UNIVERSIDAD NACIONAL DE CAJAMARCA

FACULTAD DE INGENIERÍA

ESCUELA PROFESIONAL DE INGENIERÍA GEOLÓGICA

TESIS

ESTABILIDAD GEOTÉCNICA DEL BOTADERO NORTE – MINA EL TORO – SÁNCHEZ CARRIÓN – LA LIBERTAD

Para optar por el título profesional de:

INGENIERO GEÓLOGO

Autor:

Bach. DÁVILA CUBAS WILLY FÉLIX

ASESOR:

Dr. QUISPE MAMANI CRISPÍN ZENÓN

CAJAMARCA – PERÚ

2024

CONSTANCIA DE INFORME DE ORIGINALIDAD

- FACULTAD DE INGENIERÍA -

1.	Investigador DNI Escuela Profesional	: Willy Félix Da : 70476659 : Ingeniería Ge	ávila Cub eológica	as
2.	Asesor Facultad	: Crispín Zenói : Ingeniería	n Quispe	Mamani
3.	Grado académico o título pro	fesional		
	Bachiller	ofesional	□Segur	nda especialidad
	□Maestro □Doctor			
4.	Tipo de Investigación:			
	Tesis 🛛 Trabajo de	investigación	🗆 Trab	ajo de suficiencia profesional
	Trabajo académico			
1.	 Título de Trabajo de Investigación: ESTABILIDAD GEOTÉCNICA DEL BOTADERO NORTE – MINA EL TORO – SÁNCHEZ CARRIÓN – LA LIBERTAD. 			
2.	. Fecha de evaluación : 15 de marzo 2024			
3.	Software antiplagio:	TURNITIN		URKUND (OURIGINAL) (*)
4.	Porcentaje de Informe de Sin	ilitud : 6%		
5.	Código Documento : Oid: 3117:340116930		116930	
6.	. Resultado de la Evaluación de Similitud:			
	APROBADO 🗆 PARA LEVA	NTAMIENTO DE	OBSERV	ACIONES O DESAPROBADO

Fecha Emisión: 15 de marzo del 2021

Geottin	FIRMA DIGITAL	Firmado digitalmente por: FERNANDEZ LEON Yvonne Katherine FAU 20148258601 soft Motivo: Soy el autor del documento Fecha: 16/03/2024 18:26:37-0500
FIRMA DEL ASESOR Nombres y Apellidos: Crispín Zenón Quispe Mamani	UNIDAD	DE INVESTIGACIÓN FI
DNI : 29243825		

* En caso se realizó la evaluación hasta setiembre de 2023

AGRADECIMIENTO

A Dios en primer lugar, por permitirme llegar a esta etapa de mi vida, guiándome durante mi carrera universitaria y brindándome sabiduría para llenarme de experiencia y aprendizaje.

A mi alma mater, Universidad Nacional de Cajamarca y en especial a la Escuela Académico Profesional de Ingeniería Geológica y a cada uno de sus docentes quienes forjaron en mi un profesional de bien para el país. A todos ustedes muchas gracias.

A mi madre que siempre estuvo apoyándome y me impulsó a cumplir mis metas como si fueran suyas, a mi padre, que aunque no esté más a mi lado, fue y seguirá siendo un ejemplo de persona, profesional, amigo y padre.

A mi esposa e hijos, quienes, finalmente, me transformaron en una persona moral y ética de provecho para la sociedad.

Un agradecimiento especial a mi asesor de tesis, el Dr. Crispín Zenón Quispe Mamani, por todo su apoyo y perseverancia en esta investigación.

Willy Dávila

DEDICATORIA

A mi madre Sonia Cubas que nunca se dio por vencida y se mantuvo firme a lo largo de todos estos años. A mi padre Augusto Dávila que inculcó en mi valores para ser una persona de respeto, empatía hacia el prójimo y amor incondicional hacia la familia. A mi esposa Victoria, e hijos, Victoria y Salvador, por todo su amor y cariño desde que llegaron a mi vida, ustedes son mi motor y motivo para seguir siempre adelante.

A mis hermanos Érika, Edisa, Luis, Cesar e Hilda que me acompañan y me guían en cada paso que doy.

Willy Dávila

ÍNDICE

Pág.

AGRADECIMIENTO.....ii DEDICATORIA......iii ABREVIATURAS.....xi RESUMEN.....xi ABSTRACT......xii

CAPÍTULO I INTRODUCCIÓN

CAPÍTULO II MARCO TEÓRICO

2.1.	ANTECEDENTES	4
2.2.	BASES TEÓRICAS	6
2.2.1.	Talud	6
2.2.2.	Influencia del tipo de material	7
2.2.3.	Clasificación de Materiales Geológicos	10
2.2.4.	Tipos de Movimientos	14
2.2.5.	Morfología y Partes de un Deslizamiento	15
2.2.6.	Factores condicionantes y desencadenantes	18
2.2.7.	Tipología y Peligrosidad	18
2.2.8.	Estabilidad de Taludes	19
2.2.9.	Botaderos	
2.2.10	. Estabilidad en Botaderos:	29
2.2.11.	. Criterios de Aceptación:	30
2.3.	DEFINICIÓN DE TÉRMINOS BÁSICOS	32

CAPÍTULO III MATERIALES Y MÉTODOS

3.1.	UBICACIÓN	
3.1.1.	Ubicación geográfica	
3.1.2.	Ubicación política	
3.2.	ACCESIBILIDAD	
3.3.	CLIMA Y METEOROLOGÍA	
3.4.	VEGETACIÓN	

	Pág.
3.5.	METODOLOGÍA DE LA INVESTIGACIÓN
3.5.1.	Tipo y método de Investigación
3.5.2.	Población de estudio
3.5.3.	Muestra de estudio
3.5.4.	Unidad de análisis
3.6.	TÉCNICAS E INSTRUMENTOS DE RECOPILACIÓN DE DATOS
3.6.1.	Técnicas
3.6.2.	Instrumentos de recopilación de datos
3.7.	PROCEDIMIENTO
3.7.1.	Etapa preliminar
3.7.2.	Trabajo de campo
3.7.3.	Trabajo de gabinete
3.8.	ESTRATIGRAFÍA LOCAL
3.8.1.	Grupo Goyllarisquizga
3.9.	GEOLOGÍA LOCAL
3.10.	GEOLOGÍA ECONÓMICA
3.10.1	. Tipo de yacimiento
3.11.	HIDROLOGÍA
3.12.	GEOMORFOLOGÍA
3.12.1	Elementos del relieve
3.13.	GEOLOGÍA ESTRUCTURAL
3.14.	SISMICIDAD
3.14.1	Aceleración Máxima
3.15.	GEOTECNIA
3.15.1	. Calicatas
3.15.2	. Perforaciones
3.15.3	Ensayos de Campo
3.15.4	. Instalación de Piezómetros
3.15.5	. Mapeo Geológico-Geotécnico
3.15.6	Nivel de Cimentación
3.15.7	. Caracterización Geotécnica del Basamento Rocoso

CAPÍTULO IV ANÁLISIS Y DISCUSIÓN DE RESULTADOS

4.1.	PRESENTACIÓN DE RESULTADOS	61
4.1.1.	Definición de Parámetros Geotécnicos	61
4.1.2.	Medición del Nivel Freático	63
4.1.3.	Coeficiente Sísmico	64
4.2.	RESUMEN DE PARÁMETROS GEOTÉCNICOS	64
4.3.	CARACTERÍSTICAS DE DISEÑO DEL BOTADERO DE DESMONTE	65
4.4.	ANÁLISIS DE ESTABILIDAD DE LAS SECCIONES	65
4.4.1.	Configuración del Software	65
4.4.2.	Definición de materiales para el análisis de estabilidad	67
4.4.3.	Resultados de análisis de estabilidad	67
4.5.	DISCUSIÓN DE RESULTADOS	97
4.6.	CONTRASTACIÓN DE HIPÓTESIS	105

CAPÍTULO V CONCLUSIONES Y RECOMENDACIONES

5.1.	CONCLUSIONES	106
5.2.	RECOMENDACIONES	107

ÍNDICE DE FIGURAS

Figura 1.	Talud con ángulo uniforme y talud excavado con bermas y bancos	6
Figura 2.	Nivel freático de un talud y una ladera.	7
Figura 3.	Representación esquemática de las propiedades de las discontinuidades	8
Figura 4.	Discontinuidades de un medio rocoso (Estratificación y diaclasamiento)	8
Figura 5.	Suelo coluvial	9
Figura 6.	Movimiento de un material de relleno.	10
Figura 7.	Sistema Unificado de Clasificación de Suelos (SUCS).	11
Figura 8.	Relación entre la frecuencia del espaciado y el índice RQD	12
Figura 9.	Clasificación geomecánica RMR (Bieniawski 1989)	13
Figura 10.	Clasificación geomecánica RMR (Bieniawski 1989)	14
Figura 11.	Esquema de deslizamiento rotacional	15
Figura 12.	Cuadro general de movimientos de masas rocosas y suelos (1)	16
Figura 13.	Cuadro general de movimientos de masas rocosas y suelos (2)	17
Figura 14.	Ejemplo de un análisis de estabilidad de taludes	19
Figura 15.	Superficie de falla y dirección de la resistencia al cortante	21
Figura 16.	Esquema de una grieta de tensión para análisis de equilibrio límite	22
Figura 17.	Métodos de análisis de estabilidad de taludes	24
Figura 18.	Paralelismo de las fuerzas entre dovelas en el método de Spencer	25
Figura 19.	Fuerzas que actúan sobre las dovelas en el método de Spencer	25
Figura 20.	Clasificación básica de botaderos de desmonte y pilas de almacenamiento	28
Figura 21.	Tipos básicos de botaderos de desmonte y pilas de almacenaje	29
Figura 22.	Zonificación sísmica del Perú – Ubicación de Mina El toro	48
Figura 23.	Configuración general del proyecto del análisis de estabilidad	66
Figura 24.	Determinación del método del análisis de estabilidad	66
Figura 25.	Opciones de superficie de falla del análisis de estabilidad	67
Figura 26.	Análisis Estático de la Sección Geotécnica A-A'	68
Figura 27.	Análisis Pseudoestático de la Sección Geotécnica A-A'	69
Figura 28.	Análisis Estático de la Sección Geotécnica B-B'	70
Figura 29.	Análisis Pseudo-estático de la Sección Geotécnica B-B'	71
Figura 30.	Análisis Estático de la Sección Geotécnica C-C'	72
Figura 31.	Análisis Pseudoestático de la Sección Geotécnica C-C'	73
Figura 32.	Análisis Estático de la Sección Geotécnica D-D'	74
Figura 33.	Análisis Pseudoestático de la Sección Geotécnica D-D'	75
Figura 34.	Análisis Estático de la Sección Geotécnica E-E'	76
Figura 35.	Análisis Pseudoestático de la Sección Geotécnica E-E'	77
Figura 36.	Análisis Estático de la Sección Geotécnica F-F'	78
Figura 37.	Análisis Pseudoestático de la Sección Geotécnica F-F'	79
Figura 38.	Análisis Estático de la Sección Geotécnica G-G'	80
Figura 39.	Análisis Pseudoestático de la Sección Geotécnica G-G'	81
Figura 40.	Análisis Estático de la Sección Geotécnica H-H'	82
Figura 41.	Análisis Pseudoestático de la Sección Geotécnica H-H'	83
Figura 42.	Análisis Estático de la Sección Geotécnica I-I'	84
-		

Pág.

Figura 43. Análisis Pseudoestático de la Sección Geotécnica I-I'	
Figura 44. Análisis Estático de la Sección Geotécnica J- J'	
Figura 45. Análisis Pseudoestático de la Sección Geotécnica J- J'	
Figura 46. Análisis Estático de la Sección Geotécnica K-K'	
Figura 47. Análisis Pseudoestático de la Sección Geotécnica K-K'	
Figura 48. Análisis Estático de la Sección Geotécnica L-L'	90
Figura 49. Análisis Pseudoestático de la Sección Geotécnica L-L'	91
Figura 50. Análisis Estático de la Sección Geotécnica M-M'	
Figura 51. Análisis Pseudoestático de la Sección Geotécnica M-M'	93
Figura 52. Análisis Estático de la Sección Geotécnica N-N'	94
Figura 53. Análisis Pseudoestático de la Sección Geotécnica N-N'	95

ÍNDICE DE TABLAS

Tabla 1:	Diferencia entre taludes civiles y taludes mineros	6
Tabla 2:	Clasificación de la calidad del macizo rocoso según el índice RQD	13
Tabla 3:	Factores condicionantes y desencadenantes de movimientos de tierras	18
Tabla 4:	Clasificación de los movimientos según su velocidad	18
Tabla 5:	Objetivos principales del análisis matemático de los taludes	19
Tabla 6:	Metodologías utilizadas en la modelación de taludes	20
Tabla 7:	Método de análisis de estabilidad de taludes	23
Tabla 8:	Diferencias básicas entre diversos métodos de análisis de estabilidad de taludes	5
		26
Tabla 9:	Criterios de aceptación de estabilidad, 1975, MESA	31
Tabla 10:	Criterios de aceptación de estabilidad, 1977, CANMET	31
Tabla 11:	Criterio de aceptación sugerido	31
Tabla 12:	Ubicación del proyecto por coordenadas	33
Tabla 13:	Tramos y tiempo de acceso al lugar de estudio	34
Tabla 14:	Clasificación para Unidades Morfogenéticas	42
Tabla 15:	Aceleraciones Máximas Esperadas del Terreno (PGA)	49
Tabla 16:	Resumen de calicatas	50
Tabla 17:	Resumen de perforaciones	50
Tabla 18:	Descripción de las perforaciones	53
Tabla 19:	Resumen de ensayos de densidad natural	54
Tabla 20:	Resumen de Distribución Granulométrica Global	54
Tabla 21:	Resumen de ensayos de penetración estándar (SPT)	55
Tabla 22:	Resumen de muestreo tipo Shelby	56
Tabla 23:	Clasificación del Macizo Rocoso a partir del RMR	60
Tabla 24:	Resumen de Parámetros de Resistencia en Condiciones No Drenadas:	62
Tabla 25:	Valores de Ángulo de Fricción y Cohesión a Partir del RMR Básico de	
	Bieniawski (1989) y Andrew-Rose (2004)	63
Tabla 26:	Ubicación de piezómetros instalados	64
Tabla 27:	Resumen de Parámetros Geotécnicos	65

P	'ág.
Tabla 28: Parámetros geotécnicos usados para el análisis de estabilidad	. 67
Tabla 29: Resumen de Factores de Seguridad Obtenidos	. 96

ÍNDICE DE FOTOGRAFÍAS

Fotografía 1. Mina El Toro – Huamachuco, La Libertad	43
Fotografía 2. Relieve moderadamente escarpado en la zona sur de mina El Toro	43
Fotografía 3. Laderas presentes en el área de estudio en ambos costados del botadero de	e la
operación minera	44
Fotografía 4. Quebrada Layza ubicada en el lado Oeste del proyecto	44
Fotografía 5. Terrazas ubicadas en las medias pendientes de los cerros	45
Fotografía 6. Geología Regional de la Mina "El Toro"	46
Fotografía 7. Interpretación estructural de la fotografía anterior	46

LISTA DE ABREVIATURAS

ISRM:	Sociedad Internacional de Mecánica de Rocas (International Society for Rock Mechanics).
RMR89:	Sistema de Clasificación Geomecánica 89' (Rock Mass Raiting).
RQD:	Designación de la Calidad de la Roca (Rock Quality Designation).
GSI:	Índice de Resistencia Geológica (Geological Strength Index).
FS:	Factor de Seguridad.
Kh:	Coeficiente de Aceleración Máxima Horizontal.
Kv:	Coeficiente de Aceleración Máxima Vertical.
TC:	Talud Crítico.

RESUMEN

La presente investigación tiene como objetivo general realizar el análisis de estabilidad del botadero Norte - Mina El Toro - Sánchez Carrión - La Libertad. Este objetivo se planteó debido a que es necesario determinar la estabilidad o inestabilidad del componente y definir si requerían trabajos de estabilización en el corto plazo (6 meses). La metodología de la presente investigación es cuantitativa y descriptiva. El diseño es experimental, debido a que se realizaron ensayos de laboratorio que sirvieron para caracterizar los materiales y obtener los parámetros para el análisis de estabilidad. Con respecto a los resultados, se definieron los parámetros geotécnicos de los diferentes materiales como el mineral lixiviado, desmonte de mina, suelo residual y la roca maciza. Luego se seleccionaron las diferentes secciones para el respectivo análisis (desde la sección A-A' hasta la sección N-N'). Finalmente se realizó el análisis de estabilidad de taludes, donde se analizaron las condiciones estáticas y pseudoestáticas, el menor factor de seguridad por condiciones estáticas fue de 1.19 y el menor factor de seguridad por condiciones pseudoestáticas fue de 0.88. De los resultados obtenidos, podemos llegar a la conclusión que la superficie de falla pasar por el material de desmonte de la mina. El factor de seguridad no cumple con el factor de seguridad mínimo exigido por los criterios de aceptación, por lo tanto, respondiendo a la hipótesis planteada, se concluye que el Botadero de la Mina El Toro es inestable durante el tercer trimestre del 2021. Por lo tanto, se deberán analizar otras alternativas de solución como aumentar la relación del Talud Horizontal / Vertical, o medidas de estabilización de taludes, con la finalidad de incrementar los esfuerzos resistentes y en ese sentido, aumentar el factor de seguridad hasta cumplir con los requerimientos mínimos.

PALABRAS CLAVE

Estabilidad, taludes, botaderos, desmonte de mina, material lixiviado, suelo residual, roca maciza, análisis estático, análisis pseudoestático.

ABSTRACT

The general objective of this research is to carry out the stability analysis of the North dump - El Toro Mine - Sánchez Carrión - La Libertad. This objective was raised because it is necessary to determine the stability or instability of the components and define if they required verification work in the short term (6 months). The methodology of this research is quantitative and descriptive. The design is experimental, because laboratory tests were carried out that served to characterize the materials and obtain the parameters for the stability analysis. Regarding the results, the geotechnical parameters of the different materials were defined, such as the leached ore, mine waste, residual soil and solid rock. Then the different sections were selected for the respective analysis (from section A-A' to section N-N'). Finally, the slope stability analysis was carried out, where the static and pseudostatic conditions were analyzed, the lowest safety factor for static conditions was 1.19 and the lowest safety factor for pseudostatic conditions was 0.88. From the results obtained, we can conclude that the failure surface passes through the waste material from the mine. The safety factor does not meet the minimum safety factor required by the acceptance criteria, therefore, responding to the proposed hypothesis, it is concluded that the El Toro Mine Dump is unstable during the third quarter of 2021. Therefore, Therefore, other solution alternatives should be analyzed, such as increasing the Horizontal/Vertical Slope ratio, or slope measures, in order to increase the resistant efforts and, in this sense, increase the safety factor until the minimum requirements are met.

KEY WORDS

Stability, slopes, dumps, mine waste, leached material, residual soil, solid rock, static analysis, pseudo-static analysis.

CAPÍTULO I INTRODUCCIÓN

Mina El Toro está ubicada en Huamachuco, La Libertad, se encuentra en etapa de explotación, teniendo dentro de sus componentes aprobados el siguiente: Botadero de desmonte denominado: Botadero Norte. Este componente presenta condiciones geométricas y geotécnicas particulares, geométricas debido a la falta de control durante la descarga de desmonte, sin seguir el diseño establecido y geotécnicas, debido principalmente, a la preparación de su fundación, compuesto principalmente por suelo residual. Este problema nos indujo a preguntar ¿Cuál es el resultado del análisis de inestabilidad geotécnica del Botadero Norte – mina El Toro – Sánchez Carrión – La Libertad, para el tercer trimestre del 2021?

Esta investigación debe realizarse debido la necesidad de determinar si el componente es inestable. La metodología de estudio es de tipo aplicativa, nivel descriptivo, correlacional, explicativo y cuantitativo, de diseño documental y método Inductivo – Deductivo. La población está definida por los materiales de fundación y desmonte mina del botadero norte (7.01 ha de área), mientras que la muestra se constituye por desmonte depositado en el nivel 3450 y materiales de fundación del nivel 3410.

La limitación es del tipo económica Debido a que la información de campo puede complementarse con ensayos y pruebas de laboratorio (para corroborar si las propiedades del desmonte, suelo residual, fundación, etc., descritas en la ingeniería de detalle del botadero Norte, se mantienen en las descargas ya ejecutadas).

El objetivo general de la tesis es realizar el análisis de estabilidad del botadero Norte – Mina El Toro – Sánchez Carrión – La Libertad; y los objetivos específicos son: caracterizar los tipos de materiales que componen el botadero, definir los criterios de aceptación adecuados para el componente en estudio, determinar las propiedades geotécnicas necesarias de los materiales del botadero norte, analizar la estabilidad mediante el método de equilibrio límite, interpretar adecuadamente los resultados de los análisis de estabilidad geotécnica del botadero. Se ha planteado la siguiente hipótesis: Los resultados de la determinación de estabilidad o inestabilidad geotécnica del botadero Norte, a través de análisis de estabilidad física, en condición crítica (durante el tercer trimestre del 2021), mostrarán factores de seguridad, en condición estática y pseudoestática, menores a los valores mínimos requeridos según los criterios de aceptabilidad regulados mundialmente (1.3 para condición estática en taludes temporales y 1.0 en condición pseudoestática).

En el capítulo uno, introducción, contiene el contexto general del problema de estudio, su planteamiento, objetivos, etc., el capítulo dos, marco teórico, contiene la información teórica que es la base para realizar el presente estudio, el capítulo tres, materiales y método, describe el tipo de estudio y todos los materiales involucrados para su desarrollo. En el capítulo cuatro, análisis y discusión de resultados, se presentan los análisis de estabilidad de las secciones en estudio y sus resultados, de igual forma, se presenta un plano de zonificación geotécnica. Finalmente, el capítulo cinco, conclusiones y recomendaciones, presenta las conclusiones del estudio en base a los resultados de los análisis de estabilidad y se hacen las recomendaciones para evitar sucesos inesperados.

CAPÍTULO II MARCO TEÓRICO

2.1. ANTECEDENTES

Department of Civil Engineering, Modern Institute of Engineering & Technology, Mohri (2019). Assessment Of Waste Dump Slope Stability At Iron Ore Mines (Análisis de estabilidad de botaderos de desmonte en minas de hierro): En este estudio se propuso investigar la estabilidad de los taludes del botadero de desechos en la mina de mineral de hierro Meghahatuburu (MIOM) perteneciente a la Autoridad del Acero de la India (SAIL), ubicada en el distrito de West Singhbhum del estado de Jharkhand.

