UNIVERSIDAD NACIONAL DE CAJAMARCA

FACULTAD DE CIENCIAS AGRARIAS

ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA EN INDUSTRIAS ALIMENTARIAS

"EFECTO DEL TIEMPO DE ALMACENAMIENTO Y LA TEMPERATURA EN LAS CARACTERÍSTICAS DEL PERFIL DEL COLOR DEL PAJURO (*Erytrhina edulis*) DE LA ZONA DE CAJABAMBA"

TESIS

Para optar por el Título Profesional de:

INGENIERO EN INDUSTRIAS ALIMENTARIAS

Presentado por la Bachiller:

ZOILA LIZETH CENTURIÓN VIGO

Asesor:

ING. M.Cs. OBLITAS CRUZ, JIMY FRANK

CAJAMARCA - PERÚ

2024

NAME CONTROL OF CONTRO

UNIVERSIDAD NACIONAL DE CAJAMARCA
Norte de la Vniversidad Peruana

Fundada Por Ley 14015 Del 13 De febrero De 1962 FACULTAD DE CIENCIAS AGRARIAS

ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA EN INDUSTRIAS

ALIMENTARIAS

CONSTANCIA DE ORIGINALIDAD DE LA TESIS REVISADA EN EL SOFTWARE DE

ANTIPLAGIO TURNITIN DE LA UNIVERSIDAD NACIONAL DE CAJAMARCA.

TESIS TITULADA:

"EFECTO DEL TIEMPO DE ALMACENAMIENTO Y LA TEMPERATURA EN LAS

CARACTERÍSTICAS DEL PERFIL DEL COLOR DEL PAJURO (Erytrhina Edulis) DE LA ZONA

DE CAJABAMBA."

Presentada por el bachiller: Zoila Lizeth Centurión Vigo, la que ha sido sometida a revisión

mediante software antiplagio TURNITIN, en la fecha del 18 de febrero del 2024, por parte de

asesor: Ing. M.Cs. Jimy Frank Oblitas Cruz, obteniendo un puntaje de 13% de similitud.

Se expide la presente, a solicitud del interesado para los fines que crea conveniente.

Cajamarca, 27 de febrero del 2024

Ing. M.Cs. Jimy Frank Oblitas Cruz

UNIVERSIDAD NACIONAL DE CAJAMARCA

"NORTE DE LA UNIVERSIDAD PERUANA" Fundada por Ley N° 14015, del 13 de febrero de 1962

FACULTAD DE CIENCIAS AGRARIAS

Secretaría Académica

En la ciudad de Cajamarca, a los treinta y un días del mes de enero del año dos mil veinticuatro, se reunieron en el ambiente 2H - 204 de la Facultad de Ciencias Agrarias, los miembros del Jurado, designados según Resolución de Consejo de Facultad N° 311-2023-FCA-UNC, de fecha 27 de junio del 2023, con la finalidad de evaluar la sustentación de la TESIS titulada: "EFECTO DEL TIEMPO DE ALMACENAMIENTO Y LA TEMPERATURA EN LAS CARACTERÍSTICAS DEL PERFIL DEL COLOR DEL PAJURO (Erythrina edulis) DE LA ZONA DE CAJABAMBA", realizada por la Bachiller ZOILA LIZETH CENTURIÓN VIGO para optar el Título Profesional de INGENIERO EN INDUSTRIAS ALIMENTARIAS.

A las doce horas y diez minutos, de acuerdo a lo establecido en el Reglamento Interno para la Obtención de Título Profesional de la Facultad de Ciencias Agrarias de la Universidad Nacional de Cajamarca, el Presidente del Jurado dio por iniciado el Acto de Sustentación, luego de concluida la exposición, los miembros del Jurado procedieron a la formulación de preguntas y posterior deliberación. Acto seguido, el Presidente del Jurado anunció la aprobación por unanimidad, con el calificativo de dieciséis (16); por tanto, la Bachiller queda expedita para proceder con los trámites que conlleven a la obtención del Título Profesional de INGENIERO EN INDUSTRIAS ALIMENTARIAS.

A las doce horas y cincuenta minutos del mismo día, el Presidente del Jurado dio por concluido el Acto de Sustentación.

Dr. José Gerardo Salhuana Granados PRESIDENTE Ing. M. Sc. Fanny Lucita Rimarachín Chávez SECRETARIO

Ing. Mg. Sc. Jhon Anthony Vergara Copacondori
VOCAL

Ing. M. Sc. Jimy Frank Oblitas Cruz ASESOR

DEDICATORIA

A Dios por iluminar mi camino y brindarme la fortaleza y sabiduría para completar esta tesis. Gracias por estar siempre a mi lado, guiándome y apoyándome en cada paso que doy. Con humildad y gratitud, dedico este logro a ti, mi guía y mi luz en todos los momentos de mi vida.

A mis queridos padres, Nelson Centurión Villar y María Vigo Roncal les quiero dedicar por su incondicional apoyo durante todo este tiempo. Gracias por creer en mí y por estar a mi lado en cada paso del camino. Sin su amor y motivación, no habría sido posible terminar esta tesis. Les quiero decir cuánto los quiero y cuán afortunado me siento de tenerlos como mis padres.

A mi querida Universidad Nacional de Cajamarca, dedico infinitamente todo lo que me ha brindado a lo largo de mi formación académica. Este momento de culminar mi tesis es especialmente significativo para mí, y quiero expresar mi más sincero agradecimiento a todos aquellos que han estado a mi lado en este camino. Gracias por brindarme los recursos y el apoyo necesarios para alcanzar esta meta.

Zoila Lizeth Centurión Vigo

AGRADECIMIENTO

"Quiero agradecer sinceramente a Dios por guiarme y darme fuerza en los momentos difíciles durante mi jornada de investigación. Gracias a mis padres: Nelson Centurión Villar y María Constanza Vigo Roncal, por su amor incondicional y apoyo constante, su fe en mí significó mucho para mí. A mi asesor de tesis, por su guía experta y paciencia infinita, sin su dirección y consejo, no podría haber concluido este trabajo de investigación con éxito. Y a todas las personas que me apoyaron, por sus palabras alentadoras y ayuda en momentos cruciales, su apoyo fue invaluable para mí. Gracias a todos por hacer esta aventura posible."

Quiero tomar un momento para expresar mi más profundo agradecimiento por su incansable apoyo y motivación en mi camino hacia la conclusión de mi trabajo de investigación. No podría haber logrado esto sin su amor y dedicación constante.

Mis padres, Nelson Centurión Villar y María Constanza Vigo Roncal, gracias por creer en mí y brindarme la oportunidad de seguir mis sueños y alcanzar mis metas. Su amor y comprensión han sido la base de mi éxito.

A mi asesor, gracias por su guía experta y por ayudarme a moldear mi investigación. Su paciencia y dedicación son realmente apreciadas.

Y a todas las personas que me brindaron su apoyo, desde amigos cercanos hasta mentores, gracias por creer en mí y en mi trabajo. Su apoyo significa el mundo para mí.

Estoy muy agradecido por todo lo que han hecho por mí y estoy emocionado de seguir explorando nuevos horizontes en el futuro.

Zoila Lizeth Centurión Vigo

ÍNDICE

I.	INTRODUCCIÓN	1
1.1.	Descripción del Problema	2
1.2.	Formulación del Problema	3
1.3.	Justificación	3
1.4.	Objetivos	3
1.4.1.	Objetivo General	3
1.4.2.	Objetivos Específicos	4
1.5.	Hipótesis	4
II.	REVISIÓN DE LITERATURA	5
2.1.	Antecedentes	5
2.2.	Marco Teórico	7
2.2.1.	Pajuro (Erytrhina edulis)	7
2.2.2.	Descripción Botánica del Pajuro (Erytrhina edulis)	7
2.2.3.	Nombres Comunes del Pajuro	8
2.2.4.	Descripción Morfológica del Pajuro	8
2.2.4.1.	Vaina	8
2.2.4.2.	Grano	8
2.2.5.	Composición Nutricional del Pajuro	. 10
2.2.6.	Cámara Multiespectral	. 10
2.2.7.	Imágenes Multiespectrales	. 11
2.2.8.	Sistema de Color CIELab*	. 12
2.2.9.	Reflectancia	. 13
2.2.10.	Colorimetría	. 14

2.2.11.	Color
III.	MATERIALES Y MÉTODOS
3.1.	Ubicación
3.2.	Materiales
3.2.1.	Materia prima
3.2.2.	Materiales de Laboratorio
3.2.3.	Equipos e Instrumentos
3.2.4.	Materiales de Gabinete
3.3.	Metodología
3.3.1.	Variables
3.3.1.1.	Variables Independientes
3.3.1.2.	Variables Dependientes
3.3.2.	Sistema multiespectral
3.3.3.	Componentes del Sistema Multiespectral
3.3.4.	Etapas Para la Adquisición de Imágenes Multiespectrales y su Respectivo
Análisis	24
3.3.5.	Flujo Para Obtención y Análisis de Imágenes Multiespectrales
3.3.6.	Método de Análisis
3.3.7.	Diseño de Investigación
IV.	RESULTADOS Y DISCUSIONES
4.1.	Perfiles Multiespectrales Diarios de los Cuatro Tratamientos de Temperatura. 29
4.2.	Firmas Espectrales Diarias de las Muestras en Cuatro Tratamientos de
Temperatura	32
4.3.	Caracterización Multiespectral Promedio

4.4.	Tratamientos de Temperatura de Almacenamiento	35
4.4.1.	Temperatura Ambiente (A) 18 °C	35
4.5.	Ambiente Empacado (AE) 20° C	38
4.6.	Refrigeración (R) 12° C	41
4.7.	Congelación (C) -2 °C	42
4.8.	Tratamientos de Temperatura Ambiente, Ambiente Empacado, Refrigeración	ón y
Congelación	43	
4.8.1.1.	Cambios de Color (L*)	43
4.8.1.2.	Cambios de Color (a*).	47
4.8.1.3.	Cambios de Color (b*).	51
V.	CONCLUSIONES	53
VI.	RECOMENDACIONES	55
VII.	BIBLIOGRAFÍA	56

ÍNDICE DE TABLAS

Tabla 1 Composición del pajuro 10
Tabla 2 ANOVA para determinar diferencia significativa en el tratamiento para temperatura
Ambiente (18°C)
Tabla 3 Prueba de múltiples de rangos para diferencia significativas total de reflectancia con
nivel de confianza de 95% DUNCAN
Tabla 4 Diferencias de media significativa en el nivel de confianza de 95% para días de
tratamiento a T° Ambiente
Tabla 5 ANOVA para determinar diferencia significativa en el tratamiento para temperatura
Ambiente Empacado
Tabla 6 Prueba de múltiples de rangos para diferencia significativas total de reflectancia con
nivel de confianza de 95% DUNCAN
Tabla 7 Diferencias de media significativa en el nivel de confianza de 95% para días de
tratamiento a T° Ambiente Empacado
Tabla 8 ANOVA para determinar diferencia significativa en el tratamiento para temperatura
Refrigeración
Tabla 9 ANOVA para determinar diferencia significativa en el tratamiento para temperatura
Congelación 42
Tabla 10 ANOVA Diferencia significativa en L* 44
Tabla 11 Prueba de múltiples rangos para luminosidad (L*), confianza 95%. 45
Tabla 12 Prueba de múltiples rangos para luminosidad (L*), Diferencia significativa con
confianza 95%45
Tabla 13 ANOVA de Cambios de color a* 48
Tabla 14 Pruebas múltiple rango en enrojecimiento a*, método de DUNCAN, 95%
Tabla 15 Diferencia significativa en enrojecimiento a*

Tabla 16 Resultados ANOVA para amarillez (b*) 51	
---	--

ÍNDICE DE FIGURAS

Figura 1 Grano de Pajuro (Erytrhina edulis)
Figura 2 Granos de pajuro
Figura 3 Vista conceptual de una imagen multiespectral de un melocotón con defectos 12
Figura 4 Espacio de color CIELAB
Figura 5 El color resulta de la interacción de una fuente de luz, un objeto y el ojo y cerebro o
sistema
Figura 6 Ubicación del desarrollo de la Tesis
Figura 7 Diseño de Sistema multiespectral
Figura 8 Sistema Multiespectral
Figura 9 Flujo de proceso para obtención de Imágenes Multiespectrales
Figura 10 Perfiles multiespectrales diarios de los cuatro tratamientos
Figura 11 Firmas espectrales de los cuatro días de tratamiento
Figura 12 Zona con mayor discriminación de 650 nm a 850 nm
Figura 13 Promedios de reflectancias en los 7 días de tratamiento a T° Ambiente 18 °C 36
Figura 14 Promedios de reflectancias en los 7 días de tratamiento a T° Ambiente Empacado
(20° C)
Figura 15 Promedios de reflectancias en los 7 días de tratamiento a T° Refrigeración 12 °C
41
Figura 16 Promedios de reflectancias en los 7 días de tratamiento a T° Congelación (-2 °C)
Figura 17 Cambios de color L*, promedios de luminosidad para los cuatro tratamientos 44
Figura 18 Cambios de color a*
Figura 19 Resultados de amarillez (b*)

RESUMEN

La presente investigación se realizó en la Universidad Nacional de Cajamarca, cuyo objetivo es determinar el efecto del tiempo de almacenamiento y temperatura en las características del perfil de color del Pajuro (*Erythrina edulis*) de la zona de Cajabamba, utilizando imágenes multiespectrales y sistemas CIELAB (colorímetro Cr 400). Con este fin se aplicó modelos donde se analizaron cuatro tratamientos de temperatura: temperatura (A), (AE), (R) y (C) durante 7 días; estas muestras fueron evaluadas con un colorímetro.

Para capturar datos multiespectrales se utilizó un sistema multiespectral, que abarcó el rango de 400 nm a 1000 nm. En la evaluación, se utilizó la zona con mayor nivel de discriminación, entre 650 nm y 850 nm del espectro electromagnético para representar visualmente las propiedades espectrales de los granos de Pajuro.

Las muestras almacenadas a temperatura ambiente mostraron el mayor nivel de reflectancia, mientras que las muestras sometidas a congelación mostraron el menor nivel de reflectancia. Valores encontrados en las coordenadas de Lab*: Temperatura de A L*=19, a*=15.3 y b*= 5.4, Temperatura de AE L*= 23, a*= 14.8 y b*= 7, Temperatura de R a*= 4.8 y b*=9.8 y Temperatura de C a*= 4.7 y b*=8.1

Estas variaciones están relacionadas con cambios fisicoquímicos debido al proceso natural de maduración de los granos y al tratamiento de temperatura que son sometidas. Además, se observó una diferencia significativa en la reflectancia de las muestras almacenadas a temperatura ambiente y ambiente empacado a partir del cuarto día en ambos casos, volviéndose más oscuras y rojas. Por otro lado, las muestras almacenadas en refrigeración y congelación no mostraron cambios significativos en la reflectancia óptica, estas no sufrieron cambios significativos de color.

Palabras clave: pajuro, sistema multiespectral, imagen multiespectral, reflectancia, longitud de onda, luminosidad y enrojecimiento.

ABSTRACT

The present research was carried out at the National University of Cajamarca, whose objective is to determine the effect of storage time and temperature on the characteristics of the color profile of the Pajuro (Erythrina edulis) from the Cajabamba area, using multispectral images and CIELAB systems (colorimeter Cr 400). For this purpose, models were applied where four temperature treatments were analyzed: temperature (A), (AE), (R) and (C) for 7 days; These samples were evaluated with a colorimeter.

A multispectral system was used to capture multispectral data, covering the range from 400 nm to 1000 nm. In the evaluation, the area with the highest level of discrimination, between 650 nm and 850 nm of the electromagnetic spectrum, was used to visually represent the spectral properties of the Pajuro grains.

