UNIVERSIDAD NACIONAL DE CAJAMARCA

FACULTAD DE INGENIERÍA ESCUELA PROFESIONAL DE INGENIERÍA GEOLÓGICA

TESIS

RIESGOS GEOAMBIENTALES POR LA EXPLOTACIÓN DEL PROYECTO EL LINDERO EN EL CENTRO POBLADO SANTA ROSA, DISTRITO DE HUASMÍN – CELENDÍN.

PARA OPTAR EL TÍTULO PROFESIONAL DE: INGENIERO GEÓLOGO

Autor:

Bach, ORRILLO DAVÁN CÉSAR DALTON

Asesor:

Dr. QUISPE MAMANI CRISPÍN ZENÓN

CAJAMARCA – PERÚ

-2024-

CONSTANCIA DE INFORME DE ORIGINALIDAD

- FACULTAD DE INGENIERÍA –

1.	Investigador DNI Escuela Profesion	: 48	ésar Dalton Orril 8086166 geniería Geológi		
2.	Asesor Facultad		ispín Zenón Quis geniería	spe Mamani	
3.	Grado académico	o título profesion	nal		
	□Bachiller	Título profesio	nal 🗆 S	egunda especialida	ad
	□Maestro	□Doctor			
4.	Tipo de Investigad	ción:			
	■ Tesis□ Trabajo	o de investigación	☐ Trabajo o	de suficiencia profe	esional
	☐ Trabajo acadén	mico			
5.	5. Título de Trabajo de Investigación: RIESGOS GEOAMBIENTALES POR LA EXPLOTACIÓN DEL PROYECTO EL LINDERO EN EL CENTRO POBLADO SANTA ROSA, DISTRITO DE HUASMÍN – CELENDÍN.				
6.	Fecha de evaluaci	ión	: 09 de mar	zo 2024	
7.	Software antiplag	gio:	TURNITIN	□ URKUND (OURIGINAL) (*)
8. 9. 10.	Porcentaje de Info Código Document Resultado de la E		: oid: 3117:	338727195	
	APROBADO	PARA LEVANTAN	MIENTO DE OBSE	RVACIONES O DES	SAPROBADO
	Fecha Emisión: 09 de marzo del 2024				
	FIRMA DIGITAL Firmado digitalmente por: FERNANDEZ LEON Yvonne Katherine FAU 20148258801 soft Motivo: Soy el autor del documento Fecha: 10/03/2024 15:06:03-0500				

FIRMA DEL ASESOR

Nombres y Apellidos: Crispín Zenón Quispe Mamani

DNI : 29243825

UNIDAD DE INVESTIGACIÓN FI

c05724co

^{*} En caso se realizó la evaluación hasta setiembre de 2023

AGRADECIMIENTO

A Dios, que es fuente de esperanza y fuerza para empezar de nuevo. Agradezco también a mi familia por su apoyo incondicional en cada momento de mi vida.

Agradezco a mi alma mater, Universidad Nacional de Cajamarca, en especial a la Escuela Académico profesional de Ingeniera Geológica, a mis docentes por su apoyo, amistad y enseñanza durante la carrera.

Un agradecimiento especial a mí asesor el Dr. Crispín Zenón Quispe Mamani. por el interés mostrado y la constante supervisión durante el desarrollo de la Tesis.

DEDICATORIA

Con infinita gratitud, de todo corazón a mi querida madre Belermina Daván Cabada, por su apoyo incondicional y ejemplo de sacrificio, paciencia y sus ánimos de superación que me ha infundido siempre.

A mi padre Santos Natividad Orrillo Cabanillas por sus consejos y su lucha constante, sacrificio y enseñanzas de superación que me ha inculcado para cumplir este objetivo profesional.

A mis hermanos Elmer Orrillo Daván y Edwin Orrillo Daván por haberme apoyado de manera directa o indirectamente para el desarrollo del presente estudio.

A mi hermana Lidia Orrillo Daván, a mi cuñado Eulises Tocas Chávez por su apoyo en campo para lograr el desarrollo de la presente investigación.

CONTENIDO

ITEN	1	Pág.
AGRAD	DECIMIENTO	i
DEDIC	ATORIA	ii
CONTE	NIDO	iii
ÍNDICE	DE TABLAS	ix
ÍNDICE	DE FIGURAS	xii
LISTA [DE ABREVIATURAS	xiv
RESUM	1EN	xv
ABSTR	ACT	xvi
CAPÍTU	JLO I	1
INTROI	DUCCIÓN	1
CAPÍTU	JLO II	3
MARCO) TEÓRICO	3
2.1.	ANTECEDENTES TEÓRICOS DE LA INVESTIGACIÓN	3
2.1.1.	Internacionales	3
2.1.2.	Nacionales	3
2.1.3.	Locales	4
2.2.	BASES TEÓRICAS	5
2.2.1.	Análisis de riesgos	5
2.2.2.	Clasificación de riesgos	5
2.2.2.1.	Riesgos Naturales	6
2.2.2.2.	Riesgos Tecnológicos	6
2.2.2.3.	Riesgos Antrópicos	6
2.2.3.	Medios y sistemas del Ambiente	7
2.2.4.	Estándar de Calidad Ambiental (ECA)	10

		Pág
2.2.5.	Límites Máximos Permisibles (LMP) para la descarga de efluentes	
	líquidos de Actividades Minero – Metalúrgicas	14
2.2.6.	Calidad del Agua	15
2.2.7.	Análisis Físicos	15
2.2.8.	Análisis Químicos	16
2.2.9.	Análisis con Sistemas de Información Geográfica (SIG)	16
2.2.10.	Pendientes	16
2.2.11.	Análisis morfométrico	17
2.3.	DEFINICIÓN DE TÉRMINOS BÁSICOS	18
2.3.1.	Agua Subterránea	18
2.3.2.	Cabecera	18
2.3.3.	Cuenca hidrológica	18
2.3.4.	Evaluación del riesgo ambiental	19
2.3.5.	Muestreo de agua	19
2.3.6.	Nivel de Riesgo	19
2.3.7.	Riesgo ambiental	19
2.3.8.	Unidad Geomorfológica	19
CAPÍTI	ULO III	20
MATER	RIALES Y MÉTODOS	20
3.1.	UBICACIÓN DE LA INVESTIGACIÓN	20
3.1.1.	Geográfica	20
3.1.2.	Política	22
3.1.3.	Accesibilidad	22
3.2.	PROCEDIMIENTO DE RECOPILACIÓN DE DATOS	22
3.2.1.	Primera Etapa de Gabinete	23
3.2.2.	Etapa de Campo	23

	F	Pág.
3.2.3.	Segunda Etapa de Gabinete	23
3.3.	METODOLOGÍA	24
3.3.1.	Tipo de investigación	24
3.3.2.	Población	24
3.3.3.	Muestra	25
3.3.4.	Unidad de Análisis	25
3.4.	TÉCNICAS	25
3.5.	EQUIPOS, MATERIALES E INSTRUMENTOS	25
3.5.1.	Equipos	25
3.5.2.	Materiales	26
3.5.3.	Instrumentos	26
3.5.4.	Clima y temperatura	26
3.6.	DESCRIPCIÓN DEL PROYECTO EL LINDERO	27
3.6.1.	Riesgos geoambientales del proyecto el lindero	28
3.6.1.1.	Evaluación de Riesgos Geoambientales del Proyecto El Lindero	28
3.6.1.2.	Estimación de riesgos geoambientales	30
3.7.	MARCO HIDROLÓGICO	30
3.7.1.	Relación entre aguas subterráneas y superficiales	30
3.7.1.1.	Manantiales	30
3.7.1.2.	Clasificación de manantiales	31
3.7.2.	Relación entre la escorrentía superficial y subterránea	32
3.7.3.	Medida de caudales	32
3.7.3.1.	Aforo	32
3.7.4.	Inventario y características fisicoquímicas de los manantiales	33
3.7.5.	Microcuencas	60
3.7.6.	Drenajes	60

	P	Pág.
3.8.	MARCO GEOMORFOLÓGICO	60
3.8.1.	Unidades morfogenéticas	60
3.8.1.1.	Planicies	60
3.8.1.2.	Lomadas	61
3.8.1.3.	Laderas	61
3.8.1.4.	Escarpes	62
3.8.2.	Unidades geomorfológicas	63
3.8.2.1.	Unidades geomorfológicas por ambiente glaciar	63
3.8.2.2.	Unidades Geomorfológicas por Ambiente Estructural	64
3.8.2.3.	Unidades Geomorfológicas por ambiente Denudacional	66
3.8.2.4.	Unidades Geomorfológicas por ambiente Fluvial	67
3.8.2.5.	Unidades Geomorfológicas por Ambiente Cárstico	68
3.9.	MARCO GEOLÓGICO	70
3.9.1.	Geología local	70
3.9.1.1.	Formación Cajamarca (Ks-ca)	70
3.9.1.2.	Formación Quilquiñan Mujarrúm (Ks-qm)	70
3.9.1.3.	Grupo Calipuy	72
3.9.1.4.	Depósitos Cuaternarios	72
3.9.1.5.	Depósito Lagunar (Q-la)	72
3.9.1.6.	Depósito aluvial (Q-al)	73
3.9.1.7.	Depósito fluvial (Q-fl)	74
3.9.1.8.	Depósitos coluviales (Q-co)	75
CAPÍTU	JLO IV	76
ANÁLIS	SIS Y DISCUSIÓN DE RESULTADOS	76
4.1.	ANALISIS DE RESULTADOS	76
4.1.1.	ANÁLISIS DE RIESGOS GEOAMBIENTALES	76

	Pág	J.
4.1.2.	ANÁLISIS GEOLÓGICO DE LA MICROCUENCA CONDORCANA7	7
4.1.2.1.	Formación Cajamarca (Ks-ca)7	7
4.1.2.2.	Formación Quilquiñan Mujarrúm (Ks-qm)7	7
4.1.2.3.	Grupo Pulluicana (Ks-p)7	7
4.1.2.4.	Formación Yumagual (Ks-yu)7	7
4.1.2.5.	Grupo Calipuy7	7
4.1.2.6.	Depósitos Cuaternarios7	8
4.1.3.	ANÁLISIS DE LA GEOMORFOLOGÍA DE LA MICROCUENCA CONDORCANA	8
4.1.3.1.	Morfometría	8
4.1.3.2.	Pendientes	9
4.1.3.3.	Morfogénesis8	1
4.1.3.4.	Análisis de unidades geomorfológicas por ambiente glaciar8	2
4.1.3.5.	Análisis de unidades Geomorfológicas por ambiente Estructural8	3
4.1.3.6.	Análisis de unidades Geomorfológicas por ambiente Denudacional8	4
4.1.3.7.	Análisis de unidades Geomorfológicas por ambiente Fluvial8	6
4.1.3.8.	Análisis de unidades Geomorfológicas por Ambiente Cárstico8	7
4.1.4.	ANÁLISIS HIDROLÓGICO DE LA MICROCUENCA CONDORCANA8	8
4.1.4.1.	Balance Hidrológico8	8
4.1.4.2.	Analisis de parámetros fisicoquímicos8	9
4.2.	DISCUSIÓN DE LOS RESULTADOS9	3
4.3.	CONTRASTACIÓN DE LA HIPÓTESIS9	6
CAPÍTU	JLO V9	7
CONCL	USIONES Y RECOMENDACIONES9	7
5.1.	CONCLUSIONES9	7
5.2.	RECOMENDACIONES9	8

	Pág.
REFERENCIAS BIBLIOGRÁFICAS	99
ANEXOS	103

ÍNDICE DE TABLAS

	Pág.
Tabla 1: Clasificación de Riesgos	6
Tabla 2: Componentes y factores del sistema biótico	8
Tabla 3: Factores ambientales del sistema físico o abiótico	9
Tabla 4: Valores de los Estándares de Calidad Ambiental (ECA) para Agua,	
correspondiente a la categoría 3 (Riego de vegetales y bebida de	
animales)	10
Tabla 5: Límites máximos permisibles (LMP) para la descarga de efluentes	
líquidos de actividades minero – metalúrgicas	14
Tabla 6: Coordenadas en el sistema UTM del área de estudio	20
Tabla 7: Accesos al área de estudio.	22
Tabla 8. Clasificación y tipo de investigación.	24
Tabla 9: Riesgos de origen humano y natural existentes en el Proyecto El	
Lindero	27
Tabla 10: Evaluación de riesgos geoambientales	29
Tabla 11: Estimación del riesgo geoambiental	30
Tabla 12: Manantial el Rrache.	34
Tabla 13: Manantial el Chorro	34
Tabla 14: Manantial la Pajuela	35
Tabla 15: Manantial Peña Blanca 2	36
Tabla 16: Manantial el AVA	36
Tabla 17: Manantial el Pozo	37
Tabla 18: Manantial la Cortadera	38
Tabla 19: Manantial la Cueva	38
Tabla 20: Manantial El López	39
Tabla 21: Manantial el Chichayro	40
Tabla 22: Manantial la Toma	40
Tabla 23: Manantial el Pajas	41
Tabla 24: Manantial el Coyuntas	42
Tabla 25: Manantial los Indios	42
Tabla 26: Manantial la Piedra Grande	43
Tabla 27: Manantial el Pepe	44

	Pág.
Tabla 28: Manantial el Choco	44
Tabla 29: Manantial el Uñigan	45
Tabla 30: Manantial Peña Blanca 1	46
Tabla 31: Características fisicoquímicas y análisis bacteriológic	cos del
manantial Peña Blanca 1, en época de Iluvia	46
Tabla 32: Características fisicoquímicas y análisis bacteriológic	cos del
manantial Peña Blanca 1, en época de estiaje	47
Tabla 33: Manantial El Amaro.	48
Tabla 34: Características fisicoquímicas y análisis bacteriológic	cos del
manantial El Amaro, en época de Iluvia	48
Tabla 35: Características fisicoquímicas y análisis bacteriológic	cos del
manantial El Amaro, en época de estiaje	49
Tabla 36: Manantial China Linda	50
Tabla 37: Características fisicoquímicas y análisis bacteriológic	cos del
manantial China Linda, en época de lluvia	50
Tabla 38: Características fisicoquímicas y análisis bacteriológic	cos del
manantial China Linda, en época de estiaje	51
Tabla 39: Manantial Las Huacas	52
Tabla 40: Características fisicoquímicas y análisis bacteriológic	cos del
manantial Las Huacas, en época de Iluvia	52
Tabla 41: Características fisicoquímicas y análisis bacteriológic	cos del
manantial Las Huacas, en época de estiaje	53
Tabla 42: Manantial El Lapar	54
Tabla 43: Características fisicoquímicas y análisis bacteriológic	cos del
manantial El Lapar, en época de lluvia	54
Tabla 44: Características fisicoquímicas y análisis bacteriológic	cos del
manantial El Lapar, en época de estiaje	55
Tabla 45: Manantial Ojo de Agua	56
Tabla 46: Características fisicoquímicas y análisis bacteriológic	cos del
manantial Ojo de Agua, en época de Iluvia	56
Tabla 47: Características fisicoquímicas y análisis bacteriológic	cos del
manantial Ojo de Agua, en época de estiaje	57

	Pág.
Tabla 48: Manantial Peña Mala	58
Tabla 49: Características fisicoquímicas y análisis bacteriológicos del	
manantial Peña Mala, en época de Iluvia	58
Tabla 50: Características fisicoquímicas y análisis bacteriológicos del	
manantial Peña Mala, en época de estiaje	59
Tabla 51: Clasificación de unidades morfogenéticas	60
Tabla 52: Inclinación de las superficies de las unides Geomorfológicas	79
Tabla 53: Porcentaje y área de las Unidades Fisiográficas	80
Tabla 54: Tipos de unidades geomorfológicas	81
Tabla 55: Unidades geomorfológicas por ambiente glaciar	82
Tabla 56: Unidades geomorfológicas de Ambiente Morfoestructural	83
Tabla 57: Unidades geomorfológicas de Ambiente Denudacional	84
Tabla 58: Unidades geomorfológicas de Ambiente Denudacional con relación	
a las pendientes.	85
Tabla 59: Unidades geomorfológicas de Ambiente Fluvial	86
Tabla 60: Balance hidrológico del área de estudio	88

ÍNDICE DE FIGURAS

Pág.
Figura 1: Capa de pendientes obtenida a partir del MDE17
Figura 2: Capas de orientación de pendientes obtenida a partir del MDE18
Figura 3: Delimitación del área de estudio del Centro Poblado Santa Rosa20
Figura 4: Imagen satelital del área de estudio con sus respectivos vértices21
Figura 5: Método directo de aforo de caudal del manantial33
Figura 6: Planicie al margen derecho del Río Condorcana aguas abajo61
Figura 7: Lomadas ubicadas hacia el SW de la zona la Patachada61
Figura 8: Laderas al margen derecho del Río Condorcana aguas arriba,
representadas con perfil topográfico rectilíneo62
Figura 9: Escarpe ubicado al NE de la quebrada las Huacas y al SW del río
Condorcana62
Figura 10: Rocas aborregadas entre el contacto del Volcánico Porculla y la
FM. Pulluicana63
Figura 11: Rocas aborregadas de la Formación Pulluicana63
Figura 12: Bloque errático de composición piroclástica del Volcánico Porculla.
64
Figura 13: Vista panorámica de la Laguna Cortada64
Figura 14: Montaña ubicada dentro de la microcuenca del proyecto El Lindero.
65
Figura 15: Representación del anticlinal de la Familia Yamagual en una
montaña del área de estudio65
Figura 16: Cerro ubicado dentro de la microcuenca del proyecto El Lindero66
Figura 17: Colina con elevación representativa dentro de la Formación
Pulluicana67
Figura 18: Terraza cercana a la desembocadura del rio Condorcana,
originada por el accionar del agua67
Figura 19: Valle glaciar en forma de U drenado por el río Condorcana68
Figura 20: Valle en forma de U, ubicado en la naciente del río Condorcana y
el proyecto El Lindero68
Figura 21: Identificación de dolina en Formación Pulluicana69

	F	^P ág.
Figura	22: a) Identificación de Lenares de la Fm. Cajamarca. b) Identificación	
(de Columnas y estalactitas Fm. Pulluicana	69
Figura	23: Afloramiento de calizas potentes de la Formación Cajamarca	70
Figura	24: Afloramiento de calizas fosilíferas de la Formación Quilquiñan	71
Figura	25: Afloramiento de rocas de la Formación Yumagual	71
Figura	26: Domos dacíticos ubicados en cabecera de microcuenca el Lindero.	
		72
Figura	27: Depósito lagunar emplazado en el Grupo Pulluicana	73
Figura	28: Depósito lagunar emplazado en las rocas volcánicas	73
Figura	29: Depósitos coluvio-aluviales formando geoformas	74
Figura	30: Depósito fluvial formado por aguas que trascurren drenando un	
,	valle	74
Figura	31: Depósito coluvial albergado en el área de estudio	75
Figura	32: Representación de los porcentajes de las unidades	
(geomorfológicas	82
Figura	33: Representación en porcentajes del Ambiente Glaciar	83
Figura	34: Representación de los porcentajes de Ambiente Morfoestructural	84
Figura	35: Representación de porcentajes del Ambiente Denudacional	85
Figura	36: Representación de porcentajes de Ambiente Denudacional con	
I	relación a las pendientes	86
Figura	37: Representación de porcentaje del Ambiente Fluvial	87
Figura	38: Unidades geomorfológicas identificadas en el área de estudio	87
Figura	39: Resultados sobre turbidez de las muestras de agua para época de	
I	lluvia y estiaje	89
Figura	40: Resultados sobre pH de las muestras de agua de en época de	
I	lluvia y estiaje	90
•	41: Resultados sobre dureza de las muestras de agua de época de	
I	lluvia y estiaje	91
Figura	42: Resultados sobre cloruros de las muestras de agua tanto de época	
(de lluvia como de estiaje	91
Figura	43: Resultados sobre sulfatos de las muestras de agua de época de	
I	lluvia y de estiaje	92

LISTA DE ABREVIATURAS

CENEPRED : Centro Nacional de Estimación, Prevención y Reducción del

Riesgo de Desastres.

DBO : Demanda bioquímica de oxígeno.

MDE : Modelo Digital de Elevación.

DQO : Demanda Química de Oxígeno.

ECA : Estándares de Calidad Ambiental.

GPS : Sistema de Posicionamiento Global.

LMP : Límites Máximos Permisibles.

mg/l : Miligramos por litro.

MINAM : Ministerio del Ambiente.

OEFA : Organismo de Evaluación y Fiscalización Ambiental.

pH : Potencial de Hidrógeno.

SIG : Sistema de Información Geográfica.

WGS-84 : World Geodetic System 1984.

NTU : Nephelometric Turbidity Unit.

SIG : Sistemas de Información Geográfica.

SE : Sur Este

NW : Nor Oeste

SW : Sur Oeste

NE : Nor Este

MSNM : Metros sobre el nivel del mar.

RESUMEN

La presente investigación expone características geológicas, morfológicas e hidrológicas de la Microcuenca del río Condorcana, que se ubica dentro del área del proyecto El Lindero, en el Centro Poblado Santa Rosa Distrito de Huasmín, Provincia de Celendín. La microcuenca Condorcana es de suma importancia para el Centro Poblado Santa Rosa, ya que es el principal río que recorre la ciudad. El objetivo general de esta investigación es determinar los riesgos geoambientales del proyecto El Lindero en el Centro Poblado Santa Rosa, Distrito de Huasmín -Celendín. El tipo de investigación es descriptiva, cualitativa y transversal, cual permite estudiar los riesgos geoambientales aplicados a la características geológicas, geomorfológicas e hidrológicas a detalle. La hipótesis afirma que los riesgos geoambientales originados por la explotación del proyecto El Lindero afectan a la geología, geomorfología e hidrología, el inventario de manantiales y los factores fisicoquímicos que se relacionan con los limites máximo permisibles y estándares de calidad ambiental de las aguas del río Condorcana. A partir de ello se identificaron 4 unidades morfológicas y 10 unidades geomorfológicas, las cuales en conjunto con la geología e hidrología se ven afectadas por las actividades del proyecto El Lindero, afectando a través, la remoción de suelo, transporte de material, vertimiento de líquidos y eliminación de residuos. Por otro lado, los 25 manantiales identificados se verían afectados por la alteración de las corrientes de agua y la remoción de tierras, lo que generaría que los límites máximos permisibles sean superados por estas aguas.

Palabras Clave: Riesgo geoambiental, geomorfología, morfología.

ABSTRACT

The present investigation exposes geological, morphological and hydrological characteristics of the Condorcana River Microbasin, which is located within the El Lindero project area, which is located in the Santa Rosa Population Center, Huasmín District, Celendín Province. The Condorcana micro-basin is of utmost importance for the Santa Rosa Population Center, since it is the main river that runs through the city. The general objective of this research is to determine the geoenvironmental risks of the El Lindero project in the Santa Rosa Population Center, Huasmín – Celendín District. The type of research is descriptive, qualitative and transversal, which allows the geological, geomorphological and hydrological characteristics to be studied in detail. The hypothesis states that the geoenvironmental risks caused by the exploitation of the El Lindero project affect the geology, geomorphology and hydrology, the inventory of springs and the physicochemical factors that are related to the maximum permissible limits and environmental quality standards of the river waters. Condorcana. From this, 4 morphological units and 10 geomorphological units were identified, which together with the geology and hydrology are affected by the activities of the El Lindero project, through soil removal, material transportation, liquid dumping and waste disposal. On the other hand, the 25 identified springs would be affected by the alteration of water currents and the removal of land, which would cause the maximum permissible limits to be exceeded by these waters.

Keywords: Geoenvironmental risk, geomorphology, morphology.

CAPÍTULO I INTRODUCCIÓN

Los riesgos geoambientales por la explotación del proyecto El Lindero se encuentra localizado en cabecera de la microcuenca Condorcana del Centro Poblado Santa Rosa, Distrito Huasmín, Provincia de Celendín y Región Cajamarca. La explotación del proyecto influye sobre el medio ambiente generando riesgos y modificaciones en dicho sector, ante esta situación y el desconocimiento de la población se presenta el problema y se opta por realizar este estudio para determinar medidas de mitigación hacia los impactos generados. El río Condorcana nace del cerro del mismo nombre en el Divortium Acuarium Celendín-Bambamarca, su cauce nace en el NO, del río ya mencionado conforme avanza hacia SO se une con las quebradas peña blanca y las huacas y al NE junta las aguas de las quebradas la bira bira, la china linda y el lapar. La evaluación de la contaminación es de vital importancia para la protección del medio ambiente en el área del proyecto, por lo que río Condorcana es afectado por los efluentes líquidos del proyecto El Lindero, que incide directamente en el Centro Poblado Santa Rosa Distrito de Huasmín e indirectamente en sus actividades agrícolas domésticas y otros. Por todo lo anterior, se hace necesario el estudio riesgos geoambientales por la explotación del proyecto El Lindero y mejorar los valores máximos permisibles y estándares de calidad ambiental.

De esta manera se plantea la siguiente pregunta: ¿Cuáles son los riesgos geoambientales y de qué manera afecta la explotación del proyecto El Lindero en el Centro Poblado Santa Rosa Distrito de Huasmín - Celendín?; Teniendo como hipótesis que los riesgos geoambientales originados por la explotación del proyecto El Lindero en el Centro Poblado Santa Rosa Distrito de Huasmín – Celendín, influyen sobre la geomorfología, geología e hidrología como: En los manantiales sobre factores fisicoquímicos que se relacionan a los límites máximos permisibles y con los estándares de calidad ambiental de la microcuenca sobre las aguas del río Condorcana.

Buscando analizar los riesgos geoambientales provocados por la explotación del proyecto El Lindero en el Centro Poblado Santa Rosa Distrito de Huasmín - Celendín, los cuales se muestran como un peligro venidero de dicho Centro Poblado, es por ello que se realiza una investigación Geoambiental, considerando la hidrología y morfología, y dentro de ello determinar el monitoreo de calidad de aguas y cálculo de pendientes, ya que es necesario conocerlas para posibles mejoras evitando cualquier peligro a la infraestructura económica y daños personales. Los resultados obtenidos serán utilizados para investigaciones posteriores en otras ramas de la Geología. El alcance de la investigación es descriptivo, de estudio transversal.

De esta manera se plantea como objetivo principal determinar los riesgos geoambientales del proyecto El Lindero en el Centro Poblado Santa Rosa Distrito de Huasmín – Celendín; y como objetivos secundarios los siguientes: realizar el inventario de los manantiales de la microcuenca Condorcana, determinar las características fisicoquímicas de las aguas del río Condorcana y de los manantiales y caracterizar la geología y geomorfología utilizando el software ArcGIS.

La investigación consta de cinco capítulos; en el CAPÍTULO II se desarrolla el marco teórico que está constituido por los antecedentes internacionales, nacionales y locales, bases teóricas y definición de términos básicos; el CAPÍTULO III constituido por los materiales y métodos donde se detallan los procedimientos, metodología, tratamiento y análisis de datos y presentación de resultados; el CAPÍTULO IV comprende el análisis y discusión de resultados en el cual se explican y se describen los resultados de acuerdo a los objetivos planteados, y en el CAPÍTULO V se da a conocer las conclusiones, recomendaciones y referencias bibliográficas utilizadas.

CAPÍTULO II MARCO TEÓRICO

2.1. ANTECEDENTES TEÓRICOS DE LA INVESTIGACIÓN

2.1.1. Internacionales

Cataño & Sepúlveda (2017), en su artículo. Riesgos ambientales y de seguridad en calderas a carbón de las pequeñas y medianas empresas, ubicadas en el municipio de Itagüí, Antioquia. Concluyen que debido al bajo nivel de seguridad y al alto nivel de riesgo ambiental encontrado deben implementar medidas de gestión encaminadas a la prevención y control de los riesgos caracterizados.

Gola (2017), en su tesis de Maestría. Estudio geoambiental de la explotación de materiales para la construcción de la cantera el pilón, Provincia de Holguín. Concluye que las principales acciones susceptibles de producir impactos son: tala y desbroce, destape de la materia prima, perforación y voladura, excavación, transportación y procesamiento de la materia prima.

Orellana (2018), en su tesis de maestría. Riesgos geoambientales y sanitarios del sitio de disposición final de residuos sólidos urbanos del municipio de Aguilares provincia de Tucumán, realiza un análisis de riesgo geoambiental a fin de consignar en un mapa aéreo de Riesgos en base a índices Naturales y Tecnológicos.

2.1.2. Nacionales

Soto (2018), en su tesis "Evaluación de riesgos ambientales ocasionados por la disposición de residuos sólidos al río Sicra mediante sistemas de información geográfica Ciudad de Lircay-Huancavelica", Concluye que es factible determinar los riesgos ambientales que contribuyen la disposición de residuos sólidos en el río Sicra a través de Sistemas de Información Geográfica.

Torres (2017), en su tesis. Determinación de aspectos y riesgos ambientales generados por una empresa extractora de mineral U.E.A. exploraciones andinas S.A.C. Puquio, Lucanas, Ayacucho. Determinó que la contaminación del suelo como consecuencia de la generación de residuos peligrosos, tanto para el entorno natural como para el entorno humano representan un riesgo alto.

Machaca (2016), en su tesis "Caracterización geoambiental para una zonificación y ordenamiento territorial sostenido en la ciudad de Puno". Concluye que las características geoambientales geológico, geomorfológico, pendientes, usos del suelo y actividad de procesos, son básicos para el análisis de la susceptibilidad, juntamente con los factores detonantes de sismicidad y precipitación pluvial. Asimismo, geo ambientalmente se considera a la ciudad Puno como una zona de peligrosidad moderada a alta, ante los peligros geológicos de caídas de rocas, erosión de laderas, deslizamientos e inundaciones, que se localizan principalmente en los flancos, con laderas de fuerte pendiente y cortes de carretera, donde las condiciones litológicas, precipitaciones pluviales, presencia de agua y pendientes les son favorables.

2.1.3. Locales

Gonzales (2018), en su tesis doctoral. Evaluación del riesgo ambiental que genera la planta de tratamiento de residuos sólidos de la ciudad de Cajamarca debido al manejo de los lixiviados. Concluye que el nivel de riesgo ambiental que genera la planta de tratamiento de residuos sólidos de la ciudad de Cajamarca, en base a la caracterización del peligro sobre sus parámetros físicos, químicos y biológicos, y su escenario de peligrosidad, es SIGNIFICATIVO.

Flores (2017), en su tesis. Impactos ambientales producidos en la rehabilitación y mejoramiento de la carretera Yanacocha- Bambamarca: Tramo III, el Empalme km 64+500 - Hualgayoc km 85+982, Concluye que, la geomorfología es uno de los factores ambientales negativos producido por el movimiento de tierras, por la construcción de facilidades tales como depósitos de material excedente (DME), canteras.

Saucedo (2021), en su tesis "Estimación del nivel de riesgo ambiental de aguas ácidas generado por residuos mineros en el río Cañaris, zona de Algamarca - Cajabamba". Realiza un análisis y estimación de riesgo ambiental de drenaje ácido, ubicando puntos estratégicos en los drenajes y determinando parámetros fisicoquímicos (metales totales) y parámetros de campo (pH). Concluye que, la estimación del nivel de riesgo ambiental de aguas ácidas generado por residuos mineros es alto; según el análisis de 6 muestras de agua y la evaluación de 5 áreas de residuos mineros.

2.2. BASES TEÓRICAS

2.2.1. Análisis de riesgos

Si deseásemos tener una definición completa de riesgo se tendría que incluir el concepto de exposición a un peligro. Peligro se define como una situación con el potencial de causar daño. La exposición a un peligro puede ser voluntaria o involuntaria; en este último caso se podría considerar como ejemplo, la exposición a sustancias tóxicas presentes en el medioambiente, en el aire respirado, en el agua o en los alimentos ingeridos. El riesgo se expresa a menudo en términos cuantitativos de probabilidad. Asimismo, es necesario recordar que la propia naturaleza probabilística de estos valores significa que representan estimaciones o aproximaciones, y que no pueden considerarse valores absolutos (Ize Lema, et al. 2010).

Para el CENEPRED, el análisis de riesgos es un procedimiento técnico, que permite identificar y caracterizar los peligros, analizar las vulnerabilidades, calcular, controlar, manejar y comunicar los riesgos, para lograr un desarrollo sostenido mediante una adecuada toma de decisiones.

2.2.2. Clasificación de riesgos

Los investigadores del control de riesgo manifiestan que existen tres principales tipos de riesgos que a continuación se describen:

2.2.2.1. Riesgos Naturales

Riesgos presentados dentro del contexto de los factores hidrometeorológicos, geográficos o climáticos. Son relativamente predecibles en función de la situación geográfica y atmosférica de las zonas; requieren planificación y previsión de las medidas de protección y posibles consecuencias.

2.2.2.2. Riesgos Tecnológicos

Originados por la actividad de carácter tecnológico, de estructuras fijas o móviles, diseñadas y construidas por el hombre. Los efectos son fácilmente predecibles, de ahí la importancia de la prevención.

2.2.2.3. Riesgos Antrópicos

Son los provocados o derivados por las acciones o actividades del hombre; tales como el transporte público y tráfico, incendios forestales, o los ocasionados por las aglomeraciones de personas.

Tabla 1: Clasificación de Riesgos.

CLASIFICACIÓN DE RIESGOS		
		Contaminación ambiental y químico-
		biológico.
		Explosión y deflagración.
		Colapso de grandes estructuras.
	Agresiones de origen industrial	Accidentes en centrales energéticas o
		plantas potabilizadoras.
		Radioactivos: nuclear,
Riesgos		instalaciones radioactivas, transporte
tecnológicos		radioactivo.
		Accidentes por carretera.
		Accidentes marítimos.
		Accidentes aéreos.
	Accidentes de transporte	Transporte de mercancía peligrosa.

	CLASIFICACIÓN D	DE RIESGOS	
		Crecidas o avenidas.	
	Inundaciones	Acumulación pluviométrica. Rotura o daños graves en obras de	
		infraestructura hidráulica.	
	Movimientos sísmicos	Terremotos, maremotos.	
	Erupciones volcánicas		
		Nevadas, Lluvias torrenciales, Olas de	
	Asociadas a fenómenos	frio, granizadas, heladas, vientos	
Riesgos	atmosféricos	fuertes, oleaje en el mar, Olas de	
naturales		calor, sequía extrema.	
		Desprendimientos, avalanchas,	
	Movimientos gravitatorios	erosión costera, deslizamientos de	
		terreno.	
	Incendios forestales		
	Caídas de meteoritos		
	Desplome de estructuras		
	Incendios	Urbanos, industriales.	
	Actividades deportivas	Montaña, espeleología, náuticos,	
	especializadas	aéreos	
	Anomalías en suministro de servicios básicos		
		Contaminación bacteriológica,	
Riesgos	Riesgos sanitarios	Intoxicaciones alimentarias.	
antrópicos		Epidemias.	
	Concentraciones	Locales de pública concurrencia.	
		Grandes concentraciones humanas.	
	humanas	Colapso y bloqueo de servicios.	
	Intensionados	Actos vandálicos.	
	Intencionados	Terrorismo.	

Fuente: Rodríguez (2015).

2.2.3. Medios y sistemas del Ambiente

Se parte de la premisa de que el ambiente está constituido por el medio natural (conformado por los sistemas biótico y abiótico) y el medio social (también llamado sistema antrópico). En otras metodologías, a los medios se lo conocen con el nombre de indicadores de tercer grado o nivel.

Sistema biótico: Conjunto de organismos vivos (animales y plantas).

Sistema físico o abiótico: Medio inanimado que brinda soporte al medio biótico (aire, agua, suelo, clima)

Sistema social o antrópico: Sistema conformado por el hombre, el cual es capaz de transformar y aprovechar de los dos sistemas anteriores.

A su vez, cada uno de estos sistemas se puede dividir en componentes, los cuales identifican el conjunto de organismos o aspectos que se estructuran o funcionan de tal manera que pueden ser agrupados o definidos en forma lógica y permiten describir su comportamiento promedio bajo condiciones naturales (Arboleda, 2008).

A continuación, se presentan tablas de componentes y factores correspondiente a los sistemas biótico y físico.

Tabla 2: Componentes y factores del sistema biótico.

Componente	Factor
Vegetación terrestre o flora	 Diversidad, abundancia, estructura, productividad Primaria. Distribución, superficie ocupada. Especies endémicas, dominantes o amenazadas. Agroecosistemas, formaciones Vegetales.
Fauna Terrestre	 Diversidad, abundancia, estructura, estado. Distribución, migraciones, vectores de enfermedad. Especies endémicas, dominantes o amenazadas.
Biota acuática	Diversidad, abundancia, estructura.Estado, distribución, migraciones.

Fuente: Arboleda (2008).

Tabla 3: Factores ambientales del sistema físico o abiótico.

Componente	Factor			
Clima	 Precipitación Humedad relativa Piso térmico Brillo solar Temperatura Viento Evaporación 			
Geología	 Capacidad Portante Facilidad de excavación Estratificación Diaclasas Fallas Perfiles Estratigráficos 			
Geomorfología	 Formas topográficas: Fisiográfica, complejidad topográfica, desniveles. Pendiente o relieve, Áreas de inundación. Focos y procesos erosivos. 			
Suelos	 Propiedades físicas: Textura, estructura, porosidad y color. Propiedades químicas: Fertilidad, conductividad Unidades edafológicas Perfiles (estratos) Usos actuales y potenciales 			
Aire	PartículasRuidosGasesOlores			

Componente	Factor		
	• Factores hidrológicos: Caudales y niveles máximos,		
	mínimos y medios; red de drenaje, niveles freáticos,		
	escorrentía superficial.		
Agua (Superficial y	• Factores de calidad: olor, color, temperatura, turbidez,		
Subterránea)	transparencia, oxígeno disuelto, DBO, DQO.		
	• Usos actuales y potenciales. Transporte de		
	sedimentos.		
	• Factores hidráulicos: Velocidades, pendientes, Rugoso.		
	• Factores básicos: PH, Acidez, Alcalinidad, Dureza,		
	Sólidos, Coliformes, Carbono y nitrógeno orgánico total,		
	Carbono, fósforo y nitrógeno, Conductividad,		
	Sustancias, tóxicas y metales pesados, pesticidas y		
	plaguicidas.		
Paisaje	Calidad visual, color, unidades de paisaje.		