La investigación se compone de estudios de campo, trabajo experimental a escala de laboratorio y modelación numérica. Los estudios de campo abarcan la recolección de muestras intactas del vertedero de desechos, así como detalles geológicos-mineros de la mina. Los estudios de laboratorio incluyen principalmente la determinación de las propiedades de resistencia del material de vertedero de residuos. El análisis de estabilidad es realizado mediante software de modelado. Los trabajos de modelado numérico sugieren que la capacidad del vertedero existente se puede aumentar sustancialmente aumentando la altura del vertedero e instalando un muro de contención en la base del vertedero de desechos con un rango aceptable de factor de seguridad.

Journal Of Mines, Metals & Fuels (2017), Stability analysis of a mine waste dump over an existing Dump (Análisis de estabilidad del botadero de una mina sobre un botadero existente): Se analiza el botadero de desmonte en las minas de Sukinda (cromita), Kalipani, India. Se analiza el trabajo realizado para los botaderos de desechos existentes y propuestos los cuales constan de tres etapas, cada una con una altura de 20 m. Se propone aumentar la altura del vertedero de desechos existente entre 15 y 20 m por encima del banco superior, haciendo que la altura total del vertedero sea de 75 a 80 m. La sección crítica del botadero de desechos se evalúa manualmente para determinar su inestabilidad en función del ángulo general del talud y la altura general del talud y se seleccionan tres secciones principales del botadero existente para el análisis de estabilidad. El material del botadero de desechos se muestrea en diez ubicaciones diferentes numeradas como S-1 a S-10 desde la parte superior de los bancos existente. Cada muestra se recolecta excavando debajo de la superficie superior y se recolectan alrededor de 50 kg de material de desecho para la investigación de laboratorio de sus propiedades geotécnicas.

Anddes Asociados SAC (2014). Ingeniería de Detalle Botadero de Desmonte: realizar el desarrollo de la ingeniería a nivel de detalle del botadero de desmonte; asimismo, verificar las condiciones de estabilidad del botadero en su condición máxima de apilamiento. Se realizaron análisis de estabilidad en geometría de diseño, en condición estática y pseudo estática, estos análisis fueron realizados en base a la información obtenida de la investigación geológica realizada por Anddes y en consideración de las características físicas y mecánicas de los materiales que conforman las unidades geotécnicas presentes en la zona de estudio. Los análisis de estabilidad se realizaron mediante el método de equilibrio límite usando el software Slide 6.0.

Nontol Medina, Karhen, Polo Nontol, Cleison (2021). Determinación del factor de seguridad de taludes a través del análisis de equilibrio límite de estabilidad del botadero del desmonte en Mina el Toro - Huamachuco: Esta investigación tuvo como finalidad determinar el factor de seguridad del botadero del desmonte (Fase 6), mediante el análisis de equilibrio límite de estabilidad de taludes, el cual fue simulado en el software Slide 6.0, para el cual se consideró el método de análisis Spencer (superficies de falla en bloque). Para poder determinar el peso específico, cohesión y ángulo de fricción de lo que conforma la estructura; como es el dique de arranque, basamento rocoso fracturado, suelo residual y desmonte de mina, se realizaron ensayos en campo y laboratorio, con dichos parámetros geotécnicos de los suelos se realizaron las simulaciones para determinar el Factor de Seguridad teniendo en cuenta condiciones estáticas y pseudo estáticas. Al inicio se determinó el factor de seguridad en dos secciones criticas (sección AA' y sección B-B') cumpliendo este con los factores de seguridad mínimo recomendados por el Bureau Of Reclamation – USA. Los resultados del análisis de estabilidad de equilibrio limite en superficies de falla tipo bloque (Método de Spencer) con contra fuerte fueron: - Sección A – A', en condición estática. Fs= 1.659 y Pseudo estática (0.17g), Fs=1.069 - Sección B - B', en condición estática. Fs= 1.650 y Pseudo estática (0.17g), Fs=1.137.

2.2. BASES TEÓRICAS

2.2.1. Talud

Es una superficie de un determinado material expuesta situada a un ángulo con la horizontal, puede ser natural (ladera) o artificial (talud) (Duncan, Wright, & Brandon, 2014).

Figura 1. Talud con ángulo uniforme y talud excavado con bermas y bancos.

Fuente: González de Vallejo, et al., (2004)

Existen taludes en ingeniería civil y taludes en minería, la diferencia entre ambos se menciona en la **Tabla 1**

DIFERENCIAS	ENTRE TALUDES CIVILES	Y TALUDES MINEROS
Característica	Taludes en ingeniería civil	Taludes en minería
Alturas máximas	40 ó 50 m.	10 ó 15 m.
Periodo de estabilidad	Largo plazo	Corto o mediano plazo
Carácter temporal	Permanentes	Temporales
Estabilización	Precisan medidas de estabilización complementarias cuando no sea posible realizar las excavaciones con las alturas y ángulos requeridos, por motivos económicos o de otro tipo.	No se instalan sostenimientos o medidas de estabilización si los posibles bloques de falla no representan peligro para la operación o el personal.
Costos	Costos elevados.	Costos bajos.

Tabla 1 . Diferencia entre taludes civiles y taludes ininero	Tabla 1: Diference	cia entre taludes	civiles y taludes	mineros
---	--------------------	-------------------	-------------------	---------

Fuente: González de Vallejo, et al., (2004)

Partes de un talud:

- Pie, pata o base: Pie corresponde a la ubicación de cambios bruscos de pendiente en el fondo de una pendiente o en una ladera. La forma del fondo de la pendiente es generalmente cóncava.
- Cabeza, cresta o cima: una cabeza es un lugar donde la pendiente cambia bruscamente en la parte superior de una pendiente o ladera. Si la pendiente desde este punto es semivertical o empinada, se llama acantilado. La cicatriz puede coincidir con la corona del deslizamiento. La forma de la cabeza suele ser convexa.
- Altura: Distancia vertical entre los pies y la cabeza. Aunque están bien definidos en las pendientes artificiales, los pies y las cabezas generalmente no están bien definidos en las características topográficas, lo que dificulta su determinación en las pendientes.
- Altura del nivel freático: La distancia vertical entre el pie de un dique o ladera y la superficie del agua (la presión del agua es igual a la presión atmosférica). La altura del nivel freático generalmente se mide por debajo de la parte superior de la pendiente (Figura 2)

2.2.2. Influencia del tipo de material

Las propiedades inherentes de las sustancias están estrechamente relacionadas con los tipos de inestabilidad que se proporcionan y que es probable que ocurran, que predicen e informan la susceptibilidad de cada sustancia al desarrollo de movimientos específicos (Duncan, Wright, & Brandon, 2014). Las áreas donde ocurre el movimiento se pueden dividir en tres grupos:

Macizos rocosos

Un macizo rocoso es un medio discontinuo que consiste principalmente en bloques sólidos separados por discontinuidades. Con base en esta definición, se puede concluir que las propiedades de tensión-deformación de los macizos rocosos son de naturaleza anisotrópica (Monnet, 2015).

Figura 3. Representación esquemática de las propiedades de las discontinuidades Fuente: González de Vallejo, et al., (2004)

Figura 4. Discontinuidades de un medio rocoso (Estratificación y diaclasamiento) Fuente: Monnet, (2015)

Suelos.

La diferencia de comportamiento de estos materiales en comparación con los materiales rocosos se puede inferir de sus definiciones de la siguiente manera: sólidos, sueltos o menos cohesivos, más o menos cohesivos, partículas portadoras de minerales, fragmentos de roca, materia orgánica, etc., vacíos llenos con partículas que contienen fluidos de poros y pueden haber sido transportadas o crecidas in situ (Das & Sobhan, 2014).

Básicamente suelen diferenciarse estos materiales atendiendo a su génesis.

- Transportados: Coluviones, aluviones, glacis.
- Desarrollados IN SITU: Eluviales.

Figura 5. Suelo coluvial Fuente: Monnet, (2015)

Materiales de Relleno.

Todos estos yacimientos artificiales se clasifican bajo esta denominación por la necesidad de actividades específicas, como la construcción de obras de ingeniería civil (terraplenes, presas de tierra, etc.) y la acumulación de residuos residuales, escombros, etc. (Vertederos y vertederos) (Das & Sobhan, 2014)

Figura 6. Movimiento de un material de relleno Fuente: Grupo MAC, (2017)

2.2.3. Clasificación de Materiales Geológicos

Según los tipos de materiales vistos anteriormente podemos realizar dos clasificaciones (en base a su origen natural: Suelos y rocas).

Clasificación de los suelos (SUCS):

Este sistema cubre tanto suelos gruesos como finos. Ambos se clasifican en malla 200, granos gruesos más grandes que la malla especificada y granos finos más pequeños. Un suelo se considera grueso si tiene más del 50% de grueso y blando si tiene más de la mitad de fino (Rao & Sivakumar Babu, 2016).

		DIVISIÓN M	AYOR		Abreviat	ura	NOMBRES TÍPICOS	CRITERIO DE CLASIFICACIÓN EN EL LABORATORI									
		tenida por	JRA DE LA	LIMPIA ada de is finas	GW		Gravas bien graduadas, mezclas de grava y arena con poco o nada de finos.	ENDO DEL AN COMO tera que	CEFICIENTE DE UNIFOF COEFICIENTE DE CURV Cu=D60/D10 C	RMIDAD Cu: mayor de 4. /ATURA Cc: entre 1 y 3. c=(D30) ² /(D10)(D60)							
0 0	200 () VAS a No.4 F A LA ARFRTU									A LA ABERTU	GRAVAS Poco o n partícula	GP		Gravas mal graduadas, mezclas de grava y arena con poco o nada de finos.	RICA, DEPENDI DS SE CLASIFIC, I: Casos de fron	NO SATISFACEN TODO GRADACIÓI	OS LOS REQUISITOS DE N PARA GW.
AS alla número 20	ICULAS GRUESAS tenido en la malla número 20 e vista. GRAV/ Más de la mitad de la fracció la malla l	QUIVALENTE							DN FINOS reciable de as finas	* GM	d u	Gravas limosas, mezclas de grava, arena y limo.	GRANULOMÉT UELOS GRUESC ntre 5% y 12% s **.	LÍMITES DE ATTERBERG ABAJO DE LA "LÍNEA A" O I.P. MENOR QUE 4.	Arriba de la "línea A" y con I.P. entre 4 y 7 son		
ÍCULAS GRUES tenido en la ma		/2 CM. COMO E A No.4	GRAVA CC Cantidad ap partícul	GC	•	Gravas arcillosas, mezclas de grava, arena y arcilla	A DE LA CURVA 1 No. 200) LOS S rM, GC, SM, SC. E símbolos doble	LÍMITES DE ATTERBERG ARRIBA DE LA "LÍNEA A" CON LP. MAYOR QUE 7.	casos de frontera que requieren el uso de símbolos dobles								
ELOS DE PART I material es re	visibles a simple v a por la malla DE USARSE 1/20		3DE USARSE 1, MALL	LJMPIA de partículas ias	SW		Arenas bien graduadas, arena con grava, con poco o nada de finos.	GRAVA Y AREN/ asa por la malla más del 12%: C iteren de uso de	Cu=D ₆₉ /D ₁₀ mayor de 6 ; Cc=	$(D_{30})^2/(D_{10})(D_{60})$ entre 1 y 3.							
SU s de la mitad de	más pequeñas vis	tENAS ción gruesa pas Vo.4	ÓN VISUAL PUF	ARENA Poco o nada fin	SP		Arenas mal graduadas, arena con grava, con poco o nada de finos.	RCENTAJES DE ((fracción que p GW, GP, SW, SP; requ	NO SATISFACEN TODO GRADACIÓ	OS LOS REQUISITOS DE N PARA SW.							
Más	imadamente, la	AR nitad de la frac N	A CLASIFICACI	CON FINOS apreciable de ulas finas	* SM	d u	Arenas limosas, mezclas de arena y limo.	díNESE LOS POI 4TAJE DE FINOS Menos del 5%:	LÍMITES DE ATTERBERG DEBAJO DE LA "LÍNEA A" O I.P. MENOR QUE 4.	Arriba de la "línea A" y con l.P. entre 4 y 7 son casos de frontera que							
	0) son, aprox	Más de la n	PARA L	ARENA Cantidad i partíc	SC		Arenas arcillosas, mezdas de arena y arcilla.	DETERN PORCEN SIGUE:	LÍMITES DE ATTERBERG ARRIBA DE LA "LÍNEA A" CON LP. MAYOR QUE 7.	requieren el uso de símbolos dobles							
	(la malla No.20		AS		ML		Limos inorgánicos, polvo de roca, limos arenosos o arcillosos ligeramente plásticos.	os, polvo de renosos o rramente os. G: Grava, & Arena, O: Suelo orgánico, P: Turba, M: Limo W: Bien gradada, P. Mal gradada, L: Baja compresibilid compresibilidad.									
ero 200 0	nm de diámetro I		IMOS Y ARCILL Límite líquido		CL		Ardilas inorgánicas de baja o media plasticidad, arcillas con grava, ardilas arenosas, arcillas limosas, arcillas pobres.		(02-11) 52'	6 10 10							
AS FINAS la malla núme	ulas de 0.074 m				OL		Limos orgánicos y arcillas limosas orgánicas de baja plasticidad.		Lines A: P = 0	8 8 2 2							
DE PARTÍCUL	Las partíc		AS		МН		Limos inorgánicos, limos micáceos o diatomáceos, más elásticos.	and included	8 8	MH o OH							
SUELOS la mitad del ma			IMOS Y ARCILL Límite líquido		СН		Ardilas inorgánicas de alta plasticidad, arcillas francas.	Carta de	ಶೆ	ML 0.01							
Más de			Г		OH		Arcillas orgánicas de media o alta plasticidad, limos orgánicos de media plasticidad.			CL-MI 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5							
		SUELO: OI	S ALTA RGÁNIC	MENTE COS	Р		Turbas y otros suelos altamente orgánicos.		S X X X X X X X X X X X X X X X X X X X								
** CLASIFI POR EJEM	CAC PLO	IÓN DE FRONT GW - GC, MEZ	TERA: LO	DS SUELOS QU ARENA Y GRAI	E POSEAN NA BIEN GI	LAS RAD/	CARACTERÍSTICAS DE DOS G ADAS CON CEMENTANTE ARC	RUPOS SE DES ILLOSO.	IGNAN CON LA COMBINACIÓN	DE LOS DOS SÍMBOLOS:							
0 TODOS	LOS IÓN	TAMAÑOS DE	LAS MA	LLAS EN ESTA	CARTA SO	N LO	S U.S. STANDARD.	EROPHERTOS	ÚNICAMENTE LA SUR-DIVISIO	ÓN ESTÁ BASADA FN LOS							
LÍMITES D 28.	E A	FTERBERG EL	SUBFIJO	d SE USA CUA	ANDO EL L	L. ES	DE 28 O MENOS Y EL LP. ES	DE 6 0 MENO	S. EL SUBFIJO u ES USADO CU.	ANDO EL L.L. ES MAYOR QUE							

Figura 7. Sistema Unificado de Clasificación de Suelos (SUCS).

Fuente: Ministerio de Vivienda, Construcción y Saneamiento, (2018)

Clasificación de los Macizos Rocosos:

Geomecánicamente, se pueden utilizar algunos sistemas como el RQD (Deere, 1963, 1967), RMR (Bieniawski, 1989), en base a valoraciones de diversos factores del macizo rocoso, los dividen según su calidad ingenieril (Monnet, 2015).

 Designación de calidad de la roca (RQD), que indica el grado de fractura del macizo rocoso, pero no es suficiente para describir la falla y, por lo tanto, no tiene en cuenta factores como la orientación, la separación, los terraplenes y otras condiciones de discontinuidad. Características del macizo rocoso (Figura 8):

Donde:

$$\lambda = \frac{\text{Número de discontinuidades}}{\text{L(m)}} = \frac{1}{\text{Espaciado medio de discontinuidades (m)}}$$

En base a su valor se clasifica la calidad del macizo rocoso según la siguiente tabla:

RQD	Calidad
<25	Muy mala
25-50	Mala
50-75	Media
75-90	Buena
90-100	Muy Buena

Tabla 2: Clasificación de la calidad del macizo rocoso según el índice RQD.

Fuente: González de Vallejo, et al., (2004)

RMR (Ranking of Rock Mass), desarrollado por Bieniawski en 1973 y actualizado en 1979 y 1989, constituye un sistema de clasificación de macizos rocosos al que se pueden asociar índices en un túnel. Esta clasificación distingue entre cinco clases considerando los siguientes parámetros geotécnicos: Su importancia geológica se muestra en la Figura 9. A cada capa del macizo se le asignan cualidades y características geológicas.

minutos con m de vano
< 1 Kp/cm ²
<15°
<

Figura 9	Clasificación	geomecánica	RMR	(Rieniawski	1989)
I Igui u 71	Clasificación	Scomecanica		(Dicina woki	1,0,,

Buz. 45-90 Muy desfavorable

Buz. 20-45

Desfavorable

Buz. 45-90

Muy favorable

Buz. 20-45

Favorable

Buz. 45-90

Media

Buz. 20-45

Media

Desfavorable

Fuente: González de Vallejo, et al., (2004)

	Resistencia de la matriz		Ensayo de carga puntual	> 10	10-4	4-2	2-1	Co	mpresi ple (M	ón Pa)	
1	л (ocosa MPa)	Compresión simple	> 250	250-100	100-50	50-25	25-5	5-1	< 1	
		Puntu	ación	15	12	7	4	2	1	0	
	RQD		R		90 %-100 %	75 %-90 %	50 %-75 %	25 %-50 %		< 25 %	6
2	Puntuación		20	17	13	6		3			
	Sej	paración e	ntre diaclasas	> 2 m	0,6-2 m	0,2-0,6 m	0,06-0,2 m	<	0,06	m	
3		Puntu	ación	20	15	10	8		5		
		Longitu discont	id de la inuidad	< 1 m	1-3 m	3-10 m	10-20 m		> 20 m	1	
	[Puntu	ación	6	4	2	1		0		
	ides	Abe	rtura	Nada	<0,1 mm	0,1-1,0 mm	1-5 mm	>5 mm		n	
	sping Puntus		ación	6	5	3	1	0			
	isconti	Rugosidad		Muy rugosa	Rugosa	Ligeramente rugosa	Ondulada	Suave			
4	4 Sa Puntuación		ación	6	5	3	1	0			
			Relleno Ninguno Relleno duro Relleno		Relieno duro >5 mm	Relieno blando <5 mm	Relieno blando > 5 mm		undo n		
	Esta	Puntu	ación	6	4	2	2		0		
	Alteración		ación	Inalterada	Ligeramente alterada	Moderadamente alterada	Muy alterada	Des	compu	esta	
	Ī	Puntu	ación	6	5	3	1		0		
	Agua freática Agua control Agua control Agua Agua Agua Agua Agua Agua Agua Agua		Caudal por 10 m de túnel	Nulo	< 10 litros/min	10-25 litros/min	25-125 litros/min	> 12	5 litros	s/min	
5			0	0-0,1	0,1-0,2	0,2-0,5		> 0,5			
			Estado general	Seco	Ligeramente húmedo	Húmedo	Goteando	Agu	a fluye	ndo	
		Puntu	lación	15	10	7	4		0		

Dirección	y buzamiento	Muy favorables	Favorables	Medias	Desfavorables	Muy desfavorable	
	Túneles	0	-2	-5	-10	-12	
Puntuación	Cimentaciones	θ	-2 -7		- 15	-25	
	Taludes	0	-5	- 25	- 50	-60	
al Basel én							
aslficación Clase	1		1	III	IV	v	
uslflcaclón Clase Calidad	I Muy bu	II ena But	I cna	111 Media	IV Mala	V Muy mala	

Figura 10. Clasificación	geomecánica RMR	(Bieniawski 1989)
--------------------------	-----------------	-------------------

Fuente: González de Vallejo, et al., (2004)

2.2.4. Tipos de Movimientos

La inestabilidad de inclinación da como resultado diferentes movimientos que se pueden clasificar según diferentes criterios. Cuando los movimientos a generar son complejos y una combinación de muchos tipos diferentes, los términos más simples se pueden combinar para obtener una definición completa (Duncan, Wright, & Brandon, 2014).

2.2.5. Morfología y Partes de un Deslizamiento

Hay disponibles varias clasificaciones de movimiento basadas en la correlación de términos descriptivos relacionados con el tamaño, la forma y la morfología de los deslizamientos (Das & Sobhan, 2014).

Figura 11. Esquema de deslizamiento rotacional Fuente: Duncan, Wright, & Brandon, (2014)

TIPO DE MOVIMIENTO	CLASE DE	MATERIAL	RANG	O GENERAL DE VE	ELOCIDAD EN LOS	MOVMIENT	'OS (cms/sg)
	MEDIOS ROCOSOS	SUELOS	10 ⁵ 10 ⁴ 10 ³	10 ² 10 ¹ 1	10^1 10^2 10-3	³ 10 ⁻⁴ 10 ⁻⁵	10-6 10-2	7 10 ⁻⁸
	Basculamiento		EXTREM. RÁPIDO	MUY RÁPIDO	RÁPIDO	MODER. LENTO	MUY LENTO	EXTREM. LENTO
DESPRENDIMIENTOS	Vuelco por descalce Destizamiento y basculamiento por descalce		10n	ı/seg 1m/	 min 1m 	 /día 1m/mes	1m/año	1cm/año
VUELCOS (Toppling)	Por fields De bloques							
DESLIZAMIENTOS ROTACIONALES								
	Planares	onnacio	1) 					
DESLIZAMIENTOS TRASLACIONALES	Cunat 1) 2) suc	10-rock. 3)						
	Cuñas directas Cuña inversa							

Figura 12. Cuadro general de movimientos de masas rocosas y suelos (1)

Fuente: Duncan, Wright, & Brandon, (2014)

Figura 13. Cuadro general de movimientos de masas rocosas y suelos (2)

Fuente: Duncan, Wright, & Brandon, (2014)

2.2.6. Factores condicionantes y desencadenantes

Tabla 3: Factores condicionantes y desencadenantes de movimientos de tierras.

