.000 0.000 2.350 3.345.830 0.000 9.400 07+350.000 3346.043 2.350 0.000 -2.000 3346.900 2.000 0.000 2.350 3345.000 0.000 9.400 07+350.000 3346.173 2.350 0.000 -2.000 3346.300													
07+390,000 3345,263 2.350 0.000 -2.000 3345,310 -2.000 0.000 2.350 3345,393 0.000 0.000 9.400 07+310,000 3345,323 2.350 0.000 -2.000 3345,570 -2.000 0.000 2.350 3345,393 0.000 0.000 9.400 07+320,000 3345,523 2.350 0.000 -2.000 3345,700 -2.000 0.000 2.350 3345,393 0.000 0.000 9.400 07+320,000 3345,783 2.350 0.000 -2.000 3345,700 -2.000 0.000 2.350 3345,683 0.000 0.000 9.400 07+340,000 3345,913 2.350 0.000 -2.000 3345,830 -2.000 0.000 2.350 3345,783 0.000 0.000 9.400 07+340,000 3345,913 2.350 0.000 -2.000 3345,890 -2.000 0.000 2.350 3345,783 0.000 0.000 9.400 07+350,000 3346,173 2.350 0.000 -2.000 3346,900 -2.000 0.000 2.350 3345,193 0.000 0.000 9.400 07+350,000 3346,173 2.350 0.000 -2.000 3346,200 -2.000 0.000 2.350 3346,043 0.000 0.000 9.400 07+350,000 3346,303 2.350 0.000 -2.000 3346,350 -2.000 0.000 2.350 3346,173 0.000 0.000 9.400 07+350,000 3346,330 2.350 0.000 -2.000 3346,400 0.000 0.000 3.346,173 0.000 0.000 9.400 07+350,000 3346,330 2.350 0.000 -2.000 3346,400 -2.000 0.000 2.350 3346,303 0.000 0.000 9.400 07+350,000 3346,530 2.350 0.000 -2.000 3346,640 -2.000 0.000 2.350 3346,303 0.000 0.000 9.400 07+350,000 3346,633 2.350 0.000 -2.000 3346,640 -2.000 0.000 2.350 3346,503 0.000 0.000 9.400 07+400,000 3346,633 2.350 0.000 -2.000 3346,640 -2.000 0.000 2.350 3346,693 0.000 0.000 9.400 07+400,000 3346,823 2.350 0.000 -2.000 3346,740 -2.000 0.000 2.350 3346,693 0.000 0.000 9.400 07+400,000 3347,83 2.350 0.000 -2.000 3347,700 -2.000 0.000 2.350 3346,693 0.000 0.000 9.400 07+400,000 3347,83 2.350 0.000 -2.000 3347,730 -2.000 0.000 2.350 3346,693 0.000 0.000 9.400 07+400,000 3347,733 2.350 0.000 -2.000 3347,730 -2.000 0.000 2.350 3346,693 0.000 0.000 9.400 07+400,000 3347,331 2.350 0.000 -2.000 3347,730 -2.000 0.000 2.350 3346,693 0.000 0.000 9.400 07+400,000 3347,331 2.350 0.000 -2.000 3347,730 -2.000 0.000 2.350 3347,833 0.000 0.000 9.400 07+400,000 3347,331 2.350 0.000 -2.000 3347,730 -2.000 0.000 2.350 3347,833 0.000 0.000 9.400 07+450,000 3347,331 2.350 0.000 -2.000 3347,730 -2.000 0.000 2.350 3347,933 0.00													
07+300.000 3345.393 2.350 0.000 -2.000 3345.400 -2.000 0.000 2.350 3345.393 0.000 0.000 9.400 0.07+310.000 3345.523 2.350 0.000 -2.000 3345.700 -2.000 0.000 2.350 3345.523 0.000 0.000 9.400 0.07+320.000 3345.633 2.350 0.000 -2.000 3345.700 -2.000 0.000 2.350 3345.523 0.000 0.000 9.400 0.07+320.000 3345.783 2.350 0.000 -2.000 3345.830 -2.000 0.000 2.350 3345.783 0.000 0.000 9.400 0.07+320.000 3345.913 2.350 0.000 -2.000 3345.830 -2.000 0.000 2.350 3345.783 0.000 0.000 9.400 0.07+320.000 3345.913 2.350 0.000 -2.000 3345.830 -2.000 0.000 2.350 3345.913 0.000 0.000 9.400 0.07+320.000 3345.733 0.000 -2.000 3346.990 -2.000 0.000 2.350 3345.173 0.000 0.000 9.400 0.07+370.000 3345.733 0.000 -2.000 3346.500 -2.000 0.000 2.350 3346.043 0.000 0.000 9.400 0.07+370.000 3345.330 0.000 -2.000 3346.300 -2.000 0.000 2.350 3346.303 0.000 0.000 9.400 0.07+370.000 3345.633 2.350 0.000 -2.000 3346.480 -2.000 0.000 2.350 3346.333 0.000 0.000 9.400 0.07+390.000 3345.633 2.350 0.000 -2.000 3346.400 -2.000 0.000 2.350 3346.433 0.000 0.000 9.400 0.07+400.000 3346.693 2.350 0.000 -2.000 3346.704 -2.000 0.000 2.350 3346.663 0.000 0.000 9.400 0.000 0.000 0.000 3.346.693 0.000 0.000 9.400 0.000 0.000 0.000 0.000 0.000 0.000 9.400 0.000 0.000 0.000 0.000 0.000 0.000 0.000 9.400 0.00													
07+310.000 3345.523 2.350 0.000 -2.000 3345.570 -2.000 0.000 2.350 3345.523 0.000 0.000 9.400 0.07+320.000 3345.653 2.350 0.000 -2.000 3345.700 -2.000 0.000 2.350 3345.653 0.000 0.000 9.400 0.07+330.000 3345.783 2.350 0.000 -2.000 3345.890 -2.000 0.000 2.350 3345.653 0.000 0.000 9.400 0.07+340.000 3345.783 0.350 0.000 -2.000 3345.896 -2.000 0.000 2.350 3345.913 0.000 0.000 9.400 0.07+350.000 3346.043 2.350 0.000 -2.000 3346.900 -2.000 0.000 2.350 3346.173 0.000 0.000 9.400 0.07+360.000 3346.173 2.350 0.000 -2.000 3346.900 -2.000 0.000 2.350 3346.173 0.000 0.000 9.400 0.07+370.000 3346.303 2.350 0.000 -2.000 3346.350 -2.000 0.000 2.350 3346.173 0.000 0.000 9.400 0.07+370.000 3346.333 2.350 0.000 -2.000 3346.350 -2.000 0.000 2.350 3346.303 0.000 0.000 9.400 0.07+370.000 3346.333 2.350 0.000 -2.000 3346.480 -2.000 0.000 2.350 3346.303 0.000 0.000 9.400 0.07+370.000 3346.333 2.350 0.000 -2.000 3346.400 -2.000 0.000 2.350 3346.303 0.000 0.000 9.400 0.000 0.													
07+320.000		3345.523		0.000	-2.000	3345.570	-2.000	0.000	2.350		0.000	0.000	9.400
07+340,000 3345.913 2.350 0.000 -2.000 3.000 2.350 3.345.913 0.000 0.000 9.400 07+350.000 3346.043 2.350 0.000 -2.000 3.346.043 0.000 0.000 9.400 07+360.000 3346.173 2.350 0.000 -2.000 3346.220 -2.000 0.000 2.350 3.000 0.000 9.400 07+370.000 3346.333 2.350 0.000 -2.000 3346.303 3.000 0.000 9.400 07+380.000 3346.433 2.350 0.000 -2.000 3346.80 2.000 0.000 2.350 0.000 9.400 07+390.000 3346.593 2.350 0.000 -2.000 3346.700 2.350 3.000 9.400 9.400 07+410.000 3346.893 2.350 0.000 -2.000 3346.700 2.200 0.000 2.350 3.000 0.000 9.400 07+420.000 3346.893 2.350 0.000 -2		3345.653	2.350	0.000	-2.000	3345.700	-2.000	0.000	2.350	3345.653	0.000	0.000	9.400
07+350.000 3346.043 2.350 0.000 -2.000 3346.090 -2.000 0.000 2.350 3346.043 0.000 0.000 9.400 07+360.000 3346.173 2.350 0.000 -2.000 3346.200 -2.000 0.000 2.350 3346.303 0.000 0.000 9.400 07+380.000 3346.303 2.350 0.000 -2.000 3346.300 0.000 0.000 9.400 07+380.000 3346.433 2.350 0.000 -2.000 3346.610 -2.000 0.000 2.350 3346.433 0.000 0.000 9.400 07+390.000 3346.663 2.350 0.000 -2.000 3346.610 -2.000 0.000 2.350 3346.603 0.000 0.000 9.400 07+410.000 3346.823 2.350 0.000 -2.000 3346.870 -2.000 0.000 2.350 3346.963 0.000 0.000 9.400 07+420.000 3347.833 2.350 0.000 -2.000	07+330.000	3345.783	2.350		-2.000	3345.830	-2.000	0.000			0.000		
07+360.000 3346.173 2.350 0.000 -2.000 3346.220 -2.000 0.000 2.350 3346.173 0.000 0.000 9.400 07+370.000 3346.303 2.350 0.000 -2.000 3346.350 2.000 0.000 2.350 3346.303 0.000 0.000 9.400 07+380.000 3346.563 2.350 0.000 -2.000 3346.600 0.000 0.000 0.000 0.000 9.400 07+390.000 3346.563 2.350 0.000 -2.000 3346.600 2.000 0.000 2.350 3346.503 0.000 9.400 07+400.000 3346.693 2.350 0.000 -2.000 3346.740 -2.000 0.000 2.350 3346.693 0.000 0.000 9.400 07+420.000 3346.953 2.350 0.000 -2.000 3347.000 2.350 3346.893 0.000 0.000 9.400 07+430.000 3347.833 2.350 0.000 -2.000 3347.300													
07+370.000 3346.303 2.350 0.000 -2.000 3346.350 -2.000 0.000 2.350 3346.303 0.000 0.000 9.400 07+380.000 3346.433 2.350 0.000 -2.000 3346.480 -2.000 0.000 2.350 3346.433 0.000 0.000 9.400 07+390.000 3346.563 2.350 0.000 -2.000 3346.740 -2.000 0.000 2.350 3346.693 0.000 0.000 9.400 07+410.000 3346.693 2.350 0.000 -2.000 3346.870 -2.000 0.000 2.350 3346.093 0.000 0.000 9.400 07+420.000 3346.953 2.350 0.000 -2.000 3347.000 -2.000 0.000 2.350 3346.823 0.000 0.000 9.400 07+420.000 3347.983 2.350 0.000 -2.000 3347.330 2.000 0.000 2.350 3347.083 0.000 0.000 9.400 07+450.000													
07+380.000 3346.433 2.350 0.000 -2.000 3346.480 -2.000 0.000 2.350 3346.433 0.000 0.000 9.400 07+390.000 3346.563 2.350 0.000 -2.000 3346.10 -2.000 0.000 2.350 3346.693 0.000 0.000 9.400 07+400.000 3346.693 2.350 0.000 -2.000 3346.740 -2.000 0.000 2.350 3346.693 0.000 0.000 9.400 07+410.000 3346.823 2.350 0.000 -2.000 3347.000 -2.000 0.000 2.350 3346.823 0.000 0.000 9.400 07+430.000 3347.933 2.350 0.000 -2.000 3347.260 -2.000 3347.263 0.000 0.000 9.400 07+440.000 3347.343 2.350 0.000 -2.000 3347.260 -2.000 0.000 2.350 3347.343 0.000 0.000 9.400 07+450.000 3347.343 2.350													
07+390.000 3346.563 2.350 0.000 -2.000 3346.610 -2.000 0.000 2.350 3.000 0.000 9.400 07+400.000 3346.693 2.350 0.000 -2.000 3346.740 -2.000 0.000 2.350 3.000 0.000 9.400 07+410.000 3346.823 2.350 0.000 -2.000 3346.870 -2.000 0.000 2.350 3.000 0.000 9.400 07+430.000 3346.953 2.350 0.000 -2.000 3347.130 -2.000 0.000 2.350 3346.953 0.000 0.000 9.400 07+430.000 3347.833 2.350 0.000 -2.000 3347.130 -2.000 0.000 2.350 3347.083 0.000 0.000 9.400 07+450.000 3347.343 2.350 0.000 -2.000 3347.342 3.347.343 0.000 0.000 9.400 07+450.000 3347.633 2.350 0.000 -2.000 3347.520 -2.000													
07+400.000 3346.693 2.350 0.000 -2.000 3346.740 -2.000 0.000 2.350 3346.893 0.000 0.000 9.400 07+410.000 3346.823 2.350 0.000 -2.000 3346.870 -2.000 0.000 2.350 3346.823 0.000 0.000 9.400 07+420.000 3346.953 2.350 0.000 -2.000 3347.000 -2.000 0.000 2.350 3346.953 0.000 0.000 9.400 07+430.000 3347.083 2.350 0.000 -2.000 3347.200 0.000 2.350 3347.000 0.000 9.400 07+440.000 3347.343 2.350 0.000 -2.000 3347.200 0.000 2.350 3347.000 0.000 9.400 07+450.000 3347.343 2.350 0.000 -2.000 3347.520 -2.000 0.000 2.350 3347.473 0.000 0.000 9.400 07+470.000 3347.633 2.350 0.000 -2.000												L	
07+410.000 3346.823 2.350 0.000 -2.000 3346.870 -2.000 0.000 2.350 3346.823 0.000 0.000 9.400 07+420.000 3346.953 2.350 0.000 -2.000 3347.000 -2.000 0.000 2.350 3346.953 0.000 0.000 9.400 07+430.000 3347.083 2.350 0.000 -2.000 3347.130 -2.000 0.000 2.350 3347.083 0.000 0.000 9.400 07+440.000 3347.343 2.350 0.000 -2.000 3347.520 -2.000 0.000 2.350 3347.343 0.000 0.000 9.400 07+460.000 3347.473 2.350 0.000 -2.000 3347.520 -2.000 0.000 2.350 3347.473 0.000 0.000 9.400 07+460.000 3347.673 2.350 0.000 -2.000 3347.650 -2.000 3.347.653 3347.673 0.000 2.000 13.400 07+490.000 3347.8863													
07+420.000 3346.953 2.350 0.000 -2.000 3347.000 -2.000 0.000 2.350 3346.953 0.000 0.000 9.400 07+430.000 3347.083 2.350 0.000 -2.000 3347.130 -2.000 0.000 2.350 3347.083 0.000 0.000 9.400 07+440.000 3347.213 2.350 0.000 -2.000 3347.260 -2.000 0.000 2.350 3347.213 0.000 0.000 9.400 07+450.000 3347.343 2.350 0.000 -2.000 3347.520 -2.000 0.000 2.350 3347.473 0.000 0.000 9.400 07+460.000 3347.603 2.350 0.000 -2.000 3347.550 -2.000 0.000 2.350 3347.473 0.000 0.000 9.400 07+480.000 3347.733 2.350 0.000 -2.000 3347.860 -2.000 2.990 5.340 3347.673 0.000 2.000 13.380 07+500.000										_			
07+430.000 3347.083 2.350 0.000 -2.000 3347.130 -2.000 0.000 2.350 3347.083 0.000 0.000 9.400 07+440.000 3347.213 2.350 0.000 -2.000 3347.260 -2.000 0.000 2.350 3347.213 0.000 0.000 9.400 07+450.000 3347.343 2.350 0.000 -2.000 3347.520 -2.000 0.000 2.350 3347.343 0.000 0.000 9.400 07+460.000 3347.603 2.350 0.000 -2.000 3347.520 -2.000 0.000 2.350 3347.473 0.000 0.000 9.400 07+470.000 3347.603 2.350 0.000 -2.000 3347.860 -2.000 2.000 2.900 3347.563 0.000 2.000 13.400 07+480.000 3347.863 2.350 0.000 -2.000 3347.910 -2.000 1.990 4.340 3347.823 0.000 2.000 15.380 07+500.000													
07+440.000 3347.213 2.350 0.000 -2.000 3347.260 -2.000 0.000 2.350 3347.213 0.000 0.000 9.400 07+450.000 3347.343 2.350 0.000 -2.000 3347.390 -2.000 0.000 2.350 3347.343 0.000 0.000 9.400 07+460.000 3347.473 2.350 0.000 -2.000 3347.500 2.350 0.000 -2.000 3347.473 0.000 0.000 9.400 07+470.000 3347.603 2.350 0.000 -2.000 3347.500 -2.000 2.000 4.350 3347.563 0.000 2.000 13.400 07+480.000 3347.863 2.350 0.000 -2.000 3347.910 -2.000 2.990 5.340 3347.673 0.000 2.000 15.380 07+500.000 3347.863 2.350 0.000 -2.000 3348.040 -2.000 1.990 4.340 3347.993 0.000 2.000 13.380 07+500.000				0.000	-2.000			0.000	2.350	3347.083		0.000	9.400
07+450.000 3347.343 2.350 0.000 -2.000 3347.390 -2.000 0.000 2.350 3347.343 0.000 0.000 9.400 07+460.000 3347.473 2.350 0.000 -2.000 3347.500 2.350 0.000 9.400 07+470.000 3347.603 2.350 0.000 -2.000 3347.650 -2.000 2.000 4.350 3347.563 0.000 2.000 13.400 07+480.000 3347.733 2.350 0.000 -2.000 3347.780 -2.000 2.990 5.340 3347.673 0.000 3.000 15.380 07+490.000 3347.863 2.350 0.000 -2.000 3347.910 -2.000 1.990 4.340 3347.823 0.000 2.000 13.380 07+500.000 3348.132 2.350 0.000 -2.000 3348.040 -2.000 0.000 2.350 3347.993 0.000 0.000 9.400 07+510.000 3348.432 2.350 0.000 -1.600				0.000			_	0.000	2.350		0.000		
07+470.000 3347.603 2.350 0.000 -2.000 3347.650 -2.000 2.000 4.350 3347.563 0.000 2.000 13.400 07+480.000 3347.733 2.350 0.000 -2.000 3347.780 -2.000 2.990 5.340 3347.673 0.000 3.000 15.380 07+490.000 3347.863 2.350 0.000 -2.000 3347.910 -2.000 1.990 4.340 3347.823 0.000 2.000 13.380 07+500.000 3347.993 2.350 0.000 -2.000 3348.040 -2.000 0.000 2.350 3347.993 0.000 0.000 9.400 07+510.000 3348.132 2.350 0.000 -1.600 3348.170 -2.000 0.000 2.350 3348.298 2.350 0.000 -1.600 3348.300 -2.000 0.000 2.350 3348.293 0.000 0.000 9.400 07+520.000 3348.470 2.350 0.000 1.700 3348.430 -2.000 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>													
07+480.000 3347.733 2.350 0.000 -2.000 3347.780 -2.000 2.990 5.340 3347.673 0.000 3.000 15.380 07+490.000 3347.863 2.350 0.000 -2.000 3347.910 -2.000 1.990 4.340 3347.823 0.000 2.000 13.380 07+500.000 3347.993 2.350 0.000 -2.000 3348.040 -2.000 0.000 2.350 3347.993 0.000 0.000 9.400 07+520.000 3348.298 2.350 0.000 -1.600 3348.300 -2.000 0.010 2.360 3348.253 0.000 0.000 9.420 07+530.000 3348.470 2.350 0.000 1.700 3348.430 -2.200 0.370 2.720 3348.370 0.000 0.000 10.140 07+530.000 3348.614 2.350 0.000 2.300 3348.560 -2.300 0.400 2.750 3348.497 0.000 0.000 10.140 07+550.000													
07+490.000 3347.863 2.350 0.000 -2.000 3347.910 -2.000 1.990 4.340 3347.823 0.000 2.000 13.380 07+500.000 3347.993 2.350 0.000 -2.000 3348.040 -2.000 0.000 2.350 3347.993 0.000 0.000 9.400 07+510.000 3348.132 2.350 0.000 -1.600 3348.170 -2.000 0.000 2.350 3348.123 0.000 0.000 9.400 07+520.000 3348.298 2.350 0.000 -0.100 3348.300 -2.000 0.010 2.360 3348.253 0.000 0.000 9.420 07+530.000 3348.470 2.350 0.000 1.700 3348.430 -2.200 0.370 2.720 3348.370 0.000 0.000 10.140 07+540.000 3348.614 2.350 0.000 2.300 3348.560 -2.300 0.400 2.750 3348.497 0.000 0.000 10.200 07+550.000													
07+500.000 3347.993 2.350 0.000 -2.000 3348.040 -2.000 0.000 2.350 3347.993 0.000 0.000 9.400 07+510.000 3348.132 2.350 0.000 -1.600 3348.170 -2.000 0.000 2.350 3348.123 0.000 0.000 9.400 07+520.000 3348.298 2.350 0.000 -0.100 3348.300 -2.000 0.010 2.360 3348.253 0.000 0.000 9.420 07+530.000 3348.470 2.350 0.000 1.700 3348.430 -2.200 0.370 2.720 3348.370 0.000 0.000 9.420 07+540.000 3348.614 2.350 0.000 2.300 3348.560 -2.300 0.400 2.750 3348.497 0.000 0.000 10.200 07+550.000 3348.744 2.350 0.000 2.300 3348.690 -2.300 0.390 2.740 3348.627 0.000 0.000 10.180 07+560.000													
07+510.000 3348.132 2.350 0.000 -1.600 3348.170 -2.000 0.000 2.350 3348.123 0.000 0.000 9.400 07+520.000 3348.298 2.350 0.000 -0.100 3348.300 -2.000 0.010 2.360 3348.253 0.000 0.000 9.420 07+530.000 3348.470 2.350 0.000 1.700 3348.430 -2.200 0.370 2.720 3348.370 0.000 0.000 10.140 07+540.000 3348.614 2.350 0.000 2.300 3348.560 -2.300 0.400 2.750 3348.497 0.000 0.000 10.200 07+550.000 3348.744 2.350 0.000 2.300 3348.690 -2.300 0.390 2.740 3348.627 0.000 0.000 10.180 07+560.000 3348.957 2.350 0.000 1.900 3348.950 -2.000 0.070 2.420 3348.902 0.000 0.000 10.180 07+570.000													
07+520.000 3348.298 2.350 0.000 -0.100 3348.300 -2.000 0.010 2.360 3348.253 0.000 0.000 9.420 07+530.000 3348.470 2.350 0.000 1.700 3348.430 -2.200 0.370 2.720 3348.370 0.000 0.000 10.140 07+540.000 3348.614 2.350 0.000 2.300 3348.560 -2.300 0.400 2.750 3348.497 0.000 0.000 10.200 07+550.000 3348.744 2.350 0.000 2.300 3348.800 -2.300 0.390 2.740 3348.627 0.000 0.000 10.180 07+560.000 3348.865 2.350 0.000 1.900 3348.90 -2.300 0.390 2.740 3348.757 0.000 0.000 10.180 07+570.000 3348.957 2.350 0.000 0.300 3348.950 -2.000 0.070 2.420 3348.902 0.000 0.000 9.540 07+580.000													
07+530.000 3348.470 2.350 0.000 1.700 3348.430 -2.200 0.370 2.720 3348.370 0.000 0.000 10.140 07+540.000 3348.614 2.350 0.000 2.300 3348.560 -2.300 0.400 2.750 3348.497 0.000 0.000 10.200 07+550.000 3348.744 2.350 0.000 2.300 3348.690 -2.300 0.390 2.740 3348.627 0.000 0.000 10.180 07+560.000 3348.865 2.350 0.000 1.900 3348.820 -2.300 0.390 2.740 3348.757 0.000 0.000 10.180 07+570.000 3348.957 2.350 0.000 0.300 3348.950 -2.000 0.070 2.420 3348.902 0.000 0.000 9.540 07+580.000 3349.047 2.350 0.000 -1.400 3349.080 -2.000 0.000 2.350 3349.000 0.000 9.400													
07+540.000 3348.614 2.350 0.000 2.300 3348.560 -2.300 0.400 2.750 3348.497 0.000 0.000 10.200 07+550.000 3348.744 2.350 0.000 2.300 3348.690 -2.300 0.390 2.740 3348.627 0.000 0.000 10.180 07+560.000 3348.865 2.350 0.000 1.900 3348.820 -2.300 0.390 2.740 3348.757 0.000 0.000 10.180 07+570.000 3348.957 2.350 0.000 0.300 3348.950 -2.000 0.070 2.420 3348.902 0.000 0.000 9.540 07+580.000 3349.047 2.350 0.000 -1.400 3349.080 -2.000 0.000 2.350 3349.033 0.000 0.000 9.400													
07+550.000 3348.744 2.350 0.000 2.300 3348.690 -2.300 0.390 2.740 3348.627 0.000 0.000 10.180 07+560.000 3348.865 2.350 0.000 1.900 3348.820 -2.300 0.390 2.740 3348.757 0.000 0.000 10.180 07+570.000 3348.957 2.350 0.000 0.300 3348.950 -2.000 0.070 2.420 3348.902 0.000 0.000 9.540 07+580.000 3349.047 2.350 0.000 -1.400 3349.080 -2.000 0.000 2.350 3349.033 0.000 0.000 9.400													
07+560.000 3348.865 2.350 0.000 1.900 3348.820 -2.300 0.390 2.740 3348.757 0.000 0.000 10.180 07+570.000 3348.957 2.350 0.000 0.300 3348.950 -2.000 0.070 2.420 3348.902 0.000 0.000 9.540 07+580.000 3349.047 2.350 0.000 -1.400 3349.080 -2.000 0.000 2.350 3349.033 0.000 0.000 9.400													
07+570.000 3348.957 2.350 0.000 0.300 3348.950 -2.000 0.070 2.420 3348.902 0.000 0.000 9.540 07+580.000 3349.047 2.350 0.000 -1.400 3349.080 -2.000 0.000 2.350 3349.033 0.000 0.000 9.400													
07+580.000 3349.047 2.350 0.000 -1.400 3349.080 -2.000 0.000 2.350 3349.033 0.000 0.000 9.400				0.000				0.070				0.000	9.540
		3349.047	2.350	0.000	-1.400		_	0.000	2.350	3349.033	0.000		9.400
07+590.000 3349.163 2.350 0.000 -2.000 3349.210 -2.000 0.000 2.350 3349.163 0.000 0.000 9.400	07+590.000	3349.163	2.350	0.000	-2.000	3349.210	-2.000	0.000		3349.163	0.000	0.000	9.400