Fuente: Arboleda, 2008.

2.2.4. Estándar de Calidad Ambiental (ECA)

Se considera al ECA como la medida que establece el nivel de concentración o del grado de elementos, sustancias o parámetros físicos, químicos y biológicos, presentes en el aire, agua o suelo, en su condición de cuerpo receptor, que no presenta riesgo significativo para la salud de las personas ni al ambiente. Asimismo, se considera de carácter obligatorio en el diseño de las normas legales y las políticas públicas, así como un referente obligatorio en el diseño y aplicación de todos los instrumentos de gestión ambiental, (MINAM, 2017).

(a): Para aguas claras. Sin cambio anormal (para aguas que presentan coloración natural). (b): Después de filtración simple. (c): Para el riego de parques públicos, campos deportivos, áreas verdes y plantas ornamentales, sólo aplican los parámetros microbiológicos y parasitológicos del tipo de riego no restringido. Δ3: significa variación de 3 grados Celsius respecto al promedio mensual multianual del área evaluada.

Tabla 4: Valores de los Estándares de Calidad Ambiental (ECA) para Agua, correspondiente a la categoría 3 (Riego de vegetales y bebida de animales).

	Unidad de medida	D1: Riego de vegetales	D2: Bebida de animales
Parámetros		Agua para riego no riego restringido (c) restringido	Bebida de animales
FÍSICOS- QUÍMICOS			
Aceites y Grasas	mg/L	5	10
Bicarbonatos	mg/L	518	**
Cianuro Wad	mg/L	0,1	0,1
Cloruros	mg/L	500	**
Color (b)	Color verdadero Escala Pt/ Co	100 (a)	100 (a)
Conductividad	(μS/cm)	2 500	5 000
Demanda Bioquímica de Oxígeno (DBO ₅)	mg/L	15	15
Demanda Química de Oxígeno (DQO)	mg/L	40	40
Detergentes (SAAM)	mg/L	0,2	0,5
Fenoles	mg/L	0,002	0,01
Fluoruros	mg/L	1	**
Nitratos (NO ₃ ⁻ -N) +Nitritos (NO ₂ ⁻ -N)	mg/L	100	100
Nitritos (NO ₂ ⁻ -N)	mg/L	10	10

	Unidad de medida	D1: Riego de vegetales	D2: Bebida de animales
Parámetros		Agua para Agua para riego no riego restringido (c) restringido	Bebida de animales
Oxígeno Disuelto (valor mínimo)	mg/L	≥ 4	≥ 5
Potencial de Hidrógeno (pH)	Unidad de pH	6,5 – 8,5	6,5 – 8,4
Sulfatos	mg/L	1 000	1 000
Temperatura	°C	Δ3	Δ3
INORGÁNICOS			
Aluminio	mg/L	5	5
Arsénico	mg/L	0.1	0.2
Bario	mg/L	0.7	**
Berilio	mg/L	0.1	0.1
Boro	mg/L	1	5
Cadmio	mg/L	0.01	0.05
Cobre	mg/L	0.2	0.5
Cobalto	mg/L	0.05	1
Cromo Total	mg/L	0.1	1
Hierro	mg/L	5	**
Litio	mg/L	2.5	2.5
Magnesio	mg/L	**	250
Manganeso	mg/L	0,2	0,2
Mercurio	mg/L	0,001	0,01
Níquel	mg/L	0,2	1
Plomo	mg/L	0,05	0,05
Selenio	mg/L	0,02	0,05
Zinc	mg/L	2	24

	Unidad de medida	D1: Riego de vegetales		D2: Bebida de animales
Parámetros		Agua para riego no restringido (c)	Agua para riego restringido	Bebida de animales
ORGÁNICO				
Bifenilos Policlorado	os			
Bifenilos Policlorados (PCB)	μg/L	0,04	ļ	0,045
PLAGUICIDAS				
Paratión	μg/L	35		35
<u>Organoclorados</u>				
Aldrín	μg/L	0,004	4	0,7
Clordano	μg/L	0,000	6	7
Dicloro Difenil Tricloroetano (DDT)	μg/L	0,001		30
Dieldrín	μg/L	0,5		0,5
Endosulfán	μg/L	0,01		0,01
Endrin	μg/L	0,004	4	0,2
Heptacloro y Heptacloro Epóxido	μg/L	0,01		0,03
Lindano	μg/L	4		4
<u>Carbamato</u>				
Aldicarb	μg/L	1		11
MICROBIOLÓGICOS	Y PARASITOL			
Coliformes Termotolerantes	NMP/100ml	1 000	2 000	1 000
Escherichia coli	NMP/100ml	1 000	**	**
Huevos de Helmintos	Huevo/L	1	1	**

Fuente: MINAM (2017).

Nota 4: El símbolo ** dentro de la tabla significa que el parámetro no aplica para esta Subcategoría. Los valores de los parámetros se encuentran en concentraciones totales, salvo que se indique lo contrario.

2.2.5. Límites Máximos Permisibles (LMP) para la descarga de efluentes líquidos de Actividades Minero – Metalúrgicas

Medida de la concentración o del grado de elementos, sustancias o parámetros físicos, químicos y biológicos, que caracterizan al efluente líquido de actividades minero – metalúrgicas, y que al ser excedidas causa o puede causar daños a la salud, al bienestar humano y al ambiente. Su cumplimiento es exigible legalmente por el ministerio del ambiente y los organismos que conforman el sistema de gestión ambiental (MINAM, 2010).

Tabla 5: Límites máximos permisibles (LMP) para la descarga de efluentes líquidos de actividades minero – metalúrgicas.

Límites máximos permisibles (LMP)			
Parámetro	Unidad	Límite en Cualquier momento	Límite para el Promedio anual
рН	mg/L	6 – 9	6 – 9
Sólidos Totales en suspensión	mg/L	50	25
Aceites y Grasas	mg/L	20	16
Cianuro Total	mg/L	1	0.8
Arsénico Total	mg/L	0.1	0.08
Cadmio Total	mg/L	0.05	0.04
Cromo Hexavalente (*)	mg/L	0.1	0.08
Cobre Total	mg/L	0.5	0.4
Hierro (Disuelto)	mg/L	2	1.6
Plomo Total	mg/L	0.2	0.16
Mercurio Total	mg/L	0.002	0.0016
Zinc Total	mg/L	1.5	1.2

Fuente: MINAM, (2017)

(*) En muestra no filtrada

2.2.6. Calidad del Agua

La calidad del agua está fundamentada en el estudio de las características fisicoquímicas del agua que se encuentre en ambiente subterráneo, superficial o de precipitación pluvial. Para determinar si el agua es apta o no para el consumo humano, se debe determinar los requisitos de potabilidad, llamadas normas de calidad del agua, para así dotar a la población dicho líquido; sin embargo, en la actualidad el crecimiento de las ciudades y de la industria vierten sus aguas residuales sin tratamiento a las corrientes naturales como los ríos, lagos y lagunas lo que ha ocasionado la contaminación del líquido elemento que ya no es posible su aprovechamiento. El hombre se preocupa por la cantidad de agua y no por su calidad más cuando se presente con mayor incidencia la contaminación obligará al hombre a preocuparse también por su calidad de agua. Para conocer las características del agua es necesario realizar una serie de análisis y ensayos de laboratorio (Rodríguez, 2001).

Para verificar si el agua es o no apta para el consumo humano, debe satisfacer determinados requisitos de potabilidad, denominados normas de calidad de agua. Para conocer esto es necesario realizar determinados análisis como son: físicos, químicos, bacteriológicos, microscópicos y radiológicos.

2.2.7. Análisis Físicos

Estos análisis consisten en determinar la turbidez, color, olor, sabor y temperatura.

La turbidez se refiere a la materia orgánica en suspensión que puede estar conformada por arcillas, barros, materia orgánica y otros organismos microscópicos, etc.

El color proviene generalmente de la descomposición de materia vegetal o de las sales de hierro.

El olor y el sabor por su parte son dos sensaciones que tienen una relación íntima y van casi siempre unidos; sin embargo, a veces puede haber sabor en el agua sin que se aprecie olor alguno. No existe forma de medir el olor y el sabor, por lo tanto, en los análisis solo se indica si este es aromático, rancio, etc. (Rodríguez, 2001).

2.2.8. Análisis Químicos

En relación con el análisis químico se puede mencionar que tiene dos objetivos:

- Averiguar la composición mineral del agua y su posibilidad de empleo para la bebida, los usos domésticos o industriales.
- Averiguar los indicios sobre la contaminación por el contenido de cuerpos incompatibles con su origen geológico (Rodríguez, 2001).

2.2.9. Análisis con Sistemas de Información Geográfica (SIG)

Un SIG es un sistema que integra tecnología informática, personas e información geográfica, y cuya función principal es capturar, analizar, almacenar, editar y representar datos georreferenciados; asimismo se puede realizar análisis de dichos datos con el fin de obtener productos como mapas, planos, informes, gráficos, etc.

El análisis de los datos geográficos es, junto con la generación cartográfica, una de las tareas fundamentales sin las cuales el concepto de SIG no alcanzaría su verdadero significado (Olaya, 2020).

Morfología: Descripción de la forma y su identificación en las unidades geomorfológicas; cordillera (montaña), terrazas, valles, morrenas, colinas y laderas.

Morfogénesis: Afecta al origen, evolución del relieve y a los procesos que lo han modelado y actúan sobre él.

Morfocronología: Indica el período de formación y la ulterior evolución de las formas y procesos relacionados.

Morfometría: Afecta a las dimensiones de las formas. Los mapas topográficos pueden aportar valiosas informaciones en este sentido.

2.2.10. Pendientes

Se sabe que las pendientes son el grado de inclinación respecto el eje horizontal, sin embargo, en esta tesis se clasifica las pendientes según Walsh (2008) las pendientes son clasificadas en siete tipos, plana a casi nivel, ligeramente inclinada, moderadamente inclinada, fuertemente inclinada, moderadamente empinada, empinada y muy empinada, esto con el objetivo de poder darle un nombre a los grados de inclinación existentes en la geomorfología del área de estudio, por otro

lado esta técnica está asociada a un análisis basado en fotografías satelitales, por lo que es una ayuda al trabajo de campo.

2.2.11. Análisis morfométrico

El análisis morfométrico del modelo digital de elevaciones (MDE) estudia el relieve y la orografía de la superficie definida por este, caracterizándolo a través de parámetros adicionales. Se puede distinguir dos grupos de análisis principales, uno medidas geométricas y las otras medidas estadísticas.

Las medidas geométricas derivan de la caracterización matemática local del relieve, sobre la cual se aplican conceptos fundamentales de geometría diferencial. Estas medidas describen las propiedades geométricas de la porción de relieve contenida en la ventana de análisis.

Los parámetros geométricos más básicos parten del estudio de las derivadas parciales de primer orden de la superficie, y se obtienen a partir del gradiente de la superficie. A partir del gradiente se puede obtener dos propiedades, longitud o módulo y su dirección. Estas propiedades constituyen los dos parámetros más importantes para poder obtener la pendiente y la orientación (Ver Figuras 1 y 2).

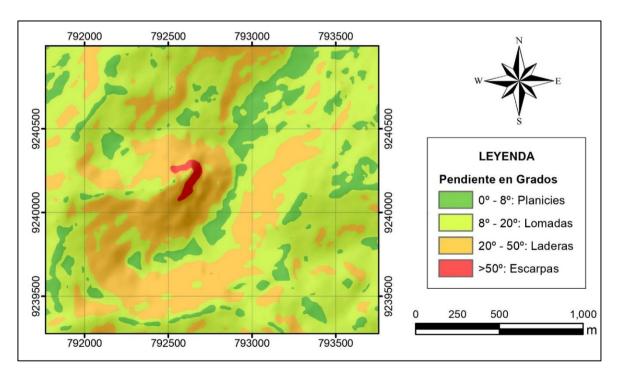


Figura 1: Capa de pendientes obtenida a partir del MDE.

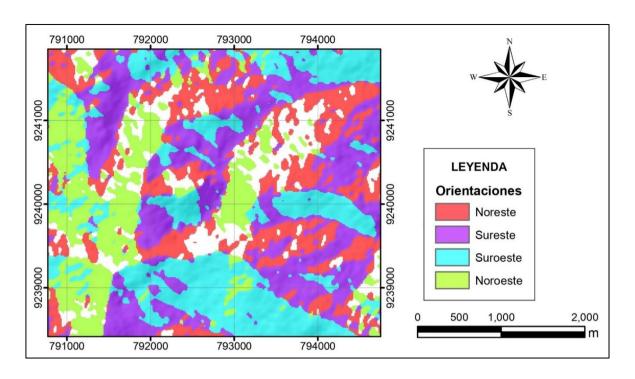


Figura 2: Capas de orientación de pendientes obtenida a partir del MDE.

2.3. DEFINICIÓN DE TÉRMINOS BÁSICOS

2.3.1. Agua Subterránea

Aquellas que, dentro del ciclo hidrológico, se encuentran en la etapa de circulación o almacenadas debajo de la superficie del terreno y dentro del medio poroso, fracturas de las rocas u otras formaciones geológicas, que para su extracción y utilización se requiere la realización de obras específicas (OEFA, 2017).

2.3.2. Cabecera

Área o región donde se encuentran las fuentes de agua que dan origen a las nacientes de un curso fluvial (Dávila, 2011).

2.3.3. Cuenca hidrológica

Red de drenaje superficial cuyas aguas desembocan a un canal principal. Ejm. Cuenca del Amazonas (Dávila, 2011).

2.3.4. Evaluación del riesgo ambiental

Es el proceso mediante el cual se determina si existe una amenaza potencial que comprometa la calidad del agua, aire o suelo, poniendo en peligro la salud del ser humano como consecuencia de la exposición a todos los productos tóxicos presentes en un sitio, incluyendo aquellos compuestos tóxicos presentes que son producto de actividades industriales ajenas al sitio o cualquier otra fuente de contaminación, y define un rango o magnitud para el riesgo (MINAM, 2010).

2.3.5. Muestreo de agua

Es una herramienta del monitoreo. Su función básica es la extracción de una parte del cuerpo de agua para determinar sus características y condiciones actuales (OEFA, 2014).

2.3.6. Nivel de Riesgo

Es la clasificación de alto, medio o bajo, que se asigna en función al valor numérico obtenido en la Estimación del Nivel de Riesgo Físico y Estimación del Nivel de Riesgo a la Sustancia (asociado a la salud y al ambiente), (OEFA, 2017).

2.3.7. Riesgo ambiental

Probabilidad de ocurrencia que un peligro afecte directa o indirectamente al ambiente y a su biodiversidad, en un lugar y tiempo determinado, el cual puede ser de origen natural o antropogénico (MINAM, 2010).

2.3.8. Unidad Geomorfológica

Describe las formas o relieve del paisaje de una región. En la descripción fisiográfica se refiere al relieve accidentado, picos, montañas, llanuras, valles, ríos y todas las formas de relieve de una región (Gutierrez, 2008).

CAPÍTULO III MATERIALES Y MÉTODOS

3.1. UBICACIÓN DE LA INVESTIGACIÓN

3.1.1. Geográfica

La ubicación geográfica del área de estudio, el sistema de coordenadas geográficas UTM (Universal Transversal de Mercator), DATUM WGS-84, Zona 17S está dada por las siguientes coordenadas, que se presentan en la Tabla Nº 6.

Tabla 6: Coordenadas en el sistema UTM del área de estudio.

Vértice	Latitud	Longitud
1	9241630	790355
2	9242530	792434
3	9242010	795055
4	9242810	796967
5	9241240	797613
6	9238640	791641

Figura 3: Delimitación del área de estudio del Centro Poblado Santa Rosa. Fuente: Google Earth (2023).

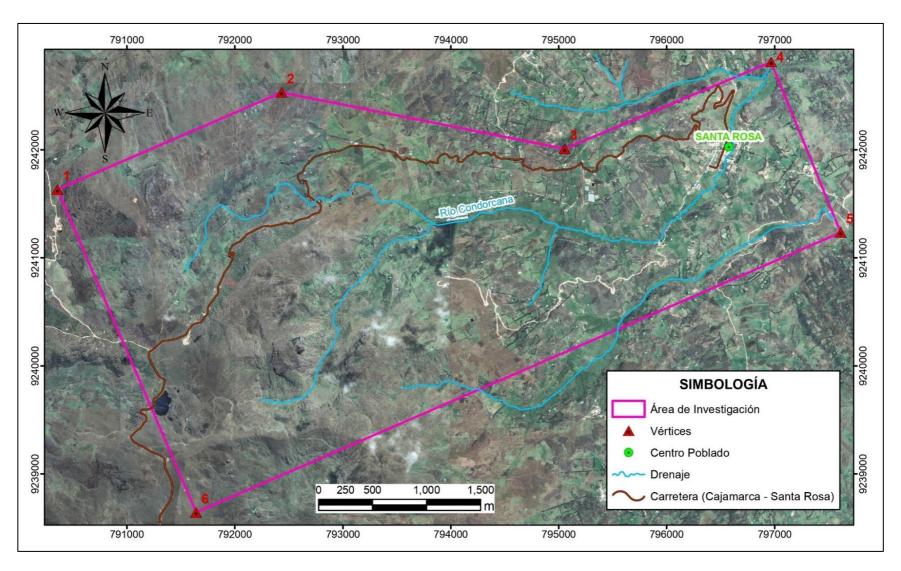


Figura 4: Imagen satelital del área de estudio con sus respectivos vértices.

3.1.2. Política

La ubicación política del área de estudio se ubica al noroeste del territorio peruano, en la región Cajamarca, provincia de Celendín, distrito de Huasmín, centro poblado Santa Rosa (Ver Plano N°1).

3.1.3. Accesibilidad

Para acceder al área de estudio se cuenta con tres accesos que se describen a continuación:

Tabla 7: Accesos al área de estudio.

Accesos	Tramo	Tipo de vía	Distancia(km)	Tiempo (minutos)
	Cajamarca- Desvío Sorochuco	Asfaltada	80.7	108
01	Desvío Sorochuco- Área de estudio	Afirmada	44.8	116
	Cajamarca- Otuzco	Asfaltada	10.2	24
02	Otuzco -Área de estudio	Afirmada	56.1	146
	Cajamarca-Desvío Matías	Asfaltada	42.3	69
03	Desvío Matías- Área de estudio	Afirmada	59.9	121

3.2. PROCEDIMIENTO DE RECOPILACIÓN DE DATOS

Los procedimientos para adquisición, análisis e interpretación de la información se llevaron a cabo a partir de herramientas, métodos y técnicas, que están comprendidas dentro de etapas de gabinete y campo las cuales se detallan a continuación:

3.2.1. Primera Etapa de Gabinete

En esta primera fase se realizó la compilación bibliográfica que consistió en la búsqueda de informes, tesis y artículos referentes a estudios geológicos, geomorfológicos, hidrogeológicos, hidrológicos y ambientales; asimismo, se realizó un análisis mediante ArcGIS. de imágenes satelitales para la delimitación del área del trabajo.

3.2.2. Etapa de Campo

Comprendió las salidas al área de estudio; inicialmente salida a campo con un reconocimiento general del área considerando rutas de acceso y afloramientos geológicos de interés, esto apoyado de materiales como imágenes satelitales y planos topográficos. Para una siguiente ocasión se procedió a realizar el cartografiado geológico y geomorfológico a detalle; de igual manera se llevó a cabo el inventariado de los manantiales de agua y la extracción de muestras de agua de puntos estratégicos, considerando criterios de ubicación e importancia.

La extracción de muestras de agua se realizó mediante el método de toma manual y se llevó a cabo mediante el siguiente procedimiento:

Establecimiento de los puntos de muestreo, considerando los criterios de ubicación, importancia y mayor vulnerabilidad de los manantiales o red de drenaje a ser afectados por la implantación del proyecto El Lindero.

Se establece el periodo de muestras, considerando las estaciones del año y las épocas de estiaje y lluvias.

Se determina los parámetros fisicoquímicos a analizar, usando los equipos manuales de campo tales como pH metro digital, frascos de plástico, guantes, marcador de frascos entre otros y para llevar a cabo el análisis de laboratorio se considera condiciones adecuadas de transporte y conservación de las muestras, para evitar alguna inestabilidad o contaminación de estas.

3.2.3. Segunda Etapa de Gabinete

Para esta etapa se realizó el procesamiento de la información adquirida en campo para poder estimar el nivel de riesgo ambiental que generaría la implantación del proyecto El Lindero.

En relación con las muestras de agua se realizó la comparación de los resultados obtenidos del laboratorio con los estándares de calidad ambiental y con los límites máximos permisibles, de tal manera que se conozca la calidad de las aguas del área de estudio a través de gráficos estadísticos.

También se elabora los planos temáticos los cuales tendrían que ser plasmados en el trabajo de investigación, usando el procesador de textos software Microsoft Office Word y los softwares SIG tales como Google Earth pro, SASPlanet y ArcGIS 10.5.

3.3. METODOLOGÍA

3.3.1. Tipo de investigación

El tipo de investigación según el nivel de investigación es descriptiva, explicativa y analítica, pues consiste en la caracterización de un evento según parámetros, con el fin de establecer el comportamiento del objeto de estudio. En relación con el diseño de investigación esta es no experimental de campo, porque se observan los fenómenos o acontecimientos tal y como se dan en su contexto natural, para después analizarlos sin que haya habido una alteración en el objeto de estudio; para mayor entendimiento se sintetiza en la Tabla 8.

Tabla 8. Clasificación y tipo de investigación.

CLASIFICACIÓN	TIPOS DE INVESTIGACIÓN
Según el nivel	Descriptiva, explicativa y analítica
Según el diseño	No experimental de campo
Según su naturaleza o modo	Cualitativo, cuantitativo
Según la finalidad	Aplicada (tecnológica)
Según el período	Transversal en el tiempo

Fuente: Modificado de Supo, (2016).

3.3.2. Población

La población de estudio está conformada por el Centro Poblado Santa Rosa Distrito de Huasmín con un área de 15.4 km².

3.3.3. Muestra

La hidrología, geología, morfología, características fisicoquímicas del río Condorcana y manantiales que conforman la microcuenca Condorcana.

3.3.4. Unidad de Análisis

Características Hidrológicas; Niveles de agua, manantiales, caudales, litología. Fisicoquímicas; PH, turbidez, conductividad, dureza, hierro, zinc sulfatos, nitratos. Unidades geomorfológicas montañas, colinas, lomadas, planicies terrazas fluviales las que conforman la microcuenca Condorcana.

3.4. TÉCNICAS

Las técnicas para la recolección de datos son basadas en el análisis documental y observación; tomas fotográficas y análisis fisicoquímico. Instrumentos, plano hidrológico que delimita la microcuenca, planos geológicos y libreta de campo para registrar datos de litología, imágenes satelitales y GPS. para la georreferenciación y puntos de muestreo. fichas de recolección de datos para el monitoreo de aguas, se preparó un instrumento de recolección de datos para el control de las muestras y el envío a laboratorio.

3.5. EQUIPOS, MATERIALES E INSTRUMENTOS

Para el desarrollo de la investigación se utilizó los siguientes equipos y materiales:

3.5.1. Equipos

Sistema de Posición Global (GPS): Útil para la ubicación de los puntos de muestreo.

Laptop HP: Para procesar la información y generar los planos temáticos a través de los softwares instalados.

Cámara Digital: Para el registro fotográfico.

Brújula Brunton: Para realizar mediciones de rumbo y buzamiento de las estructuras geológicas.

Picota geológica: Para la extracción de muestra de mano de rocas.

Lupa 20x: Equipo necesario para visualizar el tamaño de grano y minerales presentes en las rocas.

Reloj numérico: Para determinar el caudal de los afluentes.

3.5.2. Materiales

Plano topográfico e imagen satelital base: Materiales para poder realizar el cartografiado geológico y geomorfológico.

Libreta de campo: Para anotación de puntos, coordenadas y descripciones de lo visualizado en campo.

Frascos de plástico: Para la recolección de muestras de agua.

Ácido clorhídrico: En concentración al 10% para comprobar carbonatos In Situ.

Lápiz, lapiceros y marcadores: Para anotar, graficar y diseñar un esbozo de la geología y geomorfología en campo.

Baldes plásticos: Para realizar la medición de caudal de los manantiales.

3.5.3. Instrumentos

Multiparámetro Digital HI 9829: Para determinar el pH en campo de los puntos de muestreo de agua.

Fotómetro: Para medir el pazo de luz con respecto a las muestras de cada uno de los manantiales.

Turbidímetros: Para medir la turbidez de las aguas de los manantiales más representativos.

Termómetros: Para medir la temperatura de cada una de las muestras recogidas en campo.

3.5.4. Clima y temperatura

El clima es templado, seco, la temperatura media en las zonas altas es de 5°C, mientras en las zonas intermedias es de 13.5 °C, la cual tiene poca variación a lo largo del año, las lluvias se presentan entre los meses de setiembre a abril, las cuales en muchos casos son de carácter torrencial, y los meses más fríos son de junio a agosto, con presencia de heladas por las bajas temperaturas (Asociación de Agentes Comunales de Salud de Celendín, 2018).

3.6. DESCRIPCIÓN DEL PROYECTO EL LINDERO

El proyecto el Lindero se ubica en la cabecera de la microcuenca Condorcana cubierta por flujos de lava, materiales piroclásticos instruidos por cuerpos dioríticos dacíticos relacionados a una intensa actividad ígnea y depósitos cuaternarios que sobreyacen en discordancia con estas secuencias. El Proyecto el Lindero presenta depósitos polimetálicos de oro y plata encontrándose una estructura mineralizada tipo filoneado en forma de vetas, asociados a los óxidos y sulfuros como la pirita y argentita perteneciente a la Formación volcánico Porculla (Nm-vp) y Formación Volcánico Huambos (Nm-vh).

Para determinar un aproximado porcentaje de las leyes de mineral de dicho proyecto se realizó un muestreo de roca in situ obteniendo como resultados los siguientes valores: M1-Au 0.26(g/tn) y Ag 9.14(g/tn); M2- Au 0.21 (g/tn) y Ag 28.19(g/tn); M3- Au 0.23 (g/tn) y Ag 17.77(g/tn), mediante análisis en G&S Laboratory análisis de minerales e investigaciones metalogénicas, para mayor detalle ver (ANEXO 3).

En la actualidad el proyecto El Lindero se encuentra en proceso de factibilidad por temas sociales debido a que es clasificado como gran minería, sin embargo, viene siendo desarrollado por la minería artesanal de manera informal e ilegal. Ante ello, a continuación, mostraremos la siguiente tabla de valoración de los riesgos. Resaltando que la valoración realizada es estimada:

Tabla 9: Riesgos de origen humano y natural existentes en el Proyecto El Lindero

RIESGOS			
RIESGOS ANTRÓPICOS	PROBABILIDAD		
Riesgos en transporte por carretera	Alto		
Riesgos de incendios	Bajo		
Urbanos	Medio		
Industriales	Medio		
Riesgos de concentraciones humanas	Bajo		
Riesgos de transporte de mercancías	Medio		
peligrosas por carretera			
Agua	Alto		
Riesgos por derrumbamientos	Alto		

RIESGOS			
RIESGOS DE ORIGEN NATURAL	PROBABILIDAD		
Inundaciones	Bajo		
Sequias	Medio		
Sismos	Bajo		
Deslizamientos de tierras	Medio		
Vientos	Medio		

Fuente: Elaboración propia.

3.6.1. Riesgos geoambientales del proyecto el lindero

3.6.1.1. Evaluación de Riesgos Geoambientales del Proyecto El Lindero

Para evaluar los riesgos geoambientales se necesita identificar todos los peligros posibles generados por la actividad, esta identificación se logra a partir de la revisión de la información recopilada en las fases previas y la visita directa al lugar del proyecto.

Identificados todos los peligros potenciales, se formuló escenarios de riesgo para cada uno, donde se estimará posteriormente la probabilidad de materializarse y la gravedad de las consecuencias.

Para la formulación de escenarios, se emplea una tabla de doble entrada donde en la primera columna se coloca los riesgos geoambientales como: geológicos, geomorfológicos e hidrológicos, la cual ha sido identificada previamente; a esta columna se asocian las filas que sean necesarias colocando los componentes trascendentales de la mencionada actividad y que generen el riesgo geoambiental como: Causas, efectos/impactos y acciones /estrategias.

Tabla 10: Evaluación de riesgos geoambientales.

Riesgos	Causas	Impactos/Efectos	Estrategias/Acciones
Riesgos	 Causas Vertimiento de aguas residuales. Lluvias torrenciales Presencia de agua en macizos rocosos. 	 Impactos/Efectos Contaminación de las vertientes de agua. Perdida de caudal de la microcuenca Condorcana. Pérdida de manantiales. Alteración de parámetros LMP y ECA. 	 Uso racionable de las fuentes de agua. Gestionar a través de la Autoridad Local de Agua el análisis de agua de los manantiales. Monitoreo permanente de parámetros fisicoquímicos. Planta de
Geomor - fológico	Desprendimient o de rocas.Deslizamientos.	 Alteración de unidades Morfogenéticas. Alteración de unidades Geomorfológicas. Subsidencias. Erosión. 	tratamiento de agua. Implementar un plan de sembrío de pasturas. Implementar un plan de cierre de mina adecuado. Monitoreo de la remediación del relieve.
Geológico	 Reducción de la estabilidad de las rocas. Presencia de fallas geológicas activas. Expansividad de suelos. 	 Desaparición de las rocas. Alteración del suelo. Fallamiento en la superficie. 	 Monitoreo ambiental permanente a las zonas de actividad.

Fuente: Elaboración propia.

3.6.1.2. Estimación de riesgos geoambientales

El producto de la probabilidad y la gravedad de las consecuencias anteriormente estimadas, permite la estimación de riesgo geoambiental. Éste se determina para los tres entornos considerados, Hidrológicos, Geomorfológicos y Geológicos.

Para la evaluación del riesgo geoambiental se elaboró una tabla de doble entrada, para cada entorno (Hidrológico, Geomorfológico y Geológico), en las que gráficamente debe aparecer cada escenario teniendo en cuenta su probabilidad y consecuencias, resultado de la estimación de riesgo realizado.

Tabla 11: Estimación del riesgo geoambiental.

			Consecuencia	
		Insignificante	Moderado	Mayor
Probabili	dad	2	4	6
Posible	1	В	M	М
Probable	e 2	M	А	А
Seguro	3	М	А	E
B=Bajo N	M=Medio	A=Alto E=Extremo	Riesgo = Probabilidad	*Consecuencia

Símbolo	Nivel de riesgo
В	Riesgo Bajo
M	Riesgo Medio
Α	Riesgo Alto
E	Riesgo Extremo

Fuente: Modificado de (MINAM, 2010).

3.7. MARCO HIDROLÓGICO

3.7.1. Relación entre aguas subterráneas y superficiales

3.7.1.1. Manantiales

Un manantial puede definirse como un punto de la superficie del terreno que de modo natural descarga a la superficie una cantidad determinada de agua, procedente de un acuífero o embalse subterráneo. La descarga de estos acuíferos no se efectúa únicamente mediante los manantiales, sino que también puede

producirse mediante evaporación al estar en contacto la zona saturada con la superficie del terreno. En ocasiones, la descarga del embalse subterráneo se realiza mediante la evapotranspiración de las plantas cuyas raíces alcanzan la zona saturada. Los términos fuente y manantial son sinónimos, si bien el primero puede referirse también a las captaciones subterráneas y el uso del segundo se reduce exclusivamente a las surgencias naturales.

3.7.1.2. Clasificación de manantiales

Para clasificar a los manantiales existen diferentes criterios, pero en esta tesis consideraremos el tipo de materiales geológicos que constituyen el acuífero, el terreno, el caudal o según la composición fisicoquímica y la temperatura de sus aguas.

Manantiales de ladera

Son aquellos donde la superficie inclinada del terreno se intercepta con una capa permeable. Se encuentran en zonas donde existe contacto entre formaciones que son permeables e impermeables. Este tipo de manantial proporciona grandes caudales, por el reducido tamaño de embalse subterráneo que drena.

Manantiales de valle

Este tipo de manantial está presente en las depresiones o en los valles, en donde el nivel freático alcanza la superficie topográfica.

Manantiales intermitentes

En estos manantiales el caudal pasa de ser nulo o escaso a ser uno de los más importantes durante un corto periodo de tiempo, debido a que su descarga se hace a través de un sifón. Son exclusivos de las formaciones calcáreas karstificadas.

Manantiales de fractura

El almacenamiento y circulación de agua en las rocas ígneas y metamórficas se realiza a través de las zonas que presentan fracturas, fallas o diaclasas. Por lo que este tipo de acuíferos son de un caudal reducido y suelen extinguirse en verano, cuando se descarga el agua que se había almacenado en el plano de fractura.

3.7.2. Relación entre la escorrentía superficial y subterránea

El agua que los manantiales liberan suele tener como destino de manera directa o

indirecta a un curso superficial. Los ríos obtienen su caudal principalmente de la

escorrentía de las aguas de lluvia y del deshielo de la nieve, no obstante, también

incluyen a las aguas que ha circulado en el interior de rocas del subsuelo, pero que

no han llegado a alcanzar la zona saturada de los acuíferos subterráneos.

Para poder describir y estudia el aporte del agua subterránea se puede evaluar la

aportación de agua que libera un manantial y considerarla que esta va de manera

directa a un rio, o de manera contraria, que una cantidad de agua superficial aporta

a un embalse subterráneo. Es fundamental conocer el tipo de conexión hidráulica

que hay entre ambos.

3.7.3. Medida de caudales

3.7.3.1. Aforo

Es la acción de medir el caudal. Es necesario medir el caudal de pequeños, hasta

de grandes ríos. En esta investigación se utilizó el método de aforo directo con un

aparato o procedimiento que mide directamente el caudal.

Esto se basa en medir la velocidad del agua y aplicar la ecuación siguiente:

$$Q = V/t$$

$$Q = Lts/Seg$$

Donde:

Q: caudal (Lts/seg.)

V: Volumen (Lts)

t: Tiempo promedio de llenado de agua (seg.)

Procedimiento

Para medir la cantidad de agua que vierte cada manantial correspondiente a las

estaciones de las muestras tomadas, se realizó tres mediciones en cuanto a

volumen y tiempo para así obtener el caudal (Ver figura 6).

32

La medida de velocidades se realiza de manera reiterada con la finalidad de disminuir el error, luego con las velocidades o con la medida del canal ya obtenido como un valor preestablecido, se obtiene el caudal aplicando la formula.

Figura 5: Método directo de aforo de caudal del manantial.

3.7.4. Inventario y características fisicoquímicas de los manantiales

Tener un inventario de los manantiales con sus características es muy importante para monitorear la extensión y el estado de todos estos. Por ello, en a continuación se enumerarán cada uno de los manantiales existentes en el área de estudio, de los cuales se presentará la información sobre análisis fisicoquímicos y bacteriológicos de solo siete de ellos, debido a que esto nos servirá como una muestra de referencia de las condiciones de estos en la zona, la información de características fisicoquímicas y bacteriológicas han sido obtenidas de los resultados de las muestras que se ordenaron a analizar a la empresa INGECONSULT & LAB S.R.L., en estas tablas solo se detallan parámetros importantes, los resultados completos se encuentran en los anexos, a continuación se muestra la tabla con el inventario de todos los manantiales, acompañada de las tablas donde se resume los análisis fisicoquímicos y bacteriológico de los siete manantiales analizados, en época de estiaje y de lluvia.

Nota: Método directo de aforo del caudal para todos los manantiales inventariados.

Tabla 12: Manantial el Rrache.

MANANTIAL EL RRACHE				
MANIFESTACIÓN	COORDENADAS			
MAIN ESTACION	N: 9241907	E: 795358	COTA:3600	(m.s.n.m)
CÓDIGO: M-8	FOTOGRAFÍA:			
FECHA: 08/05/2023		- ALL	XIM "	被范
LOCALIZACIÓN: Se ubica en el Caserío denominado Minas conga y Alto Santa Rosa a 5 metros de la trocha carrozable que conduce de Cajamarca hacia El Centro Poblado Santa Rosa.				
TIPO DE MANIFESTACIÓN	REGIMEN	US	80	OBRAS
Manantial	Permanente	Doméstico y	regadío.	ND
OBSERVACIONES: La naciente de dicho manantial se encuentra entre depósitos				
coluviales y rocas de la Formación Yumagual.				

Tabla 13: Manantial el Chorro.

MANANTIAL EL CHORRO				
MANIFESTACIÓN	COORDENADAS			
MIZITI ESTACION	N: 9240866	E: 792783	COTA:3450 (m.s.n.m)	
CÓDIGO: M-9	FOTOGRAFÍA:			
FECHA: 08/05/2023		DEAD		
LOCALIZACIÓN:				
Se ubica en las Cabeceras de				
la microcuenca la				
Condorcana				
aproximadamente 500 metros				
de la vertiente principal.				

MANANTIAL EL CHORRO			
TIPO DE MANIFESTACIÓN	REGIMEN	USO	OBRAS
Manantial	Permanente	Regadío.	ND

OBSERVACIONES: También se ha identificado un manantial de régimen temporal a unos 50 metros de éste, con un caudal menor a que se encuentra en esta manifestación.

Fuente: Modificado de Aguilar (2018).

Tabla 14: Manantial la Pajuela.

Tabla 14. Mahahilal la Pajuela.				
MANANTIAL LA PAJUELA				
MANIFESTACIÓN		COORDENADAS		
MARII ESTAGION	N: 9240818	E: 793828	COTA: 3815 (m.s.n.m)	
CÓDIGO: M-10		FOTOG	RAFÍA:	
FECHA: 08/05/2023				
LOCALIZACIÓN:				
Se ubica en el Caserío la	Tones.			
Pajuela a 20 metros de la				
Institución Educativa Inicial y		37	The state of the s	
Primaria del mismo nombre.				
TIPO DE MANIFESTACIÓN	REGIMEN	USO	OBRAS	
Manantial	Permanente	Agrícola	ND	
OBSERVACIONES: El manantial se encuentra en depósitos de rocas volcánicas en				
una zona de baja pendiente y varia su caudal durante el tiempo de estiaje.				