FACTORES CONDICIONANTES	FACTORES CONDICIONANTES		
Estratigrafía y litología.		Agua	
Estructura geológica.	Factores naturales	Sismicidad y vulcanismo	
Condiciones hidrogeológicas y comportamiento		Subsidencia Regional	
hidrogeológico de los materiales.		Excavaciones	
Propiedades físicas, resistentes y deformacionales.	Factores humanes	Voladura	
Tensiones naturales y estado tenso-deformacional.	Factores numanos	Sobrecargas	
Geomorfología de un área determinada		Actividad Minera	

Fuente: Oyala Rubio, (2019)

2.2.7. Tipología y Peligrosidad

El movimiento en pendientes tiene muchos factores que influyen en su resultado. Estos factores son:

• La velocidad con que se desarrolla el fenómeno.

Tabla 4: Clasificación de los movimientos según su velocidad

CLASIFICACIÓN DE	LOS MOVIM	IENTOS SEG	ÚN SU VELO	CIDAD
(SCHUSTER	Y FLEMING,	1982. Cortesía	a de A.S.C.E)	

	Velocidad	
Extremadamente rápidos	\geq 10 m/seg	
Muy rápidos	10 m/seg - 1 m/min	
Rápidos	1 m/min - 1 m/día	
Moderados	1 m/día - 1 m/mes	
Lentos	1 m/mes - 1 m/año	
Extremadamente lentos	\leq 1 cm/año	

Fuente: Osorio Mogollon & Navarro Zavala, (2018)

- Masa de material involucrada: Hay movimientos con un volumen inferior a 1 m3 (deslizamientos, vuelcos) y movimientos que pueden reclutar millones de m3 (deslizamientos, avalanchas, etc.).
- Frecuencia de movimiento: la frecuencia con la que ocurren algunos movimientos depende de la frecuencia con la que las condiciones crean inestabilidad (Cunning and Hawley, 2017).

2.2.8. Estabilidad de Taludes

El modelado matemático de taludes forma parte de la práctica geotécnica y analiza los requisitos de estabilidad y seguridad de los taludes naturales y las características de diseño de los taludes artificiales.

Los objetivos principales del análisis matemático de los taludes son los siguientes:

Determinen les		Determinar la sensitividad	Comparar la efectividad	
Determinar las	Investigar los	o susceptibilidad de los	de las diferentes opciones	Diseñar los taludes
estabilidad daltahud (si as	mecanismos potenciales	taludes a diferentes	de remediación o	óptimos en término de
establidad dertalid (sres	de falla (analizar como	mecanismos de	estabilización y su efecto	seguridad, confiabilidad y
warran da astabilidad)	ocurre la falla).	activación (Efecto de las	sobre la estabilidad del	economía
margen de establidad).		lluvias, sismos, etc.)	talud.	

 Tabla 5: Objetivos principales del análisis matemático de los taludes

Fuente: Suarez, (2007)

En la Tabla 6 se muestra un resumen de las metodologías usadas en los análisis:

Método	Parámetros utilizados	Ventajas	Limitaciones
Límite de Equilibrio	Topografía del talud, estratigrafía, ángulo de fricción, cohesión, peso unitario, niveles freáticos y cargas externas.	Existe una gran cantidad de paquetes de software. Se obtiene un número de factor de seguridad. Analiza superficies curvas, rectas, cuñas, inclinaciones, etc. Análisis en dos y tres dimensiones con muchos materiales, refuerzos y condiciones de nivel de agua.	Genera un número único de factor de seguridad sin tener en cuenta el mecanismo de inestabilidad. El resultado difiere de acuerdo con el método que se utilice. No incluye análisis de las deformaciones.
Esfuerzo- deformación continuos	Geometría del talud, propiedades de los materiales, propiedades elásticas, elasto-plásticas y de "creep". Niveles freáticos, resistencia.	Permite simular procesos de deformación. Permite determinar la deformación del talud y el proceso de falla. Existen programas para trabajar en dos y tres dimensiones. Se puede incluir análisis dinámico y análisis de "creep".	Es complejo y no lineal. Comúnmente no se tiene conocimiento de los valores reales a utilizar en la modelación. Se presentan varios grados de libertad. No permite modelar roca muy fracturada.
Discontinuos Esfuerzo- deformación elemtos	Geometría del talud, propiedades del material, rigidez, discontinuidades resistencia y niveles freáticos.	Permite analizar la deformación y el movimiento relativo de bloques.	Existe poca información disponible sobre las propiedades de las juntas. Se presentan problemas de escala, especialmente en taludes en roca.
Cinemáticos estereográfcios para taludes en roca	Geometría y características de las discontinuidades. Resistencia a las discontinuidades.	Es relativamente fácil de utilizar. Permite la identificación y análisis de bloques críticos, utilizando teoría de bloques. Pueden combinarse con técnicas estadísticas.	Útiles para el diseño preliminar. Se requiere criterio de ingeniería para determinar cuáles son las discontinuidades críticas. Evalúa las juntas.
Dinámica de caídos de roca	Geometría del talud, tamaño y forma de los bloques y coeficiente de restitución.	Permite analizar la dinámica de los bloques y existen programas en dos y tres dimensiones.	Existe muy poca experiencia de su uso en los países tropicales.
Dinámica de flujos	Relieve del terreno. Concentración de sedimentos, viscosidad y propiedades de la mezcla suelo-agua	Se puede predecir el comportamiento, velocidades, distancia de recorrido y sedimentación de los flujos.	Se requiere calibrar los modelos para los materiales de cada región. Los resultados varían de acuerdo con el modelo utilizado.

Tabla 6: Metodologías utilizadas en la modelación de taludes

Fuente: Duncan, Wright, & Brandon, (2014)

Los métodos numéricos son los métodos que proporcionan las condiciones de estabilidad más detalladas y aproximadas en la mayoría de los casos de evaluación de estabilidad de taludes.

Sin embargo, el método del límite de equilibrio es fácil de usar y permite el análisis de fallas de traslación y rotación, así como fallas de inclinación y ángulo. De igual forma, el método del límite de equilibrio permite combinar el análisis con métodos estocásticos (Duncan, Wright, & Brandon, 2014).

Método de equilibrio límite:

Este análisis de estabilidad implica determinar si el suelo del talud tiene suficiente resistencia para soportar las fuerzas cortantes que tienden a causar fallas y deslizamientos (Suarez Díaz, 2007).

Los ingenieros utilizan el factor de seguridad (F.S.) para encontrar los factores de riesgo de falla de taludes en las peores condiciones de comportamiento para las que está diseñado (Duncan, Wright, & Brandon, 2014). Fellenius F.S lo describe como la relación entre la resistencia a la corte real calculada del material en el talud y el esfuerzo cortante crítico que intenta causar la falla a lo largo de la cara supuesta del terraplén potencial:

$$F. S. = \frac{\text{Resistencia al cortante disponible}}{\text{Esfuerzo al cortante actuante}}$$

Así mismo, se tiene también la siguiente fórmula para centro de giro y por lo tanto, momentos resistentes y actuantes:

$$F. S. = \frac{Momento resistente disponible}{Momento actuante}$$

La superficie de falla que presenta menor factor de seguridad y a través de la cual existen muchas más probabilidades de que exista un fallamiento o deslizamiento del talud, es llamada "superficie crítica de falla" (Suarez Díaz, 2007).

Figura 15. Superficie de falla y dirección de la resistencia al cortante Fuente: U.S. Army Corps of Engineers, (2003)

La forma del plano de falla suele ser plana, circular, logarítmica, parabólica o una combinación de estas formas, y recientemente se han desarrollado modelos de superficie no geométricos (J. Suarez, 2007).

Figura 16. Esquema de una grieta de tensión para análisis de equilibrio límite Fuente: U.S. Army Corps of Engineers, (2003)

Otro aspecto a importante al momento de realizar un análisis de estabilidad por límite de equilibrio es la presión de poro (Sánchez Mendoza & Taza Rojas, 2018).

- Datos del indicador de presión: contiene especificaciones de la presión intersticial en puntos discretos del talud y utiliza gráficas de interpolación para estimar la presión intersticial requerida en cualquier punto.
- Relación de presión de poros: De acuerdo con la definición:

$$r_u = \frac{u}{\sigma_v}$$
 ... Ec. 2

Donde:

u = Presión de poros

 σ_v = Esfuerzo total vertical del suelo a una profundidad z.

Este factor es fácil de implementar, pero la parte más difícil es asignar este parámetro a diferentes partes de la pendiente. Es posible que sea necesario dividir los degradados en regiones con diferentes valores de r_u .

- Superficie piezométrica: definida para analizar ciertas superficies de falla. Está claro que la superficie de presión no es el nivel freático y que la presión intersticial se calcula de manera diferente en los dos casos.
- Presión de poro constate: Este es un procedimiento que los ingenieros pueden usar cuando quieren especificar una presión intersticial constante en una capa de suelo en particular.

El método de Bishop (1955) y Janbú (1954) ha sido ampliamente utilizado durante los últimos 50 años y se han desarrollado métodos analíticos más precisos y sofisticados, como los de Morgenstern y Price (1965) y Spencer (1967). El software ayuda, lo que proporciona un análisis muy preciso. En general, los métodos son iterativos, cada uno con cierto grado de rigor (Duncan, Wright, & Brandon, 2014).

En la siguiente tabla se muestran los métodos más usados y sus características más representativas en un análisis de estabilidad de límite de equilibrio.

Método	Superficies de falla	Equilibrio	Características
Talud Infinito	Rectas	Fuerzas	Bloque delgado con nivel freático, falla paralela a la superficie
Bloques o cuñas	Cuñas con tramos rectos	Fuerzas	Cuñas simples, dobles o triples, analizando las fuerzas que actúan sobre cada cuña.
Espiral logaritmica (Frohlich, 1953)	Espiral logaritmica	Fuerzas y Momentos	Superficie de falla en espiral logarítmica. El radio de la espiral varía con el ángulo de rotación.
Arco Circular (Fellinius, 1922)	Circulares	Momentos	Círculo de falla, el cual es analizado como un solo bloque. Se requiere que el suelo sea cohesivo (φ=0)
Ordinario o de Fellinius (Fellinius 1927)	Circulares	Fuerzas	No tienes en cuenta las fuerzas entre dovelas.
Bishoop simplificado (Bishop 1955)	Circulares	Momentos	Asume que todas las fuerzas de cortante, entre dovelas, son cero.
Janbú Simplificado (Bishop 1955)	Cualquier forma	Fuerzas	Asume que no hay fuerza cortante entre dovelas.
Sueco Modificado. U.S. Army Corps of Engineers (1970)	Cualquier forma	Fuerzas	Las fuerzas entre dovelas tienen la misma dirección que la superficie del terreno.
loew y Karafiath (1960)	Cualquier forma	Fuerzas	Las fuerzas entre dovelas están inclinadas en un ángulo igual al promedio de la superficie del terreno y las bases de las dovelas.
Spencer (1967)	Cualquier forma	Momentos y fuerzas	La inclinación de las fuerzas laterales son las mismas para cada tajada, pero son desconocidas
Morgenstern y Price (1965)	Cualquier forma	Momentos y fuerzas	Las fuerzas entre dovelas, se asume, que varian de acuerdo con una función arbitraria.
Sarma (1973)	Cualquier forma	Momentos y fuerzas	Utiliza el método de las dovelas en el cálculo de la magnitud de un cofieciente sísmico requerido para producir falla.

Tabla 7: Método de análisis de estabilidad de taludes

Fuente: Duncan, Wright, & Brandon, (2014)

El sistema de fraccionamiento desarrollado por Petterson y Fellenius (1936) se ha mejorado con el tiempo. Algunos métodos son exactos, otros son aproximados.

Figura 17. Métodos de análisis de estabilidad de taludes

Fuente: Duncan, Wright, & Brandon, (2014)

A continuación, estudiaremos dos métodos que se usarán en el desarrollo de esta tesis:

• Método de Spencer (1967): El método de Spencer es un método que equilibra perfectamente el momento y el esfuerzo.

Figura 18. Paralelismo de las fuerzas entre dovelas en el método de Spencer Fuente: U.S. Army Corps of Engineers, (2003)

La pendiente específica de estas fuerzas entre partículas es desconocida y cuenta como una de las incógnitas en la solución de la ecuación de equilibrio.

Figura 19. Fuerzas que actúan sobre las dovelas en el método de Spencer Fuente: U.S. Army Corps of Engineers, (2003)

Utiliza un sistema de prueba y error en el que se adoptan (repetidamente) valores para estos factores hasta alcanzar un nivel de error aceptable.

Una vez que tenemos los valores de F y suma, podemos calcular las fuerzas restantes para las distintas partes. El método de Spencer es muy sensible, aplicable a todas las geometrías de pendiente y estructuras de suelo, y es probablemente el procedimiento de balanceo más simple y completo para calcular los factores de seguridad. Método de Morgenstern y Price: El método de Morgenstern y Price (1965) asume una función de la relación entre la fuerza cortante y la fuerza normal entre agujeros. Esta función puede tratarse como estática, como el método de Spencer, o puede considerarse otro tipo de función. La capacidad de asumir una función especial para determinar valores de fuerza entre espacios lo hace más poderoso que el método de Spencer. El método de Morgenstern y Price, al igual que el método de Spencer, es un método muy preciso aplicable a la mayoría de las propiedades y geometrías del suelo (J. Suarez, 2007). En la siguiente tabla se muestra un cuadro comparativo de los métodos de análisis antes mencionados.

Procedimiento	Condición de Equilibrio Satisfecha				Ecuaciones e	Forma de la	Aplicable A	
	Mom. Total	Mom. Dovela	Vert	Horiz	- incógnitas	superficie de falla –	Cálculos Manuales	Cálculos en computador
Método ordinario de dovelas	a	no	no	no	1	circular	si	si
Método de Bishop modificado	si	no	no	no	n+1	circular	si	si
Método de Janbú procedimiento generalizado de dovelas	ä	si	si	ä	3n	cualquiera	ä	si
Métodos de Spencer y Morgenstem y Price	si	si	si	si	3n	cualquiera	no	si
Método de Lowe y Karafiath	no	no	si	si	2n	cualquiera	a	si
Método de Espiral Logaritmica	ä	-	si	ä	3	espiral logaritmica	si	si

Tabla 8: Diferencias básicas entre diversos métodos de análisis de estabilidad de taludes

Fuente: U.S. Army Corps of Engineers, (2003)

Otro aspecto de gran importancia son los eventos sísmicos que pueden ocasionar fuertes fuerzas (periódicas) que pueden provocar colapso rápido de taludes y taludes (Figueroa, Solans, Gonzalez, & Campaña, 2017).

2.2.9. Botaderos

La terminología utilizada para describir los vertederos de desechos mineros, los desperdicios de las líneas de arrastre y las reservas varía considerablemente de una mina a otra y por jurisdicción. En América del Norte, en las operaciones convencionales de camiones y palas, estas estructuras se conocen comúnmente como vertederos de desechos o instalaciones de almacenamiento de desechos para diferenciarlos de los depósitos de relaves.

En América Latina, el término "botadero" genérico, que se traduce literalmente como "refuse dump or landfill (botadero de rechazos o vertederos)", se utiliza. En las minas de carbón en el centro y el este de los Estados Unidos, las praderas canadienses y Australia, tradicionalmente se les conoce como "Spoils (despojo)". En el Reino Unido, Los depósitos de roca de desecho asociados con minas a cielo abierto y subterráneas de carbón se conocen históricamente como "Tips (escombreras, vertederos)". El término "Tip" también se ha utilizado en muchas jurisdicciones para describir los depósitos de desechos asociados con las minas subterráneas de roca dura. A menudo, también se hace una distinción entre los vertederos de desechos, las reservas de minerales y el depósito de recubrimiento o tierra vegetal (Figueroa, Solans, Gonzalez, & Campaña, 2017)..

En un esfuerzo por una descripción genérica que evitaba el uso de los términos "desecho" y "vertederos", los cuales se consideraba que tenían connotaciones negativas, "Interim Guidelines" de 1991 se referían a estas estructuras como "mined rock and overburden piles" (roca extraída y pilas de recubrimiento). En esta publicación actual, todas las instalaciones están destinadas a la contención a largo plazo de materiales provenientes de operaciones de desbroce (incluidos los suelos), residuos de roca triturada y residuos, y materiales residuales de operaciones de lixiviación (comúnmente denominadas "ripios" en América Latina) son referidos genéricamente como "waste dumps" (botaderos de desmonte) o simplemente como "dump" (botaderos). El término "stockpile" (pila de almacenamiento) también se usa y se destina a incluir todas las instalaciones de almacenamiento temporal para materiales de la tierra natural y procesada, como el mineral corrido de la mina y el mineral triturado, el mineral de grado bajo o marginal y los materiales de recubrimiento y tierra vegetal almacenados para su uso posterior en actividades de recuperación (Figueroa, Solans, Gonzalez, & Campaña, 2017)

Figura 20. Clasificación básica de botaderos de desmonte y pilas de almacenamiento Fuente: Cunning and Hawley, (2017)

Esta clasificación divide los botaderos de desmonte y pilas de almacenaje en base a su permanencia en el tiempo. Permanentes: Enrocados (Rockfills), terraplenes (Earthfills), Rellenos mixtos (Mixed Fills), Despojos (Spoils). Temporales: Pilas de almacenamiento de Mineral (Mineral Stockpiles), Recubrimiento y pilas de almacenamiento de material orgánico (Overburden and topsoil stockpiles).

Los vertederos y los apilamientos de desechos también se pueden caracterizar sobre la base de su configuración general y sus restricciones topográficas, tal como lo propone (Oyala Rubio, 2019):

- Llenado de valle (Valley Fill),
- Llenado cruzado de valle (Cross-Valley Fill)
- Llenado Lateral de valle (Sidehill Fill)
- Llenado de Cresta (Ridge Crest Fill)
- Llenado en montones (Heaped Fill)

Figura 21. Tipos básicos de botaderos de desmonte y pilas de almacenaje Fuente: Cunning and Hawley, (2017)

2.2.10. Estabilidad en Botaderos:

La estabilidad de un botadero ese encuentra controlada por múltiples factores entre ellos se destacan los siguientes:

- Geometría de la fundación: La geometría de la fundación es una entrada necesaria para todos los modelos de análisis de estabilidad. Esta información se puede obtener fácilmente de mapas topográficos o modelos digitales del terreno (DTM).
- Condiciones de la fundación: Para ser capaces de desarrollar un modelo geotécnico de la fundación para propósito de análisis de estabilidad se requiere de la estratigrafía del sitio. Basado en este criterio la fundación puede ser dividida en una o más unidades geotécnicas y dependiendo de la técnica de análisis se podrá asignar propiedades únicas a cada material.
- Geometría del botadero y secuencia de llenado: El modelo geotécnico también debe incorporar la geometría del botadero, modelos avanzados también pueden considerar el desarrollo de la secuencia de descarga, debido a que la última configuración podría no ser la más crítica en términos de estabilidad.
- Características del material de desmonte: Este parámetro deberá ser ingresado también al modelo de análisis geotécnico, si bien se pueden tener botadero de materiales uniformes, un vertedero más complejo puede incorporar muchos tipos

diferentes de materiales, cada uno con propiedades diferentes. En tales casos, se debe determinar la distribución espacial y las propiedades del material.

- Superficie de agua subterránea y sus condiciones: La comprensión de las condiciones de las aguas subterráneas, tanto dentro del botadero como en las capas de la cimentación, es clave para desarrollar un modelo geotécnico confiable. La presión intersticial reduce la tensión efectiva y la resistencia al corte intrínseca de los materiales que componen estas estructuras y sus sustratos. Por lo tanto, afecta directamente a la estabilidad. En casos severos, la alta presión intersticial puede causar la no licuefacción con consecuencias catastróficas. Si el sustrato consiste en suelos saturados de grano fino con baja conductividad hidráulica, también se debe considerar el aumento de la presión intersticial y la posibilidad de daños por falta de drenaje.
- Sismicidad: En general, se acepta dentro de la comunidad geotécnica que el diseño de ciertos tipos de terraplenes, como las presas de retención de agua y las presas de relaves, debe considerar el impacto potencial de los terremotos. Si bien hay menos acuerdo entre los profesionales en cuanto al impacto de los terremotos en los botaderos de desmonte, las agencias reguladoras en algunas jurisdicciones requieren que la sismicidad se considere explícitamente en el diseño de estas instalaciones. Para el análisis de estabilidad, los parámetros de entrada requeridos para describir la actividad sísmica dependen del método de análisis. Un análisis estático-estático simple requiere la determinación de los coeficientes sísmicos estimados como una fracción de la aceleración máxima que se espera que experimente la estructura en el momento de diseño relevante (es decir, el momento de diseño).

2.2.11. Criterios de Aceptación:

Existe un amplio desarrollo de los criterios mínimos de aceptación de estabilidad para botaderos de desmonte, una de las primeras organizaciones fue la US MESA (Mine Enforcement and Safety Administration) que en 1975 propuso en sus directrices, para botaderos de carbón, un rango de factor mínimo de seguridad (FoS), que dependía del nivel de peligro percibido y de ciertos supuestos adyacentes clave del análisis de estabilidad.

	Peligro	Peligro	Peligro			
Supuestos		medio	bajo			
Diseños basados en parámetros de resistencia al corte	15	1 /	12			
medidos en el laboratorio.		1.4	1.5			
Diseños que consideran la máxima aceleración sísmica del	1.2	1 1	1.0			
sitio.	1.2	1.1	1.0			
Fuente: Cunning and Hawley, (2017)						

Tabla 9: Criterios de aceptación de estabilidad, 1975, MESA

A partir 197, en el Manual de Taludes de Tajos, el Canadian Centre for Mining and Metallurgy (CANMET) propuso un mínimo Directrices de FoS para terraplenes de residuos (que incluían vertederos de roca estéril) basándose en la resistencia al corte supuesta Parámetros y consecuencias de la inestabilidad.

Tabla 10: Criterios de aceptación de estabilidad, 1977, CANMET								
	Elevada	Baja						
Supuestos	consecuencia	Consecuencia						
Parámetros de resistencia al corte máxima	1.5	1.3						
Parámetros de resistencia al corte residuales	1.3	1.2						
Periodo de retorno de un sismo en 100 años	1.2	1.1						
$\mathbf{F}_{\mathbf{r}} = \mathbf{r} \mathbf{f}_{\mathbf{r}} + \mathbf{f}_{\mathbf{r}} \mathbf{f}_{\mathbf{r}} + \mathbf{r} \mathbf{f}_{\mathbf{r}} $								

Fuente: Cunning and Hawley, (2017)

En la **Tabla 11** se resumen los criterios de aceptación de estabilidad sugeridos para el diseño de botaderos de desmonte.