Samples stored at room temperature showed the highest level of reflectance, while samples subjected to freezing showed the lowest level of reflectance.

Values found in the Lab* coordinates: Temperature of A L*=19, a*=15.3 and b*= 5.4, Temperature of AE L*= 23, a*= 14.8 and b*= 7, Temperature of R a*= 4.8 and b *=9.8 and Temperature of C a*= 4.7 and b*=8.1

These variations are related to physicochemical changes due to the natural maturation process of the grains and the temperature treatment they are subjected to. In addition, a significant difference was observed in the reflectance of the samples stored at room temperature and packed room from the fourth day in both cases, becoming darker and redder. On the other hand, samples stored in refrigeration and freezing did not show significant changes in optical reflectance; they did not suffer significant color changes.

Keywords: pajuro, multispectral system, multispectral image, reflectance, wavelength, luminosity and redness.

I. INTRODUCCIÓN

Las cámaras multiespectrales son dispositivos avanzados que pueden capturar imágenes en diferentes bandas del espectro electromagnético, incluyendo el visible y el infrarrojo. Esto les permite capturar información que no puede ser vista por el ojo humano y proporcionar una visión más completa de un objeto o escena.

Estas cámaras pueden proporcionar información detallada sobre la composición y la apariencia de un objeto, incluyendo su perfil del color.

En el caso del grano de Pajuro (*Erytrhina edulis*) el tiempo de almacenamiento y la temperatura pueden tener un impacto significativo en las características del perfil del color. Durante el almacenamiento prolongado y en condiciones de temperatura elevada, los pigmentos responsables del color del grano pueden sufrir degradación, lo que puede resultar en un cambio en el perfil del color.

Las cámaras multiespectrales utilizan diferentes longitudes de onda de la luz para capturar información sobre la reflectancia de un objeto. Esta información puede utilizarse para predecir cómo el tiempo de almacenamiento y la temperatura pueden afectar las características del perfil del color (CIELAB) del pajuro (*Erytrhina edulis*).

La CIELAB es una representación numérica del color que permite comparar de manera objetiva los colores de diferentes objetos. El tiempo de almacenamiento y la temperatura pueden afectar la CIELAB del fruto de pajuro (*Erytrhina edulis*) de diferentes maneras, como la oxidación, la descomposición y otros cambios en la estructura química.

Las cámaras multiespectrales pueden ser una herramienta valiosa para predecir cómo el tiempo de almacenamiento y la temperatura afectan el perfil del color del grano de pajuro (*Erytrhina edulis*). Estas cámaras pueden medir la reflectancia en diferentes bandas del espectro electromagnético y utilizar esta información para predecir cómo el tiempo de

almacenamiento y la temperatura afectan el perfil del color del grano de pajuro (*Erytrhina edulis*).

Además, las cámaras multiespectrales pueden ser útiles para monitorear el desarrollo y la calidad del fruto durante su crecimiento y almacenamiento. Los agricultores y otros interesados en maximizar la calidad y el valor de sus productos pueden utilizar esta información para tomar decisiones informadas sobre cuándo cosechar y almacenar sus frutos y granos.

En conclusión, las cámaras multiespectrales son una herramienta valiosa para predecir cómo el tiempo de almacenamiento y la temperatura afectan el perfil del color del grano de pajuro (*Erytrhina edulis*). Esta información puede ser útil para agricultores, productores y otros interesados en maximizar la calidad y el valor de sus productos.

1.1. Descripción del Problema

En la actualidad, el pajuro (*Erytrhina edulis*) no es un producto muy consumido en nuestro país, especialmente en la zona de Cajabamba, por lo que es importante prestar atención a este cultivo y entender cómo el tiempo de almacenamiento y la temperatura pueden afectar las características del perfil de color del pajuro (*Erytrhina edulis*).

Las imágenes multiespectrales son una de las tecnologías más recientes y están siendo ampliamente utilizadas en diferentes campos a nivel industrial debido a su versatilidad y rapidez para proporcionar información de alta calidad. A pesar de que esta técnica está demostrando tener muchas ventajas frente a los métodos tradicionales de análisis de alimentos, se ha encontrado que puede presentar algunos inconvenientes en el análisis de alimentos líquidos. Por esta razón, se realizó la determinación de calidad de leche fresca y se compararon los resultados obtenidos mediante análisis multiespectrales con los obtenidos a través de los análisis tradicionales (fisicoquímicos, microbiológicos y sensoriales).

1.2. Formulación del Problema

¿Cuál es el efecto del tiempo de almacenamiento y temperatura en las características del perfil de color del Pajuro (*Erytrhina edulis*) de la zona de Cajabamba?

1.3. Justificación

La realización de este estudio busca **Predecir el efecto de almacenamiento y temperatura en las características del perfil de color del Pajuro** (*Erytrhina edulis*), tomando en cuenta el desarrollo de dos métodos de análisis como son el sistema CIELAB y las imágenes multiespectrales; con el fin de difundir la información obtenida, tanto a los profesionales de alimentos como también a la población en general. Además, servirá como modelo para futuras investigaciones y para la construcción de los conocimientos existentes, ya que parte de la formación de los profesionales es conocer con base científica la realidad sobre la disponibilidad de los alimentos en el país y los avances en la mejora de la calidad de vida.

El Perú es un país con gran biodiversidad, pero esta no ha sido completamente explotada, es por ello que muchos de sus productos se encuentran olvidados y en peligro de extinción. El pajuro, considerado un alimento milenario, es una legumbre muy poco conocida en la ciudad, pero si en las zonas andinas donde se cultiva. Los alimentos andinos que existen hoy en día son gracias a la conservación e importancia otorgada por los campesinos e indígenas que evitaron su extinción.

1.4. Objetivos

1.4.1. Objetivo General

 Determinar el efecto del tiempo de almacenamiento y temperatura en las características del perfil de color CIELAB e Imágenes multiespectrales del pajuro (*Erytrhina edulis*) de la zona de Cajabamba.

1.4.2. Objetivos Específicos

- Determinar el efecto del tiempo en las características del perfil de color CIELAB e Imágenes multiespectrales del pajuro (*Erytrhina edulis*) de la zona de Cajabamba.
- Determinar el efecto de la temperatura en las características del perfil de color CIELAB
 e Imágenes multiespectrales del pajuro (*Erytrhina edulis*) de la zona de Cajabamba.

1.5. Hipótesis

Existe diferencias cuantitativas y cualitativas significativas entre el efecto del tiempo de almacenamiento y temperatura en las características del perfil de color del Pajuro (*Erytrhina edulis*) de la zona de Cajabamba.

II. REVISIÓN DE LITERATURA

2.1. Antecedentes

Los autores (Manjunatha & Patki, 2019) y (Salehi, 2019) en sus investigaciones usaron el sistema CIELAB para identificar el cambio del color en frituras, 15 de cuatro variedades de papa (Solanum tuberosum) y los cambios de color durante la fritura en función de la temperatura del aceite.

(Delgado Soriano, Cortés Avendaño, Guevara Pérez, & Vílchez Perales, 2020) utilizo el sistema CIELAB en su estudio, para analizar la testa del color del pajuro (*Erytrhina edulis*) tenía valores de color específicos, representados como L* (27,26), a* (8,60) y b* (4,81). Los resultados de las características físico-químicas se presentaron en términos de promedios y desviaciones estándar, mientras que los datos de las propiedades funcionales se sometieron a ANOVA bajo un Diseño Completamente al Azar con arreglo factorial 3x2 y para la comparación de medias se usó la prueba Tukey (p<0,05). Las semillas presentaron valores de color en la testa como L* (27,26), a* (8,60) y b* (4,81),

(Muñoz, Victoria, & Rodríguez, 2014) utilizo el sistema CIELAB en su estudio, para analizar el color del pajuro (Erytrhina edulis) observaron que la cáscara de estos granos tenía un color rojo oscuro, con valores medios de L* (22,44 \pm 2,03), a* (5,43 \pm 2,95) y b* (6,85 \pm 2,56). Se concluye que mediante la evaluación del color según la escala de Hunter Lab, se determinó que la cáscara presenta un color rojo oscuro L* (22,44 \pm 2,03), a* (5,43 \pm 2,95) y b* (6,85 \pm 2,56).

La Universidad Nacional de Colombia con Sede Medellín, en la Facultad de Ciencias Agropecuarias se desarrolló la investigación denominada: Colorimetría del Fruto de Café (Coffea arabica L.) Durante su Desarrollo y Maduración, por los autores: (CARVAJAL HERRERA, ARISTIZABAL TORRES, & OLIVEROS TASCON, 2011), quienes en su resumen refieren:

Obtener estándares del color del fruto de café durante su desarrollo y maduración es necesario para diferentes procesos relacionados con la cosecha y poscosecha de este producto. Las coordenadas L*, a*, b*, C* y h* en la representación de color CIELab y la reflectancia en el espectro visible (400-700 nm) fueron medidas sobre tres 10 diferentes puntos de la epidermis del fruto de Coffea arabica, var. Colombia.

(Hashim, Onwude, & Syafiq Osman, 2018) estudiaron la aparición de síntomas de daños por frío (IC) en mango se evaluó de manera no destructiva utilizando imágenes multiespectrales. La fruta se almacenó a 4 °C para inducir los IC y a 12 °C para preservar la calidad de las muestras de control durante 4 días antes de sacarlas y almacenarlas a temperatura ambiente durante 24 h. Se realizaron mediciones utilizando imágenes multiespectrales y métodos de referencia estándar antes y después del almacenamiento. El rendimiento de las imágenes multiespectrales se comparó utilizando propiedades de referencia estándar, incluido el contenido de humedad (MC), el contenido de sólidos solubles totales (TSS), la firmeza, pH y color.

Este artículo aporta a nuestra investigación a determinar las coordenadas L*, a* y b* en la representación de color CIELab y la reflectancia en el espectro visible.

(Changhong, y otros, 2014) han evaluado imágenes multiespectrales con 19 longitudes de onda en el rango de 405-970 nm para la determinación no destructiva de la firmeza, el contenido de sólidos solubles totales (TSS) y el estado de madurez en frutos de fresa. Se aplicaron varios enfoques de análisis, incluidos los mínimos cuadrados parciales (PLS), la máquina de vectores de soporte (SVM) y la red neuronal de propagación inversa (BPNN), para desarrollar modelos teóricos para predecir la firmeza y TSS de la fruta de fresa intacta. En comparación con PLS y SVM, BPNN mejoró considerablemente el rendimiento de las imágenes multiespectrales para predecir la firmeza y el contenido total de sólidos solubles con

el coeficiente de correlación (r) de 0,94 y 0,83, SEP de 0,375 y 0,573 y sesgo de 0,035 y 0,056, respectivamente.

2.2. Marco Teórico

2.2.1. Pajuro (Erytrhina edulis)

El chachafruto (Erythrina edulis Triana Ex M. Micheli) es una de las más versátiles especies de las Erythrina, es una leguminosa multipropósito con un amplio espectro de usos, que van desde la alimentación humana (la grano) y animal (el forraje) hasta la recuperación de suelos degradados (dada su capacidad de fijar nitrógeno), pasando por la formación de cercas vivas y las asociaciones con otras especies. Además de los anteriores usos, se le han identificado propiedades medicinales, por ejemplo, como diurético. El chachafruto es un árbol multipropósito, cuya principal función está relacionada con la seguridad alimentaria, debido a que su grano es rico en vitaminas, minerales y, especialmente, en proteínas. En un estudio realizado en la Universidad Nacional de Colombia se encontró que el grano de chachafruto contiene un 23% de proteína y un aminograma comparable al del huevo y superior al del fríjol y la arveja. Según Acero el valor biológico de la proteína del chachafruto es 70.9, superior al de la lenteja (44,6), el fríjol (58), la arveja (63,7) y el haba (54,8). El grano se puede preparar cruda y tajada (como las papas), como grano cocido y entero y como grano cocido y molido para formar una masa. Adicionalmente, la harina que se obtiene del chachafruto se puede usar industrialmente en panadería, tratándola con antioxidantes (Arango Bedoya, Bolaños Patiño, Ricaurte García, Caicedo, & Guerrero, 2012).

2.2.2. Descripción Botánica del Pajuro (Erytrhina edulis)

- ➤ **Género:** Proviene del griego erythros que hace referencia al color de sus flores rojas (19), pertenece al género de la familia fabaceae que se encuentran en zonas tropicales y subtropicales del mundo. (Barreto, 1999)
- **Especie:** Edulis hace referencia a que es apto para el consumo humano.

> Taxonomía: Leguminosea

Reino: Plantae

División: Magnoliophyta

➤ Clase: Magnoliopsida

> Orden: Fabales

> Familia: Fabaceae

> **Subfamilia:** Faboideae

Nomenclatura botánica: Pajuro

Nombre científico: Erytrhina edulis

Sinonimia: E. sculeta, E. loveta, E. magistophylla (Barreto, 1999)

2.2.3. Nombres Comunes del Pajuro

El pajuro (*Erytrhina edulis*) quiere decir árbol de flores rojas y frutos comestibles. Es una leguminosa conocida con diferentes nombres debido al lugar de origen. En Venezuela: chachafruto, fríjol mompás, nopás y bucaré. Ecuador: pashurro, pashullo, poroto, porotón, pisonay, guato, sachaporoto, fríjol de monte, zapote de cerro y la etnia Cañari le llama Kañaro. Perú: basul, pajuro, antiporoto, pashuro, pisonay y pashigua.

Bolivia: sachahabas y en Colombia: chachafruto, balú, baluy, chaporuto, sachafruto, fríjol de árbol, poruto y sachapuruto (Báez, 2011).

2.2.4. Descripción Morfológica del Pajuro

2.2.4.1.Vaina

Contiene granos sueltos y prietas pegadas a la vaina.

2.2.4.2.Grano

Las vainas pueden tener de 1 hasta 12 granos arriñonadas (de forma cóncava-convexa) de color café, formada por dos cotiledones de color blanco - verdoso. La testa del grano es lisa y según el proceso de maduración y la variedad, va del color - rosado a un tono vino tinto, y

puede medir cada una entre 4 a 5 centímetros de largo, 2 a 3 centímetros de grosor y pesar unos 30 gramos (Inciarte, Mariella, Paez Rondon, Sandoval, & Otalora Luna, 2015).

Es una leguminosa con medidas de 32 hasta 55 cm de longitud por 3.3 cm de ancho y contiene alrededor de 6 granos con estrías entre los granos posee una apariencia harinosa de colores rojo, rosado, café, blanco, amarillo de sabores dulces amargas.

Figura 1Grano de Pajuro (Erytrhina edulis)

Nota: Vainas de granos de pajuro. Fuente: Especies del género Erythrina (Fernando & Yepes, 2019)

Tiene la forma de un fríjol grande arriñonado y de consistencia carnosa, con un tamaño de 2 a 5.2 cm de largo por 2.5 cm de ancho; su cáscara es de color rojo oscuro, café y amarillo. (Sánchez, 2014)

Figura 2 *Granos de pajuro*

Nota: Granos de Pajuro de color marrón. Fuente: agronoticias.pe Investigación de la UNMSM.

2.2.5. Composición Nutricional del Pajuro

Se presenta la Tabla 1 de composición del pajuro (*Erytrhina edulis*), donde se describe su composición nutricional.