Cress Marche No. Pick Cress Marche No. Pick Pick St. Ancho Comp. March Ondo Ph.				PLANI	LLA DE	RASANTI	<u> </u>				PI AZOI	T DECDUC	
Content						EJE		·	·	· · · · · · · · · · · · · · · · · · ·			VOLUMEN (m3
97-96-000 389-963 2350 000 2000 389-970 2000 0000 2350 3836 683 0000 0000 9.400 07-96-0000 389-985 399-985 0000 0000 9.400 07-96-0000 389-985 399-985 0000 0000 9.400 07-96-0000 389-985 399-985 0000 0000 9.400 07-96-0000 389-985 399-985 0000 0000 0000 9.400 07-96-0000 389-985 399-985 0000 0000 0000 9.400 07-96-0000 389-985 399-985 0000 0000 0000 9.400 07-96-0000 389-985 399-985 0000 0000 0000 9.400 07-96-0000 389-985 399-985 0000 0000 0000 9.400 07-96-0000 389-985 0000 0000 0000 9.400 07-96-0000 389-985 0000 0000 0000 9.400 07-96-0000 389-985 0000 0000 0000 9.400 07-96-0000 389-985 0000 0000 0000 9.400 07-96-0000 389-985 0000 0000 0000 9.400 07-96-0000 389-985 0000 0000 0000 9.400 07-96-0000 389-985 0000 0000 0000 9.400 07-96-0000 389-985 0000 0000 0000 9.400 07-96-0000 389-985 0000 0000 0000 9.400 07-96-0000 389-985 0000 0000 0000 9.400 07-96-0000 389-985 0000 0000 0000 9.400 07-96-0000 389-985 0000 0000 0000 9.400 07-96-0000 389-985 0000 0000 0000 9.400 07-96-0000 0000 0000 0000 0000 9.400 07-96-0000 0000 0000 0000 0000 0000 0000 0										Cotas		<u> </u>	
							<u> </u>						
97-96-000 389-981 2329 0.000 2.000 389-970 2.000 0.000 2350 3830-9683 0.000 0.000 9.400 07-96-960 000 389-981 2390 0.000 2.000 389-980 2000 0.000 2350 3830-981 3.000 0.000 9.400 07-96-960 000 389-981 2390 0.000 1.000 1.000 1.000 1.000 07-96-960 000 389-981 2390 0.000 1.000 1.000 1.000 1.000 07-96-960 000 389-981 2390 0.000 1.000 1.000 1.000 1.000 07-96-960 000 389-981 2390 0.000 1.000 1.000 1.000 1.000 1.000 07-96-960 000 389-981 2390 0.000 1.000 1.000 1.000 1.000 1.000 07-96-960 000 389-981 2390 0.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 07-96-960 000 389-981 2390 0.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 07-96-960 000 389-981 2390 0.000 1.000 1.000 1.000 1.000 1.000 07-96-960 000 389-981 2390 0.000 1.000 1.000 1.000 1.000 1.000 07-96-960 000 389-981 2390 0.000 1.000 1.000 1.000 1.000 1.000 07-96-960 000 389-99 0.000 1.000 1.000 1.000 1.000 07-96-960 000 389-99 0.000 1.000 1.000 1.000 07-96-96-96-96-96-96-96-96-96-96-96-96-96-									 			<u> </u>	
97+80-000 349-813 2350 0.000 2.000 349-80 2.000 0.000 2.303 3350-931 0.000 0.000 9.400 07+80-000 3580 3380-931 0.000 0.000 1.000 339 3350-931 0.000 0.000 9.400 07+80-000 3580 3580-93 0.000 0.000 1.800 3580-93 0.000 0.000 0.000 9.400 07+80-000 3580-93 0.000 0.000 0.000 0.000 0.000 0.000 9.400 07+80-000 3580-93 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 9.400 07+80-000 3580-93 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000									-	-			L
97+860.000 3189.948													
97-860.000 3350.978													
97-860.000 3350.483 2350 0.000 0.000 1500 3303029 0.2000 0.000 0.300 0.000 0.000 0.9400 0.97680.000 3350418 0.2305 0.000 1.6503 0.3303 0.2000 0.570 0.2000 0.3050.280 0.000 0.0000 0.0000 0.9800 0.97690.000 3350.870 2.350 0.000 2.400 3350.700 0.570 0.200 0.350 0.000 0.00000 0.00000 0.00000 0.00000 0.00000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.00000 0.												<u> </u>	
07+89.0000 3350-481 2.390 0.000 1.600 3303-380 -2.000 0.240 0.250 3350-326 0.000 0.000 0.000 0.560 0.7790.000 3350-595 0.350 0.000 3.000 3.000 3.000 3.000 0.000 0.000 0.050 0.050 0.0790.000 3350-595 0.250 0.000 0.000 0.000 0.000 0.000 0.000 0.0791.000 0.0791.000 350-595 0.350 0.000 0.000 0.000 0.350-595 0.350 0.0000 0.0000 0.000 0.000 0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00													
	07+680.000	3350.418	2.350	0.000	1.600	3350.380	-2.000	0.240	2.590		0.000	0.000	9.880
077-170,000 3390.95 2350 0,000 2,000 3359.90 2,000 0,0	07+690.000	3350.590	2.350	0.000	3.400	3350.510	-3.900	0.570	2.920	3350.396	0.000	0.000	10.540
077-720.000										3350.519			
1977-190.000 3351 118 2350 0.000 1.500 3351 100 2.000 0.000 2.350 3351 2030 0.000 0.000 9.400 1977-190.000 3351 373 2.350 0.000 2.000 3351 100 2.000 0.000 0.000 2.350 3351 1248 0.000 0.000 9.400 1977-190.000 3351 373 2.350 0.000 2.000 3351 300 0.000 2.350 3351 1248 0.000 0.000 9.400 1977-190.000 3351 373 2.350 0.000 2.000 3351 300 0.000 2.350 3351 1248 0.000 0.000 9.400 1977-190.000 3351 373 2.700 0.350 3.300 3351 300 0.000 2.350 3351 1248 0.000 0.000 0.000 1.010 1978-190.000 3351 373 2.700 0.350 2.900 3351 310 2.000 0.000 2.350 3351 300 0.000 0.000 0.000 0.000 0.000 1978-190.000 3351 373 2.700 0.000 2.350 3351 310 0.000						L							
07+26_0000 3351_131 2.350 0.000 -2.000 3351_00 -2.000 0.000 2.350 3351_131 0.000 0.000 9.400 0.07+76_0000 3351_301_301_301_301_301_301_301_301_301_30											<u> </u>		
07+750.000 3351.372 2350 0.000 -2.000 3351.390 -1.800 0.000 2.350 3351.404 0.000 0.000 0.000 9.400 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.000 0.000 9.400 0.004 0.0		 								 	1		
		4											
07+790,000												<u> </u>	
07+780.000 3351 S90 2.740 0390 3300 3351 880 3.000 0.000 2.350 3351 878 0.000 0.000 10.180 07+780.000 3351 392 2.700 0.350 2.900 3351 870 0.000 2.000 3351 892 0.000 0.000 3351 892 0.000 0.000 2.000 3351 892 0.000 0.000 0.000 3551 0.000 0.000 3551 0.000 0.000 3351 892 0.000 0.									}			L	
07+80,000 3351 872 2.700 0.350 2.900 3351 810 0.200 0.000 2.350 3851 878 0.000 0.000 0.000 0.000 9.500 07480,000 3352 83 0.000 0.0000 3352 83 0.000 0.000 3353 83 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.000 0.000 0.000 0.0000 0.0000 0.000 0.000 0.000 0.0000 0.0000 0.0000 0.000											1	<u> </u>	
07+810.000 3352.03 2.550 0.000 -2.000 3352.070 -1.200 0.000 2.350 3352.042 0.000 0.000 9.400 07+830.000 3352.431 2.350 0.000 -2.000 3352.330 -2.000 0.000 2.350 3352.243 0.000 0.000 9.400 07+840.000 3352.431 2.350 0.000 -2.000 3352.400 -2.000 0.000 2.350 3352.243 0.000 0.000 9.400 07+850.000 3352.431 2.350 0.000 -2.000 3352.400 -2.000 0.000 0.2350 3352.431 0.000 0.000 9.400 07+850.000 3352.431 2.350 0.000 -2.000 3352.400 -2.000 0.000 0.2350 3352.431 0.000 0.000 9.400 07+850.000 3352.543 2.350 0.000 -2.000 3352.600 -2.000 0.000 0.2350 3352.431 0.000 0.000 9.400 07+850.000 3352.830 2.350 0.000 -2.000 3352.730 -2.000 0.000 0.2350 3352.643 0.000 0.000 9.400 07+850.000 3352.331 0.000 -2.000 3352.500 0.000 0.000 0.352.230 3052.830 0.000 0.000 9.400 07+850.000 3352.331 0.000 -2.000 3352.850 -2.000 0.000 2.350 3352.693 0.000 0.000 9.400 07+850.000 3352.335 0.350 0.000 -2.000 3353.100 -2.000 0.000 2.350 3352.933 0.000 0.000 9.400 07+850.000 3353.335 0.350 0.000 -2.000 3353.100 -2.000 0.000 2.350 3352.303 0.000 0.000 9.400 07+900.000 3353.135 393 2.350 0.000 -2.000 3353.370 -0.400 0.000 2.350 3352.000 0.000 0.000 9.400 07+900.000 3353.407 2.630 0.000 0.000 9.400 07+900.000 3353.407 2.630 0.000 0.000 3353.500 0.000 0.000 9.400 07+900.000 3353.601 2.840 0.590 -4.100 3353.500 1.800 0.000 2.350 3355.302.00 0.000 0.000 9.400 07+900.000 3353.601 2.840 0.590 -4.100 3353.500 1.800 0.000 2.350 3355.422 0.000 0.000 9.900 07+900.000 3353.601 2.840 0.590 -4.100 3353.603 0.000 0.000 2.350 3355.422 0.000 0.000 0.000 9.900 07+900.000 3353.802 0.000 0.350 3353.802 0.000 0.000 0.000 0.000 9.900 07+900.000 3353.808 2.350 0.000 0.000 1.0380 07+900.000 3353.808 2.350 0.000 0.000 1.0380 07-900.000 3353.808 2.350 0.000 0.000 1.0380 07-900.000 3354.679 0.350 0.000 0.350 3354.300 0.000 0.354.303 3354.800 0.000		3351.732	2.700	0.350	-2.900	3351.810	2.900	0.000	2.350		0.000	0.000	10.100
07+820,000 3352,133 2.350 0.000 2.000 3352,300 -2.000 0.000 2.350 3352,283 0.000 0.000 9.400 07+80,0000 3352,413 2.350 0.000 2.000 3352,346 2.000 0.000 2.350 3352,283 0.000 0.000 9.400 07+80,0000 3352,413 2.350 0.000 2.000 3352,590 2.000 0.000 2.350 3352,2413 0.000 0.000 9.400 07+80,000 3352,413 2.350 0.000 2.000 3352,590 2.000 0.000 2.350 3352,5413 0.000 0.000 9.400 07+80,000 3352,593 2.350 0.000 2.000 3352,590 2.000 0.000 2.350 3352,5413 0.000 0.000 9.400 07+80,000 3352,830 2.350 0.000 2.000 3352,590 2.000 0.000 2.350 3352,693 0.000 0.000 9.400 07+80,000 3352,831 2.350 0.000 2.000 3352,890 2.000 0.000 2.350 3352,833 0.000 0.000 9.400 07+80,000 3352,831 2.350 0.000 2.000 3352,890 2.000 0.000 0.250 3352,830 0.000 0.000 9.400 07+80,000 3353,340 2.350 0.000 2.000 3353,400 2.000 3.351 0.000 2.000 3353,400 0.000 0.000 9.400 07+90,000 3353,340 2.350 0.000 2.000 3353,400 0.000 2.000 3353,400 0.000 0.000 9.400 07+90,000 3353,447 2.630 0.280 2.000 3353,500 1.000 0.000 2.350 3355,350 0.000 0.000 9.400 07+90,000 3353,400 0.350 0.280 2.000 3353,500 1.000 2.000 3353,500 1.000 0.000 0.000 9.400 07+90,000 3353,400 0.350 0.280 2.000 3353,500 1.000 0.000 2.350 3355,400 0.000 0.000 9.400 07+90,000 3353,400 0.280 0.280 0.280 0.380 0.000 0.000 9.400 07+90,000 3353,400 0.280 0.280 0.280 0.380 0.000 0.000 9.400 07+90,000 3353,400 0.280 0.280 0.385,400 0.000 0.000 9.400 0.000 0.350 0.000 0.000 0.000 0.000 0.000 0.990 07+90,000 3353,400 0.000 0.280 0.380 0.380 0.000 0.000 0.000 0.080 0.000 0.	07+800.000			0.070	-2.000		0.700	0.000		3351.956			9.540
07+830.000 3352.283 2.350 0.000 2.000 3352.360 2.000 0.000 2.350 3352.283 0.000 0.000 9.400 07+850.000 3352.431 2.350 0.000 2.000 3352.460 2.000 0.000 2.350 3352.243 0.000 0.000 9.400 07+850.000 3352.431 2.350 0.000 2.000 3352.402 0.000 0.000 2.350 3352.2431 0.000 0.000 9.400 07+850.000 3352.433 2.350 0.000 2.000 3352.250 2.000 0.000 2.350 3352.643 0.000 0.000 9.400 07+850.000 3352.833 2.350 0.000 2.000 3352.850 2.000 0.000 0.000 2.350 3352.673 0.000 0.000 9.400 07+850.000 3352.933 2.350 0.000 2.000 3352.850 2.000 0.000 2.350 3352.853 3352.803 0.000 0.000 9.400 07+850.000 3352.933 2.350 0.000 2.000 3353.851 0.2000 0.000 2.350 3352.833 0.000 0.000 9.400 07+850.000 3353.353 3352.803 0.000 2.000 3353.304 0.000 0.000 9.400 07+850.000 3353.353 3352.800 0.000 2.000 3353.304 0.1700 0.000 2.350 3352.000 0.000 0.000 9.400 07+950.000 3353.353 335 0.000 2.000 3353.300 0.000 0.000 9.400 07+950.000 3353.354 0.000 0.000 2.000 3353.300 0.000 0.000 9.400 07+950.000 3353.347 2.630 0.000 2.000 3353.300 1.800 0.000 2.350 3353.353 0.000 0.000 9.400 07+950.000 3353.601 0.000 0.000 0.000 0.000 0.9400 07+950.000 3353.601 0.000 0.000 0.000 0.000 0.9400 07+950.000 3353.601 0.000 0.000 0.000 0.000 0.000 0.9400 07+950.000 3353.601 0.000 0.000 0.000 0.000 0.000 0.9500 07+950.000 3353.601 0.0000 0.000 0.	07+810.000												<u> </u>
07+890.000 3352.431 2350 0.000 -2.000 3352.460 -2.000 0.000 2.350 3352.543 0.000 0.000 9.400 07+860.000 3352.673 2.350 0.000 -2.000 3352.720 -2.000 0.000 2.350 3352.5673 0.000 0.000 9.400 07+860.000 3352.673 2.350 0.000 -2.000 3352.850 -2.000 0.000 2.350 3352.5673 0.000 0.000 9.400 07+860.000 3352.353 0.000 0.000 -2.000 3352.850 0.000 0.000 2.350 3352.673 0.000 0.000 9.400 07+860.000 3352.350 0.000 -2.000 3352.850 -2.000 0.000 2.350 3352.933 0.000 0.000 9.400 07+890.000 3353.933 0.000 0.000 -2.000 3352.850 -2.000 0.000 2.350 3352.933 0.000 0.000 9.400 07+890.000 3353.933 2353 0.000 0.000 0.2000 3353.730 0.000 0.000 2.350 3352.933 0.000 0.000 9.400 07+910.000 3353.353 0.000 0.000 0.2000 3353.730 0.000 0.000 2.350 3352.933 0.000 0.000 9.400 07+910.000 3353.470 2.030 0.000 3353.370 0.000 0.000 2.350 3353.361 0.000 0.000 9.400 07+920.000 3353.470 2.030 0.000 3353.370 0.000 0.000 2.350 3353.350 0.000 0.000 9.400 07+920.000 3353.661 2.840 0.400 3.350 3353.570 0.000 0.000 2.350 3353.361 0.000 0.000 9.950 07+930.000 3353.661 2.840 0.400 3.350 3353.600 0.000 0.000 3354.000 0.000 3354.082 0.000 3354.082 0.000 0.000 3354.082 0.000 0.000 3354.082 0.000 0.000 3354.082 0.000 0.000 3354.082 0.0000 0.00							<u></u>						
07+850.000 3352.431 2.350 0.000 -2.000 3352.900 2.000 0.000 2.350 3050.000 0.000 9.400 07+860.000 3352.803 2.350 0.000 -2.000 3352.803 0.000 0.000 9.400 07+880.000 3352.803 2.350 0.000 -2.000 3352.803 0.000 0.000 9.400 07+880.000 3352.933 2.350 0.000 -2.000 3352.940 1.000 0.000 2.350 3352.803 0.000 0.000 9.400 07+90.000 3353.403 2.350 0.000 -2.000 3353.401 1.700 0.000 2.350 3353.603 0.000 0.000 9.400 07+90.000 3353.407 2.350 0.350 3.550 1.000 0.000 2.350 3353.802 0.000 0.000 9.400 07+930.000 3353.407 0.400 3.350 1.000 2.350 3353.802 0.000 0.000 9.400 07+950.													
07+860.000 3352.673 2.350 0.000 -2.000 3352.800 2.350 0.000 9.400 07+870.000 3352.803 2.350 0.000 -2.000 3352.800 2.000 0.000 2.350 3052.803 0.000 0.000 9.400 07+890.000 3352.933 2.350 0.000 -2.000 3353.932 0.000 0.000 9.400 07+90.000 3353.033 2.350 0.000 -2.000 3353.170 -2.000 0.000 2.350 3052.933 0.000 0.000 9.400 07+920.000 3353.437 0.000 -2.000 3353.707 0.400 0.000 2.350 3053.930 0.000 0.000 9.400 07+920.000 3353.447 2.630 0.280 -2.500 3353.700 1.800 0.000 2.350 3353.800 0.000 0.000 1.058 07+950.000 3353.860 2.510 1.160 -2.000 3353.00 3.000 3.250 3353.40 0.000													
07+870.000 3352.833 2.350 0.000 2.000 3352.931 3350 0.000 9.400 07+880.000 3352.933 2.350 0.000 2.000 3352.931 3352.931 0.000 0.000 9.400 07+90.000 3353.063 2.350 0.000 2.000 3353.063 3363.003 0.000 0.000 9.400 07+90.000 3353.193 2.350 0.000 2.000 3353.707 0.400 0.000 2.000 0.000 9.400 07+920.000 3353.472 2.600 3353.500 1.000 3353.500 1.000 0.000 9.400 07+930.000 3353.950 2.940 0.590 4.100 3353.601 1.000 0.002 2.350 3353.761 0.000 0.000 2.350 3353.761 0.000 0.000 2.350 3353.861 0.000 0.000 9.900 07+940.000 3353.861 2.800 0.900 3353.861 0.000 0.000 9.900 07+9											<u> </u>		
07+880.000 335233 2.350 0.000 2.000 3352.980 2.200 0.000 2.350 3652.933 0.000 0.000 9.400 07+990.000 3353.193 2.350 0.000 2.000 3353.240 1.700 0.000 2.350 3653.003 0.000 0.000 9.400 07+910.000 3353.313 2.350 0.000 2.000 3353.370 0.400 0.000 2.350 3853.642 0.000 0.000 9.400 07+920.000 3353.547 2.610 0.280 2.000 3353.563 4.00 0.000 2.350 3853.542 0.000 0.000 9.960 07+940.000 3353.661 2.840 0.490 3.550 350 0.000 2.350 3853.862 2.000 0.000 1.030 3854.088 2.350 0.000 1.030 3354.088 2.350 0.000 -5.000 3354.088 2.350 0.000 9.400 07+960.000 3354.088 2.350 0.000 1.000 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>													
07+890.000 3353.063 2.350 0.000 2.000 3353.10 2.200 0.000 2.350 3653.200 0.000 0.000 9.400 07+90.000 3353.332 2.350 0.000 2.000 3353.370 -0.400 0.000 2.350 3853.200 0.000 0.000 9.400 07+920.000 3353.477 2.630 0.280 2.200 3353.500 1.000 0.000 2.350 3853.726 0.000 0.000 9.960 07+930.000 3353.61 2.800 4.100 0.000 2.350 3353.726 0.000 0.000 0.000 1.038 07+950.000 3353.61 2.800 0.000 2.350 3353.461 0.000 0.000 2.350 3353.462 0.000 0.000 2.350 3353.462 0.000 0.000 2.350 3354.679 0.000 9.400 07+960.000 3354.679 2.350 0.000 1.200 3354.361 0.000 3.350 3354.679 0.350 335				0.000									
07+910.000 3353.323 2.350 0.000 -2.000 3353.370 -0.400 0.000 2.350 3363.584 0.000 0.000 9.960 07+920.000 3353.479 2.940 0.590 -2.000 3353.509 1.00 0.000 2.350 3363.542 0.000 0.000 9.960 07+90.000 3353.409 2.940 0.590 4.100 3.353.359 3.50 3.00 0.000 2.350 3363.726 0.000 0.000 1.0380 07+90.000 3353.601 2.840 0.490 -3.500 3353.400 2.000 0.000 2.350 3365.842 0.000 0.000 9.000 07+960.000 3354.688 2.350 0.000 -3.500 3354.100 0.500 0.000 2.350 3364.112 0.000 9.000 07+960.000 3354.679 2.350 0.000 2.500 3354.620 2.350 0.000 2.500 3354.614 0.000 0.000 9.400 07+990.000 3		3353.063	2.350	0.000	-2.000	3353.110	-2.000	0.000	2.350		0.000	0.000	9.400
07+920,000 3353,447 2.630 0.280 -2.000 3353,500 1.800 0.000 2.350 3353,522 0.000 0.000 9.960 07+930,000 3353,509 2.940 0.590 4.100 3353,600 3.000 0.000 2.350 3353,726 0.000 0.000 10.580 07+940,000 3353,601 2.840 0.490 -3.500 3353,800 0.000 2.350 3353,802 0.000 0.000 10.380 07+950,000 3354,088 2.350 0.000 -0.500 3354,100 0.500 0.000 2.350 3354,000 0.000 9.400 07+950,000 3354,366 2.350 0.000 2.500 3354,620 2.500 0.280 2.630 3354,511 0.000 9.960 07+990,000 3355,398 2.350 0.000 3.300 3355,392 2.350 0.000 3.300 3355,393 2.350 0.000 3.300 3355,393 2.350 0.000 3.000 3.300	07+900.000	3353.193			-2.000		-1.700	0.000	2.350	3353.200			
07+930.000 3353.601 2.940 0.590 4.100 3353.630 4.100 0.000 2.350 3353.726 0.000 0.000 10.380 07+940.000 3353.661 2.840 0.490 3.550 3353.961 2.000 0.000 2.350 3353.842 0.000 0.000 10.380 07+950.000 3353.860 2.510 0.160 2.000 3353.910 2.000 0.000 2.350 3353.842 0.000 0.000 9.720 07+950.000 3354.088 2.350 0.000 1.000 3354.100 0.500 0.000 2.350 3354.112 0.000 0.000 9.720 07+950.000 3354.366 2.350 0.000 1.100 3354.400 1.100 0.500 0.000 2.350 3354.112 0.000 0.000 9.400 07+950.000 3354.366 2.350 0.000 1.100 3354.400 1.100 0.000 2.350 3354.112 0.000 0.000 9.400 07+950.000 3355.4579 2.350 0.000 2.500 3354.620 2.500 0.280 2.503 3354.514 0.000 0.000 0.000 9.400 07+950.000 3355.352 0.350 0.000 3.200 3354.950 3.200 0.390 2.740 3354.862 0.000 0.000 0.000 10.180 08+000.000 3355.398 2.350 0.000 3.300 3355.303 3.300 0.400 2.750 3354.862 0.000 0.000 0.000 10.180 08+000.000 3355.888 2.350 0.000 3.300 3355.303 3.300 0.400 2.750 3355.864 0.000 0.000 10.180 08+030.000 3355.748 2.350 0.000 2.800 3356.880 3.350 0.000 3.350 3355.880 2.350 0.000 3.350 3355.800 0.300 2.740 3356.860 0.000 0.000 10.180 08+030.000 3356.746 2.350 0.000 2.800 3357.810 2.000 0.000 2.740 3356.890 0.000 0.000 10.180 08+030.000 3357.248 2.350 0.000 1.300 3357.810 2.000 0.000 2.350 3357.763 0.000 0.000 0.000 10.180 08+050.000 3357.828 2.350 0.000 1.900 3357.810 2.000 0.000 2.350 3357.750 0.000 0.000 9.660 08+050.000 3357.810 2.350 0.000 2.000 3359.90 2.000 2.990 5.340 3358.839 0.000 3.000 15.380 08+050.000 3359.943 2.350 0.000 2.000 3359.90 2.000 2.990 5.340 3358.839 0.000 0.000 9.400 08+050.000 3350.343 2.350 0.000 2.000 3359.800 2.000 2.990 5.340 3358.839 0.000 3.000 15.380 08+050.000 3360.343 2.350 0.000 2.000 3360.340 2.000 3360.343 0.000 0.000 9.400 08+100.000 3360.833 2.350 0.000 2.000 3360.890 2.000 0.000 2.350 3360.993 0.000 0.000 9.400 08+100.000 3360.837 2.350 0.000 2.000 3360.890 2.000 0.000 2.350 3360.993 0.000 0.000 9.400 08+100.000 3360.837 2.350 0.000 2.000 3363.840 1.700 0.000 2.350 3364.994 0.000 0.000 0.000 10.180 08+150.000 3366.837 2.750 0.400		 									 		
07+940.000 3353.661 2.840 0.490 -3.500 3353.760 3.500 0.000 2.350 3353.842 0.000 0.000 9.720 07+960.000 3353.860 2.510 0.160 -2.000 3354.100 0.500 0.000 2.350 3354.977 0.000 0.000 9.720 07+960.000 3354.388 2.350 0.000 1.100 3354.340 -1.100 0.000 2.350 3354.112 0.000 0.000 9.400 07+980.000 3354.366 2.350 0.000 2.500 3354.500 -2.500 0.280 2.630 3354.514 0.000 0.000 9.960 07+980.000 3355.325 3.350 0.000 3.350 3354.595 -3.00 0.390 2.740 3354.862 0.000 0.000 10.180 08+000.000 3355.398 2.350 0.000 3.303 3355.730 -3.300 0.00 2.750 3356.229 0.000 0.000 10.180 08+010.000 <													
07+950.000 3353.860 2.510 0.160 2.000 3353.910 2.000 0.000 2.350 3353.957 0.000 0.000 9.720 07+960.000 3354.088 2.350 0.000 1.100 3354.340 1.100 0.000 2.350 3354.112 0.000 0.000 9.400 07+970.000 3354.366 2.350 0.000 2.500 3354.401 0.000 2.350 3354.314 0.000 0.000 2.350 0.000 9.400 07+990.000 3355.752 2.350 0.000 3.203 3354.950 -3.200 0.390 2.740 3354.862 0.000 0.000 10.180 08+010.000 3355.808 2.350 0.000 3.300 3355.730 -3.300 0.090 2.740 3356.00 0.000 10.180 08+020.000 3357.808 2.350 0.000 3.303 3355.180 -3.300 0.090 2.740 3356.00 0.000 10.180 08+030.000 3357.783													
07+960.000 3354.088 2.350 0.000 -0.500 3354.100 0.500 0.000 2.350 3354.112 0.000 0.000 9.400 07+970.000 3354.366 2.350 0.000 1.100 3354.340 -1.100 0.000 2.350 3354.314 0.000 0.000 9.400 07+980.000 3354.679 2.350 0.000 2.500 3354.960 -2.500 0.280 2.630 3354.554 0.000 0.000 9.960 07+990.000 3355.025 2.350 0.000 3.200 3354.950 -3.200 0.390 2.740 3354.692 0.000 0.000 10.180 08+000.000 3355.808 2.350 0.000 3.300 3355.320 -3.300 0.400 2.750 3355.229 0.000 0.000 10.200 08+010.000 3355.808 2.350 0.000 3.300 3355.730 -3.300 0.390 2.740 3355.640 0.000 0.000 10.180 08+000.000 3355.406 2.350 0.000 3.300 3355.808 -3.300 0.390 2.740 3356.690 0.000 0.000 10.180 08+000.000 3355.406 2.350 0.000 3.300 3356.808 -3.300 0.390 2.740 3356.690 0.000 0.000 10.180 08+000.000 3357.48 2.350 0.000 1.200 3357.220 2.000 0.400 2.750 3356.589 0.000 0.000 10.200 08+040.000 3357.248 2.350 0.000 1.200 3357.220 2.000 0.400 2.750 3356.589 0.000 0.000 10.200 08+040.000 3357.248 2.350 0.000 1.200 3357.810 2.000 0.400 2.750 3356.589 0.000 0.000 9.660 08+050.000 3357.789 2.350 0.000 1.200 3357.810 2.000 0.000 2.350 3357.760 0.000 0.000 9.660 08+050.000 3357.89 2.350 0.000 1.200 3357.810 2.000 0.000 2.990 5.340 3358.938 0.000 3.000 15.380 08+070.000 3359.693 2.350 0.000 1.200 3359.740 1.200 1.200 3.350.839 2.350 0.000 1.000 3359.740 2.000 1.000 3.350 3350.693 0.000 3.000 15.380 08+070.000 3360.343 2.350 0.000 1.200 3360.390 2.000 1.000 3.350 3360.343 0.000 0.000 9.400 08+100.000 3360.343 2.350 0.000 1.200 3360.390 1.200 1.000 3.350 3360.343 0.000 0.000 9.400 08+100.000 3360.343 2.350 0.000 1.200 3360.340 1.700 0.000 2.350 3360.933 0.000 0.000 9.400 08+100.000 3360.343 2.350 0.000 1.200 3360.340 1.700 0.000 2.350 3360.933 0.000 0.000 9.400 08+100.000 3360.343 2.350 0.000 1.200 3360.340 1.700 0.000 2.350 3360.993 0.000 0.000 9.400 08+100.000 3360.343 2.350 0.000 1.200 3360.340 1.700 0.000 2.350 3360.994 0.000 0.000 9.400 08+100.000 3360.347 2.740 0.390 1.200 3360.340 1.500 0.000 2.350 3366.994 0.000 0.000 0.000 10.180 08+100.000 3360.377 2.740 0.390 1.200													
07+970.000 3354.366 2.350 0.000 1.100 3354.340 -1.100 0.000 2.350 3364.314 0.000 0.000 9.400 07+980.000 3355.025 2.350 0.000 2.500 3354.620 -2.500 0.280 2.630 3354.554 0.000 0.000 9.960 07+990.000 3355.025 2.350 0.000 3.00 3354.950 -2.000 0.300 2.740 3355.822 0.000 0.000 0.000 10.180 08+000.000 3355.808 2.350 0.000 3.300 3355.730 -3.300 0.390 2.740 3355.640 0.000 0.000 10.180 08+020.000 3356.288 2.350 0.000 2.800 3356.680 -3.300 0.400 2.750 3356.640 0.000 0.000 10.180 08+040.000 3357.281 2.350 0.000 1.200 3357.810 2.000 0.000 2.350 3.000 1.200 3.350 3.300 3.352.810													
07+980.000 3354.679 2.350 0.000 2.500 3354.620 -2.500 0.280 2.630 3354.554 0.000 0.000 9.960 07+990.000 3355.025 2.350 0.000 3.200 3355.930 0.400 2.000 0.000 10.180 08+000.000 3355.398 2.350 0.000 3.300 3355.320 -3.300 0.400 2.750 3355.640 0.000 0.000 10.180 08+020.000 3355.888 2.350 0.000 3.300 3355.730 -3.300 0.390 2.740 3356.690 0.000 0.000 10.180 08+030.000 3355.746 2.350 0.000 2.800 3356.680 -3.300 0.400 2.750 3356.589 0.000 0.000 10.180 08+040.000 3357.248 2.350 0.000 1.200 3357.220 2.000 0.130 2.480 3357.176 0.000 0.000 9.400 08+050.000 3359.339 2.350 0.000													
08+000.000 3355.398 2.350 0.000 3.300 3355.200 -3.300 0.400 2.750 3355.229 0.000 0.000 10.200 08+010.000 3355.808 2.350 0.000 3.300 3355.700 -3.300 0.390 2.740 3355.600 0.000 0.000 10.180 08+020.000 3356.258 2.350 0.000 3.306.680 -3.300 0.400 2.740 3356.690 0.000 0.000 10.180 08+030.000 3356.746 2.350 0.000 1.200 3356.680 -3.300 0.400 2.480 3356.99 0.000 0.000 10.200 08+050.000 3357.789 2.350 0.000 -1.900 3357.810 -2.000 0.000 2.350 3357.776 0.000 0.000 9.400 08+060.000 3358.395 2.350 0.000 -2.000 3359.994 -2.000 2.990 5.340 3358.983 0.000 3.000 15.380 08+070.000 3360.343 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.280</td> <td>2.630</td> <td>3354.554</td> <td></td> <td></td> <td>9.960</td>								0.280	2.630	3354.554			9.960
08+010.000 3355.808 2.350 0.000 3.300 3355.730 -3.300 0.390 2.740 3355.640 0.000 0.000 10.180 08+020.000 3356.258 2.350 0.000 2.800 3356.180 -3.300 0.390 2.740 3356.090 0.000 0.000 10.180 08+030.000 3356.746 2.350 0.000 1.200 3356.280 -3.300 0.400 2.750 3366.899 0.000 0.000 1.0200 08+040.000 3357.789 2.350 0.000 1.200 3357.810 2.000 0.000 2.350 0.000 -9.00 3357.810 2.000 0.000 2.350 0.000 9.400 08+060.000 3357.789 2.350 0.000 -1.900 3358.440 2.000 0.990 5.340 3358.333 0.000 0.000 9.400 08+080.000 3359.693 2.350 0.000 -2.000 3359.990 -2.000 1.000 3.350 3360.343 0.000	07+990.000				3.200								
08+020.000 3356.258 2.350 0.000 3.300 3356.180 -3.300 0.390 2.740 3356.090 0.000 0.000 10.180 08+030.000 3356.746 2.350 0.000 2.800 3356.680 -3.300 0.400 2.750 3356.589 0.000 0.000 10.200 08+040.000 3357.248 2.350 0.000 1.200 3357.320 -2.000 0.130 2.480 3357.170 0.000 0.000 9.660 08+050.000 3358.395 2.350 0.000 -1.900 3358.400 -2.000 0.000 2.550 0.000 -1.900 3358.400 -2.000 0.000 2.990 5.340 3358.393 0.000 3.000 15.380 08+080.000 3359.693 2.350 0.000 -2.000 3359.740 -2.000 1.000 3.359.673 0.000 1.000 11.400 08+090.000 3360.343 2.350 0.000 -2.000 3361.400 -2.000 3.000 2.350													
08+030.000 3356.746 2.350 0.000 2.800 3356.680 -3.300 0.400 2.750 3356.589 0.000 0.000 10.200 08+040.000 3357.248 2.350 0.000 1.200 3357.810 -2.000 0.000 2.480 3357.170 0.000 0.000 9.660 08+050.000 3357.8789 2.350 0.000 -0.900 3357.810 -2.000 0.000 2.350 3.000 -1.900 3358.440 -2.000 2.990 5.340 3358.333 0.000 3.000 15.380 08+070.000 3359.043 2.350 0.000 -2.000 3359.90 -2.000 2.990 5.340 3358.983 0.000 3.000 15.380 08+080.000 3359.693 2.350 0.000 -2.000 3359.940 -2.000 1.000 3.350 3359.673 0.000 1.000 11.400 08+100.000 3360.993 2.350 0.000 -2.000 3361.640 -2.000 3361.640 -2.000 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>													
08+040,000 3357,248 2.350 0.000 1.200 3357,220 -2.000 0.130 2.480 3357,170 0.000 0.000 9.660 08+050,000 3357,789 2.350 0.000 -0.900 3357,810 -2.000 0.000 2.350 3.000 0.000 9.400 08+060,000 3358,395 2.350 0.000 -1.900 3358,440 -2.000 2.990 5.340 3358,333 0.000 3.000 15,380 08+070,000 3359,043 2.350 0.000 -2.000 3359,740 -2.000 1.000 3.359,673 0.000 1.000 11,400 08+080,000 3360,343 2.350 0.000 -2.000 3361,040 -2.000 1.000 2.350 3360,000 -2.000 3361,040 -2.000 3.000 2.350 0.000 -2.000 3361,640 2.000 0.000 2.350 3360,000 -9.400 9.400 08+120,000 3362,943 2.350 0.000 -2.000 3362,340 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>													
08+050.000 3357.789 2.350 0.000 -0.900 3357.810 -2.000 0.000 2.350 3357.763 0.000 0.000 9.400 08+060.000 3358.395 2.350 0.000 -1.900 3358.440 -2.000 2.990 5.340 3358.333 0.000 3.000 15.380 08+070.000 3359.043 2.350 0.000 -2.000 3359.090 -2.000 1.000 3358.983 0.000 3.000 15.380 08+080.000 3359.693 2.350 0.000 -2.000 3359.740 -2.000 1.000 3.350 0.000 1.000 11.400 08+090.000 3360.343 2.350 0.000 -2.000 3360.390 -2.000 0.000 2.350 3360.343 0.000 0.000 9.400 08+100.000 3361.643 2.350 0.000 -2.000 3361.640 -2.000 0.000 2.350 3361.643 0.000 0.000 9.400 08+120.000 3362.943 2.350													
08+060.000 3358.395 2.350 0.000 -1.900 3358.440 -2.000 2.990 5.340 3358.333 0.000 3.000 15.380 08+070.000 3359.043 2.350 0.000 -2.000 3359.090 -2.000 1.000 3.358.983 0.000 3.000 15.380 08+080.000 3359.693 2.350 0.000 -2.000 3369.740 -2.000 1.000 3.359.673 0.000 1.000 11.400 08+090.000 3360.343 2.350 0.000 -2.000 3361.040 -2.000 0.000 2.350 3360.993 0.000 0.000 9.400 08+100.000 3361.643 2.350 0.000 -2.000 3361.690 -2.000 0.000 2.350 3360.993 0.000 0.000 9.400 08+120.000 3362.293 2.350 0.000 -2.000 3362.990 -0.300 0.000 2.350 3000 0.000 9.400 08+130.000 3363.586 2.680 0.330													
08+080.000 3359.693 2.350 0.000 -2.000 3359.740 -2.000 1.000 3.350 3369.673 0.000 1.000 11.400 08+090.000 3360.343 2.350 0.000 -2.000 3360.390 -2.000 0.000 2.350 3360.993 0.000 0.000 9.400 08+100.000 3361.643 2.350 0.000 -2.000 3361.690 -2.000 0.000 2.350 3360.993 0.000 0.000 9.400 08+120.000 3361.643 2.350 0.000 -2.000 3362.340 -1.700 0.000 2.350 3361.643 0.000 0.000 9.400 08+120.000 3362.943 2.350 0.000 -2.000 3362.990 -0.300 0.000 2.350 3362.983 0.000 0.000 9.400 08+130.000 3363.586 2.680 0.330 -2.000 3363.640 1.500 0.000 2.350 3363.675 0.000 0.000 10.060 08+150.000				0.000	-1.900								15.380
08+090.000 3360.343 2.350 0.000 -2.000 3360.390 -2.000 0.000 2.350 3360.343 0.000 0.000 9.400 08+100.000 3360.993 2.350 0.000 -2.000 3361.040 -2.000 0.000 2.350 3360.993 0.000 0.000 9.400 08+110.000 3361.643 2.350 0.000 -2.000 3361.690 -2.000 0.000 2.350 3361.643 0.000 0.000 9.400 08+120.000 3362.293 2.350 0.000 -2.000 3362.340 -1.700 0.000 2.350 3362.300 0.000 0.000 9.400 08+130.000 3362.943 2.350 0.000 -2.000 3363.640 1.500 0.000 2.350 3362.983 0.000 0.000 9.400 08+140.000 3364.227 2.750 0.400 -2.300 3364.290 2.300 0.000 2.350 3364.344 0.000 0.000 10.200 08+150.000	08+070.000												
08+100.000 3360.993 2.350 0.000 -2.000 3361.040 -2.000 0.000 2.350 3360.993 0.000 0.000 9.400 08+110.000 3361.643 2.350 0.000 -2.000 3361.690 -2.000 0.000 2.350 3361.643 0.000 0.000 9.400 08+120.000 3362.293 2.350 0.000 -2.000 3362.340 -1.700 0.000 2.350 3362.300 0.000 0.000 9.400 08+130.000 3362.943 2.350 0.000 -2.000 3363.640 1.500 0.000 2.350 3362.983 0.000 0.000 9.400 08+140.000 3363.586 2.680 0.330 -2.000 3364.290 2.300 0.000 2.350 3363.675 0.000 0.000 10.600 08+150.000 3364.877 2.740 0.390 -2.300 3364.940 2.300 0.000 2.350 3364.994 0.000 0.000 10.180 08+180.000									3.350	3359.673			
08+110.000 3361.643 2.350 0.000 -2.000 3361.690 -2.000 0.000 2.350 3361.643 0.000 0.000 9.400 08+120.000 3362.293 2.350 0.000 -2.000 3362.340 -1.700 0.000 2.350 3362.300 0.000 0.000 9.400 08+130.000 3362.943 2.350 0.000 -2.000 3362.990 -0.300 0.000 2.350 3362.983 0.000 0.000 9.400 08+140.000 3363.586 2.680 0.330 -2.000 3364.290 2.300 0.000 2.350 3363.675 0.000 0.000 10.060 08+150.000 3364.277 2.750 0.400 -2.300 3364.290 2.300 0.000 2.350 3364.344 0.000 0.000 10.180 08+160.000 3364.877 2.740 0.390 -2.300 3365.590 2.300 0.000 2.350 3365.644 0.000 0.000 10.180 08+190.000													
08+120.000 3362.293 2.350 0.000 -2.000 3362.340 -1.700 0.000 2.350 3362.300 0.000 0.000 9.400 08+130.000 3362.943 2.350 0.000 -2.000 3362.990 -0.300 0.000 2.350 3362.983 0.000 0.000 9.400 08+140.000 3363.586 2.680 0.330 -2.000 3363.640 1.500 0.000 2.350 3363.675 0.000 0.000 0.000 10.600 08+150.000 3364.227 2.750 0.400 -2.300 3364.290 2.300 0.000 2.350 3364.344 0.000 0.000 10.200 08+160.000 3364.877 2.740 0.390 -2.300 3365.590 2.300 0.000 2.350 3364.994 0.000 0.000 10.180 08+180.000 3366.177 2.740 0.390 -2.300 3366.240 2.300 0.000 2.350 3366.294 0.000 0.000 10.180													
08+130.000 3362.943 2.350 0.000 -2.000 3362.990 -0.300 0.000 2.350 3362.983 0.000 0.000 9.400 08+140.000 3363.586 2.680 0.330 -2.000 3363.640 1.500 0.000 2.350 3363.675 0.000 0.000 10.060 08+150.000 3364.227 2.750 0.400 -2.300 3364.290 2.300 0.000 2.350 3364.344 0.000 0.000 10.200 08+160.000 3364.877 2.740 0.390 -2.300 3365.590 2.300 0.000 2.350 3364.994 0.000 0.000 10.180 08+170.000 3365.527 2.740 0.390 -2.300 3365.590 2.300 0.000 2.350 3365.644 0.000 0.000 10.180 08+180.000 3366.177 2.740 0.390 -2.300 3366.890 1.400 0.000 2.350 3366.994 0.000 0.000 10.180 08+190.000													
08+140.000 3363.586 2.680 0.330 -2.000 3363.640 1.500 0.000 2.350 3363.675 0.000 0.000 10.060 08+150.000 3364.227 2.750 0.400 -2.300 3364.290 2.300 0.000 2.350 3364.344 0.000 0.000 10.200 08+160.000 3364.877 2.740 0.390 -2.300 3364.940 2.300 0.000 2.350 3364.994 0.000 0.000 10.180 08+170.000 3365.527 2.740 0.390 -2.300 3365.590 2.300 0.000 2.350 3365.644 0.000 0.000 10.180 08+180.000 3366.177 2.740 0.390 -2.300 3366.240 2.300 0.000 2.350 3366.294 0.000 0.000 10.180 08+190.000 3366.837 2.650 0.300 -2.000 3366.890 1.400 0.000 2.350 3366.923 0.000 0.000 0.000 10.000					_				-				
08+150.000 3364.227 2.750 0.400 -2.300 3364.290 2.300 0.000 2.350 3364.344 0.000 0.000 10.200 08+160.000 3364.877 2.740 0.390 -2.300 3364.940 2.300 0.000 2.350 3364.994 0.000 0.000 10.180 08+170.000 3365.527 2.740 0.390 -2.300 3365.590 2.300 0.000 2.350 3365.644 0.000 0.000 10.180 08+180.000 3366.177 2.740 0.390 -2.300 3366.240 2.300 0.000 2.350 3365.644 0.000 0.000 10.180 08+190.000 3366.837 2.650 0.300 -2.000 3366.890 1.400 0.000 2.350 3366.923 0.000 0.000 10.000 08+200.000 3367.493 2.350 0.000 -2.000 3368.190 -1.800 0.000 2.350 3368.148 0.000 0.000 9.400 08+220.000											-		
08+160.000 3364.877 2.740 0.390 -2.300 3364.940 2.300 0.000 2.350 3364.994 0.000 0.000 10.180 08+170.000 3365.527 2.740 0.390 -2.300 3365.590 2.300 0.000 2.350 3365.644 0.000 0.000 10.180 08+180.000 3366.177 2.740 0.390 -2.300 3366.240 2.300 0.000 2.350 3366.294 0.000 0.000 10.180 08+190.000 3366.837 2.650 0.300 -2.000 3366.890 1.400 0.000 2.350 3366.923 0.000 0.000 10.000 08+200.000 3367.493 2.350 0.000 -2.000 3368.190 -1.800 0.000 2.350 3368.148 0.000 0.000 9.400 08+210.000 3368.793 2.350 0.000 -2.000 3368.840 -2.000 0.000 2.350 3368.148 0.000 0.000 9.400 08+220.000		-											
08+170.000 3365.527 2.740 0.390 -2.300 3365.590 2.300 0.000 2.350 3365.644 0.000 0.000 10.180 08+180.000 3366.177 2.740 0.390 -2.300 3366.240 2.300 0.000 2.350 3366.294 0.000 0.000 10.180 08+190.000 3366.837 2.650 0.300 -2.000 3366.890 1.400 0.000 2.350 3366.923 0.000 0.000 10.000 08+200.000 3367.493 2.350 0.000 -2.000 3367.540 -0.500 0.000 2.350 3367.528 0.000 0.000 9.400 08+210.000 3368.143 2.350 0.000 -2.000 3368.190 -1.800 0.000 2.350 3368.148 0.000 0.000 9.400 08+220.000 3368.793 2.350 0.000 -2.000 3368.840 -2.000 0.000 2.350 3368.793 0.000 0.000 9.400 08+230.000				0.390									
08+190.000 3366.837 2.650 0.300 -2.000 3366.890 1.400 0.000 2.350 3366.923 0.000 0.000 10.000 08+200.000 3367.493 2.350 0.000 -2.000 3367.540 -0.500 0.000 2.350 3367.528 0.000 0.000 9.400 08+210.000 3368.143 2.350 0.000 -2.000 3368.190 -1.800 0.000 2.350 3368.148 0.000 0.000 9.400 08+220.000 3368.793 2.350 0.000 -2.000 3368.840 -2.000 0.000 2.350 3368.793 0.000 0.000 9.400 08+230.000 3369.443 2.350 0.000 -2.000 3369.490 -2.000 0.000 2.350 3369.443 0.000 0.000 9.400		3365.527					2.300	0.000					
08+200.000 3367.493 2.350 0.000 -2.000 3367.540 -0.500 0.000 2.350 3367.528 0.000 0.000 9.400 08+210.000 3368.143 2.350 0.000 -2.000 3368.190 -1.800 0.000 2.350 3368.148 0.000 0.000 9.400 08+220.000 3368.793 2.350 0.000 -2.000 3368.840 -2.000 0.000 2.350 3368.793 0.000 0.000 9.400 08+230.000 3369.443 2.350 0.000 -2.000 3369.490 -2.000 0.000 2.350 3369.443 0.000 0.000 9.400	08+180.000												
08+210.000 3368.143 2.350 0.000 -2.000 3368.190 -1.800 0.000 2.350 3368.148 0.000 0.000 9.400 08+220.000 3368.793 2.350 0.000 -2.000 3368.840 -2.000 0.000 2.350 3368.793 0.000 0.000 9.400 08+230.000 3369.443 2.350 0.000 -2.000 3369.490 -2.000 0.000 2.350 3369.443 0.000 0.000 9.400													
08+220.000 3368.793 2.350 0.000 -2.000 3368.840 -2.000 0.000 2.350 3368.793 0.000 0.000 9.400 08+230.000 3369.443 2.350 0.000 -2.000 3369.490 -2.000 0.000 2.350 3369.443 0.000 0.000 9.400					_								
08+230.000 3369.443 2.350 0.000 -2.000 3369.490 -2.000 0.000 2.350 3369.443 0.000 0.000 9.400													
- INSTRUMENTAL CONTROL OF A TRANSPORT OF A TRANSPOR	08+240.000	3370.093	2.350	0.000		3370.140					0.000	0.000	9.400


"ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN)"

	T			LA DE	RASANTE	;	•			PLAZOI	T. DE CRUC	
Ì	Cata	IZQUIE		T 0/	EJE	- D 0/	,	RECHA		170		VOLUMEN (m3
	Cotas	Ancho	S/A	P %	3370.790	P %	S/A	Ancho		IZQ.	DER.	· 9 400 ·
08+250.000	3370.743 3371.393	2.350	0.000	-2.000 -2.000	3370.790	-2.000 -2.000	0.000	2.350	3370.743	0.000	0.000	9.400
08+260.000 08+270.000	3372.043	2.350	0.000	-2.000	3371.440	-2.000	0.000	2.350	3371.393 3372.043	0.000	0.000	9.400
08+270.000	3372.693	2.350	0.000	-2.000	3372.740	-2.000	0.000	2.350	3372.693	0.000	0.000	9.400
08+290.000	3373.343	2.350	0.000	-2.000	3373.390	-2.000	0.000	2.350	3373.343	0.000	0.000	9.400
08+300.000	3373.993	2.350	0.000	-2.000	3374.040	-2.000	0.000	2.350	3373.993	0.000	0.000	9.400
08+310.000	3374.655	2.350	0.000	-1.500	3374.690	-2.000	0.000	2.350	3374.643	0.000	0.000 -	9.400
08+320.000	3375.342	2.350	0.000	0.100	3375.340	-2.000	0.050	2.400	3375.292	0.000	0.000	9.500
08+330.000	3376.046	2.350	0.000	2.400	3375.990	-2.400	0.350	2.700	3375.925	0.000	0.000	10.100
08+340.000	3376.729	2.350	0.000	3.800	3376.640	-4.100	0.590	2.940	3376.519	0.000	0.000	10.580
08+350.000	3377.386	2.350	0.000	4.100	3377.290	-4.100	0.590	2.940	3377.169	0.000	0.000	10.580
08+360.000	3378.036	2.350	0.000	4.100	3377.940	-4.100	0.600	2.950	3377.819	0.000	0.000	10.600
08+370.000	3378.686	2.350	0.000	4:100	3378.590	-4.100	0.600	2.950	3378.469	0.000	0.000	10.600
08+380.000	3379.332	2.350	0.000	3.900	3379.240	-4.100	0.600	2.950	3379.119	0.000	0.000	10.600
08+390.000	3379.951	2.350	0.000	2.600	3379.890	-2.700	0.390	2.740	3379.816	0.000	0.000	10.180
08+400.000	3380.549	2.350	0.000	0.400	3380.540 3381.190	-2.000	0.080	2.430	3380.491	0.000	- 0.000	9.560
08+410.000	3381.157	2.350	0.000	-1.400		-2.000	0.000	2.350	3381.143	0.000	0.000	9.400
08+420.000	3381.793 3382.443	2.350	0.000	-2.000 -2.000	3381.840 3382.490	-2.000 -1.600	0.000	2.350	3381.793 3382.452	0.000	0.000	9.400 9.400
08+430.000 08+440.000	3383.093	2.350	0.000	-2.000	3383.140	0.000	0.000	2.350	3382.452	0.000	0.000	9.400
08+440.000	3383.733	2.610	0.000	-2.200	3383.790	2.000	0.000	2.350	3383.140	0.000	0.000	9.920
08+460.000	3384.349	2.750	0.400	-3.300	3384.440	3.200	0.000	2.350	3384.515	0.000	0.000	10.200
08+470.000	3385.000	2.740	0.390	-3.300	3385.090	3.300	0.000	2.350	3385,168	0.000	0.000	10.180
08+480.000	3385.650	2.740	0.390	-3.300	3385.740	3.000	0.000	2.350	3385.811	0.000	0.000	10.180
08+490.000	3386.339	2.550	0.200	-2.000	3386.390	1.700	0.000	2.350	3386.430	0.000	0.000	9.800
08+500.000	3386.993	2.350	0.000	-2.000	3387.040	-0.400	0.000	2.350	3387.031	0.000	0.000	9.400
08+510.000	3387.643	2.350	0.000	-2.000	3387.690	-1.700	0.000	2.350	3387.650	0.000	0.000	9.400
08+520.000	3388.293	2.350	0.000	-2.000	3388.340	-2.000	1.990	4.340	3388.253	0.000	2.000	13.380
08+530.000	3388.913	2.350	0.000	-2.000	3388.960	-2.000	2.990	5.340	3388.853	0.000	3.000	15.380
08+540.000	3389.493	2.350	0.000	-2.000	3389.540	-2.000	2.000	4.350	3389.453	0.000	2.000	13.400
08+550.000	3390.025	2.350	0.000	-1.900	3390.070	-2.000	0.000	2.350	3390.023	0.000	0.000	9.400
08+560.000	3390.539	2.350	0.000	-0.900	3390.560	-2.000	0.000	2.350	3390.513	0.000	0.000	9.400
08+570.000	3391.016	2.350	0.000	1.100	3390.990	-2.000	0.130	2.480	3390.940	0.000	0.000	9.660
08+580.000	3391.446 3391.798	2.350	0.000	2.800 3.300	3391.380 3391.720	-3.300 -3.300	0.390	2.740 2.740	3391.290	0.000	0.000	10.180
08+590.000	3391.798	2.350	0.000	3.200	3391.720	-3.300	0.390	2.750	3391.630	0.000	0.000	10.180 10.200
08+600.000 08+610.000	3392.312	2.350	0.000	2.200	3392.020	-2.400	0.300	2.650	3391.929 3392.196	0.000	0.000	10.200
08+620.000	3392.465	2.350	0.000	0.200	3392.460	-2.000	0.030	2.380	3392.190	0.000	0.000	9.460
08+630.000	3392.577	2.350	0.000	-1.400	3392.610	-2.000	0.000	2.350	3392.563	0.000	0.000	9.400
08+640.000	3392.673	2.350	0.000	-2.000	3392.720	-2.000	0.000	2.350	3392.673	0.000	0.000	9.400
08+650.000	3392.723	2.350	0.000	-2.000	3392.770	-2.000	0.000	2.350	3392.723	0.000	0.000	9.400
08+660.000	3392.733	2.350	0.000	-2.000	3392.780	-2.000	0.000	2.350	3392.733	0.000	0.000	9.400
08+670.000	3392.693	2.350	0.000	-2.000	3392.740	-2.000	0.000		3392.693	0.000	0.000	9.400
08+680.000	3392.613	2.350	0.000	-2.000	3392.660	-2.000	0.000		3392.613	0.000	0.000	9.400
08+690.000	3392.473	2.350	0.000		3392.520		0.000	2.350	3392.473	0.000	0.000	9.400
08+700.000	3392.293	2.350	0.000	-2.000	3392.340	-2.000	0.000	2.350	3392.293	0.000	0.000	9.400
08+710.000	3392.063	2.350 2.350	0.000	-2.000	3392.110		0.000		3392.063	0.000	0.000	9.400
08+720.000	3391.793 3391.493	2.350	0.000	-2.000 -2.000	3391.840 3391.540	-2.000 -2.000	0.000		3391.793 3391.493	0.000	0.000	9.400 9.400
08+730.000 08+740.000	3391.493	2.350	0.000	-2.000	3391.340		0.000		3391,493	0.000	0.000	9.400
08+740.000	3390.893	2.350	0.000	-2.000	3390.940	-2.000	0.000	2.350	3390.893	0.000	0.000	9.400
08+760.000	3390.593	2.350	0.000		3390.640	-2.000	0.000		3390.593	.0.000	0.000	9.400
08+770.000	3390.293	2.350	0.000	-2.000	3390.340	-2.000	0.000		3390.293	- 0.000	0.000	9.400
08+780.000	3389.993	2.350	0.000	-2.000	3390.040		0.000		3389.993	0.000	0.000	9.400
08+790.000	3389.693	2.350	0.000	-2.000	3389.740	-2.000	0.000		3389.693	0.000	0.000	. 9.400
08+800.000	3389.393	2.350	0.000	-2.000	3389.440	-1.500	0.000		3389.405	0.000 -	- 0.000 -	9.400
08+810.000	3389.092	2.390	0.040	-2.000	3389.140	0.200	0.000	2.350	3389.145	0.000	0.000	9.480
08+820.000	3388.777	2.750	0.400	-2.300	3388.840	1.800	0.000	2.350	3388.882	0.000	0.000	10.200
08+830.000	3388.477	·2.740 ·	0.390	-2.300	3388.540	2.300	0.000		3388.594	0.000	-0.000	- 10.180
08+840.000	3388.177	2.740	0.390	-2.300	3388.240	2.300	0.000	2.350	3388.294	0.000	0.000	10.180
08+850.000	3387.877	2.740	0.390	-2.300	3387.940	1.900	0.000		3387.985	0.000	0.000	10.180
08+860.000	3387.591	2.430	0.080	-2.000	3387.640	0.300	0.000	2.350	3387.647	0.000	0.000	9.560
08+870.000	3387.293	2.350	0.000	-2.000	3387.340	-1.400	0.000	2.350	3387.307	0.000	0.000	9.400
08+880.000	3386.993	2.350	0.000		3387.040	-2.000	0.000		3386.993	0.000	0.000	9.400
08+890.000	3386.693	2.350	0.000	-2.000	3386.740	-2.000	0.000	2.350	3386:693	0.000	0.000	9.400

	,			LLA DE	RASANTE	;				PLAZOL	r. DECRUC.	VOLUMEN (m3
		IZQUIE		I 504	EJE	D 0/		RECHA				VOLUMEN (m3
	Cotas	Ancho	S/A	P%	2206 440	P %	S/A	Ancho	 	IZQ.	DER.	0.400
08+900.000	3386.393 3386.093	2.350 2.350	0.000	-2.000 -2.000	3386.440 3386.140	-2.000 -2.000	0.000	2.350	3386.393	0.000	0.000	9.400
08+910.000 08+920.000	3385.793	2.350	0.000	-2.000	3385.840	-2.000	0.000	2.350	3386.093 3385.793	0.000	0.000	9.400
08+920.000	3385.493	2.350	0.000	-2.000	3385.540	-2.000	0.000	2.350	3385.493	0.000	0.000	9.400
08+940.000	3385.193	2.350	0.000	-2.000	3385.240	-2.000	0.000	2.350	3385.193	0.000	0.000	9.400
08+950.000	3384.893	2.350	0.000	-2.000	3384.940	-2.000	0.000	2.350	3384.893	0.000	0.000	9.400
08+960.000	3384.593	2.350	0.000	-2.000	3384.640	-2.000	0.000	2.350	3384.593	0.000	0.000	9.400
08+970.000	3384.293	2.350	0.000	-2.000	3384.340	-2.000	0.000	2.350	3384.293	0.000	0.000	9.400
08+980.000	3383.993	2.350	0.000	-2.000	3384.040	-2.000	0.000	2.350	3383.993	0.000	0.000	9.400
08+990.000	3383.693	2.350	0.000	-2.000	3383.740	-2.000	2.000	4.350	3383.653	0.000	2.000	13.400
09+000.000	3383.393	2.350	0.000	-2.000	3383.440	-2.000	2.990	5.340	3383.333	0.000	3.000	15.380
09+010.000	3383.093	2.350	0.000	-2.000	3383.140	-2.000	1.990	4.340	3383.053	0.000	2.000	13.380
09+020.000	3382.793	2.350	0.000	-2.000	3382.840	-1.700	0.000	2.350	3382.800	0.000	0.000	9.400
09+030.000	3382.493	2.350	0.000	-2.000	3382.540	-0.300	0.000	2.350	3382.533	0.000	0.000	9.400
09+040.000	3382.186	2.680	0.330	-2.000	3382.240	1.500	0.000	2.350	3382.275	0.000	0.000	10.060
09+050.000	3381.877	2.740	0.390	-2.300	3381.940	2.300	0.000	2.350	3381.994	0.000	0.000	10.180
09+060.000	3381.577	2.740	0.390	-2.300	3381.640	2.100	0.000	2.350	3381.689	0.000	0.000	10.180
09+070.000	3381.290	2.510	0.160	-2.000	3381.340	0.800	0.000	2.350	3381.359	0.000	0.000	9.720
09+080.000	3380.993	2.350	0.000	-2.000	3381.040	-1.100	0.000	2.350	3381.014	0.000	0.000	9.400
09+090.000	3380.693	2.350 2.350	0.000	-2.000 -2.000	3380.740 3380.440	-2.000 -2.000	0.000	2.350	3380.693	0.000	0.000	9.400 9.400
09+100.000	3380.393	2.350	0.000	-2.000	3380.440	-2.000	0.000	2.350	3380.393	0.000	0.000	9.400
09+110.000	3380.093 3379.793	2.350	0.000	-2.000	3380.140	-2.000	0.000	2.350	3380.093	0.000	0.000	9.400
09+120.000	3379.493	2.350	0.000	-2.000	3379.540	-2.000	0.000	2.350	3379.793 3379.493	0.000	0.000	9.400
09+130.000 09+140.000	3379.193	2.350	0.000	-2.000	3379.240	-2.000	0.000	2.350	3379,193	0.000	0.000	9.400
09+150.000	3378.893	2.350	0.000	-2.000	3378.940	-2.000	0.000	2.350	3378.893	0.000	0.000	9.400
09+160.000	3378.593	2.350	0.000	-2.000	3378.640	-2.000	0.000	2.350	3378.593	0.000	0.000	9.400
09+170.000	3378.293	2.350	0.000	-2.000	3378.340	-2.000	0.000	2.350	3378.293	0.000	0.000	9.400
09+180.000	3377.993	2.350	0.000	-2.000	3378.040	-2.000	0.000	2.350	3377.993	0.000	0.000	9.400
09+190.000	3377.693	2.350	0.000	-2.000	3377.740	-2.000	0.000	2.350	3377.693	0.000	0.000	9.400
09+200.000	3377.393	2.350	0.000	-2.000	3377.440	-2.000	0.000	2.350	3377.393	. 0.000	0.000	9.400 .
09+210.000	3377.093	2.350	0.000	-2.000	3377.140	-2.000	0.000	2.350	3377.093	0.000	0.000	9.400
09+220.000	3376.793	2.350	0.000	-2.000	3376.840	-2.000	0.000	2.350	3376.793	0.000	0.000	9.400
09+230.000	3376.495	2.350	0.000	-1.900	3376.540	-2.000	0.000	2.350	3376.493	0.000	0.000	.9.400
09+240.000	3376.219	2.350	0.000	-0.900	3376.240	-2.000	0.000	2.350	3376.193	0.000	0.000	9.400
09+250.000	3375.954	2.350	0.000	1.000	3375.930	-2.000	0.160	2.510	3375.880	0.000	0.000	9.720
09+260.000	3375.656	2.350	0.000	2.400	3375.600	-2.700	0.400	2.750	3375.526	0.000	0.000	10.200
09+270.000	3375.313	2.350	0.000	2.700	3375.250	-2.700	0.390	2.740	3375.176	0.000	0.000	10.180
09+280.000	3374.943	2.350	0.000	2.700	3374.880	-2.700	0.390	2.740	3374.806	0.000	0.000	10.180
09+290.000	3374.563	2.350	0.000	2.700	3374.500 3374.100	-2.700 -2.700			3374.426 3374.026	0.000	0.000	10.200
09+300.000	3374.163 3373.743	2.350	0.000	2.700	3374.100	-2.700	0.390	2.740	3374.026	0.000	0.000	10.180
09+310.000 09+320.000	3373.303	2.350	0.000	2.700	3373.240	-2.700		2.750	3373.000	0.000	0.000	10.200
09+330.000	3372.832	2.350	0.000	2.200	3372.780	-2.700	0.400	2.750	3372.706	0.000	0.000	10.200
09+340.000	3372.324	2.350	0.000	0.600	3372.310	-2.000	0.100	2.450	3372.261	0.000	0.000	9.600
09+350.000	3371.792	2.350	0.000	-1.200	3371.820	-2.000		2.350	3371.773	0.000	0.000	9.400
09+360.000	3371.263	2.350	0.000	-2.000	3371.310	-2.000	0.000	2.350	3371.263	0.000	0.000	9.400
09+370.000	3370.733	2.350	0.000	-2.000	3370.780	-2.000	0.000	2.350	3370.733	0.000	0.000	9.400
09+380.000	3370.183	2.350	0.000	-2.000	3370.230	-2.000	0.000	2.350	3370.183	0.000	0.000	9.400
09+390.000	3369.623	2.350	0.000	-2.000	3369.670	-2.000	0.010		3369.623	0.000	0.000	9.420
09+400.000	3369.053	2.350	0.000	-2.000	3369.100	-2.000	0.000	2.350	3369.053	0.000	0.000	9.400
09+410.000	3368.483	2.350	0.000	-2.000	3368.530	-2.000	0.000	2.350	3368.483	0.000	0.000	9.400
09+420.000	3367.913	2.350	0.000	-2.000	3367.960	-2.000		2.350	3367.913	0.000	0.000	9.400
09+430.000	3367.303	4.340	1.990	-2.000	3367.390	-2.000	0.000	2.350	3367.343	2.000	-0.000	- 13.380
09+440.000	3366.703	5.350	3.000	-2.000	3366.810	-2.000	0.000	2.350	3366.763	3.000	0.000	15.400
09+450.000	3366.153	4.340	1.990	-2.000	3366.240	-2.000	0.000	2.350	3366.193	2.000	. 0.000	13.380
09+460.000	3365.623	2.350	0.000	-2.000	3365.670	-2.000		2.350	3365.623	0.000	0.000	9.400
09+470.000	3365.053	2.350	0.000	-2.000	3365.100	-2.000		2.350	3365.053	0.000	0.000	9.400
09+480.000	3364.483	2.350	0.000	-2.000 -2.000	3364.530	-2.000 -2.000	0.000	2.350	3364.483	0.000	0.000	9.400
^ 09+490.000 ·	3363.913	2.350	0.000	-1.800	3363.960 3363.390	-2.000	0.000	2.350	3363.913	0.000	0.000	9.400
09+500.000	3363.348 3362.804	2.350	0.000	-0.700	3363.390	-2.000		2.360	3363.343 3362.773	0.000	0.000	9.420
09+510.000 09+520.000	3362.283	2.350	0.000	1.400	3362.820	-2.000		2.520	3362.773	0.000	0.000	9.740
09+520.000	3361.748	2.350	0.000	2.900	3361.680	-3.300	0.390		3361.590	0.000	0.000	10.180
リンテンシリ・レレレー	7777.170	2.350	0.000	3.300	3361.110	-3.300		2.750		0.000	0.000	10.200

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL "ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN)"

			PLANI	LLA DE	RASANTE	C				PI 4701	T. DECRUC.	
		IZQUIE			EJE			RECHA		<u> </u>		VOLUMEN (m3
	Cotas	Ancho	S/A	P %		P %	S/A	Ancho		IZQ.	DER.	
09+550.000	3360.608	2.350	0.000	3.300	3360.530	-3.300	0.410	2.760	3360.439	0.000	0.000	10.220
09+560.000	3360.028 3359.425	2.350 2.350	0.000	2.900 1.500	3359.960 3359.390	-3.300 -2.000	0.390	2.740	3359.870 3359.339	0.000	0.000	10.180 9.760
09+570.000 09+580.000	3358.806	2.350	0.000	-0.600	3358.820	-2.000	0.000	2.350	3358.773	0.000	0.000	9.400
09+590.000	3358.208	2.350	0.000	-1.800	3358.250	-2.000	0.000	2.350	3358.203	0.000	0.000	9.400
09+600.000	3357.633	2.350	0.000	-2.000	3357.680	-1.600	0.000	2.350	3357.642	0.000	0.000	9.400
09+610.000	3357.063	2.370	0.020	-2.000	3357.110	-0.100	0.000	2.350	3357.108	0.000	0.000	9.440
09+620.000	3356.481	2.670	0.320	-2.200	3356.540	2.100	0.000	2.350	3356.589	0.000	0.000	10.040
09+630.000	3355.849	2.950	0.600	-4.100	3355.970	3.700	0.000	2.350	3356.057	0.000	0.000	10.600
09+640.000	3355.279	2.950	0.600	-4.100	3355.400	4.100	0.000	2.350	3355.496	0.000	0.000	10.600
09+650.000	3354.699	2.950	0.600	-4.100	3354.820	4.100	0.000	2.350	3354.916	0.000	0.000	10.600
09+660.000	3354.129 3353.559	2.940 2.940	0.590	-4.100 -4.100	3354.250 3353.680	4.100 3.700	0.000	2.350	3354.346 3353.767	0.000	0.000	10.580 10.580
09+670.000 09+680.000	3353.048	2.690	0.340	-2.300	3353.110	2.300	0.000	2.350	3353.767	0.000	0.000	10.080
09+690.000	3352.492	2.400	0.050	-2.000	3352.540	0.600	0.000	2.350	3352.554	0.000	0.000	9.500
09+700.000	3351.923	2.350	0.000	-2.000	3351.970	0.000	0.000	2.350	3351.970	0.000	0.000	9.400
09+710.000	3351.353	2.350	0.000	-2.000	3351.400	0.200	0.000	2.350	3351.405	0.000	0.000	9.400
09+720.000	3350.779	2.560	0.210	-2.000	3350.830	1.400	0.000	2.350	3350.863	0.000	0.000	9.820
09+730.000	3350.160	2.850	0.500	-3.500	3350.260	3.200	0.000	2.350	3350.335	0.000	0.000	10.400
09+740.000	3349.569	2.950	0.600	-4.100	3349.690	4.100	0.000	2.350	3349.786	0.000	0.000	10.600
09+750.000	3348.989	2.940	0.590	-4.100	3349.110	3.800	0.000	2.350	3349.199	0.000	0.000	10.580
09+760.000	3348.475	2.700	0.350	-2.400	3348.540	2.400	0.000	2.350	3348.596	0.000	0.000	10.100
09+770.000	3347.922 3347.353	2.410	0.060	-2.000 -2.000	3347.970	0.200	0.000	2.350	3347.975	0.000	0.000	9.520
09+780.000	3346.783	2.350 2.350	0.000	-2.000	3347.400 3346.830	-1.500 -2.000	0.000	2.350	3347.365	0.000	0.000	9.400 9.400
09+790.000 09+800.000	3346.213	2.350	0.000	-2.000	3346.260	-2.000	0.000	2.350	3346.783 3346.213	0.000	0.000	9.400
09+810.000	3345.643	2.350	0.000	-2.000	3345.690	-2.000	0.000	2.350	3345.643	0.000	0.000	9.400
09+820.000	3345.073	2.350	0.000	-2.000	3345.120	-2.000	0.000	2.350	3345.073	0.000	0.000	9.400
09+830.000	3344.503	2.350	0.000	-2.000	3344.550	-2.000	0.000	2.350	3344.503	0.000	0.000	9.400
09+840.000	3343.933	2.350	0.000	-2.000	3343.980	-2.000	0.000	2.350	3343.933	0.000	0.000	9.400
09+850.000	3343.363	2.350	0.000	-2.000	3343.410	-2.000	0.000	2.350	3343.363	0.000	0.000	9.400
09+860.000	3342.797	2.350	0.000	-1.400	3342.830	-2.000	0.000	2.350	3342.783	0.000	0.000	9.400
09+870.000	3342.267	2.350	0.000	0.300	3342.260	-2.000	0.060	2.410	3342.212	0.000	0.000	9.520
09+880.000	3341.735 3341.174	2.350	0.000	1.900 2.300	3341.690 3341.120	-2.300 -2.300	0.400	2.750 2.740	3341.627	0.000	0.000	10.200 10.180
09+890.000 09+900.000	3340.604	2.350	0.000	2.300	3340.550	-2.300	0.400	2.750	3341.057 3340.487	0.000	0.000	10.180
09+910.000	3340.034	2.350	0.000	2.300	3339.980	-2.300	0.390	2.740	3339.917	0.000	0.000	10.180
09+920.000	3339.464	2.350	0.000	2.300	3339.410	-2.300	0.400	2.750	3339.347	0.000	0.000	10.200
09+930.000	3338.874	2.350	0.000	2.300	3338.820	-2.300	0.400	2.750	3338.757	0.000	0.000	10.200
09+940.000	3338.269	2.350	0.000	2.100	3338.220		0.400	2.750	3338.157	0.000	0.000	10.200
09+950.000	3337.621	2.350	0.000	0.900	3337.600	-2.000			3337.550	0.000	0.000	9.740
09+960.000	3336.917	4.340	1.990	-1.000	3336.960	-2.000	0.000		3336.913	2.000	0.000	13.380
09+970.000	3336.193	5.350	3.000 1.990	-2.000	3336.300	-2.000	0.000	2.350	3336.253	3.000 2.000	0.000	15.400 13.380
09+980.000 09+990.000	3335.568 3334.946	4.340 2.350	0.000	-1.200 0.700	3335.620 3334.930		0.000	2.350	3335.573 3334.880	0.000	0.000	9.680
10+000.000	3334.257	2.350	0.000	2.000	3334.210	-2.300	0.390	2.740	3334.860	0.000	0.000	10.180
10+010.000	3333.534	2.350	0.000	2.300	3333.480	-2.300	0.400		3333.417	0.000	0.000	10.200
10+020.000	3332.784	2.350	0.000	2.300	3332.730	-2.300	0.400	2.750	3332.667	0.000	0.000	10.200
10+030.000	3332.014	2.350	0.000	2.300	3331.960	-2.300	0.390	2.740	3331.897	0.000	0.000	10.180
10+040.000	3331.224	2.350	0.000	2.300	3331.170	-2.300	0.390		3331.107	0.000	0.000	10.180
10+050.000	3330.414	2.350	0.000	2.300	3330.360	-2.300	0.390	2.740	3330.297	0.000	0.000	10.180
10+060.000	3329.584	2.350	0.000	2.300	3329.530	-2.300	0.390	2.740	3329.467	0.000	0.000	10.180
10+070.000	3328.744	2.350	0.000	2.300	3328.690	-2.300	0.390	2.740	3328.627	0.000	0.000	10.180 10.200
10+080.000	3327.894 3327.037	2.350 2.350	0.000	2.300	3327.840 3326.990	-2.300 -2.300	0.400	2.750	3327.777	0.000	0.000	10.200
10+090.000 10+100.000	3326.154	2.350	0.000	0.600	3326.990	-2.300	0.390	_	3326.927 3326.091	0.000	0.000	9.640
10+100.000	3325.259	2.350	0.000	-1.300	3325.290	-2.000	0.000	2.350	3325.243	0.000	0.000	9.400
10+120.000	3324.393	2.350	0.000	-2.000	3324.440	-2.000	0.000	2.350	3324.393	0.000	0.000	9.400
10+130.000	3323.543	2.350	0.000	-2.000	3323.590	-2.000	0.000	2.350	3323.543	0.000	0.000	9.400
10+140.000	3322.693	2.350	0.000	-2.000	3322.740	-2.000	0.000	2.350	3322.693	0.000	0.000	9.400
10+150.000	3321.843	2.350	0.000	-2.000	3321.890	-2.000	0.000		3321.843	0.000	0.000	9.400
10+160.000	3320.995	2.350	0.000	-1.900	3321.040	-2.000	0.000	2.350	3320.993	0.000	0.000	9.400
10+170.000	3320.169	2.350	0.000	-0.900	3320.190	-2.000	0.000		3320.143	0.000	0.000	9.400
10+180.000	3319.364	2.350	0.000	1.000	3319.340	-2.000	0.200		3319.289	0.000	0.000	9.800
10+190.000	3318.542	2.350	0.000	2.200	3318.490	-2.000	0.400	2.750	3318.435	0.000	0.000	10.200