Tabla 11. Cineno de aceptación sugendo								
		Análisis estático		Análisis Pseudo estático	- Máxima deformación			
Consecuencia1,3	Confianza ^{2,3}	Mínimo FoS	Máxima PoF ⁴	Mínimo FoS	permisible ⁵			
	Baja	1.3-1.4	10-15%	1.05-1.1	≤1%			
Baja	Moderada	1.2-1.3	15-25%	1.0-1.05	≤1.5%			
	Alta	1.1-1.2	25-40%	1	≤2%			
	Baja	1.4-1.5	2.5-5%	1.1-1.15	≤0.75%			
Moderada	Moderada	1.3-1.4	5-10%	1.05-1.1	≤1%			
	Alta	1.2-1.3	10-15%	1.0-1.05	≤1.5%			
	Baja	≥1.5	≤1%	1.15	≤0.5%			
Alta	Moderada	1.4-1.5	1-2.5%	1.1-1.15	≤0.75%			
	Alta	1.3-1.4	2.5-5%	1.05-1.1	≤1%			

Tabla 11: Criterio de aceptación sugerido

Fuente: Cunning and Hawley, (2017)

2.3. DEFINICIÓN DE TÉRMINOS BÁSICOS

Esfuerzo Cortante (τ) (shear stress): Esfuerzo con dirección paralela al plano sobre el que actúa (Das B. M., 2019).

Esfuerzo Normal (σn) (normal stress): Esfuerzo en dirección perpendicular al plano sobre el cual actúa (Das B. M., 2019).

Esfuerzo Total (σ) (total stress): Esfuerzo igual a la suma del esfuerzo efectivo y la presión de los fluidos de los poros (generalmente agua y/o aire) (Das B. M., 2019).

Estabilidad de taludes(slope stability): Condición de estabilidad de un talud o ladera.

Factor de Seguridad (safety factor/factor of safety): Es la resistencia global frente a cargas externas que tiene el macizo rocoso antes de sufrir deformaciones permanentes en su estructura (Duncan, Wright, & Brandon, 2014).

Macizo Rocoso (Rock mass): Conjunto de material de roca in situ y sus discontinuidades (Monnet, 2015).

Método pseudo-estático: Análisis sísmico en el cual las cargas del sismo son simuladas como cargas estáticas horizontales y verticales (Figueroa, Solans, Gonzalez, & Campaña, 2017).

Talud (slope): Superficie artificial inclinada de un terreno que se forma al cortar una ladera, o al construir obras como por ejemplo un terraplén (Duncan, Wright, & Brandon, 2014).

Botadero de desmonte: Es el lugar físico donde se depositan los materiales no valiosos resultantes de la extracción del mineral valioso de la mina (Cunning and Hawley, 2017)

CAPÍTULO III MATERIALES Y MÉTODOS

3.1. UBICACIÓN

3.1.1. Ubicación geográfica

Geográficamente, Mina El Toro, se encuentra ubicado en la parte Nor Occidental del territorio peruano, al Norte Este de la ciudad de Trujillo y a 8.35 Km del distrito de Huamachuco, Provincia de Sánchez Carrión, hacia la vertiente continental atlántica, aproximadamente entre los 3200 a 3500 msnm (Casmus, 2014). Específicamente, se ubica entre las siguientes coordenadas UTM en el sistema WGS-84 Entre una Altitud: 3200 - 3500 m.s.n.m. Ver plano 01.

Tabla 12: Ubicación del proyecto por coordenadas COORDENADAS DEL PROYECTO							
ESTE NORTE							
	830094.52	9133971.32					
	830504.51	9133515.33					
	830078.52	9133132.32					
	829668.53	9133588.32					

Nota: Las coordenadas están expresadas en sistema WGS84 zona 17S.

3.1.2. Ubicación política

- Región : La Libertad
- Provincia : Sánchez Carrión
- Distrito : Huamachuco
- Caserío : Coigobamba El toro.

3.2. ACCESIBILIDAD

El área de estudio se encuentra a 6.4 Km de la ciudad de Huamachuco, siendo la ruta una carretera asfaltada desde la ciudad de Cajamarca hacia Cajabamba y posteriormente hasta la ciudad de Huamachuco de donde se accede a Mina El Toro a través de una carretera afirmada.

Tabla 13: Tramos y tiempo de acceso al lugar de estudio							
Tramo	Tipo de carretera	Km.	Tiempo				
Cajamarca - Cajabamba	Carretera Asfaltada	121.8	120 min				
Cajabamba - Huamachuco	Carretera asfaltada	50.1	105 min				
Huamachuco – Mina El Toro	Carretera afirmada	6.4	15 min				

Para poder acceder a la zona de estudio, existen dos rutas, la primera es por la Provincia de Cajabamba y la segunda es por la ciudad de Trujillo, aproximadamente un tiempo de 210 min por el segundo acceso. Tanto la accesibilidad como la ubicación de la zona en estudio se presentan en el Plano 01.

3.3. CLIMA Y METEOROLOGÍA

Se cuenta con información meteorológica disponible en estaciones administradas por el SENAMHI, las cuales se pueden considerar dentro del ámbito de influencia directa e indirecta del proyecto. En el Anexo 1 se presentan los registros climáticos de la estación de Huamachuco.

- La Ciudad de Huamachuco presenta un clima frío típico de los andes peruanos, con dos estaciones marcadas durante todo el año, verano, que se desarrolla de los meses de Abril a Noviembre e invierno desde los meses de Diciembre a Marzo.
- Temperatura: En el área de estudio del proyecto (Noroeste de la Cuenca), la temperatura media anual fluctúa entre 10 y 11°C, hacia el Sur-Oeste y en la parte central de la Cuenca, alcanza valores entre 9 y 10°C; sin embargo, al Noreste y Noroeste de la misma, se registra temperaturas medias anuales fluctuantes entre 7 y 9 °C.

- Precipitación: La precipitación total media anual en el área estudio oscila de 900 a 1100 mm/año. Al Suroeste de la Cuenca, la precipitación total promedio anual oscila alrededor de 1000 mm/año y, al Este de la misma es alrededor de los 1200 mm/año.
- Humedad: El promedio anual de humedad relativa en la zona de estudio es 85.4%, el cual aumenta en los meses de Diciembre a Abril, en un rango de 86 – 90%, el cual desciende hasta valores de 80% a partir de los meses de junio a septiembre.
- Evapotranspiración: La evapotranspiración potencial total promedio anual en el Mina El Toro, oscila alrededor de 800 mm/año; hacia el Sur-Oeste de la cuenca alcanza 650 mm/año.
- Dirección y Velocidad del Viento: Los vientos en esta región son predominantemente norte-sur con una velocidad media de 7-8,5 km/h. El viento arreció por la tarde.

Los vientos de la zona de emplazamiento predominan en dirección NNE cuyas frecuencias varían de acuerdo a la época o estación del año. (La época de mayor frecuencia de vientos son los meses de Agosto y Setiembre). Estos cambios direcciones en la zona generalmente obedecen a diferentes presiones barométricas y a la topografía de la zona (SENAMHI, 2022).

3.4. VEGETACIÓN

La vegetación presente consta de pocas plantas silvestres, árboles y arbustos, eucaliptos, pinos, entre otros. El uso de la tierra desarrolla una agricultura orientada principalmente al cultivo de la papa y menestras entre otros.

3.5. METODOLOGÍA DE LA INVESTIGACIÓN

El desarrollo metodológico para la presente tesis considera 3 etapas fundamentales, correlativas e interrelacionadas durante el proceso de ejecución del proyecto; convirtiéndose en un proceso continuo, donde cada una es base para la siguiente.

3.5.1. Tipo y método de Investigación

La metodología de estudio es de tipo aplicativa, nivel descriptivo, correlacional, explicativo y cuantitativo, de diseño documental y método Inductivo – Deductivo.

3.5.2. Población de estudio

Botadero Norte: Materiales de fundación y desmonte mina dentro de un área de 7.01 hectáreas.

3.5.3. Muestra de estudio

Desmonte mina recientemente depositado en nivel 3450 zona central del botadero y materiales de fundación del nivel 3410 zona central, izquierda y derecha.

3.5.4. Unidad de análisis.

Inestabilidad de taludes en el Botadero Norte – Mina El Toro – Sánchez Carrión – La Libertad.

3.6. TÉCNICAS E INSTRUMENTOS DE RECOPILACIÓN DE DATOS

3.6.1. Técnicas

- Observación de campo y análisis documental.
- Interpretación de imágenes satelitales.
- Revisión de ensayos geomecánicos ejecutados.
- Recopilación de información relevante proveniente de estudios geotécnicos.
- Procesamiento de información recopilada para determinación de Factores de Seguridad en Software Slide.
- Análisis de resultados.

3.6.2. Instrumentos de recopilación de datos

Instrumentos: Plano Geológico, Libreta de Campo, imágenes satelitales, planos topográficos.

Equipos: Brújula, GPS, Wincha, Cára Fotográfica, Picota geológica, Tableros, lapiceros, lápices, sacos, pico y palana.

Softwares: Slide 6.0, Autocad Civil 2015, Minesight 3D.

3.7. PROCEDIMIENTO

3.7.1. Etapa preliminar

Se hizo una revisión bibliográfica tanto de trabajos realizados dentro de la unidad minera como de papers con información afines al trabajo a realizar, libros especializados y tesis afines. Se revisó también, el mapa topográfico, geológico y cualquier otro que brinde información relevante para la tesis.

3.7.2. Trabajo de campo

Segunda y fundamental etapa, consistiendo en la obtención de la información in situ, que a su vez se dividió en dos partes, en la primera: la ubicación y reconocimiento del área de estudio con ayuda del plano topográfico, planeando los taludes a recorrer y poder adquirir los datos necesarios para la investigación.

La segunda etapa consistió en la toma de información de modo puntual, descripción litológica, de suelos, alturas de bancos y anchos de banquetas, ángulo de taludes y ángulo de reposo del material, etc., todo esto con la finalidad de obtener una eficiente interpretación para el análisis de estabilidad.

3.7.3. Trabajo de gabinete

En la tercera etapa, consiste en utilizar la información obtenida en campo, correlacionar, definir zonas de materiales homogéneos y caracterizar las principales propiedades físicas, geológicas y geotécnicas.

3.8. ESTRATIGRAFÍA LOCAL

La estratigrafía local está constituida por una secuencia sedimentaria del Grupo Goyllarisquizga, perteneciente al Cretácico Inferior; conformada por las Formaciones Chimú, Santa, Carhuaz y Farrat. Mina el toro se ha constituido, geológicamente, en las rocas de la Formación Chimú, la cual ha sido intruida por rocas volcánica del paleógeno – neógeno, que llegan a constituir lo que localmente se conoce como el domo Huamachuco. Adicionalmente se encuentran algunos depósitos cuaternarios lagunares.

3.8.1. Grupo Goyllarisquizga

• Formación Chimú – Cretáceo Inferior (Ki-chi)

La parte inferior de la secuencia es una alternancia de arenisca, cuarcita y argilita, y la parte superior consiste en una fuerte línea de cuarcita blanca y se superpone de manera compatible con la Formación Chicama. La mineralización de oro es común en las brechas de contacto en las capas inferior y media de la Formación Chimú. Los últimos vuelos exploratorios sobre la Formación Chimú ha descubierto varios yacimientos auríferos como La Arena, Virgen y María Angola, así como la mina Santa Rosa (Comarsa). Los sedimentos de La Arena se encuentran en la base de los sedimentos de la Formación Chimú. El yacimiento El Toro se ubica en esta unidad estratigráfica.

• Rocas ígneas (PN/vp)

En el área entre Huamachuco y Cajabamba se han detectado intrusiones paleógenasneógenas asociadas a la existencia de formas locales dentro del corredor tectónico NW-SE y capas sedimentarias cortadas del Mesozoico. Estas características intrusivas a menudo aparecen como pequeños rodales aislados en o alrededor de un terreno curvo. Su composición va desde la diorita hasta el pórfido andino, el pórfido de dacita y el pórfido de cuarzo.

En una inspección más cercana, las poblaciones parecen fusionarse para formar una intrusión más grande, como Domo Huamachuco y Domo de Algamarca. Algunas de las intrusiones marinas del domo muestran rasgos característicos de un ambiente subvolcánico en forma de cantos rodados alargados con un pronunciado control estructural NW-SE, como La Arena y Virgen. En la región de Cochapampa se han identificado otras invasiones asociadas a formas menos localizadas. Esta intrusión parece haber formado la parte sur del domo de Algamarca, que tiene una composición consistente con el pórfido de dacita que intruye al pórfido andino. Entre los poblados de Marcabala y Purumarca también se encontraron afloramientos intrusivos de componentes mesoestratigráficos intermedios, rocas Chicama incisas y areniscas Chimú de hasta 4×2 km de tamaño (Chira Fernández, Vásquez Oliva, & Castañeda Salazar, 2012).

3.9. GEOLOGÍA LOCAL

El yacimiento Cerro El Toro es un extenso yacimiento aurífero distribuido en areniscas de la Formación Chimú en la franja norte del Perú, que contiene yacimientos auríferos dominados por calcáreos asociados a profundas intrusiones volcánicas. La Formación Chimú consiste en arenisca lenticular, cuarcita, arenisca cuarzosa, carbón vegetal y argilita (Riviera 1980) que se inundan lateralmente.

Al igual que otros depósitos en el área, el depósito El Toro está ubicado en un gran canal mineralizado. La formación de estos depósitos es muy similar a la de otros depósitos del mismo tipo como La Virgen y Shahuindo por mencionar algunos. Los valores de oro se encuentran en proyecciones oxidativas y dádicas que se encuentran en rocas silicificadas (areniscas, cuarcitas y areniscas cuarzosas) y en ocasiones en fracturas de pirita cúbica en cuarcitas. El Toro ha sido un sistema muy activo con clara evidencia de actividad tectónica y volcánica caracterizado por llanuras de rift con alteración hidrotermal suprayacente que cruza el sistema. En la superficie, estos cráteres parecen ser conductos para el ascenso de fluidos mineralizados. Las areniscas y las cuarcitas contienen brechas fuertemente oxidantes (pirita, goethita y hematita) en contacto con dacitas intrusivas. Al oeste de la entrada del pórfido de dacita, también hay fuertes depósitos oxidativos tipo pila y mineralización de oro económica en pozos valiosos en el lado noroeste de Cerro el Toro. El afloramiento del yacimiento de pórfido de dacita, que corta la secuencia sedimentaria en dirección noroeste, es fuertemente aerodinámico con una cubierta fija tipo yacimiento.

Además, a veces se observan brechas de contacto de hasta 20 m de ancho entre dacitas intrusivas y areniscas, donde la matriz es vagamente intrusiva o arenisca; también contiene vetas con valores de oro, mientras que la arenisca se encuentra entre las intrusiones, mostrando un fuerte campo de oxidación. Como resultado también se observaron áreas de defectos severos con apariencia de textura "azucarada", lo cual no aporta valor económico al oro, pero se observan cambios moderados en sericita y anomalías económicas del oro en otras regiones. En la zona de arenisca compactada entre el estrato de veta y el estrato estratificado, es visible el manto y se observa una zona de fertilización en forma de "backus" (goethita, jarosita y hematita) de 0,5-0,25 m de espesor. En comparación con la intrusión, la mayor fuente potencial se encuentra en la arenisca.

3.10. GEOLOGÍA ECONÓMICA

3.10.1. Tipo de yacimiento

En general, la mineralización de oro en el área de Huamachuco ocurre principalmente en la intersección de la tendencia tectónica del noroeste andino y la tendencia de transporte del noreste. En ambientes volcánicos, los factores estructurales relacionados con el centro volcánico y/o el complejo de domos incluidos en las guías de transporte son localmente más importantes que otras condiciones, como las áreas de Tres Cruces y La Capilla (áreas cercanas al Proyecto Minero Isabelita). elaboración de informes).

En ambientes sedimentarios como La Virgen, La Arena, Chahuendo y Santa Pink, la permeabilidad de las rocas ventrales, así como los factores de fractura y permeabilidad y el grado de fractura y/o fracturamiento, se suman para formar los yacimientos auríferos. Finalmente, la formación del pórfido CuMoAu está determinada por la composición de la roca, preferentemente la acidez moderada y el grado de fragmentación del magma.

Como se ha visto en La Arena y Shahuindo en Aljamarca, existe una relación genética directa entre el Au epitelial presente en los sedimentos y el sistema de pórfidos de Cu-Mo-Au y las vetas polimetálicas que ocurren alrededor de las intrusiones superficiales. En el yacimiento El Toro, la mineralización económica de Au ocurre principalmente en cuarcitas y fuertemente en areniscas trituradas con inclusiones de OxFe (goethita, jarosita y hematites) y varios tipos de brechas (hidrotermales, de contacto y tectónicas). Los valores de Au en estas estructuras varían según su procedencia y composición, y van desde 0,05 M. hasta unos 2 metros. La pirita y otros sulfuros son los más comunes y se encuentran principalmente en dacita intrusiva, calcopirita, bureta, calcocita y cuprita, y se observan en contacto con pórfido de dacita, que se encuentra principalmente en arenisca (Amireault & Espinoza, 2010).

3.11. HIDROLOGÍA

La caracterización hidrológica en la zona de estudio describe el régimen de lluvias estacionales, además de eventos hidrológicos extremos. El resumen hidrológico mencionado en el presente estudio ha sido extraído del estudio de "Ingeniería de Detalle del Pad de Lixiviación Fase 4 y Plataforma de Lixiviación Temprana" elaborado por Anddes Asociados (Mayo 2013).

Para el régimen de precipitación anual en la región de estudio, se utilizaron 9 estaciones meteorológicas regionales y se utilizaron las estaciones Cachicadan, Cajabamba, Huamachuco, Huangacocha (operadas por Senamhi) y Shorey (operada por Pan American Silver) consideradas como consistentes, determinándose que la precipitación media anual asciende a 1 230 mm. Las precipitaciones mensuales características para el área del proyecto se estimaron tomando como base los datos registrados de las estaciones Huangacocha y Shorey, consideradas como representativas para el patrón de lluvias y escalado al módulo pluviométrico anual. Según el análisis mensual, se presenta dos periodos bien diferenciados, la época de lluvias y la época de sequía, donde alrededor del 86% de la precipitación anual ocurre en la temporada de lluvias (octubre a abril) y el 14% de la precipitación anual ocurre en temporada seca (mayo a setiembre).

Los eventos hidrológicos extremos han sido analizados en base al registro de las precipitaciones extremas de las estaciones mencionadas anteriormente. La serie de datos de precipitaciones máximas en 24 horas fueron ajustadas a diversos modelos probabilísticos (Normal, Log Normal, Pearson III, Log Pearson III y GEV I), y basados en los diversos índices estadísticos y criterios hidrológicos. La distribución GEV I fue seleccionada para dar uniformidad de criterio, debido a que presentaba los mejores índices en la mayoría de los casos de las estaciones analizadas. Las precipitaciones máximas para la zona de estudio fueron calculadas para los periodos de retorno de 2, 5, 10, 25, 50, 100 y 500 años que corresponden a 36,0; 45,5; 51,8; 59,7; 65,6; 71,5 y 84,9 mm respectivamente (Anddes, 2014).

3.12. GEOMORFOLOGÍA

Las unidades morfogenéticas de la zona están conformadas mayormente por una que es suave de laderas que se identifica al Sur del área de estudio donde la topografía oscila entre los 30%-50%, la otra topografía accidentada (70% - 80%) se puede observar en la zona norte del Botadero Norte. Ambos tipos de topografía se observan sobre la litología de la formación Chimú distinguiéndose los cambios básicamente por la condición estructural regional y local.

Para la definición de las Unidades Morfogenéticas (UM) se ha tomado en cuenta la clasificación que se muestra en la **Tabla 14**, cuyas variables base fueron las propuestas por Tapia-Varela, y López-Blanco, 2001 y modificadas por Rodríguez 2016., las cuales se denominaron: planicies, lomadas, laderas y escarpas.

			0			
TIPO DE RELIEVE	GEOMETRÍA	LITOLOGÍA	ORIGEN	EDAD DE LA LITOLOGÍA		A N
Unidad Morfogenética (UM)	Pendiente	Asociada a su composición	Asociado al evento o proceso geológico	Periodo	Época	Edad
Planicies	0° - 8°					
Lomadas	8° - 20°					
Laderas	20° - 50°					
Escarpas	> 50°					

Tabla 14: Clasificación para Unidades Morfogenéticas

Fuente: Rodríguez, (2016)

Fotografía 1. Mina El Toro – Huamachuco, La Libertad

Fotografía 2. Relieve moderadamente escarpado en la zona sur de mina El Toro

3.12.1. Elementos del relieve

- Unidades menores:
- Quebradas: El Botadero Norte se encuentra entre dos quebradas de suma importancia para la operación, éstas son: Quebrada Layza y Quebrada. Agua Blanca.

- Terrazas: Las pendientes de los cerros aledaños al Botadero Norte presentan una pendiente aproximada de 0° 10° grados en zonas no muy extensas, en la que se notan la presencia de terrazas de una amplitud de 50 100 m aproximadamente.
- Laderas: Las laderas de los cerros varían en su clasificación de pendiente desde 20° a 50° (escarpas).

Fotografía 3. Laderas presentes en el área de estudio en ambos costados del botadero de la operación minera

Fotografía 4. Quebrada Layza ubicada en el lado Oeste del proyecto

Fotografía 5. Terrazas ubicadas en las medias pendientes de los cerros

3.13. GEOLOGÍA ESTRUCTURAL

El Botadero Norte no tiene una profunda investigación en cuanto al sistema estructural, sin embargo, en este capítulo se hace una descripción general del yacimiento para un entendimiento general. El yacimiento El Toro es el resultado de varios eventos de actividad hidrotermal magmática estrechamente relacionados con procesos tectónicos antes, durante y después de la mineralización aurífera; su estructura estructural define 05 eventos tectónicos (ET).

- E.T. 1: Fallas de ángulo amplio de dirección SW-NW generadas durante la inclinación y el plegamiento de la unidad detrítica Jurásico-Cretense de la convexidad de Cerro el Toro, junto con un desplazamiento especial de la capa intrusiva. El levantamiento de fluidos hidrotermales meteorizados y minerales que crean cuerpos y canales vinculados, facilitado por la falla y fractura de trincheras adyacentes a las fallas antes mencionadas.
- E.T. 2: La falla de ángulo bajo intersecta el eje del pliegue convexo hacia el sureste, comprimiendo rocas trituradas, hojas tectónicas, bloques asociados de carbono, esquisto y losas. Arenisca.
- E.T. 3: Una falla de gravedad de alto ángulo (tipo escalonado) a través del eje del pliegue convexo con hundimiento significativo del bloque Techo; fallas Dolores, Cecilia, etc.