Tabla 1Composición del pajuro

Composición	Cantidad
Agua (g)	64.4.
Proteínas (g)	2.1
Grasas totales (g)	0.3
Cenizas (g)	1.7
Calcio	25
Fosforo	105
Hierro	1.20
Vitamina A	0
Vitamina C	42

Nota: Tabla de la composición del pajuro (Erytrhina edulis). Fuente: Tablas Peruanas de Composición de Alimentos

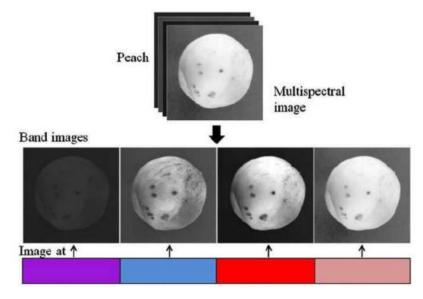
2.2.6. Cámara Multiespectral

Una cámara multiespectral captura imágenes en varios segmentos del espectro electromagnético, como el infrarrojo cercano, el visible. Esto permite una mayor comprensión

de la información contenida en una imagen, ya que cada segmento del espectro puede revelar diferentes características de un objeto. (Richards & Jia, 2006)

Los componentes básicos de una cámara multiespectral incluyen:

- ➤ Sensores: Son la parte principal de una cámara multiespectral y están diseñados para capturar imágenes en diferentes bandas espectrales.
- Lente: Se encarga de enfocar la luz sobre el sensor y puede incluir filtros que permiten capturar imágenes en diferentes bandas espectrales.
- ➤ Filtros espectrales: Se utilizan para seleccionar las bandas de luz que se desean capturar, permitiendo a la cámara multiespectral tomar imágenes en diferentes bandas espectrales.
- Procesador: Se encarga de procesar la información capturada por los sensores y producir una imagen utilizable.
- ➤ Almacenamiento: La cámara multiespectral debe tener un sistema de almacenamiento para guardar las imágenes capturadas.
- ➤ Interfaz de usuario: Permite a los usuarios controlar y configurar la cámara multiespectral.
- ➤ Fuente de energía: La cámara multiespectral necesita una fuente de energía para funcionar, ya sea baterías o una fuente externa de alimentación.

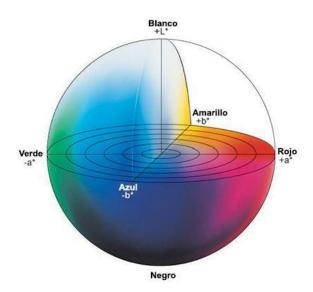

2.2.7. Imágenes Multiespectrales

Imágenes multiespectrales significa métodos para imágenes espectrales en los que se obtienen imágenes correspondientes a al menos un par de canales espectrales, a veces más de diez. Las regiones espectrales utilizadas a menudo están al menos parcialmente fuera del rango espectral visible, cubriendo partes de la región infrarroja y ultravioleta. Por ejemplo, un generador de imágenes multiespectrales puede proporcionar canales de longitud de onda para luz ultravioleta

cercana, roja, verde, azul, infrarroja cercana, infrarroja media e infrarroja lejana, a veces incluso radiación térmica (imágenes térmicas). (Paschotta, 2008)

En la Figura 3, se muestra una vista conceptual de una imagen multiespectral.

Figura 3
Vista conceptual de una imagen multiespectral de un melocotón con defectos



Nota: Imagen multiespectral de melocotones con defectos. Fuente: Zhang et al., 2014

2.2.8. Sistema de Color CIELab*

El espacio de color CIELAB, también referido como espacio CIEL*a*b*, es actualmente uno de los espacios de color más populares y uniformes usados para evaluar el color en el área de alimentos. Es un espacio de color ampliamente usado porque correlaciona los valores numéricos de color consistentemente con la percepción visual humana. Investigadores y fabricantes lo usan para evaluar los atributos de color, identificar inconsistencias, y establecer tolerancias de color. (Talens Oliag, 2018)

Figura 4
Espacio de color CIELAB

Nota: Espacio de color CIELAB, que se obtiene de los valores triestímulo. Obtenido de "Precise color communication" Konica Minolta (2007).

El color de un alimento debe describirse en base a los 3 atributos de color: luminosidad tonalidad y pureza de color. La luminosidad es el atributo de la sensación visual según la cual una superficie emite más o menos luz; el tono es el atributo de la sensación visual según la cual una superficie parece similar a uno, o a proporciones de dos, de los colores percibidos rojo, naranja, amarillo, verde, azul y púrpura; y la pureza es el atributo de la sensación visual según la cual una superficie parece mostrar más o menos tonalidad, o lo que es lo mismo, contenido de color de una superficie evaluado en proporción a su luminosidad.

En el espacio de color CIELAB, la luminosidad viene descrita por el eje vertical L*, la tonalidad por el contorno de la esfera y la pureza por el radio desde el centro al exterior de la esfera. (Talens Oliag, 2018)

2.2.9. Reflectancia

La reflectancia es la capacidad de un material para reflejar la luz incidente. Se mide como la proporción de luz reflejada por un objeto respecto a la cantidad de luz incidente. La reflectancia es una propiedad importante de los materiales, ya que afecta la apariencia y la percepción visual

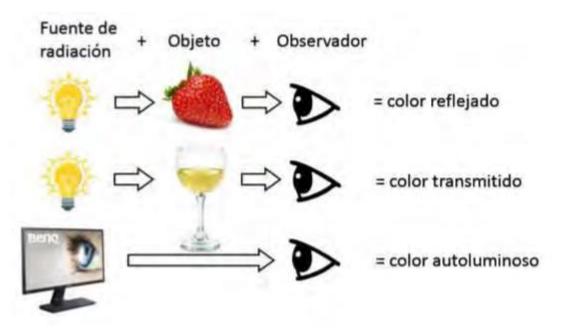
de un objeto. La reflectancia puede ser influenciada por muchos factores, como la textura, el color y la composición química de la superficie. (Richards & Jia, 2006)

2.2.10. Colorimetría

La colorimetría es la ciencia que estudia la medición del color desarrollando los métodos para su cuantificación, (Santos Spi, 2009), estos métodos se basan específicamente en la geometría y distribuciones espectrales de tres elementos: la fuente de luz, la reflectividad de la muestra y la sensibilidad visual del observador, (Otles, 2008)

Esta ciencia transforma la percepción sensorial en números, logrando medir, comparar y reproducir los diferentes colores, (Santos Spi, 2009)

A través del tiempo ha sido mejorado los elementos importantes de la colorimetría, inicialmente dichas condiciones fueron: la simulación de la percepción humana del color en un campo de 2 y colores primarios de ajuste (rojo, verde y azul), (Otles, 2008)


2.2.11. Color

(Meléndez Martínez, Vicario, & Heredia, 2005) señalan que "El color es una respuesta de percepción mental al espectro visible de luz (distribución de la potencia luminosa en función de la longitud de onda) reflejada o emitida por un objeto. Dicha señal de respuesta interactúa en el ojo con la retina y luego es transmitida al cerebro por el nervio óptico, lo que hace que los humanos asignen colores a esta señal. Por tanto, el color no es una propiedad intrínseca del objeto, ya que, si se cambia la fuente de luz, el color del objeto también cambia".

(Marchante Rodríguez, Chorro, & E., 2011) consideran como elementos condicionantes de color a los tres elementos principales que conforman la percepción del color: la fuente luminosa, el objeto y el observador, además según su interacción principal de la luz con el objeto los llama como color reflejado, color transmitido y color auto luminoso, este último refiere al color percibido directamente de una fuente luminosa, esto se observa en la Figura 5.

Figura 5

El color resulta de la interacción de una fuente de luz, un objeto y el ojo y cerebro o sistema

Nota: El color resulta de la interacción de una fuente de luz, de un objeto, el ojo y cerebro o sistema. Tomado de Análisis y caracterización colorimétrica de zumos de naranja por espectrofotometría de reflexión y transmisión, Mabel Erlinda Tesillo Quispe de la pág. 25.

III. MATERIALES Y MÉTODOS

3.1. Ubicación

El presente trabajo de investigación se realizó de la siguiente manera: las granos de pajuro (*Erytrhina edulis*) se recolectó de la zona de Cajabamba, teniendo en cuenta que los frutos estén en buenas condiciones y libre de cualquier patógeno, la parte del análisis en la cámara multiespectral, se realizó en los laboratorios de la Universidad Nacional de Cajamarca, en la escuela académico de Ingeniería en industrias Alimentarias, el laboratorio de Bioingeniería y Fermentaciones Industriales, Facultad de Ciencias Agrarias. Esta casa superior de estudios se encuentra ubicada a 3.5 km de la ciudad de Cajamarca (78° 3' de longitud y 7° 10' latitud sur), y a 2750 msnm.

Figura 6 *Ubicación del desarrollo de la Tesis*

Nota: Ubicación geográfica del trabajo de investigación. Fuente: Elaboración propia.

3.2. Materiales

3.2.1. Materia prima

Se utilizo pajuro (*Erytrhina edulis*) en grano procedentes de la provincia de Cajabamba, departamento Cajamarca. Tomando cuatro granos como muestras para el análisis en la Cámara Multiespectral.

3.2.2. Materiales de Laboratorio

- Termómetro.
- Caja de cartón
- Mesa de acero inoxidable.

3.2.3. Equipos e Instrumentos.

- > Refrigeradora
- > Congeladora
- ➤ Cámara Multiespectral Tetracam
- > Colorímetro Konica minolta cr-400

3.2.4. Materiales de Gabinete.

- > Laptop.
- > Internet.
- Memoria USB.
- Cámara.
- ➤ Hojas de papel bond.
- Lapicero.
- Lápiz.
- Marcador.

3.3. Metodología

Para el estudio se utilizó cuatro granos de pajuro, en su estado de madurez fisiológico y se hizo la toma de datos cada 24 horas; para el estudio de color e imágenes multiespectrales, se utilizó un colorímetro CR- 400 K minolta y un sistema multiespectral.

Se utilizará el método de Análisis de Varianza (ANOVA) y DUNCAN 95% para comparaciones múltiples, empleando el paquete estadístico STATGRAPHICS Centurión.

El estudio se desarrolló en base a dos factores, que corresponden a tiempo y temperatura de almacenamiento.

3.3.1. Variables

3.3.1.1. Variables Independientes

Tiempo de almacenamiento

En mi estudio el tiempo de almacenamiento será por un total de siete días de almacenamiento, según el autor (Acero Duarte, 2002) el grano para consumo humano se puede conservar al medio ambiente y entre la vaina o cáscara por unos 8 días sin que los frutos se dañen. En nevera los frutos se conservan 15 días.

Temperatura de almacenamiento

La T ° Ambiente (A), fue de 18° C, como medida promedio.

T ° Ambiente Empacado (AE), se realizó en una caja de cartón y T ° de 20° C.

T ° Refrigeración (R), fue de 12 ° C, esta muestra fue colocada en un refrigerador.

T ° Congelación (C), fue de -2° C, esta muestra fue colocada en un refrigerador.

Procedimiento

Preparación de los granos: Asegurar que los granos estén limpios y libres de impurezas antes de comenzar el proceso de almacenamiento.

División en los cuatro tratamientos. Se divide los granos de pajuro (Erytrhina edulis) en cuatro tratamientos de almacenamiento: ambiente normal, ambiente empacado, refrigeración y congelación.

Registro Inicial: Se registra el estado inicial de los granos de pajuro (*Erytrhina edulis*) en cada grupo, incluyendo características como color y temperatura de almacenamiento.

Almacenamiento en Ambiente Normal: Se colocó un grano de pajuro en un ambiente normal, a temperatura ambiente. La temperatura se midió usando un termómetro digital, el cual estuvo bien calibrado.

Almacenamiento en Ambiente Empacado: Para el grupo de ambiente empacado, colocó un grano de pajuro en una caja de cartón contenedor hermético, asegurándose de sellar adecuadamente para evitar la entrada de aire. La temperatura se midió utilizando un termómetro digital.

Almacenamiento en Refrigeración y Congelación: Para este grupo utilice un refrigerador, donde se coloca los granos en la sección de refrigeración a 12 °C y congelación a -2 °C, para medir la temperatura se utilizó un termómetro digital.

Monitoreo Diario: Realiza un seguimiento diario del estado de los granos en cada ambiente. Observa cualquier cambio en su apariencia y color.

Registro de Cambios: Se registra cualquier cambio notable en los granos a lo largo del periodo de almacenamiento en cada ambiente.

Evaluación Final: Al final de los 7 días, realice una evaluación final comparando los resultados de cada ambiente. Determinando si hay diferencias significativas entre los cuatro tratamientos para los granos de pajuro.

3.3.1.2. Variables Dependientes

CIELAB

El presente trabajo de investigación siguió el siguiente plan experimental de acuerdo a los objetivos del estudio se obtuvo granos de Pajuro (*Erytrhina edulis*) procedentes de la Zona de Cajabamba; la investigación se centró en el análisis de imagen que consistió en la visualización, captura y el procesado es decir la obtención de los parámetros colorimétricos *L* * *a* * *b* * de cuatro muestras de pajuro (*Erytrhina edulis*) en siete días de evaluación. La toma de colorimetría se realizó diariamente, utilizando un colorímetro CR – 400 K Minolta. En la medición del color, se representó según las normas internacionales de la Comission Internationale del Éclairage (CIE L*a*b), que se modeló en base a la teoría de colores opuestos,

donde nos indica que dos colores no pueden ser verde y rojo a la vez o azul y amarillo juntamente (Hurtado Aramburo & Arroyo Figueroa, 2017)

Procedimiento

Se llevaron a cabo evaluaciones de colorimetría durante siete días, para las muestras almacenadas en los cuatro tratamientos, para obtener los parámetros colorimétricos L*, a*y b* de cuatro muestras de pajuro. La toma de colorimetría se realizó diariamente utilizando un colorímetro CR-400 K Minolta.

Perfil espectral

Se tuvo como modo de método de detección a la Reflectancia: Este método consiste en que el detector captura la luz reflejada de la muestra iluminada en una conformación específica para evitar la reflexión especular, en algunos casos, para minimizar la reflectancia especular, la fuente de luz y el detector se colocan bajo un ángulo específico, comúnmente 45°. Este sistema es el más utilizado y de un coste relativamente bajo, comúnmente utilizado en el análisis de muestras sólidas y semisólidas. En el caso de la supervisión de la calidad de los alimentos, el modo de operación más utilizado es la reflectancia. Algunas aplicaciones de este método incluyen la determinación de los componentes químicos de frutos y la evaluación de características externas de frutos como **color**, tamaño, forma, textura superficial, y la presencia de defectos en la superficie (Wu & Sun, 2013).

La firma espectral o huella digital espectral, o simplemente espectro, es el patrón de **reflexión**, absorbancia, transmitancia y/o emisión de energía electromagnética a longitudes de onda específicas (ElMasry & Sun, 2010)

Procedimiento

Para la captura de las imágenes multiespectrales se hizo uso de la cámara multiespectral, la cual cuenta con un soporte para colocar la muestra, luego se asegura de que las muestras almacenadas en los diferentes tratamientos (T ° ambiente, T ° ambiente empacado, T °

refrigeración y T ° de Congelación) estén limpias y libres de cualquier material que pueda afectar la toma de las imágenes multiespectrales, haciendo uso de los botones de la cámara multiespectral, una vez tomada la imagen multiespectral esta fue almacenada en una computadora, para posteriormente ser vista mediante el programa de PixelWrench2.

3.3.2. Sistema multiespectral

Para evaluar las características multiespectrales fue necesario utilizar un sistema multiespectral con todos sus componentes (cámara multiespectral Tetracam, panel de control y monitor) a un soporte para garantizar la estabilidad; además se acondicionó luces halógenas que permitieran la iluminación correcta para la toma de imágenes espectrales; y estudiar cómo el tiempo y la temperatura de almacenamiento afectan la calidad y precisión de los datos a obtener. El sistema multiespectral se construyó por la necesidad que se tenía para este estudio, el sistema multiespectral se quedara en los laboratorios de Industrias Alimentarias de la Universidad Nacional de Cajamarca, para posteriores estudios. A través de esta metodología, se pretende establecer una base sólida para la investigación y contribuir al conocimiento científico.