Tabla 15: Manantial Peña Blanca 2.

MANANTIAL PEÑA BLANCA 2					
MANIFESTACIÓN	COORDENADAS				
MARII ESTASION	N: 9239906	E: 792988	COTA: 3850 (m.s.n.m.)		
CÓDIGO: M-11		FOTOGE	RAFÍA:		
FECHA: 08/05/2023		测型与			
LOCALIZACIÓN:					
Se ubica a 40 metros del	N €	- 7			
manantial Peña Blanca 1,					
entre los Caseríos la					
Primavera y La Pajuela ambos					
pertenecientes al Centro					
Poblado Santa Rosa.					
TIPO DE MANIFESTACIÓN	REGIMEN	USO	OBRAS		
Manantial	Permanente	Agrícola	ND		
OBSERVACIONES: El manantial se encuentra en El Volcánico Huambos cubierto con					
herbáceas y pajonales e ichu característicos de la zona.					

Tabla 16: Manantial el AVA.

MANANTIAL EL AVA					
MANIFESTACIÓN		COORDENADAS			
MIZITI ESTACION	N: 9240702	E: 794881	COTA:3650 (m.s.n.m)		
CÓDIGO: M-12		FOTOG	RAFÍA:		
FECHA: 08/05/2023	The second second				
LOCALIZACIÓN: Se ubica en la parte baja del Caserío la Pajuela 400 metros del Manantial Las Huacas.					

MANANTIAL EL AVA			
TIPO DE MANIFESTACIÓN	REGIMEN	USO	OBRAS
Manantial	Permanente	Doméstico y agrícola	ND

OBSERVACIONES: Este manantial se encuentra en depósitos cuaternarios de la Formación Pulluícana, presenta un caudal bajo con un cauce en dirección a la quebrada las Huacas.

Fuente: Modificado de Aguilar (2018).

Tabla 17: Manantial el Pozo.

MANANTIAL EL POZO					
MANIFESTACIÓN	COORDENADAS				
MANII ESTACION	N:9239790	E:792995	COTA:	3645 (m.s.n.m.)	
CÓDIGO: M-13		FOTOG	SRAFÍA:		
FECHA: 08/05/2023		The same of	INIA IL		
LOCALIZACIÓN:		NAME OF THE OWNER, OWNE	47.0		
Se ubica en la parte baja del			100	1	
Caserío la Pajuela 200 metros	19040				
del Manantial Las Huacas y a	N. 13				
50 metros de la captación que			E Has	To the second	
suministra al caserío la victoria.	Since Since				
TIPO DE MANIFESTACIÓN	REGIMEN		USO	OBRAS	
Manantial	Perm	anente	Agrícola	ND	

OBSERVACIONES: El manantial se encuentra entre las rocas calizas de la Formación Pulluicana es utilizado frecuentemente para bebedero de animales bovinos y lavadero de prendas de vestir.

Tabla 18: Manantial la Cortadera.

MANANTIAL LA CORTADERA				
MANIFESTACIÓN	COORDENADAS			
MANII ESTACION	N: 9240571	E: 793328	COTA: 3785 (m.s.n.m.)	
CÓDIGO: M-14		FOTOGRA	AFÍA:	
FECHA: 08/05/2023		The state of the s		
LOCALIZACIÓN:	_			
Se ubica en la parte alta del				
Centro Poblado Santa Rosa,				
hacia el flanco izquierdo del				
rio Condorcana en las	20			
planicies generadas por el				
cauce del rio del mismo				
nombre.				
TIPO DE MANIFESTACIÓN	REGIMEN	USO	OBRAS	
Manantial	Permanente	Regadío y agrío	cola ND	
OBSERVACIONES: Este manantial se encuentra en una zona pantanosa entre los				
depósitos de rocas volcánicas, actualmente viene siendo captado para el consumo				
doméstico del Caserío la Pajuela.				

Tabla 19: Manantial la Cueva.

MANANTIAL LA CUEVA					
MANIFESTACIÓN		COORDE	ENADAS		
MANI ESTACION	N: 9241228	E: 795518	COTA: 3525 (m.s.n.m.)		
CÓDIGO: M-15	FOTOGRAFÍA:				
FECHA: 08/05/2023					
LOCALIZACIÓN:					
Ese manantial se ubica a 100		7 72			
metros del manantial ojo de agua	***				
y a 60 metros del rio		bloc A			
Condorcana, iniciando el curso	S. Land				
bajo del río Condorcana.		3			

MANANTIAL LA CUEVA			
TIPO DE MANIFESTACIÓN	REGIMEN	USO	OBRAS
Manantial	Permanente	Agrícola	ND

OBSERVACIONES: El manantial se encuentra entre las rocas calizas de la Formación Pulluicana, mantiene un caudal bajo durante todo el año.

Fuente: Modificado de Aguilar (2018).

Tabla 20: Manantial El López.

·	abia 20. Mari	antiai Ei Eopo	· - ·	
MANANTIAL EL LÓPEZ				
MANIFESTACIÓN	COORDENADAS			
	N: 9241639	E: 794302	COTA:	3675 (m.s.n.m.)
CÓDIGO: M-16		FOTO	GRAFÍA:	
FECHA: 08/05/2023				等於例外 對為於
				人。不然为
LOCALIZACIÓN:		中國文		
Este manantial se ubica en				Porting William
la parte baja del Caserío de				
Minas conga dentro de la		A line		
zona denominada Segundo			1	
López.				A A A A A A A A A A A A A A A A A A A
	经外支			
,				
TIPO DE MANIFESTACIÓN	REGIMEN	USO		OBRAS
Manantial	Permanente	Agrícola	a y	ND
		Ganade	era	IND
OBSERVACIONES: Este manantial presenta un caudal bajo y se encuentra en				

Fuente: Modificado de Aguilar (2018).

depósitos cuaternarios de la Formación Pulluicana.

Tabla 21: Manantial el Chichayro.

MANANTIAL EL CHICHAYRO				
MANIFESTACIÓN	COORDENADAS			
MANI LOTACION	N: 9241209	E: 795321	COTA: 3550	(m.s.n.m.)
CÓDIGO: M-17		FOTOG	RAFÍA:	
FECHA: 08/05/2023				
LOCALIZACIÓN: Este manantial a 500 metros del manantial la cueva presenta un caudal inestable durante el año.				
TIPO DE MANIFESTACIÓN	REGIMEN		USO	OBRAS
Manantial	Inestable	Domés		ND
OBSERVACIONES: Este manantial fue captado para el consumo de la población del				

OBSERVACIONES: Este manantial fue captado para el consumo de la población del Centro Poblado Santa Rosa, su caudal es bajo durante el verano.

Tabla 22: Manantial la Toma.

MANANTIAL LA TOMA					
MANIFESTACIÓN	COORDENADAS				
MARIN ESTACION	N: 9241547	E: 794111	COTA:3676 (m.s.n.m.)		
CÓDIGO: M-18		FOTOG	BRAFÍA:		
FECHA: 08/05/2023			A Parameter of		
	100 Kg				
LOCALIZACIÓN:	1000				
Se ubica en la parte alta del					
caserío Minas conga junto a					
la empresa de ROSAS E	*				
INVERNADEROS SAC.					

MANANTIAL LA TOMA					
TIPO DE	REGIMEN	USO	OBRAS		
MANIFESTACIÓN	KLOIMLIA	000	OBINAS		
Manantial	Inestable	Regadío.	ND		

OBSERVACIONES: Este manantial se encuentra entro de depósitos cuaternarios de la Formación Yumagual actualmente viene siendo captado para regadío y bebedero de animales vacunos.

Fuente: Modificado de Aguilar (2018).

Tabla 23: Manantial el Pajas.

MANANTIAL EL PAJAS					
		COORDENADAS			
MANIFESTACIÓN	N: 9241278	E: 793950	COTA: 3674		
	14. 5241276	L. 700000	(m.s.n.m.)		
CÓDIGO: M-19		FOTOGRAF	ÍA:		
FECHA: 08/05/2023			AND THE PARTY OF		
	Value of the second	THE PARTY OF	A Death of Death		
LOCALIZACIÓN:	公主会		THE CO.		
Se ubica en la parte baja del		A Value			
Caserío La Pajuela a 40	- W. T. V.	Mark Mark	TO SEE VIND		
metros de la vertiente del río					
Condorcana.		all all			
			A THE REST		
TIPO DE MANIFESTACIÓN	REGIMEN	USO	OBRAS		
Manantial	Inestable	Regadío y Agríco	ola ND		

OBSERVACIONES: Este manantial se encuentra a 5 metros del contacto entre de Formación Huambos y la Formación Pulluicana es un caudal estable todo el año sirve como bebedero de animales vacunos.

Tabla 24: Manantial el Coyuntas.

MANANTIAL EL COYUNTAS					
	COORDENADAS				
MANIFESTACIÓN	N: 9240294	E: 794815	COTA:	3700	
	14. 5240254	L. 754010	(m.s.n.m.)		
CÓDIGO: M-20		FOTOGRA	FÍA:		
FECHA: 08/05/2023					
LOCALIZACIÓN:					
Se ubica hacia el flanco					
izquierdo del río Condorcana					
en la parte baja del Centro					
Arqueológico del Caserío La			三、 傳		
Pajuela.			1		
TIPO DE MANIFESTACIÓN	REGIME	N	USO	OBRAS	
Manantial	Inestable	•	Regadío.	ND	
OBSERVACIONES: Es un man	antial que preser	nta un bajo ca	udal en todo e	el año, se	

encuentra bajo los depósitos cuaternarios de la Formación Pulluicana.

Tabla 25: Manantial los Indios.

MANANTIAL LOS INDIOS				
MANIFESTACIÓN	COORDENADAS			
MIZITI ESTACION	N: 9240544	E: 795069	COTA: 3625 (m.s.n.m.)	
CÓDIGO: M-21		FOTOG	RAFÍA:	
FECHA: 08/05/2023		N CONTRACTOR		
LOCALIZACIÓN:				
Se localiza en la parte		沙)入教		
media de la microcuenca		/ / / / / / / / / / / / / / / / / / /		
en el límite entre el Caserío	No.	1		
la Pajuela y el Caserío la		THE STATE OF THE S		
Primavera.				

MANANTIAL LOS INDIOS					
TIPO DE MANIFESTACIÓN	REGIMEN	uso	OBRAS		
Manantial	Inestable	Regadío y ganadero	ND		

OBSERVACIONES: Sus aguas son vertidas hacia el sumidero que acarrea las aguas arriba del Caserío la Victoria.

Fuente: Modificado de Aguilar (2018).

Tabla 26: Manantial la Piedra Grande.

rabia 20	rabia 20. Manantial la Ficara Grande.				
MANANTIAL LA PIEDRA GRA	NDE				
		COORDEN	IADAS		
MANIFESTACIÓN	N: 9241388	E: 794781	COTA:	3575	
	N. 9241300 E. 794701	(m.s.n.m.)			
CÓDIGO: M-22		FOTOGRA	AFÍA:		
FECHA: 08/05/2023			1475		
LOCALIZACIÓN: Se ubica en la parte alta de la quebrada las Huacas hacia el flanco izquierdo del rio Condorcana a 10 metros de éste.					
TIPO DE MANIFESTACIÓN	REGIMEN	US	60	OBRAS	
Manantial	Inestable	Rega	dío y	ND	
Mananaa	modubio	gana	dero	110	
OBSERVACIONES: Se caracteriza por tener un caudal bajo y mantenerse durante					
todo el año, se encuentra empla	zado en depósit	os cuaternario	S.		

Tabla 27: Manantial el Pepe.

MANANTIAL EL PEPE COORDENADAS MANIFESTACIÓN N: 9241437 E: 794027 COTA: 3634 (m.s.n.m.) FOTOGRAFÍA: CÓDIGO: M-23 FECHA: 08/05/2023 LOCALIZACIÓN: Se ubica a 30 metros de la empresa ROSAS E INVERNADEROS SAC. TIPO DE MANIFESTACIÓN REGIMEN USO **OBRAS** Manantial Inestable Ganadero ND

OBSERVACIONES: Es un manantial que se muestra de manera pantanosa durante la etapa de lluvias y estiaje mayormente sirve para bebedero de animales vacunos.

Tabla 28: Manantial el Choco.

MANANTIAL EL CHOCO				
MANIFESTACIÓN		COORDENADAS		
MARII ESTACION	N: 9241425	E: 793898	COTA: 3652 (m.s.n.m.)	
CÓDIGO: M-24		FOTOG	BRAFÍA:	
FECHA: 08/05/2023	TA			
	1 Car			
LOCALIZACIÓN:				
Se ubica a 100 metros de	100	de Arministra		
distancia entre el manantial	-			
el Pepe y la empresa				
ROSAS E		4		
INVERNADEROS SAC.		E TO IT		
	deme of Orillo beays			

MANANTIAL EL CHOCO						
TIPO DE MANIFESTACIÓN	REGIMEN	USO	OBRAS			
Manantial	Inestable	Ganadero	ND			

OBSERVACIONES: Es un manantial con características semejantes al manantial el pepe, presenta un caudal bajo y estable durante todo el año sirve para bebedero de animales vacunos.

Fuente: Modificado de Aguilar (2018).

Tabla 29: Manantial el Uñigan.

I abia	a 29: Manantiai	ei Unigan.		
MANANTIAL EL UÑIGAN				
MANUFFOTACIÓN		COORDEN	ADAS	
MANIFESTACIÓN	N: 9241518	E: 794374	COTA: (m.s.n.m.)	3635
CÓDIGO: M-25		FOTOGRA	AFÍA:	
FECHA: 08/05/2023				
LOCALIZACIÓN: Se ubica a 150 metros del manantial El López, hacia el flanco derecho del rio Condorcana.				

TIPO DE MANIFESTACIÓN	REGIMEN	USO	OBRAS
Manantial	Inestable	Ganadero	ND

OBSERVACIONES: Es un manantial característico de la zona debido a que gran parte del año brinda sus aguas ya sea para consumo humano, ganadero y agrícola.

Tabla 30: Manantial Peña Blanca 1.

MANANTIAL PEÑA BLANCA 1 **COORDENADAS MANIFESTACIÓN** E:792995 | COTA: 3877 (m.s.n.m.) N:9239790 CÓDIGO: M-1 FOTOGRAFÍA: FECHA: 08/05/2023 LOCALIZACIÓN: Se ubica en las partes altas del límite entre los Caseríos la Primavera y La Pajuela ambos pertenecientes al Centro Poblado Santa Rosa. TIPO DE MANIFESTACIÓN **REGIMEN** USO **OBRAS** Manantial Permanente Ganadero ND OBSERVACIONES: El manantial se encuentra entre rocas sub volcánicas. evidenciadas de un canal subterráneo donde se puede apreciar el curso de agua con

Fuente: Modificado de Aguilar (2018).

dirección a la salida del manantial.

CAUDAL: 14.67 L/min.

Tabla 31: Características fisicoquímicas y análisis bacteriológicos del manantial Peña Blanca 1, en época de lluvia.

PARÁMETRO	UNIDAD	RESULTADO	LMP			
Análisis Fisicoquímico						
Turbidez	NTU	1.3	5			
рН		6.89	6.5 - 8.5			
Conductividad	uS/cm	102	1500			
Dureza	ppm	163	500			
Cloruros	ppm	42.70	250			
Fluoruro	ppm		2			
Sulfatos	ppm	59.71	250			

PARÁMETRO	UNIDAD	RESULTADO	LMP
Nitratos	ppm		50
Aluminio	ppm	0.024	0.2
Cobre	ppm	0.04	2
Cromo	ppm		0.05
Hierro	ppm	0.05	0.3
Manganeso	ppm	0.02	0.4
Zinc	ppm		3
Análisis Bacteriológico			
Coliformes totales	UFC/100 mL	1	0

Tabla 32: Características fisicoquímicas y análisis bacteriológicos del manantial Peña Blanca 1, en época de estiaje.

PARÁMETRO	UNIDAD	RESULTADO	LMP
Análisis Fisicoquír	nico		
Turbidez	NTU	1.5	5
рН		6.76	6.5 - 8.5
Conductividad	uS/cm	103	1500
Dureza	ppm	180	500
Cloruros	ppm	44.20	250
Fluoruro	ppm		2
Sulfatos	ppm	60.02	250
Nitratos	ppm		50
Aluminio	ppm	0.027	0.2
Cobre	ppm	0.05	2
Cromo	ppm		0.05
Hierro	ppm	0.06	0.3
Manganeso	ppm	0.05	0.4
Zinc	ppm		3
Análisis Bacteriológ	ico		
Coliformes totales	UFC/100 mL	1	0

Tabla 33: Manantial El Amaro.

MANANTIAL EL AMARO					
MANIFESTACIÓN	COORDENADAS				
MARII ESTASISH	N: 9240952	E: 791602	COTA: 385	0 (m.s.n.m.)	
CÓDIGO: M-2		FOTOG	RAFÍA:		
FECHA: 08/05/2023		TOTAL S	TANK WAR		
LOCALIZACIÓN: Se ubica en la parte alta del caserío el Amaro, hacia el NW de las corrientes del río Condorcana.					
TIPO DE MANIFESTACIÓN	REGIN	IEN	USO	OBRAS	
Captación de Manantial	Perman	ente	Doméstico	SI	
OBSERVACIONES: Este manantial se encuentra el contacto entre rocas sub					
volcánicas y rocas calizas de la Formación Cajamarca, sus aguas han sido captadas					
para consumo humano.					

Fuente: Modificado de Aguilar (2018).

CAUDAL: 10.57 L/min.

Tabla 34: Características fisicoquímicas y análisis bacteriológicos del manantial El Amaro, en época de Iluvia.

PARÁMETRO	UNIDAD	RESULTADO	LMP
Análisis Fisicoquí	mico		
Turbidez	NTU	1.1	5
рН		6.15	6.5 - 8.5
Conductividad	uS/cm	98	1500
Dureza	ppm	163	500
Cloruros	ppm	41.80	250
Fluoruro	ppm		2

PARÁMETRO	UNIDAD	RESULTADO	LMP
Sulfatos	ppm	60.12	250
Nitratos	ppm		50
Aluminio	ppm	0.021	0.2
Cobre	ppm	0.02	2
Cromo	ppm		0.05
Hierro	ppm	0.03	0.3
Manganeso	ppm	0.03	0.4
Zinc	ppm		3
Análisis Bacteriológico			
Coliformes totales	UFC/100 mL	1	0

Tabla 35: Características fisicoquímicas y análisis bacteriológicos del manantial El Amaro, en época de estiaje.

PARÁMETRO	UNIDAD	RESULTADO	LMP			
Análisis Fisicoquímico						
Turbidez	NTU	1.5	5			
рН		6.60	6.5 - 8.5			
Conductividad	uS/cm	103	1500			
Dureza	ppm	177	500			
Cloruros	ppm	44.25	250			
Fluoruro	ppm		2			
Sulfatos	ppm	61.23	250			
Nitratos	ppm		50			
Aluminio	ppm	0.027	0.2			
Cobre	ppm	0.05	2			
Cromo	ppm		0.05			
Hierro	ppm	0.06	0.3			
Manganeso	ppm	0.05	0.4			
Zinc	ppm		3			
Análisis Bacteriológico						
Coliformes totales	UFC/100 mL	1	0			

Tabla 36: Manantial China Linda.

MANANTIAL CHINA LINDA				
MANIFESTACIÓN	COORDENADAS			
	N:9240688	E:792660	COTA: 3830 (m.s.n.m.)	
CÓDIGO: M-3	•	FOTOG	RAFÍA:	
FECHA: 08/05/2023				
LOCALIZACIÓN:		OH OH		
Se encuentra hacia el NW del		AE		
cerro Condorcana entre los				
cerros denominados				
Minasconga.				
TIPO DE MANIFESTACIÓN	REGIMEN	USO	OBRAS	
Manantial	Permanente		ND	
OBSERVACIONES: El manantial presenta un alto caudal en tiempo de recarga (lluvias)				
y una leve disminución de caudal en tiempo de estiaje (sequía).				
CAUDAL: 9.67 L/min.				

Tabla 37: Características fisicoquímicas y análisis bacteriológicos del manantial China Linda, en época de lluvia.

PARÁMETRO	UNIDAD	RESULTADO	LMP			
Análisis Fisicoquímico						
Turbidez	NTU	1.5	5			
рН		6.76	6.5 - 8.5			
Conductividad	uS/cm	101	1500			
Dureza	ppm	148	500			
Cloruros	ppm	42.85	250			
Fluoruro	ppm		2			
Sulfatos	ppm	61.25	250			
Nitratos	ppm		50			

PARÁMETRO	UNIDAD	RESULTADO	LMP
Aluminio	ppm	0.024	0.2
Cobre	ppm	0.04	2
Cromo	ppm		0.05
Hierro	ppm	0.04	0.3
Manganeso	ppm	0.05	0.4
Zinc	ppm		3
Análisis Bacteriológico			
Coliformes totales	UFC/100 mL	1	0

Tabla 38: Características fisicoquímicas y análisis bacteriológicos del manantial China Linda, en época de estiaje.

PARÁMETRO	UNIDAD	RESULTADO	LMP		
Análisis Fisicoquímico					
Turbidez	NTU	1.7	5		
рН		6.90	6.5 - 8.5		
Conductividad	uS/cm	103	1500		
Dureza	ppm	154	500		
Cloruros	ppm	43.70	250		
Fluoruro	ppm		2		
Sulfatos	ppm	62.56	250		
Nitratos	ppm		50		
Aluminio	ppm	0.026	0.2		
Cobre	ppm	0.04	2		
Cromo	ppm		0.05		
Hierro	ppm	0.06	0.3		
Manganeso	ppm	0.06	0.4		
Zinc	ppm		3		
Análisis Bacteriológico					
Coliformes totales	UFC/100 mL	1	0		

Tabla 39: Manantial Las Huacas.

MANANTIAL LAS HUACAS COORDENADAS **MANIFESTACIÓN** COTA: 3635 (m.s.n.m.) 9240733 794847 CÓDIGO: M-4 FOTOGRAFÍA: FECHA: 08/05/2023 LOCALIZACIÓN: Se encuentra hacia el NE del río Condorcana, en la parte baja del Caserío La Pajuela. TIPO DE MANIFESTACIÓN USO **REGIMEN OBRAS**

OBSERVACIONES: Este manantial presenta un alto caudal en todo el recorrido del año, sirve para consumo humano y bebedero de animales vacunos, la naciente se encuentra debajo de la zona denominada Julio Estrada.

Permanente

CAUDAL: 37.67 L/min.

Manantial

Fuente: Modificado de Aguilar (2018).

Tabla 40: Características fisicoquímicas y análisis bacteriológicos del manantial Las Huacas, en época de Iluvia.

PARÁMETRO	UNIDAD	RESULTADO	LMP	
Análisis Fisicoquímico				
Turbidez	NTU	1.7	5	
рН		6.72	6.5 - 8.5	
Conductividad	uS/cm	105	1500	
Dureza	ppm	157	500	
Cloruros	ppm	42.95	250	
Fluoruro	ppm		2	

ND

PARÁMETRO	UNIDAD	RESULTADO	LMP
Sulfatos	ppm	61.28	250
Nitratos	ppm		50
Aluminio	ppm	0.025	0.2
Cobre	ppm	0.06	2
Cromo	ppm		0.05
Hierro	ppm	0.05	0.3
Manganeso	ppm	0.03	0.4
Zinc	ppm		3
Análisis Bacteriológico			
Coliformes totales	UFC/100 mL	1	0

Tabla 41: Características fisicoquímicas y análisis bacteriológicos del manantial Las Huacas, en época de estiaje.

PARÁMETRO	UNIDAD	RESULTADO	LMP	
Análisis Fisicoquímic	0			
Turbidez	NTU	1.8	5	
рН		6.80	6.5 - 8.5	
Conductividad	uS/cm	108	1500	
Dureza	ppm	164	500	
Cloruros	ppm	43.25	250	
Fluoruro	ppm		2	
Sulfatos	ppm	62.06	250	
Nitratos	ppm		50	
Aluminio	ppm	0.026	0.2	
Cobre	ppm	0.07	2	
Cromo	ppm		0.05	
Hierro	ppm	0.05	0.3	
Manganeso	ppm	0.04	0.4	
Zinc	ppm		3	
Análisis Bacteriológico				
Coliformes totales	UFC/100 mL	1	0	

Tabla 42: Manantial El Lapar.

MANANTIAL EL LAPAR					
MANIFESTACIÓN	COORDENADAS				
MANI ESTACION	N: 9241359	E: 795018	COTA: 3555 (m.s.n.m.)		
CÓDIGO: M-5	FOTOGRAFÍA:				
FECHA: 08/05/2023			467		
LOCALIZACIÓN: Se ubica a la parte baja de la planta de productos lácteos RosNort.					
TIPO DE MANIFESTACIÓN	REGIMEN	USO	OBRAS		
Manantial	Permanente	e Domestico	ND		
OBSERVACIONES: El mana	OBSERVACIONES: El manantial se encuentra en depósito coluvial a unos 50 metros				
del río Condorcana, sus aguas han sido captadas para el consumo de la población del					

Centro Poblado Santa Rosa.

CAUDAL: 20 L/min.

Tabla 43: Características fisicoquímicas y análisis bacteriológicos del manantial El Lapar, en época de lluvia.

PARÁMETRO	UNIDAD	RESULTADO	LMP	
Análisis Fisicoquími	co			
Turbidez	NTU	1.4	5	
рН		6.81	6.5 - 8.5	
Conductividad	uS/cm	115	1500	
Dureza	ppm	146	500	
Cloruros	ppm	42.87	250	
Fluoruro	ppm		2	

ppm		
ррпп	61.55	250
ppm		50
ppm	0.021	0.2
ppm	0.04	2
ppm		0.05
ppm	0.07	0.3
ppm	0.04	0.4
ppm		3
UFC/100 mL	1	0
	ppm ppm ppm ppm ppm ppm	ppm 0.021 ppm 0.04 ppm ppm 0.07 ppm 0.04 ppm

Tabla 44: Características fisicoquímicas y análisis bacteriológicos del manantial El Lapar, en época de estiaje.

PARÁMETRO	UNIDAD	RESULTADO	LMP	
Análisis Fisicoquímico				
Turbidez	NTU	1.5	5	
рН		6.81	6.5 - 8.5	
Conductividad	uS/cm	121	1500	
Dureza	ppm	160	500	
Cloruros	ppm	43.06	250	
Fluoruro	ppm		2	
Sulfatos	ppm	62.25	250	
Nitratos	ppm		50	
Aluminio	ppm	0.026	0.2	
Cobre	ppm	0.03	2	
Cromo	ppm		0.05	
Hierro	ppm	0.08	0.3	
Manganeso	ppm	0.04	0.4	
Zinc	ppm		3	
Análisis Bacteriológico				
Coliformes totales	UFC/100 mL	1	0	

Tabla 45: Manantial Ojo de Agua.

MANANTIAL OJO DE AGUA				
MANIFESTACIÓN	COORDENADAS			
WINTED THO TOTAL	N: 9241296	E: 795436	COTA: 3545 (m.s.n.m.)
CÓDIGO: M-6	FOTOGRAFÍA:			
FECHA: 08/05/2023				
LOCALIZACIÓN: Se localiza en la zona denominada la cueva, aproximadamente 110 metros del rio Condorcana.				
TIPO DE MANIFESTACIÓN	REGIMEN	USO		OBRAS
Manantial	Permanente	Doméstico y	Ganadero	ND
OBSERVACIONES: Este man	antial se encue	ntra entre der	oósitos coluvia	es de la
Formación Yumagual.				
CAUDAL: 1.1 L/min.				

Fuente: Modificado de Aguilar (2018).

Tabla 46: Características fisicoquímicas y análisis bacteriológicos del manantial Ojo de Agua, en época de Iluvia.

PARÁMETRO	UNIDAD	RESULTADO	LMP
Análisis Fisicoquímic	:0		
Turbidez	NTU	1.9	5
рН		7.5	6.5 - 8.5
Conductividad	uS/cm	113	1500
Dureza	ppm	135	500
Cloruros	ppm	41.97	250
Fluoruro	ppm		2
Sulfatos	ppm	60.89	250

PARÁMETRO	UNIDAD	RESULTADO	LMP
Nitratos	ppm		50
Aluminio	ppm	0.020	0.2
Cobre	ppm	0.02	2
Hierro	ppm	0.08	0.3
Manganeso	ppm	0.02	0.4
Zinc	ppm		3
Análisis Bacteriológico			
Coliformes totales	UFC/100 mL	1	0

Tabla 47: Características fisicoquímicas y análisis bacteriológicos del manantial Ojo de Agua, en época de estiaje.

PARÁMETRO	UNIDAD	RESULTADO	LMP			
Análisis Fisicoquímic	Análisis Fisicoquímico					
Turbidez	NTU	1.9	5			
рН		7.30	6.5 - 8.5			
Conductividad	uS/cm	120	1500			
Dureza	ppm	155	500			
Cloruros	ppm	43.36	250			
Fluoruro	ppm		2			
Sulfatos	ppm	61.98	250			
Nitratos	ppm		50			
Aluminio	ppm	0.026	0.2			
Cobre	ppm	0.03	2			
Cromo	ppm		0.05			
Hierro	ppm	0.095	0.3			
Manganeso	ppm	0.04	0.4			
Zinc	ppm		3			
Análisis Bacteriológico						
Coliformes totales	UFC/100 mL	1	0			

Tabla 48: Manantial Peña Mala.

MANANTIAL PEÑA MALA				
MANIFESTACIÓN	COORDENADAS			
MANII ESTACION	N: 9241207	E: 795989	COTA: 3	500 (m.s.n.m.)
CÓDIGO: M-7	FOTOGRAFÍA:			
FECHA: 08/05/2023				
LOCALIZACIÓN: Se ubica en la planicie que				
abarca el Centro Poblado				
Santa Rosa aproximadamente	7			
a 500 metros del Colegio	. 1			
Mariano Melgar del mismo		Van D		
Centro Poblado.				
TIPO DE MANIFESTACIÓN	REGIME	N L	JSO	OBRAS
Manantial	Permaner	nte Ag	rícola	ND
OBSERVACIONES: El manantial presenta un bajo caudal, se encuentra entre				
depósitos cuaternarios del rio Co	ondorcana.			
CAUDAL: 2.9 L/min.				

Fuente: Modificado de Aguilar (2018).

Tabla 49: Características fisicoquímicas y análisis bacteriológicos del manantial Peña Mala, en época de Iluvia.

PARÁMETRO	UNIDAD	RESULTADO	LMP	
Análisis Fisicoquímico				
Turbidez	NTU	1.6	5	
рН		7.10	6.5 - 8.5	
Conductividad	uS/cm	120	1500	
Dureza	ppm	142	500	
Cloruros	ppm	42.85	250	
Fluoruro	ppm		2	
Sulfatos	ppm	65.20	250	

PARÁMETRO	UNIDAD	RESULTADO	LMP
Nitratos	ppm		50
Aluminio	ppm	0.025	0.2
Cobre	ppm	0.03	2
Cromo	ppm		0.05
Hierro	ppm	0.085	0.3
Manganeso	ppm	0.09	0.4
Zinc	ppm		3
Análisis Bacteriológico			
Coliformes totales	UFC/100 mL	1	0

Tabla 50: Características fisicoquímicas y análisis bacteriológicos del manantial Peña Mala, en época de estiaje.

PARÁMETRO	UNIDAD	RESULTADO	LMP
Análisis Fisicoquímic	0		
Turbidez	NTU	1.8	5
рН		7.15	6.5 - 8.5
Conductividad	uS/cm	123	1500
Dureza	ppm	160	500
Cloruros	ppm	43.25	250
Fluoruro	ppm		2
Sulfatos	ppm	66.83	250
Nitratos	ppm		50
Aluminio	ppm	0.026	0.2
Cobre	ppm	0.05	2
Cromo	ppm		0.05
Hierro	ppm	0.091	0.3
Manganeso	ppm	0.09	0.4
Zinc	ppm		3
Análisis Bacteriológico			
Coliformes totales	UFC/100 mL	1	0

3.7.5. Microcuencas

En el área de estudio se identificó la presencia de una microcuenca, a la cual se le denomina Condorcana con sus principales componentes; lagunas y los manantiales de aguas anteriormente enumerados (en las tablas anteriores), a estos últimos la población los conoce comúnmente como ojos de agua. Por otro lado, el uso de estos recursos hídricos es en aplicación a la ganadería, sembríos y en el consumo humano, es por ello la importancia de su estudio.

3.7.6. Drenajes

Por las características topográficas y condiciones climáticas, la Microcuenca presenta una red hidrográfica con drenajes paralelos, los cuales según la naturaleza de los mismo se caracterizan por ser erosiónales, esto se puede observar en los riachuelos que forman la unión de aguas en los valles.

3.8. MARCO GEOMORFOLÓGICO

3.8.1. Unidades morfogenéticas

Las pendientes según Rodríguez, (2016), clasifica las unidades Morfogenéticas como: planicies, lomadas, laderas y escarpas según se muestra en la tabla 50.

Tabla 51: Clasificación de unidades morfogenéticas.

TIPO DE RELIEVE	GEOMETRIA
Planicie	0° - 8°
Lomada	8° - 20°
Ladera	20° - 50°
Escarpe	50°->

Fuente: Rodríguez, (2016).

3.8.1.1. Planicies

Las planicies están determinadas como superficies homogéneas, con pequeñas ondulaciones y suave pendiente que varía entre los 0° a 8° (ver tabla 50) y están distribuidas en mayor extensión en la zona Noreste del área de investigación a lo largo de los cauces del río y quebradas relacionadas con depósitos aluviales y fluvio-aluviales. Estas áreas son destinadas a actividades agrícolas y ganaderas.

Figura 6: Planicie al margen derecho del Río Condorcana aguas abajo.

3.8.1.2. Lomadas

Las lomadas o colinas presentan un relieve con geoformas de tendencia dómica con pendientes suaves que está entre los 8° a 20° y deben estar por debajo de los 200 metros, en el área de investigación lo encontramos por las localidades de El Caserío la Pajuela, Anexo la China Linda y a lo largo del rio Condorcana hasta el Centro Poblado Santa Rosa, lo cual se ha identificado que dichas áreas son destinadas para la agricultura y ganadería.

Figura 7: Lomadas ubicadas hacia el SW de la zona la Patachada.

3.8.1.3. Laderas

La ladera implica la existencia de un declive, estos desplazamientos ocurren a favor del sentido de la pendiente a causa del accionar de la fuerza ejercida por la gravedad, esta formación presenta numerosas superficies de erosión bordeado al dominio de las montañas, colinas y depresiones; posee extensiones diversas con

pendientes que están entre el 20° a 50° (ver tabla 50) donde se logra identificar la clasificación de estas unidades morfológicas.

Figura 8: Laderas al margen derecho del Río Condorcana aguas arriba, representadas con perfil topográfico rectilíneo.

3.8.1.4. Escarpes

Según Rodríguez, (2018), estas geoformas se encuentran con pendientes superiores a los 50°. En el área de investigación estas geoformas se encuentran formando las caras empinadas de los cerros, distribuidas por el centro del área de estudio.

Figura 9: Escarpe ubicado al NE de la quebrada las Huacas y al SW del río Condorcana.

3.8.2. Unidades geomorfológicas

3.8.2.1. Unidades geomorfológicas por ambiente glaciar

El área de estudio estuvo sometido a procesos derivados del cambio de temperatura, como la gelifracción, agrietamiento en rocas, por lo que se produjo erosión lo cual ha generado el movimiento de masas de hielo en partes del área de estudio durante épocas glaciares.

3.8.2.1.1. Rocas aborregadas

Estas unidades son constituyentes de resaltes rocosos propios del lecho basal, que han experimentado una fuerte abrasión. En el área de estudio apreciamos este tipo de unidad en puntos especificos, como el que se muestra a continuación:

Figura 10: Rocas aborregadas entre el contacto del Volcánico Porculla y la FM. Pulluicana.

Figura 11: Rocas aborregadas de la Formación Pulluicana.

3.8.2.1.2. Bloques erráticos

Se llama de esta manera a bloques de tamaño grande, que se encuentran aislados por lo general, normalmente se ubican en llanuras o colinas. En el área de estudio, se identifican este tipo de geoformas.

Figura 12: Bloque errático de composición piroclástica del Volcánico Porculla.

3.8.2.1.3. Laguna

Esta unidad obedece a diversos factores, pero el que sobresale es el ambiente glaciar, seguido de los demás ambientes, estos le han dado la configuración hasta la actualidad.

Figura 13: Vista panorámica de la Laguna Cortada.

3.8.2.2. Unidades Geomorfológicas por Ambiente Estructural

Son geoformas generadas por la dinámica interna de la Tierra, asociadas a plegamientos y fallas. En la microcuenca, las geoformas de este ambiente están

relacionadas con la cordillera Occidental, además de factores intrusivos, los cuales caracterizan al relieve montañoso. Las morfoestructuras identificadas son:

3.8.2.2.1. Montañas

En nuestra microcuenca las unidades morfoestructurales están plegadas formadas por cerros correspondientes al área de emplazamiento. Por otro lado, el principal componente de las montañas son rocas volcano-sedimentarias, así como montañas estructurales en rocas sedimentarias.

Figura 14: Montaña ubicada dentro de la microcuenca del proyecto El Lindero.

Este tipo de unidad está relacionado a domos volcánicos, por ello estos también fueron identificados en el estudio.

Figura 15: Representación del anticlinal de la Familia Yamagual en una montaña del área de estudio.

3.8.2.2.2. Cerros

Están ubicados en las partes más altas de nuestra microcuenca, son de composición volcánica, donde se aprecia acción de la tectónica, glaciación y erosión en el modelado de estos.