- E.T. 4: Fallas de deslizamiento de ángulo moderado a alto con una fuerza superior a 110 m; fallas Marcy, Diana, etc.
- E.T. 5: fallas N-S, con grandes ángulos y desplazamientos de rumbo acoplados, cuya mayor incidencia la constituyen las fallas Liliana y Mercedes deformando la masa central que contiene la falla Diana.

Fotografía 6. Geología Regional de la Mina "El Toro" **Fuente:** Salinas Lázaro, Acero Meza, & Yupanqui Sifuentes, (2015)

Fotografía 7. Interpretación estructural de la fotografía anterior **Fuente:** Salinas Lázaro, Acero Meza, & Yupanqui Sifuentes, (2015)

El mapa geológico actualizado en base a la interpretación del cartografiado geológico al detalle de bancos y el levantamiento de estructuras en todo el tajo operativo se puede apreciar en el plano 1A, en el cual se confirma el patrón geológico estructural y los 5 eventos tectónicos definidos anteriormente.

El área de emplazamiento del botadero de desmonte norte está conformada por un anticlinal fallado cuyo eje probablemente se extendía con rumbo predominante Noroeste y el flanco Suroeste de esta estructura es más notorio, donde se aprecia intercalaciones de areniscas y cuarcitas resistentes a diferencia del flanco oriental Sureste, disturbado y erosionado en contacto marginal al área del tajo central.

3.14. SISMICIDAD

El Perú se encuentra dentro de un ambiente tectónico activo conocido como Cinturón del Fuego del Pacífico, donde se registra la mayor actividad sísmica asociada al proceso de subducción de la placa de Nazca bajo la Sudamericana, la cual se desplaza a una velocidad de 8 a 10 cm/año generando esfuerzos y desplazamientos de la corteza terrestre. La fricción interna de estas placas genera una gran acumulación de energía que al liberarse producen movimientos sísmicos de gran magnitud produciendo daños considerables en las estructuras.

Decreto supremo que modifica La norma técnica e.030 "diseño Sismorresistente" del reglamento Nacional de edificaciones, Aprobada por decreto supremo N° 003-2016-VIVIENDA, modificada con Resolución Ministerial N° 355-2018-VIVIENDA, el área de estudio se encuentra comprendida en la Zona 3, correspondiéndole un área de alta sismicidad, con un factor de zona Z de 0,35 (Coeficiente de aceleración máxima horizontal), habiéndose registrado en el área cercana al proyecto sismos de intensidades de VI en la escala de Mercalli Modificada.

LEYENDA	
Arenisca cuarzosa Arenisca Limolita Cuarcita Carbon Dacita Brecha contacto Brecha hidrotermal Brecha tectonica Brecha Polimictica	ET1 ET2 – OT. Principal ET3 – Fallas Gravitacionales "Echelon" alto ángulo ET4 – Fallas Transtensiva /Desplazam. Considerable ET5 – Fallas de Rumbo Combinadas Muestras Mineralógicas Pruebas Metalúrgicas DDH Propuesto RCD Propuesto RCD Realizado

75 150 Escale Coordinate System: W Projection: Trai Datum: N) : 1:2000 IGS 1984 UTM Zone 18S nsverse Mercator NGS 1984	300 m					
UNIVERSIDAD NACIONAL DE CAJAMARCA FACULTAD DE INGENIERÍA Escuela Académico Profesional de Ingeniería Geológica							
Tesis: ESTABILIDAD GEOTÉCNICA DEL BOTADERO NORTE - MINA EL TORO SANCHEZ CARRIÓN - LA LIBERTAD							
Plano: Secciones topográficas - Vista en planta Tesista: Bach. Willy Felix Dávila Cubas							
Asesor: Dr. Crispin Zenón (WGS - 84 Zona 17S	Quispe Mamani Fecha: Julio -2023	Escala: 1: 2000					

Figura 22. Zonificación sísmica del Perú – Ubicación de Mina El toro Fuente: Norma Técnica 0.30 "Diseño Sismorresistente", (2018)

3.14.1. Aceleración Máxima

Un estudio reciente realizado por Golder en el 2012 para un proyecto cercano a El Toro, recomienda utilizar una aceleración pico (PGA) en roca de 0,28g (Suelo tipo B), para un periodo de retorno de 475 años. En el 2012, Ausenco Vector verificó el estudio de peligro sísmico realizado por Golder en ese mismo año para otro proyecto cercano a la Mina El Toro, para ello se realizó la evaluación con el método probabilístico, el cual considera las leyes de atenuación de acuerdo al sistema de clasificación del código IBC-2006 (International Building Code). En la **Tabla 15** se indica los valores de aceleración máxima para distintos períodos de retorno y tipos de material.

	Clasificación de Sitio IBC		a _{max} (g) para Tr (años)						
Ley de atenuación	2006	30	50	100	200	475	975	2500	
Youngs et al Sadigh et al Roca	В	0,09	0,11	0,14	0,19	0,26	0,32	0,43	
Cismid+Sadigh et al Roca	С	0,09	0,12	0,17	0,24	0,35	0,47	0,66	
Youngs et al Sadigh et al Suelo	C-D (Principalmente D)	0,15	0,19	0,25	0,33	0,44	0,55	0,73	

 Tabla 15: Aceleraciones Máximas Esperadas del Terreno (PGA)

Abreviaturas:

amax: Aceleración máxima

De acuerdo a ensayos de campo y mapeo geológico-geotécnico realizados en los estudios geotécnicos para las diversas componentes del proyecto El Toro, el área de estudio se encuentra conformada por suelo residual firme, clasificando según el código IBC 2006 como suelo tipo C, para este tipo de suelo la velocidad de ondas de corte varía entre 360 y 760 m/s. Por lo tanto para el análisis sísmico de Mina El Toro se utilizará una aceleración pico del terreno de 0,35g.

3.15. GEOTECNIA

Como parte de las investigaciones geotécnicas realizadas en el sector del botadero de desmonte norte y botadero de material Inadecuado, se efectuaron las investigaciones de campo entre los meses de junio y agosto de 2014, cuya información fue empleada para el presente estudio.

El programa de campo consistió en supervisión de excavación de calicatas, ensayos de penetración dinámica ligera DPL, mapeo geológico-geotécnico, supervisión de perforaciones diamantinas (ensayos de penetración estándar SPT, Ensayos LPT, extracción tubo Shelby, entre otros), supervisión de la instalación de piezómetros y ensayos geofísicos. Estos trabajos permitieron identificar los niveles de cimentación y estimar de forma indirecta los parámetros de resistencia de los suelos donde se proyecta cimentar las estructuras.

3.15.1. Calicatas

Se realizaron un total de 15 calicatas que permitieron determinar las condiciones geotécnicas de los materiales que conformarán la cimentación del botadero de desmonte norte. La **Tabla 16** muestra el resumen de las calicatas ejecutadas.

Zona	Calicata	Coord	lenadas Norte	Suelo Orgánico (m)	Df (m)	Nivel de Agua (m)	Nivel Roca (m)	Prof. Total (m)
	CA-ET14-101	830138.53	9133157.32	NE	1	NE	NE	3
	CA-ET14-102	830054.53	9133104.32	2.2	1	NE	NE	6
	CA-ET14-103	830103.53	9133115.32	NE	1	NE	NE	6
	CA-ET14-104	830192.53	9133115.32	NE	1	NE	NE	6
	CA-ET14-105	830108.53	9133077.32	0.3	1	NE	NE	6
	CA-ET14-106	830085.53	9133019.32	0.3	1	NE	5	6
Botadero	CA-ET14-107	830063.53	9133032.32	NE	1	NE	NE	6.1
de Desmonte	CA-ET14-108	830068.53	9133157.32	1.9	2	NE	5	5
Norte	CA-ET14-109	829986.53	9133064.32	0.3	2	NE	5	5
	CA-ET14-110	829987.53	9133101.32	1.8	2	NE	5	5
	CA-ET14-111	830036.53	9133201.32	0.3	1	NE	5	5
	CA-ET14-112	830222.53	9133298.32	NE	2	NE	5	5
	CA-ET14-113	830128.53	9133354.32	0.3	2	NE	5	2.6
	CA-ET14-114	830051.53	9133434.32	NE	2	NE	NE	4.2
	CA-ET14-115	830029.53	9133357.32	NE	2	NE	NE	4.1

Tabla 16: Resumen de calicatas

3.15.2. Perforaciones

Se realizaron un total de 3 perforaciones que permitieron determinar las condiciones geotécnicas de los materiales que conformarán la cimentación del botadero de desmonte norte. La **Tabla 17** muestra el resumen de las perforaciones ejecutadas.

		Coord	lenadas	Nivel de	Suelo	Nivel de	Prof.
Zona	Perforación	Esta	Norto	freático	Orgánico	Roca	Total
		Este	None	(m)	(m)	(m)	(m)
Botadero	PR-TR14-101	830223.530	9133339.320	12.0	NE	10.5	50
de Desmonte	PR-TR14-102	830030.530	9133044.320	11.2	NE	22	50
Norte	PR-TR14-103	830067.530	9133334.320	10.3	NE	10.4	50

 Tabla 17: Resumen de perforaciones

> Perforación PR-TR14-101

Se ubicó en el área donde se proyecta emplazar el botadero de desmonte, alcanzando la profundidad de 50,0 m habiéndose registrado nivel de agua a los 12,00 m de profundidad.

Desde la superficie de la perforación hasta los 0,40 m de profundidad se puede observar suelo tipo relleno clasificado según SUCS como ML de plasticidad nula, firme, seco, color pardo, estructura homogénea, grava subangulosa de tamaño máximo 2,5". Subyace suelo residual proveniente de la meteorización del intrusivo dacítico hasta 10,50 m de profundidad clasificado según SUCS como ML de plasticidad nula a baja, de firme a rígido, ligeramente húmedo, de color pardo amarillento a marrón. El basamento rocoso dacítico se ha dividido en tramos de roca de acuerdo a la calidad geomecánica del RMR básico, siendo hasta los 14,25 m de una calidad mala, con RQD promedio de 0%, resistencia de débil a media (R2.5 - R3.0). Desde 14,25 m hasta 27,95 m de una calidad geomecánica regular, con RQD promedio de 73%, resistencia media (R3.5). Desde 27,95 m hasta 41,90 m de calidad geomecánica mala, con RQD promedio de 30%, resistencia media (R3.0 - R3.5). Desde 41,90 m hasta 50,00 m de calidad geomecánica regular, con RQD promedio de 93%, resistencia media (R3.5).

Perforación PR-TR14-102

Se ubicó en el área donde se proyecta emplazar el botadero de desmonte, alcanzando la profundidad de 50,0 m habiéndose registrado nivel de agua a los 11,20 m de profundidad. Desde la superficie de la perforación hasta los 22,00 m de profundidad se puede observar suelo residual proveniente de la meteorización de la arenisca con intercalaciones de argilita carbonosa clasificado según SUCS como ML de plasticidad baja a media, de firme a rígido, ligeramente húmedo, de color pardo amarillento a gris. El basamento rocoso de arenisca se ha dividido en tramos de roca de acuerdo a la calidad geomecánica del RMR básico, siendo hasta los 26,47 m de una calidad mala, con RQD promedio de 7%, resistencia de dura (R4.0). Desde 26,47 m hasta 27,38 m se observa suelo residual proveniente de la meteorización de la arenisca, clasificado según SUCS como GM de plasticidad baja, densa a muy densa, ligeramente húmeda, de color amarillo parduzco. Desde 27,38 m hasta 28,58 m se observa arenisca de una calidad geomecánica regular, con RQD promedio de 42%, resistencia media (R3.5). Desde 28,58 m hasta 43,60 m se observa suelo residual proveniente de la meteorización de la arenisca con intercalaciones de argilita carbonosa, clasificado según SUCS como ML de plasticidad nula a baja, firme a rígida, ligeramente húmeda, de color gris oscuro. Desde 43,60 m hasta 50,00 m se observa arenisca de una calidad geomecánica mala, con RQD promedio de 0%, resistencia dura (R4.0).

Perforación PR-TR14-103

Se ubicó en el área donde se proyecta emplazar el botadero de desmonte, alcanzando la profundidad de 50,0 m habiéndose registrado nivel de agua a los 10,30 m de profundidad. Desde la superficie de la perforación hasta los 0,80 m de profundidad se puede observar material de relleno clasificado según SUCS como GM de plasticidad nula, medianamente densa, ligeramente húmedo, color amarillento, estructura homogénea, grava subangulosa de tamaño máximo 3,0". Subyace suelo residual proveniente de la meteorización del intrusivo dacítico hasta los 10,40 m de profundidad, clasificado según SUCS como ML hasta los 5,00 m con plasticidad baja, de rígido a muy rígido, ligeramente húmedo, de color pardo amarillento a amarillo parduzco. De 5,00 m hasta 10,40 m de profundidad clasificado según SUCS como GM de plasticidad nula a baja, de suelta a densa, ligeramente húmedo, de color pardo amarillento a gris claro. El basamento rocoso dacítico se ha dividido en tramos de roca de acuerdo a la calidad geomecánica del RMR básico, siendo una dacita brechada hasta los 14,70 m de una calidad mala, con RQD promedio de 42%, resistencia media (R3.0). Desde 14,70 m hasta 22,80 m de una calidad geomecánica regular, con RQD promedio de 84%, resistencia media (R3.5). Desde 22,80 m hasta 40,30 m de calidad geomecánica de mala a regular, con RQD promedio de 30 a 100%, resistencia media (R3.5). Desde 40,30 m hasta 50,00 m una andesita de calidad geomecánica de mala a regular, con RQD promedio de 73% hasta los 46,60 m y de 0% hasta los 50,00 m, resistencia media (R3.5).

En la **Tabla 18** se presenta la descripción por tipo de material encontrado en cada una de las perforaciones realizadas durante las investigaciones de campo.

Perforación	Profundidad (m)	Suelo / Roca	Descripción de material				
PR-TR14-101	0 - 10.45	Suelo residual	Limo (ML), grava limosa (GM), arcilla (CL).				
	10.45 - 14.25		Dacita de RQD promedio de 0%, resistencia débil a media R2.5, RMR promedio de 34.				
	14.25 - 27.95	Desite	Dacita de RQD promedio de 80%, resistencia media a alta R3.5, RMR promedio de 54.				
	27.95 - 41.9	Dacita	Dacita de RQD promedio de 35%, resistencia media R3, RMR promedio de 35.				
	41.9 - 50		Dacita de RQD promedio de 86%, resistencia media a alta R3.5, RMR promedio de 56.				
	0 - 22	Suelo residual	Limo (ML) con arena				
	22 - 26.47	Arenisca	Arenisca de RQD promedio de 12%, resistencia media R3, RMR promedio de 32.				
	26.47 - 27.38	Suelo residual	Grava limosa (GM) con arena.				
PR-TR14-102	27.38 - 28.58	Arenisca / argilita	Arenisca con intercalaciones de argilita de RQD promedio de 42%, resistencia media a alta R3.5, RMR promedio de 41.				
	28.58 - 43.6	Suelo residual	Limo con presencia de grava.				
	43.6 - 50	Arenisca	Arenisca de RQD promedio de 10%, resistencia media R3.0, RMR promedio de 33.				
	0 - 10.4	Suelo residual	Grava limosa (GM) y arcilla limosa (CL-ML).				
	10.4 - 14.7	Brecha	Brecha RQD promedio de 40%, resistencia débil a media R2.5, RMR promedio de 34.				
	14.7 - 22.8	Dacita	Dacita RQD promedio de 65%, resistencia media a alta R3. RMR promedio de 46.				
PR-TR14-103	22.8 - 26	Duraha	Brecha RQD promedio de 60%, resistencia baja a media R2.5, RMR promedio de 29.				
	26 - 38.8	Brecha	Brecha RQD promedio de 85%, resistencia media a alta R3.5, RMR promedio de 57.				
	38.8 - 41.9	Brecha / andesita	Brecha con intercalaciones de andesita de RQD promedio de 60%, resistencia media a alta R3.5. RMR promedio de 35.				
	41.9 - 50	Andesita	Andesita RQD promedio de 17%, resistencia media a alta R3.5, RMR promedio de 36.				

Tabla 18: Descripción de las perforaciones

3.15.3. Ensayos de Campo

Durante la ejecución de las perforaciones diamantinas se realizaron ensayos in situ que permitieron evaluar características de resistencia del suelo de cimentación conformado por suelo residual. A continuación, se detallan cada uno de estos ensayos.

Ensayos de Densidad Natural

Se realizaron 2 ensayos de densidad natural mediante el método del cono de arena; estos ensayos se desarrollaron en suelo residual, con la finalidad de realizar ensayos de laboratorio y remoldear las muestras a la densidad de campo. Los ensayos se ejecutaron según el procedimiento indicado en la norma ASTM D1556. El resumen de los resultados se presenta en la **Tabla 19**.

Zona	Perforación	Muestra	Prof (m)	DNH (g/cm ³)	DNS (g/cm ³)	CH (%)
Botadero de	CA-ET14-104	M-1	NE	10.5	50	12.5
Desmonte Norte	CA-ET14-105	M- 1	NE	22	50	18.7

Tabla 19: Resumen de ensayos de densidad natural

Abreviaturas:

SUCS: Sistema unificado de clasificación de suelos DNH: Densidad natural húmeda. DNS: Densidad natural seca. CH: Contenido de humedad

> Distribución Granulométrica Global

Se determinó la distribución granulométrica global del material de desmonte de mina y del mineral lixiviado del Pad Fase 5 (estos materiales son de características similares a los que se emplearán en las siguientes fases del botadero de desmonte norte y el mineral que será apilado en la ampliación del pad Fase 6). Esta "curva global" permitió posteriormente definir una curva homotética o "paralela" del material, manteniendo ciertas características granulométricas del material original, como el coeficiente de uniformidad y de curvatura. Se tomaron 2 puntos de muestreo, PM-ET14-201 que corresponde al material de mina y Mineral Lixiviado PAD fase 5.

En la **Tabla 20** se presenta el resumen de los resultados de la granulometría global del material de desmonte de mina y mineral lixiviado

		Porcentaje	de peso (%)	Coeficiente	Coeficiente
Punto da Muastrao	Clasificación SUCS	5		de	de
r unio de Muestreo		<3"	>3"	Uniformidad	Curvatura
				(Cu)	(Cc)
PM-ET14-201	GM	77	23	164.08	3.83
(Desmonte Mina)	GM	11	23	104.98	5.85
Mineral Lixiviado Pad	GM	72	28	440.8	1 3/
Fase 5		12	20	440.8	1.34

Tabla 20: Resumen de Distribución Granulométrica Global

Abreviaturas:

SUCS: Sistema unificado de clasificación de suelos

Ensayo de Penetración Estándar (SPT)

Durante la ejecución de las perforaciones diamantinas se realizaron 9 ensayos de penetración estándar (SPT). Los ensayos fueron realizados en diferentes profundidades con la finalidad de evaluar de manera indirecta la resistencia cortante de los suelos que conforman los estratos, estos ensayos permitieron estimar los niveles de fundación.

En la **Tabla 21** se presenta el resumen de los ensayos de penetración estándar (SPT) realizados.

Tublu 21 : Resulten de ensuyos de penetración estandar (51.1)						
Área	Perforación	Ensayo SPT	Profundidad (m)	Tipo de suelo (SUCS)	NSPT	Consistencia/Compacidad**
Botadero de Desmonte Norte	PR-TR14-101	SPT-01	1.5-1.95	ML	61	Dura
		SPT-02	3.45-3.9	ML	61	Dura
		SPT-03	5.7-6.15	ML	>50*	Dura
		SPT-04	7.75-8.2	ML	>50*	Dura
		SPT-05	10.0-10.45	ML	>50*	Dura
	PR-TR14-102	SPT-01	1.5-1.95	ML	12	Firme
		SPT-02	5.45-5.79	ML	>50*	Dura
	PR-TR14-103	SPT-03	3.2-3.65	ML	45	Dura
		SPT-04	6.0-6.2	GM	>50*	Dura

 Tabla 21: Resumen de ensayos de penetración estándar (SPT)

Abreviaturas:

SUCS: Sistema unificado de clasificación de suelos.

NSPT: Número de golpes de martillo del ensayo SPT.

*: Mayor a este valor se considera "rechazo" en el ensayo.

**: Consistencia de acuerdo con FHWA NHI-06-088.

En el botadero de desmonte norte la cimentación está conformada por suelos residuales tipo limos, arcillas y arena con grava, que presenta una consistencia de firme a dura y en el caso de la grava presenta una compacidad medianamente densa a densa.

Muestreo con tubos de pared delgada tipo Shelby

Con la finalidad de obtener muestras relativamente no disturbadas en perforaciones que atraviesen suelos cohesivos, se realizó muestreo tipo Shelby en las perforaciones para el botadero de desmonte. El muestreo fue efectuado en base al estándar ASTM D-1587-94 (Standard Practice for Thin-Walled Tube Geotechnical Sampling of Soil). En la **Tabla 22** se registra la muestra obtenida.

Área	Perforación	Muestra	Profundidad (m)	Presión de Corona* (PSI)
Botadero de Desmonte Norte	PR-TR14-102	Shelby-01	3.45-3.95	580

Tabla 22: Resumen de muestreo tipo Shelby

3.15.4. Instalación de Piezómetros

Se realizó la instalación de piezómetros de Casagrande en las perforaciones PR-ET14-201 y PR-ET14-102 (ver **;Error! No se encuentra el origen de la referencia.**). Cabe r esaltar que la perforación PR-ET14-201 fue realizada específicamente para realizar la instalación en un piezómetro, por lo cual no se cuenta con una descripción detallada del proceso de perforación en sí.

3.15.5. Mapeo Geológico-Geotécnico

El mapeo geológico-geotécnico a detalle del área de estudio y de las áreas aledañas se realizó con el fin de identificar los rasgos geológicos y las unidades geológicas-geotécnicas presentes.

En las áreas de estudio (botadero de desmonte norte) se identificaron 05 unidades geológicas-geotécnicas:

- Depósito Coluvial, Unidad Geológica-Geotécnica I.
- Depósito Aluvial, Unidad Geológica-Geotécnica II.
- Depósito Proluvial, Unidad Geológica-Geotécnica III.
- Suelo Residual, Unidad Geológica-Geotécnica IV.
- Basamento Rocoso (Unidad Geológica-Geotécnica V).

Asimismo, se identificaron sectores de suelos orgánicos y depósitos antrópicos (rellenos controlados y no controlados), los cuales se identificaron visualmente y con la información de las investigaciones geotécnicas de campo.