A continuación, se describen los principales componentes del sistema multiespectral.

3.3.3. Componentes del Sistema Multiespectral

Cámara Multiespectral Tetracam. es un dispositivo utilizado para capturar imágenes en múltiples bandas del espectro electromagnético, más allá de lo que el ojo humano puede ver. A diferencia de las cámaras convencionales que solo registran la luz visible (generalmente en tres canales: rojo, verde y azul), esta cámara multiespectral puede detectar la radiación electromagnética en diferentes longitudes de onda, incluyendo regiones del VIS y NIR. Además, cuenta con diversas prestaciones, entre las cuales destacan las siguientes:

- ➤ 3 bandas (verde, rojo y NIR) las mismas que el Landsat (TM2, TM3, TM4)
- Resolución de 2048 x 1536 píxeles

➤ 16GB de memoria

Lentes de alta calidad de 8,43mm

Las imágenes se guardan en formato RAW con metadatos como el tamaño de imagen,

fecha de creación, longitud de onda espectro magnética, etc.

Rango de 520 nm a 920 nm

➤ Longitud focal: f/3,2

> 90g de peso

Dimisiones de 75 mm x 59 mm x 33 mm

Trabaja a temperaturas entre 0° C y 42° C y con humedad menor de 85% (por

condensación)

Consumo de 2W

Puerto USB 2.0 utilizado para conectar la cámara a una computadora para la

configuración del sistema.

Monitor. Es una pantalla que permite visualizar la información que está siendo

procesada por la cámara multiespectral en tiempo real.

Panel de Control. El panel de control es un conjunto de dispositivos, botones,

interruptores y pantallas que se utilizan para controlar y monitorear las funciones del sistema

multiespectral. El panel de control proporciona una interfaz entre el operador y la cámara

multiespectral, permitiendo al usuario ajustar los parámetros de operación, supervisar el

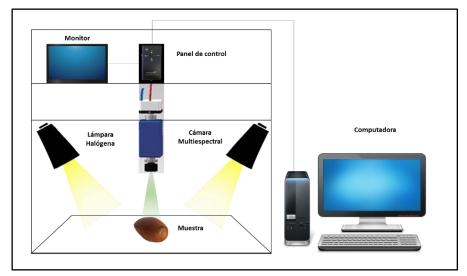
funcionamiento de la cámara y realizar acciones como iniciar, detener, pausar y reiniciar la

operación.

Lámparas Halógenas. Las lámparas halógenas son una iluminación que emite una luz

clara y nítida capaz de resaltar aquellas partes queramos y deseamos que salgan en las fotos

espectrales.


Computadora. Es donde se guardan y procesan los datos de la Cámara Multiespectral.

22

Muestra. El elemento a estudiar para obtener datos.

A continuación, la figura 7 muestra los componentes esquemáticos del sistema multiespectral utilizado para la toma de imágenes multiespectrales en el trabajo de investigación.

Figura 7Diseño de Sistema multiespectral

Nota: El diseño del sistema multiespectral cuenta con un monitor, un panel de control, lámparas halógenas, cámara multiespectral, y computadora. Fuente: Elaboración propia.

La figura 8 muestra el sistema multiespectral real diseñado y creado para el trabajo de investigación.

Figura 8Sistema Multiespectral

Nota: Sistema multiespectral real diseñado y creado para el trabajo de investigación. Fuente: Elaboración propia.

3.3.4. Etapas Para la Adquisición de Imágenes Multiespectrales y su Respectivo Análisis

Muestras. Se obtuvieron las muestras de Pajuro (*Erytrhina edulis*) de la provincia de Cajabamba, departamento de Cajamarca.

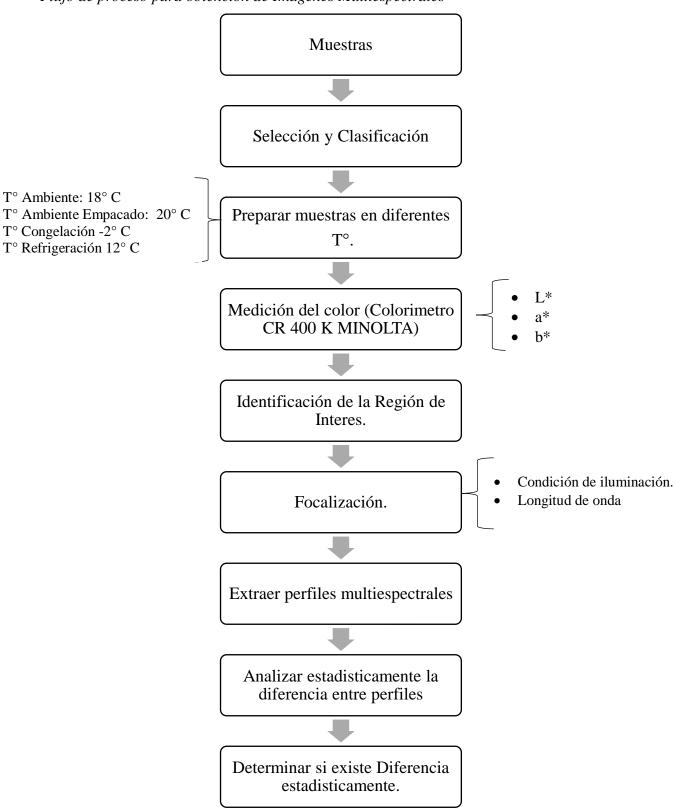
Selección y Clasificación. Se seleccionaron los frutos de pajuro que se encontraban en óptimas condiciones de madurez y sin ningún daño físico ni bioquímico (Hongo). Se cosecharon cuatro kilogramos de vainas de pajuro en perfecto estado; luego se extrajo los granos y se obtuvo 2 kilogramos.

Preparar Muestras en Diferentes T°. Se tomaron al azar cuatro granos que se sometieron a cuatro tratamientos de temperatura, (ambiente, ambiente empacado, refrigeración y congelación).

Medición del color. Se toma cada muestra para ser evaluada mediante un colorímetro CR-400 K Minolta.

Identificación de la Región de Interés. Se identifico la región de interés haciendo uso de un plumón indeleble, se marcaron los granos.

Focalización. Se identifico la región de interés que fue marcada anteriormente para capturar el perfil multiespectral en función de reflectancia.


Extraer Perfiles Multiespectral. La capacidad de capturar una imagen multiespectral en diferentes espectros permite una mayor comprensión y análisis de información.

Analizar Estadísticamente la Diferencia Entre Perfiles. Se tendrá en cuenta a analizar los perfiles multiespectrales obtenidos de las diferentes muestras que se analizaron y teniendo en cuenta la temperatura a la cual fue sometida al momento de analizar cada una de las muestras.

Determinar si Existe Diferencia Estadísticamente. En este estudio se analizarán las diferencias entre cada muestra, teniendo en cuenta la temperatura a la que fue sometida. Para ello, se utilizarán herramientas como el software Matlab 20 y Statgraphics Centurion 16.2 para procesar los datos y contrastar información. De esta forma, se podrá determinar si existe una variación o diferencia estadísticamente significativa en las muestras de estudio, con el fin de averiguar si el tiempo de almacenamiento y la temperatura tienen un efecto en las características físico-químicas de las muestras analizadas.

3.3.5. Flujo Para Obtención y Análisis de Imágenes Multiespectrales.

Figura 9Flujo de proceso para obtención de Imágenes Multiespectrales

Nota: Flujo de proceso para obtención de Imágenes Multiespectrales, que fueron tomadas en la tesis efectos del tiempo y temperatura en el perfil de color del pajuro. Fuente: elaboración propia.

3.3.6. Método de Análisis

Obtención de Frutos de Muestra. Para el experimento se utilizaron granos extraídos de las vainas de Pajuro (*Erytrhina edulis*), provenientes de Cajabamba. Estos granos se caracterizan por su color rojo, que es el perfil de color típico de los pajuros. Durante la recolección se pudo observar que los granos de Pajuros (*Erytrhina edulis*), presentaban una buena calidad, sin presentar ningún tipo de daño en su aspecto físico.

Para la investigación se empleó un Diseño Completamente al Azar (DCA), el cual es uno de los diseños experimentales más simples y ampliamente utilizados en la investigación científica. Este diseño es apropiado para casos donde las unidades experimentales son homogéneas y la administración del experimento es uniforme para todas ellas. (Ortega, y otros, 2017)

Después de la obtención de los resultados, se procedió a realizar un análisis de varianza con un nivel de significancia del 95%. Si se encontraban diferencias significativas (P≤0,05), se llevaría a cabo una prueba de comparación múltiple de Duncan con un nivel de confianza del 95%.

3.3.7. Diseño de Investigación

Medición de Perfiles Espectrales: Se utilizó un sistema multiespectral diseñado para capturar perfiles espectrales, el cual incluía una cámara multiespectral de reflectancia óptica Tetracam ADC Micro con un módulo Vis-NIR y una fuente LED con tres bandas. Las imágenes capturadas se procesaron y analizaron con el software Matlab 20 para ordenar los espectros tomados de las muestras en cuatro tratamientos de temperatura (A, AE, R, C).

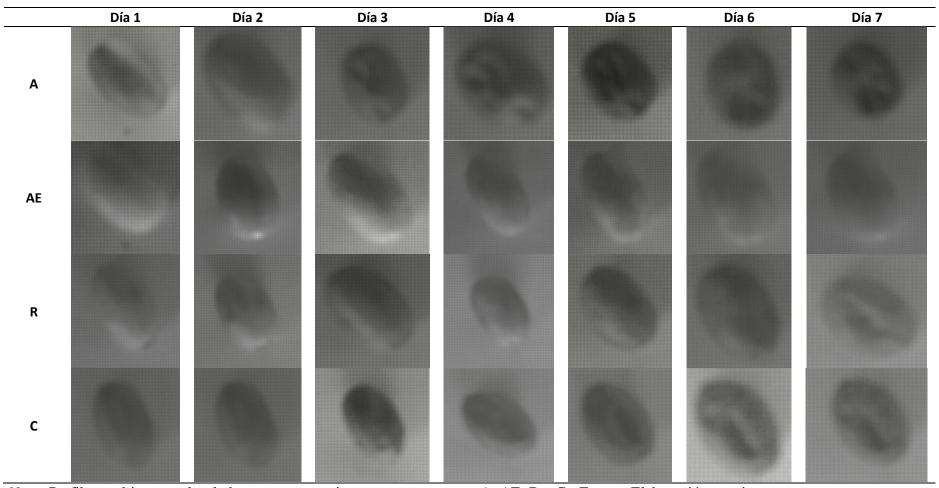
Para el análisis estadístico se utilizó el software Statgraphics Centurión versión 16.2. El objetivo fue realizar el análisis de varianza (ANOVA) y la prueba de múltiples rangos DUNCAN para determinar diferencias significativas entre pares de medias de reflectancia de los días de tratamiento.

La Medición del Color. La medición del color de los granos de Pajuro (*Erytrhina edulis*) se midió mediante el sistema de color CIELab*, esta medición se hizo diariamente.

Los sistemas de medición de color son: color Munsell, color CIE, Espacios de color CIE L*a*b* (CIELAB), espacios de color Hunter Lab, Lovibond, y por el sistema de diferencias de color. (SERPIL & SERVET GULUM, 2009) reportan que el método de medición de color CIELAB se desarrolló en 1976, ofreciendo más ventajas que los sistemas ya mencionados y el sistema desarrollado en 1983. Es más uniforme y está basado en los colores más útiles y aceptados que describen una teoría de los colores opuestos.

El espacio de color L*a*b* (también llamado CIELAB) es actualmente uno de los espacios más populares para medir el color de los objetos y se utiliza ampliamente en casi todos los campos. En este espacio, L* indica luminosidad y a* y b* son las coordenadas de cromaticidad (Pérez & Paucar Menacho, 2003; 2013). (Serpil & Servet Gülüm, 2006), señalan que la localización de cualquier color en el espacio de color CIELAB está determinada mediante sus coordenadas de color: L*, a*y b*. L* representa la diferencia entre la luz (L* = 100) y la oscuridad (L* = 0). El componente de a* representa la diferencia entre el verde (-a*) y el rojo (+a*) y componente b* representa la diferencia entre azul (-b*) y amarillo (+b*). Si se conoce las coordenadas L*, a* y b*, entonces no solamente el color esta descrito, sino que también se encuentra en el espacio.

Se hizo uso de un Colorímetro CR-400 K Minolta, para evaluar el color de los pajuros con mínima variación de color diariamente.


IV. RESULTADOS Y DISCUSIONES

Las muestras fueron sometidas a siete días de evaluación y almacenadas en temperatura ambiente y ambiente empacado, tuvieron una diferencia significativa de reflectancia a partir del día 4, en tanto que (Lacruz, 2015) menciona que los pajuros no se conservan bien a temperatura ambiente, es necesario refrigerarlas, así se conservan sin oxidarse, aproximadamente de 8 a 10 días. Por otro lado, las muestras almacenadas en refrigeración y congelación no presentaron cambios significativos a nivel de reflectancia óptica esto se debería posiblemente a lo mencionado por (López Camelo, 2003) este autor menciona que el control de la temperatura es una de las herramientas principales para reducir el deterioro postcosecha, de esta manera, se reduce el ritmo respiratorio, conservando las reservas que son consumidas en este proceso, se retarda la maduración y se minimiza el déficit de las presiones de vapor entre el producto y el medio ambiente, disminuyendo la deshidratación, los cambios de color y otros cambios fisicoquímicos.

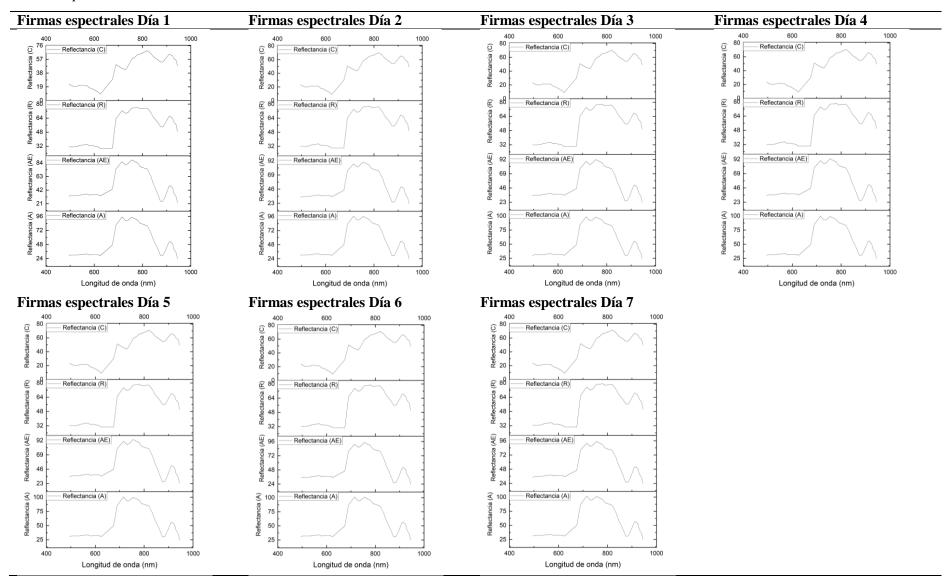
4.1. Perfiles Multiespectrales Diarios de los Cuatro Tratamientos de Temperatura.

En la Figura 10 se observa las imágenes tomadas diariamente de las muestras de granos de pajuro (*Erytrhina edulis*) en su respectivo tratamiento de Temperatura (temperatura ambiente, ambiente empacado, refrigeración y congelación) y sus perfiles multiespectrales de reflectancia. Estas imágenes fueron procesadas con el software PixelWrench2.