Figura 16: Cerro ubicado dentro de la microcuenca del proyecto El Lindero.

3.8.2.3. Unidades Geomorfológicas por ambiente Denudacional

Son aquellas reformas generadas por el dinamismo interno de la Tierra, especialmente asociado a los pliegos y fallas, su expresión morfológica está definida por la litología y la disposición de la estructura de cómo están aflorando las rocas.

En nuestra área de estudio estas geoformas están relacionadas con la existencia de la presencia de fallas y plegamientos que se ubican en este lugar. También, se identificaron anticlinales y sinclinales en las rocas carbonatadas, es por ello la existencia de estas morfoestructuras.

3.8.2.3.1. Colinas

Las colinas se caracterizan por mostrar formas redondeadas y tener una pendiente mayor que las laderas, en el proyecto El Lindero, es unidades que se han identificado poseen una variación en sus pendientes donde la menor pendiente se encuentra en los lugares donde ha existido erosión. En nuestra área de estudio los principales componentes de estas colinas son rocas sedimentarias y volcánicas.

Figura 17: Colina con elevación representativa dentro de la Formación Pulluicana.

3.8.2.4. Unidades Geomorfológicas por ambiente Fluvial

Las geoformas cuyo origen es fluvial son producto de la dinámica de corrientes de agua en superficies, erosionando, transportando y acumulando el producto de su accionar en zonas aledañas a su recorrido a través del tiempo.

3.8.2.4.1. Terrazas

Son aquellas zonas producidas por la erosión y el transporte del agua en conjunto con la gravedad las que dan origen a la formación de este tipo de unidad. En la microcuenca hemos identificado que el factor desencadenante es la acción erosiva del agua, modelando el relieve característico.

Figura 18: Terraza cercana a la desembocadura del rio Condorcana, originada por el accionar del agua.

3.8.2.4.2. Valles

El valle identificado en la zona está determinado por diferentes factores tectónicos, litológicos, erosivos, que han modelado estas geoformas, además están fuertemente influenciados por la red fluvial de la zona.

Figura 19: Valle glaciar en forma de U drenado por el río Condorcana.

Figura 20: Valle en forma de U, ubicado en la naciente del río Condorcana y el proyecto El Lindero.

3.8.2.5. Unidades Geomorfológicas por Ambiente Cárstico

Las unidades identificadas en el área de estudio han sido influenciadas por factores exógenos y endógenos en las rocas.

Dolinas

Son un tipo especial de depresiones geológicas, muy característica de los relieves cársticos, generada por la meteorización química de rocas conformadas por minerales solubles en agua, calizas, como las de la Formación Cajamarca.

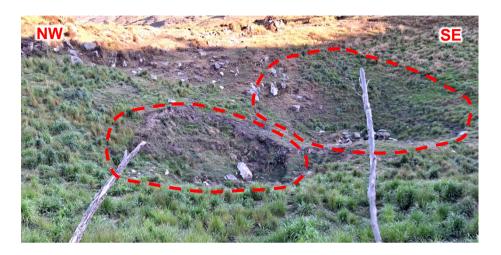


Figura 21: Identificación de dolina en Formación Pulluicana.

Lenares y Columnas

Son unidades que han sido originadas por procesos de meteorización en las rocas carbonatadas de la Formación Cajamarca, la acción fluvial de los drenajes locales y la precipitación en el área son los que han desencadenado el modelamiento de estos.

Figura 22: a) Identificación de Lenares de la Fm. Cajamarca. b) Identificación de Columnas y estalactitas Fm. Pulluicana.

3.9. MARCO GEOLÓGICO

3.9.1. Geología local

3.9.1.1. Formación Cajamarca (Ks-ca)

En el área de investigación se presenta calizas gris oscuras a azuladas con delgados lechos de arcillitas y margas de los mismos colores en la secuencia se observa que los estratos varían en el piso se muestran espesores de hasta tres metros, seguido de estratos delgados de 40 cm, en la parte media se presentan estratos con un promedio de 80 cm y en el techo se intercala con margas con un notable cambio de facie hacia la Formación Celendín. Esta unidad yace concordantemente sobre el Formación Quilquiñán – Mujarrún y, con la misma relación infrayace a la Formación Celendín. Su grosor varía entre los 600 y 700 m.

Figura 23: Afloramiento de calizas potentes de la Formación Cajamarca.

3.9.1.2. Formación Quilquiñan Mujarrúm (Ks-qm)

En el presente estudio se considera como una sola unidad litoestratigráfica, de Formación Quilquiñán y Mujarrún la cual alcanza un espesor aproximado de 500 m. En algunos tramos se encuentran como calizas nodulares y una intercalación de margas y lutitas (Figura 26).

Figura 24: Afloramiento de calizas fosilíferas de la Formación Quilquiñan.

3.9.1.2.1. Formación Yumagual: (Ks-yu)

En la microcuenca Condorcana la manera de aflorar los estratos de la Formación Yumagual infrayace paralelamente a la Formación Quilquiñan Mujarrúm. Por lo general presenta escarpas pronunciadas o levemente pronunciadas, pero también puede presentar terrenos ondulados. Los colores del intemperismo varían entre crema y marrón claro.

Figura 25: Afloramiento de rocas de la Formación Yumagual.

3.9.1.3. Grupo Calipuy

3.9.1.3.1. Formación Porculla (P-po)

En el área de estudio esta unidad estratigráfica se observa en discordancia angular con rocas del Cretáceo Superior, Formación Cajamarca al extremo NW, el Grupo Pulluicana hacia el NE.

Consiste litológicamente en secuencias piroclásticas de composición félsicaintermedia, acompañado de lavas andesíticas, con intercalaciones de brechas, tufos y material volcánico retrabajado de composición dacítica-andesítica.

Figura 26: Domos dacíticos ubicados en cabecera de microcuenca el Lindero.

3.9.1.3.2. Formación Huambos (Nm-huam)

Sus afloramientos se encuentran rellenando depresiones o superficies antiguas más o menos onduladas, mostrando una erosión de aspecto uniforme. En el área de estudio presenta tobas dacíticas y traquiandecíticas blanquecinas.

3.9.1.4. Depósitos Cuaternarios

Estos depósitos sobreyacen a unidades descritas anteriormente. En la Microcuenca identificamos depósitos lagunares, aluviales y fluviales.

3.9.1.5. Depósito Lagunar (Q-la)

Producidos por la erosión de la laguna sobre rocas carbonatadas del Grupo Pulluicana, presentan material de tipo fino arcilloso.

Figura 27: Depósito lagunar emplazado en el Grupo Pulluicana.

Figura 28: Depósito lagunar emplazado en las rocas volcánicas.

3.9.1.6. Depósito aluvial (Q-al)

Son producto del transporte de detritos por acción del agua. En la microcuenca identificamos este tipo de depósitos donde se caracterizan por tener una matriz arcillosa ocupando geoformas como abanicos.

Figura 29: Depósitos coluvio-aluviales formando geoformas.

3.9.1.7. Depósito fluvial (Q-fl)

Constituyen depósitos originados por el agua, está conformado por gravas, bloques, arcillas y arenas. En la microcuenca de encuentra en márgenes de los riachuelos.

Figura 30: Depósito fluvial formado por aguas que trascurren drenando un valle.

3.9.1.8. Depósitos coluviales (Q-co)

Son producto de la alteración y desprendimiento in situ de los macizos rocosos a lo largo de las laderas. Por lo general, están conformados por masas inestables de gravas (guijarros, cantos y bloques) angulosas transportadas por gravedad y agua bajo la forma de derrubios. Tienen matriz limoarcillosa y su espesor no suele superar los 5m de espesor, observar figura 32.

Figura 31: Depósito coluvial albergado en el área de estudio.

CAPÍTULO IV ANÁLISIS Y DISCUSIÓN DE RESULTADOS

4.1. ANALISIS DE RESULTADOS

La investigación presenta un análisis de los riesgos geoambientales por el proyecto El Lindero dentro la Microcuenca Condorcana presente en el área de estudio. Se enfoca en describir las características geológicas, morfológicas, hidrológicas y características fisicoquímicas de la microcuenca a detalle. La hidrología es la ocurrencia y distribución del agua en la superficie terrestre y su relación con el medio ambiente incluyendo a los seres vivos, por lo cual a esta variable se medirá mediante el indicador Km2/m3; por otro lado, a la variable de morfología, su indicador será existencia, cantidad y características de las unidades morfogenéticas y geomorfológicas presentes, es por ello que será analíticadescriptica; con respecto a la variable de geología esta se estudió mediante la descripción de la geología local, es decir la litológica. Para finalizar las características fisicoquímicas, quienes describen la calidad de la microcuenca realizándose un análisis de laboratorio, obteniendo los resultados en ppm o su equivalencia que son los mg/L.

4.1.1. ANÁLISIS DE RIESGOS GEOAMBIENTALES

Dado que el proyecto el lindero se ubica en cabecera de la microcuenca Condorcana y el único río del mismo nombre que recorre la ciudad del Centro Poblado Santa Rosa se considera que durante el desarrollo o explotación de dicho proyecto afecte a la Geología, Geomorfología e Hidrología como; Parámetros físico-químicos, manantiales, relieve y topografía, modificación paisajística, pérdida de suelo, incremento de sedimentos generados por las actividades mineras en el área de estudio.

4.1.2. ANÁLISIS GEOLÓGICO DE LA MICROCUENCA CONDORCANA

4.1.2.1. Formación Cajamarca (Ks-ca)

Esta unidad aflora en la cabecera y desembocadura de la microcuenca Condorcana con un grosor aproximado de 300 a 500m, en el área de estudio está representada como flacos extremos de un anticlinal diferenciados mediante los buzamientos de los estratos, presenta geoformas características denominados lenares o lapiaz.

4.1.2.2. Formación Quilquiñan Mujarrúm (Ks-qm)

Esta formación está representada por una estratificación delgada de rocas calizas con un espesor de 80 a 100m. aproximadamente, presenta nódulos y fósiles como factor característico de dicha Formación.

4.1.2.3. Grupo Pulluicana (Ks-p)

Es la formación más extensa dentro de la microcuenca, tiene un espesor de 4000 a 5000 metros aproximadamente gran parte de esta formación presenta escarpes, dolinas lo cual es característico de un ambiente Cárstico.

4.1.2.4. Formación Yumagual (Ks-yu)

Esta unidad se ubica en la parte media del Grupo Pulluicana con un espesor aproximado de 700 a 800 metros esta unidad presenta una sucesión de limolitas de color amarillento y se encuentra en el eje de charnela del anticlinal del área de estudio.

4.1.2.5. Grupo Calipuy

4.1.2.5.1. Formación Porculla (PN-Vp)

En el área de estudio se observa en discordancia angular con rocas del Cretácico Superior, Cajamarca al extremo NW, y la Yumagual del Grupo Pulluicana hacia el NE. Determinada por las secuencias de rocas piroclásticas, acompañado de lavas andesíticas, con intercalaciones de brechas, tufos y material volcánico de composición dacítica en la cabecera de la microcuenca y andesítica en la parte intermedia del proyecto el Lindero.

4.1.2.5.2. Formación Huambos (PN-Vh)

Esta unidad se encuentra aflorando en la zona de transición con el Grupo Pulluicana dicho material se encuentran rellenando depresiones o superficies

antiguas más o menos onduladas, mostrando una erosión de aspecto uniforme, en el área de estudio presenta tobas dacíticas y traquiandecíticas blanquecinas.

4.1.2.6. Depósitos Cuaternarios

En la microcuenca Condorcana se ha podido identificar depósitos lagunares, aluviales, fluviales, coluviales.

4.1.2.6.1. Depósito Lagunar (Q-la)

Las unidades identificadas se encuentran en la parte superior de la microcuenca Condorcana producto de la erosión de la laguna sobre rocas del volcánico Huambos y en la parte media a consecuencia de la erosión del grupo Pulluicana, lo cual presentan material de tipo fino arcilloso.

4.1.2.6.2. Depósito aluvial (Q-al)

Son producto del transporte de detritos por acción del agua. En la microcuenca identificamos este tipo de depósitos donde se caracterizan por tener una matriz arcillosa ocupando geoformas como abanicos ubicados en las partes bajas del cerro denominado Condorcana.

4.1.2.6.3. Depósito fluvial (Q-fl)

Constituyen depósitos originados por el agua y depositados en los márgenes del rio Condorcana, ocupando el 4.7% del área de estudio y está conformado por gravas, bloques, arcillas y arenas lo cual dicho material es trasportado aguas arriba hasta el Centro Poblado Santa Rosa.

4.1.2.6.4. Depósitos coluviales (Q-co)

Son producto de la alteración y desprendimiento in situ de los macizos rocosos a lo largo de las laderas. Por lo general, están conformados por masas inestables de gravas (guijarros, cantos y bloques) angulosas transportadas por gravedad y agua bajo la forma de derrubios presentes en la parte intermedia del área de estudio.

4.1.3. ANÁLISIS DE LA GEOMORFOLOGÍA DE LA MICROCUENCA CONDORCANA

4.1.3.1. Morfometría

El análisis morfométrico esta debe de enfocarse en su unidad de referencias, la cual es denominada pendiente del terreno.

4.1.3.2. Pendientes

El primer grupo denominado gran paisaje planicies fluvio aluvial, compuesto por planicies fluviales recientes, coluvio-aluviales y altiplanicie fluvio-glaciar. El segundo grupo, gran paisaje montañoso, conformado por geoformas plegadas, accidentadas y corrugadas, comprendiendo montañas de rocas intrusivas, montañas de rocas volcánicas, montañas sedimentarias de estratos rocosos plegados, montañas de rocas plutónicas y montañas de rocas sedimentarias.

Una primera clasificación genérica lo realizan considerando términos descriptivos asociados a la inclinación o pendiente del terreno. Los dos grupos mayores están divididos en subgrupos denominados Paisaje y Subpaisaje y están asociados al tipo de litología. La clasificación según Walsh se muestra en la Tabla 51 y Tabla 52.

Tabla 52: Inclinación de las superficies de las unides Geomorfológicas.

Rango	Descripción	Rango de inclinación del terreno (%)	Porcentaje (%)
Α	Plana o casi nivel	0-2	0° - 1.15°
В	Ligeramente inclinada	2-4	1.15° - 2.3°
С	Moderadamente inclinada	4-8	2.3° - 4.6°
D	Fuertemente inclinada	8-15	4.6° - 8.5°
E	Ligeramente empinada	15-25	8.5° - 14°
F	Empinada	25-50	14° - 26.6°
G	Muy empinada	50-100	26.6° - 45

La tabla anterior sintetiza la clasificación de Walsh, aplicada a nuestra área de estudio que es de aproximadamente 15.4 km², siguiendo los criterios de gran paisaje, paisaje y subpaisaje, incluyendo los porcentajes de cada unidad y la extensión, mostrando la siguiente tabla:

Tabla 53: Porcentaje y área de las Unidades Fisiográficas.

Gran				Superficie
paisaje				(km2)
Tipo	Porcent	aje	Porcentaje	
Про	(%)	Tipo	(%)	
Planicie Fluvio	15.80	Fluvial reciente	4.7	0.724
Aluvial	15.60	Coluvio – Aluvial	0.2	0.031
Aluviai		Altiplanicie fluvio glaciar	10.2	1.571
		Montañas de rocas	2.14	0.000
		intrusivas	2.14	0.330
		Montañas de rocas	05.0	3.450
		volcánicas	25.3	0.322
		Montañas		1.352
Montañoso	83.78	sedimentarias de	9.88	0.169
		estratos plegados		
		Montañas de rocas	2.00	0.446
		plutónicas	2.90	
		Montañas de rocas	43.56	6.137
		sedimentarias		0.571
Fondos de Valle	aluvial	Pfv	4.7	0.724
Depósitos coluv	io-aluviales	Pcd	0.2	0.031
Depósitos plano	-ondulados	Pfg	10.2	1.571
Colinas bajas di	sectadas	Mic	2.14	0.330
Laderas		MvI	22.4	3.450
Cimas		Mvc	2.09	0.322
Laderas		Msl	8.78	1.352
Cimas		Msc	1.10	0.169
Laderas		Mpl	2.56	0.394
Cimas		Мрс	0.34	0.052
Laderas		McI	39.85	6.137
Cimas		Мсс	3.71	0.571
Lagunas			0.40	0.062
Poblado			0.02	0.003
Total			100	15.4

4.1.3.3. Morfogénesis

Proceso complejo que depende de la interacción dinámica entre agentes externos e internos con los materiales geológicos.

4.1.3.3.1. Delimitación de Unidades Geomorfológicas

Son los procesos geomórficos los que han moldeado las formas del área de estudio, logrando así desarrollar formas características de relieve. Las unidades geomorfológicas están clasificadas y definidas por criterios morfogenéticos, pendientes, topografía y estructura del terreno.

4.1.3.3.2. Unidades Geomorfológicas o Ambientes Morfogenéticos

Este tipo de ambientes hacen referencia a condiciones físicas, químicas, bióticas y climáticas en las que se desarrollaron las geoformas.

Con base a la interpretación de los procesos geomorfológicos registrados, que dieron lugar a la formación, evolución y modificación de estas. (Carvajal, 2012).

Según el análisis realizado se describieron cinco ambientes morfogenéticos, los cuales han logrado la formación y evolución de las unidades identificadas. Los ambientes morfogenéticos son: Morfoestructural, Denudacional, glaciar, fluvial y meteorización química.

Tabla 54: Tipos de unidades geomorfológicas.

N°	AMBIENTE MORFOGENÉTICO	AREA (Km²)	PORCENTAJE (%)
1	Denudacional	9.83	58.7%
2	Morfoestructural	4.27	25.5%
3	Glaciar	1.70	10.2%
4	Fluvial	0.79	4.7%
5	Cárstico	0.14	0.9%

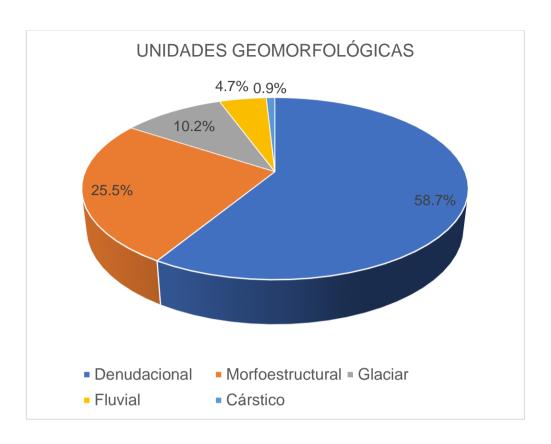


Figura 32: Representación de los porcentajes de las unidades geomorfológicas.

4.1.3.4. Análisis de unidades geomorfológicas por ambiente glaciar

En la parte alta de la Cordillera Occidental el hielo ha moldeado el paisaje, la zona donde estamos realizando el estudio presenta algunas áreas con esta glaciación, las unidades geomorfológicas identificadas son correspondientes a rocas aborregadas, bloques erráticos y lagunas. Es más, los valles de identificados están influenciados por la glaciación. El ambiente glaciar ocupa el 10.2% del área de estudio.

Tabla 55: Unidades geomorfológicas por ambiente glaciar.

N°	UNIDADES GEOMORFOLÓGICAS	AREA (Km²)	PORCENTAJE (%)
1	Rocas aborregadas	0.91	53.3%
2	Bloques erráticos	0.68	39.8%
3	Lagunas	0.4	6.9%

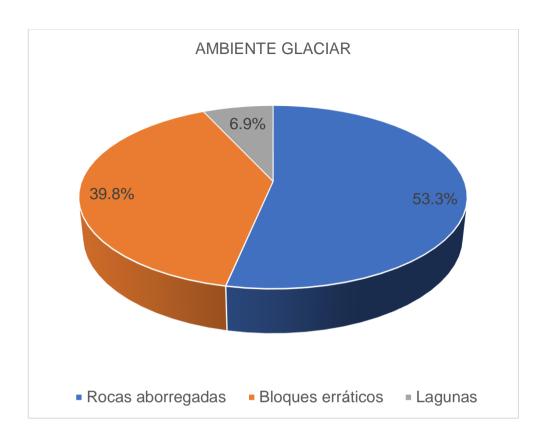


Figura 33: Representación en porcentajes del Ambiente Glaciar.

4.1.3.5. Análisis de unidades Geomorfológicas por ambiente Estructural

Las unidades que hemos identificado están asociadas con los plegamientos y fallamientos, la disposición está controlada por las rocas encajonantes, estas unidades se relacionan con la Cordillera Occidental. Este tipo de unidades se caracterizan por ser ubicados en las partes más altas, su relieve es montañoso colinado, asociado a rocas carbonatadas del cretácico en su mayoría. Ocupan el 25.5% del área de estudio, siendo muy representativo en esta área de estudio.

Tabla 56: Unidades geomorfológicas de Ambiente Morfoestructural.

N°	UNIDADES GEOMORFOLÓGICAS	AREA (Km²)	PORCENTAJE (%)	
1	Montañas	3.14	32%	
2	Cerros	6.68	68%	

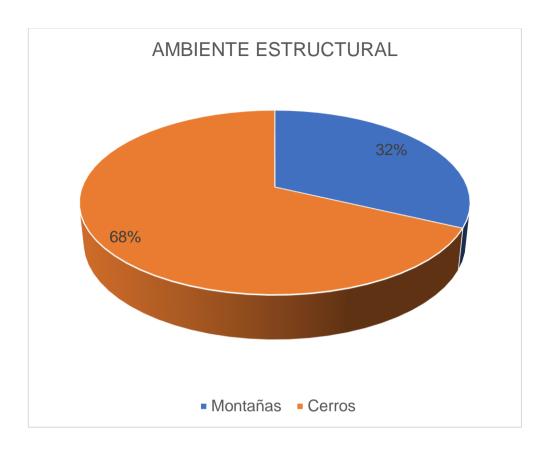


Figura 34: Representación de los porcentajes de Ambiente Morfoestructural.

4.1.3.6. Análisis de unidades Geomorfológicas por ambiente Denudacional

Se identificaron unidades originados por procesos de meteorización, erosión y transporte, estos procesos influyeron en las geoformas morfoestructurales, generando geoformas caracterizadas por su grado de pendiente entre las cuales tenemos colinas, lomas y laderas. Este ambiente ocupa un área del 58.7%, siendo esta la de mayor presencia en el área de estudio. Si bien en el área de estudio se observaron Colinas, Laderas y Lomas, en este apartado se consideró también la pendiente de cada una de estas.

Tabla 57: Unidades geomorfológicas de Ambiente Denudacional.

N°	UNIDADES GEOMORFOLÓGICAS	AREA (Km²)	PORCENTAJE (%)
1	Laderas	3.75	38.2%
2	Colinas	3.50	35.6%
3	Lomas	2.57	26.2%

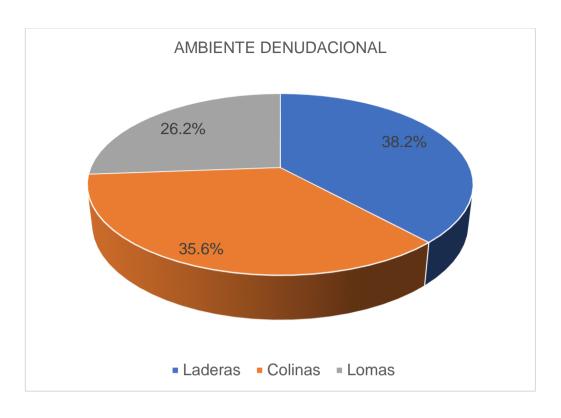


Figura 35: Representación de porcentajes del Ambiente Denudacional.

Tabla 58: Unidades geomorfológicas de Ambiente Denudacional con relación a las pendientes.

N°	UNIDADES GEOMORFOLÓGICAS	AREA (Km²)	PORCENTAJE (%)
1	Laderas de pendiente inclinada a abrupta	1.28	13%
2	Laderas de pendiente muy abrupta	1.67	17%
3	Ladera de pendiente muy abrupta a escarpada	3.73	38%
4	Laderas y colinas de pendiente abrupta	0.39	4%
5	Laderas y colinas de pendiente inclinada a muy inclinada	0.49	5%
6	Laderas y colinas de pendiente inclinada a abrupta	1.87	19%
7	Planicie con lomas	0.49	5%

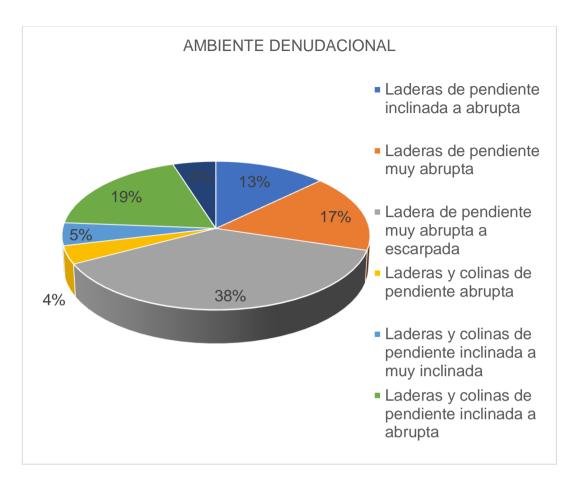


Figura 36: Representación de porcentajes de Ambiente Denudacional con relación a las pendientes.

4.1.3.7. Análisis de unidades Geomorfológicas por ambiente Fluvial

Estas geoformas surgen como resultado de la interacción de drenajes que erosionan y transportan en su recorrido. Las geoformas identificadas son terrazas y valles. Este ambiente ocupa alrededor del 4.7% del área de estudio.

Tabla 59: Unidades geomorfológicas de Ambiente Fluvial.

N°	UNIDADES GEOMORFOLÓGICAS	AREA (Km²)	PORCENTAJE (%)
1	Terrazas	0.17	21%
2	Valles	0.62	79%

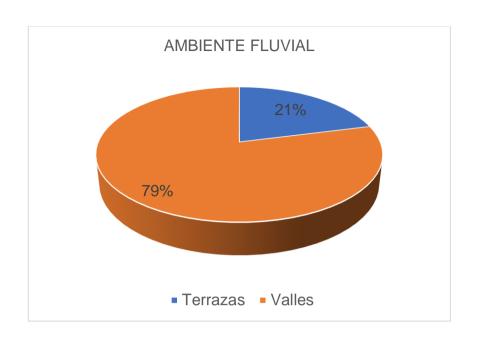


Figura 37: Representación de porcentaje del Ambiente Fluvial.

4.1.3.8. Análisis de unidades Geomorfológicas por Ambiente Cárstico

Los ambientes que se identificaron en su mayoría son lugares controlados y de pequeña extensión, donde sobresalen rocas carbonatadas que han generado geoformas características, las cuales moldean el relieve de la zona.

Por otro lado, a continuación, se muestra el análisis general de las unidades geomorfológicas descritas.

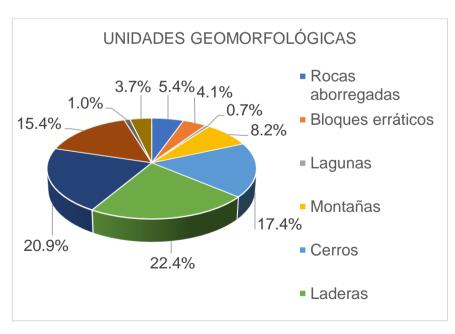


Figura 38: Unidades geomorfológicas identificadas en el área de estudio.

4.1.4. ANÁLISIS HIDROLÓGICO DE LA MICROCUENCA CONDORCANA

4.1.4.1. Balance Hidrológico

Para poder evaluar los recursos hídricos se requiere una correcta estimación del balance hidrológico o de la repartición entre escorrentía, recarga de acuíferos y evapotranspiración.

El balance hídrico del área de estudio se obtuvo a partir de un antecedente de investigación que engloba el área de estudio, es importante recalcar que el balance hídrico es muy importante debido a que es el agua un agente erosionador y a su vez un agente que posibilita la existencia de riesgos geoambientales.

Según el balance hídrico se obtuvo los siguientes resultados:

Tabla 60: Balance hidrológico del área de estudio.

DATOS DEL ÁREA DE ESTUDIO AÑO 2021					
Mes	Precipitación (mm)	Evapotranspiración potencial (mm)	Excedente Hídrico (mm)	Recarga referencial (mm)	
_			. ,	, ,	
Enero	107.73	87.9	19.83	9.915	
Febrero	110.1	87.44	22.66	11.33	
Marzo	125.87	79.71	46.16	23.08	
Abril	63.29	71.02	0	0	
Мауо	25.39	68.55	0	0	
Junio	158	71.64	0	0	
Julio	4.46	75.22	0	0	
Agosto	10.21	79.9	0	0	
Septiembre	44.09	79.15	0	0	
Octubre	92.09	87.21	4.88	2.44	
Noviembre	94.58	88.14	6.44	3.22	
Diciembre	91.94	92.16	0	0	
ANUAL	771.33	968.04	99.97	49.985	

Fuente: Camones & Pahuara, (2021).

A partir de la tabla tenemos que poner enfasis en el excedente hídrico, debido a que es la diferencia entre precipitación y evapotranspiracion superficial, es decir, es el agua que cae con la lluvia y ya no vuelve a evaporarse para poder precipitarse denuevo. Por otro lado, es importante analizar la recarga referencial, ya que es la capacidad de retencion o emposamiento de agua en el área de estudio.

En este estudio para poder calcular la cantidad de agua que circula y pertenece en el área de estudio en m³/km², no solo se considero los datos de precipitación, tambien se consideraron los datos de caudal de los manantiales existentes, es decir la presencia de agua de la microcuenca Condorcana, que reune a todos los manantiales y lagunas, obteniendose una cantidad de 0.0288 m³/km².

4.1.4.2. Analisis de parámetros fisicoquímicos

Para mostrar estos análisis se realizó a partir de los análisis fisicoquímicos de las muestras de agua de los manantiales, para ello se contrastan todos los resultados con los limites máximo permisibles.

4.1.4.2.1. Turbidez

La turbidez del agua está relacionada muchas veces con el arrastre de estratos, por lo que podría ser una evidencia de la erosión. Cabe resaltar que ninguna de las muestras pasa el máximo permisible que en este caso es 5 NTU, sin embargo, se consideró mandar muestras tanto en época de estiaje como de lluvia.

Según las muestras mandadas a laboratorio se obtuvo el siguiente gráfico:

Figura 39: Resultados sobre turbidez de las muestras de agua para época de lluvia y estiaje.

Como se observa en la gráfica, hay una variación en los valores, con respecto al cambio de época, el agua en época de estiaje suele ser menos turbia, debido a que no arrastra sedimentos.

4.1.4.2.2. pH a 20 °C

El pH es muy importante para poder calcular y evaluar el nivel de acides del agua, sus valores deben estar entre 6.5-8.5, para que pueda ser un agua apta para consumo y regadío, las muestra tanto de época de lluvia y de estiaje, que se mandaron a laboratorio, dan como resultado un valor por debajo de los límites permisibles.

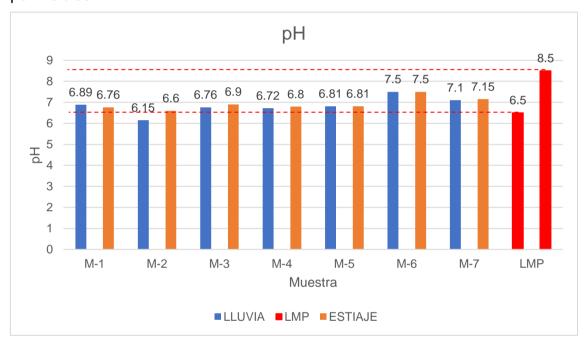


Figura 40: Resultados sobre pH de las muestras de agua de en época de lluvia y estiaje.

4.1.4.2.3. Dureza

La dureza está ligada especialmente con las rocas carbonatadas y es uno de los valores que esté ligado con la Formación Pulluicana, debido a que esta es la principal aflorante de rocas de este tipo, es muy importante evaluar este dato para poder ver si el agua es apta para consumo. Cabe recalcar que la dureza total es la suma de la dureza con respecto al sodio más la de magnesio. En las muestras ninguna sobrepasa el LMP que es 500 mg/L.

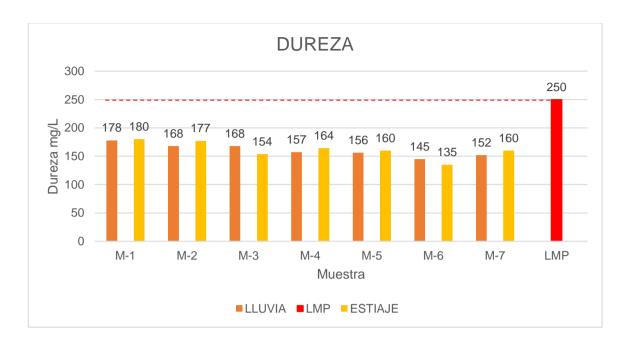


Figura 41: Resultados sobre dureza de las muestras de agua de época de lluvia y estiaje.

4.1.4.2.4. Cloruros

Son sales que resultan de la combinación de gas cloro con un metal. Según la gráfica los valores no son tan altos, ya que ninguno sobrepasa los LMP que en este caso es 250 mg/L, ni en época de lluvia ni en época de estiaje.

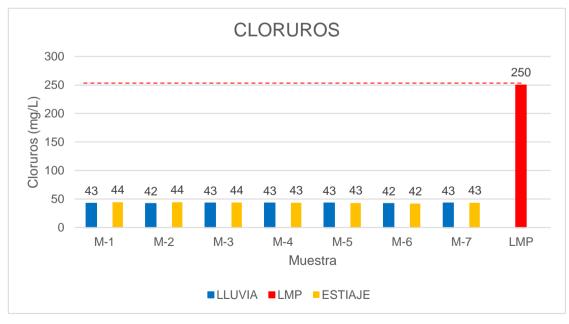


Figura 42: Resultados sobre cloruros de las muestras de agua tanto de época de lluvia como de estiaje.

4.1.4.2.5. Sulfatos

El límite máximo permisible en contenido de sulfatos es de 250mg/L. los sulfatos en concentraciones elevadas superior a los 500mg/L tiene efectos gastrointestinales. En las muestras mandadas a analizar tanto de la época de lluvia como de estiaje, no se logra observar que alguna haya sobrepasado estos límites.

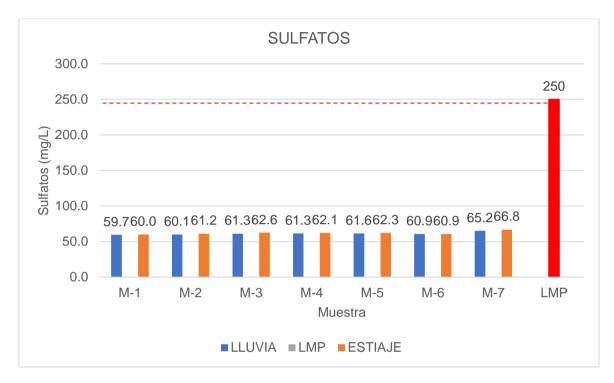


Figura 43: Resultados sobre sulfatos de las muestras de agua de época de lluvia y de estiaje.

4.2. DISCUSIÓN DE LOS RESULTADOS

De acuerdo con el propósito se observó que los riesgos geoambientales principales se dividen en dos grupos, el primer grupo, riesgos antrópicos, donde encontramos a los riesgos en transporte por carretera originados principalmente por el aumento de tránsito de vehículos pesados por el área del proyectos, no descartando que podrían originar accidentes, daños materiales y humanos, además, este tipo de riesgo considera la construcción de vías de acceso que va influir en la geología y geomorfología de la zona. Riesgos industriales, generados por las labores de explotación minera como: Construcción de ambientes, vertimiento de residuos sólidos y líquidos tanto comunes como peligrosos. Riesgos por transportes de mercancías peligrosas como: Explosivos, líquidos inflamables materiales altamente peligrosos para los humanos, vegetación y fauna. Riesgos hidrológicos, poder de influencia directamente a los cursos de agua afectando su cantidad y calidad en los manantiales y por último tenemos los Riesgos por derrumbamientos, netamente originados por erosión y remoción de capas de suelo, ya sea para la construcción de accesos durante la preparación y desarrollo de la minería.

En el segundo grupo, riesgos de origen natural, encontramos principalmente a los riesgos de sequias, originados por la ausencia de lluvias, donde en esta área es poco común, debido a las altas precipitaciones y el alto porcentaje de tormentas. Inundaciones, producto de lluvias intensas originadas en la época de invierno y primavera éstas acompañadas de remociones de tierra alteran el cauce de la microcuenca. Deslizamientos de tierra, las fuertes lluvias y las alteraciones de los cauces naturales de agua, originan que los escarpes y demás geoformas con altas pendientes tiendan a ceder y a desplazarse. Vientos originados por las remociones de tierras y eliminación de ciertas geoformas, alteran las corrientes de aire, ocasionando que este factor de riesgo aumente en probabilidad de existencia.

Estos riesgos mencionados, se relacionan a los agentes erosionadores como: suelo, agua y viento, este último, en menor escala; siendo todos factores principales de riesgo, que afectan directamente a la existencia de los riesgos geoambientales.

Por otro lado, respecto a la hidrología, específicamente a las características fisicoquímicas de la microcuenca, en época de estiaje, la cantidad de agua que existe en el área disminuye, las concentraciones de sulfatos, cloruros, dureza y cantidad de solidos disueltos aumenta en los manantiales, considerando que el riesgo geoambiental está ligado principalmente a la calidad y cantidad de agua, lo que llamamos riesgo al acceso de agua para consumo humano. En épocas de lluvia, según la geología y geomorfología de la microcuenca Condorcana, existe mayor riesgo de infiltraciones en rocas carbonatadas generando aguas duras como también debido a la fuerte recarga existe deslizamientos o movimiento de masas de tierra, por lo que el nivel de peligro se considera como medio y alto.