> Depósito Coluvial (Unidad Geológica-Geotécnica I)

Unidad conformada por acumulaciones de material fragmentado en las laderas del talud del Tajo Norte, cuya formación es producida por acción de la gravedad y procesos antrópicos de operación mina, se encuentran en la zona norte del área del proyecto del botadero de desmonte norte y está compuesta por arena limo-arcillosa con grava (SM-SC), de plasticidad baja, en estado suelto a medianamente denso, en condición ligeramente húmeda, de color pardo a marrón claro.

> Depósito Aluvial (Unidad Geológica - Geotécnica II)

Unidad geotécnica diferenciada en el cauce principal de la quebrada Coigobamba, consiste en cuatro materiales diferenciados por su granulometría:

- Arcilla limosa, arcilla arenosa (CL), de color amarillo verdoso a gris verdoso, blanda a rígida, ligeramente húmeda, plasticidad baja.
- Limo de baja o alta plasticidad, limo arenoso (ML, MH), color pardo grisáceo a gris oscuro, rojo amarillento, blanda a firme, ligeramente húmeda a muy húmeda, plasticidad de nula a alta.
- Arena limosa, arena arcillosa, arena pobremente gradada (SM, SC, SP), color pardo oscuro, densa, ligeramente húmeda, plasticidad nula.
- Grava arcillosa, grava pobremente gradada, grava bien gradada, grava limosa con arena (GC, GW, GP, GM), color pardo amarillento a gris, medianamente densa a densa, ligeramente húmeda a muy húmeda, plasticidad baja a nula.

> Depósito Proluvial (Unidad Geológica - Geotécnica III)

Unidad conformada por suelos originados por el arrastre de partículas de diferentes tamaños por las corrientes de agua de la quebrada, las cuales se depositaron gradualmente en forma de abanico, es decir, los fragmentos mayores al pie de los taludes y las partículas finas en los extremos. Se encuentran al este del emplazamiento del botadero de material inadecuado, en la margen izquierda de la quebrada Coigobamba. Este depósito está compuesto por arena arcillosa (SC) y arcillas de baja plasticidad (CL), de consistencia blanda a firme, en condición ligeramente húmeda a muy húmeda, de color marrón a marrón claro. Estos suelos son inadecuados para fines de cimentación y deberán ser retirados o eliminados durante la construcción del dique del botadero de material inadecuado.

Suelo Residual (Unidad Geológica - Geotécnica IV)

Los materiales identificados como suelo residual provienen de la meteorización in situ y por procesos de alteración de las intercalaciones de la roca arenisca cuarzosa, argilitas e intrusiones volcánicas.

Estos materiales se encuentran conformados principalmente por limo arenoso (ML), su plasticidad varia de media a baja, su densidad es firme a muy rígido para suelos finos en el caso de suelos granulares (GM) es medianamente densa a densa, ligeramente húmedo a seco, pardo amarillento a pardo, estructura homogénea, grava subredondeada, con espesores de estratos de 1,2 a 10,45 m.

La consistencia y compacidad de estos materiales mejora a medida que se incrementa la profundidad alcanzando un estado muy rígido o muy denso.

Este suelo presentando adecuadas condiciones para fines de cimentación, siempre y cuando, presente una consistencia de firme a dura o compacidad de densa a muy densa.

De acuerdo con sus características de conductividad hidráulica, en sectores puntuales, estos materiales también pueden ser utilizados como suelo de baja permeabilidad, por lo tanto, durante la construcción del botadero se debe realizar el escarificado del suelo de cimentación para verificar dicha condición.

Basamento Rocoso (Unidad Geológica - Geotécnica V)

Durante las investigaciones de campo y el mapeo geológico-geotécnico se identificó la presencia de roca arenisca cuarzosa con intercalación de argilitas y rocas volcánicas dacíticas.

El Plano 04 muestra el mapeo Geológico-Geotécnico de la zona de estudio.

Arenisca Cuarzosa

Este tipo de roca se encuentra en estratificaciones, subyaciendo al suelo residual, generalmente en la parte alta del emplazamiento del botadero de desmonte norte e inadecuado.

UNIVERSIDAD NACIONAL DE CAJAMARCA						
FACULIAD DE						
Escuela Academico Profesio	nal de Ingenieria Geolo	ogica				
Tesis:						
ESTABILIDAD G	EOTÉCNICA DEL BOTADE	RO NORTE -				
MINA EL TORO	MINA EL TORO SANCHEZ CARRIÓN - LA LIBERTAD					
Plano: Unidades Geomecánicas del Botadero Norte Plano N°:						
Tesista: Bach. Willy Felix Dávila Cubas						
Asesor: Dr. Crispin Zenón Quispe Mamani						
WGS - 84 Zona 17S Fecha: Julio -2023 Escala: 1: 2000						

Se caracteriza por presentar resistencia media a alta (R2.5-R3.0), RQD promedio 0-15%, moderadamente alterada a muy alterada, moderadamente fracturada a extremadamente fracturada, de color gris oscuro, presenta juntas ligeramente rugosas a rugosas rellenas con pirita y arcilla: Se caracterizó y se valorizó su calidad, el RMR básico va de 28 a 39 (roca mala), así mismo se realizó ensayos de caracterización mecánica y física en el laboratorio.

• Argilita

Esta roca se registró en las perforaciones ejecutadas en casi toda el área de estudio, se caracteriza por presentar resistencia muy débil a débil (R1.0 - R2.0), RQD promedio 0-15%, muy alterada, muy fracturada, con RMR básico 18 a 34 (roca muy mala a mala), color gris oscuro, presenta juntas onduladas rellenas con clorita, arcilla y presencia de niveles carbonosos

• Arenista/Argilita

Este tipo de roca se encontró en las perforaciones realizadas en casi toda el área del proyecto, se caracteriza por presentar, resistencia débil (R2.0), RQD promedio 0-10%, muy alterada, muy fracturada, color gris oscuro, presenta juntas onduladas rellenas con carbón y arcilla. De igual manera, se valorizo su calidad, el RMR básico va de 26 a 31 (roca mala).

• Dacita

Este tipo de roca se encontró en las perforaciones realizadas del botadero de desmonte norte, se caracteriza por presentar, resistencia media a alta (R2.5-R3.5), RQD promedio 30%-60%, ligeramente alterada a muy alterada, moderadamente fracturada a fracturada, RMR básico de 29 a 59 (roca mala a regular), color gris verdoso, presenta juntas ligeramente rugosas a rugosas rellenas con calcita pirita y óxidos.

Andesita

Este tipo de intrusión se encontró en las perforaciones realizadas del botadero norte, se caracteriza por presentar, resistencia alta (R3.0), RQD promedio 0%-23%, ligeramente alterada, fracturada a muy fracturada, RMR básico de 30 a 44 (roca mala a regular), color gris verdoso, presenta juntas ligeramente rugosas, rellenas con calcita y óxidos.

3.15.6. Nivel de Cimentación

El criterio de inspección de estos niveles se basa principalmente en encontrar un material competente, no cedente, con una compacidad mínima de medianamente denso o de consistencia rígida, que permita soportar las solicitaciones de carga de las estructuras proyectadas y evitar asentamientos diferenciales significativos. Se estima que los materiales subyacentes a este nivel tengan las mismas o mejores características físicas y mecánicas.

En el área del botadero de desmonte Norte, los niveles de corte para la cimentación varían de 0,0 a 3,0 m

3.15.7. Caracterización Geotécnica del Basamento Rocoso

El basamento rocoso está conformado en mayor proporción por dacita y arenisca moderadamente alterada, muy fracturada, resistencia débil a moderada (R2, 5-R3, 0), color gris claro.

Para caracterizar el macizo rocoso se utilizó el sistema de clasificación geomecánica RMR (Rock Mass Rating) desarrollado por Bieniawski (1989), el cual constituye un sistema de clasificación que permite relacionar el índice RMR con parámetros de diseño y sostenimiento.

El valor ajustado del RMR es utilizado para describir la calidad del macizo rocoso en cinco clases, las cuales se describen en la en la **Tabla 23**.

Valoración RMR	Clase	Descripción
81-100	I	Roca muy buena
61-80	II	Roca buena
41-60		Roca regular
21-40	IV	Roca mala
<20	V	Roca muy mala

Tabla 23: Clasificación del Macizo Rocoso a partir del RMR

CAPÍTULO IV ANÁLISIS Y DISCUSIÓN DE RESULTADOS

4.1. PRESENTACIÓN DE RESULTADOS

4.1.1. Definición de Parámetros Geotécnicos

Las propiedades físicas y mecánicas de los materiales que conformaron los modelos geotécnicos se obtuvieron a partir de la información obtenida de las investigaciones geotécnicas de campo, resultados de ensayos de laboratorio, correlaciones empíricas del N_{SPT}, información de estudios ejecutados por Anddes y el criterio profesional (Anddes Asociados S.A.C., 2014). A continuación, se describen brevemente las consideraciones asumidas para la caracterización de cada material.

Desmonte de Mina

Corresponde a un material granular clasificado en el sistema SUCS como grava limosa (GM) y grava pobremente gradada con limo (GP-GM) y presenta una distribución granulométrica de 53,6 a 62,3% de grava, 29,8 a 31,1% de arena y 6,6 a 16,6% de finos.

En la muestra extraída del botadero se realizaron ensayos de compresión triaxial consolidado drenado (CD), con medición de presión de poros, en espécimen de 6" de diámetro remoldeado a la densidad de volteo y también bajo cierta compactación al 85% del Proctor Estándar. Los resultados indican que los parámetros de resistencia en término de esfuerzos efectivos varían de 34,5° a 37,5° de ángulo de fricción interna y 6 kPa de cohesión. El peso específico del desmonte de mina varía entre 19 y 20 KN/m³ (Anddes Asociados S.A.C., 2014).

Suelo Residual

El desmonte del botadero Fase 1 se cimentará sobre suelo residual, que se caracteriza por presentar una consistencia que varía de rígida a muy rígida en condición ligeramente húmeda, clasificado en el sistema SUCS como arcilla de baja plasticidad CL, con distribución granulométrica de 0 a 16% de grava, 3 a 32% de arena y de 62 a 96% de finos. Estos materiales

provienen de la meteorización in situ y degradación química de la roca arenisca y argilita (Anddes Asociados S.A.C., 2014).

Con la finalidad de complementar los ensayos de laboratorio y obtener parámetros de resistencia, ángulo de fricción interna y cohesión, en condiciones no drenadas se utilizó la correlación propuesta por Parra y Ramos (1998), donde a partir del número de golpes de los ensayos SPT (NSPT) se obtienen estos valores, ver **Tabla 24**.

Área	Perforación	Ensayo SPT	Profundidad (m)	Tipo de suelo (SUCS)	NSPT	Cu (kPa)	Ф (°)
Botadero	PR-TR14-101	SPT-01	1.5-1.95	ML	61	49	36
de		SPT-02	3.45-3.9	ML	61	49	36
Desmonte	PR-TR14-102	SPT-01	1.5-1.95	ML	12	14	28
Norte	PR-TR14-103	SPT-03	3.2-3.65	ML	45	43	35
	Fuente	Anddes A	Asociados S A	C (2014)			

Tabla 24: Resumen de Parámetros de Resistencia en Condiciones No Drenadas:

Fuente: Anddes Asociados S.A.C., (2014)

Del estudio "Ingeniería de Detalle Pad de Lixiviación Fase 6" Anddes (2013), de acuerdo al resultado del ensayo Triaxial CD en espécimen de 2,8" diámetro del material residual muestreado de las calicatas CA-ET13-207 y 208 remoldeada a la densidad natural de 21,4 kN/m3 y humedad del 16,5%, se tienen los parámetros de resistencia cortante en términos de esfuerzos efectivos, ángulo de fricción interna 26° y cohesión 22 kPa, el peso específico del suelo residual es 20 KN/m3 (Anddes Asociados S.A.C., 2014).

Roca Maciza (Basamento Rocoso)

El basamento rocoso se encuentra compuesto por intercalaciones de roca arenisca/argilita, argilita/arenisca, arenisca cuarzosa, argilita y lodolita en forma de lentes, moderadamente alterada, muy fracturada, resistencia débil a moderada, color gris oscuro. Los parámetros geotécnicos del basamento rocoso se obtuvieron a partir del cálculo de la valoración geomecánica RMR efectuado en las perforaciones ejecutadas, los que fueron corregidas considerando los valores de resistencia de los ensayos de carga puntual, el grado de fracturamiento y meteorización del macizo rocoso. Los parámetros geotécnicos, de los lentes de roca, se estimaron a partir de las correlaciones empíricas que involucran RMR versus ángulo de fricción, cohesión y módulo de elasticidad (Anddes Asociados S.A.C., 2014). Los parámetros geotécnicos de resistencia al cortante, ángulo de fricción y cohesión del basamento rocoso fueron obtenidos a partir de correlaciones con la clasificación del macizo rocoso RMR propuestos por diferentes autores. Algunas correlaciones

utilizan la valoración del RMR76 y otras el RMR86. Anddes utilizó la correlación propuesta por Bieniawski (1989) que utiliza los valores del RMR89 y de manera referencial la correlación de Andrew-Rose (2004) que usa el RMR76. En la **Tabla 25** se presentan los valores de ángulo de fricción y cohesión calculados a partir de las correlaciones de Bieniawski (1989) y Andrew-Rose (2004) (Anddes Asociados S.A.C., 2014).

Perforación	Tipo de Roca	Profundidad (m)	RMR Ajustado	φ1 (°)	C ₁ (kPa)	φ ₂ (°)	C ₂ (kPa)
PR-TR14-201	Arenisca	20.8 - 23.3	36	34	141	23	180
	Arenisca	23.3 - 50.0	28	32	121	19	140
PR-TR14-202	Argilita Bituminosa	33.6 - 36.2	25	31.25	113	17.5	125
	Argilita Bituminosa	36.2 - 41.8	11	27.75	78	10.5	55
	Arenisca	41.8 - 48.6	28	32	121	19	140
	Argilita Bituminosa	48.6 - 50.0	17	29.25	93	13.5	85
PR-TR14-203	Arenisca	31.6 - 41.7	27	31.75	118	18.5	135
	Arenisca / Argilita	41.7 - 47.0	21	30.25	103	15.5	105
	Arenisca	47.0 - 50.0	118	18.5	135	25	126

 Tabla 25: Valores de Ángulo de Fricción y Cohesión a Partir del RMR Básico de Bieniawski (1989) y Andrew-Rose (2004)

Fuente: Anddes Asociados S.A.C., (2014)

Los parámetros geotécnicos del basamento de roca que servirán para el cálculo de asentamientos fueron revisados por Anddes del estudio de "Ingeniería de Detalle Pad de Lixiviación Fase 4 y Plataforma de Lixiviación Temprana" (2013), donde se obtuvo valores de 23° de ángulo de fricción, cohesión 150 kPa y peso específico de 23 kN/m3 (Anddes Asociados S.A.C., 2014).

4.1.2. Medición del Nivel Freático

La medición del nivel freático se realizó de acuerdo con el registro de los niveles piezométricos, pudiendo éstos ser inicialmente diarios, después semanales o quincenales y finalmente mensuales, a fin de observar la variabilidad del nivel de agua en distintas épocas del año. La muestra el nivel de agua identificado en las perforaciones realizadas por Anddes Asociados.

	Perforación	Coorde	Profundidad del			
Área	con – Piezómetro Instalado	Este	Norte	Nivel de Agua (m)		
Potodono do Docimiento	PR-TR14-102	830289.6	9133405.5	11,2		
Botadero de Desmonte	PR-TR14-201	830396.6	9133331.5	20,8		
Fuente: Anddes Asociados S.A.C., (2014)						

Tabla 26: Ubicación de piezómetros instalados

De la tabla anterior se puede concluir que el nivel freático medido en la fecha de la realización de las perforaciones se mantiene en el basamento rocoso. Sin embargo y debido a que no se tienen los registros de toma de datos durante diferentes periodos del año (especialmente en épocas de lluvia), para el modelado de las secciones de análisis se considerará, conservadoramente, que el nivel de agua se encuentra en la interfase entre el suelo residual y el basamento rocoso.

4.1.3. Coeficiente Sísmico

El coeficiente sísmico es usualmente calculado como una fracción de la aceleración máxima esperada en la zona del proyecto a nivel de superficie. Por ejemplo, el Cuerpo de Ingenieros del Ejército de los Estados Unidos (U.S. Army Corps of Engineers), recomienda el uso de un coeficiente sísmico pseudo-estático igual al 50% de la aceleración máxima. La literatura técnica internacional acepta el uso de una fracción que varía entre 1/2 a 1/3 de la máxima aceleración esperada.

Es importante mencionar que la aceleración máxima a partir de la cual se obtuvo el coeficiente sísmico fue estimada a nivel de superficie del terreno, es decir fue calculada para un suelo tipo C la cual presenta un valor promedio de 0,35g. Anddes recomienda utilizar un coeficiente de aceleración horizontal (Kh) de 0,17 y un coeficiente de aceleración vertical (Kv) 0,085 de para el análisis pseudo-estático en el diseño de taludes y de deformaciones permanentes.

4.2. RESUMEN DE PARÁMETROS GEOTÉCNICOS

En la **Tabla 27** se muestra el resumen de los parámetros geotécnicos para cada tipo de material, los cuales fueron considerados para el análisis de estabilidad.

Material	Peso Unitario (kN/m3)	Cohesión (kN/m2)	Ángulo de Fricción (°)	Modelo Constitutivo
Minoral Liviviado	10	0	26	Maha Caulamh
Milleral Lixiviado	19	0	30	Monr Coulomb
Suelo Residual	20	22	26	Mohr Coulomb
Desmonte de Mina	19	0	36	Mohr Coulomb
Roca Maciza	23	150	23	Mohr Coulomb

Tabla 27: Resumen de Parámetros Geotécnicos

Fuente: Anddes Asociados S.A.C., (2014)

4.3. CARACTERÍSTICAS DE DISEÑO DEL BOTADERO DE DESMONTE

El Botadero Norte se extiende sobre un área aproximada de 9,26 ha, y ofrece una capacidad de almacenamiento de 2,88 Mt.

La disposición del botadero de desmonte se efectuará empleando bancos de 8 m de altura, con taludes intermedios de 1, 4H:1V, y anchos de banquetas de 8,60 m, que definen un talud global de 2, 5H:1V. Para una adecuada operación del botadero de desmonte se han considerado las siguientes obras: una plataforma de estabilidad, un sistema de subdrenaje en la base del botadero que incluye una poza para monitoreo.

El movimiento de tierras a desarrollar consistirá en la remoción del material inadecuado mezclado y saturado dentro de los límites del botadero, para esto se ha determinado una superficie de fundación que deberá ser evaluada y aceptada por el ingeniero QA/QC de campo. El diseño se muestra en plano 4A.

4.4. ANÁLISIS DE ESTABILIDAD DE LAS SECCIONES

A continuación, se mostrarán los resultados del análisis de estabilidad de taludes realizado en las secciones A-A' hasta la N-N' (14 secciones). Los análisis de estabilidad física de las secciones críticas del botadero de desmonte norte se desarrollaron por el método de equilibrio límite, en condición estática y pseudo-estática con superficies de falla circular y falla en bloque, según corresponda y considerando tensiones efectivas.

4.4.1. Configuración del Software

La configuración usada para realizar los análisis de estabilidad se muestra en las siguientes imágenes y se detalla en la descripción de cada una de ellas.

LEYENDA

- CURVAS DE NIVEL DE LA SUPERFICIE DEL TERRENO EXISTENTE (VER NOTA 1
- CURVAS DE NIVEL DE LA SUPERFICIE DE ESTRUCTURAS PROYECTADAS
- CURVAS DE NIVEL DE LA SUPERFICIE DE CIMENTACIÓN
- CURVAS DE NIVEL DE LA SUPERFICIE DE NIVELACIÓN
- CURVAS DE NIVEL DE LA SUPERFICIE DE ESTRUCTURAS PROYECTADAS
- CURVAS DE NIVEL DE LA SUPERFICIE DE APILAMIENTO
- LÍMITE DE CORTE Ó RELLENO
- LÍMITE DE CIMENTACIÓN
- LÍNEA DE DISEÑO
- CAMINO EXISTENTE
- LÍMITE DE BOTADERO FASE 1
- LÍMITE DE APILAMIENTO DE FASES ANTERIORES Y BOTADERO DE DESMONTE EXISTENTES
- LÍMITE DE ESTRUCTURAS PROYECTADAS
- LÍMITE DE OCUPACIÓN ACTUAL DE DESMONTE

TABLA 01 RESULTADOS DE DISEÑO

DESCRIPCIÓN	CANTIDAD		
VOLUMEN	1,49	Mm³	
DENSIDAD SECA PROMEDIO	1,93	t/m³	
CAPACIDAD	2,88	Mt	
ÁREA IMPACTADA	1,30	ha	
ALTURA MÁXIMA DEL DEPÓSITO	110,00	m	
TALUD GLOBAL DEL DEPÓSITO	2,5:1	(H:V)	
TALUD DE BANCO	1,4:1	(H:V)	
ANCHO DE BANQUETA	8,60	m	
ALTURA TÍPICA DE CAPA	8,00	m	

NOTAS:

- 1. LA BASE TOPOGRÁFICA FUE PROPORCIONADA POR EL PROPIETARIO EL 01 DE JULIO DEL 2014.
- EL ÁREA DE ESTUDIO ESTÁ UBICADA EN LA ZONA 17S DEL SISTEMA DE COORDENADAS UTM CON ELIPSOIDE DE REFERENCIA PSAD56.
- EL MATERIAL DE DESMONTE DE MINA SERÁ COLOCADO AL VOLTEO, MANTENIENDO LA CONFIGURACIÓN MOSTRADO EN LOS PLANOS Y BAJO LA SUPERVISIÓN DEL ING. DE CQA.
- 4. msnm = METROS SOBRE EL NIVEL DEL MAR.
- LAS ESCALAS SE MOSTRARÁN COMO REALES EN LOS PLANOS IMPRESOS EN FORMATO A1.