Figura 10Perfiles multiespectrales diarios de los cuatro tratamientos

Nota: Perfiles multiespectrales de los cuatro tratamientos a temperaturas: A, AE, R y C. Fuente: Elaboración propia.

Las muestras almacenadas a temperatura (A) y (AE) se volvieron más oscuras; mientras que la muestra almacenada en congelación no presentó cambios significativos de luminosidad; además, la muestra almacenada en refrigeración sufrió mínimo cambio de luminosidad volviéndose un poco más oscura. El valor mínimo de luminosidad para la temperatura ambiente (A) fue de L*=19 y para la muestra almacenada a temperatura ambiente empacado (AE) fue de L*=23 estos datos concuerdan con los descritos por (Muñoz, Victoria, & Rodríguez, 2014) para cáscara de grano de pajuro (*Erythrina edulis*) obteniendo como valor L*=22.44 ±2.03 en granos de pajuro (*Erythrina edulis*) almacenadas a temperatura ambiente; mientras (Delgado Soriano, Cortés Avendaño, Guevara Pérez, & Vílchez Perales, 2020) encontraron L*=27.26 ±1.02 en cáscara de granos maduros de pajuro (*Erythrina edulis*).

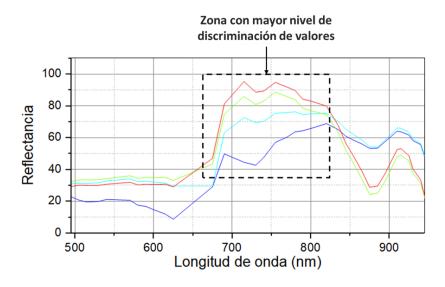

Los cambios significativos de luminosidad entre tratamientos de temperatura A-C y C-AE están relacionados con el proceso fisiológico de maduración según (Huarcaya Miraya, 2018) quien menciona que las granos de pajuro (*Erytrhina edulis*) cambian de marrón claro cuando están frescas a marrón oscuras cuando están maduras, o negras ligeramente rugosas cuando están secas; de igual forma (Lacruz, 2015) dice que la testa (epidermis) de los pajuros (*Erytrhina edulis*) según el proceso de maduración, va de un rosado hasta un tono marrón o colorado oscuro. Del mismo modo (López Camelo, 2003) indica que el control de la temperatura es una de las herramientas principales para reducir el deterioro postcosecha: las bajas temperaturas disminuyen la actividad de las enzimas y microorganismos responsables del deterioro de los productos perecederos. De esta manera, se reduce el ritmo respiratorio, conservando las reservas que son consumidas en este proceso, se retarda la maduración y se minimiza el déficit de las presiones de vapor entre el producto y el medio ambiente, disminuyendo la deshidratación, los cambios de color y otros cambios fisicoquímicos.

4.2. Firmas Espectrales Diarias de las Muestras en Cuatro Tratamientos de Temperatura

Se observan las firmas espectrales diarias de las muestras sometidas a cuatro tratamientos de temperatura en función de la reflectancia óptica.

En este caso, se está evaluando cómo la temperatura afecta la firma espectral de las muestras, lo que puede proporcionar información valiosa sobre la composición y propiedades de los materiales en diferentes situaciones ambientales.

Figura 11 *Firmas espectrales de los cuatro días de tratamiento*


Nota: Se muestran las firmas espectrales de los siete días de tratamiento a diferente temperatura. Fuente: Elaboración propia.

4.3. Caracterización Multiespectral Promedio

En la Figura 12 se presentan los promedios de longitud de onda durante los siete días de tratamiento para las cuatro muestras de granos de Pajuro (*Erytrhina edulis*). En la evaluación se empleará el nivel de discriminación de la zona con mayor diferencia de valores dentro del espectro electromagnético situado de 650 a 850 nm; correspondiente a la longitud de onda del rojo y NIR. Dado que la grano de pajuro es de color característico marrón; así mismo, (Escamilo Cárdenas, 2012) describe a sus grandes granos de cinco centímetros de color marrón oscuro; así mismo, (Curran, 2001) menciona que los componentes bioquímicos ya sean (pigmentos, proteínas, carbohidratos aceites, agua), morfología de la hoja (mesófilo) y arquitectura de la planta, influyen directamente con la planta ya sea para absorber, transmitir y reflejar a distintas longitudes de onda corta de 280 a 2800 nm, comparando con el presente estudio se encuentran en estos rangos de longitud de onda.

Figura 12

Zona con mayor discriminación de 650 nm a 850 nm

Nota: Zona con mayor nivel de discriminación de valores que se encuentran entre los 650nm a 850 nm. Fuente: Elaboración Propia.

Donde:

- Firma espectral color violeta es T° de Congelación.
- Firma espectral color Celeste es T° de Refrigeración.
- Firma espectral color verde es T° de Ambiente empacado.
- Firma espectral color roja es T° de Ambiente.

Se nota variación de reflectancia de las cuatro firmas espectrales en la zona del espectro electromagnético situado de 650 a 850 nm; el color de la testa del grano de las muestras de pajuro presentó distintos comportamientos de reflectancia en los cuatro tratamientos de temperatura., la muestra sometida a temperatura ambiente presenta mayor nivel de reflectancia; en tanto que la muestra sometida a tratamiento de congelación tiene menor nivel de reflectancia; estas variaciones están asociadas a cambios fisicoquímicos del proceso natural de maduración de la grano y al tratamiento de temperatura sometido.

Fue útil utilizar la cámara multiespectral Tetracam, ya que abarcaron los rangos de 400 – 1000 nm aproximadamente, es decir desde la banda del espectro visible hasta la banda del espectro infrarrojo cercano. Así mismo (Mihailova, Liebisch, Islam, Carstensen, & Cannavan, 2022) utilizaron imágenes multiespectrales en rangos de (570 nm a 950 nm) para la discriminación de granos de café Arábica y Robusta; donde observaron que la tendencia general de los espectros de las dos especies de café es similar, correspondientes a las regiones visible (color amarillo-naranja-rojo) e infrarrojo cercano. Esto quiere decir que las longitudes de onda varían de acuerdo al material de estudio.

4.4. Tratamientos de Temperatura de Almacenamiento

4.4.1. Temperatura Ambiente (A) 18 °C

La figura 13, la gráfica nos muestra los valores promedios de reflectancia a T° ambiente, donde vemos que ha ido subiendo la reflectancia al pasar los días de evaluación. Para

determinar diferencia significativa se ha hecho una prueba de comparación múltiple (ANOVA) si el valor p < 0.05 significa que si existe diferencia significativa.

Figura 13Promedios de reflectancias en los 7 días de tratamiento a T° Ambiente 18 °C

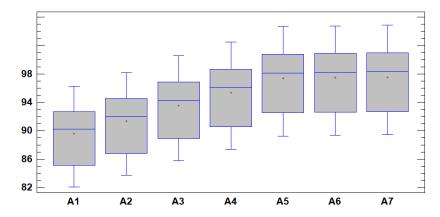


Tabla 2

ANOVA para determinar diferencia significativa en el tratamiento para temperatura

Ambiente (18°C)

Fuente	Suma de Cuadrados	Gl	Cuadrado Medio	Razón-F	Valor-P
Entre grupos	559.061	6	93.1768	3.31	0.0074
Intra grupos	1577.85	56	28.1759		
Total (Corr.)	2136.91	62			

El ANOVA indica que si hay diferencia significativa con p<0.05

En la Tabla 2, al realizar el ANOVA obtenemos como resultado el valor de p=0.0074. Lo que indica que es menor que 0.05, por lo tanto, si existe diferencia entre los pares de medias, para determinar esa diferencia se hizo prueba de Duncan, con nivel de confianza del 95%.

Pruebas de Múltiple Rangos

Método: nivel de confianza de 95 % Duncan

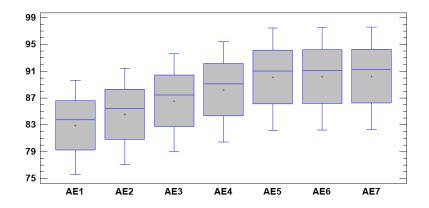
Tabla 3Prueba de múltiples de rangos para diferencia significativas total de reflectancia con nivel de confianza de 95% DUNCAN

Día	Casos	Media	Grupos Homogéneos
A1	9	89.5637	X
A2	9	91.3372	XX
A3	9	93.5541	XXX
A4	9	95.3277	XX
A5	9	97.3672	X
A6	9	97.4559	X
A7	9	97.5446	X

Tabla 4Diferencias de media significativa en el nivel de confianza de 95% para días de tratamiento a T° Ambiente

Contraste	Sig.	Diferencia
A1 - A2		-1.77354
A1 - A3		-3.99046
A1 - A4	*	-5.764
A1 - A5	*	-7.80357
A1 - A6	*	-7.89224
A1 - A7	*	-7.98092
A2 - A3		-2.21692
A2 - A4		-3.99046
A2 - A5	*	-6.03003
A2 - A6	*	-6.11871
A2 - A7	*	-6.20738
A3 - A4		-1.77354
A3 - A5		-3.81311
A3 - A6		-3.90178
A3 - A7		-3.99046
A4 - A5		-2.03957
A4 - A6		-2.12825
A4 - A7		-2.21692
A5 - A6		-0.0886769
A5 - A7		-0.177354
A6 - A7		-0.0886769

^{*} Indica una diferencia significativa en el nivel de confianza del 95 %.


En la Tabla 4, se observa que si existe diferencia significativa en reflectancia para las muestras analizadas durante los siete días. Con un valor promedio de **94.5929143** % siendo este valor la **diferencia total de reflectancia** para las muestras durante los siete días; además en la Tabla 4, se observaron diferencias significativas entre los días: para los días 1 y 4 se halló una diferencia de reflectancia de -5.764; para los días 1 y 5 se halló una diferencia de reflectancia de -7.80357: para los días 1 y 6 se halló una diferencia de reflectancia de -7.89224; para los días 1 y 7 se halló una diferencia de reflectancia de -7.98092; para los días 2 y 5 se halló una diferencia de reflectancia de reflectancia de -6.03003; para los días 2 y 6 se halló una diferencia de reflectancia de -6.20738.

4.5. Ambiente Empacado (AE) 20° C

La Figura 14, la gráfica nos muestra los valores promedios de reflectancia a T° Ambiente empacado, donde vemos claramente que ha ido subiendo la reflectancia al pasar los días de evaluación. Para determinar diferencia significativa se ha hecho una prueba de comparación múltiple (ANOVA) si el valor p<0.05 significa que si existe diferencia. Donde lo podemos apreciar en la Tabla 5.

Figura 14

Promedios de reflectancias en los 7 días de tratamiento a T° Ambiente Empacado (20° C)

Tabla 5ANOVA para determinar diferencia significativa en el tratamiento para temperatura
Ambiente Empacado

Fuente	Suma de Cuadrados	Gl	Cuadrado Medio	Razón-F	Valor-P
Entre grupos	478.691	6	79.7818	3.30	0.0075
Intra grupos	1354.34	56	24.1846		
Total (Corr.)	1833.03	62			

El ANOVA indica que si hay diferencia significativa con p<0.05

En la Tabla 5, al realizar el ANOVA obtenemos como resultado el valor de p = 0.0075. Lo que indica que valor p es menor que 0.05, esto quiere decir que, si existe diferencia entre los pares de medias, para determinar esa diferencia se hizo prueba de Duncan, con nivel de confianza del 95%.

Pruebas de Múltiple Rangos

Método: 95.0 porcentaje Duncan

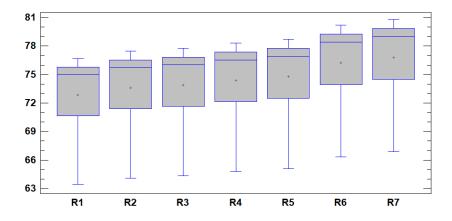
Tabla 6Prueba de múltiples de rangos para diferencia significativas total de reflectancia con nivel de confianza de 95% DUNCAN

Día	Casos	Media	Grupos Homogéneos
AE1	9	82.8762	X
AE2	9	84.5173	XX
AE3	9	86.5687	XXX
AE4	9	88.2098	XX
AE5	9	90.0971	X
AE6	9	90.1792	X
AE7	9	90.2612	X

Tabla 7Diferencias de media significativa en el nivel de confianza de 95% para días de tratamiento a T° Ambiente Empacado

Contraste	Sig.	Diferencia
AE1 - AE2		-1.64111
AE1 - AE3		-3.6925
AE1 - AE4	*	-5.33362
AE1 - AE5	*	-7.2209
AE1 - AE6	*	-7.30295
AE1 - AE7	*	-7.38501
AE2 - AE3		-2.05139
AE2 - AE4		-3.6925
AE2 - AE5	*	-5.57978
AE2 - AE6	*	-5.66184
AE2 - AE7	*	-5.7439
AE3 - AE4		-1.64111
AE3 - AE5		-3.52839
AE3 - AE6		-3.61045
AE3 - AE7		-3.6925
AE4 - AE5		-1.88728
AE4 - AE6		-1.96934
AE4 - AE7		-2.05139
AE5 - AE6		-0.0820557
AE5 - AE7		-0.164111
AE6 - AE7	-4:	-0.0820557

^{*} Indica una diferencia significativa en el nivel de confianza del 95 %.


En la Tabla 7, se observa que si existe diferencia significativa en reflectancia para las muestras analizadas durante los siete días. Con un valor promedio de 87.52992857% siendo este valor la diferencia total de reflectancia para las muestras durante los siete días; además en la tabla 7 se observaron diferencias significativas entre los días: para los días 1 y 4 se halló una diferencia de reflectancia -5.33362; para los días 1 y 5 se halló una diferencia de reflectancia -7.2209: para los días 1 y 6 se halló una diferencia de reflectancia -7.30295; para los días 1 y 7

se halló una diferencia de reflectancia -7.38501; para los días 2 y 5 se halló una diferencia de -5.57978; para los días 2 y 6 se halló una diferencia de reflectancia -5.66184 y para los días 2 y 7 se halló una diferencia de reflectancia -5.7439.

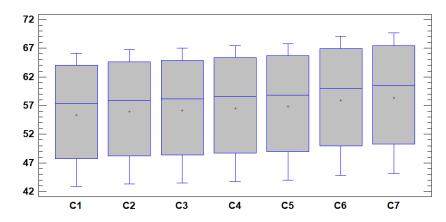
4.6. Refrigeración (R) 12º C

En la Figura 15, la gráfica nos muestra los valores promedios de reflectancia a T° de Refrigeración, donde vemos claramente que, la reflectancia si ha ido subiendo al pasar los días de evaluación. Para determinar diferencia significativa se ha hecho una prueba de comparación múltiple (ANOVA) si el valor p>0.05 significa que no existe diferencia. Donde lo podemos apreciar en la Tabla 8.

Figura 15Promedios de reflectancias en los 7 días de tratamiento a T° Refrigeración 12 °C

Tabla 8ANOVA para determinar diferencia significativa en el tratamiento para temperatura Refrigeración

Fuente	Suma de Cuadrados	Gl	Cuadrado Medio	Razón-F	Valor-P
Entre grupos	107.514	6	17.9189	0.92	0.4843
Intra grupos	1084.94	56	19.3739		
Total (Corr.)	1192.45	62			


El ANOVA indica que no hay diferencia significativa con p>0.05

En la Tabla 8, al realizar el ANOVA obtenemos como resultado el valor de p>0.05. Lo que indica que, no existe diferencia entre los pares de medias.