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL "ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN)"

			PLANII	LA DE	RASANTE					DI AZOLT	DECDUC	
		IZQUIE	RDA		EJE		DE	RECHA		FLAZULI	DECRUC	VOLUMEN (m3)
	Cotas	Ancho	S/A	P %	Eaj E	Р%	S/A	Ancho		IZQ.	DER.	
10+200.000	3317.694	2.350	0.000	2.300	3317.640	-2.000	0.400	2.750	3317.585	0.000	0.000	10.200
10+210.000	3316.844	2.350	0.000	2.300	3316.790	-2.000	0.400	2.750	3316.735	0.000	0.000	10.200
10+220.000	3315.994	2.350	0.000	2.300	3315.940	-2.000	0.400	2.750	3315.885	0.000	0.000	10.200
10+230.000	3315.132	2.350	0.000	1.800	3315.090	-2.300	0.390	2.740	3315.027	0.000	0.000	10.180
10+240.000	3314.245	2.350	0.000	0.200	3314.240	-2.300	0.040	2.390	3314.185	0.000	0.000	9.480
10+250.000	3313.355	2.350	0.000	-1.500	3313.390	-2.300	0.000	2.350	3313.336	0.000	0.000	9.400
10+260.000	3312.493	2.350	0.000	-2.000	3312.540	-2.300	0.000	2.350	3312.486	0.000	0.000	9.400
10+270.000	3311.643	2.350	0.000	-2.000	3311.690	-2.300	0.000	2.350	3311.636	0.000	0.000	9.400
10+280.000	3310.793	2.350	0.000	-2.000	3310.840	-2.000	0.000	2.350	3310.793	0.000	0.000	9.400
10+290.000	3309.943	2.350	0.000	-2.000	3309.990	-2.000	0.000	2.350	3309.943	0.000	0.000	9.400
10+300.000	3309.093	2.350	0.000	-2.000	3309.140	-2.000	0.000	2.350	3309.093	0.000	0.000	9.400
10+310.000	3308.263	2.350	0.000	-2.000	3308.310	-2.000	0.000	2.350	3308.263	0.000	0.000	9.400
10+320.000	3307.483	2.350	0.000	-2.000	3307.530	-2.000	0.000	2.350	3307.483	0.000	0.000	9.400
10+330.000	3306.773	2.350	0.000	-2.000	3306.820	-2.000	0.000	2.350	3306.773	0.000	0.000	9.400
10+340.000	3306.103	2.350	0.000	-2.000	3306.150	-2.000	0.000	2.350	3306.103	0.000	0.000	9.400
10+350.000	3305.503	2.350	0.000	-2.000	3305.550	-2.000	0.000	2.350	3305.503	0.000	0.000	9.400
10+360.000	3304.953	2.350	0.000	-2.000	3305.000	-2.000	0.000	2.350	3304.953	0.000	0.000	9.400
10+370.000	3304.453	2.350	0.000	-2.000	3304.500	-2.000	0.000	2.350	3304.453	0.000	0.000	9.400
10+380.000	3303.963	5.340	2.990	-2.000	3304.070	-2.000	0.000	2.350	3304.023	3.000	0.000	15.380
10+390.000	3303.563	5.350	3.000	-2.000	3303.670	-2.000	0.000	2.350	3303.623	3.000	0.000	15.400
10+400.000	3303.163	5.350	3.000	-2.000	3303.270	-2.000	0.000	2.350	3303.223	3.000	0.000	15.400
10+401.620	3303.093	5.350	3.000	-2.000	3303.200	-2.000	0.000	2.350	3303.153	3.000	0.000	15.400
					TOTA	AL						5113.200

NOTA: Las areas estan calculadas incluyendo sobreancho, longitud de transición de sobreancho, transición de peralte, y plazoletas de cruce

02.00. Partida MOVIMIENTO DE TIERRA

	T			DE SUE	RASANT	E				PLAZOLETA	S DE CRUCE	
Prog.		IZQUIE	$\overline{}$		EJE			RECHA				AREA (m²)
	Cotas	Ancho		P%		Р%	S/A	Ancho		IZQ.	DER.	
05+000.00	3176.96	2.25	0.00	-2.00	3177.00	-2.00	3.00	2.25	3176.90		3.00	105.00
05+010.00	3177.59	2.25	0.00	-2.00	3177.63	-2.00	3.00	2.25	3177.53	<u> </u>	3.00	105.00
05+020.00	3178.22	2.25	0.00	-2.00	3178.27	-2.00	2.99	2.25	3178.16		3.00	104.90
05+030.00	3178.85	2.25	0.00	-2.00	3178.90	-2.00	0.00	2.25	3178.85			45.00
05+040.00	3179.49	2.25	0.00	-2.00	3179.53	-2.00	0.00	2.25	3179.49		ļ	45.00
05+050.00	3180.12	2.25	0.00	-2.00	3180.16	-2.00	0.00	2.25	3180.12		ļ	45.00
05+060.00	3180.75	2.25	0.00	-2.00	3180.80	-2.00	0.00	2.25	3180.75			45.00
05+070.00	3181.39	2.25	0.00	-2.00	3181.43	-2.00	0.00	2.25	3181.39			45.00
05+080.00	3182.02	2.25	0.00	-2.00	3182.06	-2.00	0.00	2.25	3182.02			45.00
05+090.00	3182.65	2.25	0.00	-2.00	3182.70	-2.00	0.00	2.25	3182.65			45.00
05+100.00	3183.28	2.25	0.00	-2.00	3183.33	-2.00	0.00	2.25	3183.28			45.00
05+110.00	3183.92	2.25	0.00	-2.00	3183.96	-2.00	0.00	2.25	3183.92			45.00
05+120.00	3184.55	2.25	0.00	-2.00	3184.60	-2.00	0.00	2.25	3184.55		·	45.00
05+130.00	3185.18	2.25	0.00	-2.00	3185.23	-2.00	0.00	2.25	3185.18			45.00
05+140.00	3185.82	2.25	0.00	-2.00	3185.86	-2.00	0.00	2.25	3185.82			45.00
05+150.00	3186.45	2.25	0.00	-2.00	3186.49	-2.00	0.00	2.25	3186.45			45.00
05+160.00	3187.08	2.25	0.00	-2.00	3187.13	-2.00	0.00	2.25	3187.08			45.00
05+170.00	3187.71	2.25	0.00	-2.00	3187.76	-2.00	0.00	2.25	3187.71		-	45.00
05+180.00	3188.35	2.25	0.00	-2.00	3188.39	-2.00	0.00	2.25	3188.35			45.00
05+190.00	3188.98	2.25	0.00	-2.00	3189.03	-2.00	0.00	2.25	3188.98			45.00
05+200.00	3189.61	2.25	0.00	-2.00	3189.66	-2.00	0.00	2.25	3189.61			45.00
05+210.00	3190.25	2.25	0.00	-2.00	3190.29	-2.00	0.00	2.25	3190.25			45.00
05+220.00	3190.88	2.25	0.00	-2.00	3190.92	-2.00	0.00	2.25	3190.88			45.00
05+230.00	3191.51	2.25	0.00	-2.00	3191.56	-2.00	0.00	2.25	3191.51			45.00
05+240.00	3192.15	2.25	0.00	-2.00	3192.19	-2.00	0.00	2.25	3192.15			45.00
05+250.00	3192.78	2.25	0.00	-1.80	3192.82	-2.00	0.00	2.25	3192.78			45.00
05+260.00	3193.44	2.25	0.00	-0.60	3193.46	-2.00	0.00	2.25	3193.41			45.00
05+270.00	3194.12	2.25	0.00	1.40	3194.09	-2.00	0.18	2.25	3194.04			46.80
05+280.00	3194.78	2.25	0.00	2.70	3194.72	-3.00	0.40	2.25	3194.64			49.00
05+290.00	3195.42	2.25	0.00	3.00	3195.35	-3.00	0.39	2.25	3195.28			48.90
05+300.00	3196.06	2.25	0.00	3.00	3195.99	-3.00	0.40	2.25	3195.91	<u> </u>	1	49.00
05+310.00	3196.69	2.25	0.00	3.00	3196.62	-3.00	0.39	2.25	3196.54			48.90
05+320.00	3197.32	2.25	0.00	3.00	3197.25	-3.00	0.39	2.25	3197.17			48.90
05+330.00	3197.95	_			3197.89			2.25	3197.81		† · · · · ·	48.90
05+340.00	3198.59		0.00	3.00	3198.52	-3.00	0.40	2.25	3198.44			49.00
05+350.00	3199.23		0.00	3.00	3199.16			2.25	3199.08			49.30
05+360.00	3199.89		0.00	3.00	3199.82	-3.00	0.39	2.25	3199.74		<u> </u>	48.90
05+370.00	3200.57	2.25	0.00	3.00	3200.50	-3.00	0.39	2.25	3200.42			48.90
05+380.00	3201.27	2.25	0.00	3.00	3201.20	-3.00	0.39	2.25	3201.12		†	48.90
05+390.00	3201.27		0.00	3.00	3201.20	-3.00	0.39	2.25	3201.12		 	48.90
05+400.00	3202.72	2.25	0.00	3.00	3202.65	-3.00	0.39	2.25	3202.58		1	48.90
05+410.00	3203.48	 	0.00	3.00	3203.41	-3.00	0.39	2.25	3203.33	 	 	48.90
05+420.00	3204.26		0.00	3.00	3203.41	-3.00	0.39	2.25	3204.11		 	48.90
05+430.00	3205.05	 	0.00	3.00	3204.19		0.40	2.25	3204.11		 	49.00
05+440.00		i	0.00				0.39	2.25			 	48.90
	3205.86	1		2.80	3205.80	-3.00		·	3205.72	 		
05+450.00	3206.66	_	0.00	1.50	3206.63	-2.00	0.20	2.25	3206.58		 	47.00
05+460.00	3207.45		0.00		3207.46	-2.00	0.00	2.25	3207.41	 		45.00
05+470.00	3208.25		0.00		3208.29	-2.00	0.00	2.25	3208.24	<u> </u>	 	45.00
05+480.00	3209.07		0.00		3209.12	-2.00	0.00	2.25	3209.07			45.00
05+490.00	3209.90		0.00		3209.94		3.00	2.25	3209.84		3.00	105.00
05+500.00	3210.73	2.25	0.00	-2.00	3210.77	-2.00	3.00	2.25	3210.67	<u> </u>	3.00	105.00

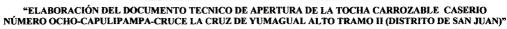
FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN)"

02.00. Partida MOVIMIENTO DE TIERRA

<u> </u>		PL	ANIII	A DE SU	B-RASAN1	TF.			· · · · · · · · · · · · · · · · · · ·	γ.		
<u> </u>		IZQUI		LDLJO	T	Ī	D	ERECHA	<u> </u>	PLAZOLETA	S DE CRUCE	AREA (m²)
Prog.	Cotas	~ `	o S/A	P%	EIE	P%	S/A	Anche	Т	IZQ.	DER.	,
05+510.00	3211.56	2.25	0.00	-2.00	3211.60	-2.00	0.00	2.25	3211.56	1 1200	DEN.	45.00
05+520.00	3212.38	2.25	0.00	-2.00	3212.43	-2.00	0.00	2.25	3212.38		 	45.00
05+530.00	3213.21	2.25	0.00	-2.00	3213.26	-2.00	0.00	2.25	3213.21		 	45.00
05+540.00	3214.04	2.25	0.00	-2.00	3214.09	-2.00	0.00	2.25	3214.04		 	45.00
05+550.00	3214.87	2.25	0.00	-2.00	3214.91	-2.00	0.00	2.25	3214.87		†	45.00
05+560.00	3215.70	2.25	0.00	-2.00	3215.74	-2.00	0.00	2.25	3215.70	· · · · · · · · · · · · · · · · · · ·	 	45.00
05+570.00	3216.52	2.25	0.00	-2.00	3216.57	-2.00	0.00	2.25	3216.52			45.00
05+580.00	3217.35	2.25	0.00	-2.00	3217.40	-2.00	0.00	2.25	3217.35			45.00
05+590.00	3218.18	2.25	0.00	-2.00	3218.23	-1.40	0.00	2.25	3218.19		 	45.00
05+600.00	3219.01	2.25	0.07	-2.00	3219.05	0.30	0.00	2.25	3219.06		†	45.70
05+610.00	3219.82	2.25	0.40	-2.30	3219.88	1.90	0.00	2.25	3219.93		<u> </u>	49.00
05+620.00	3220.65	2.25	0.40	-2.30	3220.71	2.30	0.00	2.25	3220.76			49.00
05+630.00	3221.49	2.25	0.29	-2.00	3221.54	1.40	0.00	2.25	3221.57			47.90
05+640.00	3222.32	2.25	0.00	-2.00	3222.37	-0.50	0.00	2.25	3222.36		 	45.00
05+650.00	3223.15	2.25	0.00	-2.00	3223.20	-1.80	0.00	2.25	3223.16			45.00
05+660.00	3223.98	2.25	0.00	-2.00	3224.02	-2.00	0.00	2.25	3223.98	.,	 	45.00
05+670.00	3224.80	2.25	0.00	-2.00	3224.85	-2.00	0.00	2.25	3224.80			45.00
05+680.00	3225.58	2.25	0.00	-2.00	3225.63	-2.00	0.00	2.25	3225.58			45.00
05+690.00	3226.30	2.25	0.00	-2.00	3226.34	-2.00	0.00	2.25	3226.30		1	45.00
05+700.00	3226.95	2.25	0.00	-2.00	3226.99	-1.70	0.00	2.25	3226.95		† · · · · · ·	45.00
05+710.00	3227.53	2.25	0.07	-2.00	3227.58	-0.40	0.00	2.25	3227.57		\	45.70
05+720.00	3228.04	2.25	0.50	-2.40	3228.10	1.70	0.00	2.25	3228.14	· · · · · · · · · · · · · · · · · · ·	 	50.00
05+730.00	3228.44	2.25	0.91	-4.00	3228.56	3.90	0.00	2.25	3228.65		· · · · · · · · · · · · · · · · · · ·	54.10
05+740.00	3228.74	2.25	1.32	-6.00	3228.96	6.00	0.00	2.25	3229.09			58.20
05+750.00	3229.02	2.25	1.60	-7.00	3229.29	7.00	0.00	2.25	3229.45			61.00
05+760.00	3229.29	2.25	1.59	-7.00	3229.56	7.00	0.00	2.25	3229.72			60.90
05+770.00	3229.54	2.25	1.45	-6.10	3229.77	6.10	0.00	2.25	3229.91			59.50
05+780.00	3229.83	2.25	0.95	-4.10	3229.96	4.10	0.00	2.25	3230.06			54.50
05+790.00	3230.09	2.25	0.53	-2.50	3230.16	1.90	0.00	2.25	3230.20			50.30
05+800.00	3230.30	2.25	0.10	-2.00	3230.35	-0.30	0.00	2.25	3230.34			46.00
05+810.00	3230.50	2.25	0.00	-2.00	3230.54	-1.70	0.00	2.25	3230.51		ļ <u> </u>	45.00
05+820.00	3230.69	2.25	0.00	-2.00	3230.74	-1.60	0.00	2.25	3230.70		<u> </u>	45.00
05+830.00	3230.89	2.25	0.00	-2.00	3230.93	-0.20	0.00	2.25	3230.93			45.00
05+840.00	3231.07	2.25	0.35	-2.10	3231.12	1.60	0.00	2.25	3231.16			48.50
05+850.00	3231.26	2.25	0.40	-2.30	3231.32	2.30	0.00	2.25	3231.37		<u> </u>	49.00
05+860.00	3231.45	2.25	0.40	-2.30	3231.51	1.80	0.00	2.25	3231.55	,		49.00
05+870.00	3231.66	2.25	0.04	-2.00	3231.70	0.10	0.00	2.25	3231.71		<u> </u>	45.40
05+880.00	3231.85	2.25	0.00	-2.00	3231.90	-1.50	0.00	2.25	3231.86			45.00
05+890.00	3232.05	2.25	0.00	-2.00	3232.09	-2.00	0.00	2.25	3232.05			45.00
05+900.00	3232.24	2.25	0.00	-2.00	3232.28	-2.00	0.00	2.25	3232.24		 	45.00
05+910.00	3232.45	2.25	0.00	-2.00	3232.50	-2.00	0.00	2.25	3232.45		+	45.00
05+920.00	3232.75	2.25	0.00	-2.00	3232.79	-2.00	0.00	2.25	3232.75		 	45.00
05+930.00	3233.14	2.25	0.00	-2.00	3233.18	-2.00	0.00	2.25	3233.14			45.00
05+940.00	3233.62	2.25	0.00	-2.00	3233.66	-2.00	0.00	2.25	3233.62	2.00		45.00
05+950.00	3234.15	2.25	2.00	-2.00	3234.23	-2.00	0.00	2.25	3234.19	2.00		85.00
05+960.00	3234.79	2.25	3.00	-2.00	3234.89	-2.00	0.00	2.25	3234.85	3.00	-	105.00
05+970.00	3235.56	2.25	2.00	-2.00	3235.64	-2.00	0.00	2.25	3235.60	2.00	 	85.00
05+980.00	3236.44	2.25	0.00	-2.00		-2.00	0.00	2.25	3236.44		 	45.00
05+990.00	3237.37	2.25	0.00	-2.00	3237.42	-2.00	0.00	2.25	3237.37		 	45.00
06+000.00	3238.41	2.25	0.00	-1.70			0.00	2.25	3238.40			45.00
06+010.00	3239.53	2.25	0.00	-0.20	3239.54	-2.00	0.00	2.25	3239.49		-	45.00
06+020.00	3240.67	2.25	0.00	1.60	3240.64	-2.10	0.35	2.25	3240.58		<u> </u>	48.50

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL


"ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN)"

02.00. Partida MOVIMIENTO DE TIERRA

		PLA	NILLA	DE SUE	-RASANTI	E				DI AZOLETA	S DE CRUCE	
Prog		IZQUIE	RDA		EJE		DE	RECHA		PLAZOLETA	S DE CRUCE	AREA (m²)
Prog.	Cotas	Ancho	S/A	Р%	DE	Р%	S/A	Ancho	Cotas	IZQ.	DER.	
06+030.00	3241.79	2.25	0.00	2.30	3241.74	-2.30	0.39	2.25	3241.68			48.90
06+040.00	3242.89	2.25	0.00	2.30	3242.84	-2.30	0.40	2.25	3242.78			49.00
06+050.00	3243.97	2.25	0.00	1.50	3243.94	-2.00	0.32	2.25	3243.89			48.20
06+060.00	3245.03	2.25	0.00	-0.30	3245.04	-2.00	0.00	2.25	3244.99			45.00
06+070.00	3246.10	2.25	0.00	-1.70	3246.14	-2.00	0.00	2.25	3246.09			45.00
06+080.00	3247.19	2.25	0.00	-2.00	3247.24	-2.00	0.00	2.25	3247.19			45.00
06+090.00	3248.29	2.25	0.00	-2.00	3248.34	-2.00	0.00	2.25	3248.29			45.00
06+100.00	3249.39	2.25	0.00	-2.00	3249.44	-2.00	0.00	2.25	3249.39			45.00
06+110.00	3250.49	2.25	0.00	-2.00	3250.54	-2.00	0.00	2.25	3250.49			45.00
06+120.00	3251.59	2.25	0.00	-2.00	3251.64	-2.00	0.00	2.25	3251.59			45.00
06+130.00	3252.69	2.25	0.00	-2.00	3252.74	-2.00	0.00	2.25	3252.69			45.00
06+140.00	3253.81	2.25	0.00	-1.30	3253.84	-2.00	0.00	2.25	3253.79			45.00
06+150.00	3254.95	2.25	0.00	0.50	3254.94	-2.10	0.18	2.25	3254.89			46.80
06+160.00	3256.10	2.25	0.00	2.70	3256.04	-3.00	0.57	2.25	3255.95			50.70
06+170.00	3257.24	2.25	0.00	4.70	3257.14	-4.70	1.02	2.25	3256.98			55.20
06+180.00	3258.37	2.25	0.00	5.80	3258.24	-5.80	1.20	2.25	3258.04			57.00
06+190.00	3259.47	2.25	0.00	5.90	3259.34	-5.90	1.19	2.25	3259.14			56.90
06+200.00	3260.55	2.25	0.00	5.00	3260.44	-5.00	1.11	2.25	3260.27	,		56.10
06+210.00	3261.61	2.25	0.01	3.10	3261.54	-3.30	0.65	2.25	3261.44			51.60
06+220.00	3262.64	2.25	0.00	0.90	3262.61	-2.10	0.26	2.25	3262.56			47.60
06+230.00	3263.63	2.25	0.00	-1.00	3263.65	-2.00	0.00	2.25	3263.61			45.00
06+240.00	3264.60	2.25	0.00	-1.90	3264.64	-2.00	0.00	2.25	3264.60			45.00
06+250.00	3265.56	2.25	0.00	-1.60	3265.60	-2.00	0.00	2.25	3265.55			45.00
06+260.00	3266.51	2.25	0.00	-0.10	3266.51	-2.00	0.00	2.25	3266.46			45.00
06+270.00	3267.41	2.25	0.00	1.70	3267.38	-2.20	0.36	2.25	3267.32			48.60
06+280.00	3268.28	2.25	0.00	2.30	3268.23	-2.30	0.39	2.25	3268.17			48.90
06+290.00	3269.12	2.25	0.00	1.90	3269.08	-2.30	0.40	2.25	3269.02			49.00
06+300.00	3269.88	2.25	0.00	0.40	3269.87	-2.00	0.07	2.25	3269.83			45.70
06+310.00	3270.53	2.25	0.00	-1.40	3270.56	-2.00	0.00	2.25	3270.52			45.00
06+320.00	3271.10	2.25	0.00	-2.00	3271.14	-1.90	0.00	2.25	3271.10			45.00
06+330.00	3271.56	2.25	0.04	-2.00	3271.61	-0.70	0.00	2.25	3271.60			45.40
06+340.00	3271.90	2.25	0.93	-2.50	3271.97	1.60	0.00	2.25	3272.01			54.30
06+350.00	3272.06	2.25	1.83	-4.10	3272.23	4.10	0.00	2.25	3272.32			63.30
06+360.00	3272.09	2.25	2.88	-6.50	3272.43	6.50	0.00	2.25	3272.57			73.80
06+370.00	3272.19	2.25	3.39	-7.80	3272.63	7.80	0.00	2.25	3272.80			78.90
06+380.00	3272.45	2.25	3.42	-7.50	3272.88	7.50	0.00	2.25	3273.05			79.20
06+390.00	3272.96	2.25	2.67	-5.80	3273.24	5.80	0.00	2.25	3273.38			71.70
06+400.00	3273.58		1.54	-3.50	3273.72	3.30	0.00	2.25	3273.79			60.40
06+410.00	3274.23		0.65	-2.20	3274.29	0.80	0.00	2.25	3274.31			51.50
06+420.00	3274.94	_	0.00		3274.98	-1.20	0.00	2.25	3274.95			45.00
06+430.00	3275.73		0.00		3275.78		0.00	2.25	3275.73			45.00
06+440.00	3276.58		0.00		3276.63	_	0.00	2.25	3276.58			45.00
06+450.00	3277.43		0.00		3277.48		0.00	2.25	3277.46			45.00
06+460.00	3278.28		0.22		3278.33	1.30	0.00	2.25	3278.36			47.20
06+470.00	3279.12		0.39		3279.18	2.30	0.00	2.25	3279.23			48.90
06+480.00	3279.98		0.12		3280.03	0.60	0.00	2.25	3280.04		1	46.20
06+490.00	3280.79		2.00	_	3280.88		0.00	2.25	3280.85	2.00	1	85.00
06+500.00	3281.62		3.00		3281.73		0.00	2.25	3281.68	3.00		105.00
06+510.00	3282.49		1.99		3282.58		0.00	2.25	3282.53	2.00		84.90
06+520.00	3283.38			-2.00	3283.43		0.00	2.25	3283.38			45.00
06+530.00	3284.23		0.00		3284.28		0.00	2.25	3284.23			45.00

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

02.00. Partida MOVIMIENTO DE TIERRA

		PLA	NILLA	DE SUE	-RASANT	E				DI AZOLETA	S DE CRUCE	
Prog.		IZQUIE	RDA		EJE		DE	RECHA		LALULEIA	- DE CRUCE	AREA (m²)
Prog.	Cotas	Ancho	S/A	Р%	E)E	P%	S/A	Ancho	Cotas	IZQ.	DER.	
06+540.00	3285.03	2.25	0.00	-2.00	3285.07	-2.00	0.00	2.25	3285.03			45.00
06+550.00	3285.72	2.25	0.00	-2.00	3285.76	-2.00	0.00	2.25	3285.72			45.00
06+560.00	3286.31	2.25	0.00	-1.20	3286.34	-2.00	0.00	2.25	3286.30			45.00
06+570.00	3286.83	2.25	0.00	0.80	3286.81	-2.20	0.65	2.25	3286.75			51.50
06+580.00	3287.25	2.25	0.00	3.30	3287.17	-3.50	1.53	2.25	3287.04			60.30
06+590.00	3287.56	2.25	0.00	5.80	3287.43	-5.80	2.66	2.25	3287.14			71.60
06+600.00	3287.80	2.25	0.00	7.50	3287.63	-7.50	3.42	2.25	3287.20			79.20
06+610.00	3288.00	2.25	0.00	7.60	3287.83	-7.60	3.39	2.25	3287.40			78.90
06+620.00	3288.23	2.25	0.00	6.00	3288.09	-6.00	2.78	2.25	3287.79			72.80
06+630.00	3288.56	2.25	0.00	3.60	3288.48	-3.70	1.63	2.25	3288.34			61.30
06+640.00	3289.01	2.25	0.00	1.10	3288.99	-2.20	0.73	2.25	3288.92			52.30
06+650.00	3289.60	2.25	0.00	-1.10	3289.63	-2.00	0.00	2.25	3289.58			45.00
06+660.00	3290.35	2.25	0.00	-2.00	3290.39	-2.00	0.00	2.25	3290.35		<u> </u>	45.00
06+670.00	3291.23	2.25	0.00	-2.00	3291.28	-2.00	0.00	2.25	3291.23			45.00
06+680.00	3292.18	2.25	0.00	-2.00	3292.23	-2.00	0.00	2.25	3292.18			45.00
06+690.00	3293.15	2.25	0.00	-1.20	3293.18	-2.00	0.00	2.25	3293.13			45.00
06+700.00	3294.14	2.25	0.00	0.70	3294.13	-2.00	0.14	2.25	3294.08		<u> </u>	46.40
06+710.00	3295.15	2.25	0.00	3.00	3295.08	-3.00	0.46	2.25	3295.00			49.60
06+720.00	3296.12	2.25	0.00	4.10	3296.03	-4.10	0.60	2.25	3295.91			51.00
06+730.00	3297.03	2.25	0.00	2.40	3296.98	-2.40	0.35	2.25	3296.92			48.50
06+740.00	3297.87	2.25	0.00	0.40	3297.87	-2.00	0.05	2.25	3297.82			45.50
06+750.00	3298.61	2.25	0.00	-0.90	3298.63	-1.10	0.00	2.25	3298.60			45.00
06+760.00	3299.22	2.25	0.12	-1.80	3299.27	0.00	0.00	2.25	3299.26			46.20
06+770.00	3299.71	2.25	1.01	-2.00	3299.78	1.90	0.00	2.25	3299.82			55.10
06+780.00	3299.98	2.25	1.91	-4.30	3300.17	4.30	0.00	2.25	3300.26			64.10
06+790.00	3300.09	2.25	2.84	-6.70	3300.43	6.70	0.00	2.25	3300.58			73.40
06+800.00	3300.18	2.25	3.40	-7.90	3300.63	7.90	0.00	2.25	3300.80			79.00
06+810.00	3300.41	2.25	3.40	-7.30	3300.83	7.30	0.00	2.25	3300.99			79.00
06+820.00	3300.85	2.25	2.36	-5.40	3301.10	5.40	0.00	2.25	3301.22			68.60
06+830.00	3301.41	2.25	1.40	-3.20	3301.53	2.90	0.00	2.25	3301.59			59.00
06+840.00	3302.04	2.25	0.51	-2.10	3302.10	0.40	0.00	2.25	3302.11			50.10
06+850.00	3302.78	2.25	0.00	-2.00	3302.83	-1.40	0.00	2.25	3302.80		<u> </u>	45.00
06+860.00	3303.66	2.25	0.00	-2.00	3303.70	-1.60	0.00	2.25	3303.67			45.00
06+870.00	3304.68	2.25	0.00	-2.00			0.00	2.25	3304.73		ļ	45.00
06+880.00	3305.77	2.25	0.26	-2.20	3305.83	2.00	0.00	2.25	3305.87			47.60
06+890.00	3306.84	2.25	0.39	-3.30	3306.93	3.20	0.00	2.25	3307.00		<u> </u>	48.90
06+900.00	3307.94	2.25	0.39	-3.30	3308.03	3.20	0.00	2.25	3308.10			48.90
06+910.00	3309.06	2.25	0.32	-2.60	3309.13	2.40	0.00	2.25	3309.18			48.20
06+920.00	3310.18	2.25	0.05	-2.00	3310.23	0.40	0.00	2.25	3310.24		<u> </u>	45.50
06+930.00	3311.28	2.25	0.00	-2.00	3311.33	-1.30	0.00	2.25	3311.30			45.00
06+940.00	3312.38	2.25	0.00	-2.00	3312.43	-2.00	0.00	2.25	3312.38			45.00
06+950.00	3313.49	2.25	0.00	-1.50	3313.53	-2.00	0.00	2.25	3313.48			45.00
06+960.00	3314.63	2.25	0,00	0.20	3314.63	-2.00	0.06	2.25	3314.58			45.60
06+970.00	3315.78	2.25	0.00	2.40	3315.73	-2.50	0.36	2.25	3315.66			48.60
06+980.00	3316.91	2.25	0.00	3.80	3316.83	-4.10	0.60	2.25	3316.71			51.00
06+990.00	3318.02	2.25	0.00	4.10	3317.93	-4.10	0.59	2.25	3317.81			50.90
07+000.00	3319.11	2.25	0.00	3.80	3319.03		0.59	2.25	3318.91		1	50.90
07+010.00	3320.18	2.25	0.00	2.50	3320.13	-2.50	0.36	2.25	3320.06			48.60
07+020.00	3321.23	2.25	0.00	0.20	3321.23	-2.00	0.07	2.25	3321.18			45.70
07+030.00	3322.29	2.25	0.00	-1.50	3322.33	-2.00	0.00	2.25	3322.28			45.00
07+040.00	3323.38	2.25	0.00	-2.00	3323.43	-2.00	0.00	2.25	3323.38			45.00

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN)"

VGI MERIA

02.00. Partida MOVIMIENTO DE TIERRA

		PLA	NILLA	DE SUE	-RASANT	E			· · · · · · · · · · · · · · · · · · ·	DI AZOI ETA	S DE CRUCE	
Prog.		IZQUIE	RDA		EJE		DE	RECHA		PLAZULETA	S DE CROCE	AREA (m²)
riog.	Cotas	Ancho	S/A	P%		Р%	S/A	Ancho	Cotas	IZQ.	DER.	
07+050.00	3324.44	2.25	2.00	-2.00	3324.53	-2.00	0.00	2.25	3324.48	2.00		85.00
07+060.00	3325.52	2.25	2.99	-2.00	3325.63	-2.00	0.00	2.25	3325.58	3.00		104.90
07+070.00	3326.64	2.25	1.99	-2.00	3326.73	-2.00	0.00	2.25	3326.68	2.00		84.90
07+080.00	3327.78	2.25	0.00	-2.00	3327.83	-2.00	0.00	2.25	3327.78			45.00
07+090.00	3328.90	2.25	0.00	-1.10	3328.93	-2.00	0.00	2.25	3328.88			45.00
07+100.00	3330.05	2.25	0.00	0.90	3330.03	-2.00	0.14	2.25	3329.98			46.40
07+110.00	3331.19	2.25	0.00	3.00	3331.13	-3.20	0.47	2.25	3331.04		-	49.70
07+120.00	3332.32	2.25	0.00	4.00	3332.23	-4.10	0.59	2.25	3332.11	<u></u>		50.90
07+130.00	3333.42	2.25	0.00	3.90	3333.33	-4.10	0.59	2.25	3333.21	<u> </u>		50.90
07+140.00	3334.49	2.25	0.00	2.70	3334.43	-2.90	0.42	2.25	3334.35			49.20
07+150.00	3335.54	2.25	0.00	0.60	3335.53	-2.00	0.11	2.25	3335.48			46.10
07+160.00	3336.60	2.25	0.00	-1.30	3336.63	-2.00	0.00	2.25	3336.58			45.00
07+170.00	3337.68	2.25	0.00	-2.00	3337.73	-2.00	0.00	2.25	3337.68			45.00
07+180.00	3338.74	2.25	0.00	-2.00	3338.79	-2.00	0.00	2.25	3338.74			45.00
07+190.00	3339.72	2.25	0.00	-2.00	3339.77	-2.00	0.00	2.25	3339.72			45.00
07+200.00	3340.62	2.25	0.00	-2.00	3340.66	-1.40	0.00	2.25	3340.63			45.00
07+210.00	3341.43	2.25	0.10	-2.00	3341.48	0.40	0.00	2.25	3341.49			46.00
07+220.00	3342.15	2.25	0.39	-2.70	3342.22	2.70	0.00	2.25	3342.28			48.90
07+230.00	3342.76	2.25	0.59	-4.10	3342.87	4.10	0.00	2.25	3342.96			50.90
07+240.00	3343.40	2.25	0.28	-2.00	3343.45	1.90	0.00	2.25	3343.49			47.80
07+250.00	3343.90	2.25	0.00	-2.00	3343.94	-0.30	0.00	2.25	3343.93			45.00
07+260.00	3344.31	2.25	0.00	-2.00	3344.35	-1.70	0.00	2.25	3344.32			45.00
07+270.00	3344.64	2.25	0.00	-2.00	3344.69	-2.00	0.00	2.25	3344.64			45.00
07+280.00	3344.89	2.25	0.00	-2.00	3344.94	-2.00	0.00	2.25	3344.89			45.00
07+290.00	3345.06	2.25	0.00	-2.00	3345.11	-2.00	0.00	2.25	3345.06			45.00
07+300.00	3345.19	2.25	0.00	-2.00	3345.24	-2.00	0.00	2.25	3345.19			45.00
07+310.00	3345.32	2.25	0.00	-2.00	3345.37	-2.00	0.00	2.25	3345.32			45.00
07+320.00	3345.45	2.25	0.00	-2.00	3345.50	-2.00	0.00	2.25	3345.45			45.00
07+330.00	3345.58	2.25	0.00	-2.00	3345.63	-2.00	0.00	2.25	3345.58	-		45.00
07+340.00	3345.71	2.25	0.00	-2.00	3345.76	-2.00	0.00	2.25	3345.71			45.00
07+350.00	3345.84	2.25	0.00	-2.00	3345.89	-2.00	0.00	2.25	3345.84			45.00
07+360.00	3345.97	2.25	0.00	-2.00	3346.02	-2.00	0.00	2.25	3345.97	<u> </u>		45.00
07+370.00	3346.10	2.25	0.00	-2.00	3346.15	-2.00	0.00	2.25	3346.10			45.00
07+380.00	3346.23	2.25	0.00		3346.28	-2.00		2.25	3346.23			45.00
07+390.00	3346.36	2.25	0.00	-2.00	3346.41	-2.00	0.00	2.25	3346.36			45.00
07+400.00	3346.49	2.25	0.00		3346.54	-2.00	0.00	2.25	3346.49			45.00
07+410.00	3346.62	2.25	0.00		3346.67	-2.00	0.00	2.25	3346.62			45.00
07+420.00	3346.75	2.25	0.00		3346.80	-2.00	0.00	2.25	3346.75		1	45.00
07+430.00	3346.88	2.25	0.00		3346.93	-2.00	0.00	2.25	3346.88			45.00
07+440.00	3347.01	2.25	0.00		3347.06	-2.00	0.00	2.25	3347.01			45.00
07+450.00	3347.14	2.25	0.00		3347.19	-2.00	0.00	2.25	3347.14			45.00
07+460.00	3347.27	2.25	0.00		3347.32	-2.00	0.00	2.25	3347.27			45.00
07+470.00	3347.40	2.25	0.00		3347.45	-2.00	2.00	2.25	3347.36		2.00	85.00
07+480.00	3347.53	2.25	0.00	-2.00	3347.58	-2.00	2.99	2.25	3347.47		3.00	104.90
07+490.00	3347.66	$\overline{}$	0.00	-2.00	3347.71	-2.00	1.99	2.25	3347.62		2.00	84.90
07+500.00	3347.79	2.25	0.00	-2.00	3347.71	-2.00	0.00	2.25	3347.79		2.00	45.00
07+500.00	3347.73	2.25	0.00	-1.60	3347.97	-2.00	0.00	2.25	3347.92	-		45.00
			0.00	-0.10	3348.10		0.00	2.25	3348.05	<u></u>		45.10
07+520.00	3348.10					-2.00						48.70
07+530.00	3348.27	2.25	0.00	1.70	3348.23	-2.20	0.37	2.25	3348.17		 	
07+540.00	3348.41	2.25		2.30	3348.36	-2.30	0.40	2.25	3348.30			49.00
07+550.00	3348.54	2.25	0.00	2.30	3348.49	-2.30	0.39	2.25	3348.43		II	48.90

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN)"

02.00. Partida MOVIMIENTO DE TIERRA

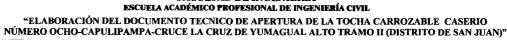
		PLA	NILLA	DE SUE	-RASANTI	E				PI AZOLETA	S DE CRUCE	
Prog.		IZQUIE	RDA		EJE		DE	RECHA		DECE	DE CROCE	AREA (m²)
	Cotas	Ancho	S/A	P %	LJ.	Р%	S/A	Ancho	Cotas	IZQ.	DER.	
07+560.00	3348.66	2.25	0.00	1.90	3348.62	-2.30	0.39	2.25	3348.56			48.90
07+570.00	3348.75	2.25	0.00	0.30	3348.75	-2.00	0.07	2.25	3348.70			45.70
07+580.00	3348.85	2.25	0.00	-1.40	3348.88	-2.00	0.00	2.25	3348.83			45.00
07+590.00	3348.96	2.25	0.00	-2.00	3349.01	-2.00	0.00	2.25	3348.96			45.00
07+600.00	3349.09	2.25	0.00	-2.00	3349.14	-2.00	0.00	2.25	3349.09			45.00
07+610.00	3349.22	2.25	0.00	-2.00	3349.27	-2.00	0.00	2.25	3349.22			45.00
07+620.00	3349.35	2.25	0.00	-2.00	3349.40	-2.00	0.00	2.25	3349.35			45.00
07+630.00	3349.48	2.25	0.00	-2.00	3349.53	-2.00	0.00	2.25	3349.48			45.00
07+640.00	3349.61	2.25	0.00	-2.00	3349.66	-2.00	0.00	2.25	3349.61			45.00
07+650.00	3349.74	2.25	0.00	-2.00	3349.79	-2.00	0.00	2.25	3349.74			45.00
07+660.00	3349.88	2.25	0.00	-1.80	3349.92	-2.00	0.00	2.25	3349.87			45.00
07+670.00	3350.04	2.25	0.00	-0.50	3350.05	-2.00	0.00	2.25	3350.00			45.00
07+680.00	3350.21	2.25	0.00	1.60	3350.18	-2.00	0.24	2.25	3350.13		1	47.40
07+690.00	3350.38	2.25	0.00	3.40	3350.31	-3.90	0.57	2.25	3350.20			50.70
07+700.00	3350.52	2.25	0.00	3.80	3350.44	-4.10	0.61	2.25	3350.32			51.10
07+710.00	3350.62	2.25	0.00	2.40	3350.57	-2.50	0.36	2.25	3350.50		1	48.60
07+720.00	3350.70	2.25	0.00	0.20	3350.70	-2.00	0.06	2.25	3350.65		 	45.60
07+720.00	3350.79	2.25	0.00	-1.50	3350.70	-2.00	0.00	2.25	3350.78		 	45.00
	3350.91	2.25	0.00	-2.00	3350.96		0.00	2.25	3350.78		┼	45.00
07+740.00						-2.00			3351.05	1		45.00
07+750.00	3351.04	2.25	0.00	-2.00	3351.09	-1.80	0.00	2.25			 	
07+760.00	3351.17	2.25	0.00	-2.00	3351.22	-0.70	0.00	2.25	3351.20			45.00
07+770.00	3351.30	2.25	0.17	-2.00	3351.35	1.40	0.00	2.25	3351.38			46.70
07+780.00	3351.39	2.25	0.39	-3.30	3351.48	3.30	0.00	2.25	3351.55			48.90
07+790.00	3351.53	2.25	0.35	-2.90	3351.61	2.90	0.00	2.25	3351.67			48.50
07+800.00	3351.69	2.25	0.07	-2.00	3351.74	0.70	0.00	2.25	3351.75		-	45.70
07+810.00	3351.82	2.25	0.00	-2.00	3351.87	-1.20	0.00	2.25	3351.84			45.00
07+820.00	3351.95	2.25	0.00	-2.00	3352.00	-2.00	0.00	2.25	3351.95		-	45.00
07+830.00	3352.08	2.25	0.00	-2.00	3352.13	-2.00	0.00	2.25	3352.08			45.00
07+840.00	3352.21	2.25	0.00	-2.00	3352.26	-2.00	0.00	2.25	3352.21			45.00
07+850.00	3352.34	2.25	0.00	-2.00	3352.39	-2.00	0.00	2.25	3352.34		ļ	45.00
07+860.00	3352.47	2.25	0.00	-2.00	3352.52	-2.00	0.00	2.25	3352.47			45.00
07+870.00	3352.60	2.25	0.00	-2.00	3352.65	-2.00	0.00	2.25	3352.60			45.00
07+880.00	3352.73			-2.00	3352.78			2.25	3352.73			45.00
07+890.00	3352.86	2.25	0.00	-2.00	3352.91	-2.00	0.00	2.25	3352.86	ļ		45.00
07+900.00	3352.99		0.00		3353.04	-1.70	0.00	2.25	3353.00			45.00
07+910.00	3353.12	2.25	0.00		3353.17	-0.40	0.00	2.25	3353.16			45.00
07+920.00	3353.25		0.28		3353.30	1.80	0.00	2.25	3353.34			47.80
07+930.00	3353.31	2.25	0.59		3353.43	4.10	0.00	2.25	3353.52	 	ļ	50.90
07+940.00	3353.46	2.25	0.49	-3.50	3353.56	3.50	0.00	2.25	3353.64		1	49.90
07+950.00	3353.66		0.16	-2.00	3353.71	2.00	0.00	2.25	3353.75		 	46.60
07+960.00	3353.89	2.25	0.00	-0.50	3353.90	0.50	0.00	2.25	3353.91	ļ		45.00
07+970.00	3354.17	2.25	0.00	1.10	3354.14	-1.10	0.00	2.25	3354.12		 .	45.00
07+980.00	3354.48	2.25	0.00	2.50	3354.42	-2.50	0.28	2.25	3354.36		<u> </u>	47.80
07+990.00	3354.82	-	0.00	3.20	3354.75		0.39	2.25	3354.66	<u> </u>		48.90
08+000.00	3355.19	-	0.00	3.30	3355.12	-3.30	0.40	2.25	3355.03	<u> </u>	<u> </u>	49.00
08+010.00	3355.60	2.25	0.00	3.30	3355.53		0.39	2.25	3355.44		ļ	48.90
08+020.00	3356.06		0.00	3.30	3355.98	-3.30	0.39	2.25	3355.90		-	48.90
08+030.00	3356.55		0.00	2.80	3356.48	-3.30	0.40	2.25	3356.40			49.00
08+040.00	3357.05	2.25	0.00	1.20	3357.02	-2.00	0.13	2.25	3356.98			46.30
08+050.00	3357.59		0.00	-0.90	3357.61	-2.00	0.00	2.25	3357.56			45.00
08+060.00	3358.19	2.25	0.00	-1.90	3358.24	-2.00	2.99	2.25	3358.13		3.00	104.90


FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL "ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN)"