En el sector evaluado afloran calizas grises, ligeramente meteorizadas y poco fracturadas de la Formación Yumagual, calizas grises poco a muy fracturadas, ligeramente a moderadamente meteorizadas con capas de lutitas color beige de la Formación Cajamarca; todas las unidades están con limitada cobertura por depósitos coluvio deluviales, constituidos de gravas y bloques de formas subangulosos y subreadondeados dentro de una matriz arcillo limosa, sin consolidarse, características que facilitan la infiltración de agua de escorrentía e incrementan la saturación del terreno originando deslizamientos.

Los factores que condicionan el movimiento de masas son:

- Pendiente del terreno de 25° a 45°; permite que el material inestable en la ladera se desplace cuesta abajo.
- Litología, calizas muy fracturadas y moderadamente meteorizadas, donde se van a ocasionar los movimientos en masa.
- Depósitos coluvio aluviales conformados por bloques, en una matriz arcillo limosa son de fácil erosión.
- El factor detonante son las lluvias intensas y continuas

También afloramiento de rocas volcánicas origina la existencia de un riesgo geoambiental ligado a la formación de aguas duras, las cuales afectan al acceso al agua de los habitantes.

Se considera que la oxidación en las rocas volcánicas aumenta el contenido de metales en el agua, debido a que la oxidación es causada por el flujo de esta agua, la cual arrastra restos de estos metales al tener contacto.

Por otro lado, se identificaron una cantidad de 25 manantiales, donde al obtener sus características fisicoquímicas se pudo observar que el agua de estos manantiales tiene niveles de turbidez muy por debajo de los limites máximo permisibles y los ECAs, en época de estiaje. sin embargo, en época de lluvia el valor es mayor debido al aumento del nivel de agua, considerando que arrastra sedimentos lo que ocasiona una mayor turbidez.

Con respecto a cloruros, sulfatos y dureza se obtuvo que estos suelen ser mayores en época de estiaje, debido a que el drenaje del agua se ha puesto en contacto con las rocas tanto volcánicas como sedimentarias carbonatadas ha generado concentraciones considerables de estos parámetros estudiados.

Para finalizar, la muestra M-2 del manantial El Amaro es la única característica fisicoquímica que no se encuentra dentro de los rangos establecidos, dicho resultado arrojó en pH un valor de 6.15 durante la época de lluvia, época en la existe mayor cantidad de agua en el área de estudio.

4.3. CONTRASTACIÓN DE LA HIPÓTESIS

Los riesgos geoambientales originados por la explotación del proyecto El Lindero en el Centro Poblado Santa Rosa Distrito de Huasmín – Celendín, afecta, las características geomorfológicas, la geología e hidrología de la microcuenca Condorcana, el inventario de los manantiales relacionado a los factores fisicoquímicos como límites máximos permisibles y estándares de calidad ambiental de las aguas del río Condorcana. Debido a que, la remoción de suelo en el relieve y topografía, desviación de cursos de agua, lo cual genera áreas de recarga diferencial aumentando la posibilidad de alteración de las condiciones fisicoquímicas como: Dureza, niveles de cloruros, sulfatos, turbidez y el pH del agua, así como la variación de la geomorfología, a partir de la generación de deslizamientos y remociones de suelo producto de la erosión. Con lo cual se contrasta la hipótesis inicialmente planteada.

CAPÍTULO V CONCLUSIONES Y RECOMENDACIONES

5.1. CONCLUSIONES

Los riesgos geoambientales del proyecto El Lindero ubicado en el Centro Poblado Santa Rosa Distrito de Huasmín – Celendín son: Riesgos antrópicos como transporte por carretera, industriales, transporte de mercancías peligrosas. Riesgos naturales, como inundaciones, sequias, deslizamientos, vientos, contaminación de aguas. Todos estos afectan principalmente a la Geología, geomorfología en las unidades denudacionales, fluviales y glaciares e Hidrología las cuales mediante su remoción de materiales generan aguas duras a consecuencia de la desviación en la microcuenca.

Los 25 manantiales más representativos en la microcuenca pueden verse afectados por la actividad del proyecto El Lindero, por lo que se debe tomar como referencia o línea base los análisis fisicoquímicos de los manantiales evaluados.

Las características fisicoquímicas de los siete (7) manantiales analizados no superan los límites máximos permisibles, son aptos para el consumo humano.

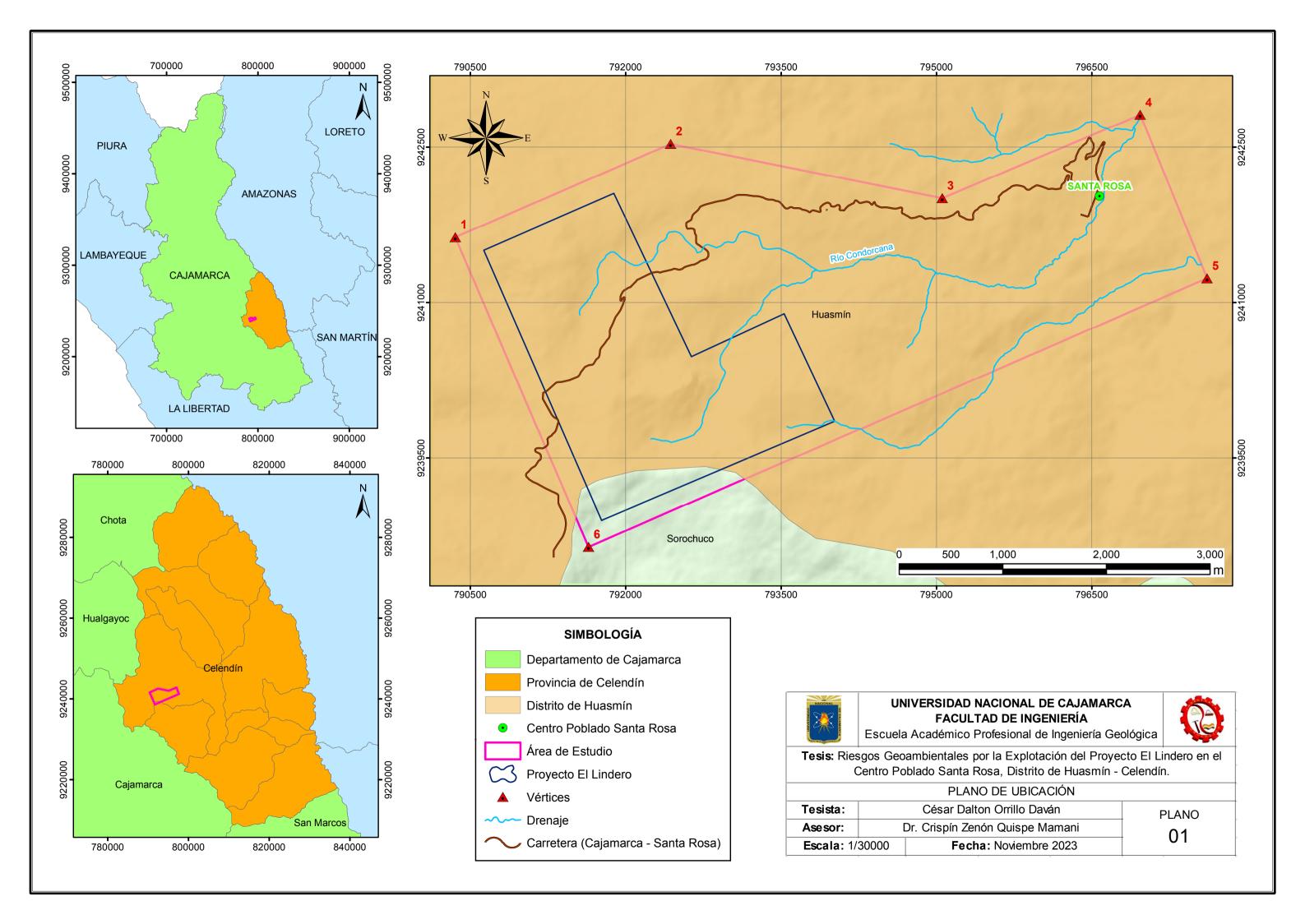
La Caracterización Geológica y Geomorfológica de la microcuenca se realizó mediante el cartografiado en campo y utilizando del Software ArcGis, logrando identificar la predominancia de rocas carbonatadas y volcánicas, identificando diversas unidades morfogenéticas y geomorfológicas.

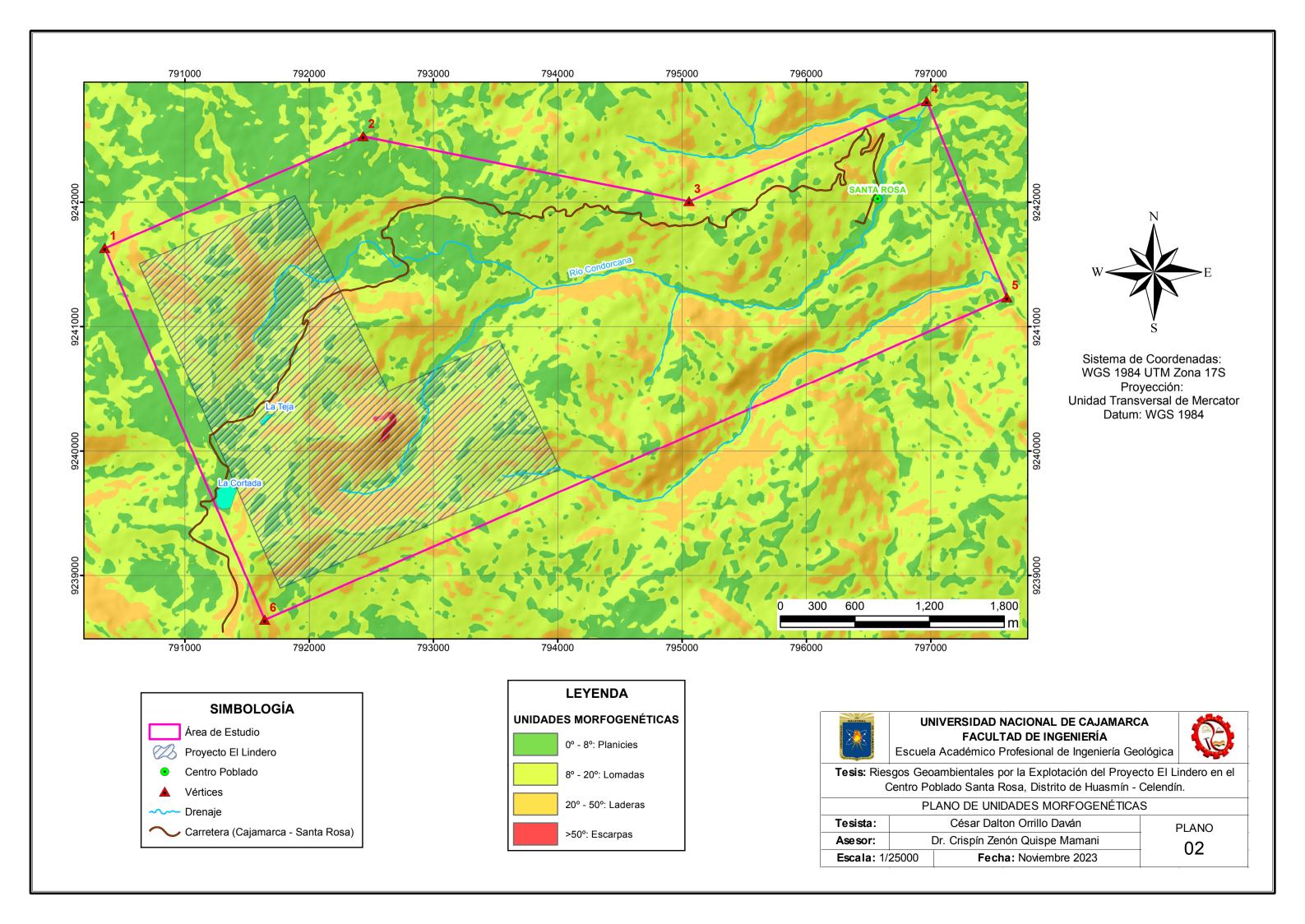
5.2. RECOMENDACIONES

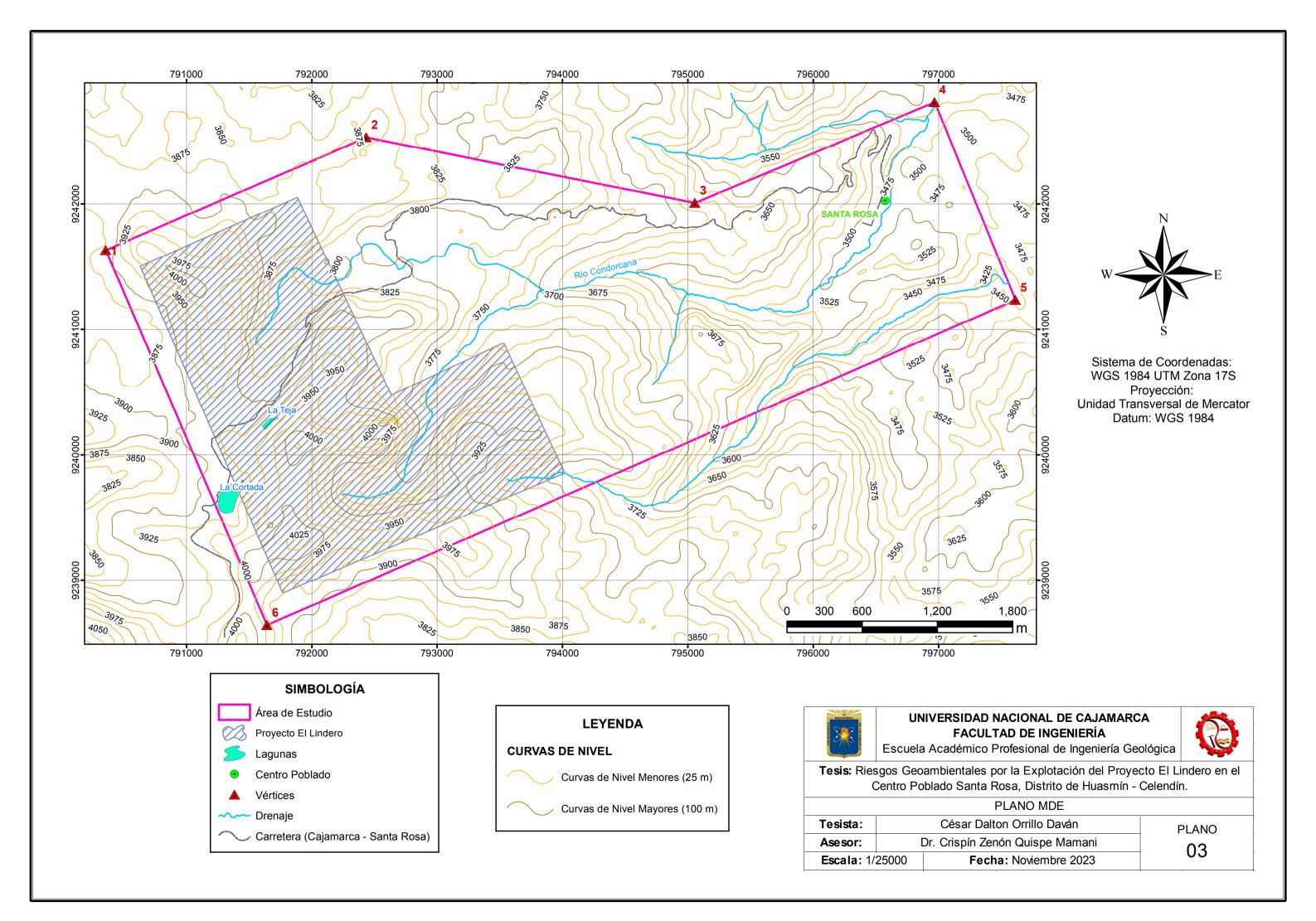
- A la Autoridad Local del Agua realizar los análisis fisicoquímicos de los manantiales faltantes debido a que es de mucha importancia contar con dicha información y tener una referencia para proyectos de otra índole que se planteen desarrollar en el Centro Poblado de Santa Rosa de Huasmín.
- La Municipalidad Distrital de Huasmín conjuntamente con el Ministerio del Ambiente, según la normativa, solicitar a las actividades mineras de manera obligatoria un plan de manejo ambiental, donde se realice un estudio de línea base para poder disminuir los peligros geoambientales al igual que reducir los daños al medio ambiente.
- La Autoridad Local del Agua (ALA) debe realizar los análisis de agua correspondiente a los manantiales faltantes, con la consigna de poder controlar la calidad de agua a la cual accede la población, asimismo tenerlo como referencia en un Estudio de Impacto Ambiental.

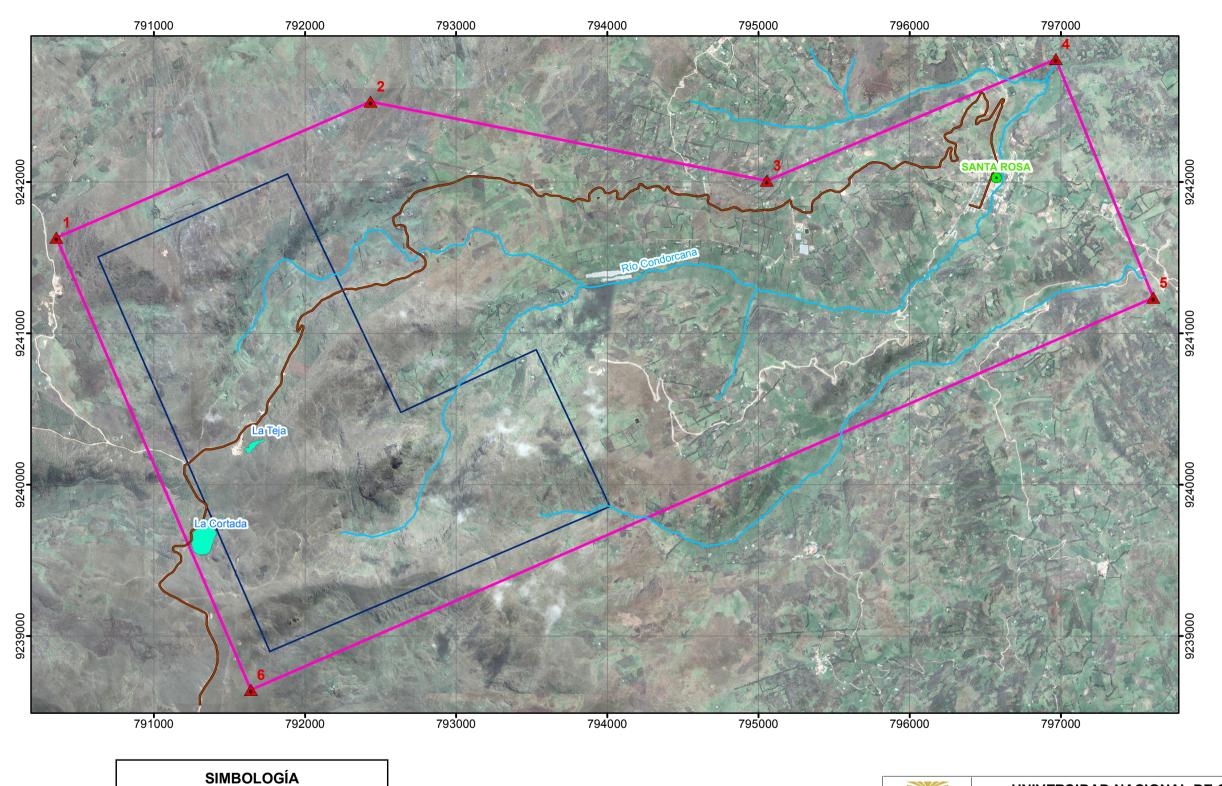
REFERENCIAS BIBLIOGRÁFICAS

- ACOMISA. (2023). Ficha tecnica Ambiental del Proyecto de Exploración "Colpayoc".
- Aguilar , L. (2018). Análisis lito morfoestructural y su relación con el comportamiento hidrogeológico en la subcuenca río hualgayoc. Hualgayoc Cajamarca. Tesis de titulación., Cajamarca-Perú. Recuperado el 23 de agosto 2023
- Alcántara , G. (2011). Geomorfologia departamento de Cajamarca. Obtenido de https://zeeot.regioncajamarca.gob.pe/sites/default/files/GEOMORFOLOGIA .pdf
- Asociación de Agentes Comunales de Salud de Celendín. (2018). Mejoramiento de la vivienda rural. Celendín: ACOMSAC.
- Camones, J., & Pahuara, J. (2021). Propuesta de implementación de un sistema complementario de abastecimiento de agua para uso sanitario proveniente de las aguas pluviales para cubrir los periodos de desabastecimiento del servicio de agua potable municipal SEMACEL. Lima: Universidad Peruana de Ciencias Aplicadas.
- Carvajal, J. (2012). Propuesta de Estandarización de la Cartografía Geomorfológica en Colombia. Bógota, Colombia: Imprenta Nacional de Colombia.
- Cataño, D., & Sepúlveda, J. (2017). Riesgos ambientales y de seguridad en calderas a carbón de las pequeñas y medianas empresas «PYME», ubicadas en el municipio de Itagüí, Antioquia. Artículo, Medellín, Colombia.
- Dávila, J. (2011). Diccionario Geológico. INGEMMET.
- De Pedraza, J. (1996). Geomorfología: Principios, Métodos y Aplicaciones. Madrid, España: Rueda.
- Flores, C. A. (2017). Impactos ambientales producidos en la rehabilitación y mejoramiento de la carretera yanacocha- bambamarca: tramo iii, el empalme km 64+500 hualgayoc km 85+982, respecto a lo declarado en el estudio de impacto ambiental. Tésis, Cajamarca Perú.

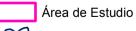

- Gola, J. (2017). Estudio geoambiental de la explotación de materiales para la construcción de la cantera el pilón, Provincia de Holguín. Tésis de Master en Geología, Instituto Superior Minero Metalúrgico, Facultad de Geología y Minería, Mayari - Cuba.
- Gonzales, J. E. (2018). Evaluación Del Riesgo Ambiental Que Genera La Planta De Tratamiento De Residuos Sólidos De La Ciudad De Cajamarca Debido Al Manejo De Los Lixiviados. Tésis, Cajamarca Perú.
- Gutierrez, M. (2008). Geomorfología editorial pearson educación S.A. Madrid 898p.
- Ize,I., Zuk, M., & Rojas, L. (2010). Introducción al análisis de riesgos ambientales. Ciudad de México.
- Machaca, H. (2016). Caracterización geoambiental para una zonificación y ordenamiento territorial sostenido en la ciudad de Puno. Universidad Nacional del Altiplano, Puno.
- MINAM. (2010). Guía de Evaluación de Riesgos Ambientales. Lima Perú: Verónika Mendoza Díaz.
- Montalvo Figueroa, Y., & Luque Luque, J. (2010). Guía de evaluación de riesgos ambientales. MINAM, Lima. Obtenido de https://www.minam.gob.pe/calidadambiental/wp-content/uploads/sites/22/2013/10/guia_riesgos_ambientales.pdf
- Moreno, J., Nuñes, S., & Dueñas, K. (2016). Evaluación Geológica e Hidrogeológica del sector Aguas Claras. San Martin}: INGEMMET.
- OEFA. (2017). Metodología para la estimación del nivel de riesgo a la salud y al ambiente de sitios impactados.
- Olaya, V. (2020). Sistemas de Información Geográfica.
- Orellana, M. E. (2018). Riesgos geoambientales y sanitarios del sitio de disposición final de resíduos sólidos urbanos del Municipio de Aguilares Provincia de Tucumán. Tésis de Maestría, San Miguel de Tucumán Argentina.
- Palacios, O. (1995). Estratigrafía. Boletín 55. INGEMET.


- Peña, F., Carpio, J., & Vargas, V. (2015). Hidrogeología de la cuenca de los rios Jequetepeque (13774) y Chamán (137752). Regiones Cajamarca, La Libertad y Lambayeque. Lima: INGEMMET.
- Quispe, C. (2015). Caracterización Geológica del Centro Poblado de Combayo distrito de la Encañada. Cajamarca, Perú: Universidad Nacional de Cajamarca.
- Real Academia de Ciencias Exactas, F. y. (1983). Vocabulario Científico y Técnico I. Madrid.
- Rodríguez, Z. (2015). Gestión de Control de Riesgos I. Universidad de las Palmas de Gran Canaria.
- Rodríguez, P. (2001). Abastecimiento de Agua. Instituto Tecnológico de Oaxaca, Departamento de Ciencias de la Tierra.
- Rodríguez, R. (2016). Método de investigación Geológico-Geotécnico para el Análisis de Inestabilidad de Laderas por deslizamientos. Zona Ronquillo-Corisorgona, Cajamarca, Perú: UNMSM.
- Rodríguez, R. (2018). Impactos geotécnico-ambientales en cabeceras de subcuencas por implantación de minas conga Cajamarca-Perú. Cajamarca: UNC.
- Saucedo, K. M. (2021). Estimación del nivel de riesgo ambiental de aguas ácidas generado por residuos mineros en el río Cañaris, zona de Algamarca Cajabamba. Universidad Nacional de Cajamarca, Cajamarca.
- Soto, D. (2018). Evaluacion de riesgos ambientales ocasionados por la disposición de residuos sólidos al río Sicra mediante sistemas de información geográfica ciudad de Lircay. Tésis, Huancavelica - Perú.
- Spelucín, J. (2017). Caracterización petrológica de la formación porculla (Grupo Calipuy), Cumbemayo, Cajamarca. Cajamarca: Universidad Nacional de Cajamarca.


- Torres, O. (2017). Determinación de Aspectos y Riesgos Ambientales por una Empresa Extractora de Mineral U.E.A. Exploraciones Andinas S.A.C. Puquio Lucanas, Ayacucho. Tésis, Arequipa – Perú.
- Villota, H. (2005). Geomorfología aplicada a Levantamientos Edafológicos y Zonificación física de Tierras. Bogota, Colombia: Instituto Geográfico Agustín Codazzi.
- Zinck, A. (2012). Geopedología: Elementos de geomorfología para estudios de suelos y de riesgos naturales. Enschede, Paises Bajos: Facultad de Ciencias de la Geoinformación y Observación de la Tierra.


ANEXOS

- 1. planos.
- 2. resultados fisicoquímicos de agua.
- 3. resultados metalogénicos de muestras de roca tomadas in situ.



Sistema de Coordenadas: WGS 1984 UTM Zona 17S Proyección: Unidad Transversal de Mercator Datum: WGS 1984

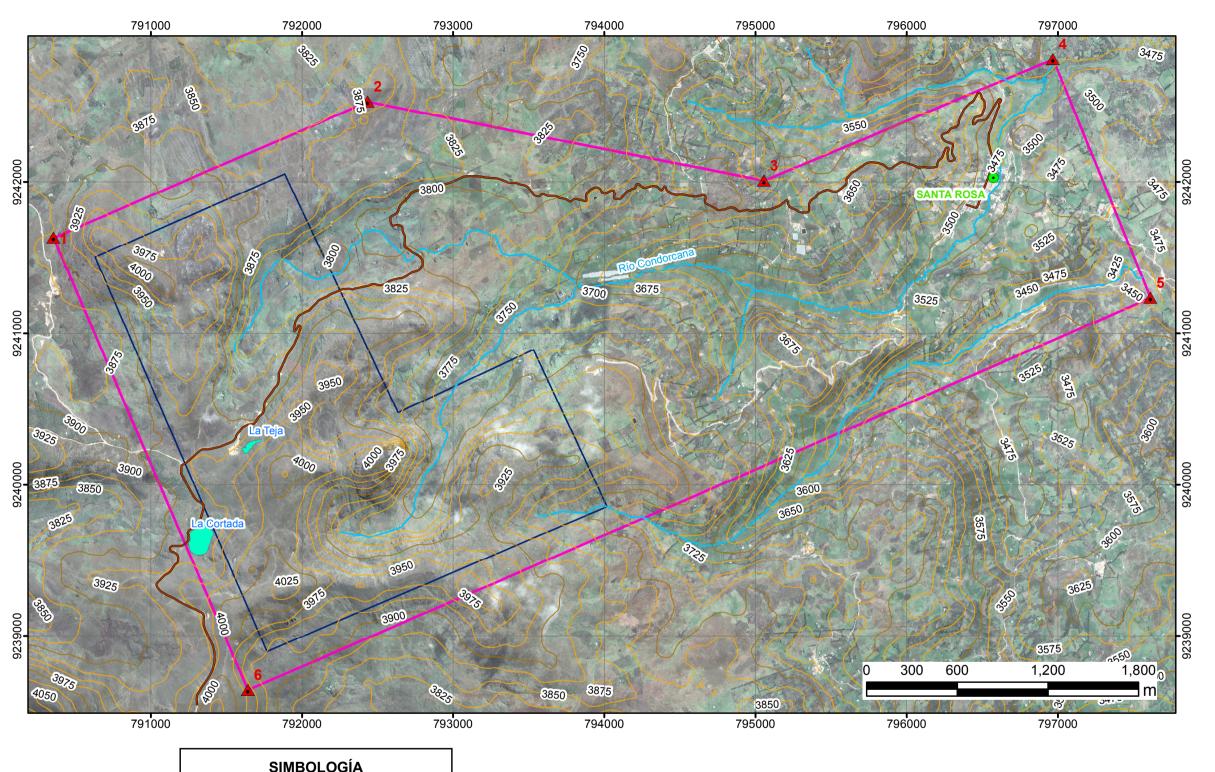
Proyecto El Lindero

Centro Poblado

Vértices Drenaje

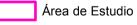
Carretera (Cajamarca - Santa Rosa)

ESCALA GRÁFICA


UNIVERSIDAD NACIONAL DE CAJAMARCA **FACULTAD DE INGENIERÍA**

Escuela Académico Profesional de Ingeniería Geológica

IMAGEN	SATELITAL
	· · · · — — · · · · · · —


Tesista:		César Dalton Orrillo Daván	PLANO
Asesor:	esor: Dr. Crispín Zenón Quispe Mamani		04
Escala: 1/25000		Fecha: Noviembre 2023	04

Sistema de Coordenadas: WGS 1984 UTM Zona 17S Proyección: Unidad Transversal de Mercator Datum: WGS 1984

SIMBOLOGÍA

Proyecto El Lindero

Centro Poblado

Vértices

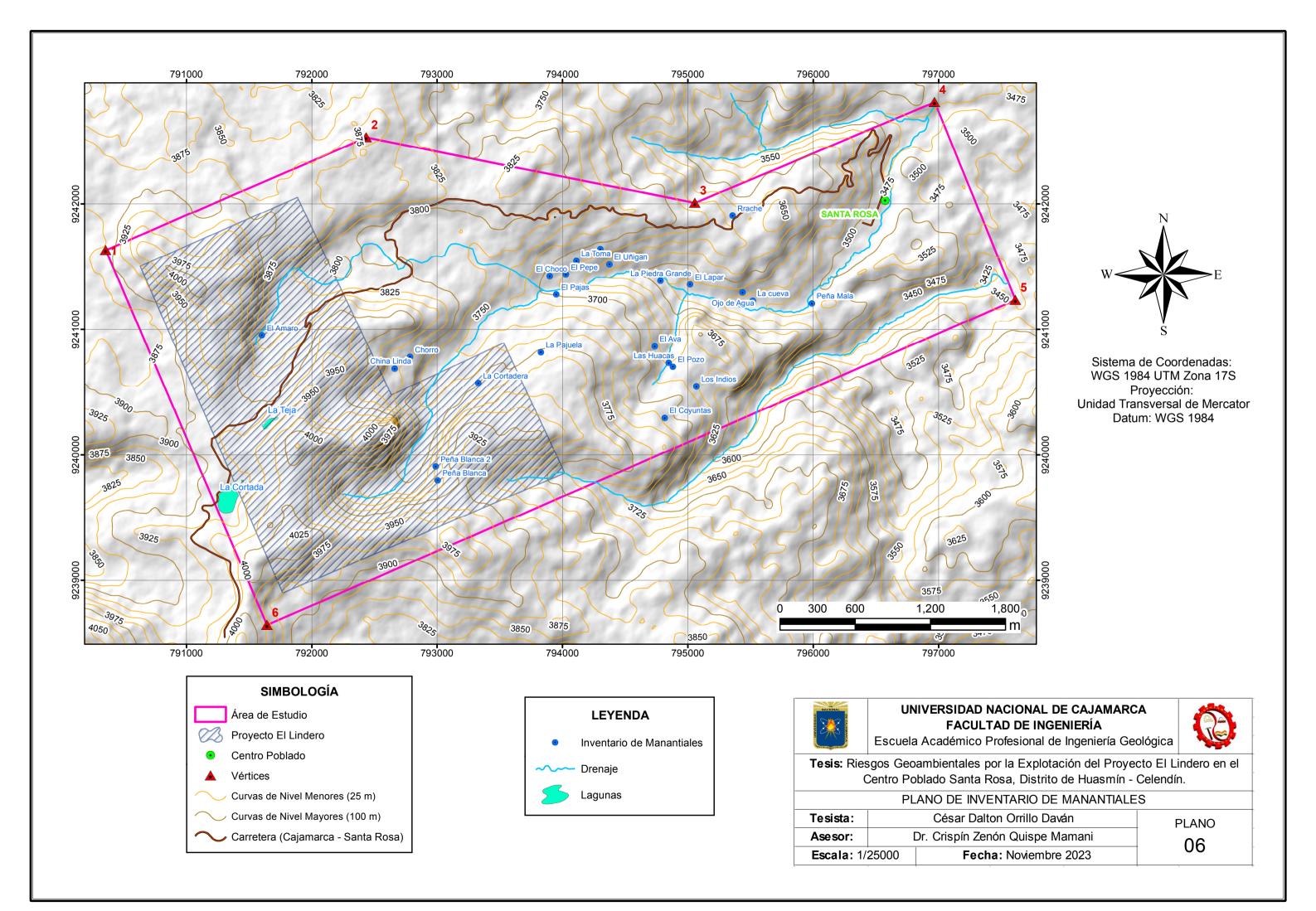
Curvas de Nivel Menores

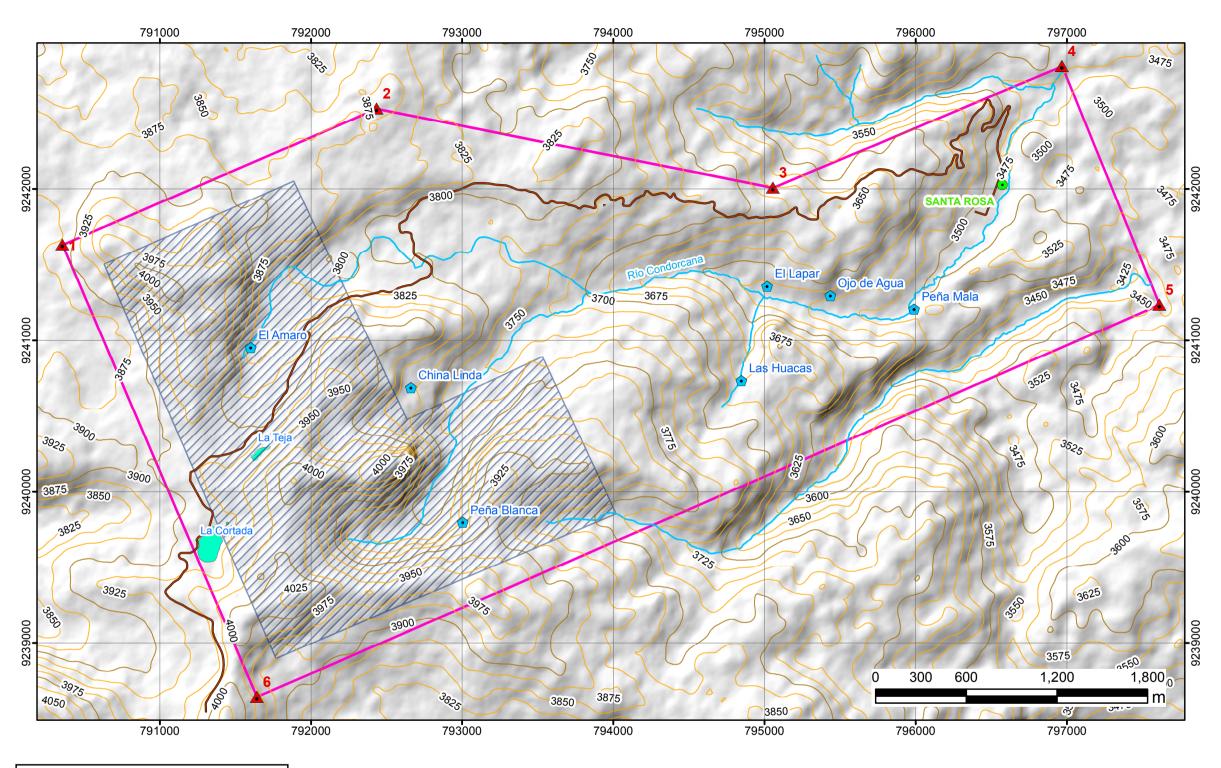
Curvas de Nivel Mayores

Carretera (Cajamarca - Santa Rosa)

LEYENDA

Lagunas

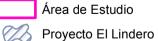

UNIVERSIDAD NACIONAL DE CAJAMARCA **FACULTAD DE INGENIERÍA**

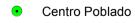

Escuela Académico Profesional de Ingeniería Geológica



PLANO	HIDROLÓGICO

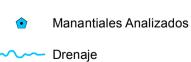
Tesista:	César Dalton Orrillo Daván	PLANO
Asesor:	Dr. Crispín Zenón Quispe Mamani	05
Escala: 1/2	25000 Fecha: Noviembre 2023	05

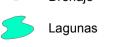




Sistema de Coordenadas: WGS 1984 UTM Zona 17S Proyección: Unidad Transversal de Mercator Datum: WGS 1984