4.7. Congelación (C) -2 °C

La Figura 16 la gráfica nos muestra los valores promedios de reflectancia a T° de Congelación (C), donde vemos claramente que no existe diferencia significativa en las medias de reflectancia durante los días de evaluación. Para determinar diferencia significativa se ha hecho una prueba de comparación múltiple (ANOVA) si el valor p<0.05 significa que si existe diferencia significativa. Donde lo podemos apreciar en la Tabla 9.

Figura 16Promedios de reflectancias en los 7 días de tratamiento a T° Congelación (-2 °C)

Tabla 9ANOVA para determinar diferencia significativa en el tratamiento para temperatura

Congelación

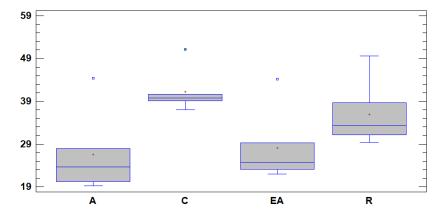
Fuente	Suma de Cuadrados	Gl	Cuadrado Medio	Razón-F	Valor-P
Entre grupos	62.0879	6	10.348	0.12	0.9937
Intra grupos	4875.48	56	87.0622		
Total (Corr.)	4937.57	62			

El ANOVA indica que no hay diferencia significativa con p>0.05

En la Tabla 9, al realizar el ANOVA obtenemos como resultado el valor de p>0.05. Lo que indica que, no existe diferencia entre los pares de medias.

4.8. Tratamientos de Temperatura Ambiente, Ambiente Empacado, Refrigeración y Congelación

De los resultados obtenidos en la región del espectro electromagnético 650 a 850 nm, se observó diferencia significativa para los tratamientos de Temperatura A y AE, mientras que en los tratamientos de (R) y (C) no mostraron diferencia significativa en los valores de reflectancia tomados diariamente; asimismo, las muestras sometidas a tratamientos de almacenamiento a temperatura ambiente y ambiente empacado, se observó diferencia significativa de reflectancia a partir del día 4 en ambos casos (Tabla 8 y Tabla 9); además, se observa en las Figuras 15 y 16 que a partir del día cinco la medida de reflectancia óptica de las muestras almacenadas en ambiente y ambiente empacado se mantuvieron constante hasta terminar con las pruebas en el día siete.


Por otro lado, las muestras almacenadas en refrigeración y congelación no presentaron cambios significativos a nivel de reflectancia óptica esto se debería posiblemente a lo mencionado por (López Camelo, 2003) este autor menciona que el control de la temperatura es una de las herramientas principales para reducir el deterioro postcosecha, de esta manera, se reduce el ritmo respiratorio, conservando las reservas que son consumidas en este proceso, se retarda la maduración y se minimiza el déficit de las presiones de vapor entre el producto y el medio ambiente, disminuyendo la deshidratación, los cambios de color y otros cambios fisicoquímicos; en tanto que (Lacruz, 2015) menciona que los frijoles de chachafruto (*Erytrhina edulis*) no se conservan bien a temperatura ambiente, es necesario refrigerarlas, así se conservan sin oxidarse, aproximadamente de 8 a 10 días.

4.8.1.1.Cambios de Color (L*).

La Figura 17, la gráfica nos muestra las medias de los promedios de luminosidad para los cuatro tratamientos en los siete días de evaluación, estos datos fueron medidos con un

colorímetro CR-400. Determinando valores de: luminosidad (L*). Mediante un Análisis ANOVA a continuación, se detalla:

Figura 17Cambios de color L*, promedios de luminosidad para los cuatro tratamientos.

Para determinar si existe diferencia significativa en los cambios de Color en L* entre tratamientos de temperatura durante el periodo de evaluación, se ha hecho una prueba de análisis de varianza (ANOVA); si el valor p<0.05 significa que si existe diferencia significativa.

Tabla 10

ANOVA Diferencia significativa en L*

Fuente	Suma de Cuadrados	Gl	Cuadrado Medio	Razón-F	Valor-P
Entre grupos	862.997	3	287.666	4.88	0.0105
Intra grupos	1178.84	20	58.9422		
Total (Corr.)	2041.84	23			

El ANOVA muestra que, si existe diferencia significativa en L* para los 7 días de tratamiento, entre las cuatro muestras obteniendo como resultado el valor de p = 0.0105. En la Tabla 10 al realizar el ANOVA obtenemos como resultados el valor de p < 0.05. Lo cual indica que, si existe diferencia entre los pares de medias, para determinar esa diferencia se realizó la prueba de Múltiple rangos.

Pruebas de Múltiple Rangos Tabla 11

Prueba de múltiples rangos para luminosidad (L^*), confianza 95%.

T°	Casos	Media	Grupos Homogéneos
A	6	26.4928	X
AE	6	28.0333	X
R	6	35.9533	XX
C	6	41.2533	X

Tabla 12Prueba de múltiples rangos para luminosidad (L^*), Diferencia significativa con confianza 95%.

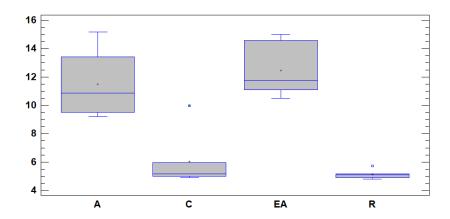
Contraste	Sig.	Diferencia
A – C	*	-14.7605
11 0		
A - AE		-1.5405
A - R		-9.4605
C - EA	*	13.22
C - R		5.3
AE - R		-7.92

^{*} indica una diferencia significativa para L* para las T° de evaluación.

En la Tabla 12 se aprecia diferencia significativa entre los siguientes pares de medias para luminosidad; se halló diferencia significativa de $L^* = -14.7605$ entre T° Ambiente y T° Congelación, también se halló diferenciación significativa con valor entre $L^* = 13.22$ entre T° Congelación y T° Ambiente Empacado.

En la Figura 17 se representa el parámetro de L* el cual va de 0 a 100 en este caso los granos de pajuro (*Erytrhina edulis*) sometidas a tratamiento de temperatura (A) y (AE) bajaron gradualmente su luminosidad a lo largo de los siete días de evaluación; la muestra sometida a temperatura ambiente se volvió más opaca que la muestra en temperatura ambiente empacado; por otro lado, las muestras almacenadas a temperatura de refrigeración y congelación no sufrieron cambios significativos en torno a la luminosidad.

La Figura 17 muestra los valores promedio de luminosidad (*L) de los siete días para los cuatro tratamientos de temperatura representado mediante gráfica de cajas y bigotes donde se aprecia que las muestras almacenadas a temperatura (A) y (AE) se volvieron más oscuras; mientras que la muestra almacenada en congelación no presentó cambios significativos de luminosidad; además, la muestra almacenada en refrigeración sufrió mínimo cambio de luminosidad volviéndose un poco más oscura. También se observa en la Figura 16 que el valor mínimo de luminosidad para la temperatura ambiente (A) fue de L*=19 y para la muestra almacenada a temperatura ambiente empacado (AE) fue de L*=23 estos datos concuerdan con los descritos por (Muñoz, Victoria, & Rodríguez, 2014) para cáscara de grano de pajuro (Erythrina edulis) obteniendo como valor L*=22.44 ±2.03 en granos de pajuro (Erythrina edulis) almacenadas a temperatura ambiente; mientras (Delgado Soriano, Cortés Avendaño, Guevara Pérez, & Vílchez Perales, 2020) encontraron L*=27.26 ±1.02 en cáscara de granos maduros de pajuro (Erythrina edulis).


Los cambios significativos de luminosidad entre tratamientos de temperatura A-C y C-AE (Tabla 12) estarían relacionados con el proceso fisiológico de maduración según (Huarcaya Miraya, 2018) quien menciona que las granos de pajuro (*Erytrhina edulis*) cambian de marrón claro cuando están frescas a marrón oscuras cuando están maduras, o negras ligeramente rugosas cuando están secas; de igual forma (Lacruz, 2015) dice que la testa (epidermis) de los frijoles de chachafruto (*Erytrhina edulis*) según el proceso de maduración, va de un rosado hasta un tono marrón o colorado oscuro. Del mismo modo (López Camelo, 2003) indica que el control de la temperatura es una de las herramientas principales para reducir el deterioro postcosecha: las bajas temperaturas disminuyen la actividad de las enzimas y microorganismos responsables del deterioro de los productos perecederos. De esta manera, se reduce el ritmo respiratorio, conservando las reservas que son consumidas en este proceso, se retarda la maduración y se minimiza el déficit de las presiones de vapor entre el producto y el medio

ambiente, disminuyendo la deshidratación, los cambios de color y otros cambios fisicoquímicos.

4.8.1.2. Cambios de Color (a*).

La Figura 18, la gráfica nos Muestra las medias de los promedios de Enrojecimiento (a*) para los cuatro tratamientos en los siete de evaluación, estos datos fueron medidos con un colorímetro CR-400. Determinando valores de: luminosidad (L*), enrojecimiento (a*) y amarillez (b*). Mediante un Análisis ANOVA a continuación, se detallan cada una de las coordenadas:

Figura 18Cambios de color a*

En la Figura 18 se muestra el diagrama de cajas de los valores de enrojecimiento (*a) de los siete días para los cuatro tratamientos de temperatura, donde los valores más altos de luminosidad corresponden a los tratamientos de almacenamiento a temperatura (A-AE), mientras que los valores de las cajas más bajas corresponden a los tratamientos de frío (C-R), los que no sufrieron cambios significativos en a*.

Para determinar si existe diferencia significativa en los cambios de Color en a * entre tratamientos de temperatura durante el periodo de evaluación, se ha hecho una prueba de comparación múltiple (ANOVA); si el valor p < 0.05 significa que si existe diferencia significativa.

Tabla 13 *ANOVA de Cambios de color a**

Fuente	Suma de Cuadrados	Gl	Cuadrado Medio	Razón-F	Valor-P
Entre grupos	250.862	3	83.6205	25.13	0.0000
Intra grupos	66.5479	20	3.3274		
Total (Corr.)	317.41	23			

La Tabla ANOVA indica que si existe diferencia estadística significativa con p <0.05.

En la Tabla 13 se muestra que se encontró diferencia en color en la coordenada de enrojecimiento (a*) para las diferentes muestras de granos de pajuro, esto se debe a los diferentes tratamientos que fueron sometidas nuestras muestras, es decir todas tuvieron un color rojo característico de los granos de pajuro por lo cual se muestra cierta diferencia significativa por cada tratamiento.

Pruebas de Múltiple Rangos

Tabla 14Pruebas múltiple rango en enrojecimiento a*, método de DUNCAN, 95%

	Casos	Media	Grupos Homogéneos
R	6	5.12667	X
C	6	6.02	X
A	6	11.4983	X
EA	6	12.4483	X

Tabla 15Diferencia significativa en enrojecimiento a*

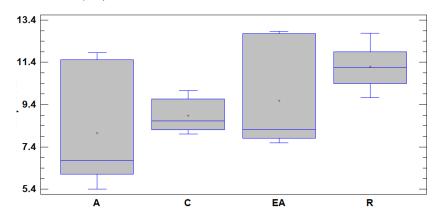
Contraste	Sig.	Diferencia
A – C	*	5.47833
A - AE		-0.95
A - R	*	6.37167
C - EA	*	-6.42833
C - R		0.893333
EA - R	*	7.32167

^{*} indica una diferencia significativa para a* en las T° de evaluación.

En la Tabla 15 se representan las medias para enrojecimiento con diferenciación significativa donde el valor de a* = 5.47833, siendo este valor correspondiente a una T° Ambiente y T° Congelación; con diferenciación significativa donde el valor de a* = 6.37167, siendo este valor correspondiente a una T° Congelación y T° Refrigeración; con diferenciación significativa donde el valor de a* = -6.42833, siendo este valor correspondiente a una T° Congelación y T° Ambiente Empacado y con diferenciación significativa donde el valor de a* = 7.32167, siendo este valor correspondiente a una T° Ambiente Empacado y T° refrigeración.

En la figura 18 se representa las coordenadas de enrojecimiento a* este caso las granos de pajuro (*Erytrhina edulis*) sometidas a tratamiento de temperatura ambiente y ambiente empacado subieron gradualmente su enrojecimiento a lo largo de los siete días de evaluación; de la misma forma la muestra sometida a temperatura ambiente se volvió más roja que la muestra en temperatura ambiente empacado; por otro lado, las muestras almacenadas a temperatura de refrigeración y congelación no sufrieron cambios significativos en torno al enrojecimiento.

La Figura 18 muestra los valores promedio de enrojecimiento (a*) de los siete días para los cuatro tratamientos de temperatura representado mediante gráfica de cajas y bigotes donde se aprecia que las muestras almacenadas a temperatura ambiente y ambiente empacado tomaron colores de tonos rojizos durante el transcurso los días de evaluación; mientras que la muestras almacenada en congelación no presentó cambios significativos de enrojecimiento; además, las muestras almacenadas en refrigeración y congelación sufrieron cambios significativos de enrojecimiento permaneciendo del color característico de granos frescas; esto debido por los métodos de frío de almacenamiento que retrasan el proceso fisiológico de maduración como se explicó anteriormente. También se aprecia en la Figura 17 que el valor mínimo de enrojecimiento durante los siete días de estudio para los granos almacenados a temperatura ambiente (A) fue de a*= 15.3 y para a muestra almacenada a temperatura ambiente


empacado (AE) fue de a*= 14.8; además la grano almacenada en condiciones de refrigeración presentó el nivel de enrojecimiento de a*= 4.8, mientras que el grano almacenado en congelación mostró a*= 4.7 de nivel de enrojecimiento demostrando que los granos almacenadas en condiciones de frío no cambiaron su color; estos valores son similares con los descritos por (Muñoz, Victoria, & Rodríguez, 2014) para cáscara de grano de pajuro (*Erythrina edulis*); mientras (Delgado Soriano, Cortés Avendaño, Guevara Pérez, & Vílchez Perales, 2020) encontraron a*= 8,60 ± 1,37 en cáscara de granos maduros de pajuro (*Erythrina edulis*).

Los cambios significativos de enrojecimiento (a*) entre tratamientos de temperatura A-C, A – R, C-AE y EA – R (Tabla 15) estarían relacionados con el proceso fisiológico de maduración; según (Delgado Soriano, Cortés Avendaño, Guevara Pérez, & Vílchez Perales, 2020) los valores positivos de a* indican la presencia de tonos marrones y guindas, característicos en granos maduras; los tonos negativos o más cercanos a cero de a* indican enverdeciendo lo que concuerda con los tratamientos de refrigeración y congelación que por el proceso de almacenamiento en frío maduraban lentamente (Figura 18). Del mismo modo (López Camelo, 2003) indica que el control de la temperatura es una de las herramientas principales para reducir el deterioro postcosecha: las bajas temperaturas disminuyen la actividad de las enzimas y microorganismos responsables del deterioro de los productos perecederos. De esta manera, se reduce el ritmo respiratorio, conservando las reservas que son consumidas en este proceso, se retarda la maduración y se minimiza el déficit de las presiones de vapor entre el producto y el medio ambiente, disminuyendo la deshidratación, los cambios de color y otros cambios fisicoquímicos.

4.8.1.3.Cambios de Color (b*).

La Figura 19, la gráfica nos Muestra las medias de los promedios de amarillez (b*) para los cuatro tratamientos en los siete de evaluación, estos datos fueron medidos con un colorímetro CR-400. Determinando valores de: luminosidad (L*), enrojecimiento (a*) y amarillez (b*). Mediante un Análisis ANOVA a continuación, se detallan cada una de las coordenadas:

Figura 19
Resultados de amarillez (b*)

Para determinar si existe diferencia significativa en los cambios de Color en b^* entre tratamientos de temperatura durante el periodo de evaluación, se ha hecho una prueba de comparación múltiple (ANOVA); si el valor p < 0.05 significa que si existe diferencia significativa.