02.00. Partida MOVIMIENTO DE TIERRA

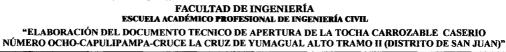
	<u></u>	PLA IZQUIE		DE SUE	-RASANT	E 	DE	RECHA		PLAZOLETA	S DE CRUCE	AREA (m²)
Prog.	\vdash			0.00	EJE	200			6-2	170	1 555	AREA (m-)
00:070.00		Ancho		P%	2250.00	P%		Ancho		IZQ.	DER.	104.00
08+070.00	3358.84	2.25	0.00	-2.00	3358.89	-2.00	2.99	2.25	3358.78		3.00	104.90
08+080.00	3359.49	2.25	0.00	-2.00	3359.54	-2.00	1.00	2.25	3359.47		1.00	65.00
08+090.00	3360.14	2.25	0.00	-2.00	3360.19	-2.00	0.00	2.25	3360.14	<u> </u>	<u> </u>	45.00
08+100.00	3360.79	2.25	0.00	-2.00	3360.84	-2.00	0.00	2.25	3360.79		<u> </u>	45.00
08+110.00	3361.44	2.25	0.00	-2.00	3361.49	-2.00	0.00	2.25	3361.44		ļ	45.00
08+120.00	3362.09	2.25	0.00	-2.00	3362.14	-1.70	0.00	2.25	3362.10		 	45.00
08+130.00	3362.74	2.25	0.00	-2.00	3362.79	-0.30	0.00	2.25	3362.78		 	45.00
08+140.00	3363.39	2.25	0.33	-2.00	3363.44	1.50	0.00	2.25	3363.47		<u> </u>	48.30
08+150.00	3364.03	2.25	0.40	-2.30	3364.09	2.30	0.00	2.25	3364.14		 	49.00
08+160.00	3364.68	2.25	0.39	-2.30	3364.74	2.30	0.00	2.25	3364.79			48.90
08+170.00	3365.33	2.25	0.39	-2.30	3365.39	2.30	0.00	2.25	3365.44			48.90
08+180.00	3365.98	2.25	0.39	-2.30	3366.04	2.30	0.00	2.25	3366.09		ļ	48.90
08+190.00	3366.64	2.25	0.30	-2.00	3366.69	1.40	0.00	2.25	3366.72		 	48.00
08+200.00	3367.29	2.25	0.00	-2.00	3367.34	-0.50	0.00	2.25	3367.33		<u> </u>	45.00
08+210.00	3367.94	2.25	0.00	-2.00	3367.99	-1.80	0.00	2.25	3367.95		<u> </u>	45.00
08+220.00	3368.59	2.25	0.00	-2.00	3368.64	-2.00	0.00	2.25	3368.59		ļ	45.00
08+230.00	3369.24	2.25	0.00	-2.00	3369.29	-2.00	0.00	2.25	3369.24		<u> </u>	45.00
08+240.00	3369.89	2.25	0.00	-2.00	3369.94	-2.00	0.00	2.25	3369.89		 	45.00
08+250.00	3370.54	2.25	0.00	-2.00	3370.59	-2.00	0.00	2.25	3370.54	<u> </u>	ļ	45.00
08+260.00	3371.19	2.25	0.00	-2.00	3371.24	-2.00	0.00	2.25	3371.19			45.00
08+270.00	3371.84	2.25	0.00	-2.00	3371.89	-2.00	0.00	2.25	3371.84		ļ	45.00
08+280.00	3372.49	2.25	0.00	-2.00	3372.54	-2.00	0.00	2.25	3372.49			45.00
08+290.00	3373.14	2.25	0.00	-2.00	3373.19	-2.00	0.00	2.25	3373.14			45.00
08+300.00	3373.79	2.25	0.00	-2.00	3373.84	-2.00	0.00	2.25	3373.79			45.00
08+310.00	3374.45	2.25	0.00	-1.50	3374.49	-2.00	0.00	2.25	3374.44	ļ	ļ	45.00
08+320.00	3375.14	2.25	0.00	0.10	3375.14	-2.00	0.05	2.25	3375.09		<u> </u>	45.50
08+330.00	3375.84	2.25	0.00	2.40	3375.79	-2.40	0.35	2.25	3375.72			48.50
08+340.00	3376.52	2.25	0.00	3.80	3376.44	-4.10	0.59	2.25	3376.32			50.90
08+350.00	3377.18	2.25	0.00	4.10	3377.09	-4.10	0.59	2.25	3376.97			50.90
08+360.00	3377.83	2.25	0.00	4.10	3377.74	-4.10	0.60	2.25	3377.62			51.00
08+370.00	3378.48	2.25	0.00	4.10	3378.39	-4.10	0.60	2.25	3378.27			51.00
08+380.00	3379.12	2.25	0.00	3.90	3379.04	-4.10	0.60	2.25	3378.92		ļ	51.00
08+390.00	3379.75	2.25	0.00	2.60	3379.69	-2.70	0.39	2.25	3379.62			48.90
08+400.00	3380.35		0.00	0.40	3380.34	-2.00	0.08	2.25	3380.29			45.80
08+410.00	3380.96		0.00	-1.40	3380.99	-2.00	0.00	2.25	3380.94			45.00
08+420.00	3381.59		0.00	-2.00	3381.64	-2.00	0.00	2.25	3381.59			45.00
08+430.00	3382.24	2.25	0.00	-2.00	3382.29	-1.60	0.00	2.25	3382.25			45.00
08+440.00	3382.89	2.25	0.00	-2.00	3382.94	0.00	0.00	2.25	3382.94		ļ <u>.</u>	45.00
08+450.00	3383.53	2.25	0.26	-2.20	3383.59	2.00	0.00	2.25	3383.63		<u></u>	47.60
08+460.00	3384.15	2.25	0.40	-3.30	3384.24	3.20	0.00	2.25	3384.31		ļ	49.00
08+470.00	3384.80	2.25	0.39	-3.30	3384.89	3.30	0.00	2.25	3384.96			48.90
08+480.00	3385.45	2.25	0.39	-3.30	3385.54	3.00	0.00	2.25	3385.61			48.90
08+490.00	3386.14	2.25	0.20	-2.00	3386.19	1.70	0.00	2.25	3386.23			47.00
08+500.00	3386.79	2.25	0.00	-2.00	3386.84	-0.40	0.00	2.25	3386.83			45.00
08+510.00	3387.44	2.25	0.00	-2.00	3387.49	-1.70	0.00	2.25	3387.45			45.00
08+520.00	3388.09	2.25	0.00	-2.00	3388.14	-2.00	1.99	2.25	3388.05		2.00	84.90
08+530.00	3388.72	2.25	0.00	-2.00	3388.76	-2.00	2.99	2.25	3388.66		3.00	104.90
08+540.00	3389.30	2.25	0.00	-2.00	3389.34	-2.00	2.00	2.25	3389.26		2.00	85.00

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL



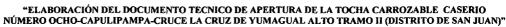
02.00. Partida MOVIMIENTO DE TIERRA

		PLA	NILLA	DE SUE	-RASANTI	 E						
		IZQUIE	RDA				DE	RECHA		PLAZOLETA	S DE CRUCE	AREA (m²)
Prog.	Cotas	Ancho	S/A	Р%	EJE	P%	S/A	Ancho	Cotas	IZQ.	DER.	
08+550.00	3389.83	2.25	0.00	-1.90	3389.87	-2.00	0.00	2.25	3389.83			45.00
08+560.00	3390.34	2.25	0.00	-0.90	3390.36	-2.00	0.00	2.25	3390.31			45.00
08+570.00	3390.82	2.25	0.00	1.10	3390.79	-2.00	0.13	2.25	3390.75			46.30
08+580.00	3391.24	2.25	0.00	2.80	3391.18	-3.30	0.39	2.25	3391.10			48.90
08+590.00	3391.60	2.25	0.00	3.30	3391.52	-3.30	0.39	2.25	3391.44	<u> </u>		48.90
08+600.00	3391.89	2.25	0.00	3.20	3391.82	-3.30	0.40	2.25	3391.73			49.00
08+610.00	3392.11	2.25	0.00	2.20	3392.06	-2.40	0.30	2.25	3392.00			48.00
08+620.00	3392.27	2.25	0.00	0.20	3392.26	-2.00	0.03	2.25	3392.22			45.30
08+630.00	3392.38	2.25	0.00	-1.40	3392.41	-2.00	0.00	2.25	3392.37			45.00
08+640.00	3392.47	2.25	0.00	-2.00	3392.52	-2.00	0.00	2.25	3392.47			45.00
08+650.00	3392.53	2.25	0.00	-2.00	3392.57	-2.00	0.00	2.25	3392.53			45.00
08+660.00	3392.54	2.25	0.00	-2.00	3392.58	-2.00	0.00	2.25	3392.54			45.00
08+670.00	3392.50	2.25	0.00	-2.00	3392.54	-2.00	0.00	2.25	3392.50			45.00
08+680.00	3392.41	2.25	0.00	-2.00	3392.46	-2.00	0.00	2.25	3392.41			45.00
08+690.00	3392.28	2.25	0.00	-2.00	3392.32	-2.00	0.00	2.25	3392.28			45.00
08+700.00	3392.10	2.25	0.00	-2.00	3392.14	-2.00	0.00	2.25	3392.10			45.00
08+710.00	3391.87	2.25	0.00	-2.00	3391.91	-2.00	0.00	2.25	3391.87			45.00
08+720.00	3391.59	2.25	0.00	-2.00	3391.64	-2.00	0.00	2.25	3391.59			45.00
08+730.00	3391.29	2.25	0.00	-2.00	3391.34	-2.00	0.00	2.25	3391.29			45.00
08+740.00	3390.99	2.25	0.00	-2.00	3391.04	-2.00	0.00	2.25	3390.99			45.00
08+750.00	3390.69	2.25	0.00	-2.00	3390.74	-2.00	0.00	2.25	3390.69			45.00
08+760.00	3390.39	2.25	0.00	-2.00	3390.44	-2.00	0.00	2.25	3390.39			45.00
08+770.00	3390.09	2.25	0.00	-2.00	3390.14	-2.00	0.00	2.25	3390.09		· · · · · · · · · · · · · · · · · · ·	45.00
08+780.00	3389.79	2.25	0.00	-2.00	3389.84	-2.00	0.00	2.25	3389.79			45.00
08+790.00	3389.49	2.25	0.00	-2.00	3389.54	-2.00	0.00	2.25	3389.49			45.00
08+800.00	3389.19	2.25	0.00	-2.00	3389.24	-1.50	0.00	2.25	3389.20			45.00
08+810.00	3388.89	2.25	0.04	-2.00	3388.94	0.20	0.00	2.25	3388.94			45.40
08+820.00	3388.58	2.25	0.40	-2.30	3388.64	1.80	0.00	2.25	3388.68			49.00
08+830.00	3388.28	2.25	0.39	-2.30	3388.34	2.30	0.00	2.25	3388.39	i		48.90
08+840.00	3387.98	2.25	0.39	-2.30	3388.04	2.30	0.00	2.25	3388.09			48.90
08+850.00	3387.68	2.25	0.39	-2.30	3387.74	1.90	0.00	2.25	3387.78			48.90
08+860.00	3387.39	2.25	0.08	-2.00	3387.44	0.30	0.00	2.25	3387.45			45.80
08+870.00	3387.09	2.25	0.00		3387.14	-1.40	0.00	2.25	3387.11			45.00
08+880.00	3386.79	2.25	0.00		3386.84	-2.00	0.00	2.25	3386.79			45.00
08+890.00	3386.49	2.25	0.00		3386.54	-2.00	0.00	2.25	3386.49			45.00
08+900.00	3386.19		0.00		3386.24	-2.00	0.00	2.25	3386.19			45.00
08+910.00	3385.89	2.25	0.00		3385.94	-2.00	0.00	2.25	3385.89	•		45.00
08+920.00	3385.59	2.25	0.00	_	3385.64	-2.00	0.00	2.25	3385.59			45.00
08+930.00	3385.29	2.25	0.00		3385.34	-2.00	0.00	2.25	3385.29			45.00
08+940.00	3384.99	2.25	0.00		3385.04	-2.00	0.00	2.25	3384.99			45.00
08+950.00	3384.69	2.25	0.00		3384.74	-2.00	0.00	2.25	3384.69			45.00
08+960.00	3384.39	2.25	0.00		3384.44	-2.00	0.00	2.25	3384.39		· · · · · ·	45.00
08+970.00	3384.09	2.25	0.00		3384.14	-2.00	0.00	2.25	3384.09			45.00
08+980.00	3383.79	2.25	0.00		3383.84	-2.00	0.00	2.25	3383.79			45.00
08+990.00	3383.49	2.25	0.00		3383.54	-2.00	2.00	2.25	3383.45		2.00	85.00
09+000.00	3383.19	2.25	0.00		3383.24	-2.00	2.99	2.25	3383.13		3.00	104.90
09+010.00	3382.89	2.25	0.00		3382.94	-2.00	1.99	2.25	3382.85		2.00	84.90
09+020.00	3382.59	2.25	0.00		3382.64	-1.70	0.00	2.25	3382.60		2.00	45.00
09+030.00	3382.29	2.25	0.00		3382.34	-0.30	0.00	2.25	3382.33			45.00
09+040.00	3381.99	2.25	0.33		3382.04	1.50	0.00	2.25	3382.07			48.30
09+050.00	3381.68		0.39		3381.74	2.30	0.00	2.25	3381.79			48.90
<u></u>	2201.00	2.23	0.39	-2.30	3301.74	2.30	0.00	2.25	2201.79	L	L	40.90


FACULTAD DE INGENIERÍA

02.00. Partida MOVIMIENTO DE TIERRA

L		PLA	NILLA	DE SUE	RASANT	E				DI 47015T4	C DE COUCE	
Brog		IZQUIE	RDA		EIE		DE	RECHA		PLAZOLETA	AS DE CRUCE	AREA (m²)
Prog.	Cotas	Ancho	S/A	Р%	EJE	P%	S/A	Ancho	Cotas	IZQ.	DER.	
09+060.00	3381.38	2.25	0.39	-2.30	3381.44	2.10	0.00	2.25	3381.48			48.90
09+070.00	3381.09	2.25	0.16	-2.00	3381.14	0.80	0.00	2.25	3381.16			46.60
09+080.00	3380.79	2.25	0.00	-2.00	3380.84	-1.10	0.00	2.25	3380.81			45.00
09+090.00	3380.49	2.25	0.00	-2.00	3380.54	-2.00	0.00	2.25	3380.49			45.00
09+100.00	3380.19	2.25	0.00	-2.00	3380.24	-2.00	0.00	2.25	3380.19			45.00
09+110.00	3379.89	2.25	0.00	-2.00	3379.94	-2.00	0.00	2.25	3379.89			45.00
09+120.00	3379.59	2.25	0.00	-2.00	3379.64	-2.00	0.00	2.25	3379.59			45.00
09+130.00	3379.29	2.25	0.00	-2.00	3379.34	-2.00	0.00	2.25	3379.29			45.00
09+140.00	3378.99	2.25	0.00	-2.00	3379.04	-2.00	0.00	2.25	3378.99			45.00
09+150.00	3378.69	2.25	0.00	-2.00	3378.74	-2.00	0.00	2.25	3378.69			45.00
09+160.00	3378.39	2.25	0.00	-2.00	3378.44	-2.00	0.00	2.25	3378.39			45.00
09+170.00	3378.09	2.25	0.00	-2.00	3378.14	-2.00	0.00	2.25	3378.09			45.00
09+180.00	3377.79	2.25	0.00	-2.00	3377.84	-2.00	0.00	2.25	3377.79			45.00
09+190.00	3377.49	2.25	0.00	-2.00	3377.54	-2.00	0.00	2.25	3377.49			45.00
09+200.00	3377.19	2.25	0.00	-2.00	3377.24	-2.00	0.00	2.25	3377.19			45.00
09+210.00	3376.89	2.25	0.00	-2.00	3376.94	-2.00	0.00	2.25	3376.89			45.00
09+220.00	3376.59	2.25	0.00	-2.00	3376.64	-2.00	0.00	2.25	3376.59			45.00
09+230.00	3376.29	2.25	0.00	-1.90	3376.34	-2.00	0.00	2.25	3376.29			45.00
09+240.00	3376.02	2.25	0.00	-0.90	3376.04	-2.00	0.00	2.25	3375.99			45.00
09+250.00	3375.75	2.25	0.00	1.00	3375.73	-2.00	0.16	2.25	3375.68			46.60
09+260.00	3375.45	2.25	0.00	2.40	3375.40	-2.70	0.40	2.25	3375.32			49.00
09+270.00	3375.11	2.25	0.00	2.70	3375.05	-2.70	0.39	2.25	3374.98			48.90
09+280.00	3374.74	2.25	0.00	2.70	3374.68	-2.70	0.39	2.25	3374.61			48.90
09+290.00	3374.36	2.25	0.00	2.70	3374.30	-2.70	0.40	2.25	3374.23			49.00
09+300.00	3373.96	2.25	0.00	2.70	3373.90	-2.70	0.40	2.25	3373.83			49.00
09+310.00	3373.54	2.25	0.00	2.70	3373.48	-2.70	0.39	2.25	3373.41			48.90
09+320.00	3373.10	2.25	0.00	2.70	3373.04	-2.70	0.40	2.25	3372.97			49.00
09+330.00	3372.63	2.25	0.00	2.20	3372.58	-2.70	0.40	2.25	3372.51			49.00
09+340.00	3372.12	2.25	0.00	0.60	3372.11	-2.00	0.10	2.25	3372.06			46.00
09+350.00	3371.59	2.25	0.00	-1.20	3371.62	-2.00	0.00	2.25	3371.57			45.00
09+360.00	3371.06	2.25	0.00	-2.00	3371.11	-2.00	0.00	2.25	3371.06			45.00
09+370.00	3370.54	2.25	0.00	-2.00	3370.58	-2.00	0.00	2.25	3370.54		1	45.00
09+380.00	3369.99	2.25	0.00	-2.00	3370.03	-2.00	0.00	2.25	3369.99			45.00
09+390.00	3369.42	2.25	0.00	-2.00	3369.47	-2.00	0.01	2.25	3369.42			45.10
09+400.00	3368.85	2.25	0.00	-2.00	3368.90	-2.00	0.00	2.25	3368.85			45.00
09+410.00	3368.28	2.25	0.00	-2.00	3368.33	-2.00	0.00	2.25	3368.28			45.00
09+420.00	3367.71	2.25	0.00	-2.00	3367.76	-2.00	0.00	2.25	3367.71			45.00
09+430.00	3367.10	2.25	1.99	-2.00	3367.19	-2.00	0.00	2.25	3367.14	2.00	†	84.90
09+440.00	3366.51	2.25	3.00	-2.00	3366.61	-2.00	0.00	2.25	3366.57	3.00		105.00
09+450.00	3365.96	2.25	1.99	-2.00	3366.04	-2.00	0.00	2.25	3366.00	2.00		84.90
09+460.00	3365.43	2.25	0.00	-2.00	3365.47	-2.00	0.00	2.25	3365.43			45.00
09+470.00	3364.86	2.25	0.00	-2.00	3364.90	-2.00	0.00	2.25	3364.86			45.00
09+480.00	3364.29	2.25	0.00	-2.00	3364.33	-2.00	0.00	2.25	3364.29			45.00
09+490.00	3363.72	2.25	0.00	-2.00	3363.76	-2.00	0.00	2.25	3363.72		 	45.00
09+500.00	3363.15	2.25	0.00	-1.80	3363.19	-2.00	0.00	2.25	3363.14			45.00
09+510.00	3362.60	2.25	0.00	-0.70	3362.62	-2.00	0.01	2.25	3362.57			45.10
09+520.00	3362.08	2.25	0.00	1.40	3362.05	-2.00	0.17	2.25	3362.00			46.70
09+530.00	3361.54	2.25	0.00	2.90	3361.48	-3.30	0.17	2.25	3361.39		1	48.90
09+540.00	3360.98	2.25	0.00	3.30	3360.91	-3.30	0.40	2.25	3360.82			49.00
09+550.00	3360.41	2.25	0.00	3.30	3360.33	-3.30	0.41	2.25	3360.25			49.10
09+560.00	3359.83	2.25	0.00	2.90	3359.76	-3.30	0.39	2.25	3359.68			48.90
09+570.00	3359.23	2.25	0.00	1.50	3359.19		0.18	2.25	3359.14			46.80

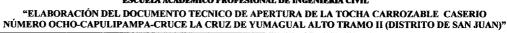


02.00. Partida MOVIMIENTO DE TIERRA

PLANILLA DE SUB-RASANTE												
	T	IZQUIE	RDA			<u> </u>	DE	RECHA		PLAZOLETA	S DE CRUCE	AREA (m²)
Prog.		Ancho		P%	EJE	Р%	S/A	Ancho	Cotas	IZQ.	DER.	, ,
09+580.00	3358.61	2.25	0.00	-0.60	3358.62	-2.00	0.00	2.25	3358.58			45.00
09+590.00	3358.01	2.25	0.00	-1.80	3358.05	-2.00	0.00	2.25	3358.01			45.00
09+600.00	3357.43	2.25	0.00	-2.00	3357.48	-1.60	0.00	2.25	3357.44			45.00
09+610.00	3356.86	2.25	0.02	-2.00	3356.91	-0.10	0.00	2.25	3356.91			45.20
09+620.00	3356.28	2.25	0.32	-2.20	3356.34	2.10	0.00	2.25	3356.39			48.20
09+630.00	3355.65	2.25	0.60	-4.10	3355.77	3.70	0.00	2.25	3355.85			51.00
09+640.00	3355.08	2.25	0.60	-4.10	3355.20	4.10	0.00	2.25	3355.29			51.00
09+650.00	3354.51	2.25	0.60	-4.10	3354.62	4.10	0.00	2.25	3354.72			51.00
09+660.00	3353.94	2.25	0.59	-4.10	3354.05	4.10	0.00	2.25	3354.15			50.90
09+670.00	3353.37	2.25	0.59	-4.10	3353.48	3.70	0.00	2.25	3353.57			50.90
09+680.00	3352.85	2.25	0.34	-2.30	3352.91	2.30	0.00	2.25	3352.96			48.40
09+690.00	3352.29	2.25	0.05	-2.00	3352.34	0.60	0.00	2.25	3352.35		†	45.50
09+700.00	3351.72	2.25	0.00	-2.00	3351.77	0.00	0.00	2.25	3351.77		1	45.00
09+710.00	3351.15	2.25	0.00	-2.00	3351.20	0.20	0.00	2.25	3351.20			45.00
09+720.00	3350.58	2.25	0.21	-2.00	3350.63	1.40	0.00	2.25	3350.66		 	47.10
09+730.00	3349.96	2.25	0.50	-3.50	3350.06	3.20	0.00	2.25	3350.13			50.00
09+740.00	3349.37	2.25	0.60	-4.10	3349.49	4.10	0.00	2.25	3349.58		<u> </u>	51.00
09+750.00	3348.80	2.25	0.59	-4.10	3348.91	3.80	0.00	2.25	3349.00			50.90
09+760.00	3348.28	2.25	0.35	-2.40	3348.34	2.40	0.00	2.25	3348.40		<u> </u>	48.50
09+770.00	3347.73	2.25	0.06	-2.00	3347.77	0.20	0.00	2.25	3347.78		1	45.60
09+780.00	3347.16	2.25	0.00	-2.00	3347.77	-1.50	0.00	2.25	3347.17			45.00
09+790.00	3346.59	2.25	0.00	-2.00	3346.63	-2.00	0.00	2.25	3346.59		<u></u>	
09+800.00	3346.01	2.25	0.00	-2.00	3346.06	-2.00	0.00	2.25	3346.01			45.00
09+810.00	3345.44	2.25	0.00	-2.00	3345.49	-2.00	0.00	2.25	3345.44			45.00 45.00
09+820.00	3344.87	2.25	0.00	-2.00	3344.92	-2.00	0.00	2.25	3344.87		 	45.00
09+830.00	3344.30	2.25	0.00	-2.00	3344.35	-2.00	0.00	2.25	3344.30			45.00
09+840.00	3343.73	2.25	0.00	-2.00	3343.78	-2.00	0.00	2.25	3343.73		 	45.00
09+850.00	3343.16	2.25	0.00	-2.00	3343.21	-2.00	0.00	2.25	3343.16			45.00
09+860.00	3342.60	2.25	0.00	-1.40	3342.63	-2.00	0.00	2.25	3342.59			45.00
09+870.00	3342.07	2.25	0.00	0.30	3342.06	-2.00	0.06	2.25	3342.02			45.60
09+880.00	3341.53	2.25	0.00	1.90	3341.49	-2.30	0.40	2.25	3341.43			49.00
09+890.00	3340.97	2.25	0.00	2.30	3340.92	-2.30	0.39	2.25	3340.86		 	48.90
09+900.00	3340.40	2.25	0.00	2.30	3340.35	-2.30	0.40	2.25	3340.29		 	49.00
09+910.00	3339.83	2.25	0.00	2.30	3339.78	-2.30	0.39	2.25	3339.72			48.90
09+920.00	3339.26	2.25	0.00	2.30	3339.21	-2.30	0.40	2.25	3339.15			49.00
09+930.00	3338.68	2.25	0.00	2.30	3338.62	-2.30	0.40	2.25	3338.56			49.00
09+940.00	3338.07	2.25	0.00	2.10	3338.02	-2.30	0.40	2.25	3337.96			49.00
09+950.00	3337.42	2.25	0.00	0.90	3337.40	-2.00	0.17	2.25	3337.35			46.70
09+960.00	3336.71	2.25	1.99	-1.00	3336.76	-2.00	0.00	2.25	3336.71	2.00		84.90
09+970.00	3336.00	2.25	3.00	-2.00	3336.10	-2.00	0.00	2.25	3336.05	3.00	1	105.00
											 	
09+980.00	3335.37	2.25	1.99	-1.20	3335.42	-2.00	0.00	2.25	3335.38	2.00		84.90 46.40
09+990.00	3334.74		0.00	0.70	3334.73	-2.00	0.14	2.25	3334.68		 	
10+000.00	3334.06	2.25	0.00	2.00	3334.01	-2.30	0.39		3333.95			48.90
10+010.00	3333.33		0.00	2.30	3333.28	-2.30	0.40	2.25	3333.22		 	49.00
10+020.00	3332.58	2.25		2.30	3332.53	-2.30	0.40	2.25	3332.47		 	49.00
10+030.00	3331.81	2.25	0.00	2.30	3331.76	-2.30	0.39	2.25	3331.70		 	48.90
10+040.00	3331.02	2.25	0.00	2.30	3330.97	-2.30	0.39	2.25	3330.91		 	48.90
10+050.00	3330.21	2.25	0.00	2.30	3330.16	-2.30	0.39	2.25	3330.10			48.90
10+060.00	3329.39	2.25	0.00	2.30	3329.33	-2.30	0.39	2.25	3329.27	<u> </u>	 	48.90
10+070.00	3328.54	2.25	0.00	2.30	3328.49	-2.30	0.39	2.25	3328.43			48.90
10+080.00	3327.69	2.25	0.00	2.30	3327.64	-2.30	0.40	2.25	3327.58			49.00

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

02.00. Partida **MOVIMIENTO DE TIERRA**


02.03 Sub-Partida Perfilado y Compactado de Sub-Rasante

		PLA	NILLA	DE SUE	-RASANT	E				DI AZOLETA	S DE CBIICE	
Prog.		IZQUIE	RDA		EJE		DE	RECHA		- CAZOLL 17	AS DE CRUCE	AREA (m²)
Flog.	Cotas	Ancho	S/A	₽%	. CE	Р%	S/A	Ancho	Cotas	IZQ.	DER.	
10+090.00	3326.83	2.25	0.00	2.00	3326.79	-2.30	0.39	2.25	3326.73			48.90
10+100.00	3325.95	2.25	0.00	0.60	3325.94	-2.00	0.12	2.25	3325.89			46.20
10+110.00	3325.06	2.25	0.00	-1.30	3325.09	-2.00	0.00	2.25	3325.04			45.00
10+120.00	3324.19	2.25	0.00	-2.00	3324.24	-2.00	0.00	2.25	3324.19			45.00
10+130.00	3323.34	2.25	0.00	-2.00	3323.39	-2.00	0.00	2.25	3323.34			45.00
10+140.00	3322.49	2.25	0.00	-2.00	3322.54	-2.00	0.00	2.25	3322.49			45.00
10+150.00	3321.64	2.25	0.00	-2.00	3321.69	-2.00	0.00	2.25	3321.64			45.00
10+160.00	3320.80	2.25	0.00	-1.90	3320.84	-2.00	0.00	2.25	3320.79			45.00
10+170.00	3319.97	2.25	0.00	-0.90	3319.99	-2.00	0.00	2.25	3319.94]		45.00
10+180.00	3319.16	2.25	0.00	1.00	3319.14	-2.00	0.20	2.25	3319.09			47.00
10+190.00	3318.34	2.25	0.00	2.20	3318.29	-2.30	0.40	2.25	3318.23			49.00
10+200.00	3317.49	2.25	0.00	2.30	3317.44	-2.30	0.40	2.25	3317.38			49.00
10+210.00	3316.64	2.25	0.00	2.30	3316.59	-2.30	0.40	2.25	3316.53			49.00
10+220.00	3315.79	2.25	0.00	2.30	3315.74	-2.30	0.40	2.25	3315.68			49.00
10+230.00	3314.93	2.25	0.00	1.80	3314.89	-2.30	0.39	2.25	3314.83			48.90
10+240.00	3314.04	2.25	0.00	0.20	3314.04	-2.00	0.04	2.25	3313.99			45.40
10+250.00	3313.16	2.25	0.00	-1.50	3313.19	-2.00	0.00	2.25	3313.14			45.00
10+260.00	3312.29	2.25	0.00	-2.00	3312.34	-2.00	0.00	2.25	3312.29			45.00
10+270.00	3311.44	2.25	0.00	-2.00	3311.49	-2.00	0.00	2.25	3311.44			45.00
10+280.00	3310.59	2.25	0.00	-2.00	3310.64	-2.00	0.00	2.25	3310.59			45.00
10+290.00	3309.74	2.25	0.00	-2.00	3309.79	-2.00	0.00	2.25	3309.74			45.00
10+300.00	3308.89	2.25	0.00	-2.00	3308.94	-2.00	0.00	2.25	3308.89			45.00
10+310.00	3308.06	2.25	0.00	-2.00	3308.11	-2.00	0.00	2.25	3308.06			45.00
10+320.00	3307.29	2.25	0.00	-2.00	3307.33	-2.00	0.00	2.25	3307.29			45.00
10+330.00	3306.57	2.25	0.00	-2.00	3306.62	-2.00	0.00	2.25	3306.57			45.00
10+340.00	3305.91	2.25	0.00	-2.00	3305.95	-2.00	0.00	2.25	3305.91			45.00
10+350.00	3305.30	2.25	0.00	-2.00	3305.35	-2.00	0.00	2.25	3305.30			45.00
10+360.00	3304.75	2.25	0.00	-2.00	3304.80	-2.00	0.00	2.25	3304.75			45.00
10+370.00	3304.26	2.25	0.00	-2.00	3304.30	-2.00	0.00	2.25	3304.26			45.00
10+380.00	3303.76	2.25	2.99	-2.00	3303.87	-2.00	0.00	2.25	3303.82	3.00		104.90
10+390.00	3303.36	2.25	3.00	-2.00	3303.47	-2.00	0.00	2.25	3303.42	3.00		105.00
10+400.00	3302.96	2.25	3.00	-2.00	3303.07	-2.00	0.00	2.25	3303.02	3.00		105.00
10+401.62	3302.90	2.25	3.00	-2.00	3303.00	-2.00	0.00	2.25	3302.96	3.00		105.00
	<u> </u>											
	TOTAL											27487.80

NOTA: Las areas estan calculadas incluyendo sobreancho, longitud de transición de sobreancho, transición de peralte, y plazoletas de cruce

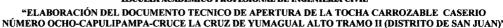
FACULTAD DE INGENIERÍA

04.00.00 Partida **OBRAS DE ARTE Y DRENAJE**

04.03.00 Sub-Partida : **CUNETAS**

:

04.03.01 Sub-Partida **MOVIMIENTO DE TIERRAS**


04.03.01.01 Sub-Partida

Conformacion de Cunetas en Material Suelto

Progr	esiva	Lado	Progr	esiva	Lado Derecho	
Del	Al	Izquierdo	Del	Al	Lauo Derecno	TOTAL
05+000	05+220	220.00	05+075	05+165	90.00	310
05+250	05+635	385.00	05+265	05+320	55.00	440
05+735	05+970	235.00	05+490	05+625	135.00	370
05+995	06+185	190.00	05+745	05+940	195.00	385
06+195	06+490	295.00	06+025	06+180	155.00	450
06+515	06+570	55.00	06+225	06+320	95.00	150
06+600	07+380	780.00	06+370	07+375	1005.00	1785
07+425	07+675	250.00	07+435	07+570	135.00	385
07+715	07+825	110.00	07+585	07+975	390.00	500
07+865	08+235	370.00	08+065	08+215	150.00	520
08+300	08+355	55.00	08+300	08+350	50.00	105
08+385	08+555	170.00	08+400	08+420	20.00	190
08+655	08+805	150.00	08+455	08+530	75.00	225
08+850	09+020	170.00	08+665	08+790	125.00	295
09+055	09+220	165.00	08+855	08+995	140.00	305
09+290	09+315	25.00	09+070	09+180	110.00	135
09+445	09+555	110.00	09+295	09+320	25.00	135
09+740	09+805	65.00	09+430	09+580	150.00	215
09+945	10+170	225.00	09+730	10+235	505.00	730
10+255	10+270	15.00	10+250	10+275	25.00	40
		0.00	10+305	10+325	20.00	20
SUB T	OTAL	4,040.00			2,550.00	
TOTAL						7,690.00
POR LO TANTO L	A CONFORMACIO	ÓN ES: (m2)				12,911.51

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

OLOR I

PS10

Hoja resumen

Obra

0403001

"ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO

NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN

JUAN)"

Localización

060112

CAJAMARCA - CAJAMARCA - SAN JUAN

Fecha al

24/03/2013

Presupuesto base

001

"ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLI NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRI JUAN)"

(CD) S/.

1,816,797.24

COSTO DIRECTO

1,816,797.24

GASTOS GENERALES (13.70%)

248,901.22

UTILIDAD (4%)

72,671.89

SUB TOTAL

2,138,370.35

IGV (18%)

384,906.66

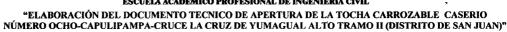
VALOR REFERNCIAL

2,523,277.01

GASTOS DE SUPERVISION (4% CD)

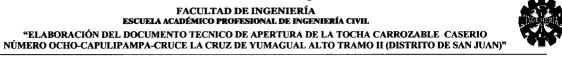
72,671.89

PRESUPUESTO TOTAL


2,595,948.90

SON: DOS MILLONES QUINIENTOS NOVENTA Y CINCO NOVECIENTOS CUARENTA Y OCHO Y 90/100 NUEVOS SOLES.

Nota: Los precios de los recursos no incluyen I.G.V. son vigentes al 24/03/2013


· S10

Presupuesto

Presupuesto	0403001	"ELABORACION DEL DOCUMENTO TECNICO DE A OCHO - CAPULIPAMPA - CRUCE LA CRUZ DE YUI				
Cliente Lugar		DAD DISTRITAL DE SAN JUAN A - CAJAMARCA - SAN JUAN		• • • • • • • • • • • • • • • • • • •	Costo al	24/03/2013
Item	Descrip	oción	Und.	Metrado	Precio S/.	Parcial S/.
01	OBRAS	PRELIMINARES				10,873.64
01.01	MOV	LIZACIÒN Y DESMOVILIZACIÒN DE EQUIPOSI	glb	1.00	1,215.00	1,215.00
01.02	CAM	PAMENTO PROVISIONAL DE LA OBRA	m2	60.00	83.83	5,029.80
01.03	CAR	FEL DE OBRA (2.40 X 5.40 m)	u.	1.00	773.23	773.23
01.04	TRAZ	O Y REPLANTEO	km	5.40	604.60	3,264.84
01.05	LIMP	EZA Y DEFORESTACION	ha	2.10	281.32	590.77
02	MOVIM	IENTO DE TIERRAS				1,375,692.16
02.01	COR	TE DE MATERIAL SUELTO	m3	177,857.55	4.77	848,380.51
02.02	COR	TE ROCA SUELTA	m3	102,769.50	1.63	167,514.29
02.03	COR	TE ROCA FIJA	m3	4,414.60	6.33	27,944.42
02.04	CONI	FORMACIÓN DE TERRAPLENES	m3	83,204.80	2.98	247,950.30
02.05	PERF	ILADO Y COMPACTADO DE SUBRASANTE	m2	27,487.80	0.69	18,966.58
02.06	ELIM	NACIÒN DE MATERIAL EXCEDENTE	m3	10,389.77	6.25	64,936.06
03	AFIRM	ADO E= 0.30 m				160,686.23
03.01	DERE	CHO DE EXTRACCIÓN DE CANTERA	m3	5,113.20	7.50	38,349.00
03.02	EXTR	ACCIÒN DE MATERIAL PARA AFIRMADO	m3	6,391.50	4.38	27,994.77
03.03	TRAM	ISPORTE DE MATERIAL DE AFIRMADO (CARGUIO)	m3	6,391.50	10.89	69,603.44
03.04	EXTE	NDIDO, REGADO Y COMPACTADO	m2	27,487.80	0.90	24,739.02
04	OBRAS	DE ARTE Y DRENAJE				234,351.73
04.01	ALIV	IADEROS TMC 36" (29 und)				190,969.06
04.01.01	TR.	ABAJOS PRELIMINARES				942.57
04.01.01.01	ī	RAZO Y REPLANTEO PRELIMINAR	m2	426.50	2.21	942.57

04.01.02	MOVIMIENTO DE TIERRAS				10,164.47
04.01.02.01	EXCAVACIÓN PARA ALIVIADEROS (CON MAQUINARIA)	m3	352.00	3.80	1,337.60
04.01.02.02	RELLENO COMPACTADO CON MATERIAL DE CANTERA	m3	193.96	22.06	4,278.76
04.01.02.03	AFIRMADO COMPACTADO FONDO TUBERIA E= 0.15m	m2	270.33	4.34	1,173.23
04.01.02.04	ELIMINACIÓN DE MATERIAL EXCEDENTE HASTA BOTADERO MAS CERCANO	m3	440.01	7.67	3,374.88
04.01.03	CONCRETO SIMPLE				121,502.54
04.01.03.01	CONCRETO PARA ALIVIADEROS fc=175 Kg/cm2	m3	327.12	268.21	87,736.86
04.01.03.02	ENCOFRADO Y DESENCOFRADO DE ALIVIADEROS	m2	1,382.14	24.43	33,765.68
04.01.04	TUBERÌA TMC 36"				49,020.89
04.01.04.01	TUBERÌA TMC 36°	m	142.71	343.50	49,020.89
04.01.05	EMBOQUILLADO\$				9,338.59
04.01.05.01	EMBOQUILLADO DE SALIDA	m2	272.58	34.26	9,338.59
04.02	CUNETAS				43,382.67
04.02.01	MOVIMIENTO DE TIERRAS				43,382.67
04.02.01.01	CONFORMACIÓN DE CUNETAS EN MATERIAL SUELTO	m2	12,911.51	3.36	43,382.67
05	SEÑALIZACIÒN				11,925.38
05.01	HITOS KILOMETRICOS	U	6.00	61.11	366.66
05.02	SEÑALES INFORMATIVAS	u	6.00	333.10	1,998.60
05.03	SEÑALES PREVENTIVAS	U	36.00	241.72	8,701.92
05.04	SEÑALES REGULADORAS	u	4.00	214.55	858.20
06	MITIGACIÓN DE IMPACTO AMBIENTAL				9,012.88
06.01	MITIGACION DE AREAS EN CANTERAB	ha	1.70	1,982.35	3,370.00
06.02	RESTAURACIÓN DE AREAS ASIGNADAS COMO BOTADEROSI	ha	2.13	1,973.80	4,204.19
06.03	RESTAURACIÓN DE ÁREAS UTILIZADAS COMO CAMPAMENTO Y PATIO DE MAQUINARIA	ha	2.13	675.44	1,438.69
07	FLETE TERRESTRE				14,255.22
07.01	FLETE TERRESTRE	glb	1.00	14,255.22	14,255.22

"ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN)"

COSTO DIRECTO	1,816,797.24
GASTOS GENERALES (13.70%)	248,901.22
UTILIDAD (4%)	72,671.89
SUB TOTAL	2,138,370.35
IGV (18%)	384,906.66
VALOR REFERENCIAL	2,523,277.01
GASTOS DE SUPERVISION (4% CD)	72,671.89
PRESUPUESTO TOTAL	2,595,948.90

DOS MILLONES QUINIENTOS NOVENTA Y CINCO NOVECIENTOS CUARENTA Y OCHO 90/10 NUEVOS SOLES.

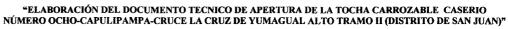
SON:

FACULTAD DE INGENIERÍA

ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO
NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN)"

S10


Análisis de precios unitarios

Presupuesto	0403001	"ELABORACION DEL DOCUMENTO TECNI					A) IIIAAN\¤
Subpresupuest	o 001	NUMERO OCHO - CAPULIPAMPA - CRUCI "ELABORACION DEL DOCUMENTO TECNI	CO DE APERTU	RA DE LA TROCH	A CARROZA	ABLE CASERIO	·
Partida	01.01	NUMERO OCHO - CAPULIPAMPA - CRUC MOVILIZACIÓN Y DESMOV	_		II OMANI	אפ שע טוואופוע	AN JUAN)
raiuda	01.01	MOAILISACION I DESMOA	ILIZACION DE	EQUIPOS	Fecha	a presupuesto	24/03/2013
Rendimiento	gib/DIA	8.0000	EQ. 8.0000	Costo unitario direc	to por : glb	1,215.00	
Código	Descripción	Recurso Equipos	Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
0348040036	CAMION CIST	FERNA 4 X 2 (AGUA) 178-210 HP 5000 gl	hm	1.0000	1.0000	65.00	65.00
0348040037		QUETE 15 m3	hm	1.0000	1.0000	65.00	65.00
0348130081		A Y REMOLCADOR (TRASLADO DE TRACTOR		1.0000	1.0000	185.00	185.00
0349040091		A 200 - 330 HP	hm	2.0000	2.0000	185.00	370.00
0349040092	TRACTOR DE	E EMPUJE 300-330 HP	hm	1.0000	1.0000	235.00	235.00
0349060055	RETROEXCA	VADORA 75-110 HP	hm	1.0000	1.0000	100.00	100.00
0349090000	MOTONIVELA	ADORA DE 125 HP	hm	1.0000	1.0000	130.00	130.00
0349110021	RODILLO LISO	O VIBRATORIO 8TN	hm	1.0000	1.0000	65.00	65.00
							1,215.00
Partida	01.02	CAMPAMENTO PROVISION	AL DE LA OBR	A			
Rendimiento	m2/DIA	15.0000	EQ. 15.0000	costo unitario direc	to por : m2	83.83	
Código	Descripción		Unidad	Cuadrilla	Cantidad	Precio SI.	Parcial S/.
		Mano de Obra					
0147010002	OPERARIO		hh	0.5000	0.2667	10.02	2.67
0147010003	OFICIAL		hh	1.0000	0.5333	8.93	4.76
0147010004	PEON		hh	2.0000	1.0667	8.01	8.54 15.97
		Materiales					
0202010002	CLAVOS PAR	A MADERA CON CABEZA DE 2 1/2"	kg		0.0700	4.03	0.28
0202170001	CLAVOS PAR	A CALAMINA	kg		0.1000	4.03	0.40
0221010034	CONCRETO	PREMEZCLADO fc=140 kg/cm2	m3		0.0200	201.22	4.02
0239900100	VENTANA DE	MADERA DE 0.80 X 1.20 m	u		0.0334	60.00	2.00
0239990051	PUERTA DE 1	FRIPLAY CONTRAPLACADA DE $0.80~\mathrm{X}~2.00~\mathrm{m}$	pza		0.0334	150.00	5.01
0239990052	PUERTA DE 1	TRIPLAY CONTRAPLACADA DE 0.90 X 2.00 m	pza		0.0334	160.00	5.34
0243600000	MADERA EUC	CALIPTO (p2)	p2		13.2300	2.10	27.78
0244030023	TRIPLAY DE 4	Y X 8' X 8 mm	pl		0.3400	36.90	12.55
0256900002	CALAMINA GA	ALVANIZADA ZINC 28 CANALES 1.83 X 0.830 i	m X 0 pl		0.8500	11.76	10.00 67.38
		Equipos					
0337010001	HERRAMIENT	AS MANUALES	%МО		3.0000	15.97	0.48
							0.48
Partida	01.03	CARTEL DE OBRA (2.40 X S	5.40 m)				
Rendimiento	u/DIA	1.0000	EQ. 1.0000	Costo unitario dire	ecto por : u	773.23	
Código	Descripción i	Recurso Mano de Obra	Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
0147010003	OFICIAL		hh	1.0000	8.0000	8.93	71.44
0147010004	PEON		hh	1.0000	8.0000	8.01	64.08
							135.52

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

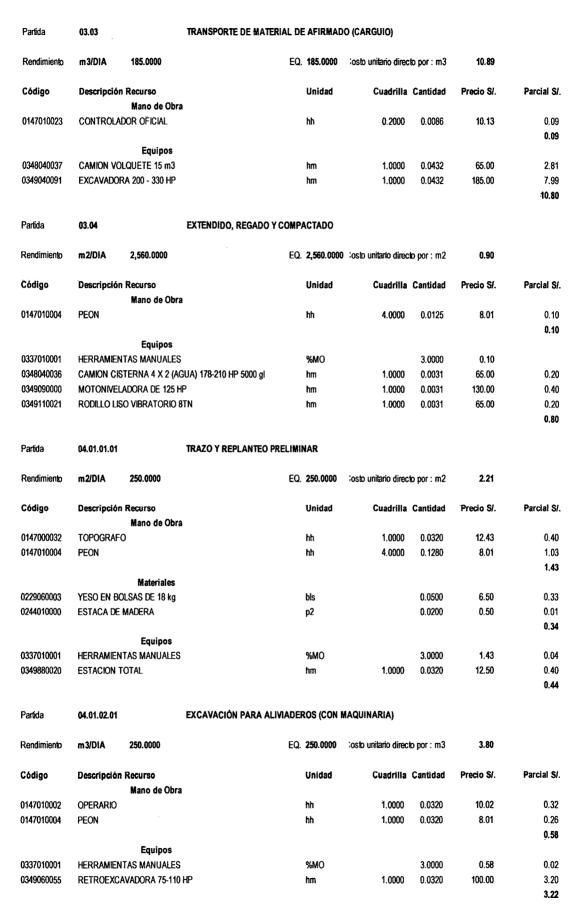
		Materiales							
0202010002	CLAVOS PAR		CABEZA DE 2 1/2"	kg			1:0000	4.03	4.03
0202510068	PERNOS 3/4		ONDEEN DE 2 1/2	pza			20.0000	2.00	40.00
0221000001		PORTLAND TIPO I	(42.5 kg)	bls			2.3344	18.40	42.95
0238000000		(PUESTO EN OBF	; = -	m3			0.0270	65.00	1.76
0243040000	MADERA TO	RNILLO	•	p2			61.0000	2.90	176.90
0245010007	TRIPLAY DE	12 mm de 1.20 m	X 2.40 m.	pl			4.0000	81.00	324.00
0254110011	PINTURA ES	MALTE BLANCO		gal			0.8800	50.00	44.00
									633.64
		Equipos							
0337010001	HERRAMIEN	TAS MANUALES		%M	0		3.0000	135.52	4.07
									4.07
0-44-	***		TD470 V DEDL 411770						
Partida	01.04		TRAZO Y REPLANTEO						
Rendimiento	km/DIA	1.0000	FC	Q. 1.00	300	costo unitario direc	to nor · km	604.60	
· · · · · · · · · · · · · · · · · · ·	ium s ir	110000		a		TOO GIRLING GIFCO	ы рог . ких	004.00	
Código	Descripción	Recurso		Unio	dad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
	•	Mano de Obra							
0147000032	TOPOGRAFO)		hh		1.0000	8.0000	12.43	99.44
0147010002	OPERARIO			hh		1.0000	8.0000	10.02	80.16
0147010004	PEON			hh		3.0000	24.0000	8.01	192.24
									371.84
		Materiales							
0229060003	YESO EN BO	DLSAS DE 18 kg		bls			2.4000	6.50	15.60
0244010000	ESTACA DE I	MADÉRA		p2			50.0000	0.50	25.00
0254010001	PINTURA ES	MALTE SINTETIC	0	gal			0.1000	50.00	5.00
									45.60
		Equipos			_				
0337010001		TAS MANUALES		%M(0		3.0000	371.84	11.16
0337540001	MIRAS Y JAL			hm		1.0000	8.0000	1.50	12.00
0349190003		GRAFICO CON TI	RIPODE	he		1.0000	8.0000	8.00	64.00
0349880020	ESTACION T	OTAL		hm		1.0000	8.0000	12.50	100.00 187 .16
									107.10
Partida	01.05		LIMPIEZA Y DEFORESTACION						
	••								
Rendimiento	ha/DIA	1.2000	EC	Q. 1.20	100	Costo unitario direc	to por : ha	281.32	
Código	Descripción	Recurso		Unic	dad	Cuadrilla	Cantidad	Precio SI.	Parcial S/.
		Mano de Obra	•						
0147010003	OFICIAL			hh		1.0000	6.6667	8.93	59.53
0147010004	PEON			hh		4.0000	26.6667	8.01	213.60
									273.13
		Equipos			_			0=0.40	0.40
0337010001	HERRAMIEN	TAS MANUALES		%M(O		3.0000	273.13	8.19
									8.19
Partida	02.01		CORTE DE MATERIAL SUELTO						
raiwa	V2.V1		CORTE DE MATERIAL SUELTO	,					
Rendimiento	m3/DIA	750.0000	FC	Q. 750 .	0000	osto unitario direc	o nor : m3	4.77	
			-						
Código	Descripción	Recurso		Unic	dad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
-	•	Mano de Obra							
0147010003	OFICIAL			hh		1.0000	0.0107	8.93	0.10
0147010004	PEON			hh		2.0000	0.0213	8.01	0.17
									0.27

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN)"