SIMBOLOGÍA

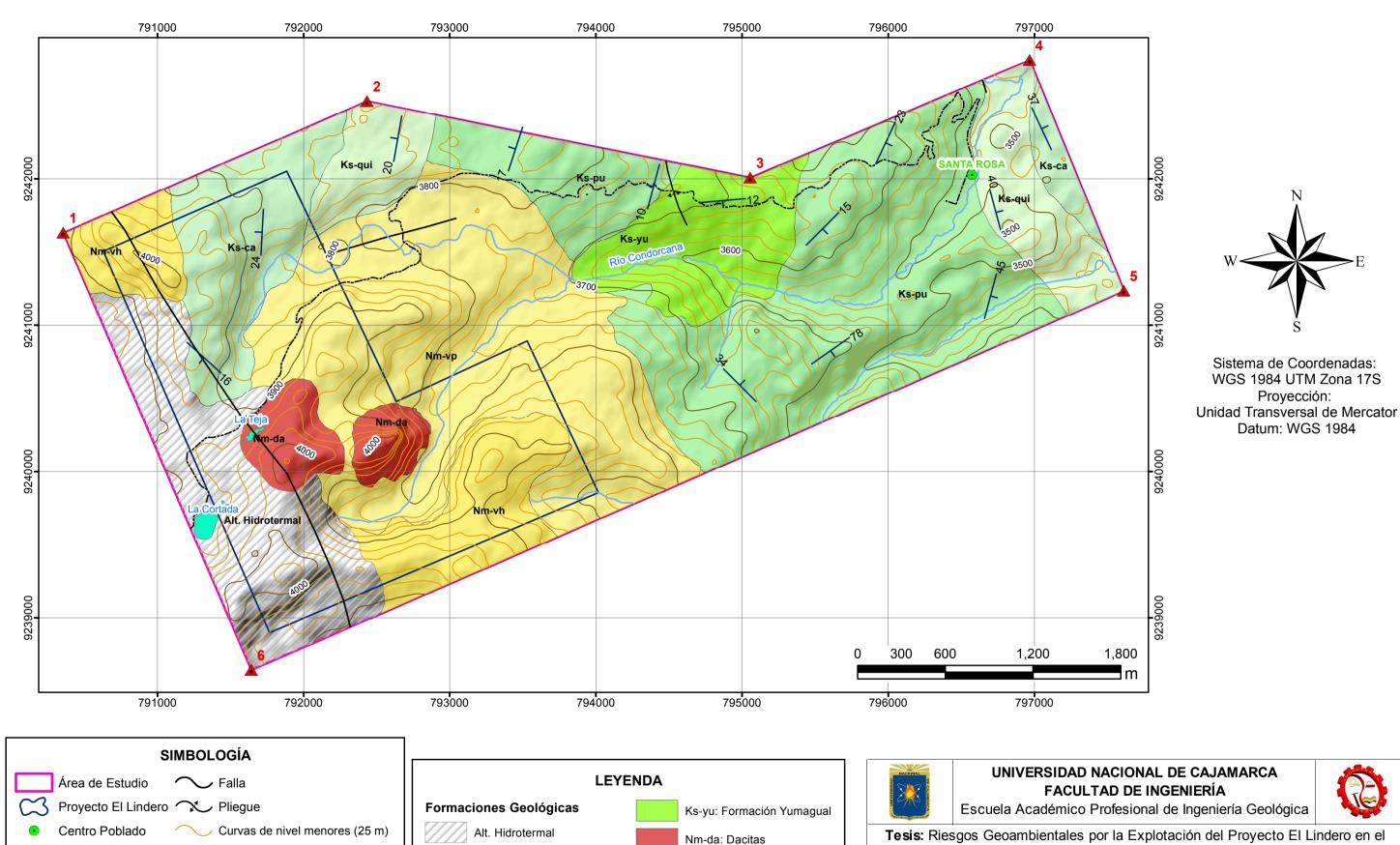



Curvas de Nivel Menores

Carretera (Cajamarca - Santa Rosa)

LEYENDA

ANÁLISIS F	ISICOQUÍN	IICO DE M	ANANTIALES
Nombre	Norte	Este	Código
Peña Blanca	9239796	793004	M-1
El Amaro	9240952	791602	M-2
China Linda	9240688	792660	M-3
Las Huacas	9240733	794847	M-4
El Lapar	9241359	795018	M-5
Ojo de Agua	9241296	795436	M-6
Peña Mala	9241207	795989	M-7


UNIVERSIDAD NACIONAL DE CAJAMARCA **FACULTAD DE INGENIERÍA**

Escuela Académico Profesional de Ingeniería Geológica

PLANO DE	UBICACIÓN DE	PUNTOS	DE MUESTREO	DF AGUA

Tesista:	César Dalton Orrillo Daván	PLANO
Asesor:	Dr. Crispín Zenón Quispe Mamani	07
Escala: 1/250	Fecha: Noviembre 2023	07

Nm-vh: Volcánico Huambos

Nm-vp: Volcánico Porculla

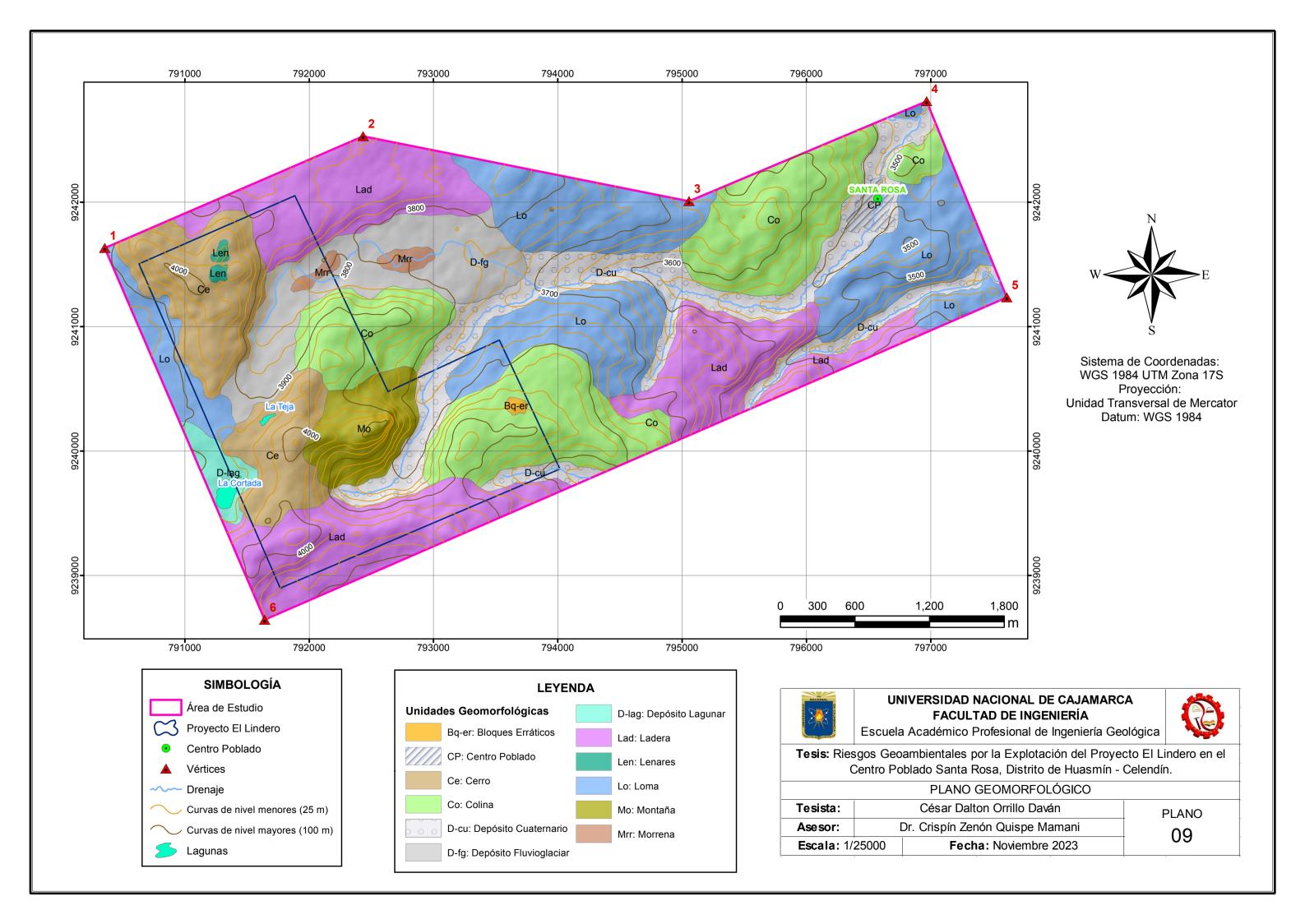
Ks-ca: Formación Cajamarca

Ks-pu: Formación Pulluicana

Ks-qui: Formación Quilquiñan

Vértices

Buzamiento


Curvas de nivel mayores (100 m)

--- Drenaje

Red Vial

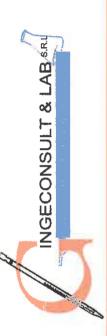
	PLANO GEOLÓGICO	
	PLANO GEOLOGICO	
Tesista:	César Dalton Orrillo Daván	PLANO
Asesor:	Dr. Crispín Zenón Quispe Mamani	08
Escala: 1/2	25000 Fecha: Noviembre 2023	

Ensayos Fisicos, Químicos y de Mecánica de Suelos,
Concreto y Pavimentos, Análisis Químicos de Minerales y Agua.
Estudio de: Mecánica de Suelos y Rocas, Concreto y Pavimentos.
Impacto Ambiental, Construcción de Edificios, Obras de Ingenieria Civil.
PROYECTOS – ASESORÍA Y CONSULTORÍA
RPM: *696826 CELULAR: 976026950 TELÉFONO: 364793

ANÁLISIS FISICOQUÍMICO DE UNA MUESTRA DE AGUA

SOLICITA : Cesar Dalton Orrillo Daván

PROCEDENCIA : Peña Blanca


MUESTRA : M -- 1

FECHA : 08/05/2023

RESULTADOS DE ANÁLISIS

Nº ORDEN	CARACTERÍSTICAS	MEDIDAS	RESULTADOS	MÁXIMO RECOMENDADO OMS	MÁXIMO ADMISIBLE DIGESA CLASE I
01	ASPECTO	187	TRANSPARENTE	90	LIMPIO
05	OLOR	96	INODORO	ı	INOFENSIVO
03	SABOR		AGRADABLE	siè	INOFENSIVO
40	COLOR	e	INCOLORO	15	15
90	CONDUCTIVIDAD A 20°C	NS/CM	102	1	2000
90	SÓLIDOS DISUELTOS TOTALES	mdd	84	200	1000
07	SÓLIDOS SUSPENSIÓN	mdd	833	250	300
80	DUREZA CALCIO(CaCO ₃)	mdd	95	75	500
60	DUREZA MAGNESIO (CaCO ₃)	mdd	89	30	150
10	Hd	Unid	6.89	106	6.5-8.5
11	ALCALINIDAD TOTAL CaCO ₃	mdd	15.80	29	25

Ensayos Físicos, Químicos y de Mecánica de Suelos, Concreto y Pavimentos, Análisis Químicos de Minerales y Agua. Estudio de: Mecánica de Suelos y Rocas, Concreto y Pavimentos. Impacto Ambiental, Construcción de Edificios, Obras de Ingeniería Civil. PROYECTOS – ASESORÍA Y CONSULTORÍA RPM: "696826 CELULAR: 976026950 TELÉFONO: 364793

	CARACTERÍSTICAS	MEDIDAS	RESULTADOS	RECOMENDADO OMS	ADMISIBLE DIGESA CLASE I
12 TT	TURBIDEZ	UTN	1,3	w	ĸ
13 AI	ARSÉNICO	mdd	78	0.1	(#)
14 PI	РІОМО	urdd	l avi	0.1	r
15 SE	SELENIO	undd	0.003	0.05	1
16 FC	FÓSFORO	undd	0.02	0.1	ſ
17 03	OXIGENO DISUELTO (02)		1.24	(*)	2.5
18 CI	CLORUROS (CI1-)	undd	42.70	39	250
19 AI	ALUMINIO (Al³+)	udd	0.024	0.2	0.2
20 St	SULFATOS (SO4)2-	mdd	59.71	250	400
21 FI	FIERRO (Fe)	1	0.05	0.1	1.0
22 CC	COBRE (Cu)	udd	0.04	0.05	1.5
23 M.	MANGANESO (Mn)	uidd	0.02	0.5	0.5
24 N	NITRITO (NO ₂) ²⁻	mdd	0.01	3.0	3.0
25 ZI	ZINC (Zn)	mdd	M.	3.0	3.00
26 NI	NITRATO (NO3)1-	undd	Ya.	20.00	20.0
27 CA	CADMIO (Cd)	mdd	200	0.003	0.003
28 CF	скомо (сг)	mdd	t	0.05	0.05
29 FL	FLORURO F.		1	1.5	1.0

Nota: La muestra fue alcanzada al Laboratorio por el interesado.

Ing MSc Myshosqueira Straver
JEFF DE LABORATORIO
CTP. 27664

Ensayos Fisicos, Químicos y de Mecánica de Suelos, Concreto y Pavimentos, Análisis Químicos de Minerales y Agua.
Estudio de: Mecánica de Suelos y Rocas, Concreto y Pavimentos.
Impacto Ambiental, Construcción de Edificios, Obras de Ingeniería Civil.
PROYECTOS – ASESORÍA Y CONSULTORÍA
RPM: *690826 CELULAR: 976026950 TELÉFONO: 364793

ANÁLISIS BACTERIOLÓGICO DE UNA MUESTRA DE AGUA PARA CONSUMO

: Cesar Dalton Orrillo Daván SOLICITA

: Peña Blanca **PROCEDENCIA**

: M-1 MUESTRA

:08/05/2023 FECHA

ANÁLISIS BACTERIOLÓGICO MÉTODO FILTRO DE MEMBRANA

: 06/05/2023 : 08/05/2023 RECEPCIÓN DE LA MUESTRA RESULTADO DE ANÁLISIS

HORA: 11.00 a.m. HORA: 12:00 m

REGISTRO

2		

TOTALES MNP/ 100ML	0.0
ENCONTRADAS MNP/100 ML	1.00
	100ml.

Nº COLIFORMES FECALES

Nº COLIFORMES

VOLUMEN FILTRADO

OBSERVACIONES:

CLASIFICACIÓN DEL AGUA DE CONSUMO HUMANO

CATEGORÍA	RECUENTO DE COLIFORMES FECALES MNP/ 100 ML
(v	0 AGUA BACTERIOLÓGICAMENTE APTA
89	1-10 AGUA BACTERIOLÓGICAMENTE INAPTA (CONTAMINADA)
J	11-50 AGUA BACTERIOLÓGICAMENTE INAPTA (CONTAMINADA)
a	Mayor a 50 AGUA BACTERIOLÓGICAMENTE INAPTA (CONTAMINADA)

Observaciones: Los resultados obtenidos encuadran dentro de los parámetros dados por la OMS/MINSA para aguas de consumo humano.

Nota: La muestra fue alcanzada al Laboratorio por el interesado para su análisis respectivo.

Ensayos Fisicos, Químicos y de Mecánico de Suelos.
Concreto y Pavimentos, Análisis Químicos de Minerales y Agua.
Estudio de: Mecánica de Suelos y Rocas, Concreto y Pavimentos.
Impacto Ambiental, Construcción de Edificios, Obras de Ingeniería Civil.
PROYECTOS – ASESORÍA Y CONSULTORÍA
RPM: *696826 CELULAR: 976026950 TELÉFONO: 364793

ANÁLISIS FISICOQUÍMICO DE UNA MUESTRA DE AGUA

SOLICITA : Cesar Dalton Orrillo Daván

PROCEDENCIA : El Amaro

MUESTRA : M-2

FECHA : 08/05/2023

RESULTADOS DE ANÁLISIS

N [®] ORDEN	CARACTERÍSTICAS	MEDIDAS	RESULTADOS	MÁXIMO RECOMENDADO OMS	MÁXIMO ADMISIBLE DIGESA CLASE I
01	ASPECTO	72.	TRANSPARENTE	84	OIMPIO
02	OLOR	28	INODORO	1	INOFENSIVO
03	SABOR	i .	AGRADABLE	6)	INOFENSIVO
40	COLOR	50)	INCOLORO	15	15
0.5	CONDUCTIVIDAD A 209C	NS/CM	86	ι	2000
90	SÓLIDOS DISUELTOS TOTALES	mdd	82	200	1000
40	SÓLIDOS SUSPENSIÓN	шdd	79	250	300
80	DUREZA CALCIO(CaCO ₃)	mdd	89	75	200
60	DUREZA MAGNESIO (CaCO ₃)	mdd	65	30	150
10	풉	Unid	6.15	45	6.5 – 8.5
11	ALCALINIDAD TOTAL CaCO ₃	wdd	15.75	¥	25

Ing. MSc. Hugo Mosqueira Estraver JEFE DE LABORATORIO CIP. 27664

Ensayos Fisicos, Químicos y de Mecánica de Suclos,
Concreto y Pavimentos, Análisis Químicos de Minerales y Agua.
Estudio de: Mecánica de Suelos y Rocas, Concreto y Pavimentos.
Impacto Ambiental, Construcción de Edificios, Obras de Ingeniería Civil.
PROYECTOS - ASESORÍA Y CONSULTORÍA
RPM: "696826 CELULAR: 976026950 TELÉFONO; 364793

Nº ORDEN	CARACTERÍSTICAS	MEDIDAS	RESULTADOS	MÁXIMO RECOMENDADO OMS	MÁXIMO ADMISIBLE DIGESA CLASE I
12	TURBIDEZ	NTU	1.1	25	
13	ARSÉNICO	mdd		0.1	\$65
14	PLOMO	mdd	*	0.1	¥
15	SELENIO	wdd	0.004	0.05	8
16	FÓSFORO	mdd	0.03	0.1	126
17	OXIGENO DISUELTO (02)	1	1.21	24	2.5
18	CLORUROS (Cl ¹⁻)	mdd	41.80	æ	250
19	ALUMINIO (Al³+)	wdd	0.021	0.2	0.2
20	SULFATOS (SO4)2-	щdd	60.12	250	400
2.1	FIERRO (Fe)	1	0.03	0.1	1.0
22	COBRE (Cu)	шdd	0.02	0.05	1.5
23	MANGANESO (Mn)	udd	0.03	0.5	0.5
24	NITRITO (NO ₂) ¹⁻	mdd	0.02	3.0	3.0
22	ZINC (Zn)	mdd	1	3.0	3.00
56	NITRATO (NO3)1-	urdd	99.	20.00	20.0
27	CADMIO (Cd)	mdd	*!	0.003	0,003
28	CROMO (Cr.)	mdd	(0)	0.05	0.05
53	FLORURO F.			1.5	1.0

Nota: La muestra fue alcanzada al Laboratorio por el interesado.

Ensayos Fisicos, Químicos y de Mecánica de Suclos,
Concreto y Pavimentos, Análisis Químicos de Minerales y Agua.
Estudio de: Mecánica de Suelos y Rocas, Concreto y Pavimentos.
Impacto Ambiental, Construcción de Edificios, Obras de Ingeniería Civil.
PROYECTOS – ASESORÍA Y CONSULTORÍA
RPM: *696826 CELULAR: 976026950 TELÉFONO: 364793

ANÁLISIS BACTERIOLÓGICO DE UNA MUESTRA DE AGUA PARA CONSUMO

: Cesar Dalton Orrillo Daván

: El Amaro **PROCEDENCIA**

: M-2 MUESTRA :08/05/2023 **FECHA**

ANÁLISIS BACTERIOLÓGICO MÉTODO FILTRO DE MEMBRANA

: 08/05/2023 RECEPCIÓN DE LA MUESTRA

HORA: 11.00 a.m.

RESULTADO DE ANÁLISIS

HORA: 12:00 m

REGISTRO

0.0
1.00
100ml.

OBSERVACIONES:


CLASIFICACIÓN DEL AGUA DE CONSUMO HUMANO

CATEGORÍA	RECUENTO DE COLIFORMES FECALES MNP/ 100 ML
(v	0 AGUA BACTERIOLÓGICAMENTE APTA
æ	1-10 AGUA BACTERIOLÓGICAMENTE INAPTA (CONTAMINADA)
O	11-50 AGUA BACTERIOLÓGICAMENTE INAPTA (CONTAMINADA)
Q	Mayor a 50 AGUA BACTERIOLÓGICAMENTE INAPTA (CONTAMINADA)

Observaciones: Los resultados obtenidos encuadran dentro de los parámetros dados por la OMS/MINSA para aguas de consumo humano.

Nota: La muestra fue alcanzada al Laboratorio por el interesado para su análisis respectivo.

Ensayos Físicos, Químicos y de Mecánica de Suelos.
Concreto y Pavimentos, Análisis Químicos de Minerales y Agua.
Estudio de: Mecánica de Suelos y Rocas, Concreto y Pavimentos.
Impacto Ambiental, Construcción de Edificios, Obras de Ingenieria Civil.
PROYECTOS – ASESORÍA Y CONSULTORÍA
RPM: *696826 CELULAR: 976026950 TELÉFONO: 364793

ANÁLISIS FISICOQUÍMICO DE UNA MUESTRA DE AGUA

SOLICITA : Cesar Dalton Orrillo Daván

PROCEDENCIA : China Linda

MUESTRA : M – 3

FECHA : 08/05/2023

RESULTADOS DE ANÁLISIS

Nº ORDEN	CARACTERÍSTICAS	MEDIDAS	RESULTADOS	MÁXIMO RECOMENDADO OMS	MÁXIMO ADMISIBLE DIGESA CLASE I	
10	ASPECTO	Įģ.	TRANSPARENTE	58.	LIMPIO	
02	OLOR	N	INODORO	222	INOFENSIVO	
03	SABOR	ÎI Î	AGRADABLE		INOFENSIVO	
04	COLOR	*	INCOLORO	15	15	
95	CONDUCTIVIDAD A 20%C	US/CM	101	1	2000	
90	SÓLIDOS DISUELTOS TOTALES	wdd	85	800	1000	
07	SÓLIDOS SUSPENSIÓN	шdd	81	250	300	
80	DUREZA CALCIO(CaCO ₃)	шdd	87	75	200	
60	DUREZA MAGNESIO (CaCO3)	шdd	61	30	150	
10	Н	Unid	6.76	(5)	6.5 8.5	
11	ALCALINIDAD TOTAL CaCO ₃	mdd	15.85	ı	25	

IN SELPONNULLING ING. HUSOANOSQUEITO ESPONES
JEFE DE LABORATOHIO
CIP. 27664

Ensayos Fisicos, Químicos y de Mecánica de Suelos,
Concreto y Pavimentos, Análisis Químicos de Minerales y Agua.
Estudio de: Mecánica de Suelos y Rocas, Concreto y Pavimentos.
Impacto Ambiental, Construcción de Edificios, Obras de Ingenieria Civil.
PROYECTOS – ASESORIA Y CONSULTORÍA
RPM: *696826 CELULAR: 976026950 TELEFONO: 364793

MÁXIMO ADMISIBLE DIGESA CLASE I	3%	40	.40	V (K)	1	2.5	250	0.2	400	1.0	1.5	0.5	3.0	3.00	50.0	0.003	0.05	1.0
MÁXIMO RECOMENDADO OMS	ν	0.1	0.1	0.05	0.1	54	45	0.2	250	0.1	0.05	0.5	3.0	3.0	20.00	0.003	0.05	1.5
RESULTADOS	1.5	7/4	(g)	0.008	0.05	1.23	42.85	0.024	61.25	0.04	0.04	0.05	0.04	150	â	*0	€9€	R 2
MEDIDAS	NTU	mdd	mdd	mdd	mdd	ŧ	undd	mdd	mdd	×	mdd	mdd	udd	uidd	wdd	mdd	шdd	
CARACTERÍSTICAS	TURBIDEZ	ARSÉNICO	РЬОМО	SELENIO	FÓSFORO	OXIGENO DISUELTO (02)	CLORUROS (CI ¹⁻)	ALUMINIO (Al ³⁺)	SULFATOS (SO ₄) ²⁻	FIERRO (Fe)	COBRE (Cu)	MANGANESO (Mn)	NITRITO (NO ₂)1-	ZINC (Zn)	NITRATO (NO3)1-	CADMIO (Cd)	скомо (с.)	FLORURO F-
Nº ORDEN	12	13	14	15	16	17	18	19	20	21	22	23	24	52	26	27		29

Nota: La muestra fue alcanzada al Laboratorio por el interesado.

4

Ensayos Fisicos, Químicos y de Mecánica de Suelos,
Concreto y Pavimentos, Análisis Químicos de Minerales y Agua.
Estudio de: Mecánica de Suelos y Rocas, Concreto y Pavimentos.
Impacto Ambiental, Construcción de Edificios, Obras de Ingenieria Civil.
PROYECTOS – ASESORÍA Y CONSULTORÍA
RPM: "696826 CELULAR: 976026950 TELÉFONO; 364793

ANÁLISIS BACTERIOLÓGICO DE UNA MUESTRA DE AGUA PARA CONSUMO

: Cesar Dalton Orrillo Daván SOLICITA

: China Linda **PROCEDENCIA**

:08/05/2023 FECHA

: <u>M</u>−3

MUESTRA

ANÁLISIS BACTERIOLÓGICO MÉTODO FILTRO DE MEMBRANA

HORA: 11.00 a.m. HORA: 12:00 m 06/05/2023 RECEPCIÓN DE LA MUESTRA RESULTADO DE ANÁLISIS

REGISTRO

Nº COLIFORMES FECALES TOTALES MNP/ 100ML	0.0
Nº COLIFORMES ENCONTRADAS MNP/100 ML	1.00
VOLUMEN FILTRADO	100ml.

OBSERVACIONES:

CLASIFICACIÓN DEL AGUA DE CONSUMO HUMANO

CATEGORÍA	RECUENTO DE COLIFORMES FECALES MNP/ 100 ML
(v	0 AGUA BACTERIOLÓGICAMENTE APTA
æ	1-10 AGUA BACTERIOLÓGICAMENTE INAPTA (CONTAMINADA)
O	11-50 AGUA BACTERIOLÓGICAMENTE INAPTA (CONTAMINADA)
D	Mayor a 50 AGUA BACTERIOLÓGICAMENTE INAPTA (CONTAMINADA)

Observaciones: Los resultados obtenidos encuadran dentro de los parámetros dados por la OMS/MINSA para aguas de consumo humano.

Nota: La muestra fue alcanzada al Laboratorio por el interesado para su análisis respectiyo.

CHMINES JULINIUM IN ING. Muga Mosqueiro Estraves JEFE DE LABORATORIO CIP. 27664

Ensayos Fisicos, Químicos y de Mecánica de Suelos,
Concreto y Pavimentos, Análisis Químicos de Minerales y Agua,
Estudio de: Mecánica de Suelos y Rocas, Concreto y Pavimentos,
Impacto Ambiental, Construcción de Edificios, Obras de Ingeniería Civil.
PROYECTOS – ASESORÍA Y CONSULTORÍA
RPM: *696826 CELULAR: 976026950 TELÉFONO: 364793

ANÁLISIS FISICOQUÍMICO DE UNA MUESTRA DE AGUA

SOLICITA : Cesar Dalton Orrillo Daván

PROCEDENCIA : Las Huacas

MUESTRA : M – 4

FECHA : 08/05/2023

RESULTADOS DE ANÁLISIS

Nº ORDEN	CARACTERÍSTICAS	MEDIDAS	RESULTADOS	MÁXIMO RECOMENDADO OMS	MÁXIMO ADMISIBLE DIGESA CLASE I
01	ASPECTO	Э	TRANSPARENTE	**	ГІМРІО
05	OLOR	6)	INODORO	41	INOFENSIVO
03	SABOR	(()	AGRADABLE	*	INOFENSIVO
40	COLOR	WS	INCOLORO	15	15
92	CONDUCTIVIDAD A 20°C	US/CM	105	4	2000
90	SÓLIDOS DISUELTOS TOTALES	wdd	85	200	1000
40	SÓLIDOS SUSPENSIÓN	mdd	83	250	300
80	DUREZA CALCIO(CaCO ₃)	mdd	92	75	200
80	DUREZA MAGNESIO (CaCO ₃)	mdd	65	30	150
10	Ha	Unid	6.72	(*)	6.5 - 8.5
11	ALCALINIDAD TOTAL CaCO ₃	mdd	15.75	R	25

INS. Hugg Mosqueira Estrave:
JEFÉ DY LABORATORIO
CIP. 27064

Ensayos Fisicos, Quimicos y de Mecánica de Suelos,
Concreto y Pavimentos, Análisis Químicos de Minerales y Agua.
Estudio de: Mecánica de Suelos y Rocas, Concreto y Pavimentos,
Impacto Ambiental, Construcción de Edificios, Obras de Ingeniería Civil.
PROYECTOS - ASESORÍA Y CONSULTORÍA
RPM: *696826 CELULAR: 976026950 TELÉFONO: 364793

12 TURBIDEZ NTU 1.7 5 0.1 0.1 0.1 0.1 0.1 0.1 </th <th>Nº ORDEN</th> <th>CARACTERÍSTICAS</th> <th>MEDIDAS</th> <th>RESULTADOS</th> <th>MÁXIMO RECOMENDADO OMS</th> <th>MÁXIMO ADMISIBLE DIGESA CLASE I</th>	Nº ORDEN	CARACTERÍSTICAS	MEDIDAS	RESULTADOS	MÁXIMO RECOMENDADO OMS	MÁXIMO ADMISIBLE DIGESA CLASE I
ARSÉNICO ppm - 0.1 PLOMO ppm 0.009 0.05 SELENIO ppm 0.009 0.05 FÓSFORO ppm 0.06 0.1 OXIGENO DISUELTO (02) - 1.27 - CLORUROS (CI+) ppm 42.95 - ALUMINIO (AI³+) ppm 6.1.28 250 SULFATOS (SO4)²- ppm 6.1.28 250 FIERRO (Fe) - 0.05 0.1 COBRE (Cu) ppm 0.06 0.05 MANGANESO (Mn) ppm 0.08 3.0 XINC (Zn) ppm 0.08 3.0 XINC (Zn) ppm 0.08 3.0 CADMIO (Cd) ppm 0.003 0.053 CROMO (Cr) ppm 0.003 0.003 CROMO (Cr) ppm 0.003 0.003 CROMO (Cr) ppm 0.003 0.003 CROMO (Cr) ppm 0.003 0.003	12	TURBIDEZ	UTN	1.7	ເລ	æ
PLOMO ppm 0.009 0.05 SELENIO ppm 0.009 0.05 FÓSFORO ppm 0.06 0.1 OXIGENO DISUELTO (02,1) ppm 42.95 - CLORUROS (CI ¹⁻¹) ppm 0.025 0.2 ALUMINIO (43*) ppm 61.28 2.50 FIERRO (Fe) - 0.05 0.1 FIERRO (Fe) - 0.05 0.1 COBRE (Cu) ppm 0.06 0.05 MANGANESO (Mn) ppm 0.08 3.0 XINC (Zn) ppm 0.08 3.0 XINC (Zn) ppm 0.08 3.0 CADMIO (Cd) ppm 0.08 0.05 CADMIO (Cd) ppm 0.003 0.003 CROMO (Cr) ppm 0.003 0.003 CROMO (Cr) ppm 0.003 0.05	13	ARSÉNICO	mdd	,	0.1	€
SELENIO ppm 0.009 0.05 FOSFORO ppm 0.06 0.1 OXIGENO DISUELTO (O2) - 1.27 - CLORUROS (CI+) ppm 42.95 - ALUMINIO (A3+) ppm 0.025 0.2 SULFATOS (SO4)2- ppm 61.28 250 FIERRO (Fe) - 0.05 0.1 COBRE (Cu) ppm 0.06 0.05 MANGANESO (Mn) ppm 0.08 3.0 NITRITO (NO2)1- ppm 0.08 3.0 XINC (Zn) ppm 0.08 3.0 CADMIO (Cd) ppm 0.003 0.003 CROMO (Cr) ppm 0.003 0.003 FLORURO F- - - 1.5	14	PLOMO	mdd	3	0.1	(9)
FÓSFORO ppm 0.06 0.1 OXIGENO DISUELTO (O2) - 1.27 CLORUROS (CI¹-1) ppm 42.95 ALUMINIO (Al³+) ppm 0.025 0.2 SULFATOS (SO₄)²- ppm 61.28 25.0 FIERRO (Fe) - 0.05 0.1 COBRE (Cu) ppm 0.06 0.05 MANCANESO (Mn) ppm 0.08 3.0 NITRATO (NO₂)¹- ppm 0.08 3.0 ZINC (Zn) ppm 50.00 50.00 CADMIO (Cd) ppm 0.063 0.063 CROMO (Cr) ppm 0.005 0.003 FLORURO F- - - 1.5	15	SELENIO	urdd	0.00	0.05	(10)
OXIGENO DISUELTO (O2) - 1.27 - CLORUROS (CI¹-) ppm 42.95 - ALUMINIO (A3³-) ppm 0.025 0.2 SULFATOS (SO₄)²- ppm 61.28 25.0 FIERRO (Fe) - 0.05 0.1 COBRE (Cu) ppm 0.06 0.05 MANGANESO (Mn) ppm 0.08 3.0 NITRATO (NO₂)¹- ppm 3.0 50.00 CADMIO (Ca) ppm 6.08 50.00 CADMIO (Cd) ppm 0.065 6.065 FLORURO F- ppm - 1.5	16	FÓSFORO	udd	90'0	0.1	×
CLORUROS (CI ¹⁻) ppm 42.95 ALUMINIO (AI³ ¹⁻) ppm 6.1.28 0.2 SULFATOS (SO4)² ²⁻ ppm 61.28 25.0 FIERRO (Fe) - 0.05 0.1 COBRE (Cu) ppm 0.06 0.05 MANGANESO (Mn) ppm 0.08 3.0 XINC (Zn) ppm 3.0 3.0 XINC (Zn) ppm 5.0.00 5.0.00 CADMIO (Cd) ppm 0.063 0.063 CROWO (Cr) ppm 0.005 0.05 FLORURO F- 1.5 1.5	17	OXIGENO DISUELTO (02)	t	1.27	34	2.5
ALUMINIO (Al3+) ppm 0.025 0.2 SULFATOS (SO4)2* ppm 61.28 250 FIERRO (Fe) - 0.05 0.1 COBRE (Cu) ppm 0.06 0.05 MANGANESO (Mn) ppm 0.08 3.0 NITRITO (NO2)1* ppm 3.0 3.0 ZINC (Zn) ppm 50.00 50.00 CADMIO (Cd) ppm 0.003 0.003 CROMO (Cr) ppm 0.005 0.05 FLORURO F- 1.5 1.5	18	CLORUROS (CI ¹⁻)	шdd	42.95	90	250
SULFATOS (SO4)2* ppm 61.28 250 FIERRO (Fe) - 0.05 0.1 COBRE (Cu) ppm 0.06 0.05 MANGANESO (Mn) ppm 0.03 0.5 NITRATO (NO2)1* ppm 3.0 XINC (Zn) ppm 3.0 NITRATO (NO3)1* ppm 5.0.00 CADMIO (Cd) ppm 6.003 CROMO (Cr) ppm 0.003 FLORURO F- - 1.5	19	ALUMINIO (Al3+)	udd	0.025	0.2	0.2
FIERRO (Fe) . 0.05 0.1 COBRE (Cu) ppm 0.06 0.05 MANGANESO (Mn) ppm 0.08 3.0 NITRITO (NO ₂) ¹ · ppm 3.0 ZINC (Zn) ppm 50.00 NITRATO (NO ₃) ¹ · ppm 50.00 CADMIO (Cd) ppm 0.063 CROMO (Cr) ppm 0.063 FLORURO F- 1.5	20	SULFATOS (SO4)2-	mdd	61.28	250	400
COBRE (Cu) ppm 0.06 0.05 MANGANESO (Mn) ppm 0.03 0.5 NITRITO (NO2)1- ppm 3.0 ZINC (Zn) ppm 3.0 NITRATO (NO3)1- ppm 50.00 CADMIO (Cd) ppm 0.063 CROMO (Cr) ppm 0.063 FLORURO F- - 1.5	21	FIERRO (Fe)		0.05	0.1	1.0
MANGANESO (Mn) ppm 0.03 0.5 NITRITO (NO2)1- ppm 3.0 ZINC (Zn) ppm 3.0 NITRATO (NO3)1- ppm 50.00 CADMIO (Cd) ppm 0.063 CROMO (Cr) ppm 0.05 FLORURO F- - 1.5	22	COBRE (Cu)	mdd	90'0	0.05	1.5
NITRITO (NO2)¹- ppm 0.08 3.0 ZINC (Zn) ppm 3.0 NITRATO (NO3)¹- ppm 50.00 CADMIO (Cd) ppm 0.063 CROMO (Cr) ppm 0.05 FLORURO F- 1.5	23	MANGANESO (Mn)	mdd	0.03	0.5	0.5
ZINC (Zn) ppm 3.0 NITRATO (NO ₃) ¹⁻ ppm 50.00 CADMIO (Cd) ppm 0.063 CROMO (Cr) ppm 0.05 FLORURO F- - 1.5	24	NITRITO (NO ₂) ¹⁻	undd	90.0	3.0	3.0
NITRATO (NO ₃)¹- ppm 50.00 CADMIO (Cd) ppm 0.063 CROMO (Cr) ppm 0.05 FLORURO F- - 1.5	22	ZINC (Zn)	undd	(6)	3.0	3.00
CADMIO (Cd) ppm 0.003 CROMO (Cr) ppm 0.05 FLORURO F- - 1.5	26	NITRATO (NO3)1-	mdd	(*)	20.00	20.0
CROMO (Cr) ppm 0.05 FLORURO F. - 1.5	27	CADMIO (Cd)	mdd	ě	0.003	0.003
FLORURO F. 1.5	28	CROMO (Cr)	mdd	ā	0.05	0.05
	53	FLORURO F.			1.5	1.0

Nota: La muestra fue alcanzada al Laboratorio por el interesado.