Tabla 16Resultados ANOVA para amarillez (b*)

Fuente	Suma de Cuadrados	Gl	Cuadrado Medio	Razón-F	Valor-P
Entre grupos	32.0106	3	10.6702	2.56	0.0836
Intra grupos	83.2936	20	4.16468		
Total (Corr.)	115.304	23			

El ANOVA indica que no hay diferencia significativa con (f= 2.56; p > 0.05)

En la Tabla 16, al realizar el ANOVA obtenemos como resultado valor p=0.0836, indicando que es mayor que valor de p<0.05. Lo que demuestra que no existe diferencia significativa entre los pares de medias de reflectancia tomados diariamente.

La figura 19 muestra los valores promedio de amarillez (b*) de los siete días para los cuatro tratamientos de temperatura representado mediante gráfica de cajas y bigotes donde se observa que el valor mínimo de amarillez para la temperatura ambiente (A) fue de b*=5.4 y para la muestra almacenada a temperatura ambiente empacado (AE) fue de b*=7.5; además, para la grano almacenada a temperatura de congelación (C) es de b*=8.1 y para temperatura de refrigeración (R) es de b*=9.8; estos datos similares con los descritos por (Muñoz, Victoria, & Rodríguez, 2014) para cáscara de grano de pajuro (*Erythrina edulis*) obteniendo como valor b*= 6.85±2.56 en granos de pajuro (*Erythrina edulis*) frescas almacenadas a temperatura ambiente; mientras (Delgado Soriano, Cortés Avendaño, Guevara Pérez, & Vílchez Perales, 2020) encontraron b*= 4,81 ± 1,26 en cáscara de granos maduros de pajuro (*Erythrina edulis*). En la figura 18 se muestra que no se encontró diferencia significativa en color en la coordenada de amarilles (b*) para las diferentes muestras de granos de pajuro analizadas, esto es probablemente por el color característico de la cubierta o testa del grano es de color rojo oscuro según (Acero Duarte, 2002).

V. CONCLUSIONES

- El presente estudio investigo el efecto del tiempo de almacenamiento y la temperatura en las características del perfil del color CIELAB e Imágenes Multiespectrales del pajuro (Erythrina edulis) en la zona de Cajabamba, se obtuvo datos significativos que proporcionan una compresión más detallada de como el tiempo de almacenamiento y la temperatura afectan las propiedades físicas (color) y espectrales del pajuro; de los resultados del análisis del perfil de color CIELAB, nos arroja que hay una diferencia significativa en Lab* y los tratamientos de Refrigeración y Congelación no tuvieron cambios durante los días de evaluación, mientras los granos almacenados a temperatura de ambiente y ambiente empacado si cambiaron su luminosidad volviéndose más oscuras (temperatura ambiente (A) fue de L*=19 y para la muestra almacenada a temperatura ambiente empacado (AE) fue de L*=23), los granos almacenados a temperatura (A) fue de a*= 15.3nivel de enrojecimiento y (AE) fue de a*= 14.8 nivel de enrojecimiento; además los granos almacenados en condiciones de refrigeración presentó el nivel de enrojecimiento de a*= 4.8, mientras que el grano almacenada en congelación mostró a*= 4.7 de nivel de enrojecimiento; demostrando que los granos almacenadas en condiciones de frío no cambiaron su color; estos valores son similares con los descritos por (Muñoz, Victoria, & Rodríguez, 2014) para cáscara de grano de pajuro obteniendo como valor a*=5.43±2.95 en granos frescos de pajuro; mientras (Delgado Soriano, Cortés Avendaño, Guevara Pérez, & Vílchez Perales, 2020) encontraron $a^* = 8,60 \pm 1,37$ en cáscara de granos maduros de pajuro (*Erythrina edulis*), esto se debe al método de almacenamiento en frío retrasa el proceso fisiológico de maduración.
- Asimismo, el análisis de las imágenes multiespectrales proporcionó información que complementa la respuesta espectral del pajuro en diferentes condiciones ambientales.

Se observo cambios en los perfiles espectrales de las muestras almacenadas a diversas temperaturas, lo que indica una influencia directa de la temperatura en la reflectancia de la luz en diferentes longitudes de onda que se encuentran en la zona con mayor nivel de discriminación de 650 a 850 nm. Estos resultados obtenidos sugieren que el tiempo de almacenamiento y la temperatura son factores críticos que pueden afectar la calidad y la apariencia del pajuro. Por lo tanto, es importante tener en cuenta y considerar estrategias de almacenamiento adecuadas y controlar la temperatura para preservar las características del perfil de color CIELAB e Imágenes multiespectrales del pajuro (*Erythrina edulis*) en la zona de Cajabamba.

VI. RECOMENDACIONES

- Controlar el Almacenamiento y en especial la Temperatura a la que se almacena el Pajuro, siendo esta quien afecta significativamente el perfil de color CIELAB e imágenes multiespectrales. Priorizar los métodos de refrigeración y congelación para preservar la luminosidad y el color del pajuro, minimizando así los cambios observados en las muestras almacenadas a temperatura ambiente y ambiente empacado, donde se notó un cambio significativo en reflectancia haciendo uso del sistema CIELAB e Imágenes Multiespectrales.
- Realizar estudios para determinar el color no solo en pajuro en grano, sino también en
 el pajuro en vaina usando el sistema CIELab* de color y el sistema de Imágenes
 multiespectrales, para brindar un rango de clasificación en color y la temperatura más
 pertinente en el almacenamiento de pajuros, siendo un atractivo muy importante el color
 del pajuro.

VII. BIBLIOGRAFÍA

- Acero Duarte, L. E. (2002). *Guía para el cultivo y aprovechamiento del Chachafruto o Balú Erythrina edulis Triana ex Micheli*. Obtenido de http://hdl.handle.net/20.500.12324/11621.
- Arango Bedoya, O., Bolaños Patiño, V., Ricaurte García, D., Caicedo, M., & Guerrero, Y. (2012). Obtención de un extracto proteico a partir de harina de chachafruto (Erythrina edulis). *Universidad y salud.*, 14(2), 161 167. doi:http://www.scielo.org.co/pdf/reus/v14n2/v14n2a06.pdf
- Báez, P. (2011). Chachafruto el árbol del hombre.
- Barreto, N. M. (1999). Biología floral y fenología del chachafruto.
- Cárdenas, S. E. (2012). El Pajuro (Erythrina edulis) alimento andino en extinción.

 Investigaciones

 Sociales,**

 16(28).

 doi:https://revistasinvestigacion.unmsm.edu.pe/index.php/sociales/article/view/7389
- CARVAJAL HERRERA, J. J., ARISTIZABAL TORRES, I. D., & OLIVEROS TASCON, C. E. (2011). Colorimetría del Fruto de Café (Coffea arabica L.) Durante su Desarrollo y Maduración. *SciELO Scientific Electronic Library Online*, 64(2).
- Changhong, L., Wei, L., Xuzhong, L., Fei, M., Wei, C., Jianbo, Y., & Lei, Z. (2014).

 Application of Multispectral Imaging to Determine Quality Attributes and Ripeness

 Stage in Strawberry Fruit. *PubMed*, 9(2). doi:10.1371/journal.pone.0087818
- Curran, P. D. (2001). Estimating the foliar biochemical concentration of leaves with reflectance spectrometry: Testing the Kokaly and Clark methodologies. *ELSEVIER*, 349-359.
- Delgado Soriano, V., Cortés Avendaño, P., Guevara Pérez, A., & Vílchez Perales, C. (25 de Junio de 2020). Características físico-químicas de las semillas de pajuro (Erythrina edulis Triana) y propiedades funcionales después de la extrusión. *Revista de*

- Investigaciones Altoandinas, 22(3), 263-273. doi:http://www.scielo.org.pe/pdf/ria/v22n3/2313-2957-ria-22-03-263.pdf
- ElMasry, G., & Sun, D. W. (2010). Principles of hyperspectral imaging technology. En D. W. Sun (Ed.), Hyperspectral imaging for food quality analysis and control. *Elsevier*, 3-43. Obtenido de https://doi.org/10.1016/B978-0-12-374753-2.10001-2
- Escamilo Cárdenas, S. (2012). El Pajuro (Erythrina edulis) alimento andino en extinción.

 *Investigaciones Sociales, 16(28), 16-20. doi:https://doi.org/10.15381/is.v16i28.7389
- Fernando, D., & Yepes, M. (2019). GÉNERO Erythrina: ACTUALIDAD EN LA INVESTIGACIÓN Y PERSPECTIVAS DE DESARROLLO CIENTÍFICO.
- Hashim, N., Onwude, D. I., & Syafiq Osman, M. (2018). Evaluation of Chilling Injury in Mangoes Using Multispectral Imaging. *Journal of food science*, 83(5), 1271-1279. doi:10.1111/1750-3841.14127
- Huarcaya Miraya, M. G. (2018). LAS HOJAS Y FRUTOS DEL ANTIPOROTO (Erythrina edulis) EN LA ALIMENTACION ANIMAL EN KERAPATA TAMBURCO ABANCAY.

 Apurimac.
- Hurtado Aramburo, E. A., & Arroyo Figueroa, G. (11 de 01 de 2017). TEÑIDO DE FIBAS NATURALES CON COLORANTES NATURALES. 2(1), 1134–1138. Obtenido de https://www.jovenesenlaciencia.ugto.mx/index.php/jovenesenlaciencia/article/view/1 189
- Inciarte, I., Mariella, M., Paez Rondon, O., Sandoval, C., & Otalora Luna, F. (12 de Febrero de 2015). Presencia del chachafruto (Erythrina edulis Triana ex Micheli) en el estado Merida, Venezuela. *Electronica Conocimiento Libre y Licenciamiento (CLIC)*, 140 153.

- Lacruz, J. D. (9 de Julio de 2015). *Chachafruto (Erythrina edulis)*. Obtenido de https://esnobgourmet.com/: https://esnobgourmet.com/2015/07/09/chachafruto-erythrina-edulis/
- López Camelo, A. F. (2003). *Manual Para la Preparación y Venta de Frutas y Hortalizas*.

 Balcarce: BOLETÍN DE SERVICIOS AGRÍCOLAS DE LA FAO 151.
- Manjunatha, & Patki, M. y. (15 de Mayo de 2019). Modelling the kinetics of mass transfer and change in colour during deep fat frying of green peas (Pisum sativum L.) at different frying temperatures. *SpringerEnlace*. doi:https://doi.org/10.1007/s00231-019-02637-7
- Marchante Rodríguez, V., Chorro, E. P., & E., V. P. (31 de Enero de 2011). Presentaciones de Ciencia del Color. Ciencia del Color:. *Repositorio Institucional de la Universidad de Alicante*. Obtenido de http://hdl.handle.net/10045/16117
- Meléndez Martínez, A. J., Vicario, I. M., & Heredia, F. J. (1 de Febero de 2005). Instrumental measurement of orange juice colour: A review. Journal of the Science of Food and Agriculture. *Copyright* © 2005 Sociedad de la Industria Química. Obtenido de https://doi.org/10.1002/jsfa.2115
- Mihailova, A., Liebisch, B., Islam, M. D., Carstensen, J. M., & Cannavan, A. &. (2022). The use of multispectral imaging for the discrimination of Arabica and Robusta coffee beans. *ELSEVIER*, 7. Obtenido de https://doi.org/10.1016/j.fochx.2022.100325
- Muñoz, K., Victoria, J., & Rodríguez, P. (January de 2014). Physics characterization of chachafruto's seeds (Erythrina edulis T). *Acta Agronomica*, 67(2), 551-552. doi:https://www.researchgate.net/publication/312041257_Physics_characterization_of _chachafrutos_seeds_Erythrina_edulis_T
- Ortega, J. G., Lucio, A. V., Ganchozo, B. I., Piguave, C. C., Tumbaco, M. V., Cobeña, J. A., & Velásquez, R. V. (2017). *DISEÑOS EXPERIMENTALES: Teoría y práctica para experimentos agropecuarios*. Guayaquil: Editorial Grupo Compás.

- Otles, S. (2008). *Handbook of food analysis instruments*.
- Paschotta, R. (2008). *RP Photonics Encyclopedia*. Frauenfeld, Suisa. Recuperado el 2023, de https://www.rp-photonics.com/multispectral_imaging.html
- Pérez, M. M., & Paucar Menacho, L. (2003; 2013). Caracterización colorimétrica y clasificación del aceite de oliva virgen de la cuenca mediterránea hispano-marroquí; Guía de práctica de tecnología de aceites y grasas. doi:10.3989/gya.2003.v54.i4.226
- Richards, J. A., & Jia, X. (2006). *Remote Sensing Digital Image Analysis: An Introduction*. Berlin, Alemania: Springer.
- Salehi, F. (1 de Abril de 2019). Color changes kinetics during deep fat frying of kohlrabi (Brassica oleracea var. gongylodes) slice. Revista Internacional de Propiedades de los Alimentos. / International Journal of Food Properties, 22(1), 511- 519. doi:10.1080/10942912.2019.1593616
- Sánchez, B. (2014). Microinjertación in vitro DE Erythrina edulis M. Familia.
- Santos Spi, P. (2009). Medición del color.
- Serpil, S., & Servet Gülüm, S. (24 de mayo de 2006). *Physical Properties of foods*. estados Unidos: Springer. doi:https://doi.org/10.1007/0-387-30808-3
- SERPIL, S., & SERVET GULUM, S. (2009). Propiedades físicas de los alimentos. *Editorial Acribia, S.A., 1,* 316.
- SIG, Geografía. (Junio de 2019). Obtenido de SIG, Geografía: https://gisgeography.com/multispectral-vs-hyperspectral-imagery-explained/
- Talens Oliag, P. (2018). Evaluación del color y tolerancia de.
- Wu, D., & Sun, D. W. (2013). Advanced applications of hyperspectral imaging technology for food quality and safety analysis and assessment: A review—Part I:Fundamentals.
 Innovative Food Science & Emerging Technologies. Innovative Food Science and Emerging Technologies (IFSET) Ciencia de los alimentos innovadora y tecnologías

emergentes. Federación Europea de Ciencia y Tecnología de los Alimentos (EFFoST), 19, 1-14. Obtenido de https://doi.org/10.1016/j.ifset.2013.04.014

ANEXOS

Anexo 1: Cámara Tetracam

Anexo 2: Cámara multiespectral, en el laboratorio de la UNC Cajamarca

Anexo 3. Granos de pajuro

Anexo 4: Marcando las muestras de granos de pajuro.

Anexo 5: Muestras de granos de Pajuro

Anexo 6: Revisando la correcta iluminacion de la camara multiespectral.

Anexo 7: Tomando fotos a las muestras de Pajuro en frejol.