		Equipos					
0337010001	HERRAMIEN	TAS MANUALES	%MO		3.0000	0.27	0.01
0349040091		RA 200 - 330 HP	hm	1.0000	0.0107	185.00	1.98
0349040092	TRACTOR D	E EMPUJE 300-330 HP	hm	1.0000	0.0107	235.00	2.51
							4.50
Partida	02.02	CORTE ROCA SUELTA					
Rendimiento	m3/DIA	560.0000	EQ. 560.0000	osto unitario direc	to por : m3	1.63	
Código	Descripción	Recurso	Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
		Mano de Obra					
0147010002	OPERARIO		hh	1.0000	0.0143	10.02	0.14
0147010003	OFICIAL		hh	1.0000	0.0143	8.93	0.13
0147010004	PEON		hh	2.0000	0.0286	8.01	0.23
		Materiales					0.50
0227000008	MECHA BLA		m		0.1200	0.35	0.04
0227020011	FULMINANT		u		0.1200	0.10	0.01
0228000026	DINAMITA		u		0.0400	1.75	0.07
0230020096	BARRENO 5	' X 1/8"	u		0.0002	331.25	0.07
							0.19
		Equipos					
0337010001		TAS MANUALES	%МО		3.0000	0.50	0.02
0349020002		RA NEUMATICA 196 HP 600-690 PCM	hm	1.0000	0.0143	33.15	0.47
0349060004	MARTILLON	EUMATICO DE 25 kg	hm	4.0000	0.0571	7.95	0.45 0.94
							0.54
Partida	02.03	CORTE ROCA FIJA					
D . P. C	AID14		FA				
Rendimiento	m3/DIA	320.0000	EQ. 320.0000	osto unitario direc	to por : m3	6.33	
Rendimiento Código	m3/DIA Descripción		EQ. 320.0000 Unidad	osto unitario direc	•	6.33 Precio S/.	Parcial S/.
Código	Descripción		Unidad	Cuadrilla	Cantidad	Precio SI.	
Código 0147010002	Descripción OPERARIO	Recurso	Unidad hh	Cuadrilla 2.0000	Cantidad 0.0500	Precio S/.	0.50
Código 0147010002 0147010003	Descripción OPERARIO OFICIAL	Recurso	Unidad hh hh	Cuadrilla 2.0000 1.0000	0.0500 0.0250	Precio S/. 10.02 8.93	0.50 0.22
Código 0147010002	Descripción OPERARIO	Recurso	Unidad hh	Cuadrilla 2.0000	Cantidad 0.0500	Precio S/.	0.50 0.22 0.40
Código 0147010002 0147010003	Descripción OPERARIO OFICIAL	Recurso	Unidad hh hh	Cuadrilla 2.0000 1.0000	0.0500 0.0250	Precio S/. 10.02 8.93	0.50 0.22
Código 0147010002 0147010003	Descripción OPERARIO OFICIAL	Recurso Mano de Obra Materiales	Unidad hh hh	Cuadrilla 2.0000 1.0000	0.0500 0.0250	Precio S/. 10.02 8.93	0.50 0.22 0.40
Código 0147010002 0147010003 0147010004	Descripción Operario Oficial Peon	Recurso Mano de Obra Materiales	Unidad hh hh hh	Cuadrilla 2.0000 1.0000	0.0500 0.0250 0.0500	10.02 8.93 8.01	0.50 0.22 0.40 1.12
Código 0147010002 0147010003 0147010004	Descripción OPERARIO OFICIAL PEON MECHA BLAR	Recurso Mano de Obra Materiales	Unidad th th th	Cuadrilla 2.0000 1.0000	0.0500 0.0250 0.0500 0.1200	Precio S/. 10.02 8.93 8.01	0.50 0.22 0.40 1.12
Código 0147010002 0147010003 0147010004 0227000008 0227020011 0228000026 0230020096	Descripción OPERARIO OFICIAL PEON MECHA BLAF	Recurso Mano de Obra Materiales NCA	Unidad th th th th	Cuadrilla 2.0000 1.0000	0.0500 0.0250 0.0500 0.1200 0.1200 0.0700 0.0002	Precio S/. 10.02 8.93 8.01 0.35 0.10 1.75 331.25	0.50 0.22 0.40 1.12 0.04 0.01 0.12 0.07
Código 0147010002 0147010003 0147010004 0227000008 0227020011 0228000026 0230020096 0230020097	Descripción OPERARIO OFICIAL PEON MECHA BLAI FULMINANTI DINAMITA BARRENO 5' BARRENO 3'	Recurso Mano de Obra Materiales NCA E X 1/8* X 1/8*	Unidad hh hh hh u u	Cuadrilla 2.0000 1.0000	0.0500 0.0250 0.0500 0.1200 0.1200 0.0700 0.0002 0.0050	Precio S/. 10.02 8.93 8.01 0.35 0.10 1.75 331.25 304.75	0.50 0.22 0.40 1.12 0.04 0.01 0.12 0.07 1.52
Código 0147010002 0147010003 0147010004 0227000008 0227020011 0228000026 0230020096	Descripción OPERARIO OFICIAL PEON MECHA BLAI FULMINANTI DINAMITA BARRENO 5'	Recurso Mano de Obra Materiales NCA E X 1/8* X 1/8*	Unidad hh hh hh u u u	Cuadrilla 2.0000 1.0000	0.0500 0.0250 0.0500 0.1200 0.1200 0.0700 0.0002	Precio S/. 10.02 8.93 8.01 0.35 0.10 1.75 331.25	0.50 0.22 0.40 1.12 0.04 0.01 0.12 0.07 1.52 1.79
Código 0147010002 0147010003 0147010004 0227000008 0227020011 0228000026 0230020096 0230020097	Descripción OPERARIO OFICIAL PEON MECHA BLAI FULMINANTI DINAMITA BARRENO 5' BARRENO 3'	Recurso Mano de Obra Materiales NCA E X 1/8* X 1/8*	Unidad hh hh hh u u	Cuadrilla 2.0000 1.0000	0.0500 0.0250 0.0500 0.1200 0.1200 0.0700 0.0002 0.0050	Precio S/. 10.02 8.93 8.01 0.35 0.10 1.75 331.25 304.75	0.50 0.22 0.40 1.12 0.04 0.01 0.12 0.07 1.52
Código 0147010002 0147010003 0147010004 0227000008 0227020011 0228000026 0230020096 0230020097 0230020098	Descripción OPERARIO OFICIAL PEON MECHA BLAI FULMINANTI DINAMITA BARRENO 5' BARRENO 3' BARRENO 8'	Recurso Mano de Obra Materiales NCA E X 1/8" X 1/8" X 1/8"	Unidad hh hh th th u u u	Cuadrilla 2.0000 1.0000	0.0500 0.0250 0.0500 0.1200 0.1200 0.0700 0.0002 0.0050	0.35 0.10 1.75 331.25 304.75 357.75	0.50 0.22 0.40 1.12 0.04 0.01 0.12 0.07 1.52 1.79 3.55
Código 0147010002 0147010003 0147010004 0227000008 0227020011 0228000026 0230020096 0230020097 0230020098	Descripción OPERARIO OFICIAL PEON MECHA BLAI FULMINANTI DINAMITA BARRENO 5' BARRENO 8' HERRAMIEN	Recurso Mano de Obra Materiales NCA E X 1/8" X 1/8" X 1/8" Equipos TAS MANUALES	Unidad hh hh th u u u u	Cuadrilla 2.0000 1.0000 2.0000	0.0500 0.0250 0.0500 0.1200 0.1200 0.0700 0.0002 0.0050 0.0050	Precio S/. 10.02 8.93 8.01 0.35 0.10 1.75 331.25 304.75 357.75	0.50 0.22 0.40 1.12 0.04 0.01 0.12 0.07 1.52 1.79 3.55
Código 0147010002 0147010003 0147010004 0227000008 0227020011 0228000026 0230020096 0230020097 0230020098	Descripción OPERARIO OFICIAL PEON MECHA BLAI FULMINANTI DINAMITA BARRENO 5' BARRENO 8' HERRAMIEN' COMPRESOI	Recurso Mano de Obra Materiales NCA E X 1/8" X 1/8" X 1/8"	Unidad hh hh th th u u u	Cuadrilla 2.0000 1.0000	0.0500 0.0250 0.0500 0.1200 0.1200 0.0700 0.0002 0.0050	0.35 0.10 1.75 331.25 304.75 357.75	0.50 0.22 0.40 1.12 0.04 0.01 0.12 0.07 1.52 1.79 3.55
Código 0147010002 0147010003 0147010004 0227000008 0227020011 0228000026 0230020096 0230020097 0230020098 0337010001 0349020002	Descripción OPERARIO OFICIAL PEON MECHA BLAI FULMINANTI DINAMITA BARRENO 5' BARRENO 8' HERRAMIEN' COMPRESOI	Recurso Mano de Obra Materiales NCA E X 1/8" X 1/8" X 1/8" Equipos TAS MANUALES RA NEUMATICA 196 HP 600-690 PCM	Unidad hh hh hh u u u u u h	Cuadrilla 2.0000 1.0000 2.0000	0.0500 0.0250 0.0500 0.1200 0.1200 0.0700 0.0002 0.0050 0.0050	Precio S/. 10.02 8.93 8.01 0.35 0.10 1.75 331.25 304.75 357.75	0.50 0.22 0.40 1.12 0.04 0.01 0.12 0.07 1.52 1.79 3.55
Código 0147010002 0147010003 0147010004 0227000008 0227020011 0228000026 0230020096 0230020097 0230020098 0337010001 0349020002	Descripción OPERARIO OFICIAL PEON MECHA BLAI FULMINANTI DINAMITA BARRENO 5' BARRENO 8' HERRAMIEN' COMPRESOI	Recurso Mano de Obra Materiales NCA E X 1/8" X 1/8" X 1/8" Equipos TAS MANUALES RA NEUMATICA 196 HP 600-690 PCM	Unidad hh hh hh u u u u u h	Cuadrilla 2.0000 1.0000 2.0000	0.0500 0.0250 0.0500 0.1200 0.1200 0.0700 0.0002 0.0050 0.0050	Precio S/. 10.02 8.93 8.01 0.35 0.10 1.75 331.25 304.75 357.75	0.50 0.22 0.40 1.12 0.04 0.01 0.12 0.07 1.52 1.79 3.55 0.03 0.83 0.80
Código 0147010002 0147010003 0147010004 0227000008 0227020011 0228000026 0230020096 0230020097 0230020098 0337010001 0349020002	Descripción OPERARIO OFICIAL PEON MECHA BLAI FULMINANTI DINAMITA BARRENO 5' BARRENO 8' HERRAMIEN' COMPRESOI	Recurso Mano de Obra Materiales NCA E X 1/8" X 1/8" X 1/8" Equipos TAS MANUALES RA NEUMATICA 196 HP 600-690 PCM	Unidad hh hh hh u u u u u h hm	Cuadrilla 2.0000 1.0000 2.0000	0.0500 0.0250 0.0500 0.1200 0.1200 0.0700 0.0002 0.0050 0.0050	Precio S/. 10.02 8.93 8.01 0.35 0.10 1.75 331.25 304.75 357.75	0.50 0.22 0.40 1.12 0.04 0.01 0.12 0.07 1.52 1.79 3.55 0.03 0.83 0.80
Código 0147010002 0147010003 0147010004 0227000008 0227020011 0228000026 0230020096 0230020097 0230020098 0337010001 0349020002 0349060004	Descripción OPERARIO OFICIAL PEON MECHA BLAI FULMINANTI DINAMITA BARRENO 5' BARRENO 8' HERRAMIEN COMPRESOI MARTILLO N	Recurso Mano de Obra Materiales NCA E IX 1/8* IX 1/8* IX 1/8* Equipos TAS MANUALES RA NEUMATICA 196 HP 600-690 PCM EUMATICO DE 25 kg	Unidad hh hh hh u u u u u h hm	Cuadrilla 2.0000 1.0000 2.0000	0.0500 0.0250 0.0500 0.1200 0.1200 0.0700 0.0050 0.0050 0.0050 0.0050	Precio S/. 10.02 8.93 8.01 0.35 0.10 1.75 331.25 304.75 357.75	0.50 0.22 0.40 1.12 0.04 0.01 0.12 0.07 1.52 1.79 3.55 0.03 0.83 0.80
Código 0147010002 0147010003 0147010004 0227000008 0227020011 0228000026 0230020096 0230020097 0230020098 0337010001 0349020002 0349060004	Descripción OPERARIO OFICIAL PEON MECHA BLAI FULMINANTI DINAMITA BARRENO 5' BARRENO 8' HERRAMIEN COMPRESOI MARTILLO N 02.04	Recurso Mano de Obra Materiales NCA E X 1/8" X 1/8" X 1/8" Equipos TAS MANUALES RA NEUMATICA 196 HP 600-690 PCM EUMATICO DE 25 kg CONFORMACIÓN DE TE	Unidad hh hh hh u u u u u u RRAPLENES	Cuadrilla 2.0000 1.0000 2.0000 1.0000 4.0000	Cantidad 0.0500 0.0250 0.0500 0.1200 0.1200 0.0700 0.0050 0.0050 3.0000 0.0250 0.1000	Precio S/. 10.02 8.93 8.01 0.35 0.10 1.75 331.25 304.75 357.75 1.12 33.15 7.95	0.50 0.22 0.40 1.12 0.04 0.01 0.12 0.07 1.52 1.79 3.55 0.03 0.83 0.80
Código 0147010002 0147010003 0147010004 0227000008 0227020011 0228000026 0230020097 0230020098 0337010001 0349020002 0349060004 Partida Rendimiento	Descripción OPERARIO OFICIAL PEON MECHA BLAI FULMINANTI DINAMITA BARRENO 5' BARRENO 8' HERRAMIEN COMPRESOI MARTILLO N 02.04 m3/DIA	Recurso Mano de Obra Materiales NCA E X 1/8" X 1/8" X 1/8" Equipos TAS MANUALES RA NEUMATICA 196 HP 600-690 PCM EUMATICO DE 25 kg CONFORMACIÓN DE TE	Unidad hh hh hh u u u u u serraplenes	2.0000 1.0000 2.0000 1.0000 4.0000	Cantidad 0.0500 0.0250 0.0500 0.1200 0.1200 0.0700 0.0050 0.0050 3.0000 0.0250 0.1000	Precio S/. 10.02 8.93 8.01 0.35 0.10 1.75 331.25 304.75 357.75 1.12 33.15 7.95	0.50 0.22 0.40 1.12 0.04 0.01 0.12 0.07 1.52 1.79 3.55 0.03 0.83 0.80 1.66
Código 0147010002 0147010003 0147010004 0227000008 0227020011 0228000026 0230020097 0230020098 0337010001 0349020002 0349060004 Partida Rendimiento	Descripción OPERARIO OFICIAL PEON MECHA BLAI FULMINANTI DINAMITA BARRENO 5' BARRENO 8' HERRAMIEN COMPRESOI MARTILLO N 02.04 m3/DIA	Recurso Mano de Obra Materiales NCA E X 1/8" X 1/8" X 1/8" Equipos TAS MANUALES RA NEUMATICA 196 HP 600-690 PCM EUMATICO DE 25 kg CONFORMACIÓN DE TE 790.0000 Recurso	Unidad hh hh hh u u u u u serraplenes	2.0000 1.0000 2.0000 1.0000 4.0000	Cantidad 0.0500 0.0250 0.0500 0.1200 0.1200 0.0700 0.0050 0.0050 3.0000 0.0250 0.1000	Precio S/. 10.02 8.93 8.01 0.35 0.10 1.75 331.25 304.75 357.75 1.12 33.15 7.95	0.50 0.22 0.40 1.12 0.04 0.01 0.12 0.07 1.52 1.79 3.55 0.03 0.83 0.80 1.66

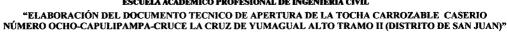
"ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN)"


0239050000		Materiales					4.50	
	AGUA		m	13		0.0100	1.50	0.02 0.02
		Equipos						0.02
0337010001	HERRAMIE	NTAS MANUALES	%	6MO		3.0000	0.32	0.01
0348040036	CAMION CI	STERNA 4 X 2 (AGUA) 178-210 HP 5000 gl	hi	m	1.0000	0.0101	65.00	0.66
0349090000	MOTONIVE	LADORA DE 125 HP	hi	m	1.0000	0.0101	130.00	1.31
0349110021	RODILLO LI	SO VIBRATORIO 8TN	hi	m	1.0000	0.0101	65.00	0.66
								2.64
Partida	02.05	PERFILADO Y COMPA	ACTADO DE S	SUBRASA	INTE			
Rendimiento	m2/DIA	3,220.0000	EQ. 3,	,220.0000	costo unitario direc	to por : m2	0.69	
Código	Descripció	n Recurso Mano de Obra	U	Inidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/
0147010004	PEON	mano de Obra	hl	h	2.0000	0.0050	8.01	0.04
		Faultana						0.04
0337010001	HERRAMIE	Equipos NTAS MANUALES	%	MO OM		3.0000	0.04	
348040036		STERNA 4 X 2 (AGUA) 178-210 HP 5000 gl		m	1.0000	0.0025	65.00	0.16
0349090000		LADORA DE 125 HP	hr		1.0000	0.0025	130.00	0.33
0349110021		SO VIBRATORIO 8TN	hr		1.0000	0.0025	65.00	0.16
								0.65
Partida	02.06	ELIMINACIÓN DE MA	TERIAL EXC	EDENTE				
Rendimiento	m3/DIA	850.0000	EQ. 8	50.0000	osto unitario direc	to por : m3	6.25	
Código	Descripció	n Recurso Equipos	U	inidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/
0348040037	CAMION VO	DLQUETE 15 m3	hr	m	3.0000	0.0282	65.00	1.83
3349040091	EXCAVADO	RA 200 - 330 HP	hr	m	2.0000	0.0188	185.00	3.48
0349060055	RETROEXC	AVADORA 75-110 HP	hr	m	1.0000	0.0094	100.00	0.94 6.2 5
Partida	03.01	DERECHO DE EXTRA	CCIÒN DE C	ANTERA				
Rendimiento	m3/DIA	1.0000	EQ. 1.		losto unitario direc	to por : m3	7.50	
Rendimiento Código	m3/DIA Descripció		EQ. 1.		:osto unitario direc	·	7.50 Precio S/.	Parcial S/.
	Descripció	n Recurso Materiales	EQ. 1.	.0000		·	Precio SI.	Parcial S/.
		n Recurso Materiales	EQ. 1.	.0000 inidad		·		7.50
Código	Descripció	n Recurso Materiales	EQ. 1.	.0000 inidad 13	Cuadrilla	Cantidad	Precio SI.	7.50
Código 0205300040 Partida	Descripció	n Recurso Materiales AFIRMADO	EQ. 1. U m TERIAL PARA	.0000 inidad 13	Cuadrilla	Cantidad 1.0000	Precio SI.	7.50
Código 0205300040 Partida Rendimiento	Descripció	n Recurso Materiales AFIRMADO EXTRACCIÓN DE MAT 570.0000	EQ. 1. U m TERIAL PARA EQ. 57	.0000 inidad i3 A AFIRM <i>A</i>	Cuadrilla NDO	Cantidad 1.0000 to por : m3	Precio S <i>I</i> . 7.50	7.50 7.50
Código 0205300040 Partida Rendimiento Código	Descripción MATERIAL d 03.02 m3/DIA Descripción	n Recurso Materiales AFIRMADO EXTRACCIÓN DE MAT 570.0000	EQ. 1. U M TERIAL PARA EQ. 57 U	nidad n3 A AFIRM <i>A</i> 70.0000 nidad	Cuadrilla NDO :osto unitario direc Cuadrilla	Cantidad 1.0000 to por : m3 Cantidad	Precio S/. 7.50 4.38 Precio S/.	7.50 7.50 Parcial S/
Código D205300040 Partida Rendimiento Código D147010003	Descripción MATERIAL A 03.02 m3/DIA Descripción OFICIAL	n Recurso Materiales AFIRMADO EXTRACCIÓN DE MAT 570.0000	EQ. 1. U M TERIAL PARA EQ. 57 U ht	nidad n3 A AFIRM <i>A</i> 70.0000 nidad	Cuadrilla ADO Costo unitario direc Cuadrilla 1.0000	Cantidad 1.0000 to por : m3 Cantidad 0.0140	Precio S/. 7.50 4.38 Precio S/. 8.93	7.50 7.50 Parcial S/.
Código D205300040 Partida Rendimiento Código D147010003	Descripción MATERIAL d 03.02 m3/DIA Descripción	n Recurso Materiales AFIRMADO EXTRACCIÓN DE MAT 570.0000	EQ. 1. U M TERIAL PARA EQ. 57 U	nidad n3 A AFIRM <i>A</i> 70.0000 nidad	Cuadrilla NDO :osto unitario direc Cuadrilla	Cantidad 1.0000 to por : m3 Cantidad	Precio S/. 7.50 4.38 Precio S/.	7.50 7.50 Parcial S/ 0.13 0.23
26digo 2205300040 Partida Rendimiento Código 2147010003 2147010004	Descripción MATERIAL / 03.02 m3/DIA Descripción OFICIAL PEON	n Recurso Materiales AFIRMADO EXTRACCIÓN DE MAT 570.0000 n Recurso Mano de Obra Equipos	EQ. 1. U M TERIAL PAR/ EQ. 57 Ui hi	.0000 inidad i3 A AFIRMA 70.0000 inidad in	Cuadrilla ADO Costo unitario direc Cuadrilla 1.0000	Cantidad 1.0000 to por : m3 Cantidad 0.0140 0.0281	7.50 4.38 Precio S/. 8.93 8.01	7.50 7.50 Parcial S/ 0.13 0.23 0.36
26digo 2205300040 Partida Rendimiento Código 2147010003 2147010004	Descripción MATERIAL / 03.02 m3/DIA Descripción OFICIAL PEON	n Recurso Materiales AFIRMADO EXTRACCIÓN DE MAT 570.0000 n Recurso Mano de Obra Equipos NTAS MANUALES	EQ. 1. U TERIAL PARA EQ. 57 UI hit	.0000 inidad i3 A AFIRMA 70.0000 inidad ih	Cuadrilla LOO Costo unitario direc Cuadrilla 1.0000 2.0000	Cantidad 1.0000 to por : m3 Cantidad 0.0140 0.0281 3.0000	Precio S/. 7.50 4.38 Precio S/. 8.93 8.01	7.50 7.50 Parcial S/. 0.13 0.23 0.36
Código D205300040 Partida Rendimiento Código D147010003 D147010004 D337010001 D349040091	Descripción MATERIAL / 03.02 m3/DIA Descripción OFICIAL PEON HERRAMIER	Materiales AFIRMADO EXTRACCIÓN DE MAT 570.0000 Recurso Mano de Obra Equipos NTAS MANUALES RA 200 - 330 HP	EQ. 1. U TERIAL PARA EQ. 57 Ui hit hit	.0000 inidad i3 A AFIRMA 70.0000 inidad ih	Cuadrilla LOO Cuadrilla 1.0000 2.0000	Cantidad 1.0000 to por : m3 Cantidad 0.0140 0.0281 3.0000 0.0140	Precio S/. 7.50 4.38 Precio S/. 8.93 8.01 0.36 185.00	7.50 7.50 Parcial St. 0.13 0.23 0.36 0.01 2.59
C ódigo 0205300040	Descripción MATERIAL / 03.02 m3/DIA Descripción OFICIAL PEON HERRAMIER	n Recurso Materiales AFIRMADO EXTRACCIÓN DE MAT 570.0000 n Recurso Mano de Obra Equipos NTAS MANUALES RA 200 - 330 HP AVADORA 75-110 HP	EQ. 1. U TERIAL PARA EQ. 57 UI hit	.0000 inidad i3 A AFIRMA 70.0000 inidad ih ih	Cuadrilla LOO Costo unitario direc Cuadrilla 1.0000 2.0000	Cantidad 1.0000 to por : m3 Cantidad 0.0140 0.0281 3.0000	Precio S/. 7.50 4.38 Precio S/. 8.93 8.01	7.50 7.50 Parcial S/. 0.13 0.23 0.36

234

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

Partida	04.01.02.02	RELL	ENO COMPACTADO CON	MATERIAL	DE CANTERA			
Rendimiento	m3/DIA	30.0000	EQ.	30.0000	osto unitario direc	to por : m3	22.06	
Código	Descripción	Recurso Mano de Obra		Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
0147010002	OPERARIO	mano de Obra		hh	1.0000	0.2667	10.02	2.67
0147010004	PEON			hh	3.0000	0.8000	8.01	6.41
		Madadalar						9.08
0205300040	MATERIAL A	Materiales FIRMADO		m3		1.2500	7.50	9.38
0239050000	AGUA			m3		0.0500	1.50	0.08
								9.46
0007040004	HEOD AMEN	Equipos		N110		0.0000	0.00	0.07
0337010001 0349030001		TAS MANUALES XXR VIBRATORIO TIPO	PLANCHA A HP	%MO hm	1.0000	3.0000 0.2667	9.08 12.17	0.27 3.25
0043030001	OOMI NOTAL	on value ono in o	T B WOIST T IR	1011	1.0000	0.2001	12.77	3.52
Partida	04.01.02.03	AFIR	MADO COMPACTADO FON	IDO TUBER	RIA E= 0.15m			
Rendimiento	m2/DIA	200.0000	EQ.	200.0000	osto unitario direc	to por : m2	4.34	
Código	Descripción			Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
0147010002	OPERARIO	Mano de Obra		hh	1.0000	0.0400	10.02	0.40
0147010002	PEON			hh	7.0000	0.2800	8.01	2.24
								2.64
		Materiales						
0205300040	MATERIAL A	-IRMADO		m3		0.1500	7.50	1.13 1.13
		Equipos						
0337010001	HERRAMIEN	TAS MANUALES		%MO		3.0000	2.64	0.08
0349030001	COMPACTAE	OOR VIBRATORIO TIPO	PLANCHA 4 HP	hm	1.0000	0.0400	12.17	0.49
								0.57
Partida	04.01.02.04	ELIM	INACIÓN DE MATERIAL E	KCEDENTE	HASTA BOTADER	O MAS CER	CANO	
Rendimiento	m3/DIA	200.0000	EQ.	200.0000	costo unitario direc	to por : m3	7.67	
Código	Descripción	Recurso Mano de Obra		Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
0147010002	OPERARIO	mano de obra		hh	1.0000	0.0400	10.02	0.40
0147010004	PEON			hh	2.0000	0.0800	8.01	0.64
								1.04
0337010001	HERRAMIEN.	Equipos Tas manuales		%М О		3.0000	1.04	0.03
0348040037		QUETE 15 m3		hm	1.0000	0.0400	65.00	2.60
0349060055	RETROEXCA	VADORA 75-110 HP		hm	1.0000	0.0400	100.00	4.00
								6.63
Partida	04.01.03.01	CON	CRETO PARA ALIVIADERO)S fc=175 K	g/cm2			
Rendimiento	m3/DIA	16.0000	EQ.	16.0000	osto unitario direc	to por : m3	268.21	
Código	Descripción	Recurso Mano de Obra		Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
0147010002	OPERARIO			hh	2.0000	1.0000	10.02	10.02
0147010003	OFICIAL			hh	2.0000	1.0000	8.93	8.93
0147010004	PEON			hh	4.0000	2.0000	8.01	16.02
								34.97

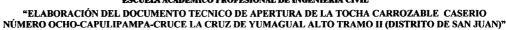

"ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN)"

-	<u> </u>										_
			Materiales								
	0205000001	GRAVILLA DE				m3		0.5500	50.00	27.50	
	0205010004	ARENA GRUI				m3		0.5400	70.00	37.80	
	0221000001		ORTLAND TIPO I	(42.5 kg)		bls		8.4300	18.40	155.11	
	0239050000	AGUA		. 0,		m3		0.1850	1.50	0.28	
										220.69	
			Equipos								
	0337010001	HERRAMIEN	TAS MANUALES			%MO		3.0000	34.97	1.05	
	0348010011	MEZCLADOR	A DE CONCRET	ODE 9-11p3		hm	1.0000	0.5000	12.00	6.00	
	0349070004	VIBRADOR D	E CONCRETO 4	HP 2.40"		hm	1.0000	0.5000	11.00	5.50	
										12.55	
	Partida	04.01.03.02		ENCOFRADO Y DESEN	COFRAD	O DE ALIV	/IADEROS				
	Rendimiento	m2/DIA	14.0000		EQ.	14.0000	osto unitario direc	to por : m2	24.43		
	Código	Descripción	Recurso			Unidad	Cuadrilla	Cantidad	Precio SI.	Parcial S/.	
	•	•	Mano de Obra								
	0147010002	OPERARIO				hh	1.0000	0.5714	10.02	5.73	
	0147010003	OFICIAL				hh	1.0000	0.5714	8.93	5.10	
	0147010004	PEON				hh	1.0000	0.5714	8.01	4.58	
										15.41	
			Materiales								
	0202000015	ALAMBRE NE				kg		0.2000	4.03	0.81	
	0202010005		RA MADERA CON	CABEZA DE 3"		kg		0.1000	4.03	0.40	
	0243600000	MADERA EU	CALIPTO (p2)			p2		3.5000	2.10	7.35 8.56	
			Equipos							0.30	
	0337010001	HERRAMIENT	TAS MANUALES			%MO		3.0000	15.41	0.46	
	0001010001	TILL COUPILLY	INO MINITONEED			/UNIO		0.0000	10.71	0.46	
	Partida	04.01.04.01		TUBERÌA TMC 36"							
	Rendimiento	m/DIA	10.0000		EQ.	10.0000	Costo unitario dire	ecto por : m	343.50		
	Código	Descripción	Dagurea			Unidad	Cuadrilla	Cantidad	Precio SI.	Parcial S/.	
	Couldo	Descripcion	Mano de Obra			Ollidad	Queuma	Cantudad	11600 01.	i at Graf Of.	
	0147010003	OFICIAL				hh	1.0000	0.8000	8.93	7.14	
	0147010004	PEON				hh	4.0000	3.2000	8.01	25.63	
										32.77	
			Materiales								
	0209010044	ALCANTARIL	LA METALICA 0=	36" C=14		m		1.0500	295.00	309.75	
										309.75	
	0007040004	HEDDAMEN	Equipos			0/140		2.0000	00.77	0.00	
	0337010001	HERRAMIEN	TAS MANUALES			%М О		3.0000	32.77	0.98 0.98	
							•			0.30	
	Partida	04.01.05.01		EMBOQUILLADO DE SA	ALIDA						
	Rendimiento	m2/DIA	20.0000		EQ.	20.0000	costo unitario direc	to por : m2	34.26		
	Código	Descripción	Recurso			Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.	
		- voor ipvivii	Mano de Obra			~444	- Anna III	-w		out o/-	
	0147010002	OPERARIO				hh	1.0000	0.4000	10.02	4.01	
	0147010003	OFICIAL				hh	1.0000	0.4000	8.93	3.57	
	0147010004	PEON				hh	2.0000	0.8000	8.01	6.41	
										13.99	

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

		Materiales						
0005000000	DIEDOA OD	Materiales		2		0.0500	40.00	40.00
0205000009	PIEDRA GRA			m3		0.2500	40.00	10.00
0221000001		PORTLAND TIPO I (42.5 kg)		bis		0.3030	18.40	5.58
0238000000		(PUESTO EN OBRA)		m3		0.0640	65.00	4.16
0239050000	AGUA			m3		0.0700	1.50	0.11
								19.85
		Equipos						
0337010001	HERRAMIEN	NTAS MANUALES		%MO		3.0000	13.99	0.42
								0.42
Partida	04.02.01.01	CONFORMACIÓN DE C	UNETAS	EN MATER	RIAL SUELTO			
Rendimiento	m2/DIA	200.0000	EQ.	200.0000	osto unitario direc	to por : m2	3.36	
0(4)	0				04.49.	0414-4	Decele Of	Descript Of
Código	Descripció			Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
		Mano de Obra						
0147010002	OPERARIO			hh	1.0000	0.0400	10.02	0.40
0147010004	PEON			hh	7.0000	0.2800	8.01	2.24
								2.64
		Materiales						
0239050000	AGUA			m3		0.1000	1.50	0.15
								0.15
		Equipos						
0337010001	HERRAMIEN	ITAS MANUALES		%MO		3.0000	2.64	0.08
0349030001	COMPACTA	DOR VIBRATORIO TIPO PLANCHA 4 HP		hm	1.0000	0.0400	12.17	0.49
								0.57
Partida	05.01	HITOS KILOMETRICOS						
Rendimiento	u/DIA	16.0000	EQ.	16.0000	Costo unitario din	ecto por : u	61.11	
Código	Descripción	Docurro		Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
Coungo	Descripcion	Mano de Obra		Ollidad	Ouduina	Valladad	11000 02.	i ai ciai ci.
04.47040000	ODEDADIO	mano de Obra		hh	2.0000	1.0000	10.02	10.02
0147010002	OPERARIO							12.02
0147010004	PEON			hh	3.0000	1.5000	8.01	22.04
		***********						22.04
0000000045		Materiales				0.5000	4.00	0.07
0202000015	ALAMBRE N			kg		0.5880	4.03	2.37
0202010003		RA MADERA CON CABEZA DE 2"		kg		0.0800	4.03	0.32
0202110018	ACERO fy=			kg		2.1500	3.17	6.82
0205000001	GRAVILLA E			m3		0.0160	50.00	0.80
0205010004	ARENA GRI			m3		0.0140	70.00	0.98
0221000001		PORTLAND TIPO I (42.5 kg)		bls		0.6200	18.40	11.41
0243600000		JCALIPTO (p2)		p2		6.2900	2.10	13.21
0254010001	PINTURA E	SMALTE SINTETICO		gal		0.0500	50.00	2.50
								38.41
		Equipos						
0337010001	HERRAMIEN	NTAS MANUALES		%MO		3.0000	22.04	0.66
								0.66
		. •						
Partida	05.02	SEÑALES INFORMATIV	/AS					
Dec #		£ 0000	F.0	E 0000	Cook "	nato === : ::	·000 40	
Rendimiento	u/DIA	5.0000	EQ.	5.0000	Costo unitario dir	ectopor∶u	333.10	
Cárlina	Dosovinsia	n Darwron		Unidad	دانخانات	Cantidad	Precio S/.	Parcial S/.
Código	Descripción	Mano de Obra		Uniudu	Cuauriila	Carrudau	rieuu al.	raillat 31.
0147010002	OPERARIO	maily ut voia		ħh	1.0000	1.6000	10.02	16.03
0147010002	PEON			hh	2.0000	3.2000	8.01	25.63
VITI U IUUUT	LON			****	2.0000	0.2000	0.01	41.66
								41.00

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL


"ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN)"

Partida	06.01		MITIGACION DE AREAS EN C	ANTERA				
Rendimiento	ha/DIA	2.0000	E	Q. 2.0000	Costo unitario dire	cto por : ha	1,982.35	
Código	Descripción	Recurso Mano de Obra		Unidad	Cuadrilla	Cantidad	Precio SI.	Parcial SI.
0147010004	PEON	Mano de Obia		hh	3.0000	12.0000	8.01	96.12
0147010023	CONTROLAD	OR OFICIAL		hh	0.2000	0.8000	10.13	8.10
				••••	0.200	0.0000		104.22
		Equipos						
0337010001	HERRAMIENT	TAS MANUALES		%МО		3.0000	104.22	3.13
0348040037	CAMION VOL	QUETE 15 m3		hm	0.7500	3.0000	65.00	195.00
0349040091	EXCAVADOR	A 200 - 330 HP		hm	1.0000	4.0000	185.00	740.00
0349040092	TRACTOR DE	E EMPUJE 300-3:	30 HP	hm	1.0000	4.0000	235.00	940.00
								1,878.13
Partida	06.02		RESTAURACIÓN DE AREAS A	ASIGNADAS	COMO BOTADERO	s		
Rendimiento	ha/DIA	1.5000	E	Q. 1.5000	Costo unitario dire	cto por : ha	1,973.80	
Código	Descripción			Unidad	Cuadrilla	Cantidad	Precio SI.	Parcial SI.
0147010004	PEON	Mano de Obra		hh	4.0000	21.3333	8.01	170.88
0147010004	CONTROLAD	OD OEICIAI		hh hh	9.2000	1.0667	10.13	10.81
0147010023	CONTROLL	OR OF ICIAL		181	0.2000	1.0007	10.13	181.69
		Equipos						101.05
0337010001	HERRAMIENT	TAS MANUALES		%МО		3.0000	181.69	5,45
0349040092		EMPUJE 300-3	NA HIP	hm	1.0000	5.3333	235.00	1,253.33
0349060055		VADORA 75-110		hm	1.0000	5.3333	100.00	533.33
33.030000	1121110211011		•		1.0000	0.0000	100.00	1,792.11
Partida	06.03		RESTAURACIÓN DE ÁREAS U	ITILIZADAS	COMO CAMPAMEN	ITO Y PATIO	DE MAQUINAR	RIA
Rendimiento	ha/DIA	1.6000	E	Q. 1.6000	Costo unitario dire	cto por : ha	675.44	
Código	Descripción (Recurso Mano de Obra		Unidad	Cuadrilla	Cantidad	Precio SI.	Parcial S/.
0147010004	PEON			hħ	4.0000	20.0000	8.01	160.20
0147010023	CONTROLADO	OR OFICIAL		ħh	0.2000	1.0000	10.13	10.13
								170.33
		Equipos						
0337010001	HERRAMIENT	AS MANUALES		%MO		3.0000	170.33	5.11
0349060055	RETROEXCA	VADORA 75-110 I	HP	hm	1.0000	5.0000	100.00	500.00
								505.11
Davida	07.04		EL ETT TENNESTNE					
Partida	07.01		FLETE TERRESTRE					
Rendimiento	glb/DIA		EC	Ω.	Costo unitario direc	to por : glb	14,255.22	
Código	Descripción I	Recurso Materiales		Unidad	Cuadrilia	Cantidad	Precio S/.	Parcial S/.
0232000053	FLETE TERRE			gľb		1.0000	14,255.22	14,255.22
222200000				שיש			1 1,400.44	14,255.22
								,

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

S10

Precios y cantidades de recursos requeridos por tipo

Obra	0403001	"ELABORACION DEL DOCUMENTO 'CARROZABLE CASERIO NUMERO C YUMAGUAL ALTO TRAMO II (DISTRI	CHO - CAPUL	.iPAMPA - CRUCE I		
Subpresupuest Fecha	001 24/03/2013	"ELABORACION DEL DOCUMENTO	TECNICO DE A	APERTURA DE LA T	ROCHA CARROZ	ABLE CASERIO
Lugar	060112	CAJAMARCA - CAJAMARCA - SAN	JUAN			
Código	Recurso		Unida	Cantidad	Precio S/.	Parcial S/.
		MANO DE C	BRA			
0147000032	TOPOGRAFO		hh	56.8480	12.43	706.62
0147000032	OPERARIO		hh	3,648.1891	10.02	36,554.85
0147010002	OFICIAL		hh	4,966.5985	8.93	44,351.72
0147010004	PEON		hh	17,537.4098	8.01	140,474.65
0147010023	CONTROLADOR O	FICIAL	hh	60.7300	10.13	615.19
					-	222,703.03
		MATERIAL	.ES			
0202000015	ALAMBRE NEGRO	# 8	kg	279.9560	4.03	1,128.22
0202010002		DERA CON CABEZA DE 2 1/2"	kg	5.2000	4.03	20.96
0202010003	CLAVOS PARA MA	DERA CON CABEZA DE 2"	kg	0.4800	4.03	1.93
0202010005	CLAVOS PARA MA	DERA CON CABEZA DE 3"	kg	138.2140	4.03	557.00
0202110018	ACERO fy =4200 kg	/cm2	kg	12.9000	3.17	40.89
0202170001	CLAVOS PARA CA		kg	6.0000	4.03	24.18
0202510001	PERNOS 1/4" X 2 1		pza	196.0000	1.50	294.00
0202510068	PERNOS 3/4" X 13		pza	20.0000	2.00	40.00
0205000001	GRAVILLA DE RIO		m3	180.0120	50.00	9,000.60
0205000009	PIEDRA GRANDE D	DE 8"	m3	68.1450	40.00	2,725.80
0205000011	PIEDRA MEDIANA I	ĎE 6*	m3	1.7200	40.00	68.80
0205010004	ARENA GRUESA		m3	176.7288	70.00	12,371.02
0205300040	MATERIAL AFIRMA	NDO	m3	5,396.1995	7.50	40,471.50
0209010044		ETALICA 0=36" C=14	m	149.8455	295.00	44,204.42
0221000001	CEMENTO PORTL	AND TIPO 1 (42.5 kg)	bls	2,880.6680	18.40	53,004.29
0221010034		1EZCLADO fc=140 kg/cm2	m3	1.2000	201.22	241.46
0227000008	MECHA BLANCA	•	m	12,862.0920	0.35	4,501.73
0227020011	FULMINANTE		u	12,862.0920	0.10	1,286.21
0228000026	DINAMITA		u	4,419.8057	1.75	7,734.66
0229040091	CINTA TOPOGRAI	FICA	m	0.1620	0.01	0.00
0229060003	YESO EN BOLSAS	DE 18 kg	bls	34.2850	6.50	222.85
0230020096	BARRENO 5' X 1/8'	•	u	21.4368	331.25	7,100.94
0230020097	BARRENO 3' X 1/8'	n	u	22.0730	304.75	6,726.75
0230020098	BARRENO 8' X 1/8'	n	u	22.0730	357.75	7,896.62
0232000053	FLETE TERRESTR	E	glb	1.0000	14,255.22	14,255.22
0238000000	HORMIGON (PUES	TO EN OBRA)	m3	26.0721	65.00	1,694.69
0239050000	AGUA		m3	2,212.5013	1.50	3,318.75
0239900100	VENTANA DE MAD	ERA DE 0.80 X 1.20 m	u	2.0040	60.00	120.24
0239990051	PUERTA DE TRIPL	AY CONTRAPLACADA DE 0.80 X 2.00 m	pza	2.0040	150.00	300.60
0239990052	PUERTA DE TRIPL	AY CONTRAPLACADA DE 0.90 X 2.00 m	pza	2.0040	160.00	320.64
0243040000	MADERA TORNILL	0	p2	61.0000	2.90	176.90
0243600000	MADERA EUCALIP	TO (p2)	p2	5,669.0300	2.10	11,904.96
0244010000	ESTACA DE MADE	RA	p2	278.5300	0.50	139.27
0244030023	TRIPLAY DE 4' X 8'	X 8 mm	ρl	20.4000	36.90	752.76
0245010007	TRIPLAY DE 12 mm	n de 1.20 m X 2.40 m.	pl	4.0000	81.00	324.00
0254010001	PINTURA ESMALT	E SINTETICO	gal	10.2800	50.00	514.00
0254060000	PINTURA ANTICOF	RROSIVA	gal	10.4400	40.00	417.60
0254110011	PINTURA ESMALT	E BLANCO	gal	0.8800	50.00	44.00
0254450073	PINTURA FOSFOR	ECENTE	gal	13.9620	45.00	628.29
0256900002		NIZADA ZINC 28 CANALES 1.83 X 0.830 m	pl	51.0000	11.76	599.76
0004000040	X 0.4 mm	UZADA DE 4 02 V 0 00	 0	22 4400	67.00	2 226 65
0261000012 0265020080	TUBO FIERRO GAI	NZADA DE 1.83 X 0.90 m	m2 m	33.1199 156.0000	67.23 30.00	2,226.65 4,680.00
V2VVV2VV0V	TODO I ILKNO GAI	LY/NTILLIUU L	···	150.0000	-	
						242,083.16

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN)"

	EQUIPOS				
0337010001	HERRAMIENTAS MANUALES	%MO			6,673.64
0337540001	MIRAS Y JALONES	hm	43.2000	1.50	64.80
0348010011	MEZCLADORA DE CONCRETO DE 9-11p3	hm	163.5600	12.00	1,962.72
0348040036	CAMION CISTERNA 4 X 2 (AGUA) 178-210 HP 5000 gl	hm	995.3002	65.00	64,694.51
0348040037	CAMION VOLQUETE 15 m3	hm	592.8047	65.00	38,532.31
0348130081	PLATAFORMA Y REMOLCADOR (TRASLADO DE TRACTOR	hm	1.0000	185.00	185.00
0349020002 0349030001 0349040091 0349040092 0349060004 0349060055 0349070004 0349080013 0349090000 0349110021 0349190003	DE ORUGAS) COMPRESORA NEUMATICA 196 HP 600-690 PCM COMPACTADOR VIBRATORIO TIPO PLANCHA 4 HP EXCAVADORA 200 - 330 HP TRACTOR DE EMPUJE 300-330 HP MARTILLO NEUMATICO DE 25 kg RETROEXCAVADORA 75-110 HP VIBRADOR DE CONCRETO 4 HP 2.40" ZARANDA MECANICA MOTONIVELADORA DE 125 HP RODILLO LISO VIBRATORIO 8TN NIVEL TOPOGRAFICO CON TRIPODE	hm hm hm hm hm hm d hm hm	1,579.9688 579.0027 2,472.7973 1,922.2357 6,309.5984 239.0191 163.5600 11.5047 995.3003 995.3002 43.2000	33.15 12.17 185.00 235.00 7.95 100.00 11.00 11.10 130.00 65.00 8.00	52,375.97 7,046.46 457,467.50 451,725.39 50,161.31 23,901.91 1,799.16 127.70 129,389.04 64,694.51 345.60
0349880020	ESTACION TOTAL	hm	56.8480	12.50	710.60
				_	

1,351,858.13

Total S/. 1,816,644.32

FACULTAD DE INGENIERÍA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN)'

S10

Fórmula Polinómica - Agrupamiento Preliminar

Presupuesto

0403001 "ELABORACION DEL DOCUMENTO TECNICO DE APERTURA DE LA TROCHA CARROZABLE

CASERIO NUMERO OCHO - CAPULIPAMPA - CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II

(DISTRITO DE SAN JUAN)"

Subpresupuesto

001 "ELABORACION DEL DOCUMENTO TECNICO DE APERTURA DE LA TROCHA CARROZABLE CASERIO

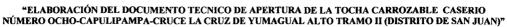
NUMERO OCHO - CAPULIPAMPA - CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE

SAN JUAN)"

Fecha presupuesto

24/03/2013

Moneda


NUEVOS SOLES

Indice	Descripción	% Inicio	% Saldo	Agrupamiento
02	ACERO DE CONSTRUCCION LISO	0.088	0.000	
03	ACERO DE CONSTRUCCION CORRUGADO	0.002	0.000	
05	AGREGADO GRUESO	2.744	2.816	438
09	ALCANTARILLA METALICA	1.877	0.000	
21	CEMENTO PORTLAND TIPO I	2.260	6.702	+02+03+61+54+56+44+45+09+65+43+30+28+27
27	DETONANTE	0.227	0.000	
28	DINAMITA	0.328	0.000	
29	DOLAR	0.010	0.000	
30	DOLAR MAS INFLACION DEL MERCASO USA	0.938	0.000	
32	FLETE TERRESTRE	6.339	0.000	
37	HERRAMIENTA MANUAL	0.286	0.000	
38	HORMIGON	0.072	0.000	
39	INDICE GENERAL DE PRECIOS AL CONSUMIDOR	17.343	17.343	
43	MADERA NACIONAL PARA ENCOFRADO Y CARPINTERIA	0.008	0.000	
44	MADERA TERCIADA PARA CARPINTERIA	0.069	0.000	
45	MADERA TERCIADA PARA ENCOFRADO	0.519	0.000	
47	MANO DE OBRA	9.468	9.754	+37
48	MAQUINARIA Y EQUIPO NACIONAL	4.471	0.000	
49	MAQUINARIA Y EQUIPO IMPORTADO	52.565	63.385	+48+29+32
54	PINTURA LATEX	0.068	0.000	
56	PLANCHA DE ACERO LAC	0.025	0.000	
61	PLANCHA GALVANIZADA	0.094	0.000	
65	TUBERIA DE ACERO NEGRO	0.199	0.000	
	Total	100.000	100.000	

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

S10

Ubicación Geográfica

Fórmula Polinómica

0403001 "ELABORACION DEL DOCUMENTO TECNICO DE APERTURA DE LA TROCHA CARROZABLE Presupuesto CASERIO NUMERO OCHO - CAPULIPAMPA - CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II /DICTDITO DE CAM HIAMI" Subpresupuesto 00' "ELABORACION DEL DOCUMENTO TECNICO DE APERTURA DE LA TROCHA CARROZABLE CASERIO NUMERO OCHO - CAPULIPAMPA - CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN 24/03/2013 Fecha Presupuesto Moneda **NUEVOS SOLES**

 $K = 0.098^{+}(Mr/Mo) + 0.067^{+}(Cr/Co) + 0.028^{+}(Ar/Ao) + 0.634^{+}(Mr/Mo) + 0.173^{+}(Ir/Io)$

060112 CAJAMARCA - CAJAMARCA - SAN JUAN

Monomi	Factor (%	6) Símbolo	Indice De	scripción
1	0.098 100.00	00 M	47 MA	INO DE OBRA
2	0.067 100.00	00 C	21 CE	MENTO PORTLAND TIPO I
3	0.028 100.00	00 A	05 AG	REGADO GRUESO
4	0.634 100.00	00 M	49 MA	QUINARIA Y EQUIPO IMPORTADO
5	0.173 100.00	0 1	39 INC	DICE GENERAL DE PRECIOS AL CONSUMIDOR

FACULTAD DE INGENIERIA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN)"

DEDUCCIÓN DE GASTOS GENERALES

Proyecto:

"ELABORACIÓN DEL DOCUMENTO TÉCNICO DE APERTURA DE LA TROCHA CARROZABLE CASERÍO NÚMERO OCHO-

CAPULIPAMPA - CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II(DISTRITO DE SAN JUAN)"

Ubicación

Dep.