UNIVERSIDAD NACIONAL DE CAJAMARCA FACULTAD DE INGENIERÍA Escuela Académico Profesional de Ingeniería Geológica esis ESTABILIDAD GEOTÉCNICA DEL BOTADERO NORTE -MINA EL TORO SANCHEZ CARRIÓN - LA LIBERTAD Plano: Diseño de Botadero Norte Fase 1 Tesista: Bach. Willy Felix Dávila Cubas Dr. Crispin Zenón Quispe Mamani Asesor: Fecha: Marzo-2024 Escala: 1: 1250

PERFILES TOPOGRÁFICOS

PLANO VISTA EN PLANTA

Datum: WGS - 84 Zona 17S

Fecha: Julio -2023

Escala: 1: 3000

	1			
General Soil Profile	General			
Scenarios Methods Groundwater Transient Seismic Statistics Random Numbers Design Standard Advanced	Units of Measuremen Stress Units: Time Units: Permeability Units: Failure Direction O Right to Left	t Metric Days meters/second	Data Output O Standard	
	Left to Right		() Maximum	

Figura 23. Configuración general del proyecto del análisis de estabilidad

La Figura 23 muestra la configuración general del proyecto; se ha determinado la dirección de la falla y la cantidad de salida de datos es la máxima.

	1
 General Soil Profile Scenarios Methods Groundwater Transient Statistics Random Numbers Design Standard Advanced Methods Service Advanced 	Convergence Options Number of slices: 25 - Tolerance: 0.005 Maximum iterations: 50 - Interslice force function Half Sine Change

Figura 24. Determinación del método del análisis de estabilidad

La Figura 24 muestra los métodos usados para el cálculo, en este caso se ha determinado el método de Spencer mediante tajadas verticales.

Surface Options	? X	Optimize Surfaces Settings ? ×
Surface Type O Circular Non-Circular Noncircular Auto Refine Search Options	h V	Surfaces to Optimize Global Minimum All Factor of Safety Less Than: 1.5
Divisions along slope: 10 Surfaces per division: 10 Number of Iterations: 10 Divisions to use in next iteration: 50 Number of vertices along surface: 12 Number of Surfaces Computed: 4500 Number of Surfaces Interpreted: 45 Optimize Surfaces Settings	,	Optimization Options Optimization Type: Monte Carlo Tolerance (factor of safety): 1e-09 Maximum Iterations: 400 Step reduction factor (0 to 1): 0.5 Maximum Interslice Concave Angle: 5 Maximum Total Concave Angle: 2 Explore all vertices before moving surface
Surface Filter Min. Elevation 0 Min. Area 0 Min. Area 0 Min. Weight Defaults Apply	0 m 0 kN	Defaults

Figura 25. Opciones de superficie de falla del análisis de estabilidad

La Figura 25 muestra el tipo de superficie que se generará en el análisis de estabilidad, además se ha activado y configurado la optimización de superficies (parámetros tomados para optimizar las superficies de falla) y el método de búsqueda es autorefinada.

4.4.2. Definición de materiales para el análisis de estabilidad

Los materiales se definieron dentro del software acorde a la **Tabla 27** y se puede comprobar en la que es extraída del software Slide 6.0.

Material Name	Color	Unit Weight (kN/m3)	Sat. Unit Weight (kN/m3)	Strength Type	Cohesion (kPa)	Phi (deg)	Water Surface
Suelo Residual		20	21	Mohr-Coulomb	22	26	Water Surface
Desmonte de mina		19	20	Mohr-Coulomb	0	36	None
Roca Maciza		23	24	Mohr-Coulomb	150	23	Water Surface

Tabla 28: Parámetros geotécnicos usados para el análisis de estabilidad

4.4.3. Resultados de análisis de estabilidad

Los resultados de los análisis de estabilidad se muestran a partir de la Figura 26 hasta la Figura

Como podemos observar en el análisis realizo en la Sección Geotécnica A-A', se obtuvo un factor de seguridad de 1.268 en condiciones estáticas. Como se puede ver, el plano de falla atraviesa el material de desmonte. En la discusión se analiza dichos planos de daños y los factores de seguridad establecidos.

Como podemos observar en el análisis realizo en la Sección Geotécnica A-A', se obtuvo un factor de seguridad de 0.985 en condiciones pseudoestáticas. Como se puede ver, el plano de falla atraviesa el material de desmonte. En la discusión se analiza dichos planos de daños y los factores de seguridad establecidos.

Como podemos observar en el análisis realizo en la Sección Geotécnica B-B', se obtuvo un factor de seguridad de 1.282 en condiciones estáticas. Como se puede ver, el plano de falla atraviesa el material de desmonte. En la discusión se analiza dichos planos de daños y los factores de seguridad establecidos.

Como podemos observar en el análisis realizo en la Sección Geotécnica B-B', se obtuvo un factor de seguridad de 0.981 en condiciones pseudoestáticas. Como se puede ver, el plano de falla atraviesa el material de desmonte. En la discusión se analiza dichos planos de daños y los factores de seguridad establecidos.

Como podemos observar en el análisis realizo en la Sección Geotécnica C-C', se obtuvo un factor de seguridad de 1.278 en condiciones estáticas. Como se puede ver, el plano de falla atraviesa el material de desmonte. En la discusión se analiza dichos planos de daños y los factores de seguridad establecidos.

Como podemos observar en el análisis realizo en la Sección Geotécnica C-C', se obtuvo un factor de seguridad de 0.986 en condiciones pseudoestáticas. Como se puede ver, el plano de falla atraviesa el material de desmonte. En la discusión se analiza dichos planos de daños y los factores de seguridad establecidos.

Como podemos observar en el análisis realizo en la Sección Geotécnica D-D', se obtuvo un factor de seguridad de 1.291 en condiciones estáticas. Como se puede ver, el plano de falla atraviesa el material de desmonte. En la discusión se analiza dichos planos de daños y los factores de seguridad establecidos.

Como podemos observar en el análisis realizo en la Sección Geotécnica D-D', se obtuvo un factor de seguridad de 0.98 en condiciones pseudoestáticas. Como se puede ver, el plano de falla atraviesa el material de desmonte. En la discusión se analiza dichos planos de daños y los factores de seguridad establecidos.

Como podemos observar en el análisis realizo en la Sección Geotécnica E-E', se obtuvo un factor de seguridad de 1.262 en condiciones estáticas. Como se puede ver, el plano de falla atraviesa el material de desmonte. En la discusión se analiza dichos planos de daños y los factores de seguridad establecidos.

Como podemos observar en el análisis realizo en la Sección Geotécnica E-E', se obtuvo un factor de seguridad de 0.96 en condiciones pseudoestáticas. Como se puede ver, el plano de falla atraviesa el material de desmonte. En la discusión se analiza dichos planos de daños y los factores de seguridad establecidos.

Como podemos observar en el análisis realizo en la Sección Geotécnica F-F', se obtuvo un factor de seguridad de 1.295 en condiciones estáticas. Como se puede ver, el plano de falla atraviesa el material de desmonte. En la discusión se analiza dichos planos de daños y los factores de seguridad establecidos.

Como podemos observar en el análisis realizo en la Sección Geotécnica F-F', se obtuvo un factor de seguridad de 0.96 en condiciones pseudoestáticas. Como se puede ver, el plano de falla atraviesa el material de desmonte. En la discusión se analiza dichos planos de daños y los factores de seguridad establecidos.

Como podemos observar en el análisis realizo en la Sección Geotécnica G-G', se obtuvo un factor de seguridad de 1.272 en condiciones estáticas. Como se puede ver, el plano de falla atraviesa el material de desmonte. En la discusión se analiza dichos planos de daños y los factores de seguridad establecidos.

Como podemos observar en el análisis realizo en la Sección Geotécnica G-G', se obtuvo un factor de seguridad de 0.977 en condiciones pseudoestáticas. Como se puede ver, el plano de falla atraviesa el material de desmonte. En la discusión se analiza dichos planos de daños y los factores de seguridad establecidos.

Como podemos observar en el análisis realizo en la Sección Geotécnica H-H', se obtuvo un factor de seguridad de 1.274 en condiciones estáticas. Como se puede ver, el plano de falla atraviesa el material de desmonte. En la discusión se analiza dichos planos de daños y los factores de seguridad establecidos.

Como podemos observar en el análisis realizo en la Sección Geotécnica H-H', se obtuvo un factor de seguridad de 0.99 en condiciones pseudoestáticas. Como se puede ver, el plano de falla atraviesa el material de desmonte. En la discusión se analiza dichos planos de daños y los factores de seguridad establecidos.

Como podemos observar en el análisis realizo en la Sección Geotécnica I-I', se obtuvo un factor de seguridad de 1.213 en condiciones estáticas. Como se puede ver, el plano de falla atraviesa el material de desmonte. En la discusión se analiza dichos planos de daños y los factores de seguridad establecidos.

Como podemos observar en el análisis realizo en la Sección Geotécnica I-I', se obtuvo un factor de seguridad de 0.96 en condiciones pseudoestáticas. Como se puede ver, el plano de falla atraviesa el material de desmonte. En la discusión se analiza dichos planos de daños y los factores de seguridad establecidos.

Como podemos observar en el análisis realizo en la Sección Geotécnica J-J', se obtuvo un factor de seguridad de 1.251 en condiciones estáticas. Como se puede ver, el plano de falla atraviesa el material de desmonte. En la discusión se analiza dichos planos de daños y los factores de seguridad establecidos.

Como podemos observar en el análisis realizo en la Sección Geotécnica J-J', se obtuvo un factor de seguridad de 0.966 en condiciones pseudoestáticas. Como se puede ver, el plano de falla atraviesa el material de desmonte. En la discusión se analiza dichos planos de daños y los factores de seguridad establecidos.

Como podemos observar en el análisis realizo en la Sección Geotécnica K-K', se obtuvo un factor de seguridad de 1.273 en condiciones estáticas. Como se puede ver, el plano de falla atraviesa el material de desmonte. En la discusión se analiza dichos planos de daños y los factores de seguridad establecidos.

Como podemos observar en el análisis realizo en la Sección Geotécnica K-K', se obtuvo un factor de seguridad de 0.958 en condiciones pseudoestáticas. Como se puede ver, el plano de falla atraviesa el material de desmonte. En la discusión se analiza dichos planos de daños y los factores de seguridad establecidos.

Como podemos observar en el análisis realizo en la Sección Geotécnica L-L', se obtuvo un factor de seguridad de 1.294 en condiciones estáticas. Como se puede ver, el plano de falla atraviesa el material de desmonte. En la discusión se analiza dichos planos de daños y los factores de seguridad establecidos.

Como podemos observar en el análisis realizo en la Sección Geotécnica L-L', se obtuvo un factor de seguridad de 0.927 en condiciones pseudoestáticas. Como se puede ver, el plano de falla atraviesa el material de desmonte. En la discusión se analiza dichos planos de daños y los factores de seguridad establecidos.

Como podemos observar en el análisis realizo en la Sección Geotécnica M-M', se obtuvo un factor de seguridad de 1.286 en condiciones estáticas. Como se puede ver, el plano de falla atraviesa el material de desmonte. En la discusión se analiza dichos planos de daños y los factores de seguridad establecidos.

Como podemos observar en el análisis realizo en la Sección Geotécnica M-M', se obtuvo un factor de seguridad de 0.988 en condiciones pseudoestáticas. Como se puede ver, el plano de falla atraviesa el material de desmonte. En la discusión se analiza dichos planos de daños y los factores de seguridad establecidos.

Como podemos observar en el análisis realizo en la Sección Geotécnica N-N', se obtuvo un factor de seguridad de 1.292 en condiciones estáticas. Como podemos observar, la superficie de falla pasar por el material de desmonte de la mina. En las discusiones, analizaremos dicha superficie de falla y el factor de seguridad mostrado

Como podemos observar en el análisis realizo en la Sección Geotécnica N-N', se obtuvo un factor de seguridad de 0.986 en condiciones pseudoestáticas. Como podemos observar, la superficie de falla pasar por el material de desmonte de la mina. En las discusiones, analizaremos dicha superficie de falla y el factor de seguridad mostrado.

En la **Tabla 29** se muestran las secciones geotécnicas y el resumen de los factores de seguridad obtenidos del análisis de estabilidad de taludes. Así mismo, también se muestran las distancias a la superficie de falla más lejana.

		Co	ondiciones	
Sección Analizada	Estáticas	Distancia máxima horizontal a la superficie de falla (m)	Pseudoestáticas	Distancia máxima horizontal a la superficie de falla (m)
Sección Geotécnica A-A'	1.268	0.00	0.985	1.250
Sección Geotécnica B-B'	1.282	3.30	0.981	5.52
Sección Geotécnica C-C'	1.278	6.43	0.986	9.194
Sección Geotécnica D-D'	1.291	6.19	0.880	14.07
Sección Geotécnica E-E'	1.262	29.21	0.960	37.17
Sección Geotécnica F-F'	1.295	19.41	0.964	30.93
Sección Geotécnica G-G'	1.272	15.98	0.977	49.94
Sección Geotécnica H-H'	1.274	31.56	0.990	55.18
Sección Geotécnica I-I'	1.213	18.84	0.960	40.69
Sección Geotécnica J-J'	1.251	23.81	0.966	48.31
Sección Geotécnica K-K'	1.273	37.42	0.958	47.60
Sección Geotécnica L-L'	1.294	32.43	0.927	42.71
Sección Geotécnica M-M'	1.286	34.95	0.988	45.01
Sección Geotécnica N-N'	1.292	14.84	0.986	49.99

Tabla 29: Resumen de Factores de Seguridad Obtenidos

Utilizando las distancias máxima horizontal a la superficie de falla más lejana, se realizó la zonificación geotécnica del botadero, la cual se muestra en el plano 05.

MÉTODO DE ZONI	FICACIÓN GEOTÉCNICA	
Material Name College Device Rentworks (College) Device Rentworks (College) Device Rentworks 23 24 DISTANCIA HORIZONTA FALLA MEDIATION (College)	COLOR GENERAL-D-D DNDICKN PSUUDDESTRITLA - F.S. 0.90 Strength Type (bh/ma) Mair-Colomb 22 26 None Mair-Colomb 22 29 View function Mair-Colomb 20 30 None Mair-Colomb 100 21 View function Automatically Calcula LA LA SUPERFICIE DE CRESTA DEL TALUD	He Ro
	SPINCER FACTO	OR DE SEGURIDAD
	·	
		¥.
37.5 45 52.5 60 67.5		120 127.5 136 142.5 150 157.5
otécnica en condición pseudo e	estática Cuadrángulo	geológico
otécnica en condición estática	Límite depar	tamental
nálisis geotécnico		
0.325	0.75	1.5 km
	n: WGS 1964	
	n: WGS 1964	
UNIVERSIDAD NAC FACULTAE Escuela Académico Profe Tesis: ESTABILID/ MINA EL T	CIONAL DE CAJAMARC DE INGENIERÍA esional de Ingeniería Geolo DE GEOTÉCNICA DEL BOTADE ORO SANCHEZ CARRIÓN - LA te estabilidad física	A ógica RO NORTE - LIBERTAD Plano N°:
UNIVERSIDAD NAC FACULTAE Escuela Académico Profi Tesis: ESTABILID/ MINA EL T ² Iano: Zonificación o fesista: Bach. Willy I	CIONAL DE CAJAMARC DE INGENIERÍA esional de Ingeniería Geolo AD GEOTÉCNICA DEL BOTADE 'ORO SANCHEZ CARRIÓN - LA de estabilidad física =elix Dávila Cubas	A ógica RO NORTE - LIBERTAD
UNIVERSIDAD NAC FACULTAE Escuela Académico Profe Tesis: ESTABILID/ MINA EL T ^a lano: Zonificación o fesista: Bach. Willy I Saesor: Dr. Crispin Ze	CIONAL DE CAJAMARC DE INGENIERÍA esional de Ingeniería Geole DE GEOTÉCNICA DEL BOTADE TORO SANCHEZ CARRIÓN - LA de estabilidad física felix Dávila Cubas nón Quispe Mamani	A ógica RO NORTE - LIBERTAD Plano N°: 05

4.5. DISCUSIÓN DE RESULTADOS

Las propiedades físicas y mecánicas fueron obtenidos a través de los resultados de laboratorio, correlaciones, empíricas del Nspt, información de estudios ejecutados por Anddes y el criterio profesional.

El material lixiviado corresponde a un material granular clasificado en el sistema SUCS como grava limosa GM y presenta una distribución granulométrica de 44% de grava, 42% de arena y 14% de finos. Los resultados indican que los parámetros de resistencia de ángulo de fricción interna y cohesión en término de esfuerzos efectivos son de 36° y 29 kPa respectivamente. Asimismo, de acuerdo al ensayo de permeabilidad, se determinó que los valores de coeficiente de permeabilidad son de $3,5x10^{-4}$, $1,3x10^{-4}$ y $1,3x10^{-4}$ m/s para cargas normales de 800, 1600 y 3600 kPa, respectivamente. Estas presiones simulan la presión ejercida por el apilamiento mineral.

En ese sentido, de manera conservadora, se asignaron parámetros de resistencia en términos de esfuerzos efectivos de 36° de ángulo de fricción interna, cohesión nula y peso específico de 19 kN/m³.

Con respecto al desmonte de mina, este Corresponde a un material granular clasificado en el sistema SUCS como grava limosa (GM) y grava pobremente gradada con limo (GP-GM) y presenta una distribución granulométrica de 53,6 a 62,3% de grava, 29,8 a 31,1% de arena y 6,6 a 16,6% de finos. Los resultados indican que los parámetros de resistencia en término de esfuerzos efectivos varían de 34,5° a 37,5° de ángulo de fricción interna y 6 kPa de cohesión. La densidad del desmonte de mina varía entre 19 y 20 KN/m³.

Con respecto al suelo residual, este se caracteriza por presentar una consistencia que varía de rígida a muy rígida en condición ligeramente húmeda, clasificado en el sistema SUCS como arcilla de baja plasticidad CL, con distribución granulométrica de 0 a 16% de grava, 3 a 32% de arena y de 62 a 96% de finos. Estos materiales provienen de la meteorización in situ y degradación química de la roca arenisca y argilita. Los resultados indican que los parámetros de resistencia en términos de esfuerzos efectivos son de 18,0° de ángulo de fricción interna y 47,0 kPa de cohesión.

El basamento rocoso se encuentra compuesto por intercalaciones de roca arenisca/argilita, argilita/arenisca, arenisca cuarzosa, argilita y lodolita en forma de lentes, moderadamente alterada, muy fracturada, resistencia débil a moderada, color gris oscuro. Los parámetros geotécnicos del basamento rocoso se obtuvieron a partir del cálculo de la valoración geomecánica RMR efectuado

en las perforaciones ejecutadas, los que fueron corregidas considerando los valores de resistencia de los ensayos de carga puntual, el grado de fracturamiento y meteorización del macizo rocoso. Los parámetros geotécnicos, de los lentes de roca, se estimaron a partir de las correlaciones empíricas que involucran RMR versus ángulo de fricción, cohesión y módulo de elasticidad.

Los parámetros geotécnicos del basamento de roca que servirán para el cálculo de asentamientos fueron revisados por Anddes del estudio de "Ingeniería de Detalle Pad de Lixiviación Fase 4 y Plataforma de Lixiviación Temprana" (2013), donde se obtuvo valores de 23° de ángulo de fricción, cohesión 150 kPa y peso específico de 23 kN/m3 (Anddes Asociados S.A.C., 2014).

Por otro lado, con respecto al análisis de estabilidad, los criterios de aceptación para los factores de seguridad deben cumplir con los requerimientos mínimos según las recomendaciones de la guía ambiental para estabilidad de taludes de residuos sólidos del MINEM y las agencias United States Society of Dam (USSD) y United States Bureau of Reclamation (USBR). En el análisis se considerará:

- Mínimo factor de seguridad estático a corto plazo 1.3.
- Mínimo factor de seguridad estático a largo plazo 1.5.
- Mínimo factor de seguridad pseudoestático a largo plazo 1.0.

Como podemos observar en el análisis realizó en la Sección Geotécnica A-A', se obtuvo un factor de seguridad de 1.23 en condiciones estáticas. Como podemos observar, la superficie de falla pasar por el material de desmonte de la mina. El factor de seguridad no cumple con el factor de seguridad mínimo exigido por los criterios de aceptación, por lo tanto, se deberán analizar otras alternativas de solución como aumentar la relación del Talud Horizontal / Vertical, o medidas de estabilización de taludes, con la finalidad de incrementar los esfuerzos resistentes y en ese sentido, aumentar el factor de seguridad hasta cumplir con los requerimientos mínimos.

Como podemos observar en el análisis realizó en la Sección Geotécnica A-A', se obtuvo un factor de seguridad de 0.88 en condiciones pseudoestáticas. Como podemos observar, la superficie de falla pasar por el material de desmonte de la mina. El factor de seguridad no cumple con el factor de seguridad mínimo exigido por los criterios de aceptación, por lo tanto, se deberán analizar otras alternativas de solución como aumentar la relación del Talud Horizontal / Vertical, o medidas de estabilización de taludes, con la finalidad de incrementar los esfuerzos resistentes y en ese sentido, aumentar el factor de seguridad hasta cumplir con los requerimientos mínimos. Como podemos observar en el análisis realizó en la Sección Geotécnica B-B', se obtuvo un factor de seguridad de 1.19 en condiciones estáticas. Como podemos observar, la superficie de falla pasar por el material de desmonte de la mina. El factor de seguridad no cumple con el factor de seguridad mínimo exigido por los criterios de aceptación, por lo tanto, se deberán analizar otras alternativas de solución como aumentar la relación del Talud Horizontal / Vertical, o medidas de estabilización de taludes, con la finalidad de incrementar los esfuerzos resistentes y en ese sentido, aumentar el factor de seguridad hasta cumplir con los requerimientos mínimos.

Como podemos observar en el análisis realizó en la Sección Geotécnica B-B', se obtuvo un factor de seguridad de 0.93 en condiciones pseudoestáticas. Como podemos observar, la superficie de falla pasar por el material de desmonte de la mina. El factor de seguridad no cumple con el factor de seguridad mínimo exigido por los criterios de aceptación, por lo tanto, se deberán analizar otras alternativas de solución como aumentar la relación del Talud Horizontal / Vertical, o medidas de estabilización de taludes, con la finalidad de incrementar los esfuerzos resistentes y en ese sentido, aumentar el factor de seguridad hasta cumplir con los requerimientos mínimos.

Como podemos observar en el análisis realizó en la Sección Geotécnica C-C', se obtuvo un factor de seguridad de 1.28 en condiciones estáticas. Como podemos observar, la superficie de falla pasar por el material de desmonte de la mina. El factor de seguridad no cumple con el factor de seguridad mínimo exigido por los criterios de aceptación, por lo tanto, se deberán analizar otras alternativas de solución como aumentar la relación del Talud Horizontal / Vertical, o medidas de estabilización de taludes, con la finalidad de incrementar los esfuerzos resistentes y en ese sentido, aumentar el factor de seguridad hasta cumplir con los requerimientos mínimos.

