UNIVERSIDAD NACIONAL DE CAJAMARCA FACULTAD DE INGENIERÍA

ESCUELA PROFESIONAL DE INGENIERÍA GEOLÓGICA

TESIS

COMPORTAMIENTO GEOLÓGICO - GEOMECÁNICO DE TALUDES Y LADERAS EN LOS CASERÍOS DE LAS CHAMANAS Y MONTESORCO, SAN MARCOS CAJAMARCA

Para optar el Título Profesional de:

Ingeniero Geólogo

Autor:

Bach. León Muñoz Jackeline Evelin

Asesor:

M.Cs. Ing. Gonzales Yana Roberto Severino

CAJAMARCA – PERÚ

2024

CONSTANCIA DE INFORME DE ORIGINALIDAD

- FACULTAD DE INGENIERÍA -

1.	 Investigador: Jackeline Evelin León Mi DNI: 70584651 Escuela Profesional: Ingeniería Geológ 					
	Escuela Profesional. Ingeliiella Geoloj	şıça				
2.	2. Asesor: M.Cs. Ing. Roberto Severino Go Facultad: Ingeniería	Asesor: M.Cs. Ing. Roberto Severino Gonzales Yana Facultad: Ingeniería				
3.	3. Grado académico o título profesional					
	☐Bachiller		□Segunda es	necialidad		
	☐Maestro ☐Doctor			podeliada		
4.	J. Tipo de Investigación:					
	■ Tesis □ Trabajo de investigado	ción	□ Trabajo de	suficiencia profesional		
	☐ Trabajo académico					
5.	 Título de Trabajo de Investigación: C TALUDES Y LADERAS EN LOS CASERÍOS CAJAMARCA 					
6.	. Fecha de evaluación: 19 de marzo del 2	2024				
7.	. Software antiplagio:	NITIN	□ URI	KUND (OURIGINAL) (*)		
8.	. Porcentaje de Informe de Similitud: 19	%				
	. Código Documento: oid:3117:3407782					
10.	O. Resultado de la Evaluación de Similitud	l:				
	■ APROBADO □ PARA LEVANTAMIEN	TO D	E OBSERVACION	ES O DESAPROBADO		
	Fecha (misid	n: 19/03/2024			
		274				
			A STATE OF THE PARTY OF THE PAR	Firmado digitalmente por:		

FIRMA DEL ASESOR Roberto Severino Gonzales Yana DNI: 29441681

Firmado digitalmente por: FERNANDEZ LEON Yvonne Katherine FAU 20148258601 soft Motivo: Soy el autor del

documento

Fecha: 20/03/2024 10:00:24-0500

UNIDAD DE INVESTIGACIÓN FI

AGRADECIMIENTO

A Dios por darme siempre la oportunidad de continuar mi camino y estar a mi lado en todo momento.

A mi alma mater, Universidad Nacional de Cajamarca, a la Escuela Profesional de Ingeniería Geológica y a todos los docentes que, con sus enseñanzas y guía, han contribuido con la base de mi formación académica.

A mi asesor de tesis M.Cs. Ing. Roberto Gonzales Yana por su apoyo incondicional y constante orientación, el cual ha direccionado mi investigación.

A todos mis maestros en especial al Dr. Ing. Segundo Reinaldo Rodríguez Cruzado, Dr. Ing. Crispín Zenón Quispe Mamani, Dr. Ing. Alejandro Claudio Lagos Manrique, M.Cs. Víctor Ausberto Arapa Vilca.

Evelin León.

DEDICATORIA

A mis padres, por todo su apoyo incondicional, dedicación y constantes consejos, que a través del tiempo me han impulsado a seguir adelante y a realizarme como profesional.

A mi padre Teófilo, por su interés y constante apoyo.

A mi madre María, por su entrega, cariño y ejemplo de superación, por sus consejos y amplia sabiduría.

A Akim, por ser motor y motivo en todo momento.

Todo mi amor, respeto y agradecimiento eterno.

Evelin León.