CAJAMARCA

Prov. CAJAMARCA

Localidad SAN JUAN

FECHA

Marzo del 2013

						Costo directo	1,816,797.24
ÍTEM	DESCRIPCIÓN	UNIDAD	CANTIDAD	INCIDENCIA	P. U.	PARCIAL	SUB TOTAL
1.00	GASTOS GENERALES FIJOS						73, 633. 54
1.01	PLACA RECORDATORIA						-
	Placa Recordatoria	Und.	1	1	3560.9	3560.9	
1.02	MOVILIDAD						
	Movilidad - combustible	Mes	6	1	6330.9	37985.4	
1.03	MATERIALES DE ESCRITORIO						
	Copias e impresiones	Mes	6	1	2160.9	12965.4	
1.04	IMPLEMENTOS DE SEGURIDAD						
	Chaleco, guantes, lentes, cascos	glb.	2	1	9560.92	19121.84	
2.00	GASTOS GENERALES VARIABLES						161,830.80
2.01	PERSONAL TECNICO, ADMINISTRATIVO Y AUXILIAR						
	Ingeniero Residente	Mes	6	1	6560.9	39365.4	
	Ingeniero Supervisor	Mes	6	1	6060.9	36365.4	
	Almacenero	Mes	6	2	1800	21600	
	Guardian	Mes	6	2	1500	18000	
	Maestro de Obra	Mes	6	1	2500	15000	
2,02	PRUEBAS Y ENSAYOS DE LABORATORIO						
	Estudio de Suelos	unid.	12	1	750	9000	
	Pruebas de Concreto	unid.	30	1	750	22500	
3.00	GASTOS DE LIQUIDACION						13, 460. 56
	Gastos de Liquidación	Glb	1	1	13460.56	13460.56	
	TOTAL DE GASTOS GENERALES	13.70%				S/.	248,924.90

"ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN)"

FLETE RURA	L Y TERRESTRE
Proyecto:	"ELABORACION DEL DOCUMENTO TECNICO DE APERTURA DE LA TROCHA CARROZABLE CASERIO Nº 8 - CAPULIPAMPA - CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO 2 (DISTRITO DE SAN JUAN) "
Descripción del Trabajo:	CALCULO DEL FLETE TERRESTRE

1. FLETE POR PESO

MATERIALES	UNIDAD	CANTIDAD	PESO UNIT.	PESO TOTAL
ALAMBRE NEGRO# 8	kg	279.9560	1	279.96
CLAVOS PARA MADERA CON CABEZA DE 2 1/2"	kg	5.2000	1	5.20
CLAVOS PARA MADERA CON CABEZA DE 2"	kg	0.4800	1	0.48
CLAVOS PARA MADERA CON CABEZA DE 3"	kg	138.2140	1	138.21
ACERO fy=4200 kg/cm2	kg	12.9000	1	12.90
CLAVOS PARA CALAMINA	kg	6.0000	1	6.00
PERNOS 1/4" X 2 1/2"	pza	196.0000	0.03	5.88
PERNOS 3/4" X 13 1/2"	pza	20.0000	0.025	0.50
ALCANTARILLA METALICA 0=36" C=14	m.	149.8455	200	29969.10
CEMENTO PORTLAND TIPO I (42.5 kg)	bls	2,880.6680	42.5	122428.39
MECHA BLANCA	m	12,862.0920	0.01	128.62
FULMINANTE	u	12,862.0920	0.01	128.62
DINAMITA	u	4,419.8057	0.01	44.20
CINTA TOPOGRAFICA	m	0.1620	0.008	0.00
YESO EN BOLSAS DE 18 kg	bls	34.2850	18	617.13
BARRENO 5' X 1/8"	u	21.4368	0.1	2.14
BARRENO 3" X 1/8"	u	22.0730	0.1	2.21
BARRENO 8' X 1/8"	u	22.0730	0.1	2.21
VENTANA DE MADERA DE 0.80 X 1.20 m	U	2.0040	0.1	0.20
PUERTA DE TRIPLAY CONTRAPLACADA DE 0.80 X 2.00 m	pza	2.0040	0.05	0.10
PUERTA DE TRIPLAY CONTRAPLACADA DE 0.90 X 2.00 m	pza	2.0040	0.05	0.10
MADERA TORNILLO	p2	61.0000	0.015	0.92
MADERA EUCALIPTO (p2)	p2	5,669.0300	0.015	85.04
ESTACA DE MADERA	p2	278.5300	0.001	0.28
TRIPLAY DE 4' X 8' X 8 mm	pl	20.4000	0.01	0.20
TRIPLAY DE 12 mm de 1.20 m X 2.40 m.	pl	4.0000	0.01	0.04
PINTURA ESMALTE SINTETICO	gal	10.2800	0.006	0.06
PINTURA ANTICORROSIVA	gal	10.4400	0.006	0.06
PINTURA ESMALTE BLANCO	gal	0.8800	0.006	0.01
PINTURA FOSFORECENTE	gal	13.9620	0.006	0.08
CALAMINA GALVANIZADA ZINC 28 CANALES 1.83 X 0.830 m X 0.4 mm	pl	51.0000	0.008	0.41
PLANCHA GALVANIZADA DE 1.83 X 0.90 m	m2	33.1199	0.008	0.26
TUBO FIERRO GALVANIZADO 2"	m	156.0000	0.005	0.78
TOTAL				153860.29

UNIDAD DE TRANSPORTE	
CAPACIDAD DEL CAMIÓN (M3)	15.00
COSTO POR VIAJE	S/. 350.00
CAPACIDAD DEL CAMIÓN (KG)	15000.00
FLETE POR KG	S/. 0.02
FLETE POR PESO	S/. 3,590.07
TOTAL FLETE EN PESO	S/. 3,590.07

2. FLETE POR VOLUMEN

MATERIALES	UNIDAD	CANTIDAD	VOLUMEN	VOL. TOTAL
GRAVILLA DE RIO 3/4"	m3	180.0120	1.00	180.01
PIEDRA GRANDE DE 8"	m3	68.1450	1.00	68.15
PIEDRA MEDIANA DE 6"	m3	1.7200	1.00	1.72
ARENA GRUESA	m3	176.7288	1.00	176.73
TOTA	426.61			

UNIDAD DE TRANSPORTE	
CAPACIDAD DEL CAMIÓN (M3)	15.00
COSTO POR VIAJE	S/. 375.00
FLETE POR M3	S/. 25.00
FLETE POR VOLUMEN	S/. 10,665.15
TOTAL FLETE EN PESO	S/. 10.665.15

COSTO TOTAL DEL FLETE TERRESTRE

S/. 14,255.22

FACULTAD DE INGENIERÍA

ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN

ESPECIFICACIONES TÉCNICAS

01.00.00 OBRAS PRELIMINARES.

01.01.00 MOVILIZACIÓN Y DESMOVILIZACIÓN DE EQUIPO

Descripción: El Contratista, deberá realizar el trabajo de suministrar, reunir y transportar todo el equipo y herramientas necesarios para ejecutar la obra, con la debida anticipación a su uso en obra, de tal manera que no

genere atraso en la ejecución de la misma.

Método de Medición: Para efectos del pago, la medición será en forma global, de acuerdo al equipo realmente

movilizado a la obra y a lo indicado en el análisis de precio unitario respectivo, partida en la que el Contratista

indicará el costo de movilización y desmovilización de cada uno de los equipos. La suma a pagar por la partida

MOVILIZACION Y DESMOVILIZACION será la indicada en el Presupuesto Ofertado por el Contratista.

Bases de Pago: El trabajo será pagado en función del equipo movilizado a obra, como un porcentaje del precio

unitario global del contrato para la partida MOVILIZACION Y DESMOVILIZACION DE EQUIPO, hasta un 50%,

entendiéndose que dicho precio y pago constituirá compensación total por toda la mano de obra, equipos y

herramientas, materiales e imprevistos necesarios para completar satisfactoriamente la partida, y se haya ejecutado

por lo menos el 5% del Monto del contrato, sin incluir el monto de la movilización. El 50% restante será pagado

cuando se haya concluido el 100% del monto de la obra y haya sido retirado todo el equipo de la obra con

autorización del supervisor.

01.02.00 CAMPAMENTO PROVISIONAL DE LA OBRA.

Descripción: Son las construcciones provisionales que servirán para albergue (ingenieros, técnicos y obreros)

almacenes, comedores y talleres de reparación y mantenimiento de equipo. Asimismo, se ubicarán las oficinas de

dirección de las obras El Contratista, debe tener en cuenta dentro de su propuesta el dimensionamiento de los

campamentos para cubrir satisfactoriamente las necesidades básicas descritas anteriormente las que contarán con

sistemas adecuados de agua, alcantarillado y de recolección y eliminación de desechos no orgánicos, etc.

permanentemente

Los campamentos y oficinas deberán reunir todas las condiciones básicas de habitabilidad, sanidad e higiene; El

Contratista proveerá la mano de obra, materiales, equipos y herramientas necesarias para cumplir tal fin.

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN

El área destinada para los campamentos y oficinas provisionales deberá tener un buen acceso y zonas para el

estacionamiento de vehículos, cuidando que no se viertan los hidrocarburos en el suelo. Una vez retirada la

maquinaria de la obra por conclusión de los trabajos, se procederá al reacondicionamiento de las áreas ocupadas

por el patio de máquinas; en el que se incluya la remoción y eliminación de los suelos contaminados con residuos

de combustibles y lubricantes, así como la correspondiente revegetación, con plantas de la zona.

Los parques donde se guarden los equipos estarán dotados de dispositivos de seguridad para evitar los derrames

de productos hidrocarbonados o cualquier otro material nocivo que pueda causar contaminación en la zona

circundante.

A los efectos de la eliminación de materiales tóxicos, se cumplirán las normas y reglamentos de la legislación local,

en coordinación con los procedimientos indicados por la autoridad local competente.

La incineración de combustibles al aire libre se realizará bajo la supervisión continua del personal competente del

contratista. Este se abstendrá de quemar neumáticos, aceite para motores usados, o cualquier material similar que

pueda producir humos densos. La prohibición se aplica a la quema realizada con fines de incineración o para

aumentar el poder de combustión de otros materiales.

Los campamentos deberán estar provistos de los servicios básicos de saneamiento. Para la disposición de las

excretas se podrán construir silos artesanales en lugares seleccionados que no afecten las fuentes de agua

superficial y subterránea por el vertimiento y disposición de los residuos domésticos que se producen en los

campamentos. Al final de la obra, los silos serán convenientemente sellados con el material excavado.

El Contratista implementará en forma permanente de un botiquín de primeros auxilios, a fin de atender urgencias de

salud del personal de obra.

Si durante el período de ejecución de la obra se comprobara que los campamentos u oficinas provisionales son

inapropiados, inseguros o insuficientes, el Contratista deberá tomar las medidas correctivas del caso a satisfacción

del Ingeniero Supervisor.

Será obligación y responsabilidad exclusiva del Contratista efectuar por su cuenta y a su costo, la construcción, el

mantenimiento de sus campamentos y oficinas.

Bases de pago. La construcción o montaje de los campamentos y oficinas provisionales será pagado por m2, para

la partida CAMPAMENTO PROVISIONAL DE OBRA, entendiéndose que dicho precio y pago constituirá

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN

compensación total por toda mano de obra, equipo, herramientas, materiales e imprevistos necesarios para

completar satisfactoriamente la partida.

También estarán incluidos en los precios unitarios del contrato todos los costos en que incurra el contratista para

poder realizar el mantenimiento, reparaciones y reemplazos de sus campamentos, de sus equipos y de sus

instalaciones; la instalación y el mantenimiento de los servicios de agua, sanitarios, el desmonte y retiro de los

equipos e instalaciones y todos los gastos generales y de administración del contrato.

01.03.00 CARTEL DE OBRA DE (2.40 x 5.40 m)

Descripción: Será de acuerdo al modelo vigente propuesto por la Entidad.

El cartel de obra serán ubicado en lugar visible de la carretera de modo que, a través de su lectura, cualquier

persona pueda enterarse de la obra que se está ejecutando; la ubicación será previamente aprobada por el

Ingeniero Supervisor. El costo incluirá su transporte y colocación.

Método de Medición: El trabajo se medirá por unidad; ejecutada, terminada e instalada de acuerdo con las

presentes especificaciones; deberá contar con la conformidad y aceptación del Ingeniero Supervisor.

Bases de Pago: El Cartel de Obra, medido en la forma descrita anteriormente, será pagado al precio unitario del

contrato, por unidad, para la partida CARTEL DE OBRA, entendiéndose que dicho precio y pago constituirá

compensación total por toda mano de obra, equipos, herramientas, materiales e imprevistos necesarios para

completar satisfactoriamente la partida.

01.04.00 TRAZO Y REPLANTEO

Descripción: El Contratista, bajo esta sección, procederá al replanteo general de la obra de acuerdo a lo indicado

en los planos del proyecto. El mantenimiento de los Bench Marks (BMs), plantillas de cotas, estacas, y demás

puntos importantes del eje será responsabilidad exclusiva del Contratista, quien deberá asegurarse que los datos

consignados en los planos sean fielmente trasladados al terreno de modo que la obra cumpla, una vez concluida,

con los requerimientos y especificaciones del proyecto.

Durante la ejecución de la obra El Contratista deberá llevar un control topográfico permanente, para cuyo efecto

contará con los instrumentos de precisión requeridos, así como con el personal técnico calificado y los materiales

necesarios. Concluida la obra, El Contratista deberá presentar al Ingeniero Supervisor los planos Post

rehabilitación.

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INCENIERÍA CIVIL

"ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN

Proceso Constructivo: Se marcarán los ejes y PI, referenciándose adecuadamente, para facilitar el trazado y estacado del camino, se enumerarán los BM en un lugar seguro y alejado de la vía, para controlar los niveles y cotas. Los trabajos de trazo y replanteo serán verificados constantemente por el Supervisor

Método de Medición: La longitud a pagar por la partida TRAZO Y REPLANTEO será el número de kilómetros replanteados, medidos de acuerdo al avance de los trabajos, de conformidad con las presentes especificaciones y siempre que cuente con la conformidad del Ingeniero Supervisor.

Bases de Pago: La longitud medida en la forma descrita anteriormente será pagada al precio unitario del contrato, por kilómetro, para la partida TRAZO Y REPLANTEO, entendiéndose que dicho precio y pago constituirá compensación total por toda mano de obra, equipos, herramientas, materiales e imprevistos necesarios para completar satisfactoriamente el trabajo.

01.05.00 LIMPIEZA Y DESFORESTACIÓN.

Descripción: Este trabajo consiste en la limpieza del terreno y el desbroce de la vegetación, es decir eliminar todos los árboles, arbustos, matorrales, otra vegetación, tacones, raíces y cualquier elemento o instalación que pueda obstaculizar el normal desarrollo de los trabajos. Las áreas serán previamente delimitadas por el Ingeniero Supervisor.

Método de Construcción: Previo al inicio de los Trabajos, el Contratista solicitará por escrito autorización al Supervisor, el mismo que deberá verificar si efectivamente su ejecución resulta imprescindible para permitir el libre desplazamiento en la zona de trabajo.

El material procedente de la limpieza y deforestación será colocado dentro de los límites del derecho de vía. cuidando de no interrumpir vías, senderos, accesos a viviendas, canales, zanjas, etc. En caso de excesiva acumulación o cuando el Ingeniero Supervisor lo autorice, los desechos podrán eliminarse colocándose en los botaderos establecidos para tal fin o en lugares que indique el Supervisor según convenga.

Se incluye también la limpieza y deforestación necesarias en las canteras para la explotación del material.

Método de Medición: El área que se medirá será el número de hectáreas de terreno contenido en la superficie limpiada, deforestada y con el material de desmonte, debidamente dispuesto, realmente ejecutada en los sectores descritos en "Método de Construcción" y a satisfacción del Ingeniero Supervisor. No se medirán las áreas limpiadas en canteras o en zonas de préstamo.

FACULTAD DE INGENIERÍA

ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL "ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN

Bases de Pago: El número de hectáreas medido en la forma descrita anteriormente, será pagado al precio unitario del Contrato para ROCE Y LIMPIEZA, entendiéndose que dicho pago constituye compensación completa por toda la mano de obra, equipo, herramientas y demás conceptos necesarios para completar esta partida.

02.00.0 MOVIMIENTO DE TIERRAS

02.01.00 CORTE EN MATERIAL SUELTO

Descripción: Bajo esta partida, El Contratista realizará todas los cortes en material suelto, necesarios para conformar la plataforma del camino de acuerdo con las presentes especificaciones y en conformidad con los alineamientos, rasantes y dimensiones indicadas en los planos o como lo haya indicado el Ingeniero Supervisor. La partida también incluirá, la remoción y el retiro de estructuras que interfieren con el trabajo o lo obstruyan, así como el transporte hasta el límite de acarreo libre.

Todo corte realizada bajo este ítem se considerara como "Corte en material Suelto con Maquinaria"; teniendo en cuenta que se considera material suelto, aquel que se encuentra casi sin cohesión y puede ser trabajado a lampa o pico, o con un tractor para su desagregación. No requiere el uso de explosivos. Dentro de este grupo están las arenas, tierras vegetales húmedas, tierras arcillosas secas, arenas aglomeradas con arcilla seca y tierras vegetales secas.

Métodos de Construcción

Utilización de los Materiales Excavados: Todo el material aprovechable que provenga de los cortes, será empleado en lo posible en la formación de terraplenes, sub rasantes, bordes del camino, taludes asientos y rellenos de alcantarillas y en cualquier otra parte que fuere indicado por el Ingeniero Supervisor.

Piedra para la Protección de taludes: Cuando fuera requerida la piedra grande encontrada en el corte será recolectada y empleada, de acuerdo con las instrucciones del Ingeniero Supervisor, para la construcción de los taludes de los terraplenes adyacentes o será empleada en lugares donde tales materiales puedan proteger de la erosión a los taludes.

Zanjas: Todo material cortado de zanjas, será colocado en los terraplenes si no existe una indicación diferente del Ingeniero Supervisor. Ningún material de corte o limpieza de zanjas será depositado a menos de un metro del borde de la zanja, a no ser que se indique en los planos de otra manera o que lo indique, por escrito el Ingeniero Supervisor.

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN

Toda raíz, tacón y otras materias extrañas que aparezcan en el fondo o costados de las zanias o cunetas deberán ser recortados en conformidad con la inclinación, el declive y la forma indicada en la sección mostrada. El contratista mantendrá abierta y limpia de hojas planos y otros desechos, toda zanja que hubiera hasta la recepción final del trabajo.

Protección de la Plataforma: Durante el periodo de la rehabilitación de la carretera, la plataforma será mantenida de manera que esté bien drenada en toda época, manteniendo el bombeo especificado en la sección tipo. Las zanjas laterales o cunetas que drenen de corte y terraplén o viceversa, serán construidas de tal manera que eviten la erosión de los terraplenes.

Acabado de Taludes: Todo talud de tierra será acabado hasta presentar una superficie razonablemente llana y que esté de acuerdo sustancialmente con el plano u otras superficies indicadas por las líneas y secciones transversales marcadas en los planos sin que se encuentren variaciones que sean fácilmente perceptibles desde el camino. Cuando haya taludes muy grandes (mayor a 7 m) estos deben hacerse mediante banquetas o cortes escalonados.

En los taludes de relleno se debe aplicar la inclinación estable según lo indicado en los planos o por el supervisor.

Cuando los taludes presenten signos de erosión y/o deslizamiento de materiales, el consultor deberá indicarlos y estos deberán ser estabilizados mediante técnicas vegetativas, utilizando plantas de la zona, de acuerdo al Manual de Reforestación (se recomienda de preferencia no utilizar eucaliptos), estos trabajos serán ejecutados en la etapa del mantenimiento por lo que deberán estar determinadas.

En general, los cortes se efectuaran hasta una cota ligeramente mayor que la subrasante, de modo que al compactar y preparar esta capa se llegue al nivel indicado en los planos del proyecto

Método de Medición: El volumen por el cual se pagará será el número de metros cúbicos de material cortado en material suelto, de acuerdo con las prescripciones indicadas en la presente especificación y las secciones transversales indicadas en los planos del proyecto, verificados por la Supervisión antes y después de ejecutado el trabajo de excavación.

Base de Pago: El volumen medido descrito anteriormente será pagado por metro cúbico, para la partida CORTE EN MATERIAL SUELTO, entendiéndose que dicho precio y pago constituirá compensación total por toda mano de obra, equipos, herramientas, materiales e imprevistos necesarios para completar satisfactoriamente el trabajo.

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN

02.02.00 CORTE EN ROCA SUELTA

Descripción: Bajo esta partida, El Contratista realizará todas los cortes en roca suelta, necesarios para conformar la plataforma del camino de acuerdo con las presentes especificaciones y en conformidad con los alineamientos, rasantes y dimensiones indicadas en los planos o como lo haya indicado el Ingeniero Supervisor. La partida también incluirá, la remoción y el retiro de estructuras que interfieren con el trabajo o lo obstruyan, así como el transporte hasta el límite de acarreo libre.

Toda corte realizada bajo este ítem se considerara como "Corte en roca suelta"; teniendo en cuenta que se considera roca suelta, aquel que se mezcla de material suelto y roca que no puede ser trabajado a lampa o pico, o con un excavadora o retro excavadora para su desagregación. Requiere el uso de explosivos. Dentro de este grupo están las areniscas con piedra, calizas y otros conglomerados.

A este tipo pertenecen todas las rocas alteradas y sueltas por efectos de meteorización o fracturamiento que presentan dificultad para su extracción y que podrían requerir del uso eventual de explosivos. También están incluidos en esta clasificación los fragmentos y/o "bolones" de roca cuyo tamaño esté comprendido entre 0.20 a 1.00 m3 y que se encuentren contenidos dentro del suelo natural en proporción no mayor del 50%.

Este ítem corresponde a la excavación y corte en roca suelta para la conformación de la plataforma del camino hasta el nivel de rasante y construcción de cunetas, según se indica en los planos del Proyecto.

Métodos de Construcción

El trabajo consiste en la ejecución del corte, extracción y eliminación del material, hasta conformar la plataforma del camino. La eliminación se ha previsto mayormente en forma lateral y, excepcionalmente, longitudinal para la conformación de terraplenes en relleno, siempre y cuando el tamaño de los fragmentos de roca no interfiera en la compactación. La distancia de traslado máximo libre de pago es de 100.00 m.

El trabajo será ejecutado con el empleo necesario de un tractor de orugas, provisto de escarificador o ripper (D8, equivalente o mayor), compresora de 76 HP-300 PCM y martillos neumáticos de 25.00 Kg., necesarios para lograr el fracturamiento de los fragmentos de roca a tamaños que pueden manipularse fácilmente y, eventualmente, taladros para voladuras cortas con explosivos ("cachorreos"), así como mano de obra preferentemente local.

Los fragmentos de roca que resulten del corte y excavación, serán seleccionados y transportados al lugar de construcción de los muros de contención, y obras de arte de albañilería de piedra previstos en el proyecto, para cuyo trabajo, el Contratista solicitará la aprobación de la Supervisión.

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN

Utilización de los Materiales Excavados: Todo el material aprovechable que provenga de los cortes, será empleado en lo posible en la formación de terraplenes, subrasante, bordes del camino, taludes asientos y

rellenos de alcantarillas y en cualquier otra parte que fuere indicado por el Ingeniero Supervisor.

Piedra para la Protección de taludes: Cuando fuera requerida la piedra grande encontrada en el corte será

recolectada y empleada, de acuerdo con las instrucciones del Ingeniero Supervisor, para la construcción de los

taludes de los terraplenes adyacentes o será empleada en lugares donde tales materiales puedan proteger de la

erosión a los taludes.

Zanjas: Todo material cortado de zanjas, será colocado en los terraplenes si no existe una indicación diferente

del Ingeniero Supervisor. Ningún material de corte o limpieza de zanjas será depositado a menos de un metro

del borde de la zanja, a no ser que se indique en los planos de otra manera o que lo indique, por escrito el

Ingeniero Supervisor.

Toda raíz, tacón y otras materias extrañas que aparezcan en el fondo o costados de las zanjas o cunetas

deberán ser recortados en conformidad con la inclinación, el declive y la forma indicada en la sección mostrada.

El contratista mantendrá abierta y limpia de hojas planos y otros desechos, toda zanja que hubiera hasta la

recepción final del trabajo.

Protección de la Plataforma: Durante el periodo de la rehabilitación de la carretera, la plataforma será

mantenida de manera que esté bien drenada en toda época, manteniendo el bombeo especificado en la sección

tipo. Las zanjas laterales o cunetas que drenen de corte y terraplén o viceversa, serán construidas de tal manera

que eviten la erosión de los terraplenes.

Acabado de Taludes: Todo talud de tierra será acabado hasta presentar una superficie razonablemente llana y

que este de acuerdo sustancialmente con el plano u otras superficies indicadas por las líneas y secciones

transversales marcadas en los planos sin que se encuentren variaciones que sean fácilmente perceptibles desde

el camino. Cuando haya taludes muy grandes (mayor a 7 m) estos deben hacerse mediante banquetas o cortes

escalonados.

En los taludes de relleno se debe aplicar la inclinación estable según lo indicado en los planos o por el

supervisor.

Cuando los taludes presenten signos de erosión y/o deslizamiento de materiales, el consultor deberá indicarlos y

estos deberán ser estabilizados mediante técnicas vegetativas, utilizando plantas de la zona, de acuerdo al

Manual de Reforestación (se recomienda de preferencia no utilizar eucaliptos), estos trabajos serán ejecutados

en la etapa del mantenimiento por lo que deberán estar determinadas.

En general, los cortes se efectuaran hasta una cota ligeramente mayor que la subrasante, de modo que al

compactar y preparar esta capa se llegue al nivel indicado en los planos del proyecto

FACULTAD DE INGENIERÍA

ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN

Método de Medición: El volumen por el cual se pagará será el número de metros cúbicos de material cortado en material suelto, de acuerdo con las prescripciones indicadas en la presente especificación y las secciones transversales indicadas en los planos del proyecto, verificados por la Supervisión antes y después de ejecutado el trabajo de excavación.

Base de Pago: El volumen medido descrito anteriormente será pagado por metro cúbico, para la partida CORTE EN ROCA SUELTA, entendiéndose que dicho precio y pago constituirá compensación total por toda mano de obra, equipos, herramientas, materiales e imprevistos necesarios para completar satisfactoriamente el trabajo. 02.03.00 CORTE EN ROCA FIJA.

Descripción: Esta partida consiste en la perforación, voladura y remoción de rocas compactas o fragmentos de tamaños mayores a 1.00 m3. Se ejecutará mediante la utilización de explosivos y equipos especiales como compresora neumática 196 HP 600 - 900 PCM, martillos neumáticos de 25.00 Kg. y equipo pesado. Se efectuará este trabajo para la conformación de la plataforma y cunetas de la carretera, según se indica en los planos del proyecto o como lo determine la Supervisión.

Bajo esta partida, El Contratista realizará todas los cortes en roca fija, necesarios para conformar la plataforma del camino de acuerdo con las presentes especificaciones y en conformidad con los alineamientos, rasantes y dimensiones indicadas en los planos o como lo haya indicado el Ingeniero Supervisor.

Se considerará como excavación en roca a aquella en la cual se necesite extraer formaciones geológicas firmemente cementadas o letificadas, mediante la utilización de explosivos, o todo aquel material que no puede ser removido por una excavadora.

Métodos de Construcción

En la mayoría de los casos para excavar roca dura se hace mediante equipo de perforación y un adecuado manejo de explosivos. Para un correcto uso de explosivos, el Ingeniero Residente deberá optimizar cantidades, distancia entre perforaciones de acuerdo al tipo de roca, inclinación, profundidad. La cantidad de dinamita para cada perforación será calculada por el Ingeniero responsable del proyecto a fin de optimizar la voladura. Además el control del consumo se anotará diariamente en el cuaderno de obra.

Previamente, se colocarán señales y elementos de seguridad. La ejecución de esta partida será tal que se garantice la formación de las secciones transversales y cunetas de diseño, respetando los taludes de corte y niveles especificados, hasta llegar a conformar la plataforma y cuneta del camino.

El material de corte y excavación será eliminado lateralmente o por empuje longitudinal hasta una distancia máxima de 100.00 m, pudiendo también utilizarse en los rellenos laterales o longitudinales como partida de relleno con material propio.

La roca fracturada podrá emplearse en otras partidas (muros de contención, albañilería, terraplenes o como materia prima para preparación del afirmado o agregados de concreto, previa aprobación por escrito del

FACULTAD DE INGENIERÍA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN

Supervisor). El desquinche y peinado de los taludes se realizará con herramientas manuales y empleo de mano de obra local.

Acabado de Taludes: Todo talud de roca fija será acabado hasta presentar una superficie razonablemente llana y que esté de acuerdo sustancialmente con el plano u otras superficies indicadas por las líneas y secciones transversales marcadas en los planos sin que se encuentren variaciones que sean fácilmente perceptibles desde el camino. Cuando haya taludes muy grandes (mayor a 7 m) estos deben hacerse mediante banquetas o cortes escalonados.

En los taludes de relleno se debe aplicar la inclinación estable según lo indicado en los planos o por el supervisor.

Método de Medición: El trabajo ejecutado se medirá en metros cúbicos (m3) de roca fija excavada, desquinchado y perfilado, de acuerdo a lo especificado y verificado por el Ingeniero Supervisor. La medición se hará en su posición original y se computará por el método promedio de áreas extremas, con seccionamiento topográfico antes y después de ejecutada la partida.

Base de Pago: El volumen medido descrito anteriormente será pagado por metro cúbico, para la partida CORTE EN ROCA FIJA, El pago se efectuará al precio de contrato por metro cúbico (m3), entendiéndose que el precio y pago constituirá compensación total por toda mano de obra, leyes sociales, materiales, insumos de voladura, equipo, herramientas e imprevistos necesarios para la ejecución del ítem.

VOLADURAS CON EXPLOSIVOS

Restricciones para el uso de Explosivos y Voladuras

Se denomina explosivo, para efecto de estas especificaciones, a toda sustancia que reaccione violentamente o estalle descomponiéndose en gases utilizables para las necesidades de excavación en materiales de roca. El Contratista observará todas las Normas y Reglamentos vigentes en el Perú, referentes al transporte, manejo y uso de explosivos emitidos por las autoridades competentes.

Antes de preparar las cargas para el disparo, se colocarán señales preventivas (banderas rojas) en las zonas en que se van a efectuar las voladuras y, por lo menos diez minutos antes del disparo, se advertirá al personal y pobladores del entorno mediante alarmas aprobadas.

El momento en que se van a efectuar las voladuras será anticipado con no menos de 24 horas.

Las voladuras no se harán a distancia menor de 30.00 m de viviendas, estructuras de concreto o albañilería de piedra, en caso contrario, se tomarán las medidas necesarias de control de vibraciones y lanzamiento.

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN

Dos horas antes de ejecutar los disparos, el Contratista confirmará a la Supervisión para su aprobación

correspondiente.

La aprobación por parte del Supervisor de los métodos de voladura, de la cantidad y potencia de los explosivos

no exime de su responsabilidad al Contratista en lo que se refiere a eventuales daños a la obra y/o terceras

personas debido al mal diseño, manejo y/o empleo de los explosivos.

Transporte

El transporte de los explosivos a la obra es responsabilidad del Contratista, debiendo solicitar al puesto policial

más cercano el resguardo respectivo, a fin de evitar el robo o asalto de dichos materiales. Por seguridad, no es

recomendable el transporte conjunto de fulminantes y dinamita.

Almacenaje

Todos los fulminantes, guías y explosivos serán almacenados separadamente en forma segura y por lo menos a

150.00 m entre sí y 200.00 m de cualquier camino, vivienda, campamento o sitio semejante.

El contratista cumplirá con todas las disposiciones y reglamentos del gobierno, del DISCAMEC y las prácticas

ordenadas por la Supervisión referentes a las licencias, adquisición, custodia, traslado, almacenaje, manipuleo,

uso y medidas de seguridad relativas a los explosivos.

02.04.00 CONFORMACIÓN DE TERRAPLENES

Descripción: Bajo esta partida, El Contratista realizará todos los trabajos necesarios para formar los terraplenes o

rellenos con material proveniente de las excavaciones, de préstamos laterales o de fuentes aprobadas de acuerdo

con las presentes especificaciones, alineamiento, pendientes y secciones transversales indicadas en los planos y

como sea indicado por el Ingeniero Supervisor.

Materiales: El material para formar el terraplén deberá ser de un tipo adecuado, aprobado por el Ingeniero

Supervisor, no deberá contener escombros, tacones ni restos de vegetal alguno y estar exento de materia orgánica.

El material excavado húmedo y destinado a rellenos será utilizado cuando tenga el contenido óptimo de humedad.

Todos los materiales de corte, cualquiera sea su naturaleza, que satisfagan las especificaciones y que hayan sido

considerados aptos por el Ingeniero Supervisor, serán utilizados en los rellenos.

FACULTAD DE INGENIERÍA
CUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL.

"ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN

Método de Construcción: Antes de iniciar la construcción de cualquier terraplén, el terreno base deberá estar

desbrozado y limpio. El Supervisor determinará los eventuales trabajos de remoción de la capa vegetal y retiro de

material inadecuado, así como el drenaje del área base.

En la construcción de terraplenes sobre terrenos inclinados, se debe preparar previamente el terreno, luego el

terreno natural deberá cortarse en forma escalonada de acuerdo con los planos o las instrucciones del Supervisor,

para asegurar la estabilidad del terraplén nuevo. El Supervisor sólo autorizará la colocación de materiales del

terraplén cuando el terreno base esté adecuadamente preparado y consolidado.

Los terraplenes deberán construirse hasta una cota superior a la indicada en los planos, en una dimensión

suficiente para compensar los asentamientos producidos, por efecto de la consolidación y obtener la cota final de la

rasante.

Las exigencias generales para la colocación de materiales serán las siguientes:

Barreras en el pie de los Taludes: El Contratista deberá evitar que el material del relleno esté más allá de la línea

de las estacas del talud, construyendo para tal efecto cunetas en la base de éstos o levantando barreras de

contención de roca, canto rodado, tierras o tablones en el pie del talud, pudiendo emplear otro método adecuado

para ello, siempre que sea aprobado por el Ingeniero Supervisor.

Reserva de Material para "Lastrado": Donde se encuentre material apropiado para lastrado se usará en la

construcción de la parte superior de los terraplenes o será apilado para su futuro uso en la ejecución del lastrado.

Rellenos fuera de las Estacas del Talud: Todos los agujeros provenientes de la extracción de los troncos e

irregularidades del terreno causados por el Contratista, en la zona comprendida entre el estacado del pie del talud,

el borde y el derecho de vía serán rellenados y nivelados de modo que ofrezcan una superficie regular.

Material Sobrante: Cuando se disponga de material sobrante, este será utilizado en ampliar uniformemente el

terraplén o en la reducción de pendiente de los taludes, de conformidad con lo que ordene el Ingeniero Supervisor.

Compactación: Si no está especificado de otra manera en los planos o las disposiciones especiales, el terraplén

será compactado a una densidad de noventa (90 %) por ciento de la máxima densidad, obtenida por la designación

AASHTO T-180-57, en capas de 0.20 m., hasta 30 cm. inmediatamente debajo de las sub - rasante.

El terraplén que esté comprendido dentro de los 30 cm. inmediatamente debajo de la sub -rasante será

compactado a noventa y cinco por ciento (95 %) de la densidad máxima, en capas de 0.20 m. El Ingeniero

FACULTAD DE INGENIERÍA

ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN

Supervisor ordenará la ejecución de los ensayos de densidad en campo para determinar el grado de densidad obtenido.

Contracción y Asentamiento: El Contratista construirá todos los terraplenes de tal manera, que después de haberse producido la contracción y el asentamiento y cuando deba efectuarse la aceptación del proyecto, dichos terraplenes tengan en todo punto la rasante, el ancho y la sección transversal requerida. El Contratista será responsable de la estabilidad de todos los terraplenes construidos con cargo al contrato, hasta aceptación final de la obra y correrá por su cuenta todo gasto causado por el reemplazo de todo aquello que haya sido desplazado a consecuencia de falta de cuidado o de trabajo negligente por parte del Contratista, o de daños resultantes por causas naturales, como son lluvias normales.

Protección de las Estructuras: En todos los casos se tomarán las medidas apropiadas de precaución para asegurar que el método de ejecución de la construcción de terraplenes no cause movimiento alguno o esfuerzos indebidos en estructura alguna. Los terraplenes encima y alrededor de alcantarillas, arcos y puentes, se harán de materiales seleccionados, colocados cuidadosamente, intensamente apisonados y compactados y de acuerdo a las especificaciones para el relleno de las diferentes clases de estructuras.

Método de Medición: El volumen por el cual se pagará será el número de metros cúbicos de material aceptablemente colocado, conformado, regado y compactado, de acuerdo con las prescripciones de la presente especificación, medidas en su posición final y computada por el método del promedio de las áreas extremas.

Bases de Pago: El volumen medido en la forma descrita anteriormente será pagado al precio unitario del contrato, por metro cúbico, para la partida CONFORMACIÓN DE TERRAPLENES, entendiéndose que dicho precio y pago constituirá compensación total por toda mano de obra, equipos, herramientas, materiales, e imprevistos necesarios para completar satisfactoriamente el trabajo.

El costo unitario deberá cubrir los costos de escarificación, nivelación, conformación, compactación y demás trabajos preparatorios de las áreas en donde se hayan de construir un terraplén nuevo.

02.05.00 PERFILADO Y COMPACTACIÓN DE LA SUB-RASANTE

Descripción: El Contratista, bajo ésta partida, realizará los trabajos necesarios de modo que la superficie de la subrasante presente los niveles, alineamiento, dimensiones y grado de compactación indicados, tanto en los planos del proyecto, como en las presentes especificaciones.

Se denomina sub-rasante a la capa superior de la explanación que sirve como superficie de sustentación de la capa de afirmado. Su nivel es paralelo al de la rasante y se logrará conformando el terreno natural mediante los cortes o rellenos previstos en el proyecto.

FACULTAD DE INGENIERÍA

"ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO

ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN

La superficie de la sub-rasante estará libre de raíces, hierbas, desmonte o material suelto.

Método de Construcción: Una vez concluidos los cortes, se procederá a escarificar la superficie del camino mediante el uso de una motoniveladora o de rastras en zonas de dificil acceso, en una profundidad mínima entre 8 y 15 cm.; los agregados pétreos mayores a 2" que pudieran haber quedado serán retirados.

Posteriormente, se procederá al extendido, riego y batido del material, con el empleo repetido y alternativo de camiones cistema provista de dispositivos que garanticen un riego uniforme y motoniveladora.

La operación será continua hasta lograr un material homogéneo, de humedad lo más cercana a la óptima definida por el ensayo de compactación proctor modificado que se indica en el estudio de suelos del proyecto.

Enseguida, empleando un rodillo liso vibratorio autopropulsado, se efectuará la compactación del material hasta conformar una superficie que, de acuerdo a los perfiles y geometría del proyecto y una vez compactada, alcance el nivel de la subrasante proyectada.

La compactación se realizará de los bordes hacia el centro y se efectuará hasta alcanzar el 95% de la máxima densidad seca del ensayo proctor modificado (AASHTO T-180. MÉTODO D) en suelos cohesivos y en suelos granulares hasta alcanzar el 100% de la máxima densidad seca del mismo ensayo.

El Ingeniero Supervisor solicitará la ejecución de las pruebas de densidad de campo que determinen los porcentajes de compactación alcanzados. Se tomará por lo menos 2 muestras por cada 500 metros lineales de superficie perfilada y compactada.

Método de Medición: El área a pagar será el número de metros cuadrados de superficie perfilada y compactada, de acuerdo a los alineamientos, rasantes y secciones indicadas en los planos y en las presentes especificaciones, medida en su posición final. El trabajo deberá contar con la conformidad del Ingeniero Supervisor.

Bases de Pago: La superficie medida en la forma descrita anteriormente será pagada al precio unitario del contrato, por metro cuadrado, para la partida PERFILADO Y COMPACTACIÓN DE LA SUBRASANTE, entendiéndose que dicho precio y pago constituirá compensación total por toda mano de obra, equipos, herramientas, materiales, e imprevistos necesarios para completar satisfactoriamente el trabajo.

02.06.00 ELIMINACIÓN DEL MATERIAL EXCEDENTE

Descripción: Bajo esta partida, El Contratista, efectuará la eliminación de material que, a consecuencia de derrumbes, huaycos, deslizamientos, etc., se encuentren sobre la plataforma de la carretera, obstaculizando el tráfico. El volumen será determinado "in situ" por El Contratista y el Ingeniero Supervisor. La eliminación incluirá el material proveniente de los excedentes de corte, excavaciones, etc.

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUA

Método Constructivo: La eliminación del material excedente de los cortes, excavaciones, derrumbes, huaycos y deslizamientos, se ejecutará de la forma siguiente:

1. Si el volumen a eliminar es menor o igual a 50 m3 se hará al costado de la carretera, ensanchando terraplenes (Talud), mediante el empleo de un cargador frontal, tractor y/o herramientas manuales, conformando gradas o escalones debidamente compactados, a fin de no perjudicar a los terrenos

agricolas adyacentes. El procedimiento a seguir será tal que garantice la estabilidad de los taludes y la

recuperación de la calzada en toda su sección transversal, incluyendo cunetas.

2. Si el volumen de material a eliminar es mayor de 50 m3, se transportará hasta los botaderos indicados en

el expediente técnico, una vez colocado el material en los botaderos, este deberá ser extendido. Los

camiones volquetes que hayan de utilizarse para el transporte de material de desecho deberían cubrirse

con lona para impedir la dispersión de polvo o material durante las operaciones de transporte.

Se considera una distancia libre de transporte de 1000 m, entendiéndose que será la distancia máxima a la que

podrá transportarse el material para ser depositado o acomodado según lo indicado, sin que dicho transporte sea

materia de pago al contratista.

No se permitirán que los materiales excedentes de la obra sean arrojados a los terrenos adyacentes o acumulados,

de manera temporal a lo largo y ancho del camino rural; asimismo no se permitirá que estos materiales sean

arrojados libremente a las laderas de los cerros. El contratista se abstendrá de depositar material excedente en

arroyos o espacios abiertos. En la medida de lo posible, ese material excedente se usará, si su calidad lo permite,

para rellenar canteras o minas temporales o para la construcción de terraplenes.

El contratista se abstendrá de depositar materiales excedentes en predios privados, a menos que el propietario lo

autorice por escrito ante notario público y con autorización del ingeniero supervisor y en ese caso sólo en los

lugares y en las condiciones en que propietario disponga.

El contratista tomará las precauciones del caso para evitar la obstrucción de conductos de agua o canales de

drenaje, dentro del área de influencia del proyecto. En caso de que se produzca sedimentación o erosión a

consecuencia de operaciones realizadas por el contratista, éste deberá limpiar, eliminar la sedimentación,

reconstruir en la medida de lo necesario y, en general, mantener limpias esas obras, a satisfacción del ingeniero,

durante toda la duración del proyecto.

FACULTAD DE INGENIERÍA

ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN

Método de Medición: El volumen por el cual se pagará será el número de metros cúbicos de material aceptablemente cargado, transportado hasta 1000 metros y colocado, de acuerdo con las prescripciones de la presente especificación, medidos en su posición original. El trabajo deberá contar con la conformidad del Ingeniero Supervisor.

Bases de Pago: El volumen medido en la forma descrita anteriormente será pagado al precio unitario del contrato, por metro cúbico, en las siguientes partidas

Eliminación de material cuyo volumen es menor a 50 m3, en cuya precio se deberá incluir el transporte hasta 1000 metros, conformado y compactado del material de acuerdo con el procedimiento acordado con el ingeniero supervisor para garantizar la estabilidad de los taludes y la recuperación de la calzada en toda su sección transversal, incluyendo cunetas. Asimismo, el precio incluye el equipo, mano de obra, transporte de material, herramienta, materiales e imprevistos necesarios para completar satisfactoriamente el trabajo

Eliminación de material cuyo volumen es superior a 50 m3, entendiéndose que dichos precios y pagos constituirá compensación total por el transporte hasta 1000 metros, acondicionamiento y extendido del material en el lugar del depósito. Asimismo, el precio incluye el equipo, mano de obra, transporte de material, herramientas, materiales, e imprevistos necesarios para completar satisfactoriamente el trabajo.

El transporte Se pagará en las partidas transporte de excedente hasta 1 Km. y transporte de excedente para D> 1 Km. > el tratamiento que se le debe dar a los materiales de eliminación y depositados en los botaderos se establece en el rubro 2.4 conformación de botaderos.

Conformación de Material en Botaderos

Los botaderos son zonas donde se colocarán los materiales excedentes de la obra, es decir, los provenientes de los cortes y de la limpieza que se realicen durante el proceso de Rehabilitación del Camino Rural.

Se ubicarán en las zonas adyacentes al Camino Rural donde se ha tomado material de préstamo para los terraplenes (canteras abandonadas), y que son suelos estériles, sin ningún tipo de cobertura vegetal y sin uso aparente.

Se deben evitar zonas inestables o áreas de importancia ambiental o áreas de alta productividad agrícola.

Así mismo, no se podrá depositar materiales en los cursos de agua o quebradas, ni en las franjas ubicadas a por lo menos 30 m a cada lado de las orillas; ni se permitirá depositar materiales a media ladera, ni en zonas de fallas geológicas o en sitios donde la capacidad de soporte de los suelos no permita su colocación.

Procedimiento: Antes de colocar los materiales excedentes se deberá retirar la capa orgánica del suelo, colocándose en sitios adecuados que permita su posterior uso para las obras de restauración de la zona.

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO

NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN

Los materiales excedentes del proceso constructivo y/o rehabilitación de un camino rural, una vez colocados en los botaderos, deberán ser acomodados y compactados, por lo menos con 4 pasadas de tractor de orugas, sobre

capas de un espesor adecuado.

Con el fin de disminuir las infiltraciones de agua en los botaderos, deben compactarse las dos últimas capas de

material excedente colocado, mediante varias pasadas de tractor de orugas (por lo menos 10 pasadas). Asimismo,

con el fin de estabilizar los taludes y restaurar el paisaje de la zona, el botadero deberá ser cubierto de suelo y

revegetado.

La superficie de los botaderos se deberá perfilar con una pendiente suave que, por una parte, asegure que no va

ser erosionada y, por otra, permita el drenaje de las aguas, reduciendo con ello la infiltración,

De ninguna manera se permitirá que los materiales excedentes de la obra sean arrojados a los terrenos adyacentes

o acumularlos; así, sea de manera temporal, a lo largo y ancho del camino rural; asimismo, no se permitirá que

estos materiales sean arrojados libremente a las laderas de los cerros.

Método de Medición: la medida para el pago por la conformación y la compactación de las zonas de botadero,

será el volumen en metros cúbicos (m3) de la zona del botadero conformada a satisfacción del ingeniero

supervisor. Los volúmenes se calcularán por el método promedio de las áreas. Las áreas para la medida estarán

comprendidas dentro de las líneas teóricas finales proyectadas para la zona de depósito y las cotas de fundación

aprobadas por el ingeniero supervisor, una vez ejecutado el retiro de material inadecuado y en el se incluye los

trabajos de acomodo y compactación del material por capas y la reconformación de la superficie y su revegetado.

Bases de Pago: La cantidad medida en la forma indicada anteriormente, se pagará por el precio unitario del

Contrato por m3, para la partida de Conformación de Material en Botaderos, dicho precio y pago constituirá

compensación total por toda mano de obra, equipos, herramientas, materiales e imprevistos necesarios para

completar satisfactoriamente el trabajo.

03.00.00 AFIRMADO E = 0.30 M

03.01.00 DERECHO DE EXTRACCIÓN DE CANTERA

El contratista verificará que el propietario de la cantera de la que hayan de extraerse materiales de construcción

cuente con el permiso o licencia de explotación, necesario, otorgados por la autoridad municipal, provincial o

nacional competente.

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN

Las canteras estarán ubicadas en los planos contenidos en el estudio de Suelos y Canteras. Esta información es de tipo referencial. Será responsabilidad del contratista verificar calidad y cantidad de materiales en las canteras durante el proceso de preparación de su oferta

03.02.00 EXTRACCIÓN DE MATERIAL PARA AFIRMADO

Consiste en la excavación del material de la cantera aprobada para ser utilizada en la capa de afirmado, terraplenes o rellenos, previamente aprobada por la Supervisión.

Una vez que termine la explotación de la cantera temporal, el contratista restaurará el lugar de la excavación hasta que recupere, en la medida de lo posible, sus originales características hidráulicas superficiales y sembrará la zona con césped, si fuere necesario

Método de Construcción: De las canteras establecidas se evaluará conjuntamente con el Supervisor el volumen total a extraer de cada una. La excavación se ejecutara mediante el empleo de equipo mecánico, tipo tractor de orugas o similar, el cual efectuará trabajos de extracción y acopio necesario.

El método de explotación de las canteras será sometido a la aprobación del Supervisor. La cubierta vegetal, removida de una zona de préstamo, debe ser almacenada para ser utilizada posteriormente en las restauraciones futuras.

Previo al inicio de las actividades de excavación, el Contratista verificará las recomendaciones establecidas en los diseños, con relación a la estabilidad de taludes de corte. Se deberá realizar la excavación de tal manera que no se produzcan deslizamientos inesperados, identificando el área de trabajo y verificando que no haya personas u construcciones cerca.

Todos los trabajos de clasificación de agregados y en especial la separación de partículas de tamaño mayor que el máximo especificado para cada gradación, se deberán efectuar en el sitio de explotación y no se permitirá ejecutarlos en la vía.

Respecto a las fuentes de materiales de origen aluvial (en los ríos), el Contratista deberá contar previamente al inicio de su explotación con los permisos respectivos, la explotación del material se recomienda realizarla fuera de los cursos de agua y sobre las playas del lecho, ya que la movilización de maquinaria genera una fuerte remoción de material con el consecuente aumento en la turbiedad del agua.

El contratista se abstendrá de cavar zanjas o perforar pozos en tierras planas en que el agua tienda a estancarse, o sea de lenta escorrentía, así como en las proximidades de aldeas o asentamiento urbanos. En los casos en que este tipo de explotación resulte necesario, el contratista, además de obtener los permisos

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN

pertinentes, deberá preparar y presentar al ingeniero supervisor, para su aprobación, un plano de drenaje

basado en un levantamiento topográfico trazado a escala conveniente

El material no seleccionado deberá ser apilado convenientemente, a fin de ser utilizado posteriormente en el

nivelado del área.

Zarandeo: De existir notoria diferencia en la Granulometría del material de cantera con la Granulometría

indicada en las especificaciones técnicas para material de afirmado, se precederá a tamizar el material,

utilizando para ello zarandas metálicas de abertura máxima 2" y cargador frontal.

Carquío: Es la actividad de cargar el material preparado en la cantera mediante el empleo de cargador frontal, a

los volguetes, para ser transportados al lugar donde se va a colocar.