Como podemos observar en el análisis realizó en la Sección Geotécnica C-C', se obtuvo un factor de seguridad de 0.95 en condiciones pseudoestáticas. Como podemos observar, la superficie de falla pasar por el material de desmonte de la mina. El factor de seguridad no cumple con el factor de seguridad mínimo exigido por los criterios de aceptación, por lo tanto, se deberán analizar otras alternativas de solución como aumentar la relación del Talud Horizontal / Vertical, o medidas de estabilización de taludes, con la finalidad de incrementar los esfuerzos resistentes y en ese sentido, aumentar el factor de seguridad hasta cumplir con los requerimientos mínimos.

Como podemos observar en el análisis realizó en la Sección Geotécnica D-D', se obtuvo un factor de seguridad de 1.28 en condiciones estáticas. Como podemos observar, la superficie de falla pasar por el material de desmonte de la mina. El factor de seguridad no cumple con el factor de seguridad mínimo exigido por los criterios de aceptación, por lo tanto, se deberán analizar otras alternativas de solución como aumentar la relación del Talud Horizontal / Vertical, o medidas de estabilización de taludes, con la finalidad de incrementar los esfuerzos resistentes y en ese sentido, aumentar el factor de seguridad hasta cumplir con los requerimientos mínimos.

Como podemos observar en el análisis realizó en la Sección Geotécnica D-D', se obtuvo un factor de seguridad de 0.98 en condiciones pseudoestáticas. Como podemos observar, la superficie de falla pasar por el material de desmonte de la mina. El factor de seguridad no cumple con el factor de seguridad mínimo exigido por los criterios de aceptación, por lo tanto, se deberán analizar otras alternativas de solución como aumentar la relación del Talud Horizontal / Vertical, o medidas de estabilización de taludes, con la finalidad de incrementar los esfuerzos resistentes y en ese sentido, aumentar el factor de seguridad hasta cumplir con los requerimientos mínimos.

Como podemos observar en el análisis realizó en la Sección Geotécnica E-E', se obtuvo un factor de seguridad de 1.21 en condiciones estáticas. Como podemos observar, la superficie de falla pasar por el material de desmonte de la mina. El factor de seguridad no cumple con el factor de seguridad mínimo exigido por los criterios de aceptación, por lo tanto, se deberán analizar otras alternativas de solución como aumentar la relación del Talud Horizontal / Vertical, o medidas de estabilización de taludes, con la finalidad de incrementar los esfuerzos resistentes y en ese sentido, aumentar el factor de seguridad hasta cumplir con los requerimientos mínimos.

Como podemos observar en el análisis realizó en la Sección Geotécnica E-E', se obtuvo un factor de seguridad de 0.96 en condiciones pseudoestáticas. Como podemos observar, la superficie de falla pasar por el material de desmonte de la mina. El factor de seguridad no cumple con el factor de seguridad mínimo exigido por los criterios de aceptación, por lo tanto, se deberán analizar otras alternativas de solución como aumentar la relación del Talud Horizontal / Vertical, o medidas de estabilización de taludes, con la finalidad de incrementar los esfuerzos resistentes y en ese sentido, aumentar el factor de seguridad hasta cumplir con los requerimientos mínimos.

Como podemos observar en el análisis realizó en la Sección Geotécnica F-F', se obtuvo un factor de seguridad de 1.29 en condiciones estáticas. Como podemos observar, la superficie de falla pasar por el material de desmonte de la mina. El factor de seguridad no cumple con el factor de seguridad mínimo exigido por los criterios de aceptación, por lo tanto, se deberán analizar otras alternativas de solución como aumentar la relación del Talud Horizontal / Vertical, o medidas de

estabilización de taludes, con la finalidad de incrementar los esfuerzos resistentes y en ese sentido, aumentar el factor de seguridad hasta cumplir con los requerimientos mínimos.

Como podemos observar en el análisis realizó en la Sección Geotécnica F-F', se obtuvo un factor de seguridad de 0.97 en condiciones pseudoestáticas. Como podemos observar, la superficie de falla pasar por el material de desmonte de la mina. El factor de seguridad no cumple con el factor de seguridad mínimo exigido por los criterios de aceptación, por lo tanto, se deberán analizar otras alternativas de solución como aumentar la relación del Talud Horizontal / Vertical, o medidas de estabilización de taludes, con la finalidad de incrementar los esfuerzos resistentes y en ese sentido, aumentar el factor de seguridad hasta cumplir con los requerimientos mínimos.

Como podemos observar en el análisis realizó en la Sección Geotécnica G-G', se obtuvo un factor de seguridad de 1.28 en condiciones estáticas. Como podemos observar, la superficie de falla pasar por el material de desmonte de la mina. El factor de seguridad no cumple con el factor de seguridad mínimo exigido por los criterios de aceptación, por lo tanto, se deberán analizar otras alternativas de solución como aumentar la relación del Talud Horizontal / Vertical, o medidas de estabilización de taludes, con la finalidad de incrementar los esfuerzos resistentes y en ese sentido, aumentar el factor de seguridad hasta cumplir con los requerimientos mínimos.

Como podemos observar en el análisis realizó en la Sección Geotécnica G-G', se obtuvo un factor de seguridad de 0.97 en condiciones pseudoestáticas. Como podemos observar, la superficie de falla pasar por el material de desmonte de la mina. El factor de seguridad no cumple con el factor de seguridad mínimo exigido por los criterios de aceptación, por lo tanto, se deberán analizar otras alternativas de solución como aumentar la relación del Talud Horizontal / Vertical, o medidas de estabilización de taludes, con la finalidad de incrementar los esfuerzos resistentes y en ese sentido, aumentar el factor de seguridad hasta cumplir con los requerimientos mínimos.

Como podemos observar en el análisis realizó en la Sección Geotécnica H-H', se obtuvo un factor de seguridad de 1.22 en condiciones estáticas. Como podemos observar, la superficie de falla pasar por el material de desmonte de la mina. El factor de seguridad no cumple con el factor de seguridad mínimo exigido por los criterios de aceptación, por lo tanto, se deberán analizar otras alternativas de solución como aumentar la relación del Talud Horizontal / Vertical, o medidas de estabilización de taludes, con la finalidad de incrementar los esfuerzos resistentes y en ese sentido, aumentar el factor de seguridad hasta cumplir con los requerimientos mínimos. Como podemos observar en el análisis realizó en la Sección Geotécnica H-H', se obtuvo un factor de seguridad de 0.97 en condiciones pseudoestáticas. Como podemos observar, la superficie de falla pasar por el material de desmonte de la mina. El factor de seguridad no cumple con el factor de seguridad mínimo exigido por los criterios de aceptación, por lo tanto, se deberán analizar otras alternativas de solución como aumentar la relación del Talud Horizontal / Vertical, o medidas de estabilización de taludes, con la finalidad de incrementar los esfuerzos resistentes y en ese sentido, aumentar el factor de seguridad hasta cumplir con los requerimientos mínimos.

Como podemos observar en el análisis realizó en la Sección Geotécnica I-I', se obtuvo un factor de seguridad de 1.25 en condiciones estáticas. Como podemos observar, la superficie de falla pasar por el material de desmonte de la mina. El factor de seguridad no cumple con el factor de seguridad mínimo exigido por los criterios de aceptación, por lo tanto, se deberán analizar otras alternativas de solución como aumentar la relación del Talud Horizontal / Vertical, o medidas de estabilización de taludes, con la finalidad de incrementar los esfuerzos resistentes y en ese sentido, aumentar el factor de seguridad hasta cumplir con los requerimientos mínimos.

Como podemos observar en el análisis realizó en la Sección Geotécnica I-I', se obtuvo un factor de seguridad de 0.98 en condiciones pseudoestáticas. Como podemos observar, la superficie de falla pasar por el material de desmonte de la mina. El factor de seguridad no cumple con el factor de seguridad mínimo exigido por los criterios de aceptación, por lo tanto, se deberán analizar otras alternativas de solución como aumentar la relación del Talud Horizontal / Vertical, o medidas de estabilización de taludes, con la finalidad de incrementar los esfuerzos resistentes y en ese sentido, aumentar el factor de seguridad hasta cumplir con los requerimientos mínimos.

Como podemos observar en el análisis realizó en la Sección Geotécnica J-J', se obtuvo un factor de seguridad de 1.21 en condiciones estáticas. Como podemos observar, la superficie de falla pasar por el material de desmonte de la mina. El factor de seguridad no cumple con el factor de seguridad mínimo exigido por los criterios de aceptación, por lo tanto, se deberán analizar otras alternativas de solución como aumentar la relación del Talud Horizontal / Vertical, o medidas de estabilización de taludes, con la finalidad de incrementar los esfuerzos resistentes y en ese sentido, aumentar el factor de seguridad hasta cumplir con los requerimientos mínimos.

Como podemos observar en el análisis realizó en la Sección Geotécnica J-J', se obtuvo un factor de seguridad de 0.95 en condiciones pseudoestáticas. Como podemos observar, la superficie de falla pasar por el material de desmonte de la mina. El factor de seguridad no cumple con el

factor de seguridad mínimo exigido por los criterios de aceptación, por lo tanto, se deberán analizar otras alternativas de solución como aumentar la relación del Talud Horizontal / Vertical, o medidas de estabilización de taludes, con la finalidad de incrementar los esfuerzos resistentes y en ese sentido, aumentar el factor de seguridad hasta cumplir con los requerimientos mínimos.

Como podemos observar en el análisis realizó en la Sección Geotécnica K-K', se obtuvo un factor de seguridad de 1.28 en condiciones estáticas. Como podemos observar, la superficie de falla pasar por el material de desmonte de la mina. El factor de seguridad no cumple con el factor de seguridad mínimo exigido por los criterios de aceptación, por lo tanto, se deberán analizar otras alternativas de solución como aumentar la relación del Talud Horizontal / Vertical, o medidas de estabilización de taludes, con la finalidad de incrementar los esfuerzos resistentes y en ese sentido, aumentar el factor de seguridad hasta cumplir con los requerimientos mínimos.

Como podemos observar en el análisis realizó en la Sección Geotécnica K-K', se obtuvo un factor de seguridad de 0.95 en condiciones pseudoestáticas. Como podemos observar, la superficie de falla pasar por el material de desmonte de la mina. El factor de seguridad no cumple con el factor de seguridad mínimo exigido por los criterios de aceptación, por lo tanto, se deberán analizar otras alternativas de solución como aumentar la relación del Talud Horizontal / Vertical, o medidas de estabilización de taludes, con la finalidad de incrementar los esfuerzos resistentes y en ese sentido, aumentar el factor de seguridad hasta cumplir con los requerimientos mínimos.

Como podemos observar en el análisis realizó en la Sección Geotécnica L-L', se obtuvo un factor de seguridad de 1.27 en condiciones estáticas. Como podemos observar, la superficie de falla pasar por el material de desmonte de la mina. El factor de seguridad no cumple con el factor de seguridad mínimo exigido por los criterios de aceptación, por lo tanto, se deberán analizar otras alternativas de solución como aumentar la relación del Talud Horizontal / Vertical, o medidas de estabilización de taludes, con la finalidad de incrementar los esfuerzos resistentes y en ese sentido, aumentar el factor de seguridad hasta cumplir con los requerimientos mínimos.

Como podemos observar en el análisis realizó en la Sección Geotécnica L-L', se obtuvo un factor de seguridad de 0.93 en condiciones pseudoestáticas. Como podemos observar, la superficie de falla pasar por el material de desmonte de la mina. El factor de seguridad no cumple con el factor de seguridad mínimo exigido por los criterios de aceptación, por lo tanto, se deberán analizar otras alternativas de solución como aumentar la relación del Talud Horizontal / Vertical, o medidas

de estabilización de taludes, con la finalidad de incrementar los esfuerzos resistentes y en ese sentido, aumentar el factor de seguridad hasta cumplir con los requerimientos mínimos.

Como podemos observar en el análisis realizó en la Sección Geotécnica M-M', se obtuvo un factor de seguridad de 1.28 en condiciones estáticas. Como podemos observar, la superficie de falla pasar por el material de desmonte de la mina. El factor de seguridad no cumple con el factor de seguridad mínimo exigido por los criterios de aceptación, por lo tanto, se deberán analizar otras alternativas de solución como aumentar la relación del Talud Horizontal / Vertical, o medidas de estabilización de taludes, con la finalidad de incrementar los esfuerzos resistentes y en ese sentido, aumentar el factor de seguridad hasta cumplir con los requerimientos mínimos.

Como podemos observar en el análisis realizó en la Sección Geotécnica M-M', se obtuvo un factor de seguridad de 0.95 en condiciones pseudoestáticas. Como podemos observar, la superficie de falla pasar por el material de desmonte de la mina. El factor de seguridad no cumple con el factor de seguridad mínimo exigido por los criterios de aceptación, por lo tanto, se deberán analizar otras alternativas de solución como aumentar la relación del Talud Horizontal / Vertical, o medidas de estabilización de taludes, con la finalidad de incrementar los esfuerzos resistentes y en ese sentido, aumentar el factor de seguridad hasta cumplir con los requerimientos mínimos.

Como podemos observar en el análisis realizó en la Sección Geotécnica N-N', se obtuvo un factor de seguridad de 1.29 en condiciones estáticas. Como podemos observar, la superficie de falla pasar por el material de desmonte de la mina. El factor de seguridad no cumple con el factor de seguridad mínimo exigido por los criterios de aceptación, por lo tanto, se deberán analizar otras alternativas de solución como aumentar la relación del Talud Horizontal / Vertical, o medidas de estabilización de taludes, con la finalidad de incrementar los esfuerzos resistentes y en ese sentido, aumentar el factor de seguridad hasta cumplir con los requerimientos mínimos.

Como podemos observar en el análisis realizó en la Sección Geotécnica N-N', se obtuvo un factor de seguridad de 0.94 en condiciones pseudoestáticas. Como podemos observar, la superficie de falla pasar por el material de desmonte de la mina. El factor de seguridad no cumple con el factor de seguridad mínimo exigido por los criterios de aceptación, por lo tanto, se deberán analizar otras alternativas de solución como aumentar la relación del Talud Horizontal / Vertical, o medidas de estabilización de taludes, con la finalidad de incrementar los esfuerzos resistentes y en ese sentido, aumentar el factor de seguridad hasta cumplir con los requerimientos mínimos.

4.6. CONTRASTACIÓN DE HIPÓTESIS

Como podemos revisar, en la hipótesis se planteó que se analizará la estabilidad física en condición crítica (durante el tercer trimestre del 2021), donde se mostrarán factores de seguridad, en condición estática y pseudoestática, menores a los valores mínimos requeridos según los criterios de aceptabilidad regulados mundialmente (1.3 para condición estática en taludes temporales y 1.0 en condición pseudoestática). Según los resultados obtenidos, podemos observar que la superficie de falla pasar por el material de desmonte de la mina. El factor de seguridad no cumple con el factor de seguridad mínimo exigido por los criterios de aceptación, por lo tanto, respondiendo a la hipótesis planteada, se concluye que el Botadero de la Mina El Toro es inestable durante el tercer trimestre del 2021.

CAPÍTULO V CONCLUSIONES Y RECOMENDACIONES

5.1. CONCLUSIONES

Desmonte de mina: Según SUCS como grava limosa (GM) y grava pobremente gradada con limo (GP-GM) y presenta una distribución granulométrica de 53,6 a 62,3% de grava, 29,8 a 31,1% de arena y 6,6 a 16,6% de finos.

Suelo residual: Según SUCS como arcilla de baja plasticidad CL, con distribución granulométrica de 0 a 16% de grava, 3 a 32% de arena y de 62 a 96% de finos.

Basamento Rocoso: Intercalaciones de roca arenisca/argilita, argilita/arenisca, arenisca cuarzosa, argilita y lodolita en forma de lentes, moderadamente alterada, muy fracturada, resistencia débil a moderada, color gris oscuro.

- Los criterios de aceptabilidad definidos para esta investigación son 1.3 para Condición Estática y 1 para Condición Pseudo Estática.
- Las propiedades geotécnicas utilizadas en la investigación fueron: para el material de suelo residual, se obtuvo un peso unitario de 20 kN/m³, una cohesión de 22 kN/m² y un ángulo de fricción de 26°, para el material de desmonte de mina, se obtuvo un peso unitario de 19 kN/m³, una cohesión de 0 kN/m² y un ángulo de fricción de 36°. Finalmente, para el material de roca maciza, se obtuvo un peso unitario de 23 kN/m³, una cohesión de 150 kN/m² y un ángulo de fricción de 23°.
- Los resultados de los análisis de estabilidad para el Botadero Norte van desde un mínimo de 1.19 para la sección geotécnica B-B', hasta un máximo de 1.29 en las secciones geotécnicas F-F' y N-N'.
- En las secciones analizadas se pudo observar que la superficie de falla pasar por el material de desmonte de la mina, por lo tanto el factor de seguridad no cumple con el factor de seguridad mínimo exigido por los criterios de aceptación lo que indica que el Botadero Norte es inestable.

5.2. **RECOMENDACIONES**

- Se recomienda realizar un plan de estabilización del botadero de desmonte con la finalidad de operar bajo condiciones de estabilidad que brinden seguridad en el proceso de descarga de material estéril.
- Se recomienda para futuras investigaciones obtener registros piezométricos a partir de perforaciones, con la finalidad de conocer el nivel de agua con respecto a la superficie proyectada del botadero de desmonte.
- Se recomienda realizar un análisis de infiltración del suelo, para conocer las zonas saturas y no saturadas del botadero en caso se presente nivel freático.
- Se recomienda la evaluación y comparación de la estabilidad del talud y sus deformaciones a través de programas de elementos finitos, donde se puedan introducir modelos constitutivos a los materiales que simulen el comportamiento esfuerzo - deformación de una manera más real.
- Se recomienda realizar, en futuras investigaciones, el análisis dinámico para el botadero, para conocer cuáles serían las deformaciones máximas por sismo que se podrían dar.
- Se deberán analizar otras alternativas de solución como aumentar la relación del Talud Horizontal / Vertical, o medidas de estabilización de taludes, con la finalidad de incrementar los esfuerzos resistentes y en ese sentido, aumentar el factor de seguridad hasta cumplir con los requerimientos mínimos.

REFERENCIAS BIBLIOGRÁFICAS

Amireault, S., & Espinoza, Y. (2010). Yacimiento de Oro - Plata en Areniscas, Franja Sedimentaria Mesozoica, Algamarca - Cajamarca. *XV Congreo Peruano de Geología* (págs. 500-501). Cusco: Sociedad Geológica del Perú.

- Anddes Asociados S.A.C. (2014). Investigaciones Geotécnicas y Análisis de Estabilidad: Ingeniería de Detalle Botaderos de Desmonte e Inadecuado, Ampliación Pad Fase 6 y Concecptual Pad 2 Norte Mina El Toro. Lima: Anddes Asociados S.A.C.
- Casmus, Y. (2014). *NI 43-101 Resources Technical Report: El Toro Gold Project*. Vancouver: SGS Canada Inc.
- Chira Fernández, J. V., Vásquez Oliva, R., & Castañeda Salazar, D. (2012). *Prospección Geoquímica Regional al Norte del Paralelo* 8° 00' Sur, Cuencas de la Vertiente *Atlántica*. Lima: Ministerio de Energía y Minas.
- Cunning and Hawley, J. (2017). *Guidelines for Mine Waste Dump and Stockpile Design*. Australia: CSIRO.
- Das, B. M. (2019). Advanced Soil Mechanics. London: CRC Press.
- Das, B. M., & Sobhan, K. (2014). *Principles of Geotechnical Engineering*. California: Cengage Learning.
- Duncan, J. M., Wright, S. G., & Brandon, T. L. (2014). *Soil Strength and Slope Stability*. New Jersey: Wiley.
- Figueroa, A., Solans, D., Gonzalez, C., & Campaña, J. (2017). Comportamiento sísmico de presas de relaves construidas aguas abajo y línea central. *Obras y Proyectos*(21). doi:http://dx.doi.org/10.4067/S0718-28132017000100004
- González de Vallejo, L. I., Ferrer, M., Ortuño, L., & Oteo, C. (2004). Ingeniería Geológica. Madrid: Pearson Educación. Obtenido de https://edisciplinas.usp.br/pluginfile.php/5540850/mod_resource/content/1/Livro%202.pd f
- Ministerio de Vivienda, Construcción y Saneamiento. (2018). *Norma E.050*. Lima: Ministerio de Vivienda, Construcción y Saneamiento.
- Monnet, J. (2015). In Situ Tests in Geotechnical Engineering. London: ISTE Ltd.
- Osorio Mogollon, R. E., & Navarro Zavala, A. J. (2018). *Análisis Comparativo de Deformaciones por Sismo en la Presa de Relave en Abandono Yauliyacu*. Lima: Universidad Peruana de Ciencias Aplicadas.
- Oyala Rubio, E. A. (2019). Análisis comparativo entre el método aguas abajo y suelo reforzado para el recrecimiento de la presa de relaves Viyulo. Lima: Universidad Ricardo Palma.
- Rao, V., & Sivakumar Babu, G. (2016). *Forensic Geotechnical Engineering*. New Delhi: Springers.

- Salinas Lázaro, C. E., Acero Meza, W., & Yupanqui Sifuentes, F. (2015). Geología del Yacimiento "El Toro". *Perumin 32 Convención Minera: Encuentro Tecnología e Investigación*. Lima: Corporación del Centro Gold.
- Sánchez Mendoza, A. M., & Taza Rojas, A. A. (2018). *Análisis de estabilidad sísmica para una presa utilizando relave grueso con el método de suelo armado (Huachocolpa uno Huancavelica)*. Lima: Universidad San Martín de Porres.
- Suarez Díaz, J. (2007). *Deslizamientos y Estabilidad de Taludes en Zonas Tropicales*. Bucaramanga: Instituto de Investigaciones sobre Erosión y Deslizamientos. Obtenido de https://recordcenter.sgc.gov.co/B23/662_19MemExPl_373_Las_Acacias/Documento/pdf /Anexo1_InveRecoBibl/Su%C3%A1rez%20(1998).%20Deslizamientos%20y%20estabili dad%20de%20taludes%20en%20zonas%20tropicales.pdf
- Tadeo Lozano, J. (2000). *Cucunubá: modelo para un desarrollo sostenible*. Bogotá: Universidad de Bogotá.
- U.S. Army Corps of Engineers. (2003). *Slope Stability*. Washington: U.S. Army Corps of Engineers.