My MS. Hugo Mosqueira Estraver JEFE DE LABORATOMIO CIP. 27 1914

Ensayos Físicos, Quimicos y de Mecánica de Suelos,
Concreto y Pavimentos, Análisis Químicos de Minerales y Agua.
Estudio de: Mecánica de Suelos y Rocas, Concreto y Pavimentos.
Impacto Ambiental, Construcción de Edificios, Obras de Ingenieria Civil.
PROYECTOS – ASESORÍA Y CONSULTORÍA
RPM: *696826 CELULAR: 976026950 TELÉFONO: 364793

ANÁLISIS BACTERIOLÓGICO DE UNA MUESTRA DE AGUA PARA CONSUMO

: Cesar Dalton Orrillo Daván SOLICITA

: Las Huacas **PROCEDENCIA**

: M-4 MUESTRA

:08/05/2023 FECHA

ANÁLISIS BACTERIOLÓGICO MÉTODO FILTRO DE MEMBRANA

: 06/05/2023 : 08/05/2023 RECEPCIÓN DE LA MUESTRA RESULTADO DE ANÁLISIS

HORA: 11.00 a.m. HORA: 12:00 m

REGISTRO

Nº COLIFORMES FECALES TOTALES MNP/ 100ML	0.0
Nº COLIFORMES ENCONTRADAS MNP/100 ML	1.00
VOLUMEN FILTRADO	100ml.

OBSERVACIONES:

CLASIFICACIÓN DEL AGUA DE CONSUMO HUMANO

CATEGORÍA	RECUENTO DE COLIFORMES FECALES MNP/ 100 ML
(b	0 AGUA BACTERIOLÓGICAMENTE APTA
æ	1-10 AGUA BACTERIOLÓGICAMENTE INAPTA (CONTAMINADA)
U	11-50 AGUA BACTERIOLÓGICAMENTE INAPTA (CONTAMINADA)
Q	Mayor a 50 AGUA BACTERIOLÓGICAMENTE INAPTA (CONTAMINADA)

Observaciones: Los resultados obtenidos encuadran dentro de los parámetros dados por la OMS/MINSA para aguas de consumo humano.

Nota: La muestra fue alcanzada al Laboratorio por el interesado para su análisis respectivo.

IN BELLINGERINGERY STROVES
JEFFE DE LABORATONIO
CIP. 2756/3

Ensayos Fisicos, Químicos y de Mecánica de Suetos,
Concreto y Pavimentos, Análisis Químicos de Minerales y Agua.
Estudio de: Macánica de Suelos y Rocas, Concreto y Pavimentos.
Impacto Ambiental, Construcción de Edificios, Obras de Ingenieria Civil.
PROYECTOS – ASESORIA Y CONSULTORÍA
RPM: "696826 CELULAR: 976026950 TELÉFONO: 364793

ANÁLISIS FISICOQUÍMICO DE UNA MUESTRA DE AGUA

SOLICITA : Cesar Dalton Orrillo Daván

PROCEDENCIA : El Lapar

MUESTRA : M -- 5

FECHA : 08/05/2023

RESULTADOS DE ANÁLISIS

Nº ORDEN	CARACTERÍSTICAS	MEDIDAS	RESULTADOS	MÁXIMO RECOMENDADO OMS	MÁXIMO ADMISIBLE DIGESA CLASE I
01	ASPECTO	18.	TRANSPARENTE	独	LIMPIO
07	OLOR	I	INODORO	Œ	INOFENSIVO
03	SABOR	39	AGRADABLE	ı	INOFENSIVO
90	COLOR	1	INCOLORO	15	15
90	CONDUCTIVIDAD A 20ºC	US/CM	115	ı	2000
90	SÓLIDOS DISUELTOS TOTALES	wdd	82	200	1000
20	SÓLIDOS SUSPENSIÓN	mdd	84	250	300
80	DUREZA CALCIO(CaCO ₃)	wdd	89	75	200
60	DUREZA MAGNESIO (CaCO ₃)	mdd	57	30	150
10	Ħ	Uníd	6.81	83	6.5 – 8.5
11	ALCALINIDAD TOTAL CaCO ₃	mdd	15.85		25

Ensuyos Físicos, Químicos y de Mecánica de Suclos,
Concreto y Pavimentos, Análisis Químicos de Minerales y Agua.
Estudio de: Mecánica de Suelos y Rocas, Concreto y Pavimentos.
Impacto Ambiental, Construcción de Edificios, Obras de Ingeniería Civil.
PROYECTOS – ASESORÍA Y CONSULTORÍA
RPM: *696826 CELULAR: 976026930 TELÉFONO: 364793

Nº ORDEN	CARACTERÍSTICAS	MEDIDAS	RESULTADOS	MÁXIMO RECOMENDADO OMS	MÁXIMO ADMISIBLE DIGESA CLASE I
12	TURBIDEZ	NTU	1.4	гo	, ,
13	ARSÉNICO	mdd	•	0.1	***
14	PLOMO	mdd		0.1	774
15	SELENIO	mdd	0.010	0.05	¥ii
16	FÓSFORO	mdd	0.08	0.1	í.
17	OXIGENO DISUELTO (O2)	<u>(ě</u>	1.25	Tall	2.5
18	CLORUROS (CI1-)	mdd	42.87	ſ	250
19	ALUMINIO (Al3+)	mdd	0.021	0.2	0.2
20	SULFATOS (SO4)2-	mdd	61.55	250	400
21	FIERRO (Fe)	ı	0.07	0.1	1.0
22	COBRE (Cu)	mdd	0.04	0.05	1.5
23	MANGANESO (Mn)	mdd	0.04	0.5	0.5
24	NITRITO (NO ₂) ¹⁻	mdd	0.10	3.0	3.0
25	ZINC (Zn)	mdd	*	3.0	3.00
26	NITRATO (NO3)1-	mdd	1	50.00	20.0
27	CADMIO (Cd)	mdá	1	0.003	0.003
78	CROMO (Cr.)	mdd	229	0.05	0.05
29	FLORURO F-		•	1.5	1.0
		_			/II/

ing, Mr. Hugo Maquens Estravers of Laboratorio CHP 27664

Nota: La muestra fue alcanzada ai Laboratorio por el interesado.

Ensayos Fisicos, Quimicos y de Mccanica de Suelos,
Concreto y Pavimentos, Análisis Químicos de Minerales y Agua.
Estudio de: Mecánica de Suelos y Rocas, Concreto y Pavimentos.
Impacto Ambiental, Construcción de Edificios, Obras de Ingeniería Civil.
PROYECTOS – ASESORÍA Y CONSULTORÍA
RPM: "696826 CELULAR: 976026960 TELÉFONO: 364793

ANÁLISIS BACTERIOLÓGICO DE UNA MUESTRA DE AGUA PARA CONSUMO

: Cesar Dalton Orrillo Daván SOLICITA

: El Lapar : M-5 **PROCEDENCIA** MUESTRA

:08/05/2023 FECHA

ANÁLISIS BACTERIOLÓGICO MÉTODO FILTRO DE MEMBRANA

HORA: 11.00 a.m. HORA: 12:00 m 06/05/2023:08/05/2023 RECEPCIÓN DE LA MUESTRA RESULTADO DE ANÁLISIS

REGISTRO

0.0
1.00
100ml.

OBSERVACIONES:

CLASIFICACIÓN DEL AGUA DE CONSUMO HUMANO

CATEGORÍA	RECUENTO DE COLIFORMES FECALES MNP/ 100 ML
(P	0 AGUA BACTERIOLÓGICAMENTE APTA
æ	1-10 AGUA BACTERIOLÓGICAMENTE INAPTA (CONTAMINADA)
O	11-50 AGUA BACTERIOLÓGICAMENTE INAPTA (CONTAMINADA)
Q	Mayor a 50 AGUA BACTERIOLÓGICAMENTE INAPTA (CONTAMINADA)

Observaciones: Los resultados obtenidos encuadran dentro de los parámetros dados por la OMS/MINSA para aguas de consumo humano.

Nota: La muestra fue alcanzada al Laboratorio por el interesado para su análisis respectivo.

Squeria Estroner LABORATORIO

Ensayos Físicos, Quimicos y de Mecánica de Suelos,
Concreto y Pavimentos, Análisis Químicos de Minerales y Agua.
Estudio de: Mecánica de Suelos y Rocas, Concreto y Pavimentos.
Impacto Ambiental, Construcción de Edificios, Obras de Ingenieria Civil.
PROYECTOS – ASESORÍA Y CONSULTORÍA
RPM: *696826 CELULAR: 976026950 TELÉFONO: 364793

ANÁLISIS FISICOQUÍMICO DE UNA MUESTRA DE AGUA

SOLICITA : Cesar Dalton Orrillo Daván

PROCEDENCIA : Ojo de Agua

MUESTRA : M – 6

FECHA : 08/05/2023

RESULTADOS DE ANÁLISIS

O LE ISE I		ę S	 و									
MÁXIMO ADMISIBLE DIGESA CLASE I	LIMPIO	INOFENSIVO	INOFENSIVO	15	2000	1000	300	200	150	6.5 – 8.5	25	
MÁXIMO RECOMENDADO OMS	8	ve	1	T C	ı	200	250	75	30	01	55435	
RESULTADOS	TRANSPARENTE	INODORO	AGRADABLE	INCOLORO	113	87	78	82	53	7.5	14.58	
MEDIDAS	97		(!)	9.	US/CIM	mdd	шdd	mdd	mdd	Unid	mdd	
CARACTERÍSTICAS	ASPECTO	OLOR	SABOR	COLOR	CONDUCTIVIDAD A 20°C	SÓLIDOS DISUELTOS TOTALES	SÓLIDOS SUSPENSIÓN	DUREZA CALCIO(CaCO ₃)	DUREZA MAGNESIO (CaCO ₃)	Hd	ALCALINIDAD TOTAL CaCO ₃	

Ing. INC., Negokocquera Estraver JEFE DE LABORATORIO CIP 27664

Ensayos Fisicos, Químicos y de Mecánica de Suelos,
Concreto y Pavimentos, Análisis Químicos de Minerales y Agua.
Estudio de: Mecánica de Suelos y Rocas, Concreto y Pavimentos.
Impacto Ambiental, Construcción de Edificios, Obras de Ingenieria Civil.
PROYECTOS – ASESORÍA Y CONSULTORÍA
RPM: *696826 CELULAR: 976926970 TELÉFONO: 364793

	MEDIDAS	RESULTADOS	MÁXIMO RECOMENDADO	MÁXIMO ADMISIBLE
			OMS	DIGESA CLASE I
	UTN	1,9	2	35
	mdd	9	0.1	ı
•	undd	×	0.1	
	mdd	0.007	0.05	330.3
	mdd	0.04	0.1	(€)
OXIGENO DISUELTO (02)	r	1.35		2.5
CLORUROS (Cl ¹ -)	mdd	41.97		250
ALUMINIO (A13+)	mdd	0.020	0.2	0.2
SULFATOS (SO4)2-	mdd	60.89	250	400
	1	0.08	0.1	1.0
	mdd	0.02	0.05	1.5
MANGANESO (Mn)	mdd	0.02	0.5	0.5
	mdd	0.25	3.0	3.0
	urdd	€	3.0	3.00
NITRATO (NO3)1-	wdd	6.0	50.00	50.0
	mdd	8	0.003	0'003
	mdd	Ü	0.05	0.05
	n	•	1.5	1.0

Nota: La muestra fue alcanzada al Laboratorio por el interesado.

Ensayos Fisicos, Químicos y de Mecánica de Suelos,
Concreto y Pavimentos, Análisis Químicos de Minerales y Agua.
Estudio de: Mecánica de Suelos y Rocas, Concreto y Pavimentos.
Impacto Ambiental, Construcción de Edificios, Obras de Ingeniería Civil.
PROYECTOS – ASESORÍA Y CONSULTORÍA
RPM: "696826 CELULAR: 976026950 TELÉFONO: 364793

ANÁLISIS BACTERIOLÓGICO DE UNA MUESTRA DE AGUA PARA CONSUMO

: Cesar Dalton Orrillo Daván SOLICITA

: Ojo de Agua **PROCEDENCIA**

:08/05/2023 9-W: MUESTRA FECHA

ANÁLISIS BACTERIOLÓGICO MÉTODO FILTRO DE MEMBRANA

: 08/05/2023 : 06/05/2023 RECEPCIÓN DE LA MUESTRA RESULTADO DE ANÁLISIS

HORA: 11.00 a.m.

HORA: 12:00 m

REGISTRO

Nº COLIFORMES FECALES TOTALES MNP/ 100ML	0.0
Nº COLIFORMES ENCONTRADAS MNP/100 ML	1.00
VOLUMEN FILTRADO	100ml,

OBSERVACIONES:

CLASIFICACIÓN DEL AGUA DE CONSUMO HUMANO

CATEGORÍA	RECUENTO DE COLIFORMES FECALES MNP/ 100 ML
4	0 AGUA BACTERIOLÓGICAMENTE APTA
В	1-10 AGUA BACTERIOLÓGICAMENTE INAPTA (CONTAMINADA)
ပ	11-50 AGUA BACTERIOLÓGICAMENTE INAPTA (CONTAMINADA)
Q	Mayor a 50 AGUA BACTERIOLÓGICAMENTE INAPTA (CONTAMINADA)

Observaciones: Los resultados obtenidos encuadran dentro de los parámetros dados por la OMS/MINSA para aguas de consumo humano.

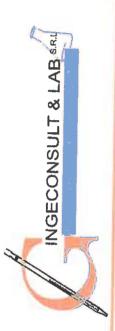
Nota: La muestra fue alcanzada al Laboratorio por el interesado para su análisis respectivo.

Ensayos Físicos, Quimicos y de Mecánica de Suelos,
Concreto y Pavimentos, Análisis Químicos de Minerales y Agua.
Estudio de: Mecánica de Suelos y Rocas, Concreto y Pavimentos.
Impacto Ambiental, Construcción de Edificios, Obras de Ingenieria Civil.
PROYECTOS – ASESORÍA Y CONSULTORÍA
RPM: *696826 CELULAR: 976026950 TELÉFONO: 364793

ANÁLISIS FISICOQUÍMICO DE UNA MUESTRA DE AGUA

SOLICITA : Cesar Dalton Orrillo Daván

PROCEDENCIA : Peña Mala


MUESTRA : M-7

FECHA : 08/05/2023

RESULTADOS DE ANÁLISIS

												
MÁXIMO ADMISIBLE DIGESA CLASE I	UMPIO	INOFENSIVO	INOFENSIVO	15	2000	1000	300	200	150	6.5 – 8.5	25	
MÁXIMO RECOMENDADO OMS	2.	7.6	.59	15	1	200	250	75	30	20	2/	
RESULTADOS	TRANSPARENTE	INODORO	AGRADABLE	INCOLORO	120	55 25	82	85	57	7.10	16.20	
MEDIDAS		(5)	æ	- (1)	US/CM	mdd	mdd	wdd	wdd	Unid	mdd	
CARACTERÍSTICAS	ASPECTO	OLOR	SABOR	COLOR	CONDUCTIVIDAD A 20°C	SÓLIDOS DISUELTOS TOTALES	SÓLIDOS SUSPENSIÓN	DUREZA CALCIO(CaCO ₃)	DUREZA MAGNESIO (CaCO ₃)	Hd	ALCALINIDAD TOTAL CaCO ₃	
Nº ORDEN	0.1	05	603	94	50	90	07	80	60	10	11	

Ensayos Fisicos, Químicos y de Mecánica de Suelos,
Concreto y Pavimentos, Análisis Químicos de Minerales y Agua,
Estudio de: Mecánica de Suelos y Rocas, Concreto y Pavimentos.
Impacto Ambiental, Construcción de Edificios, Obras de Ingeniería Civil,
PROYECTOS - ASESORIA Y CONSULTORÍA
RPM: *696826 CELULAR: 976026950 TELÉFONO: 364793

12 TURBIDEZ 13 ARSÉNICO 14 PLOMO 15 SELENIO 16 FÓSFORO 17 OXIGENO DISUELTO (O2) 18 CLORUROS (G1-) 19 ALUMINIO (A13+) 20 SULFATOS (S04)2- 21 FIERRO (Fe) 22 COBRE (Cu) 23 MANGANESO (Mn) 24 NITRITO (NO2)1- 25 ZINC (Zn) 26 NITRATO (NO3)1- 27 CADMIO (Cd) Pp	CARACTERÍSTICAS	RESULTADOS	MÁXIMO RECOMENDADO OMS	MÁXIMO ADMISIBLE DIGESA CLASE I
3 ARSÉNICO 4 PLOMO 5 SELENIO 5 SELENIO 6 OXIGENO DISUELTO (02) 7 CLORUROS (CI ¹⁻) 8 CLORUROS (CI ²⁻) 9 ALUMINIO (Ai ³⁺) 1 SULFATOS (SO ₄) ²⁻ 1 FIERRO (Fe) 6 COBRE (Cu) 1 MANGANESO (Mn) 1 MANGANESO (Mn) 1 NITRATO (NO ₂) ¹⁻ 2 INC (Zn) 1 NITRATO (NO ₃) ¹⁻ 1 E CADMIO (Cd) 1 PLOMO	UTN	1.6	ı	
PLOMO	mdd	ŧ	0.1	: 4
5 SELENIO 6 FÓSFORO 7 OXIGENO DISUELTO (02) 6 CLORUROS (Cl ¹ .) 7 ALUMINIO (Al ³⁺ .) 8 SULFATOS (SO ₄) ²⁻ 7 FIERRO (Fe) 7 COBRE (Cu) 8 MANGANESO (Mn) 8 PETERRO (Ca) 9 PETERRO (mdd	ŭ	0.1	ı
FÓSFORO	шdd	0.012	0.05	¥
CLORUROS (Cl ¹⁻) ALUMINIO (Al ³⁺) SULFATOS (SO ₄) ²⁻ FIERRO (Fe) COBRE (Cu) MANGANESO (Mn) NITRITO (NO ₂) ¹⁻ ZINC (Zn) NITRATO (NO ₃) ¹⁻ EGDMIO (Cd)	шdd	60:0	0.1	7/4
CLORUROS (Cl ¹) ALUMINIO (Al ³⁺) SULFATOS (SO ₄) ²⁻ FIERRO (Fe) COBRE (Cu) MANGANESO (Mn) NITRITO (NO ₂) ¹⁻ ZINC (Zn) NITRATO (NO ₃) ¹⁻ E CADMIO (Cd)	- (20) 0	1.37	¥	2.5
ALUMINIO (Al³+) SULFATOS (SO ₄) ² - FIERRO (Fe) COBRE (Cu) MANGANESO (Mn) NITRITO (NO ₂) ¹ - ZINC (Zn) NITRATO (NO ₃) ¹ - KADMIO (Cd)	udd	42.85	15	250
SULFATOS (SO ₄) ² - FIERRO (Fe) COBRE (Cu) MANGANESO (Mn) NITRITO (NO ₂) ¹ - ZINC (Zn) NITRATO (NO ₃) ¹ - CADMIO (Cd)	urdd	0.025	0.2	0.2
FIERRO (Fe) COBRE (Cu) MANGANESO (Mn) NITRITO (NO ₂) ¹⁻ ZINC (Zn) NITRATO (NO ₃) ¹⁻ CADMIO (Cd)	mdd	65.20	250	400
COBRE (Cu) MANGANESO (Mn) NITRITO (NO ₂) ¹⁻ ZINC (Zn) NITRATO (NO ₃) ¹⁻ CADMIO (Cd)	1	0.085	0.1	1.0
MANGANESO (Mn) NITRITO (NO ₂) ¹⁻ ZINC (Zn) NITRATO (NO ₃) ¹⁻ CADMIO (Cd)	mdd	0.03	0.05	1.5
NITRITO (NO ₂) ¹⁻ ZINC (Zn) NITRATO (NO ₃) ¹⁻ CADMIO (Cd)	шdd	60.0	0.5	0.5
ZINC (Zn) NITRATO (NO ₃) ¹⁻ CADMIO (Cd)	wdd	0.75	3.0	3.0
NITRATO (NO ₃) ¹⁻ CADMIO (Cd)	mdd	I	3.0	3.00
CADMIO (Cd)	mdd	¥15	20.00	20.0
	mdd		0.003	0.003
28 CROMO (Cr.) p	шďd	ří:	0.05	0.05
29 FLORURO F-		J\$!	1.5	1.0

Nota: La muestra fue alcanzada al Laboratorio por el interesado.

IN MOSA WILLIAM IN THE ME STORES CHO CHE LABORATORIO CHE 27664

Impacto Ambiental, Construcción de Edificios. Obras de Ingeniería Civil.
PROYECTOS – ASESORÍA Y CONSULTORÍA
RPM: *696826 CELULAR: 976026950 TELÉFONO: 364793 Ensayos Físicos, Químicos y de Mecánica de Suelos, Concreto y Pavimentos, Análisis Químicos de Minerales y Agua. Estudio de: Mecánica de Suelos y Rocas, Concreto y Pavimentos.

ANÁLISIS BACTERIOLÓGICO DE UNA MUESTRA DE AGUA PARA CONSUMO

: Cesar Dalton Orrillo Daván : Peña Mala **PROCEDENCIA**

: M-7 MUESTRA :08/05/2023 FECHA

ANÁLISIS BACTERIOLÓGICO MÉTODO FILTRO DE MEMBRANA

HORA: 11.00 a.m. HORA: 12:00 m : 06/05/2023 RECEPCIÓN DE LA MUESTRA RESULTADO DE ANÁLISIS

REGISTRO

Nº COLIFORMES FECALES TOTALES MNP/ 100ML	0.0
Nº COLIFORMES ENCONTRADAS MNP/100 ML	1.00
VOLUMEN FILTRADO	100ml.

OBSERVACIONES:

CLASIFICACIÓN DEL AGUA DE CONSUMO HUMANO

CATEGORÍA	RECUENTO DE COLIFORMES FECALES MNP/ 100 ML
\doldsymbol{\psi}	0 AGUA BACTERIOLÓGICAMENTE APTA
В	1-10 AGUA BACTERIOLÓGICAMENTE INAPTA (CONTAMINADA)
Ü	11-50 AGUA BACTERIOLÓGICAMENTE INAPTA (CONTAMINADA)
D	Mayor a 50 AGUA BACTERIOLÓGICAMENTE INAPTA (CONTAMINADA)

Observaciones: Los resultados obtenidos encuadran dentro de los parámetros dados por la OMS/MINSA para aguas de consumo humano.

Nota: La muestra fue alcanzada al Laboratorio por el interesado para su análisis respectivo.

.

Ensayos Fisicos, Quimicos y de Mecánica de Suelos,
Concreto y Pavimentos, Análisis Químicos de Minerales y Agua.
Estudio de: Mecánica de Suelos y Rocas, Concreto y Pavimentos.
Impacto Ambiental, Construcción de Edificios, Obras de Ingeniería Civil.
PROYECTOS – ASESORÍA Y CONSULTORÍA
RPM: *696826 CELULAR: 976026950 TELÉFONO: 364793

ANÁLISIS FISICOQUÍMICO DE UNA MUESTRA DE AGUA

SOLICITA : Cesar Dalton Orrillo Daván

PROCEDENCIA : Peña Blanca

MUESTRA : M-1

FECHA : 19/09/2023

RESULTADOS DE ANÁLISIS

Nº ORDEN	CARACTERÍSTICAS	MEDIDAS	RESULTADOS	MÁXIMO RECOMENDADO OMS	MÁXIMO ADMISIBLE DIGESA CLASE I
01	ASPECTO	ij	TRANSPARENTE		LIMPIO
05	OLOR	1	INODORO	<i>(!!</i>	INOFENSIVO
03	SABOR	W.	AGRADABLE	ı	INOFENSIVO
40	COLOR	95	INCOLORO	15	15
05	CONDUCTIVIDAD A 209C	US/CM	103	*1	2000
90	SÓLIDOS DISUELTOS TOTALES	mdd	87	200	1000
07	SÓLIDOS SUSPENSIÓN	wdd	88	250	300
80	DUREZA CALCIO(CaCO ₃)	mdd	105	75	200
60	DUREZA MAGNESIO (CaCO ₃)	wdd	75	30	150
10	Hd	Unid	6.76	60	6.5 ~ 8.5
11	ALCALINIDAD TOTAL CaCO ₃	mad	16.50	50	25

Ensayos Fisicos, Quámicos y de Mecánica de Suelos,
Concreto y Pavimentos, Análisis Químicos de Minerales y Agua.
Estudio de: Mecánica de Suelos y Rocas, Concreto y Pavimentos.
Impacto Ambiental, Construcción de Edificios, Obras de Ingenieria Civil.
PROYECTOS – ASESORÍA Y CONSULTORÍA
RPM: *696826 CELULAR: 976026950 TELÉFONO: 364793

Nº ORDEN	CARACTERÍSTICAS	MEDIDAS	RESULTADOS	MAXIMO RECOMENDADO OMS	MÁXIMO ADMISIBLE DIGESA CLASE I
12	TURBIDEZ	UTN	1.1	5	84
13	ARSÉNICO	mdd		0.1	æ
14	РГОМО	mdd	100	0.1	13
15	SELENIO	mdd	0.004	0.05	18
16	FÓSFORO	mdd	0.03	0.1	N
17	OXIGENO DISUELTO (02)	0)	1.24	\$ 3	2.5
18	CLORUROS (Cl ¹⁻)	mdd	44.20	*	250
19	ALUMINIO (Al3+)	mdd	0.027	0.2	0.2
20	SULFATOS (SO ₄) ²⁻	шdd	60.02	250	400
21	FIERRO (Fe)	ı	90.0	0.1	1.0
22	COBRE (Cu)	mdd	0.05	0.05	1.5
23	MANGANESO (Mn)	uıdd	0.05	0.5	0.5
24	NITRITO (NO ₂)1-	mdd	0.01	3.0	3.0
25	ZINC (Zn)	mdd	J.t.	3.0	3,00
56	NITRATO (NO3)1-	mdd	£	20.00	50.0
27	CADMIO (Cd)	mdď	35	0.003	0.003
78	CROMO (Cr.)	mďď	6)	0.05	0.05
56	FLORURO F.		æ	1.5	1.0

Nota: La muestra fue alcanzada al Laboratorio por el interesado.

Dt. thusantu

Ensayos Fisicos, Quimicos y de Mecánica de Suelos,
Concreto y Pavimentos, Análisis Químicos de Minerales y Agua.
Estudio de: Mecánica de Suelos y Rocas, Concreto y Pavimentos.
Impacto Ambiental, Construcción de Edificios, Obras de Ingeniería Civil.
PROYECTOS – ASESORÍA Y CONSULTORÍA
RPM: *690826 CELULAR: 976026930 TELEFONO: 364793

ANÁLISIS BACTERIOLÓGICO DE UNA MUESTRA DE AGUA PARA CONSUMO

: Cesar Dalton Orrillo Daván SOLICITA

: Peña Blanca **PROCEDENCIA**

: M-1 MUESTRA

:19/09/2023 FECHA

ANÁLISIS BACTERIOLÓGICO MÉTODO FILTRO DE MEMBRANA

: 17/09/2023 : 19/09/2023 RECEPCIÓN DE LA MUESTRA RESULTADO DE ANÁLISIS

HORA: 11.00 a.m. HORA: 12:00 m

REGISTRO

0.0
1.00
100ml.

OBSERVACIONES:

CLASIFICACIÓN DEL AGUA DE CONSUMO HUMANO

CATEGORÍA	RECUENTO DE COLIFORMES FECALES MNP/ 100 ML
4	0 AGUA BACTERIOLÓGICAMENTE APTA
В	1-10 AGUA BACTERIOLÓGICAMENTE INAPTA (CONTAMINADA)
J	11-50 AGUA BACTERIOLÓGICAMENTE INAPTA (CONTAMINADA)
Q	Mayor a 50 AGUA BACTERIOLÓGICAMENTE INAPTA (CONTAMINADA)

Observaciones: Los resultados obtenidos encuadran dentro de los parámetros dados por la OMS/MINSA para aguas de consumo humano.

Nota: La muestra fue alcanzada al Laboratorio por el interesado para su análisis respectivo.

ING. Mygo Mosqueira Estrave:
SEFE DE LABORATGRIO
CIP. 27664

Ensayos Fisicos, Químicos y de Mecánica de Suelos,
Concreto y Pavimentos, Análisis Químicos de Minerales y Agua.
Estudio de: Mecánica de Suelos y Rocas, Concreto y Pavimentos.
Impacto Ambiental, Construcción de Edifícios, Obras de Ingenieria Civil.
PROYECTOS – ASESORÍA Y CONSULTORÍA
RPM: *696826 CELULAR: 976026950 TELÉFONO: 364793

ANÁLISIS FISICOQUÍMICO DE UNA MUESTRA DE AGUA

SOLICITA : Cesar Dalton Orrillo Daván

PROCEDENCIA : El Amaro

MUESTRA : M – 2

FECHA : 19/09/2023

RESULTADOS DE ANÁLISIS

N [®] ORDEN	CARACTERÍSTICAS	MEDIDAS	RESULTADOS	MÁXIMO RECOMENDADO OMS	MÁXIMO ADMISIBLE DIGESA CLASE I
01	ASPECTO	ı	TRANSPARENTE	58.	LIMPIO
05	OLOR	(*	INODORO	00#	INOFENSIVO
03	SABOR	ı	AGRADABLE	64	INOFENSIVO
94	COLOR	Ş	INCOLORO	15	15
90	CONDUCTIVIDAD A 20€C	US/CM	103	1	2000
90	SÓLIBOS DISUELTOS TOTALES	mdd	87	200	1000
07	SÓLIDOS SUSPENSIÓN	₩dd	88	250	300
80	DUREZA CALCIO(CaCO ₃)	mad	105	75	200
60	DUREZA MAGNESIO (CaCO ₃)	mdd	72	30	150
10	Hđ	Unid	6.60	18	6.5 – 8.5
11	ALCALINIDAD TOTAL CaCO ₃	maa	16.50	Th	25
					(

Ing. MSt. Higo Mosqueira Estraver JEFE DE LABORATGRIO CIP. 27664

Ensayos Fisicos, Quimicos y de Mecánica de Suelos,
Concreto y Pavimentos, Análisis Químicos de Minerales y Agua.
Estudio de: Mecánica de Suelos y Rocas, Concreto y Pavimentos.
Impacto Ambiental, Construcción de Edificios, Obras de Ingenieria Civil.
PROYECTOS – ASESORÍA Y CONSULTORÍA
RPM: *696826 CELULAR: 976026950 TELÉFONO: 364793

Nº ORDEN	CARACTERÍSTICAS	MEDIDAS	RESULTADOS	MÁXIMO RECOMENDADO OMS	MÁXIMO ADMISIBLE DIGESA CLASE I
	TURBIDEZ	NTU	6'0	ъ	26
	ARSÉNICO	mad	(a	0.1	6
	PLOMO	mdd	ı	0.1	*
	SELENIO	mdd	0.004	0.05	5(47)
	FÓSFORO	mdd	0.03	0.1	96.
	OXIGENO DISUELTO (02)	•	1.24	300	2.5
	CLORUROS (Cl ¹⁻)	mdd	44.25	#1:	250
	ALUMINIO (Al³+)	mdd	0.027	0.2	0.2
	SULFATOS (SO4)2-	mdd	61,23	250	400
	FIERRO (Fe)	ı	90.0	0.1	1.0
	COBRE (Cu)	mdd	0.05	0.05	1.5
	MANGANESO (Mn)	mdd	0.05	0.5	0.5
	NITRITO (NO ₂) ¹ -	udd	0.01	3.0	3.0
	ZINC (Zn)	mdd	ż	3.0	3.00
	NITRATO (NO ₃) ¹ -	mdd	107	20.00	20.0
	CADMIO (Cd)	mdd	Mil.	0.003	0.003
	скомо (сг)	mdd	3.8	0.05	0.05
	FLORURO F.			1,5	1.0

Nota: La muestra fue alcanzada al Laboratorio por el interesado.

ING. MS. Hugo Mosqueira Estraver
JEFE DE LABORATORIO
CIP. 27664

Ensayos Físicos, Quimicos y de Mecânica de Suelos,
Concreto y Pavimentos, Análisis Químicos de Minerales y Agua.
Estudio de: Mecânica de Suelos y Rocas, Concreto y Pavimentos.
Impacto Ambiental, Construcción de Edificios, Obras de Ingenieria Civil.
PROYECTOS – ASESORÍA Y CONSULTORÍA
RPM: "696826 CELULAR: 976026950 TELÉFONO: 364793

ANÁLISIS BACTERIOLÓGICO DE UNA MUESTRA DE AGUA PARA CONSUMO

: Cesar Dalton Orrillo Daván SOLICITA

: El Amaro **PROCEDENCIA**

: M-2 MUESTRA

:19/09/2023 FECHA

ANÁLISIS BACTERIOLÓGICO MÉTODO FILTRO DE MEMBRANA

17/09/2023 : 19/09/2023 RECEPCIÓN DE LA MUESTRA RESULTADO DE ANÁLISIS

HORA: 11.00 a.m. HORA: 12:00 m

REGISTRO

Nº COLIFORMES FECALES TOTALES MNP/ 100ML	0.0
Nº COLIFORMES ENCONTRADAS MNP/100 ML	1.00
VOLUMEN FILTRADO	100ml.

OBSERVACIONES:

CLASIFICACIÓN DEL AGUA DE CONSUMO HUMANO

CATEGORÍA	RECUENTO DE COLIFORMES FECALES MNP/ 100 ML
(P	0 AGUA BACTERIOLÓGICAMENTE APTA
മ	1-10 AGUA BACTERIOLÓGICAMENTE INAPTA (CONTAMINADA)
O	11-50 AGUA BACTERIOLÓGICAMENTE INAPTA (CONTAMINADA)
Q	Mayor a 50 AGUA BACTERIOLÓGICAMENTE INAPTA (CONTAMINADA)

Observaciones: Los resultados obtenidos encuadran dentro de los parámetros dados por la OMS/MINSA para aguas de consumo humano.

Nota: La muestra fue alcanzada al Laboratorio por el interesado para su análisis respe*sti*

Hugo Mosqueira Estraver JEFE DE LABORATONIO Ing. MSc

Ensayos Fisicos, Químicos y de Mecánica de Suelos,
Concreto y Pavimentos, Análisis Químicos de Minerales y Agua.
Estudio de: Mecánica de Suelos y Rocas, Concreto y Pavimentos.
Impacto Ambiental, Construcción de Edificios, Obras de Ingeniería Civil.
PROYECTOS – ASESORÍA Y CONSULTORÍA
RPM: *696826 CELULAR: 976026950 TELÉFONO: 364793

ANÁLISIS FISICOQUÍMICO DE UNA MUESTRA DE AGUA

SOLICITA : Cesar Dalton Orrillo Daván

PROCEDENCIA : China Linda

MUESTRA : M-3

FECHA : 19/09/2023

RESULTADOS DE ANÁLISIS

Nº ORDEN	CARACTERÍSTICAS	MEDIDAS	RESULTADOS	MÁXIMO RECOMENDADO OMS	MÁXIMO ADMISIBLE DIGESA CLASE I	
01	ASPECTO	3	TRANSPARENTE	(Apr	LIMPIO	
05	OLOR	9	INODORO	ē	INOFENSIVO	
03	SABOR	Ñ	AGRADABLE	ì	INOFENSIVO	
24	COLOR		INCOLORO	15	15	
0.5	CONDUCTIVIDAD A 20°C	US/CM	103	ı	2000	
90	SÓLIDOS DISUELTOS TOTALES	mdd	100	200	1000	
07	SÓLIDOS SUSPENSIÓN	wdd	06	250	300	
80	DUREZA CALCIO(CaCO ₃)	mdd	35	75	200	
60	DUREZA MAGNESIO (CaCO ₃)	mdd	69	30	150	
10	Hď	Unid	6.90	62	6.5-8.5	
11	ALCALINIDAD TOTAL CaCO ₃	wdd	16.20	23	25	
				,	- (

ING. MS. Auge Mosqueira Estraver JEFE DE LABORATORIO CIP. 27664

Ensayos Físicos, Quimicos y de Mecánica de Suelos,
Concreto y Pavimentos, Análisis Químicos de Minerales y Agua.
Estudio de: Mecánica de Suelos y Rocas, Concreto y Pavimentos.
Impacto Ambiental, Construcción de Edificios, Obras de Ingeniería Civil.
PROYECTOS – ASESORÍA Y CONSULTORÍA
RPM: ~696826 CELULAR: 976026930 TELEFONO: 364793

	CARACTERÍSTICAS	MEDIDAS	RESULTADOS	MÁXIMO RECOMENDADO OMS	MÁXIMO ADMISIBLE DIGESA CLASE I
12 TU	TURBIDEZ	UTN	1.2	ທ	t
13 AR	ARSÉNICO	mdd	ř.	0.1	A (1)
14 PL	РГОМО	mdd	(0.1	w
15 SE	SELENIO	mdd	0.007	0.05	£2.
16 FÓ	FÓSFORO	mdd	90'0	0.1	·
17 0X	OXIGENO DISUELTO (02)	ı	1.28	1	2.5
18 CL	CLORUROS (Cl1-)	mdd	43.70	96	250
19 AL	ALUMINIO (Al3+)	mdd	0.026	0.2	0.2
20 SU	SULFATOS (SO ₄) ²⁻	mďď	62.56	250	400
21 FIE	FIERRO (Fe)	r	0.05	0.1	1.0
22 C0	COBRE (Cu)	mdd	0.04	0.05	1.5
23 MA	MANGANESO (Mn)	mdd	90'0	0.5	0.5
24 NI	NITRITO (NO ₂) ¹⁻	mdd	0.04	3.0	3.0
25 ZIN	ZINC (Zn)	mdd	*	3.0	3.00
26 NI	NITRATO (NO3)1-	wdd	1	20.00	50.0
27 CA	CADMIO (Cd)	mđđ	1	0.003	0.003
28 CR	скомо (ст)	mdd	XV.	0.05	0.05
29 FL	FLORURO F.		ď.	1.5	1.0

Nota: La muestra fue alcanzada al Laboratorio por el interesado.