03.03.00 TRANSPORTE DE MATERIAL DE AFIRMADO

Esta actividad consiste en el transporte de material granular desde la cantera hasta los puntos de conformación

del afirmado, mediante el uso de volquetes, cuya capacidad estará en función de las condiciones del camino a

rehabilitar.

Los volúmenes de material colocados en el afirmado son determinados en su posición final utilizando las

canteras determinadas. El esponjamiento del material a transportar está incluido en el precio unitario.

La distancia de transporte es la distancia media calculada en el expediente técnico. Las distancias y volúmenes

serán aprobados por el Ingeniero Supervisor.

Durante el transporte de los materiales de la cantera a obra pueden producirse emisiones de material en

partículas (polvo), afectando a la población local o vida silvestre. Al respecto está emisión de polvo puede

minimizarse, humedeciendo periódicamente los caminos temporales, así como humedeciendo la superficie de

los materiales transportados y cubriéndolos con un toldo húmedo.

03.04.00 EXTENDIDO, REGADO Y COMPACTADO

Todo material de la capa granular de rodadura será colocado en una superficie debidamente preparada y será

compactada en capas de mínimo 10 cm., máximo 20 cm. de espesor final compactado.

El material será colocado y esparcido en una capa uniforme y sin segregación de tamaño; esta capa deberá

tener un espesor mayor al requerido, de manera que una vez compactado se obtenga el espesor de diseño. Se

efectuará el extendido con equipo mecánico:

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO

NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN

Luego que el material de afirmado haya sido esparcido sobre la superficie compactada del camino (sub rasante), será completamente mezclado por medio de la cuchilla de la motoniveladora, llevándolo alternadamente hacia el centro y hacia la orilla de la calzada.

Se regará el material durante la mezcla mediante camión cisterna, cuando la mezcla tenga el contenido óptimo de humedad será nuevamente esparcida y perfilada hasta obtener la sección transversal deseada.

Inmediatamente después de terminada la distribución y el emparejamiento del material, cada capa deberá compactarse en su ancho total por medio de rodillos lisos vibratorios autopropulsados con un peso mínimo de 9 toneladas. Cada 400 m² de material, medido después de compactado, deberá ser sometido a por lo menos una hora de rodillado continuo. La compactación se efectuará longitudinalmente, comenzando por los bordes exteriores y avanzando hacia el centro, traslapando en cada recorrido un ancho no menor de un tercio (1/3) el ancho del rodillo y deberá continuar así hasta que toda la superficie haya recibido este tratamiento. En las zonas peraltadas, la compactación se hará del borde inferior al superior. Cualquier irregularidad o depresión que surja durante la compactación, deberá corregirse aflojando el material en esos sitios y agregando o quitando material hasta que la superficie resulte pareja y uniforme. A lo largo de las curvas, colectores y muros y en todos los sitios no accesibles al rodillo, el material deberá compactarse integramente mediante el empleo de apisonadoras vibradoras mecánicas, hasta lograr la densidad requerida, con el equipo que normalmente se utiliza. El material será tratado con motoniveladora y rodillo hasta que se haya obtenido una superficie lisa y pareja.

Durante el progreso de la operación, el Supervisor deberá efectuar ensayos de control de densidad humedad de acuerdo con el método ASTM D-1556, efectuando tres (3) ensayos cada 250 m2 de material colocado, si se comprueba que la densidad resulta inferior al 100% de la densidad máxima determinada en el laboratorio en el ensayo ASTM D-1557, el Contratista deberá completar un apisonado adicional en la cantidad que fuese necesaria para obtener la densidad señalada. Se podrá utilizar otros tipos de ensayos para determinar la densidad en obra, a los efectos de un control adicional, después que se hayan obtenido los valores de densidad referidos, por el método ASTM D-1556.

EXIGENCIAS DE ESPESOR: El espesor de la capa granular de rodadura terminada no deberá diferir en más de 1.25 cm. del espesor indicado en el proyecto. Inmediatamente después de la compactación final, el espesor deberá medirse en uno o más puntos, cada 300 metros lineales. Las mediciones deberán hacerse por medio de perforaciones de ensayo u otros métodos aprobados.

Los puntos para la medición serán seleccionados por el Ingeniero Supervisor en lugares tomados al azar dentro de cada sección de 300 m., de tal manera que se evite una distribución regular de los mismos. A medida que la obra continúe sin desviación en cuanto al espesor, más allá de las tolerancias admitidas, el intervalo entre los

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN

ensayos podrá alargarse a criterio del Ingeniero Supervisor, llegando a un máximo de 300 m, con ensayos

ocasionales efectuados a distancias más cortas.

Cuando una medición señale una variación del espesor registrado en los planos mayor que la admitida por la

tolerancia, se hará mediciones adicionales a distancias aproximadas de 10 m. hasta que se compruebe que el

espesor se encuentra dentro de los límites autorizados. Cualquier zona que se desvíe de la tolerancia admitida

deberá corregirse removiendo o agregando material según sea necesario conformando y compactando luego

dicha zona en la forma especificada.

Las perforaciones de agujeros para determinar el espesor y la operación de su rellenado con materiales

adecuadamente compactados, será efectuada, a su costo, por el Contratista, bajo la supervisión del Ingeniero

Supervisor.

Método de Medición: el afirmado, será medido en metros cúbicos compactados en su posición final,

mezclado, conformado, regado y compactado, de acuerdo con los alineamiento, rasantes, secciones y

espesores indicados en los planos y estudios del proyecto y a lo establecido en estas especificaciones. El trabajo

deberá contar con la aprobación del Ingeniero Supervisor.

Bases de Pago:

Será pagado al precio unitario pactado en el contrato, por metro cuadrado de afirmado, debidamente aprobado por

el supervisor con la partida 3.2 afirmado, constituyendo dicho precio compensación única por la extracción,

zarandeo, transporte, carga, y descarga de material desde la cantera o fuente de material, así como el mezclado,

conformado, regado y compactado del material. Entendiéndose que dicho precio y pago constituirá compensación

total por toda mano de obra, equipos, materiales, herramientas e imprevistos necesarios para completar

satisfactoriamente el trabajo.

04.00.00

OBRAS DE ARTE Y DRENAJE

04.01.00 ALIVIADEROS TMC 36" (17 UND)

04.01.01 TRABAJOS PRELIMINARES

04.01.01.01 TRAZO Y REPLANTEO PRELIMINAR

Descripción: Esta partida se refiere al trazo nivelación y replanteo que tiene que realizar el contratista durante

los trabajos de construcción de obras de arte y drenaje (aliviaderos y alcantarillas, etc.)

Método de Medición: El área a pagar por la partida TRAZO, NIVELACIÓN Y REPLANTEO será el número de

metros cuadrados replanteados, medidos de acuerdo al avance de los trabajos, de conformidad con las

266

presentes especificaciones y con la aprobación del Ingeniero Supervisor.

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN

Bases de Pago: El área medida en la forma descrita anteriormente será pagada al precio unitario del contrato, por metro cuadrado, para la partida TRAZO, NIVELACIÓN Y REPLANTEO, entendiéndose que dicho precio y pago constituirá compensación total por toda mano de obra, equipos, herramientas, materiales e imprevistos necesarios para completar satisfactoriamente el trabajo.

04.01.02 **MOVIMIENTO DE TIERRAS**

04.01.02.01 EXCAVACIÓN PARA ALIVIADEROS (Manual)

Descripción: Bajo esta partida, El Contratista efectuará todas las excavaciones necesarias en material suelto, para cimentar las obras de arte y drenaje (aliviaderos), de acuerdo con las presentes especificaciones y conformidad con las dimensiones indicadas en los planos o como lo haya indicado el Ingeniero Supervisor.

Toda excavación realizada bajo este ítem se considerara como "Excavación en material Suelto"; teniendo en cuenta que se considera material suelto, aquel que se encuentra casi sin cohesión y puede ser trabajado a lampa o pico, o con un tractor para su desagregación. No requiere el uso de explosivos. Dentro de este grupo están las arenas, tierras vegetales húmedas, tierras arcillosas secas, arenas aglomeradas con arcilla seca y tierras vegetales secas.

Métodos de Construcción

El Contratista notificará al Supervisor con suficiente anticipación el inicio de cualquier excavación para que puedan verificarse las secciones transversales. El terreno natural adyacente a las obras de arte no deberá alterarse sin permiso del Ingeniero Supervisor.

Todas las excavaciones de zanjas, fosas para estructuras o para estribos de obras de arte, se harán de acuerdo con el alineamiento, pendientes y cotas indicadas en los planos o según el replanteo practicado por el Contratista y verificado por el Ingeniero Supervisor. Dichas excavaciones deberán tener dimensiones suficientes para dar cabida a las estructuras diseñadas, así como permitir, de ser el caso, su encofrado. Los cantos rodados, troncos y otros materiales perjudiciales que se encuentren en la excavación deberán ser retirados.

Luego de culminar cada una de las excavaciones, el Contratista deberá comunicar este hecho al Ingeniero Supervisor, de modo que apruebe la profundidad de la excavación.

Debido a que las estructuras estarán sometidas a esfuerzos que luego se transmitirán al cimiento, se deberá procurar que el fondo de la cimentación se encuentre en terreno duro y estable, cuya consistencia deberá ser aprobada por el Ingeniero Supervisor.

Cuando la excavación se efectué bajo el nivel del agua, se deberá utilizar motobombas de potencia adecuada, a fin de facilitar, tanto el entibado o estacado, como el vaciado de concreto.

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO

NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN

Utilización de los Materiales Excavados: Todo el material aprovechable que provenga de las excavaciones, será empleado en lo posible en la formación de terraplenes, subsanares, bordes del camino, taludes asientos y rellenos de alcantarillas y en cualquier otra parte que fuere indicado por el Ingeniero Supervisor.

Zanjas: Todo material cortado de zanjas, será colocado en los terraplenes si no existe una indicación diferente del Ingeniero Supervisor. Ningún material de corte o limpieza de zanjas será depositado a menos de un metro del borde de la zanja, a no ser que se indique en los planos de otra manera o que lo indique, por escrito el Ingeniero Supervisor.

Toda raíz, tacón y otras materias extrañas que aparezcan en el fondo o costados de las zanjas deberán ser recortados en conformidad con la inclinación, el declive y la forma indicada en la sección mostrada. El contratista mantendrá abierta y limpia de hojas planos y otros desechos, toda zanja que hubiera hasta la recepción final del trabaio.

Método de Medición: El volumen por el cual se pagará será el número de metros cúbicos de material excavado en material suelto, de acuerdo con las prescripciones indicadas en los planos del proyecto, verificados por la Supervisión antes y después de ejecutado el trabajo de excavación.

Base de Pago: El volumen medido descrito anteriormente será pagado por metro cúbico, para la partida EXCAVACIÓN PARA ALIVIADEROS (Manual), entendiéndose que dicho precio y pago constituirá compensación total por toda mano de obra, equipos, herramientas, materiales e imprevistos necesarios para completar satisfactoriamente el trabajo.

04.01.02.02 RELLENO COMPACTADO CON MATERIAL DE CANTERA

Descripción: esta partida consistirá en la ejecución de todo relleno relacionado con la construcción de muros, alcantarillas, aliviaderos, pontones, puentes, badenes y otras estructuras que no hubieran sido considerados bajo otra partida.

Todo trabajo a que se refiere este ítem, se realizará de acuerdo a las presentes especificaciones y en conformidad con el diseño indicado en los planos.

Materiales: El material empleado en el relleno será material seleccionado proveniente de las canteras. El material a emplear no deberá contener elementos extraños, residuos o materias orgánicas, pues en el caso de encontrarse material inconveniente, este será retirado y reemplazado con material seleccionado transportado.

FACILTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN

Método de Construcción: Después que una estructura se haya completado, las zonas que la rodean deberán ser rellenadas con material aprobado, en capas horizontales de no más de 20 cm. de espesor compactado y a una densidad mínima del 95 % de la máxima densidad obtenida en el ensayo proctor modificado.

Todas las capas deberán ser compactadas convenientemente mediante el uso de planchas vibratorias, rodillos vibratorios pequeños y en los 0.20 m superiores se exigirá el 100 % de la densidad máxima obtenida en el ensayo proctor modificado. No se permitirá el uso de equipo pesado que pueda producir daño a las estructuras recién construidas.

No se podrá colocar relleno alguno contra los muros, estribos o alcantarillas hasta que el Ingeniero Supervisor lo autorice. En el caso de rellenos detrás de muros de concreto, no se dará dicha autorización antes de que pasen 21 días del vaciado del concreto o hasta que las pruebas hechas bajo el control del Ingeniero Supervisor demuestren que el concreto ha alcanzado suficiente resistencia para soportar las presiones del relleno. Se deberá prever el drenaje en forma adecuada.

El relleno o terraplenado no deberá efectuarse detrás de los muros de pontones de concreto, hasta que se les haya colocado la losa superior.

Método de Medición: Será medido en metros cúbicos (m³) rellenados y compactados según las áreas de las secciones transversales, medidas sobre los planos del proyecto y los volúmenes calculados por el sistema de las áreas extremas promedias, indistintamente del tipo de material utilizado.

Bases de Pago: La cantidad de metros cúbicos medidos según procedimiento anterior, será pagada por el precio unitario contratado. Entendiéndose que dicho precio y pago constituirá compensación total por toda mano de obra, equipos, herramientas, materiales, transporte de materiales e imprevistos necesarios para completar satisfactoriamente el trabajo.

04.01.02.03 AFIRMADO COMPACTADO FONDO TUBERÍA E=0.15m

Descripción:

Antes de ejecutar el afirmado de una zona, se limpiará la superficie a afirmar, eliminado las plantas, raíces u otras materias orgánicas. El afirmado debe estar libre de material orgánico y de cualquier otro material comprimible.

El afirmado se realizará en una capa de 0.15 m. de espesor, debiendo ser bien compactadas, para que el material empleado alcance su máxima densidad seca. Todo esto deberá ser aprobado por el ingeniero Supervisor de la obra, requisito fundamental.

El contratista deberá tener muy en cuenta que el proceso de compactación eficiente garantiza un correcto trabajo de los elementos de cimentación y que una deficiente compactación repercutirá en el total de elementos estructurales.

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN

Método de Medición:

La unidad de medida de esta partida se efectuará en metro cuadrado (m2).

Bases de Pago:

El pago de estos trabajadores se hará por metro cuadrado, cuyos precios unitarios se encuentran definidos en

el presupuesto.

04.01.02.04 ELIMINACIÓN DE MATERIAL EXCEDENTE HASTA BOTADERO MÁS CERCANO.

Descripción:

El acarreo o eliminación de material excedente se realizará a una zona donde no cause problemas a la

construcción o a la sociedad.

Método de Medición:

La unidad de medida de esta partida se efectuará en metro cúbico (m3).

Bases de Pago:

El pago se efectuará al precio unitario del contrato por metro cúbico, de acuerdo a la partida descrita anteriormente

entendiéndose que dicho precio y pago constituirá compensación total por los rubros de mano de obra, equipos,

herramientas e imprevistos necesarios para la ejecución de la Obra.

04.01.03. CONCRETO SIMPLE.

04.01.03.01 CONCRETO PARA ALIVIADEROS F'C = 175 KG/CM² + 30%PM

Descripción: Bajo esta partida genérica, El Contratista suministrará los diferentes tipos de concreto compuesto de

cemento portland, agregados finos, agregados gruesos y agua, preparados de acuerdo con estas especificaciones,

en los sitios, forma, dimensiones y clases indicadas en los planos, o como lo indique, por escrito, el Ingeniero

Supervisor.

La clase de concreto a utilizar en las estructuras, deberá ser la indicada en los planos o las especificaciones, o la

270

ordenada por el Ingeniero Supervisor.

Concreto f 'c = 210 Kg./cm²

Concreto f 'c = 175 Kg./cm²

Concreto f 'c = 140 Kg./cm²

Concreto f 'c = 175 Kg./cm² + 30 % P.M.

Concreto f 'c = $140 \text{ Kg./cm}^2 + 30 \% \text{ P.M.}$

FACULTAD DE INGENIERÍA

ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO
NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN

O

El Contratista deberá preparar la mezcla de prueba y someterla a la aprobación del Ingeniero Supervisor antes de mezclar y vaciar el concreto. Los agregados, cemento y agua deberán ser perfectamente proporcionados por peso, pero el Supervisor podrá permitir la proporción por volumen.

MATERIALES

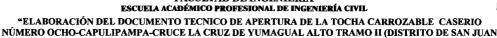
Cemento: El cemento a usarse será Portland Tipo I que cumpla con las Normas ASTM-C-150 AASHTO-M-85, sólo podrá usarse envasado. En todo caso el cemento deberá ser aceptado solamente con aprobación específica del Ingeniero Supervisor.

El cemento no será usado en la obra hasta que lo autorice el Ingeniero Supervisor. El Contratista en ningún caso podrá eximirse de la obligación y responsabilidad de proveer el concreto a la resistencia especificada.

El cemento debe almacenarse y manipularse de manera que siempre esté protegido de la humedad y sea posible su utilización según el orden de llegada a la obra. La inspección e identificación debe poder efectuarse fácilmente.

No deberá usarse cementos que se hayan aterronado o deteriorado de alguna forma, pasado o recuperado de la limpieza de los sacos.

Aditivos: Los métodos y el equipo para añadir sustancias incorporadas de aire, impermeabilizante, aceleradores de fragua, etc., u otras substancias a la mezcladora, cuando fuera necesario, deberán ser medidos con una tolerancia de exactitud de tres por ciento (3%) en más o menos, antes de agregarse a la mezcladora.


Agregados. Los que se usarán son: agregado fino o arena y el agregado grueso (piedra partida) o grava.

Agregado Fino: El agregado fino para el concreto deberá satisfacer los requisitos de designación AASTHO-M-6 y deberá estar de acuerdo con la siguiente graduación:

% QUE PASA EN PESO
100
95 – 100
45 – 80
10 – 30
2 – 10
0-3

FACULTAD DE INGENIERÍA
ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

O NG PERIL

El agregado fino consistirá de arena natural limpia, silicosa y lavada, de granos duros, fuertes, resistentes y lustroso. Estará sujeto a la aprobación previa del Ingeniero Supervisor. Deberá estar libre de impurezas, sales o sustancias orgánicas. La cantidad de sustancias dañinas no excederá de los límites indicados en la siguiente tabla:

SUSTANCIAS	% EN PESO Permisible
Terrones de Arcilla	1
Carbón y Lignito	1
Material que pasa la Malla Nro. 200	3

La arena utilizada para la mezcla del concreto será bien graduada. La arena será considerada apta, si cumple con las especificaciones y pruebas que efectué el Supervisor

El módulo de fineza de la arena estará en los valores de 2.50 a 2.90, sin embargo la variación del módulo de fineza no excederá en 0.30

El Supervisor podrá someter la arena utilizada en la mezcla de concreto a las pruebas determinadas por el ASTM para las pruebas de agregados de concreto como ASTM C-40, ASTM C-128, ASTM C-88.

Agregado Grueso: El agregado grueso para el concreto deberá satisfacer los requisitos de AASHTO designación M-80 y deberá estar de acuerdo con las siguientes graduaciones:

	% QUE PASA EN PESO
TAMIZ	
2"	100
1 1/2"	95 100
1"	20 – 55
1/2"	10 – 30
Nro. 4	0-5

El agregado grueso deberá ser de piedra o grava rota o chancada, de grano duro y compacto o cualquier otro material inerte con características similares, deberá estar limpio de polvo, materias orgánicas o barro y magra, en general deberá estar de acuerdo con la Norma ASTM C-33. La cantidad de sustancias dañinas no excederá de los límites indicados en la siguiente tabla:

FACULTAD DE INGENIERÍA

ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL "ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO

SUSTANCIAS	% EN PESO
Fragmentos blandos	. 5
Carbón y Lignito	1
Terrones de arcilla	0.25

De preferencia, la piedra será de forma angulosa y tendrá una superficie rugosa de manera de asegurar una buena adherencia con el mortero circundante. El Contratista presentará al Ingeniero Supervisor los resultados de los análisis practicados al agregado en el laboratorio, para su aprobación.

El Supervisor tomará muestras y hará las pruebas necesarias para el agregado grueso, según sea empleado en obra.

El tamaño máximo del agregado grueso, no deberá exceder de las dos terceras partes del espacio libre entre barras de armadura.

Se debe tener cuidado que el almacenaje de los agregados se realice clasificándolos por sus tamaños y distanciados unos de otros, el carguío de los mismos, se hará de modo de evitar su segregación o mezcla con sustancias extrañas.

Hormigón: El hormigón será un material de río o de cantera compuesto de partículas fuertes, duras y limpias.

Estará libre de cantidades perjudiciales de polvo, terrones, partículas blandas o escamosas, ácidos, materias orgánicas u otras sustancias perjudiciales.

Su granulometría deberá ser uniforme entre las mallas No. 100 como mínimo y 2" como máximo. El almacenaje será similar al del agregado grueso.

Piedra Mediana: El agregado ciclópeo o pedrones deberán ser duros, limpios, estables, con una resistencia última, mayor al doble de la exigida para el concreto que se va a emplear, se recomienda que estas piedras sean angulosas, de superficie rugosa, de manera que se asegure buena adherencia con el mortero circundante.

Agua: El Agua para la preparación del concreto deberá ser fresca, limpia y potable, substancialmente limpia de aceite, ácidos, álcalis, aguas negras, minerales nocivos o materias orgánicas. No deberá tener cloruros tales como cloruro de sodio en exceso de tres (03) partes por millón, ni sulfatos, como sulfato de sodio en exceso de dos (02) partes por millón. Tampoco deberá contener impurezas en cantidades tales que puedan causar una variación en el tiempo de fraguado del cemento mayor de 25% ni una reducción en la resistencia a la compresión del mortero, mayor de 5% comparada con los resultados obtenidos con agua destilada.

El agua para el curado del concreto no deberá tener un Ph más bajo de 5, ni contener impurezas en tal cantidad que puedan provocar la decoloración del concreto.

Las fuentes del agua deberán mantenerse y ser utilizadas de modo tal que se puedan apartar sedimentos, fangos, hierbas y cualquier otra materia.

FACULTAD DE INGENIERÍA

ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL "ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN

Dosificación: El concreto para todas las partes de la obra, debe ser de la calidad especificada en los planos, capaz de ser colocado sin segregación excesiva y cuando se endurece debe desarrollar todas las características requeridas por estas especificaciones. Los agregados, el cemento y el agua serán incorporados a la mezcladora por peso, excepto cuando el Supervisor permita la dosificación por volumen. Los dispositivos para la medición de los materiales deberán mantenerse permanentemente limpios; la descarga del material se realizará en forme tal que no queden residuos en la tolva; la humedad en el agregado será verificada y la cantidad de agua ajustada para compensar la posible presencia de agua en los agregados. El Contratista presentará los diseños de mezclas al Supervisor para su aprobación. La consistencia del concreto se medirá por el Método del Asentamiento del Cono de Abraham, expresado en número entero de centímetros (AASHTO T-119):

Mezcla y Entrega: El concreto deberá ser mezclado completamente en una mezcladora de carga, de un tipo y capacidad aprobado por el Ingeniero Supervisor, por un plazo no menor de dos minutos ni mayor de cinco minutos después que todos los materiales, incluyendo el agua, se han colocados en el tambor.

El contenido completo de una tanda deberá ser sacado de la mezcladora antes de empezar a introducir materiales para la tanda siguiente.

Preferentemente, la máquina deberá estar provista de un dispositivo mecánico que prohíba la adición de materiales después de haber empezado la operación de mezcla. El volumen de una tanda no deberá exceder la capacidad establecida por el fabricante.

El concreto deberá ser mezclado en cantidades solamente para su uso inmediato; no será permitido sobre mezclar en exceso, hasta el punto que se requiera añadir agua al concreto, ni otros medios.

Al suspender el mezclado por un tiempo significativo, al reiniciar la operación, la primera tanda deberá tener cemento, arena y agua adicional para revestir el interior del tambor sin disminuir la proporción del mortero en la mezcla.

Mezclado a Mano: La mezcla del concreto por métodos manuales no será permitida sin la autorización por escrito, del Ingeniero Supervisor. Cuando sea permitido, la operación será sobre una base impermeable, mezclando primero el cemento, la arena y la piedra en seco antes de añadir el agua, cuando se haya obtenido una mezcla uniforme, el agua será añadida a toda la masa. Las cargas de concreto mezcladas a mano no deberán exceder de 0.4 metros cúbicos de volumen.

No se acepta el traslado del concreto a distancias mayores a 60.00 m, para evitar su segregación y será colocado el concreto en un tiempo máximo de 20 minutos después de mezclado.

Vaciado de Concreto: El concreto será vaciado antes que haya logrado su fraguado inicial y en todo caso en un tiempo máximo de 20 minutos después de su mezclado. El concreto debe ser colocado en forma que no se separen las porciones finas y gruesas y deberá ser extendido en capas horizontales. Se evitará salpicar los encofrados

FACULTAD DE INGENIERÍA

ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN

antes del vaciado. Las manchas de mezcla seca serán removidas antes de colocar el concreto. Será permitido el uso de canaletas y tubos para rellenar el concreto a los encofrados siempre y cuando no se separe los agregados en el tránsito. No se permitirá la caída libre del concreto a los encofrados en altura superiores a 1.5 m. Las canaletas y tubos se mantendrán limpios, descargándose el agua del lavado fuera de la zona de trabajo.

La mezcla será transportada y colocada, evitando en todo momento su segregación. El concreto será extendido homogéneamente, con una ligera sobre elevación del orden de 1 a 2 cm. con respecto a los encofrados, a fin de compensar el asentamiento que se producirá durante su compactación.

El concreto deberá ser vaciado en una operación continua. Si en caso de emergencia, es necesario suspender el vaciado del concreto antes de terminar un paño, se deberá colocar topes según ordene el Supervisor y tales juntas serán consideradas como juntas de construcción.

Las juntas de construcción deberán ser ubicadas como se indique en los planos o como lo ordene el Supervisor, deberán ser perpendiculares a las líneas principales de esfuerzo y en general, en los puntos de mínimo esfuerzo cortante.

En las juntas de construcción horizontales, se deberán colocar tiras de calibración de 4 cm. de espesor dentro de los encofrados a lo largo de todas las caras visibles, para proporcionar líneas rectas a las juntas. Antes de colocar concreto fresco, las superficies deberán ser limpiadas por chorros de arena o lavadas y raspadas con una escobilla de alambre y empapadas con aqua hasta su saturación conservándose saturadas hasta que sea vaciado, los encofrados deberán ser ajustados fuertemente contra el concreto, ya en sitio la superficie fraguada deberá ser cubierta completamente con una capa muy delgada de pasta de cemento puro.

El concreto para las subestructuras deberá ser vaciado de tal modo que todas las juntas de construcción horizontales queden verdaderamente en sentido horizontal y de ser posible, que tales sitios no queden expuestos a la vista en la estructura terminada. Donde fuesen necesarias las juntas verticales, deberán ser colocadas, varillas de refuerzo extendidas a través de esas juntas, de manera que se logre que la estructura sea monolítica. Deberá ponerse especial cuidado para evitar las juntas de construcción de un lado a otro de muros de ala o de contención u otras superficies que vayan a ser tratadas arquitectónicamente.

Todas las juntas de expansión o construcción en la obra terminada deberán quedar cuidadosamente acabadas y exentas de todo mortero y concreto. Las juntas deberán quedar con bordes limpios y exactos en toda su longitud.

Compactación: La compactación del concreto se ceñirá a la Norma ACI-309. Las vibradoras deberán ser de un tipo y diseño aprobados y no deberán ser usadas como medio de esparcimiento del concreto. La vibración en cualquier punto deberá ser de duración suficiente para lograr la consolidación, pero sin prolongarse al punto en que ocurra segregación.

Acabado de las Superficies de Concreto: Inmediatamente después del retiro de los encofrados, todo alambre o dispositivo de metal usado para sujetar los encofrados y que pase a través del cuerpo del concreto, deberá ser

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN

O

retirado o cortado hasta, por lo menos 2 centímetros debajo de la superficie del concreto. Todos los desbordes del mortero y todas las irregularidades causadas por las juntas de los encofrados, deberán ser eliminados.

Todos los pequeños agujeros, hondonadas y huecos que aparezcan, deberán ser rellenados con mortero de cemento mezclado en las mismas proporciones que el empleado en la masa de obra. Al resanar agujeros más grandes y vacios en forma de paneles, todos los materiales toscos o rotos deberán ser quitados hasta que quede a la vista una superficie de concreto densa y uniforme que muestre el agregado grueso y macizo. Todas las superficies de la cavidad deberán ser completamente saturadas con agua, después de lo cual deberá ser aplicada una capa delgada de pasta de cemento puro. Luego, la cavidad se rellenará con mortero consistente, compuesto de una parte de cemento Portland por dos partes de arena, que deberá ser perfectamente apisonado en su lugar. Dicho mortero deberá ser asentado previamente, mezclándolo aproximadamente 30 minutos antes de usarlo. El período de tiempo puede modificarse según la marca del cemento empleado, la temperatura, la humedad ambiente; se mantendrá húmedo durante un período de 5 dias.

Para remendar partes grandes o profundas deberá incluirse agregado grueso en el material de resane y se deberá poner precaución especial para asegurar que resulte un resane denso, bien ligado y debidamente curado.

La existencia de zonas excesivamente porosas puede ser, a juicio del Ingeniero Supervisor, causa suficiente para el rechazo de una estructura. Al recibir una notificación por escrito del Ingeniero Supervisor, señalando que una determinada ha sido rechazada, El Contratista deberá proceder a retirarla y construirla nuevamente, en parte o totalmente, según fuese especificado, por su propia cuenta y a su costo.

Curado y Protección del Concreto: Todo concreto será curado por un período no menor de 7 días consecutivos, mediante un método o combinación de métodos aplicables a las condiciones locales, aprobado por el Ingeniero Supervisor.

El Contratista deberá tener todo el equipo necesario para el curado y protección del concreto, disponible y listo para su empleo antes de empezar el vaciado del concreto. El sistema de curado que se aplicará será aprobado por el Ingeniero Supervisor y será aplicado inmediatamente después del vaciado a fin de evitar el fisuramiento, resquebrajamiento y pérdidas de humedad del concreto.

La integridad del sistema de curado deberá ser rígidamente mantenida a fin de evitar pérdidas de agua perjudiciales en el concreto durante el tiempo de curado. El concreto no endurecido deberá ser protegido contra daños mecánicos y el Contratista someterá a la aprobación del Ingeniero Supervisor sus procedimientos de construcción programados para evitar tales daños eventuales. Ningún fuego o calor excesivo, en las cercanías o en contacto directo con el concreto, será permitido en ningún momento.

Si el concreto es curado con agua, deberá conservarse húmedo mediante el recubrimiento con un material, saturado de agua o con un sistema de tubería perforada, mangueras o rociadores, o con cualquier otro método aprobado, que sea capaz de mantener todas las superficies permanentemente y no periódicamente húmedas. El agua para el curado deberá ser en todos los casos limpia y libre de cualquier elemento que, en opinión del Ingeniero Supervisor pudiera causar manchas o descolorimiento del concreto.

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL.

"ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO
NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN

LIAN CONTRACTOR

Muestras: Se tomarán como mínimo 6 muestras por cada llenado, probándoselas a la compresión, 2 a los 7 días, 2 a los 14 y 2 a los 28 días del vaciado, considerándose el promedio de cada grupo como resistencia última de la pieza. Esta resistencia no podrá ser menor que la exigida en el proyecto para la partida respectiva.

Método de Medición: Esta partida se medirá por metro cúbico de concreto de la calidad especificada (fc = 210 Kg./cm², fc = 175 Kg./cm², fc = 140 Kg./cm² y fc = 175 Kg./cm² + 30 % P.M. o fc = 140 Kg./cm²), colocado de acuerdo con lo indicado en las presentes especificaciones, medido en su posición final de cuerdo a las dimensiones indicas en los planos o como lo hubiera ordenado, por escrito, el Ingeniero Supervisor. El trabajo deberá contar con la conformidad del Ingeniero Supervisor.

Bases de Pago: La cantidad de metros cúbicos de concreto de cemento portland preparado, colocado y curado, calculado según el método de medida antes indicado, se pagará de acuerdo al precio unitario del contrato, por metro cúbico, de la calidad especificada, entendiéndose que dicho precio y pago constituirá compensación total por los materiales, mezclado, vaciado, acabado, curado; así como por toda mano de obra, equipos, herramientas e imprevistos necesarios para completar satisfactoriamente el trabajo.

04.01.03.02 ENCOFRADO Y DESENCOFRADO DE ALIVIADEROS

Descripción:

Bajo esta partida, El Contratista suministrará, habilitará, y colocará las formas de madera necesarias para el vaciado del concreto de todas las obras de arte y drenaje; la partida incluye el Desencofrado y el suministro de materiales diversos, como clavos y alambre.

Materiales:

El Contratista deberá garantizar el empleo de madera en buen estado, convenientemente apuntalada, a fin de obtener superficies lisas y libres de imperfecciones.

Los alambres que se empleen para amarrar los encofrados no deberán atravesar las caras del concreto que queden expuestas en la obra terminada.

Método Constructivo:

El Contratista deberá garantizar el correcto apuntalamiento de los encofrados de manera que resistan plenamente, sin deformaciones, el empuje del concreto al momento del llenado. Los encofrados deberán ceñirse a la forma, límites y dimensiones indicadas en los planos y estarán los suficientemente unidos para evitar la pérdida de agua del concreto.

Para el apuntalamiento de los encofrados se deberá tener en cuenta los siguientes factores:

MACKENIAL IN FRANKLING

FACULTAD DE INGENIERÍA
ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN

Velocidad y sistema del vaciado del concreto

Cargas de materiales, equipos, personal, incluyendo fuerzas horizontales, verticales y de impacto.

• Resistencia del material usado en las formas y la rigidez de las uniones que forman los elementos del

encofrado.

Antes de vaciarse el concreto, las formas deberán ser mojadas o aceitadas para evitar el

descascaramiento.

La operación de desencofrar se hará gradualmente, quedando totalmente prohibido golpear o forzar.

El Contratista es responsable del diseño e Ingeniería de los encofrados, proporcionando los planos de detalle de

todos los encofrados al Ingeniero Supervisor para su aprobación. El encofrado será diseñado para resistir con

seguridad todas las cargas impuestas por su propio peso, el peso y empuje del concreto y la sobre carga de llenado

no inferior a 200 Kg./m2.

La deformación máxima entre elementos de soporte debe ser menor de 1/240 de la luz entre los miembros

estructurales.

Las formas deben ser herméticas para prevenir la filtración de la lechada de cemento y serán debidamente

arriostradas o ligadas entre sí de manera que se mantenga en la posición y forma deseada con seguridad,

asimismo evitar las deflexiones laterales.

Las caras laterales del encofrado en contacto con el concreto, serán convenientemente humedecidas antes de

depositar el concreto y sus superficies interiores debidamente lubricadas para evitar la adherencia del mortero;

previamente, deberá verificarse la limpieza de los encofrados, retirando cualquier elemento extraño que se

encuentre dentro de los mismos.

Los encofrados se construirán de modo tal que faciliten el desencofrado sin producir daños a las superficies de

concreto vaciadas. Todo encofrado, para volver a ser usado, no deberá presentar daños ni deformaciones y deberá

ser limpiado cuidadosamente antes de ser colocado nuevamente.

Desencofrado: las formas deberán retirarse de manera que se asegure la completa indeformalidad de la

estructura.

En general, las formas no deberán quitarse hasta que el concreto se haya endurecido suficientemente como para

soportar con seguridad su propio peso y los pesos superpuestos que pueden colocarse sobre él. Las formas no

deben quitarse sin el permiso del Supervisor.

Se debe considerar los siguientes tiempos mínimos para efectuar el Desencofrado:

Costado de Vigas y muros

: 24 horas.

Fondo de Vigas

: 21 días.

Losas

: 14 días.

278

Estribos y Pilares

: 3 días.

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN

Cabezales de Alcantarillas T.M.C.

: 48 horas.

Sardineles

: 24 horas.

Método de Medición: El encofrado se medirá en metros cuadrados, en su posición final, considerando el área

efectiva de contacto entre la madera y el concreto, de acuerdo al alineamiento y espesores indicados en los planos

del proyecto; y lo prescrito en las presentes especificaciones. El trabajo deberá contar con la aprobación del

Ingeniero Supervisor.

Bases de Pago: La superficie medida en la forma descrita anteriormente, será pagada al precio unitario del

contrato, por metro cuadrado, para la partida ENCOFRADO Y DESENCOFRADO, entendiéndose que dicho

precio y pago constituirá compensación total por el suministro, habilitación, colocación y retiro de los moldes; así

como por toda mano de obra, equipos, herramientas, materiales, e imprevistos necesarios para completar

satisfactoriamente el trabajo.

04.01.04 TUBERÍA TMC 36"

04.01.04.01 TUBERÍA TMC 36"

Descripción: Bajo este ítem, El Contratista realizará todos los trabajos necesarios para suministrar, colocar y

compactar el material que servirá como "cama o asiento" de las alcantarillas; igualmente comprenderá el suministro

y colocación de las alcantarillas metálicas, de acuerdo a las dimensiones, ubicación y pendientes indicadas en los

planos del proyecto, todo de acuerdo a las presentes especificaciones y/o como lo indique el Ingeniero Supervisor.

Materiales:

Tubería Metálica Corrugada (TMC): Se denomina así a las tuberías formadas por planchas de acero corrugado

galvanizado, unidas con pernos. Esta tubería es un producto de gran resistencia estructural, con costuras

empernadas que confieren mayor capacidad estructural, formando una tubería hermética, de fácil armado.

El acero de las tuberías deberá satisfacer las especificaciones AASTHO M-218-M167 y ASTM A 569; que

establecen un máximo de contenido de carbono de (0.15) quince centésimos.

Propiedades mecánicas: Fluencia mínima: 23 Kg./mm y Rotura: 31 Kg./mm. El galvanizado deberá ser mediante un

baño caliente de zinc, con recubrimiento mínimo de 90 micras por lado de acuerdo a las especificaciones ASTM A-

123.

Como accesorios serán considerados los pernos y las tuercas en el caso de tubos de pequeño diámetro. Los tubos

de gran diámetro tendrán, adicionalmente, ganchos para el carguío de las planchas, pernos de anclaje y fierro de

279

amarre de la viga de empuje, especificación ASTM A-153-1449.

Método de Construcción:

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAI

Armado: las tuberías, las entregan en fábrica en secciones curvas, más sus accesorios y cada tipo es acompañado con una descripción de armado, el mismo que deberá realizarse en la superficie.

Preparación de la base (cama): La base o cama es la parte que estará en contacto con el fondo de la estructura metálica, esta base deberá tener un ancho no menor a medio diámetro, suficiente para permitir una buena compactación, del resto de relleno.

Esta base se cubrirá con material suelto de manera uniforme, para permitir que las corrugaciones se llenen con este material.

Como suelo de fundación se deberá evitar materiales como: el fango o capas de roca, ya que estos materiales no ofrecen un sostén uniforme a la estructura; estos materiales serán reemplazados con material apropiado para el relleno.

Relleno con tierra: La resistencia de cualquier tipo de estructura para drenaje, depende en gran parte, de la buena colocación del terraplén o relleno. La selección, colocación y compactación del relleno que circunde la estructura será de gran importancia para que esta conserve su forma y por ende su funcionamiento sea óptimo.

Material para el relleno: Se debe preferir el uso de materiales granulares, pues se drenan fácilmente, pero también se podrán usar los materiales del lugar, siempre que sean colocados y compactados cuidadosamente, evitando que contengan piedras grandes, césped, escorias o tierra que contenga elevado porcentaje de finos, pues pueden filtrarse dentro de la estructura.

El relleno deberá compactarse hasta alcanzar una densidad mayor a 95% de la máxima densidad seca. El relleno colocado bajo los costados y alrededor del ducto, se debe poner alternativamente en ambos lados, en capas de 15 cm. y así permitir un perfecto apisonado. El material se colocará en forma alternada para conservarlo siempre a la misma altura en ambos lados del tubo. La compactación se puede hacer con equipo mecánico, es decir con un pisón o con un compactador vibratorio tipo plancha, siempre con mucho cuidado asegurando que el relleno quede bien compactado.

El Ingeniero Supervisor estará facultado a aprobar o desaprobar el trabajo y a solicitar las pruebas de compactación en las capas que a su juicio lo requieran.

A fin de evitar la socavación, se deberá usar disipadores de energía, como una cama de empedrado de piedras en la salida y en la entrada de las alcantarillas; asimismo, se debe de retirar todo tipo de obstáculos, para que no se produzca el represamiento y el probable colapso del camino.

En toda alcantarilla tipo tubo se construirán muros de cabecera (cabezales) con alas, en la entrada y salida, para mejorar la captación y aprovechar la capacidad de la tubería, así como para reducir la erosión del relleno y controlar el nivel de entrada de agua.

FACULTAD DE INGENIERÍA

ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN

Método de Medición: La longitud por la que se pagará, será el número de metros lineales de tubería de los diferentes diámetros y calibres, medida en su posición final, terminada y aceptada por el Ingeniero Supervisor. La medición se hará de extremo a extremo de tubo.

Bases de Pago: La longitud medida en la forma descrita anteriormente, será pagada al precio unitario del contrato, por metro lineal, para la partida ALCANTARILLA TMC 20, 24, 30 y 36", entendiéndose que dicho precio y pago constituirá compensación total por el suministro, colocación y compactación del material de cama o asiento y relleno; así como por el suministro y colocación de los tubos de metal corrugado y por toda mano de obra, equipos, herramientas, materiales, e imprevistos necesarios para completar satisfactoriamente el trabajo.

04.01.05 EMBOQUILLADO CON PIEDRA (ENTRADA - SALIDA)

Descripción: Esta partida se refiere al proceso de construcción de enrocado que tiene que realizar el contratista en las zonas diseñadas para proteger las estructuras de concreto, ante el agente de erosión, especialmente en las obras de alcantarillas y badenes de los tramos de carretera del presente estudio.

La partida no contempla el proceso de preparación, selección, carguío y transporte, por corresponder esta partida al costo del material puesto en obra.

Método de Medición: El método de medición para el pago por esta partida de piedra acomodad, será el número de metros cúbicos de roca acomodada, medidas de acuerdo al avance de los trabajos, de conformidad con las presentes especificaciones y con la aprobación del Ingeniero Supervisor.

Bases de Pago: El volumen medido en la forma descrita será pagado al precio unitario del contrato, por metro cúbico para la partida de "PIEDRA ACOMODADA", entendiéndose que dicho pago constituirá compensación total por toda mano de obra, equipos, herramientas, materiales e imprevistos necesarios para completar satisfactoriamente el trabajo.

04.02.00 CUNETAS

04.02.01 CONFORMACIÓN DE CUNETAS EN MATERIAL SUELTO

Descripción: esta partida consiste en realizar todas las excavaciones necesarias para conformar las cunetas laterales de la carretera de acuerdo con las presentes especificaciones y en conformidad con los lineamientos, rasantes y dimensiones indicadas en los planos o como lo haya indicado el Ingeniero Supervisor. La partida incluirá, igualmente, la remoción y el retiro de estructuras que interfieran con el trabajo o lo obstruyan.

Toda excavación realizada bajo este ítem se considerara como material suelto, aquel que se encuentra casi sin cohesión y puede ser trabajado a lampa o pico, o con un tractor para su desagregación. No requiere el uso de

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAI

explosivos. Dentro de este grupo están las arenas, tierras vegetales húmedas, tierras arcillosas secas, arenas aglomeradas con arcilla seca y tierras vegetales secas.

Esta partida consistirá en la conformación de cunetas laterales en aquellas zonas, en corte a media ladera o corte cerrado, que actualmente carecen de estas estructuras.

Los trabajos se ejecutarán exclusivamente mediante el empleo de mano de obra no calificada local y uso de herramientas manuales, tales como: palas, picos, barretas y carretillas.

Los precios unitarios se calcularán independientemente para material suelto, roca suelta y roca fija y luego serán ponderados en función a los metrados.

Las cunetas se conformarán siguiendo el alineamiento de la calzada, salvo situaciones inevitables que obliguen a modificar dicho alineamiento. En todo caso, será el Supervisor el que apruebe el alineamiento y demás características de las cunetas.

La pendiente de la cuneta deberá ser entre 2% a 5%, cuando sea necesario hacer cunetas con pendientes mayores de 5% se deberá reducir la velocidad del agua con digues de contención o se debe revestir.

Método de Medición: La longitud por la que se pagará, será el número de metros lineales de cunetas conformadas, independientemente de la naturaleza del material excavado, medidas en su posición final; aceptadas v aprobadas por el Ingeniero Supervisor.

Bases de Pago: La longitud medida en la forma descrita anteriormente, será pagada al precio unitario del contrato, por metro lineal, para la partida CONFORMACIÓN DE CUNETAS EN MATERIAL SUELTO, dicho precio y pago constituirá compensación total por toda mano de obra, equipos, materiales, herramientas e imprevistos necesarios para completar satisfactoriamente los trabajos.

05.00.00 SEÑALIZACIÓN

05.01.00 HITOS KILOMÉTRICOS

Descripción: son señales que informan a los conductores el kilometraje y la distancia al origen de vía.

El Contratista realizará todos los trabajos necesarios para construir y colocar, en su lugar, los hitos kilométricos de concreto.

Los hitos kilométricos se colocarán a intervalos de un kilómetro; en lo posible, alternadamente, tanto a la derecha, como a la izquierda del camino, en el sentido del tránsito que circula desde el origen hasta el término de la carretera. Preferentemente, los kilómetros pares se colocarán a la derecha y los impares a la izquierda. Sin embargo, el criterio fundamental para su colocación será el de la seguridad de la señal.

FACULTAD DE INGENIERÍA

ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL "ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN

Método de Construcción: Los hitos serán de concreto f'c = 140 Kg./cm2 + 30% PM, con fierro de construcción de 3/8" y estribos de alambre Nro. 8 cada 0.15 m. Tendrán una altura total igual a 1.20 m, de la cual 0.70 m. irán sobre la superficie del terreno y 0.50 m. empotrados en la cimentación. La inscripción será en bajo relieve.

Se pintarán de blanco, con bandas negras de acuerdo al diseño con tres manos de pintura esmalte.

La cimentación de los hitos kilométricos será de concreto ciclópeo f'c = 140 Kq./cm2+30% de P.M., de acuerdo a las dimensiones indicadas en el plano respectivo.

Para encofrar los hitos El Contratista utilizará madera de buena calidad o formas metálicas a fin de obtener superficies lisas y libres de imperfecciones.

La secuencia constructiva será la siguiente:

Preparación del molde y encofrado de acuerdo a las indicadas en los planos.

Armado del acero de refuerzo.

Vaciado del concreto.

Inscripción en bajo relieve de 12 mm. de profundidad

Desenfocado y acabado.

Pintado con esmalte de cada uno de los postes con el fondo blanco y letras negras.

Colocación.

Método de Medición: El método de medición es por unidad, colocada y aceptada del Ingeniero Supervisor.

Bases de Pago: Los hitos medidos en la forma descrita anteriormente serán pagados al precio unitario del contrato, por unidad, para la partida HITOS KILOMÉTRICOS, entendiéndose que dicho precio y pago constituirá compensación total por toda mano de obra, suministro de materiales, equipos, herramientas, transporte y otros imprevistos requeridos para completar satisfactoriamente el trabajo.

05.02.00 **SEÑALES INFORMATIVAS**

Las señales informativas se usan para guiar al conductor a través de una ruta determinada, dirigiéndolo al lugar de su destino. Así mismo se usan para destacar lugares notables (ciudades, ríos, lugares históricos, etc.) en general cualquier información que pueda ayudar en la forma más simple y directa.

Método de construcción: Su metodología de construcción es a ambos lados debe contener el mismo mensaje. El dimensionamiento de la señal está definido en los planos del proyecto.

Método de Medición: La unidad de medición es la Unidad (und), la cual abarcará la señal propiamente dicha, el poste y la cimentación. Se medirá el conjunto debidamente colocado y aprobado por el ingeniero supervisor.

A A A

FACULTAD DE INGENIERÍA
ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN

05.03.00 SEÑALES PREVENTIVAS

Descripción: Las señales preventivas o de prevención son aquellas que se utilizan para indicar con anticipación la

aproximación de ciertas condiciones de la vía o concurrentes a ella que implican un peligro real o potencial que

puede ser evitado tomando ciertas precauciones necesarias.

Método de construcción: Su metodología de construcción es a ambos lados debe contener el mismo mensaje. El

dimensionamiento de la señal está definido en los planos del proyecto.

Método de Medición: La unidad de medición es la Unidad (und), la cual abarcará la señal propiamente dicha, el

poste y la cimentación. Se medirá el conjunto debidamente colocado y aprobado por el ingeniero supervisor.

05.04.00 SEÑALES REGULADORAS

Descripción: Las señales reguladoras, se refieren a regular el tránsito de la velocidad de diseño y serán

ubicadas en los lugares indicados en el diseño geométrico.

Método de Construcción

Preparación de las Señales: Las señales reguladoras serán confeccionadas en placas de fibra de vidrio de 4

mm de espesor, con una cara de textura similar al vidrio, el fondo de la señal ira con material adhesivo

reflexivo color amarillo de alta intensidad.

Todas las señales deberán fijarse a los postes, con pernos tuercas y arandelas galvanizadas.

Cimentación de los Postes: Las señales preventivas tendrán una cimentación de concreto fc=140 Kg./cm2

con 30 % de piedra mediana y dimensiones de acuerdo a lo indicado en los planos.

Poste de Fijación de Señales: Se empleara pórticos de tubo de d=3", tal como se indican en los planos, los

cuales serán pintados con pintura anticorrosiva y esmalte color gris metálico. Las soldaduras deben aplicarse

dejando superficies lisas, bien acabadas y sin dejar vacíos que debiliten las uniones, de acuerdo a la mejor

práctica de la materia. Los pórticos se fijaran a postes tal como se indiquen en los planos y serán pintados en

fajas de 0.50 m con esmalte de color negro y blanco, previamente se pasara una mano de pintura imprimante.