Anexo 8: Muestras en los 4 tratamientos

Anexo 9: Tabla de Reflectancia para los cuatro tratamientos del día 1

Longitud de onda (nm)	Ambiente	Ambiente empaque	Refrigeración	Congelación
495	29.5575692	32.8028103	31.3669545	22.9594863
505	30.4321282	33.805811	31.40103405	20.8577499
515	30.3126048	33.8369897	31.3478193	19.65781005
530	30.3701142	33.879844	31.839807	20.01683625
540	31.0419561	34.5863087	32.94053325	21.27646305
570	32.2982547	36.4086012	34.2793239	20.75977245
580	30.5990307	34.7508882	32.5316088	17.6363028
590	31.0293008	35.3432027	32.8490883	16.88304525
600	30.8600349	35.2959852	32.38135125	14.84283495
615	30.9816692	35.3357287	31.49636835	11.9984739
625	29.3759207	33.4685215	29.60787285	8.76616275
675	47.4921089	43.7785914	29.61526965	29.26520805
690	82.1066168	75.5828349	63.4491876	50.0709693
715	96.2613729	86.775867	72.97326105	44.7904179
730	89.5393482	81.715666	69.75736155	42.88000335
740	90.2409649	83.750513	70.6824741	47.7448566
755	95.6866324	89.6366011	75.7720152	57.35734995
770	92.7009512	86.5995614	76.1455134	60.705417
780	90.5874757	84.8247692	76.6931982	64.00787715
790	85.0975904	79.2424083	74.97166335	64.72253265
800	83.8521089	77.7577386	75.3696333	66.0912321
820	80.7085142	75.3330821	75.78866805	69.2369424
835	68.4131075	63.9527758	70.5749592	65.44548945
845	56.7094093	52.3523097	65.5365123	61.1504511
855	48.448488	44.0264353	62.1962139	58.6150974
865	39.4417827	34.2977719	58.89916065	56.39462025
875	29.1633258	24.5839454	54.6059916	53.53370685
885	29.7952121	25.3172761	54.3456966	53.6314029
895	38.1322268	33.2359084	58.78414845	57.96187755
910	53.0856606	48.6190568	66.49281	64.45116255
915	53.661401	49.5004838	66.2570571	63.9891741
925	49.1371969	45.8341636	63.7802145	61.96867185
930	40.852278	38.1000785	59.73250665	58.4779752
940	33.6672592	31.552198	56.6003337	55.88659275
945	23.6537556	22.4769844	48.8673009	48.23124645

Anexo 10: Tabla de Reflectancia para los cuatro tratamientos del día 2

Longitud de onda (nm)	Ambiente	Ambiente empaque	Refrigeración	Congelación
495	29.5575692	32.8028103	31.3669545	22.9594863
505	30.4321282	33.805811	31.40103405	20.8577499
515	30.3126048	33.8369897	31.3478193	19.65781005
530	30.3701142	33.879844	31.839807	20.01683625
540	31.0419561	34.5863087	32.94053325	21.27646305
570	32.2982547	36.4086012	34.2793239	20.75977245
580	30.5990307	34.7508882	32.5316088	17.6363028
590	31.0293008	35.3432027	32.8490883	16.88304525
600	30.8600349	35.2959852	32.38135125	14.84283495
615	30.9816692	35.3357287	31.49636835	11.9984739
625	29.3759207	33.4685215	29.60787285	8.76616275
675	47.4921089	43.7785914	29.61526965	29.26520805
690	82.1066168	75.5828349	63.4491876	50.0709693
715	96.2613729	86.775867	72.97326105	44.7904179
730	89.5393482	81.715666	69.75736155	42.88000335
740	90.2409649	83.750513	70.6824741	47.7448566
755	95.6866324	89.6366011	75.7720152	57.35734995
770	92.7009512	86.5995614	76.1455134	60.705417
780	90.5874757	84.8247692	76.6931982	64.00787715
790	85.0975904	79.2424083	74.97166335	64.72253265
800	83.8521089	77.7577386	75.3696333	66.0912321
820	80.7085142	75.3330821	75.78866805	69.2369424
835	68.4131075	63.9527758	70.5749592	65.44548945
845	56.7094093	52.3523097	65.5365123	61.1504511
855	48.448488	44.0264353	62.1962139	58.6150974
865	39.4417827	34.2977719	58.89916065	56.39462025
875	29.1633258	24.5839454	54.6059916	53.53370685
885	29.7952121	25.3172761	54.3456966	53.6314029
895	38.1322268	33.2359084	58.78414845	57.96187755
910	53.0856606	48.6190568	66.49281	64.45116255
915	53.661401	49.5004838	66.2570571	63.9891741
925	49.1371969	45.8341636	63.7802145	61.96867185
930	40.852278	38.1000785	59.73250665	58.4779752
940	33.6672592	31.552198	56.6003337	55.88659275
945	23.6537556	22.4769844	48.8673009	48.23124645

Anexo 11: Tabla de Reflectancia para los cuatro tratamientos del día 3

Longitud de onda (nm)	Ambiente	Ambiente empaque	Refrigeración	Congelación
495	30.2891922	33.61476105	31.8663289	23.32501046
505	31.1853987	34.6425885	31.90095101	21.18981358
515	31.0629168	34.67453895	31.84688906	19.97077021
530	31.1218497	34.718454	32.3467094	20.33551225
540	31.81032135	35.44240545	33.46495965	21.61519281
570	33.09771645	37.3098042	34.82506438	21.09027629
580	31.35643245	35.6110587	33.04952496	17.91707976
590	31.7973528	36.21803445	33.37205886	17.15183005
600	31.62389715	36.1696482	32.89687525	15.07913879
615	31.7485422	36.21037545	31.99780307	12.18949438
625	30.10304745	34.29695025	30.07924197	8.90572355
675	48.66765615	44.8622199	30.08675653	29.73112181
690	84.1389588	77.45369715	64.45932392	50.86811906
715	98.64408015	88.9237845	74.13502441	45.50349918
730	91.7556687	83.738331	70.86792651	43.56267007
740	92.47465215	85.8235455	71.80776722	48.50497372
755	98.0551134	91.85532885	76.97833584	58.27050179
770	94.9955292	88.7431149	77.35778028	61.6718714
780	92.82973995	86.9243922	77.91418444	65.02690803
790	87.2039664	81.20385405	76.16524207	65.75294113
800	85.92765615	79.6824351	76.56954786	67.14343082
820	82.7062497	77.19776235	76.99525381	70.33922208
835	70.10650125	65.5357653	71.69854064	66.48740769
845	58.11310755	53.64815895	66.57987966	62.12399062
855	49.647708	45.11619855	63.18640238	59.54827308
865	40.41806445	35.14672665	59.83685873	57.29244505
875	29.8851903	25.1924589	55.47534072	54.38598477
885	30.53271735	25.94394135	55.21090172	54.48523618
895	39.0760938	34.0585794	59.72001549	58.88465371
910	54.3996621	49.8224988	67.551402	65.47725071
915	54.9896535	50.7257433	67.31189582	65.00790722
925	50.35346415	46.9686726	64.7956209	62.95523777
930	41.863473	39.04314975	60.68347193	59.40896784
940	34.5006072	32.333193	57.50143354	56.77632955
945	24.2392446	23.0333454	49.64528778	48.99910709

Anexo 12: Tabla de Reflectancia para los cuatro tratamientos del día 4

Longitud de onda (nm)	Ambiente	Ambiente empaque	Refrigeración	Congelación
495	30.5818414	33.93954135	32.01614122	23.43466771
505	31.4867069	34.9772995	32.0509261	21.28943268
515	31.3630416	35.00955865	31.99660999	20.06465826
530	31.4225439	35.053898	32.49878012	20.43111505
540	32.11766745	35.78484415	33.62228757	21.71681174
570	33.41750115	37.6702854	34.98878652	21.18942744
580	31.65939315	35.9551269	33.20489981	18.00131285
590	32.1045736	36.56796715	33.52895003	17.23246549
600	31.92944205	36.5191134	33.05153245	15.15002994
615	32.0552914	36.56023415	32.14823349	12.24680052
625	30.39389815	34.62832175	30.22065271	8.94759179
675	49.13787505	45.2956713	30.22820259	29.87089594
690	84.9518956	78.20204205	64.76236482	51.10726399
715	99.59716305	89.7829515	74.48355342	45.71742356
730	92.6421969	84.547397	71.201096	43.76747009
740	93.36812705	86.6527585	72.14535516	48.73300886
755	99.0025058	92.74281995	77.34023203	58.54444734
770	95.9133604	89.6005363	77.72146034	61.96180772
780	93.72664565	87.7642414	78.28048031	65.33261729
790	88.0465168	81.98843235	76.52331569	66.06206367
800	86.75787505	80.4523137	76.92952223	67.45909044
820	83.5053439	77.94363445	77.35722954	70.66990598
835	70.78385875	66.1689611	72.03561507	66.79998316
845	58.67458685	54.16649865	66.89288987	62.41605248
855	50.127396	45.55210385	63.48345892	59.82822578
865	40.80857715	35.48630855	60.11816815	57.56179249
875	30.1739361	25.4358643	55.73614546	54.64166815
885	30.82771945	26.19460745	55.47046326	54.74138616
895	39.4536406	34.3876478	60.0007756	59.16148656
910	54.9252627	50.3038756	67.8689796	65.78507716
915	55.5209545	51.2158471	67.62834744	65.31352716
925	50.83997105	47.4224762	65.10024282	63.25120755
930	42.267951	39.42037825	60.96876151	59.68826563
940	34.8339464	32.645591	57.77176349	57.04325059
945	24.4734402	23.2558898	49.87868384	49.22946528

Anexo 13: Tabla de Reflectancia para los cuatro tratamientos del día 5

Longitud de onda (nm)	Ambiente	Ambiente empaque	Refrigeración	Congelación
495	30.8744906	34.26432165	32.147227	23.5306178
505	31.7880151	35.3120105	32.1821543	21.3765994
515	31.6631664	35.34457835	32.1276158	20.1468103
530	31.7232381	35.389342	32.631842	20.5147675
540	32.42501355	36.12728285	33.7599495	21.8057283
570	33.73728585	38.0307666	35.1320434	21.2761847
580	31.96235385	36.2991951	33.3408528	18.0750168
590	32.4117944	36.91789985	33.6662298	17.3030215
600	32.23498695	36.8685786	33.1868575	15.2120597
615	32.3620406	36.91009285	32.2798601	12.2969434
625	30.68474885	34.95969325	30.3443871	8.9842265
675	49.60809395	45.7291227	30.3519679	29.9931983
690	85.7648324	78.95038695	65.0275256	51.3165158
715	100.550246	90.6421185	74.7885163	45.9046074
730	93.5287251	85.356463	71.4926193	43.9466701
740	94.26160195	87.4819715	72.4407446	48.9325396
755	99.9498982	93.63031105	77.6568912	58.7841497
770	96.8311916	90.4579577	78.0396804	62.215502
780	94.62355135	88.6040906	78.6009892	65.6001129
790	88.8890672	82.77301065	76.8366301	66.3325459
800	87.58809395	81.2221923	77.2444998	67.7352926
820	84.3044381	78.68950655	77.6739583	70.9592544
835	71.46121625	66.8021569	72.3305552	67.0734867
845	59.23606615	54.68483835	67.1667738	62.6716066
855	50.607084	45.98800915	63.7433834	60.0731844
865	41.19908985	35.82589045	60.3643139	57.7974715
875	30.4626819	25.6792697	55.9643496	54.8653911
885	31.12272155	26.44527355	55.6975796	54.9655174
895	39.8311874	34.7167162	60.2464407	59.4037153
910	55.4508633	50.7852524	68.14686	66.0544253
915	56.0522555	51.7059509	67.9052426	65.5809446
925	51.32647795	47.8762798	65.366787	63.5101811
930	42.672429	39.79760675	61.2183899	59.9326512
940	35.1672856	32.957989	58.0083022	57.2768065
945	24.7076358	23.4784342	50.0829054	49.4310287

Anexo 14: Tabla de Reflectancia para los cuatro tratamientos del día 6

Longitud de onda (nm)	Ambiente	Ambiente empaque	Refrigeración	Congelación
495	31.1671398	34.58910195	32.3032815	23.6448441
505	32.0893233	35.6467215	32.33837835	21.4803693
515	31.9632912	35.67959805	32.2835751	20.24461035
530	32.0239323	35.724786	32.790249	20.61435375
540	32.73235965	36.46972155	33.92383275	21.91158135
570	34.05707055	38.3912478	35.3025873	21.37946715
580	32.26531455	36.6432633	33.5027016	18.1627596
590	32.7190152	37.26783255	33.8296581	17.38701675
600	32.54053185	37.2180438	33.34795875	15.28590465
615	32.6687898	37.25995155	32.43655845	12.3566373
625	30.97559955	35.29106475	30.49168995	9.02783925
675	50.07831285	46.1625741	30.49930755	30.13879635
690	86.5777692	79.69873185	65.3431932	51.5656251
715	101.5033289	91.5012855	75.15156735	46.1274453
730	94.4152533	86.165529	71.83967085	44.16000345
740	95.15507685	88.3111845	72.7923987	49.1700762
755	100.8972906	94.51780215	78.0338664	59.06950965
770	97.7490228	91.3153791	78.4185138	62.517519
780	95.52045705	89.4439398	78.9825474	65.91856005
790	89.7316176	83.55758895	77.20962345	66.65454855
800	88.41831285	81.9920709	77.6194731	68.0641047
820	85.1035323	79.43537865	78.05101635	71.3037168
835	72.13857375	67.4353527	72.6816744	67.39908615
845	59.79754545	55.20317805	67.4928261	62.9758377
855	51.086772	46.42391445	64.0528173	60.3648018
865	41.58960255	36.16547235	60.65734455	58.07804175
875	30.7514277	25.9226751	56.2360212	55.13172795
885	31.41772365	26.69593965	55.9679562	55.2323403
895	40.2087342	35.0457846	60.53889915	59.69208285
910	55.9764639	51.2666292	68.47767	66.37507785
915	56.5835565	52.1960547	68.2348797	65.8992987
925	51.81298485	48.3300834	65.6841015	63.81848295
930	43.076907	40.17483525	61.51556655	60.2235864
940	35.5006248	33.270387	58.2898959	57.55484925
945	24.9418314	23.7009786	50.3260263	49.67098515

Anexo 15: Tabla de Reflectancia para los cuatro tratamientos del día 7

Longitud de onda (nm)	Ambiente	Ambiente empaque	Refrigeración	Congelación
495	31.28419948	34.71901407	32.4281251	23.73622514
505	32.20984658	35.7806059	32.46335759	21.56338522
515	32.08334112	35.81360593	32.40834254	20.32285039
530	32.14420998	35.8589636	32.9169746	20.69402275
540	32.85529809	36.60669703	34.05493935	21.99626379
570	34.18498443	38.53544028	35.43902242	21.46209311
580	32.38649883	36.78089058	33.63218064	18.23295384
590	32.84190352	37.40780563	33.96040074	17.45421295
600	32.66274981	37.35782988	33.47683975	15.34498061
615	32.79148948	37.39989503	32.56191713	12.40439242
625	31.09193983	35.42361335	30.60953223	9.06272945
675	50.26640041	46.33595466	30.61717927	30.25527479
690	86.90294392	79.99806981	65.59572728	51.76491254
715	101.884562	91.8449523	75.44200819	46.30571562
730	94.76986458	86.4891554	72.11731209	44.33067013
740	95.51246681	88.6428697	73.07372198	49.36010548
755	101.2762476	94.87279859	78.33544656	59.29779761
770	98.11615528	91.65834766	78.72158052	62.7591326
780	95.87921933	89.77987948	79.28779396	66.17331777
790	90.06863776	83.87142027	77.50801813	66.91215067
800	88.75040041	82.30002234	77.91945174	68.32715438
820	85.42316998	79.73372749	78.35266279	71.57928672
835	72.40951675	67.68863102	72.96256976	67.65956571
845	60.02213717	55.41051393	67.75366794	63.21922258
855	51.2786472	46.59827657	64.30036442	60.59809572
865	41.74580763	36.30130511	60.89176907	58.30249795
875	30.86692602	26.02003726	56.45335848	55.34479743
885	31.53572449	26.79620609	56.18425748	55.44579862
895	40.35975292	35.17741196	60.77286591	59.92277689
910	56.18670414	51.45917992	68.742318	66.63159989
915	56.7960769	52.39209622	68.49858938	66.15398198
925	52.00758761	48.51160484	65.9379531	64.06512443
930	43.2386982	40.32572665	61.75330787	60.45633456
940	35.63396048	33.3953462	58.51517086	57.77728345
945	25.03550964	23.78999636	50.52052302	49.86295031