ING. My MOS CHINA MOUNT IN THE STATE OF THE PER DE LABORATORIO CP. 27664

Ensayos Fisicos, Químicos y de Mecinica de Suelos,
Concreto y Pavimentos, Análisis Químicos de Minerales y Agua.
Estudio de: Mecánica de Suelos y Rocas, Concreto y Pavimentos.
Impacto Ambiental, Construcción de Edificios, Obras de Ingeniería Civil.
PROYECTOS – ASESORÍA Y CONSULTORÍA
RPM: *696826 CELULAR: 976026950 TELEFONO: 364793

ANÁLISIS BACTERIOLÓGICO DE UNA MUESTRA DE AGUA PARA CONSUMO

SOLICITA : Cesar Dalton Orrillo Daván PROCEDENCIA : China Linda

MUESTRA : M - 3

FECHA : 19/09/2023

ANÁLISIS BACTERIOLÓGICO

MÉTODO FILTRO DE MEMBRANA

RECEPCIÓN DE LA MUESTRA : 17/09/2023 RESULTADO DE ANÁLISIS : 19/09/2023

: 17/09/2023 HORA: 11.00 a.m. : 19/09/2023 HORA: 12:00 m

REGISTRO

Nº COLIFORMES FECALES TOTALES MNP/ 100ML	0.0
Nº COLIFORMES ENCONTRADAS MNP/100 ML	1.00
VOLUMEN FILTRADO	100ml.

OBSERVACIONES:

CLASIFICACIÓN DEL AGUA DE CONSUMO HUMANO

CATEGORÍA	RECUENTO DE COLIFORMES FECALES MNP/ 100 ML
	0 AGUA BACTERIOLÓGICAMENTE APTA
8	1-10 AGUA BACTERIOLÓGICAMENTE INAPTA (CONTAMINADA)
0	11-50 AGUA BACTERIOLÓGICAMENTE INAPTA (CONTAMINADA)
Q	Mayor a 50 AGUA BACTERIOLÓGICAMENTE INAPTA (CONTAMINADA)

Observaciones: Los resultados obtenidos encuadran dentro de los parámetros dados por la OMS/MINSA para aguas de consumo humano.

Nota: La muestra fue alcanzada al Laboratorio por el interesado para su análisis respectivo.

ING. MSC. HUGO MOSQUEITO ESTOVET SEFE DE LABORATORIO

Ensayos Fisicos, Quimicos y de Mecánica de Suclos,
Concreto y Pavimentos, Análisis Químicos de Minerales y Agua.
Estudio de: Mecánica de Suelos y Rocas, Concreto y Pavimentos.
Impacto Ambiental, Construcción de Edificios, Obras de Ingeniería Civil.
PROYECTOS – ASESORÍA Y CONSULTORÍA
RPM: *696826 CELULAR: 976026950 TELEFONO: 364793

ANÁLISIS FISICOQUÍMICO DE UNA MUESTRA DE AGUA

SOLICITA : Cesar Dalton Orrillo Daván

PROCEDENCIA : Las Huacas

MUESTRA : M-4

FECHA : 19/09/2023

RESULTADOS DE ANÁLISIS

Nº ORDEN	CARACTERÍSTICAS	MEDIDAS	RESULTADOS	MÁXIMO RECOMENDADO OMS	MÁXIMO ADMISIBLE DIGESA CLASE I
01	ASPECTO	ı	TRANSPARENTE	ā	ОІМЫ
05	OLOR	ē	INODORO	Đ!	INOFENSIVO
03	SABOR	1	AGRADABLE	10	INOFENSIVO
04	COLOR	111	INCOLORO	15	15
50	CONDUCTIVIDAD A 20°C	US/CM	108	ι	2000
90	SÓLIDOS DISUELTOS TOTALES	шdd	105	200	1000
07	SÓLIDOS SUSPENSIÓN	wdd	86	250	300
80	DUREZA CALCIO(CaCO3)	wdd	95	75	200
60	DUREZA MAGNESIO (CaCO ₃)	mdd	69	30	150
10	됩	Unid	6.80	900	6.5-8.5
11	ALCALINIDAD TOTAL CaCO ₃	mda	16.25	ı	25
					<

ING. MSC, Hugg Mosqueira Estraver
JEFE DE LABORATORIO
C.I.P. 27664

Ensayos Físicos, Químicos y de Mecánica de Suelos,
Concreto y Pavimentos, Análisis Químicos de Minerales y Agua.
Estudio de: Mecánica de Suelos y Rocas, Concreto y Pavimentos.
Impacto Ambiental, Construcción de Edificios, Obras de Ingenieria Civil.
PROYECTOS – ASESORÍA Y CONSULTORÍA
RPM: *696826 CELULAR: 976026950 TELÉFONO: 364793

12 TURBIDEZ NTU 14 5 13 ARSÍNICO ppm 0.1 14 PLOMO ppm 0.007 0.05 15 SELENIO ppm 0.007 0.05 16 FÓSFORO ppm 0.007 0.01 17 OXIGENO DISUELTO (02) 1.28 2.5 18 CLORUROS (CI ¹ -) ppm 43.25 2.5 20 ALUMINIO (Al ¹ -) ppm 6.206 2.2 400 21 ALUMINIO (Al ¹ -) ppm 6.206 2.5 400 21 ALUMINIO (Al ¹ -) ppm 6.05 0.1 1.0 22 CLORUE (Cu) ppm 6.06 2.5 400 23 COBRE (Cu) ppm 0.04 0.5 0.5 1.5 24 NITRIZO (NO ₂) ¹ - ppm 0.04 0.0 0.0 3.0 <th>N[®] ORDEN</th> <th>CARACTERÍSTICAS</th> <th>MEDIDAS</th> <th>RESULTADOS</th> <th>MÁXIMO RECOMENDADO OMS</th> <th>MÁXIMO ADMISIBLE DIGESA CLASE I</th>	N [®] ORDEN	CARACTERÍSTICAS	MEDIDAS	RESULTADOS	MÁXIMO RECOMENDADO OMS	MÁXIMO ADMISIBLE DIGESA CLASE I
ARSÉNICO ppm 0.1 PLOMO ppm 0.007 0.05 SELENIO ppm 0.007 0.05 FÓSFORO ppm 0.007 0.01 OXIGENO DISUELTO (02) - 1.28 0.1 CLORUROS (CI+) ppm 43.25 - 0.2 ALUMINIO (AI3+) ppm 0.026 0.2 0.2 SULFATOS (SO4)2- ppm 0.05 0.1 0.05 FIERRO (Fe) - 0.05 0.1 0.05 VANANGANESO (Mn) ppm 0.04 0.5 0.1 MANGANESO (Mn) ppm 0.08 3.0 ZINC (Zn) ppm 0.08 3.0 NITRATO (NO2)1- ppm 0.08 3.0 CADMIO (CA) ppm 0.06 0.03 CROMO (Cr) ppm 0.06 0.05 FLORURO F 1.5 1.5	12	TURBIDEZ	UTN	1.4	гv	20
PLOMO ppm 0.007 0.1 SELENIO ppm 0.007 0.05 FÓSFORO ppm 0.07 0.1 OXIGENO DISUELTO (02) - 1.28 0.1 CLORUROS (CI ¹⁻) ppm 43.25 0.2 ALUMINIO (AI ³⁻) ppm 62.06 25.0 FIERRO (Fe) - 0.05 0.1 FIERRO (Fe) - 0.05 0.1 FIERRO (Fe) - 0.05 0.0 MANGANESO (Mn) ppm 0.04 0.5 MANGANESO (Mn) ppm 0.04 0.5 XINC (Zn) ppm 0.08 3.0 XINC (Zn) ppm 0.08 3.0 CADMIO (Cd) ppm 0.003 0.003 CROMO (Cr) ppm 0.05 0.05 FLORURO F 1.5 1.5	13	ARSÉNICO	udd	15.7	0.1	9
FÓSFORO ppm 0.007 0.05 OXIGENO DISUELTO (O2) - 1.28 0.1 CLORUROS (CI:-) ppm 43.25 - ALUMINIO (A13-*) ppm 0.026 0.2 SULFATOS (SO4)2- ppm 62.06 250 FIERRO (Fe) - 0.05 0.1 COBRE (Cu) ppm 0.04 0.5 MANGANESO (Mn) ppm 0.04 0.5 NITRITO (NO2)1- ppm 0.08 3.0 ZINC (Zn) ppm 0.08 3.0 VITRITO (NO2)1- ppm 0.08 3.0 CADMIO (Cd) ppm 0.08 3.0 CADMIO (Cd) ppm 0.003 0.003 CROMO (Cr) ppm 0.005 0.003 FLORURO F- 1.5 1.5	14	РГОМО	wdd	ve	0.1	t
FÓSFORO ppm 0.07 0.1 OXIGENO DISUELTO (02) - 1.28 = CLORUROS (Cl ¹⁻) ppm 43.25 = ALUMINIO (Al³*) ppm 0.026 0.2 ALUMINIO (Al³*) ppm 62.06 25.0 SULFATOS (SO4)²- ppm 0.05 0.1 FIERRO (Fe) - 0.05 0.1 MANGANESO (Mn) ppm 0.04 0.5 MANGANESO (Mn) ppm 0.08 3.0 ZINC (Zn) ppm 5.0.00 CADMIO (Cd) ppm 0.003 CROMO (Cr) ppm 0.005 FLORURO F- 1.5	15	SELENIO	шdd	0.007	0.05	r
CLORUROS (Cl ¹⁻) ppm 43.25 E CLORUROS (Cl ¹⁻) ppm 43.25 2.2 ALUMINIO (Al³-) ppm 0.026 0.2 SUI, FATOS (SO ₄)²- ppm 62.06 250 FIERRO (Fe) - 0.05 0.1 COBRE (Cu) ppm 0.04 0.5 MANGANESO (Mn) ppm 0.08 3.0 XINC (Zn) ppm - 50.00 CADMIO (Cd) ppm - 50.00 CROMO (Cr) ppm - 0.05 FLORURO F- - - 0.05	16	FÓSFORO	udd	0.07	0.1	ŧ
CLORUNGO (Cl ¹⁻¹) ppm 43.25 ALUMINIO (Al³+) ppm 0.026 0.2 SULFATOS (SO4)²- ppm 62.06 250 FIERRO (Fe)³ - 0.05 0.1 COBRE (Cu)³ ppm 0.04 0.05 MANGANESO (Mn)³ ppm 0.04 0.5 NITRATO (NO2)³- ppm 3.0 AINC (Zn)³ ppm 50.00 CADMIO (Cd) ppm 0.063 CROMO (Cr) ppm 0.063 FLORURO F- 1.5	17	OXIGENO DISUELTO (02)	ι	1.28	(i)	2.5
ALUMINIO (Al3+) ppm 0.026 0.2 SUI,FATOS (SO4)2* ppm 62.06 250 FIERRO (Fe) - 0.05 0.1 COBRE (Cu) ppm 0.07 0.05 MANGANESO (Mn) ppm 0.04 0.5 NITRITO (NO2)1* ppm 3.0 ZINC (Zn) ppm 3.0 NITRATO (NO3)1* ppm 50.00 CADMIO (Cd) ppm 0.003 CROMO (Cr) ppm 0.005 FLORURO F- 1.5	18	CLORUROS (Cl1-)	mdd	43,25	65	250
SULFATOS (SO4)2 ppm 62.06 250 FIERRO (Fe) - 0.05 0.1 COBRE (Cu) ppm 0.07 0.05 MANGANESO (Mn) ppm 0.04 0.5 NITRITO (NO2)1 ppm 0.08 3.0 ZINC (Zn) ppm - 50.00 CADMIO (Cd) ppm - 50.003 CROMO (Cr) ppm - 0.003 FLORURO F- - - - 1.5	19	ALUMINIO (Al³+)	undd	0.026	0.2	0.2
FIERRO (Fe) . 0.05 0.1 COBRE (Cu) ppm 0.07 0.05 MANGANESO (Mn) ppm 0.04 0.5 NITRITO (NO2) ¹ · ppm 3.0 ZINC (Zn) ppm 3.0 NITRATO (NO3) ¹ · ppm 50.00 CADMIO (Cd) ppm 0.003 CROMO (Cr) ppm 0.05 FLORURO F- 1.5	20	SULFATOS (SO4)2-	mdd	62.06	250	400
COBRE (Cu) ppm 0.07 0.05 MANGANESO (Mn) ppm 0.04 0.5 NITRITO (NO2) ¹ · ppm 3.0 ZINC (Zn) ppm 3.0 NITRATO (NO3) ¹ · ppm 50.00 CADMIO (Cd) ppm 0.003 CROMO (Cr) ppm 0.05 FLORURO F- 1.5	21	FIERRO (Fe)		0.05	0,1	1.0
MANGANESO (Mn) ppm 0.04 0.5 NITRITO (NO2)1- ppm 3.0 ZINC (Zn) ppm 3.0 NITRATO (NO3)1- ppm 50.00 CADMIO (Cd) ppm 0.003 CROMO (Cr) ppm 0.05 FLORURO F- 1.5	22	COBRE (Cu)	mdd	0.07	0.05	1.5
XINC (Zn) ppm 0.08 3.0 ZINC (Zn) ppm 3.0 NITRATO (NO ₃) ¹ - ppm 50.00 CADMIO (Cd) ppm 0.003 CROMO (Cr) ppm 0.05 FLORURO F- 1.5	23	MANGANESO (Mn)	mdd	0.04	0.5	0.5
ZINC (Zn) ppm 3.0 NITRATO (NO ₃) ¹⁻ ppm 50.00 CADMIO (Cd) ppm 0.003 CROMO (Cr) ppm 0.05 FLORURO F- 1.5	24	NITRITO (NO ₂) ²⁻	mdd	0.08	3.0	3.0
NITRATO (NO ₃)¹- ppm 50.00 CADMIO (Cd) ppm 0.003 CROMO (Cr) ppm 0.05 FLORURO F- 1.5	22	ZINC (Zn)	mdd	<u>*</u>	3.0	3.00
CADMIO (Cd) ppm 0.003 CROMO (Cr) ppm 0.05 FLORURO F- 1.5	26	NITRATO (NO3)1-	wdd	<u>//4</u>	20.00	20.0
CROMO (Cr.) ppm 0.05 FLORURO F- 1.5	27	CADMIO (Cd)	mđđ	***	0,003	0.003
FLORURO F. 1.5	28	CROMO (Cr.)	wdd	8	0.05	0.05
	29	FLORURO F-		<u>\$</u> 3	1.5	1.0

Nota: La muestra fue alcanzada al Laboratorio por el interesado.

INS. Hygo Masqueira Estraver JEFF DE L'ABORATORIO

Ensayos Físicos, Químicos y de Mecanica de Suetos,
Concreto y Pavimentos, Análisis Químicos de Minerales y Agua.
Estudio de: Mecánica de Suelos y Rocas, Concreto y Pavimentos.
Impacto Ambiental, Construcción de Edificios, Obras de Ingeniería Civil.
PROYECTOS — ASESORÍA Y CONSULTORÍA
RPM: *696826 CELULAR: 976026950 TELÉFONO: 364793

ANÁLISIS BACTERIOLÓGICO DE UNA MUESTRA DE AGUA PARA CONSUMO

: Cesar Dalton Orrillo Daván **PROCEDENCIA** SOLICITA

: Las Huacas : M - 4 MUESTRA : 19/09/2023 FECHA

ANÁLISIS BACTERIOLÓGICO MÉTODO FILTRO DE MEMBRANA

HORA: 11.00 a.m. HORA: 12:00 m : 19/09/2023 : 17/09/2023 RECEPCIÓN DE LA MUESTRA RESULTADO DE ANÁLISIS

REGISTRO

Nº COLIFORMES FECALES TOTALES MNP/ 100ML	0.0
Nº COLIFORMES ENCONTRADAS MNP/100 ML	1.00
VOLUMEN FILTRADO	100ml.

OBSERVACIONES:

CLASIFICACIÓN DEL AGUA DE CONSUMO HUMANO

CATEGORÍA	RECUENTO DE COLIFORMES FECALES MNP/ 100 ML
(p	0 AGUA BACTERIOLÓGICAMENTE APTA
В	1-10 AGUA BACTERIOLÓGICAMENTE INAPTA (CONTAMINADA)
Ü	11-50 AGUA BACTERIOLÓGICAMENTE INAPTA (CONTAMINADA)
Q	Mayor a 50 AGUA BACTERIOLÓGICAMENTE INAPTA (CONTAMINADA)

Observaciones: Los resultados obtenidos encuadran dentro de los parámetros dados por la OMS/MINSA para aguas de consumo humano.

Nota: La muestra fue alcanzada al Laboratorio por el interesado para su análisis respectivo.

IN MS. HUGO MOSQUEIDUU III. MS. HUGO MOSQUEIDE ESTRUEI JEFE DE LABORATORIO CIP. 27664

Ensayos Fisicos, Químicos y de Mecánica de Suelos,
Concreto y Pavimentos, Análisis Químicos de Minerales y Agua.
Estudio de: Mecánica de Suelos y Rocas, Concreto y Pavimentos.
Impacto Ambiental, Construcción de Edificios, Obras de Ingeniería Civil.
PROYECTOS – ASESORÍA Y CONSULTORÍA
RPM: *696826 CELULAR: 976026950 TELEFONO: 364793

ANÁLISIS FISICOQUÍMICO DE UNA MUESTRA DE AGUA

SOLICITA : Cesar Dalton Orrillo Daván

PROCEDENCIA : El Lapar


MUESTRA : M – 5

FECHA : 19/09/2023

RESULTADOS DE ANÁLISIS

Nº ORDEN	CARACTERÍSTICAS	MEDIDAS	RESULTADOS	MÁXIMO RECOMENDADO OMS	MÁXIMO ADMISIBLE DIGESA CLASE I
01	ASPECTO	10	TRANSPARENTE		LIMPIO
02	OLOR	8)	INODORO	Ŷ	INOFENSIVO
03	SABOR	ŧ	AGRADABLE	l.	INOFENSIVO
40	COLOR	3	INCOLORO	15	15
95	CONDUCTIVIDAD A 20°C	US/CM	121	ı	2000
90	SÓLIDOS DISUELTOS TOTALES	wdd .	105	200	1000
20	SÓLIDOS SUSPENSIÓN	wdd	06	250	300
80	DUREZA CALCIO(CaCO ₃)	wdd	98	75	200
	DUREZA MAGNESIO (CaCO ₃)	mdd	65	30	150
10	Hd	Unid	6.80	18	6.5 – 8.5
11	ALCALINIDAD TOTAL CaCO3	шdd	16.05	ı	25

ING. MSC. Hugo Mosqueira Estraver JEE DE LABORATORIO

Ensayos Físicos, Químicos y de Mecánica de Suelos,
Concreto y Pavimentos, Análisis Químicos de Minerales y Agua.
Estudio de: Mecánica de Suelos y Rocas, Concreto y Pavimentos.
Impacto Ambiental, Construcción de Edificios, Obras de Ingeniería Civil.
PROYECTOS – ASESORÍA Y CONSULTORÍA
RPM: *696826 CELULAR: 976026950 TELÉFONO: 364793

				OMS	DIGESA CLASE I
		NTU	1.2	ហ	,W
		mdd		0.1	40
		mdd	÷	0.1	326
		mdd	0.00	0.05	V a S
		mdd	60'0	0.1	æ
	OXIGENO DISUELTO (02)	<u>(*</u>	1.28	84	2.5
	(11-)	mdd	43.06	40	250
	Al3+)	mdd	0.026	0.2	0.2
_	SO ₄) ²⁻	mdd	62.25	250	400
21 FIERRO (Fe)		1	0.08	0.1	1.0
22 COBRE (Cu)	•	mdd	0.03	0.05	1.5
23 MANGANESO (Mn)	(Mn)	mdd	0.04	0.5	0.5
24 NITRITO (NO ₂) ¹⁻) ₂) ₁ .	uıdd	0.12	3.0	3.0
25 ZINC (Zn)		mdd	t	3.0	3,00
26 NITRATO (NO3)1-	03)1-	undd	2,907	20.00	50.0
27 CADMIO (Cd)		und d	it:	0.003	0.003
28 CROMO (Cr.)		mdd	59	0.05	0.05
29 FLORURO F-			<u>#</u>	1.5	1.0

ING. HIGO MOSQUEITO ESTEURE JEFE DE ABORATORIO CIP. 27664

Nota: La muestra fue alcanzada al Laboratorio por el interesado.

Ensayos Físicos, Químicos y de Mecánica de Suelos,
Concreto y Pavimentos, Análisis Químicos de Minerales y Agua.
Estudio de: Mecánica de Suelos y Rocas, Concreto y Pavimentos.
Impacto Ambiental, Construcción de Edificios, Obras de Ingeniería Civil.
PROYECTOS – ASESORÍA Y CONSULTORÍA
RPM: *696826 CELULAR: 976026950 TELÉFONO: 364793

ANÁLISIS BACTERIOLÓGICO DE UNA MUESTRA DE AGUA PARA CONSUMO

SOLICITA : Cesar Dalton Orrillo Daván

PROCEDENCIA : El Lapar

MUESTRA : M – 5

FECHA : 19/09/2023

ANÁLISIS BACTERIOLÓGICO

MÉTODO FILTRO DE MEMBRANA

RECEPCIÓN DE LA MUESTRA 17/09/2023 RESULTADO DE ANÁLISIS : 19/09/2023

HORA: 11.00 a.m. HORA: 12:00 m

REGISTRO

Nº COLIFORMES FECALES TOTALES MNP/ 100ML	0.0
Nº COLIFORMES ENCONTRADAS MNP/100 ML	1.00
VOLUMEN FILTRADO	100ml.

OBSERVACIONES:

CLASIFICACIÓN DEL AGUA DE CONSUMO HUMANO

CATEGORÍA	RECUENTO DE COLIFORMES FECALES MNP/ 100 ML
(v	0 AGUA BACTERIOLÓGICAMENTE APTA
6 0	1-10 AGUA BACTERIOLÓGICAMENTE INAPTA (CONTAMINADA)
U	11-50 AGUA BACTERIOLÓGICAMENTE INAPTA (CONTAMINADA)
۵	Mayor a 50 AGUA BACTERIOLÓGICAMENTE INAPTA (CONTAMINADA)

Observaciones: Los resultados obtenidos encuadran dentro de los parámetros dados por la OMS/MINSA para aguas de consumo humano.

Nota: La muestra fue alcanzada al Laboratorio por el interesado para su análisis respectivo.

Ensayos Físicos, Químicos y de Mecánica de Suelos,
Concreto y Pavimentos, Análisis Químicos de Minerales y Agua.
Estudio de: Macánica de Suelos y Rocas, Concreto y Pavimentos.
Impacto Ambiental, Construcción de Edificios, Obras de Ingenieria Civil.
PROYECTOS – ASESORÍA Y CONSULTORÍA
RPM: *696826 CELULAR: 976026950 TELÉFONO: 364793

ANÁLISIS FISICOQUÍMICO DE UNA MUESTRA DE AGUA

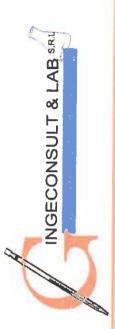
SOLICITA : Cesar Dalton Orrillo Daván

PROCEDENCIA : Ojo de Agua

MUESTRA : M – 6

FECHA : 19/09/2023

RESULTADOS DE ANÁLISIS



Ensayos Fisicos, Quimicos y de Mecánica de Suelos,
Concreto y Pavimentos, Análisis Químicos de Minerales y Agua.
Estudio de: Mecánica de Suelos y Rocas, Concreto y Pavimentos.
Impacto Ambiental, Construcción de Edificios, Obras de Ingeniería Civil.
PROYECTOS – ASESORÍA Y CONSUL TORÍA
RPM: *696826 CELULAR: 976026950 TELÉFONO: 364793

ž				OWIXYW	MÁXIMO
ORDEN	CARACTERÍSTICAS	MEDIDAS	RESULTADOS	RECOMENDADO OMS	ADMISIBLE DIGESA CLASE I
12	TURBIDEZ	NTU	1	ro	
13	ARSÉNICO	mdd	ĸ	0.1	*2
14	PLOMO	mdd	¥	0.1	(4)
15	SELENIO	mdd	0.007	0.05	43
16	FÓSFORO	mdd	90'0	0.1	5 % ,
17	OXIGENO DISUELTO (02)	ı	1.40	1040	2.5
18	CLORUROS (CI ¹⁻)	undd	43.36	90.	250
19	ALUMINIO (Al³+)	mdd	0.026	0.2	0.2
20	SULFATOS (SO4)2-	шďď	61,98	250	400
21	FIERRO (Fe)	1	0.095	0.1	1.0
22	COBRE (Cu)	mdd	0.03	0.05	1.5
23	MANGANESO (Mn)	mdd	0.04	0.5	0.5
24	NITRITO (NO ₂) ¹⁻	undd	0.4	3.0	3.0
22	ZINC (Zn)	шdd	9	3.0	3.00
26	NITRATO (NO3)1-	uıdd	88	50.00	50.0
27	CADMIO (Cd)	mdd	1	0.003	0.003
28	CROMO (Cr.)	ıııdd		0.05	0.05
29	FLORURO F.	,		1.5	1.0

Nota: La muestra fue alcanzada al Laboratorio por el interesado.

ING. MSCHUIGH MOSQUEITAESTOVE

Impacto Ambiental, Construcción de Edificios, Obras de Ingenieria Civil. PROYECTOS – ASESORÍA Y CONSULTORÍA RPM: *696826 CELULAR: 976026950 TELÉFONO: 364793 Ensayos Fíxicos, Quimicos y de Mecánica de Suelos, Concreto y Pavimentos, Análisis Químicos de Minerales y Agua. Estudio de: Mecánica de Suelos y Rocas, Concreto y Pavimentos.

ANÁLISIS BACTERIOLÓGICO DE UNA MUESTRA DE AGUA PARA CONSUMO

: Cesar Dalton Orrillo Daván

: Ojo de agua **PROCEDENCIA**

:19/09/2023 9-W: MUESTRA FECHA

ANÁLISIS BACTERIOLÓGICO MÉTODO FILTRO DE MEMBRANA

: 17/09/2023 RECEPCIÓN DE LA MUESTRA RESULTADO DE ANÁLISIS

HORA: 11.00 a.m. HORA: 12:00 m : 19/09/2023

REGISTRO

Nº COLIFORMES FECALES TOTALES MNP/ 100ML	0.0
Nº COLJFORMES ENCONTRADAS MNP/100 ML	1.00
VOLUIMEN FILTRADO	100ml.

OBSERVACIONES:

CLASIFICACIÓN DEL AGUA DE CONSUMO HUMANO

	RECUENTO DE COLIFORMES PECALES MNP/ 100 ML
(v	O AGUA BACTERIOLÓGICAMENTE APTA
æ	1-10 AGUA BACTERIOLÓGICAMENTE INAPTA (CONTAMINADA)
O	11-50 AGUA BACTERIOLÓGICAMENTE INAPTA (CONTAMINADA)
Q	Mayor a 50 AGUA BACTERIOLÓGICAMENTE INAPTA (CONTAMINADA)

Observaciones: Los resultados obtenidos encuadran dentro de los parámetros dados por la OMS/MINSA para aguas de consumo humano.

Nota: La muestra fue alcanzada al Laboratorio por el interesado para su análisis respectivo.

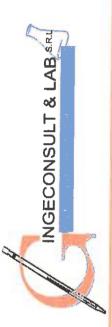
ING. MSC. HugoMosqueira Estrafer
JEFE DE/LABORATOHIO
CIP. 27664

Ensayos Físicos, Quimicos y de Mecánica de Suelos,
Concreto y Pavimentos, Análisis Químicos de Minerales y Agua.
Estudio de: Mecánica de Suelos y Rocas, Concreto y Pavimentos.
Impacto Ambiental, Construcción de Edificios, Obras de Ingenieria Civil.
PROYECTOS – ASESORÍA Y CONSULTORÍA
RPM: "696826 CELULAR: 976026950 TELÉFONO: 364793

ANÁLISIS FISICOQUÍMICO DE UNA MUESTRA DE AGUA

: Cesar Dalton Orrillo Daván SOLICITA

: Peña Mala **PROCEDENCIA**

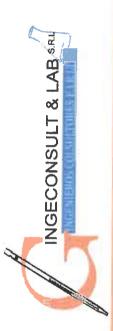

: M – 7 MUESTRA

: 19/09/2023 FECHA

RESULTADOS DE ANÁLISIS

MEDIDAS RESULTADOS RECOMENDADO ADMISIBLE OMS DIGESA CLASE I	TRANSPARENTE	INODORO . INOFENSIVO	AGRADABLE	INCOLORO 15 15	US/CM 123 - 2000	ppm 100 500 1000	ppm 90 250 300	ppm 95 75 200	ppm 65 30 150	Unid 7.15 - 6.5-8.5	
					US/CM		wdd	mdd		·	ALCALINIDAD TOTAL CaCO ₃ ppm 16.25
CARA	ASPECTO	OLOR	SABOR	COLOR	CONDUCTIVIDAD A 20°C	sólibos bisu	SÓLIDOS SUSPENSIÓN	DUREZA CALCIO(CaCO ₃)	DUREZA MAG	Hd	ALCALINIDAD

INTERPORTURE SALUNUMMUM ING. Mugo Mosqueira Estrader JEFE DE KABORATORIO CIP. 27664



Ensayos Fisicos, Quimicos y de Mecánica de Suelos,
Concreto y Pavimentos, Análisis Químicos de Minerales y Agua.
Estudio de: Mecánica de Suelos y Rocas, Concreto y Pavimentos.
Impacto Ambiental, Construcción de Edificios, Obras de Ingenieria Civil.
PROYECTOS – ASESORIA Y CONSULTORÍA
RPM: *696826 CELULAR: 976026950 TELÉFONO: 364793

Nº ORDEN	CARACTERÍSTICAS	MEDIDAS	RESULTADOS	MÁXIMO RECOMENDADO OMS	MÁXIMO ADMISIBLE DIGESA CLASE I
12	TURBIDEZ	UTN	1.3	ស	38
13	ARSÉNICO	uidd	æ	0.1	*)
14	РЬСОМО	mdd	SiP.	0.1	10.0
15	SELENIO	udd	0.015	0.05	*0
16	FÓSFORO	mdd	0.1	0.1	34
17	OXIGENO DISUELTO (02)		1.42	€:	2.5
18	CLORUROS (Cl1-)	mdd	43,25	3:	250
19	ALUMINIO (Al ³⁺)	wdd	0.026	0.2	0.2
20	SULFATOS (SO ₄) ² -	mdd	66.83	250	400
21	FIERRO (Fe)		0.091	0.1	1.0
22	COBRE (Cu)	mdd	0.05	0.05	1.5
23	MANGANESO (Mn)	mdd	60.0	0.5	0.5
24	NITRITO (NO ₂)1-	mdd	8.0	3.0	3.0
25	ZINC (Zn)	mdd	r	3,0	3.00
26	NITRATO (NO ₃)1-	mdd	7/	20.00	20.0
22	CADMIO (Cd)	mdd	Œ.	0.003	0.003
82	CROMO (Cr.)	шdd	50	0.05	0.05
56	FLORURO F.		*	1,5	1.0

Nota: La muestra fue alcanzada al Laboratorio por el interesado.

ING. MSC. Hugo Mosqueira Estraver
SEPE DE LABORATORIO
CIP. 27664

Concreto y Pavimentos, Análisis Químicos de Minerales y Agua.
Estudio de: Mecánica de Suelos y Rocas, Concreto y Pavimentos.
Impacto Ambiental, Construcción de Edifícios, Obras de Ingeniería Civil.
PROYECTOS – ASESORÍA Y CONSULTORÍA
RPM: *696826 CELULAR: 976026950 TELÉFONO: 364793 Ensayos Físicos, Químicos y de Mecánica de Suelos,

ANÁLISIS BACTERIOLÓGICO DE UNA MUESTRA DE AGUA PARA CONSUMO

: Cesar Dalton Orrillo Daván

: Peña Mala : ME – 7 **PROCEDENCIA** MUESTRA

:19/09/2023 FECHA

ANÁLISIS BACTERIOLÓGICO MÉTODO FILTRO DE MEMBRANA

: 17/09/2023 : 19/09/2023 RECEPCIÓN DE LA MUESTRA RESULTADO DE ANÁLISIS

HORA: 11.00 a.m. HORA: 12:00 m

REGISTRO

Nº COLIFORMES FECALES TOTALES MNP/ 100ML	0.0
Nº COLIFORMES ENCONTRADAS MNP/100 ML	1.00
VOLUMEN FILTRADO	100ml.

OBSERVACIONES:

CLASIFICACIÓN DEL AGUA DE CONSUMO HUMANO

CATEGORÍA	RECUENTO DE COLIFORMES FECALES MNP/ 100 ML
(b	0 AGUA BACTERIOLÓGICAMENTE APTA
В	1-10 AGUA BACTERIOLÓGICAMENTE INAPTA (CONTAMINADA)
v	11-50 AGUA BACTERIOLÓGICAMENTE INAPTA (CONTAMINADA)
Q	Mayor a 50 AGUA BACTERIOLÓGICAMENTE INAPTA (CONTAMINADA)

Observaciones: Los resultados obtenidos encuadran dentro de los parámetros dados por la OMS/MINSA para aguas de consumo humano.

Nota: La muestra fue alcanzada al Laboratorio por el interesado para su análisis respec**t**i

Ing. MSc. Hygo Mosqueiro Estrate:
JEFE DE LABORATORIO
CIP. 27664

INFORME DE ANALISIS QUÍMICO

CLIENTE: CÉSAR DALTON ORRILLO DAVÁN № COD. 87296

TIPO DE MUESTRA: MINERAL

IDENTIFIC. DE LA MUESTRA: MUESTRA 1 DALTON

MUESTRAS RECIBIDAS:

DETALLE DEL ENVASE : BOLSA SIN LACRAR

FECHA DE RECEPCIÓN: 19/07/2023 INSTRUCCIÓN DE ANALISIS: TIPO LOTE

METODO ANALÍTICO: VIA SECA - VOLUMETRIA

RESULTADOS:

Au - ORO (g/tm)	0.26
Au - ORO (oz/tc)	0.01
Ag - PLATA (g/tm)	9.14
Ag - PLATA (oz/tc)	0.27
Cu-COBRE(%)	0.01

Fecha de Emisión: 19/07/2023

Este informe no debe reproducirse total ni parcial sin autorización escrita de G&S Laboratory SRL

Los resultados de este Certificado solo corresponde a la muestra recibida en nuestra ofcina.

Los remanentes de las muestras se guardarán por un periodo máximo de 1 mes.

JEFE DE LABORATORIO CIP. Nº 185126

INFORME DE ANALISIS QUÍMICO

CLIENTE: CÉSAR DALTON ORRILLO DAVÁN № COD. 87296

TIPO DE MUESTRA: MINERAL

IDENTIFIC. DE LA MUESTRA : MUESTRA 2 DALTON

MUESTRAS RECIBIDAS :

DETALLE DEL ENVASE : BOLSA SIN LACRAR

FECHA DE RECEPCIÓN : 19/07/2023 INSTRUCCIÓN DE ANALISIS : TIPO LOTE

METODO ANALÍTICO: VIA SECA - VOLUMETRIA

RESULTADOS:

Au - ORO (g/tm)	0.21
Au - ORO (oz/tc)	0.01
Ag - PLATA (g/tm)	28.19
Ag-PLATA (oz/tc)	0.82
Cu-COBRE(%)	0.01

Fecha de Emisión: 19/07/2023

Este informe no debe reproducirse total ni parcial sin autorización escrita de G&S Laboratoy SRL

Los resultados de este Certificado solo corresponde a la muestra recibida en nuestra oficina.

Los remanentes de las muestras se guardarán por un periodo máximo de 1 mes.

JEFE DE LABORATORIO CIP. Nº 185126

INFORME DE ANALISIS QUIMICO

CLIENTE: CÉSAR DALTON ORRILLO DAVÁN № COD. 87296

TIPO DE MUESTRA: MINERAL

IDENTIFIC. DE LA MUESTRA: MUESTRA 1 DALTON

MUESTRAS RECIBIDAS:

DETALLE DEL ENVASE : BOLSA SIN LACRAR

FECHA DE RECEPCIÓN : 19/07/2023 INSTRUCCIÓN DE ANALISIS: TIPO LOTE

METODO ANALÍTICO: VIA SECA - VOLUMETRIA

RESULTADOS:

4 000///	20.00
Au - ORO (g/tm)	0.26
Au - ORO (oz/tc)	0.01
Ag - PLATA (g/tm)	9.14
Ag - PLATA (oz/tc)	0.27
Cu-COBRE (%)	0.01

Fecha de Emisión: 19/07/2023

Este informe no debe reproducirse total ni parcial sin autorización escrita de G&S Laboratoy SRL

Los resultados de este Certificado solo corresponde a la muestra recibida en nuestra oficina.

Los remanentes de las muestras se guardarán por un periodo máximo de 1 mes.

JEFE DE LABORATORIO

CIP. Nº 185125

NOMBRE DEL TRABAJO

AUTOR

4. Tesis_Orrillo Daván César Dalton.pdf

UNC_2024_ César_V1 Orrillo

RECUENTO DE PALABRAS

RECUENTO DE CARACTERES

23487 Words

135996 Characters

RECUENTO DE PÁGINAS

TAMAÑO DEL ARCHIVO

174 Pages

27.9MB

FECHA DE ENTREGA

FECHA DEL INFORME

Mar 9, 2024 10:06 PM GMT-5

Mar 9, 2024 10:09 PM GMT-5

• 8% de similitud general

El total combinado de todas las coincidencias, incluidas las fuentes superpuestas, para cada base de datos.

- 8% Base de datos de Internet
- Base de datos de Crossref
- 4% Base de datos de trabajos entregados
- 1% Base de datos de publicaciones
- Base de datos de contenido publicado de Crossref

Excluir del Reporte de Similitud

- Material bibliográfico
- Material citado
- Fuentes excluidas manualmente
- Material citado
- Coincidencia baja (menos de 20 palabras)
- Bloques de texto excluidos manualmente