Método de Medición: La unidad de medición es la Unidad (und), la cual abarcara la señal propiamente dicha,

el poste y la cimentación. Se medirá el conjunto debidamente colocado y aprobado por el ingeniero supervisor

Bases de Pago: Las señales medidas en la forma descrita anteriormente serán pagados al precio unitario del

contrato, por unidad, para las partidas.

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO ÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUA)

06.00.00MITIGACIÓN DE IMPACTO AMBIENTAL

06.01.00 MITIGACIÓN DE ÁREAS EN CANTERAS

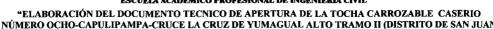
Se deberá considerar que la explotación de canteras provocan zonas inestables por los cortes altos (más de 10 mts. de altura), causando derrumbes y deslizamientos.

Al término de la explotación de la cantera, el Contratista debe restaurar las áreas afectadas mediante la nivelación de las áreas intervenidas, evitando dejar hondonadas y montículos que puedan modificar el paisaje de la zona.

06.02.00 RESTAURACIÓN DE ÁREAS ASIGNADAS COMO BOTADEROS

- Se deberá tener en consideración en la ubicación de los mismos, que esta actividad genera emisiones de partículas, aporte de sedimentos a los cuerpos de agua, alteración de la vegetación y el paisaje, cambio de uso del suelo, inestabilidad y erosión.
- Para la disposición de materiales en el botadero se deberá considerar las características físicas, topográficas y de drenaje del lugar utilizándose zonas aledañas las vías de donde se ha extraído material para la construcción de la carretera.
- Se deberá contar con las autorizaciones en caso de que los terrenos sean de propiedad privada.
- Evitar que los botaderos estén cerca de los cuerpos de agua.
- Para implementar un relleno, se retira primero la capa orgánica del suelo, si lo tuviera, ubicándola en sitios adecuados para futura utilización en la etapa de restauración el área (revegetación). El material inerte se colocara en capas cuyo espesor no será mayor de 0.40 metros el cual será compactado uniformemente por lo menos cuatro pasadas de un tractor de orugas, cuando el espacio lo permita.
- Los taludes de los botaderos deberán tener una pendiente adecuada para evitar deslizamientos y permitan posteriormente ser vegetados.

06.03.00 RESTAURACIÓN DE ÁREAS ASIGNADAS COMO CAMPAMENTO


En la etapa de post construcción, se limpiará toda el área utilizada como instalación de campamento de desechos domésticos, industriales e inflamables para que esta área pueda estar disponible a la producción agrícola, ganadera u otro fin que no altere el medio ambiente ni la comodidad de la comunidad.

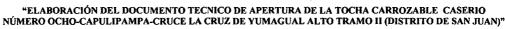
Abandono de Obra

Uno de los principales problemas que se presentan al finalizar la ejecución de una obra vial, es el estado de deterioro ambiental y paisajístico de las áreas ocupadas y su entorno por las actividades constructivas y/o instalaciones provisionales de la obra.

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

Esta afectación se produce principalmente por la generación de residuos sólidos y/o líquidos, afectación de la cobertura vegetal, contaminación de suelos y cursos de agua, entre otros.

Por tal motivo, el Contratista debe realizar la limpieza general de las zonas utilizadas en la construcción de la vía; es decir, que por ningún motivo se permitirá que el Contratista deje en las zonas adyacentes al camino, material sobrante del mantenimiento del camino; así como, residuos generados en la construcción de los sistemas de drenaje proyectadas.

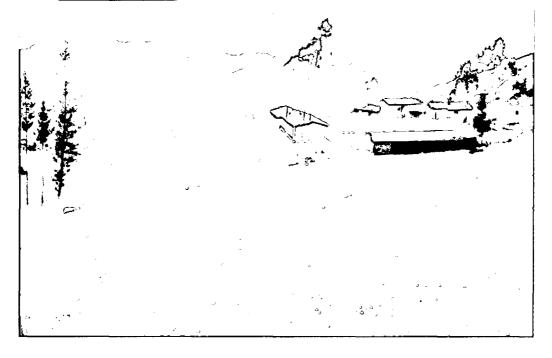

Abandono de los depósitos de materiales excedentes de obra

Los depósitos de materiales excedentes de obra localizados deben ser restaurados de manera que guarden armonía con la morfología existente del área y de acuerdo al entorno ecológico de su localización; para este efecto se recomienda:

- · Cubrir con material orgánico las superficies del depósito en el talud y las zonas planas.
- Revegetar las superficies del depósito de acuerdo al paisaje natural existente.

FACULTAD DE INGENIERIA

ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL



FOTOGRAFIA 01

CASERÍO CAPULIPAMA

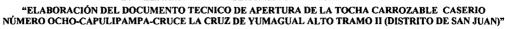
Se puede apreciar la ubicación de la futura vía Caserío Número Ocho-Capulipampa

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN)"

FOTOGRAFIA 02

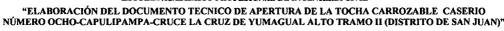
Ingeniero, Regidores, tesistas y autoridades de los caseríos Ocho y Capulipampa haciendo el reconocimiento de los lugares de la futura carretera en el abra Capulipampa



Punto de inicio del tramo II I.E 82872 Capulipampa Km. 05+000

FACULTAD DE INGENIERÍA

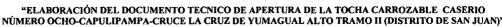
FOTOGRAFIA 04


Camino de herradura donde se construirá la vía Capulipampa cruce la cruz de Yumagual alto

Levantamiento topográfico

FACULTAD DE INGENIERÍA
ESCUEIA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

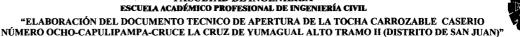
FOTOGRAFIA 06


Excavación de calicatas

Peso de las muestras de las calicatas para traer para el estudio de suelos.

FACULTAD DE INGENIERIA
ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

FOTOGRAFIA 08


Acarreo de muestras de suelos al punto Final del tramo de futura carretera

Carretera Cruce la Cruz de Yumagual Alto.

FACULTAD DE INGENIERÍA

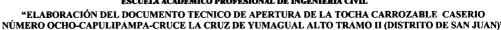
POEMA: A TARAPOTO -PERÚ (VIAJE DE LA PROMOCIÓN 2003)

Cajamarca, diciembre, dos mil ocho; Desde la Recoleta, junto a la capilla; Partimos con destino a Tarapoto La promoción "Salazar Tacilla".

Nombre que nos pusimos de acuerdo, bien al grano, En honor a un compañero que nos brindo consuelo; A quien Dios, nos quito y se llevara muy temprano, Y hoy se encuentra implorando por nosotros desde el cielo.

Emprendimos el viaje, derrochando; Alegría y licor, en grado sumo; Y en Chiclayo, el dinero reclamando, Bernardo se apartó, se hizo humo.

Roncal, prendía la chispa, muchas veces, Haciéndonos reir al grupo entero; Y disculpábamos, sus "estupideces" Cada vez que molestaba al ingeniero.


La esposa del ingeniero, celebraba La chispa magistral de aquel chistoso; Con una amplia sonrisa, que le daba Al chiste un aderezo sustancioso.

La grandeza de una hermosa construcción, En vivo y directo, pudimos todos ver. Es la hermosa represa del limón. Obra, que todo ingeniero debe conocer.

En Pucará, nos esperaba Donald con aliento, Invitándonos a su casa con entusiasmo y hermandad, pasar momentos llenos de esparcimiento, Toda la promoción, con vehemencia de felicidad.

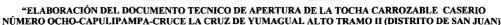
FACULTAD DE INGENIERÍA
ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

Felices, continuando, a toda masa, Arribamos a la espléndida Jaén, Cintia, no olvidarás, en esa plaza El susto que pasaste al mil por cien.

En Jaén, toda una noche de estadía, Con su calor humano tan sincero; Y bailando, con gran algarabía En "Eros" discoteca, a flor de cuero.

Temprano al día siguiente nuestro viaje Proseguía, cruzando el río marañón. Y felices disfrutando su paisaje, De la Selva auroral sin parangón.

Veíamos plasmarse el gran proyecto, Cada vez más y más, en doble impacto; Mientras que Soberón en el trayecto, Recaudaba para el trago, tan exacto.


Llegando a Pomacochas, suelo andino, Con su gente leal, como ninguna. Nos deslumbró el contexto tan genuino De su hermosa y auténtica laguna.

A las ocho de la noche, la excursión A Tarapoto llegó. La bienvenida, Le dio el "Gran Pajatén; "y la" Estación" Discoteca, que pasó de amanecida.

Muchos bailando reguerón, Después que tanto libaron. Sintieron otra sensación; Y al otro bando pasaron.

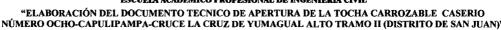
FACULTAD DE INGENIERÍA
ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

Muy temprano, las cataratas de Ahuashiyacu Llenas de gente amena se veían. El ingeniero un chapuzón tuvo que darse Para menguar la ira, y el calor que le invadía.

El Huallaga en ancho bote atravesamos, Nos recibió su gente bondadosa; Y un rosario de refrescos nos mandamos, Para aliviar la sed tan ardorosa.

En el Sauce, distrito a fe de villa, Disfrutamos de otra hermosa sensación. Es la "laguna azul", ¡qué maravilla! El encanto más genial de la región.

¡Qué experiencia tan digna y tan serena! La promo discurriendo muy feliz. Aunque a Olano, casi lleva la sirena De no ser la oportuna, acción de la Liz.


Soberón, tú tampoco has de olvidar El abrazo del can que te envolvió. Y Roncal, para evitarte un "pachachar", Al instante sacó un huevo y te limpió.

En la noche, en plan de esparcimiento, Visitamos el "Jaguar", diestro fulgor. El Tafur se quedó muerto y sin aliento, Solo al ver de las "charapas" su esplendor.

De regreso a Cajamarca, no faltaba, La ilusión y alegría, a todo dar. Viendo, del mirador de Lamas que brillaba De la selva su encanto singular.

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

A las ocho de la noche, en Moyobamba, Merendamos muy tranquilos y de acuerdo. Tomándonos muchas fotos, qué caramba, Pa' traer a Cajamarca de recuerdo.

Y aquella noche, hasta rayar el día, Las copas prosiguieron, menudearon. El chino y Soberón, mientras dormía, Al Quiliche su licor lo chorearon.

Prosiguiendo el retorno, ya en Chiclayo Al museo de Sipán, fuimos feliz. Donde hallamos cual célico santuario, Mil vestigios del pasado del país.

Coche, te hicimos pagar la carrera, A las poncianas cuando visito. Chicoma, hasta encargar la billetera, Un gavilan al vuelo la presa lo quito.

En el hotel "Tumbas Reales" la estadía, Para luego Pimentel visitar. Con concurso de yardas de alegría, Fue la Lesly la primera en campionar.

Otra vez a Cajamarca de regreso, A la tierra hermosa y folclorista Que nos brinda educación sin receso A la juventud estudiosa y progresista.

Y de pronto, de nuevo, respirando Aquí en Cajamarca magistral. La excursión, había terminado. Como estaba previsto, así tal cual.

FACULTAD DE INGENIERÍA SCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

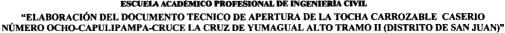
"ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN)

Nuestra gratitud, amplia y sincera A nuestro asesor, al ingeniero, Miguel. Quién, en este evento tanto diera Su más humano apoyo, sin cuartel.

Gratitud, que también lleva consigo Entre otros, con explicito fervor: Al ingeniero Cubas, digno amigo; Otro firme y magnifico asesor.

A ti, de igual manera, a todo pecho, Te decimos muchas gracias, José Luis. Trabajaste palmo a palmo, bien derecho Empeñado en ver al grupo muy feliz.

No sabemos los motivos cuáles fueron, Que tú Velásquez Jave no viajaste. Después que demostraste tanto esmero En el plan del evento, sin contraste,


Gracias, otra vez, al ingeniero Miguel, Por sus dotes de hermandad a plenitud. Y a su esposa tan digna, junto a él; Por cuidar muy puntual nuestra salud.

Tachin, Roncal, Chicoma, Pepa y Soberón, Cieza, Olano, los Revillas y Vásquez Ruiz. Con en inge Miguel, a todo guión, Alegrando extensamente al coche Luis.

Eder, Erick, Quilichi y Bardales, Tafur,el guardian no tenía que faltar. Pa' cautelar las "chivas" y caudales De los ebrios, no les fueran a robar.

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

Y contigo: Lesly, tu prima, Cintia y Liz; Chino, Jhoany y la doctora, sin doblez. Fuimos un solo corazón firme y feliz, En el viaje de la promoción dos mil tres.

Muchas gracias a todos, sin distingo, Decimos con fervor... gracias a Dios. Sintiendo en nuestro pecho como un himno De Salazar Tacilla ... su ancha voz.

Muchas gracias.

Autor: Edgar Cieza Vásquez.

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"ELABORACIÓN DEL DOCUMENTO TECNICO DE APERTURA DE LA TOCHA CARROZABLE CASERIO NÚMERO OCHO-CAPULIPAMPA-CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN)'

PUNTOS DE LEVANTAMIENTO KM 00+000- MK 5+ 000

1	771849.5973	9199470.383	3174	E01
2	771850.5915	9199475.324	3175.9809	
3	771928.0613	9199507.017	3184.8838	
4	771928.1419	9199491.396	3180.5775	
5	771923.0739	9199523.392	3189.5809	
6	771912.3006	9199495.015	3177.0663	
7	771913.4739	9199523.538	3189.3977	
8	771885.8339	9199493.354	3179.4275	
9	771876.7407	9199508.125	3187.823	
10	771891.7582	9199483.857	3173.4193	
11	771868.2353	9199482.69	3177.8814	
12	771864.2533	9199498.06	3185.0395	
13	771874.9291	9199474.566	3171.5643	
14	771849.6209	9199477.355	3176.0204	
15	771852.6841	9199486.993	3180.1305	
16	771848.0613	9199464.62	3171.3051	
17	771849.6219	9199468.524	3173.1364	POST
18	771836.8318	9199481.138	3174.0641	
19	771846.9588	9199492.265	3179.9125	
20	771809.7974	9199499.535	3169.8043	
21	771817.3152	9199514.104	3177.164	
22	771801.1138	9199484.204	3161.394	
23	771793.0436	9199514.789	3176.8807	
24	771781.2182	9199500.691	3168.7608	
25	771780.7724	9199487.966	3162.068	
26	771765.162	9199505.998	3168.3471	
27	771772.9924	9199520.1	3174.4445	
28	771760.5488	9199491.342	3161.2306	
29	771771.1456	9199498.922	3168.0072	
30	771768.8316	9199505.551	3169.3986	
33	771768.7591	9199420.284	3168.0189	
34	771771.1446	9199498.924	3168.0165	
35	771768.8228	9199505.537	3169.404	
36	771746.4634	9199517.484	3165.7943	
37	771737.3087	9199488.513	3153.7135	
38	771758.4159	9199537.076	3173.1963	
39	771730.3061	9199533.202	3163.5742	
40	771721.3328	9199512.745	3156.6777	
41	771740.3416	9199553.492	3170.1255	
42	771718.3016	9199531.223	3160.4167	
43	771708.3701	9199516.483	3154.2733	
44	771731.9851	9199560.026	3167.7551	
45	771697.4888	9199503.826	3148.4994	
46	771691.8209	9199522.034	3150.9893	
			2.000	

FACULTAD DE INGENIERÍA ESCUEIA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

47	771687.9534	9199550.882	3153.559
48	771706.6747	9199496.631	3150.2798
49	771712.934	9199510.695	3154.3141
50	771703.2699	9199490.864	3147.065
51	771742.5782	9199481.554	3153.3543 E
52	771742.1275	9199496.254	3159.4168
53	771727.8884	9199478.859	3147.0255
54	771753.5876	9199462.438	3146.8186
55	771767.149	9199487.813	3162.317
56	771761.0761	9199474.819	3155.946 E
57	771799.9779	9199458.767	3151.3373
58	771801.8073	9199466.114	3154.2397
59	771756.8963	9199466.107	3149.3896
60	771757.3554	9199461.21	3146.9409 E
61	771738.9454	9199444.468	3136.4225
62	771736.9761	9199464.147	3142.1679
63	771726.1625	9199442.597	3133.9295
64	771728.762	9199449.515	3138.1791
65	771714.1875	9199449.053	3133.3697 E
66	771712.2643	9199441.033	3129.7423
67	771718.0793	9199464.597	3134.9647
68	771687.4165	9199448.762	3123.5897
69	771691.741	9199467.014	3130.0283
70	771689.4774	9199454.749	3125.7211 E
71	771664.2234	9199461.246	3121.3416 E
72	771662.3761	9199452.389	3117.7902
73	771668.0662	9199471.874	3127.7741
74	771638.8681	9199457.846	3119.6009
75	771639.9744	9199482.348	3126.1218
76	771638.47	9199466.928	3123.505 E
77	771614.6798	9199491.377	3122.5117 E
78	771610.3954	9199482.562	3120.4067
79	771620.9592	9199503.253	3126.8141
80	771601.5748	9199485.198	3118.723
81	771611.621	9199512.471	3126.6894
82	771605.2218	9199499.099	3122.4848 E
83	771592.21	9199509.011	3122.2773 E
84	771581.719	9199495.379	3124.1201 E
85	771602.8389	9199522.372	3124.4654
86	771565.5622	9199516.985	3117.0301
87	771583.627	9199543.447	3119.9176
88	771577.6537	9199530.215	3117.634 E
89	771574.5052	9199547.291	3117.7966 E
90	771585.0146	9199565.855	3119.6597
91	771562.7649	9199546.058	3114.2081
92	771552.8421	9199575.025	3112.7747

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

				
93	771570.2527	9199586.758	3122.9721	
94	771561.1762	9199578.089	3118.2052	E
95	771563.2777	9199581.303	3121.0726	BM02
96	771542.6533	9199596.165	3110.416	
97	771563.0759	9199609.08	3122.2591	
98	771555.0006	9199598.129	3118.4084	E
99	771533.05	9199627.68	3113.0309	Ε
100	771546.1324	9199636.193	3122.5489	
101	771513.9052	9199648.501	3108.6583	E
102	771526.3397	9199659.455	3115.7372	
103	771503.295	9199662.576	3103.8457	
104	771509.8194	9199670.98	3107.9972	
105	771491.0421	9199639.56	3096.5161	
106	771493.2241	9199663.235	3102.9501	E
107	771484.4735	9199647.586	3096.1982	
108	771468.4259	9199665.264	3110.56	
109	771475.2366	9199639.314	3092.8642	
110	771474.9355	9199656.655	3102.2204	Ε
111	771446.2958	9199655.662	3111.6329	
112	771444.1674	9199615.28	3095.8118	
113	771451.9433	9199642.826	3101.2335	Ε
114	771424.1531	9199614.87	3101.3325	E
115	771428.1672	9199604.336	3097.6049	
116	771409.7017	9199637.293	3110.4118	
117	771396.8135	9199586.096	3099.5596	
118	771382.5206	9199615.326	3111.3101	
119	771395.4925	9199597.633	3103.8641	E
120	771366.3091	9199576.703	3103.8103	Ε
121	771371.5794	9199564.218	3099.3355	
122	771353.7554	9199591.979	3111.1334	
123	771342.1897	9199577.957	3108.9878	
124	771356.7121	9199553.691	3098.3702	
125	771350.0898	9199561.227	3100.7876	Ε
126	771318.3511	9199552.132	3103.5358	E
127	771311.6716	9199565.086	3110.1426	
128	771326.9858	9199542.31	3098.9219	
129	771296.0226	9199526.363	3098.8098	
130	771282.8161	9199552.218	3109.6776	
131	771291.0388	9199535.894	3103.9053	
132	771264.8658	9199526.942	3103.4229	
133	771259.7257	9199536.228	3108.6655	
134	771272.6437	9199516.393	3096.4205	
135	771252.0613	9199509.909	3092.5175	
136	771248.394	9199520.843	3101.5454	
137	771242.9415	9199518.964	3100.9624	
138	771241.1159	9199518.245	3100.6846	

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

139	771554.6696	9199517.48	3143.9102	
140	771553.5073	9199515.874	3143.6248	
141	771217.1928	9199532.965	3100.9663	
142	771242.9505	9199518.968	3100.9656	
143	771241.1033	9199518.247	3100.6757	
144	771056.4035	9199492.88	3051.3189	BM03
145	771205.4428	9199487.796	3082.8278	T
146	771206.8064	9199498.565	3082.231	T
147	771205.8125	9199511.425	3084.362	T
148	771205.9618	9199527.266	3087.4916	T
149	771201.1982	9199537.062	3089.6362	T
150	771193.226	9199541.047	3089.0925	T
151	771182.1706	9199543.252	3089.1279	T
152	771169.7841	9199543.957	3088.6614	T
153	771171.3481	9199538.89	3085.3832	T
154	771185.2939	9199535.849	3084.9597	T
155	771197.7708	9199530.073	3085.2213	Т
156	771200.8005	9199523.478	3084.4318	T
157	771185.3088	9199528.178	3081.139	Т
158	771161.7118	9199531.575	3079.5282	T
159	771152.801	9199533.09	3078.7988	T
160	771140.9488	9199530.605	3075.6273	T
161	771141.4799	9199523.599	3071.8338	T
162	771130.213	9199525.677	3069.9745	T
163	771112.5526	9199529.931	3068.5139	T
164	771115.2541	9199520.295	3064.6512	T
165	771139.4441	9199510.958	3068.4607	Т
166	771143.7758	9199500.229	3069.1749	Т
167	771159.3448	9199502.709	3071.8957	T
168	771169.8894	9199512.623	3074.1616	T
169	771187.7141	9199517.715	3078.5667	T
170	771189.2786	9199505.422	3079.1559	T
171	771188.81	9199499.724	3077.8255	T
172	771189.2145	9199494.351	3078.3277	T
173	771193.7207	9199487.651	3078.3425	T
174	771193.1908	9199479.229	3076.9108	T
175	771186.0914	9199470.521	3073.5219	T
176	771175.4405	9199471.44	3069.807	T
177	771170.3712	9199483.786	3069.2098	T
178	771162.0775	9199495.843	3071.6098	T
179	771147.1269	9199497.161	3069.6065	T
180	771145.0617	9199488.931	3065.6478	T
181	771143.7719	9199483.128	3062.8704	T
182	771117.8182	9199477.629	3056.322	T
183	771109.0119	9199488.668	3060.073	T
184	771100.4659	9199504.98	3058.3428	Т

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

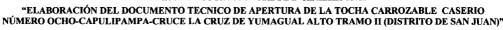
185	771089.8398	9199508.762	3056.9629 T
186	771085.1631	9199500.523	3054.0156 T
187	771088.9264	9199480.799	3051.4593 T
188	771071.7429	9199491.315	3050.7748 T
189	770143.4719	9199227.091	2951.7923 T
190	771064.4627	9199499.991	3052.9902 T
191	771061.0193	9199484.667	3049.4715 T
192	771057.8744	9199461.068	3043.7579 T
193	771043.8134	9199461.397	3046.2086 T
194	771037.3702	9199468.34	3047.7718 T
195	771021.6853	9199449.643	3043.2568 T
196	771030.5174	9199439.773	3040.888 T
197	771028.1356	9199429.055	3037.6049 T
198	771014.0656	9199433.768	3040.0262 T
199	771007.0682	9199443.314	3040.0854 T
200	771015.2864	9199424.472	3038.1332 POST
201	771012.4341	9199415.317	3036.2089
202	771002.416	9199427.116	3037.1743
203	771009.7681	9199406.897	3034.3761
204	769772.2667	9198819.278	3049.2268
205	769772.238	9198819.259	3049.2285 UNO
206	769772.5992	9198812.803	3048.8645 DOS
207	769790.8676	9198823.825	3048.4203
208	769793.9163	9198810.488	3046.4484
209	769795.9979	9198845.292	3054.9584
210	769839.6909	9198851.555	3043.6907
211	769846.2121	9198842.336	3038.0492
212	769829.3764	9198877.038	3056.0742
213	769865.6707	9198894.17	3038.264
214	769837.2101	9198901.516	3055.9761
215	769875.7774	9198890.594	3031.8587
216	769851.5331	9198943.118	3054.8568
217	769879.0702	9198927.405	3034.5474
218	769892.758	9198915.953	3028.0666
219	769866.0629	9198963.192	3050.2278
220	769910.2869	9198952.499	3025.8844
221	769901.3133	9198985.156	3030.8113
222	769865.6557	9198987.598	3047.7878
223	769913.064	9198993.538	3023.6603
224	769895.6838	9199013.498	3026.5701
225	769891.9088	9199020.461	3031.2165
226	769890.8639	9199023.309	3031.8891
227	769874.689	9199040.523	3036.995
228	769885.4975	9199056.527	3034.5169
229	769897.1456	9199061.895	3029.8071
230	769912.9197	9199053.802	3021.5916

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

231	769923.1159	9199054.381	3015.7487
232	769911.446	9199023.786	3022.486
233	769928.5234	9199029.307	3015.6693
234	769928.6784	9198999.395	3019.151
235	769917.2939	9198994.328	3021.6787
236	769937.3608	9199005.948	3014.8444
237	769923.4854	9198989.075	3018.4686
238	769921.0751	9198980.707	3019.8689
239	769922.1076	9198963.648	3021.0868
240	769936.7667	9198994.041	3018.2259
241	769943.0209	9198978.68	3012.2234
242	769934.9838	9198949.635	3012.7933
243	769937.0915	9198942.337	3013.5155
244	769940.8184	9198957.564	3013.0843
245	769954.0702	9198987.373	3009.8444
246	769965.6665	9198964.827	3005.3055
247	769949.9563	9198989.484	3012.6521
248	769969.7872	9198989.53	3003.1367
249	769955.0939	9198991.034	3009.1638
250	769979.789	9199006.071	2998.7723
251	769954.6699	9199013.654	3006.1183
252	769978.8165	9199017.124	2997.3605
253	769950.5733	9199021.836	3006.6656
254	769964.0881	9199027.844	3001.6153
255	769943.1751	9199045.389	3008.5066
256	769951.3507	9199038.626	3005.5183
257	769982.718	9199037.74	2997.9716
258	769982.5866	9199048.011	3000.5724
259	769978.8026	9199063.489	3013.2723
260	770000.7868	9199059.265	2997.6686
261.	770013.7542	9199050.598	2991.3532
262	770023.0041	9199078.112	2993.7391
263	769989.791	9199109.449	3014.0728
264	770037.5536	9199075.068	2988.7577
265	770028.4196	9199111.75	2990.3614
266	770039.9001	9199121.86	2989.9846
267	770027.4492	9199141.14	2991.5096
268	770026.4066	9199147.087	2987.6914
269	770032.4179	9199147.851	2984.7176
270	770044.9199	9199147.207	2978.8352
271	770065.0359	9199145.935	2975.5807
272	770057.3686	9199097.71	2982.095
273	770064.133	9199122.883	2975.8582
274 275	770073.102	9199099.044	2975.0311
275 276	770079.1122 770082.3769	9199087.243 9199063.648	2974.0454
276	//0082.3/89	3133003.048	2970.4737

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

277	770079.8357	9199036.058	2971.6147
278	770063.4806	9199024.459	2976.4184
279	770040.3146	9199022.821	2983.2587
280	770030.4966	9199015.016	2985.656
281	770033.2226	9199041.791	2985.7898
282	770065.9188	9199080.587	2978.7222
283	770083.9423	9199100.622	2973.7281
284	770089.8842	9199128.496	2971.1794
285	770102.115	9199124.294	2968.3821
286	770093.4725	9199160.434	2968.9918
287	770108.3607	9199156.319	2964.8376
288	770089.4145	9199166.857	2972.7583
289	770108.7446	9199205.639	2968.8551
290	770121.7417	9199195.339	2960.159
291	770100.5256	9199228.292	2977.7287
292	770103.9663	9199268.574	2973.5425
293	770136.2868	9199275.78	2955.3087
295	770130.351	9199294.588	2955.7155
310	770126.9527	9199317.853	2953.3457
311	770140.1515	9199326.353	2948.1535
312	770135.5536	9199298.889	2952.6821
313	770142.5327	9199266.613	2950.6345
314	770147.9029	9199267.872	2949.4032
315	770138.0357	9199219.08	2953.5033
316	770147.7772	9199267.699	2949.4486
317	770142.0751	9199199.231	2954.145
318	770158.0231	9199195.975	2953.471
319	770165.6183	9199190.613	2952.9151
320	770181.7462	9199195.303	2949.1878
321	770189.3364	9199192.784	2947.1746
322	770185.0896	9199205.453	2947.8956
325	770163.6407	9199236.231	2947.4886
326	770151.2756	9199247.032	2949.0408
327	770184.1502	9199276.944	2939.8251
328	770185.5476	9199279.827	2939.4927
332	770514.4519	9199377.212	2987.2413
333	770502.4929	9199370.498	2986.9534
334	770500.9432	9199370.368	2987.0731
335	770505.3071	9199376.489	2986.6004
336	770515.1681	9199373.114	2986.5957
337	770506.8556	9199388.188	2991.2122
338	770538.4973	9199396.858	2987.3582
339	770536.8643	9199403.128	2989.1676
340 341	770530.4726 770555.9346	9199407.885 9199411.4	2994.5978
			2988.574
342	770545.165	9199420.531	2996.8138



		·····	
343	770574.6662	9199440.824	2993.9966
344	770581.9441	9199441.541	2993.9972
345	770567.1011	9199440.466	2998.0337
346	770613.8774	9199461.435	2999.4827
347	770602.6071	9199465.66	3000.0939
348	770597.1474	9199474.595	3004.809
349	770616.6791	9199476.112	3001.9171
350	770609.6437	9199483.312	3004.0421
351	770601.4626	9199492.723	3011.4636
352	770626.218	9199500.701	3007.9571
353	770641.3268	9199494.446	3007.8988
354	770619.5592	9199515.389	3013.8519
355	770649.0679	9199514.408	3012.0677
356	770641.8986	9199523.117	3013.6086
357	770634.6651	9199531.559	3017.8834
358	770670.6634	9199517.235	3013.4326
359	770673.0626	9199532.919	3015.0855
360	770694.5846	9199551.211	3015.7118
361	770724.0158	9199523.671	3015.4467
362	770721.9555	9199517.015	3013.942
363	770760.4695	9199518.689	3013.4396
364	770764.2054	9199530.498	3015.0866
365	770774.4066	9199524.083	3015.636
366	770770.5635	9199518.196	3013.2188
367	770770.7241	9199533.604	3015.9715
368	770802.0369	9199524.216	3017.1252
369	770802.4191	9199516.63	3015.3876
370	770799.3512	9199539.12	3020.0868
371	770836.5302	9199526.289	3021.2905
372	770837.8577	9199517.229	3017.8041
373	770834.3318	9199541.06	3025.7071
374	770872.5629	9199526.76	3024.1516
375	770873.2931	9199514.77	3018.5773
376	770874.0856	9199537.471	3029.2275
377	770910.8705	9199523.666	3026.9765
378	770911.5874	9199533.212	3031.7844
379	770912.2828	9199509.87	3024.4048
380	770929.0667	9199508.712	3027.9703
381	770922.782	9199504.078	3026.4742
382	770931.6213	9199520.333	3030.3229
383	770930.1565	9199492.055	3027.1832
384	770937.9161	9199494.113	3028.8637
385	770943.8804	9199503.384	3030.764
386	770985.0489	9199434.658	3033.5523
387	770973.1551	9199431.898	3031.202
388	771000.7321	9199442.334	3038.5048

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

389	770983.4379	9199420.311	3032.4729	
390	770995.5404	9199420.11	3035.2734	
391	771006.503	9199434.992	3039.1912	
392	771012.4506	9199431.621	3039.5252	
393	771008.5966	9199417.337	3036.4672	
394	771011.9565	9199407.941	3034.4395	
395	771031.3553	9199420.697	3033.9729	
396	771026.4737	9199438.016	3041.0281	
397	771019.7094	9199445.729	3042.3749	
398	771038.3406	9199426.362	3032.8068	
399	771032.8628	9199439.573	3040.4543	
400	771048.2212	9199435.709	3033.527	
401	771045.75	9199451.915	3043.2928	
402	771038.3054	9199461.055	3046.7023	
403	771056.0378	9199449.571	3037.704	
404	771058.1151	9199466.085	3044.8811	
405	771051.3224	9199477.9	3048.8172	
406	771062.0197	9199461.759	3042.6779	
407	771064.1568	9199483.145	3048.514	
408	771058.0805	9199490.895	3051.4288	
409	771167.0964	9199542.807	3088.11	
410	771153.132	9199545.684	3089.5158 T	
411	771144.002	9199543.298	3087.9754 T	
412	771142.3924	9199540.191	3085.4856 T	
413	771128.5126	9199543.817	3085.0691 T	
414	771119.393	9199548.626	3086.9583 T	
415	771256.399	9199464.353	3088.5409	
416	771254.6487	9199465.223	3088.6108	
417	771256.0142	9199464.382	3088.5245	
418	771254.5909	9199465.238	3088.6175	
419	771204.3736	9199441.031	3079.0323	
420	771204.0129	9199442.742	3079.1318	
421	771204.3895	9199441.037	3079.0249	
422	771204.0092	9199442.743	3079.1351	
423	771202.3776	9199484.577	3081.9222	
424	771205.4574	9199486.757	3082.0542	
426	770193.3653	9199328.018	2946.4299	
427	770190.1566	9199329.957	2946.5524	
428	770181.8026	9199275.893	2943.1887	
433	770175.8	9199234.821	2941.7836	
435	770192.5951	9199216.007	2937.9532 PUE	١T
443	770181.7153	9199221.388	2937.7249	
444	770194.746	9199210.777	2937.8167 PUE	٧T
446	770206.4203	9199208.68	2937.2498	
449	770198.8764	9199187.668	2943.8449	
451	770149.7546	9199175.053	2942.9097	

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

452	770180.4142	9199161.365	2946.956
454	770129.0241	9199156.378	2944.2995
455	770151.7786	9199136.696	2948.1648
456	770119.1389	9199175.68	2941.0825
458	770115.9539	9199108.158	2950.7536
461	770088,9993	9199106.66	2954.8738
496	770191.4384	9199232.922	2935.056
497	770193.4912	9199226.794	2934.708
498	769778.1524	9198824.781	3048.8725
499	769772.2078	9198819.292	3049.2115
500	769772.6105	9198812.822	3048.8738
501	769735.0086	9198832.197	3053.0358
502	769733.4162	9198817.145	3056.9269
503	769731.9699	9198845.11	3054.0502
504	769718.0834	9198828.957	3053.617
505	769712.3982	9198837.062	3053.0259
506	769703.4225	9198815.171	3056.9709
507	769695.6312	9198825.315	3052.9881
508	769692.1377	9198833.774	3051.3851
509	769664.7166	9198800.674	3056.5525
510	769661.2883	9198815.045	3052.0759
511	769658.7419	9198822.21	3049.7403
512	769602,4336	9198809.049	3048.4353
513	769605.0311	9198802.059	3050.4657
514	769613.565	9198785.882	3055.6839
515	769542.4901	9198794.864	3048.7523
516	769537.785	9198787.7	3050.5242
517	769543,5817	9198779.104	3055.8803
518	769519.2458	9198783.007	3050.2184
519	769517.6902	9198788.793	3048.5994
520	769524.7581	9198769.239	3057.3723
521	769481.4235	9198767.935	3052.7391
522	769526.352	9198761.196	3061.0068
523	769473.4135	9198761.659	3056.8466
524	769477.1251	9198754.837	3057.4371
525	769464.2582	9198769.078	3059.0357
526	769455.902	9198773.875	3060.2785
527	769442.8579	9198775.634	3059.6046
528	769437.2435	9198780.634	3058.5387
529	769472.9011	9198769.03	3054.7787
530	769476.1406	9198772.104	3053.4401
531	769442.8941	9198792.831	3053.6109
532	769435.2527	9198789.006	3056.4782
533	769437.9983	9198788.191	3057.0021
537	769435.4049	9198789.036	3056.5205
538	769437.9997	9198788.189	3056.9698

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

539	769423.0898	9198788.177	3054.5221
540	769428.2076	9198781.495	3055.9053
541	769431.6525	9198775.095	3057.5289
542	769396.2403	9198762.736	3050.1229
543	769400.2509	9198750.377	3054.2382
544	769397.3389	9198738.909	3056.5435
545	769364.261	9198735.979	3058.6584
546	769366.5268	9198743.037	3054.3621
547	769367.4548	9198753.382	3048.3179
548	769330.0877	9198738.226	3055.8216
549	769330.6117	9198743.282	3053.6759
550	769331.1082	9198745.375	3053.1168
551	769288.6929	9198741.054	3052.8387
552	769288.6573	9198735.894	3056.4032
553	769287.7452	9198745.558	3051.7149
554	769266.5886	9198729.949	3059.2936
555	769265.7212	9198736.733	3053.2197
556	769264.3519	9198740.29	3051.7554
557	769237.8199	9198733.952	3058.4429
558	769230.0345	9198742.277	3054.6905
559	769237.0522	9198739.165	3054.9317
560	769200.8992	9198741.799	3054.7746
561	769198.1193	9198739.633	3055.99
562	769197.7981	9198736.002	3057.0114
563	769189.0453	9198744.175	3056.6323
564	769158.0008	9198777.335	3060.1617
565	769155.245	9198775.999	3060.7532
566	769145.8502	9198772.969	3065.4566
567	769138.0157	9198803.752	3063.1583
568	769139.0535	9198792.06	3062.8339
569	769130.551	9198781.348	3068.9641
570	769107.4766	9198818.098	3065.0468
571	769105.5257	9198810.933	3066.2023
572	769100.4054	9198803.942	3068.3293
573	769085	9198847.762	3068.18
574	769079.7123	9198824.973	3068.9138
575	769078.9173	9198844.264	3069.1193
576	769058.596	9198838.465	3072.0204
577	769050.1468	9198865.08	3070.3511
578	769047.9921	9198858.837	3070.5479
579	769037.7584	9198864.347	3070.238
580	769033.6617	9198866.083	3069.8614
584	769037.7561	9198864.263	3070.29
585	769033.6622	9198866.061	3069.8764
586	768999.6086	9198843.791	3066.5322
587	768995.745	9198855.366	3064.4299

FACULTAD DE INGENIERÍA

FACULTAD DE INGENIERIA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

588	768961.6891	9198838.323	3064.0415
589	768964.5709	9198852.381	3062.1374
590	768971.5768	9198832.628	3066.2715
591	768930.1992	9198845.387	3063.3849
592	768934.7389	9198860.483	3058.3099
593	768935.315	9198836.424	3067.8126
594	768895.8264	9198857.376	3061.6255
595	768899.9973	9198845.331	3066.8427
596	768874.3626	9198881.505	3057.2064
597	768869.3999	9198867.91	3062.0064
598	768842.4337	9198887.292	3057.1707
599	768841.1948	9198875.189	3061.6387
600	768837.4665	9198869.346	3064.0771
601	768807.6603	9198875.011	3060.0063
602	768801.8515	9198877.828	3058.3516
603	768772.4668	9198862.927	3061.0041
604	768772.3503	9198869.418	3058.0587
605	768769.5148	9198875.095	3055.3579
606	768744.7763	9198867.543	3060.1513
607	768744.2105	9198872.976	3057.1993
608	768746.1591	9198877.835	3054.6216
609	768714.4592	9198869.342	3060.1598
610	768715.5139	9198874.715	3057.3312
611	768716.3706	9198880.526	3054.622
612	768688.4185	9198873.391	3059.2041
613	768689.5397	9198879.454	3057.4884
614	768693.8151	9198886.508	3055.1961
615	768669.3822	9198880.071	3056.7661
616	768668.6366	9198882.25	3056.3254
617	771839.9079	9199329.708	3125
618	771871.6313	9199425.82	3158
619	771729.5325	9199398.445	3123
620	771945.5954	9199460.488	3174
621	771910.4193	9199554.097	3194
622	771520.794	9199710.084	3120
623	771445.736	9199693.085	3121.633
624	771145.8737	9199594.491	3106 T
626	771037.6288	9199617.462	3072.99 T
628	770662.6145	9199598.543	3020.086
629	771016.1777	9199378.258	3030
630	770224.0276	9199505.277	2973.073
631	770110.3351	9198995.582	2968.615
632	769969.7824	9198859.721	3013.5155
633	769778.5653	9198762.7	3046.4484
634	769509.7579	9198700.293	3070.437
635	769287.1646	9198686.718	3075.403

NACTORAL

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

636	769186.2621	9198687.552	3077.011
637	769052.8404	9198787.628	3075.914
638	768893.8451	9198785.482	3080.843
639	768679.2735	9198827.012	3077.766
640	768658.7917	9198930.251	3050.766
641	768535.2235	9198846.882	3052.766
642	768534.4779	9198849.061	3052.325
643	768493.4998	9198785.391	3049.766
644	768492.7542	9198787.57	3049.325
645	768522.4424	9198622.4	3047.766
646	768521.6968	9198624.579	3047.325
647	768506.8968	9198892.523	3049.325
648	768438.1031	9198812.403	3041.325
649	768471.3947	9198618.3	3041.325
650	768566.8985	9198799.215	3070.766
651	768555.942	9198745.104	3068.766
652	768572.7027	9198641.253	3063.325
653	770235.5185	9199150.077	2936.956
654	770251.5172	9199270.222	2925.956

2007-2016 "DECENIO DE LAS PERSONAS CON DISCAPACIDAD EN EL PERÚ"
"AÑO DEL CENTENARIO DE MACHU PICCHU PARA EL MUNDO"

Cajamarca, 07 de Diciembre del 2011

OFICIO PART. Nº 077/SENAMHI-DRE-3/2011

Señor

Ing. GASPAR MENDEZ CRUZ

Director de la Escuela Profesional de Ingeniería Hidráulica Av. Atahualpa S/N. Carretera Cajamarca Baños del Inca

Asunto:

Sobre verificación de datos.- Comunica

Ref.

OFICIO Nº 206-2011-EAPIH-FI-UNC del 06/10/11

Es grato dirigirme a usted para expresarle un cordial saludo y al mismo tiempo comunicarle que de la información revisada en los archivos del Senamhi Cajamarca, se ha determinado que la Precipitación Máxima en 24 horas para el año 2009 es de 22,2 milímetros, siendo correcta la información según lo indicado en el documento de referencia.

Sin otro particular reitero a usted las muestras de consideración y mi más alta estima personal.

Atentamente,

Ingervero Meteorólogo E DRBIOLA DEL CARPIO edor Regi∴nal SENAMHI

Ca/amarca-La Libertad

... OT<u>RIPUCIÓ 1.;</u> e.c. Archivo 07/12/2011 NGG.-

Ciencia y Tecnología Hidrometeorológica al Servicio del País

CUADRO Nº 3.38. DATOS GENERALES

Precip. Máxima en 24 horas		
AÑO	MAXIMA	
1975	37.90	
1976	72.90	
1977	40.50	
1978	14.80	
1979	28.00	
1980	28.80	
1981	39.30	
1982	30.50	
1983	29.80	
1984	27.60	
1985	19.80	
1986	27.40	
1987	24.30	
1988	18.20	
1989	30.00	
1990	24.70	
1991	29.70	
1992	17.70	
1993	22.50	
1994	28.50	
1995	20.60	
1996	35.10	
1997	27.60	
1998	31.70	
1999	38.80	
2000	36.10	
2001	28.20	
2002	22.30	
2003	20.80	
2004	28.10	
2005	20.20	
2006	20.6	
2007	25.4	
2008	27	
2009	22.2	

Atentamente,

Ingervero-Meteorólogo

Director Regional SENAMHI

Cajamarca-La Libertad

Norte de la Universidad Peruana

Fundada por Ley 14015 del 13 de febrero de 1962

FACULTAD DE INGENIERIA

Telefax Nº 0051-76-82-5976

Anexo Nº 129-130 / 147

Const. N° 006- 2012

EL QUE SUSCRIBE JEFE DEL LABORATORIO DE MECÁNICA DE SUELOS DE LA FACULTAD DE INGENIERÍA DE LA UNIVERSIDAD NACIONAL DE CAJAMARCA

CONSTANCIA

Que el Bach. IC: CIEZA VÀSQUEZ, Edgar ex alumno de la Escuela Académico Profesional de Ingeniería Civil de la Facultad de Ingeniería de la Universidad Nacional de Cajamarca, según consta en el cuaderno de asistencia del Laboratorio de Mecánica de Suelos, ha registrado su asistencia a dicho Laboratorio para la elaboración del proyecto profesional: "ELABORACIÓN DEL DOCUMENTO TÈCNICO DE APERTURA DE LA TROCHA CARROZABLE CASERÍO NÚMERO OCHO – CAPULIPAMPA – CRUCE LA CRUZ DE YUMAGUAL ALTO TRAMO II (DISTRITO DE SAN JUAN)", en el siguiente periodo:

Del 07 de Diciembre al 29 de Diciembre del 2011

Del 27 de Febrero al 06 de Marzo del 2012

El Laboratorio no se responsabiliza por la ejecución y los resultados de los ensayos realizados.

Se expide el presente a solicitud verbal del interesado para los fines que estime por conveniente,

Cajamarca, 20 de Agosto de 2012.

Universidad Nacional de Cajamarca

"Norte de la Universidad Pernana" Fundada por Ley 14015 del 13 de Febrero de 1962

FACULTAD DE INGENIERÍA

Telefax N° 0051-76-365976 Anexo N° 129-130

Resolución de Consejo de Facultad Nº 112-2011-FI-UNC

Cajamarca, 23 de mayo de 2011

VISTO:

Visto el Proveído No. 007-2011-P-PROY.PROF.-CD-FI-UNC, de fecha 11 de mayo de 2011, con Expediente Nº 773-2011-FI-UNC, presentado por el Mg. Ing. Héctor Hugo Miranda Tejada, Director de la Escuela Académico Profesional de Ingeniería Civil, referido al Expediente No. 773-2011-FI-UNC;

CONSIDERANDO:

Que, según documento de VISTO, el Director de la Escuela Académico Profesional de Ingeniería Civil, opina favorablemente por la aprobación del Plan del Proyecto Profesional Titulado: "ELABORACIÓN DEL DOCUMENTO TÉCNICO DE APERTURA DE LA TROCHA CARROZABLE CASERÍO NUMERO OCHO – CAPULIPAMPA – CRUCE LA CRUZ DE YUMAGUAL ALTO" (TRAMO II: Km. 5+000-10+000)(DISTRITO DE SAN JUAN), presentado por el Proyectista de la Escuela Académico Profesional de Ingeniería Civil: Edgar Cieza Vásquez:

Que, mediante Proveído No. 007-2011-DACI-FI, de fecha 11 de abril de 2011, el Departamento Académico de Ciencias de la Ingeniería; alcanza la propuesta para la conformación del Jurado de Sustentación de dicho Proyecto;

Que, mediante Proveído No. 036-2011-DAIRH/FI-UNC, de fecha 18 de abril de 2011, el Departamento Académico de Ingeniería de los Recursos Hídricos; alcanza la propuesta para la conformación del Jurado de Sustentación de dicho Proyecto;

Que, mediante Proveído No.006-2011-DAG-FI, de fecha 03 de mayo de 2011, el Departamento Académico de Geología; alcanza la propuesta para la conformación del Jurado de Sustentación de dicho Proyecto;

De conformidad con los artículos 25°, 26°, 39° y 66°, del Reglamento de Graduación y Titulación de la Facultad de Ingeniería; los artículos 55° y 63° del Estatuto y los artículos 69° y 77° del Reglamento General de la Universidad Nacional de Cajamarca; y estando a lo acordado por el Consejo de Facultad, en su Sesión Ordinaria de fecha 20 de mayo de 2011;

SE RESUELVE:

ARTICULO PRIMERO: APROBAR, el Plan del Proyecto Profesional Titulado: "ELABORACIÓN DEL DOCUMENTO TÉCNICO DE APERTURA DE LA TROCHA CARROZABLE CASERÍO NUMERO OCHO – CAPULIPAMPA – CRUCE LA CRUZ DE YUMAGUAL ALTO" (TRAMO II: Km. 5+000-10+000)(DISTRITO DE SAN JUAN), desarrollado por el Proyectista de la Escuela Académico Profesional de Ingeniería Civil, Edgar Cieza Vásquez, asesorado por los Docentes: Ing. Alejandro Cubas Becerra, Ing. Luis Vásquez Ramírez y la Dra. Ing. Rosa Llique Mondragón.

ARTICULO SEGUNDO: NOMBRAR, como miembros del Jurado de Sustentación de dicho Proyecto a los señores Docentes:

MCs. Ing. Gaspar Virilo Méndez Cruz
Ing. José Benjamín Torres Tafur
Ing. Manuel Rafael Urteaga Toro
Ing. Alejandro Claudio Lagos Manrique
MSc. Ing. Santos Oswaldo Ortiz Vera
Ing. Ever Rodríguez Guevara
Ing. Roberto Severino Gonzáles Yana

(Presidente)
(Vocal)
(Vocal)
(Accesitario)
(Accesitario)
(Accesitario)

ARTICULO TERCERO: COMUNICAR, la conformidad de la presente Resolución a los

organismos perimentes para conocimiento y fines.

Registrese, comuniquese varchivese.

Registrese, comuniquese varchivese.

Registrese, comuniquese varchivese.

Registrese, comuniquese varchivese.

Registrese, comuniquese varchivese.

Registrese, comuniquese varchivese.

Registrese, comuniquese varchivese.

Registrese, comuniquese varchivese.

Registrese, comuniquese varchivese.

Registrese, comuniquese varchivese.

Registrese, comuniquese varchivese.

Registrese, comuniquese varchivese.

Registrese, comuniquese varchivese.

Registrese, comuniquese varchivese.