CONTENIDO

		Påg.
AGRAI	DECIMIENTO	ii
DEDIC	ATORIA	iii
ÍNDICI	E DE FIGURAS	vii
ÍNDICI	E DE FOTOS	ix
ÍNDICI	E DE TABLAS	X
LISTA	DE ABREVIATURAS	xiii
RESUM	MEN	XV
ABSTR	ACT	xvi
	CAPÍTULO I.	
INTRO	DUCCIÓN	
	CAPÍTULO II.	
	MARCO TEÓRICO	
2.1.	ANTECEDENTES TEÓRICOS	3
2.1.1.	Antecedentes Internacionales	3
2.1.2.	Antecedentes Nacionales	3
2.1.3.	Antecedentes Locales	4
2.2.	BASES TEÓRICAS	5
2.2.1.	Taludes y laderas	5
2.2.2.	Suelos	6
2.2.2.1.	Tipos de suelos	6
2.2.2.2.	Clasificación de suelos	7
2.2.2.3.	Tensiones efectivas	9
2.2.3.	Criterios de rotura de Mohr-Coulomb	9
2.2.4.	Precipitación	12
2.2.4.1.	Transposición de Datos de Precipitaciones	12
2.2.5.	Infiltración	13
2.2.6.	Sismicidad	13
2.2.7.	Estabilidad de taludes	14
2.2.7.1.	Análisis de estabilidad	
2.2.7.2.	Análisis Pseudoestático	
2.2.8.	Movimientos en masa	19

		Pág.
2.2.8.1.	Caídas	19
2.2.8.2.	Inclinación o volteo	20
2.2.8.3.	Deslizamientos	20
2.2.8.4.	Flujo	22
2.2.8.5.	Reptación	22
2.3.	DEFINICIÓN DE TÉRMINOS BÁSICOS	23
	CAPÍTULO III.	
	MATERIALES Y MÉTODOS	
3.1.	UBICACIÓN POLÍTICA Y GEOGRÁFICA	24
3.2.	ACCESIBILIDAD	
3.3.	CLIMA	
3.3.1.	Precipitaciones	25
3.4.	METODOLOGÍA	
3.4.1.	Tipo y diseño de la investigación	25
3.4.2.	Población de estudio	
3.4.3.	Muestra	25
3.4.4.	Unidad de análisis	26
3.4.5.	Identificación de variables	26
3.4.6.	Técnicas e instrumentos de recolección de datos	26
3.4.7.	Instrumentos y equipos	26
3.4.8.	Procedimiento y técnicas de recolección de datos	27
3.5.	GEOMORFOLOGÍA	29
3.5.1.	Unidades Morfogenéticas	29
3.5.1.1.	Planicies	29
3.5.1.2.	Lomada o colinas	30
3.5.1.3.	Laderas	31
3.5.1.4.	Escarpes	31
3.5.2.	Unidades Geomorfológicas	32
3.5.2.1.	Colinas y lomadas en roca sedimentaria	32
3.5.2.2.	Terrazas aluviales	33
3.5.2.3.	Pie de monte coluvio deluvial	33
3.5.2.4.	Valle fluvial	34
3.5.2.5.	Cárcavas	35

		Pág.
3.6.	GEOLOGÍA REGIONAL	35
3.7.	GEOLOGÍA LOCAL	36
3.7.1.	Unidades Litoestratigráficas	36
3.7.1.1.	Formación Cajabamba (Nm-cjb)	36
3.7.1.2.	Formación Condebamba (N-con)	38
3.7.1.3.	Depósitos cuaternarios	39
3.7.2.	Geología Estructural	40
3.7.2.1.	Fallas	40
3.7.2.2.	Plegamientos	41
3.8.	HIDROLOGÍA	42
3.8.1.	Transposición de Datos de Precipitación de la Estación Metereológica S	an Marcos a la
	microcuenca Cascasén	42
3.8.2.	Escurrimiento e Infiltración	44
3.9.	HIDROGEOLOGÍA	50
3.10.	COMPORTAMIENTO GEOMECÁNICO	50
3.10.1.	Propiedades Geomecánicas	51
3.11.	ESTABILIDAD DE TALUDES Y LADERAS	56
3.11.1.	Estación 01	58
3.11.2.	Estación 02	61
3.11.3.	Estación 03	65
3.11.4.	Estación 04	69
3.11.5.	Estación 05	72
3.11.6.	Estación 06	77
3.11.7.	Perfil A-A'	81
3.11.8.	Perfil B-B'	83
3.12.	PELIGROS GEOLÓGICOS	86
	CAPÍTULO IV	
	ANÁLISIS Y DISCUSIÓN DE RESULTADOS	
4.1.	PRESENTACIÓN DE RESULTADOS	92
4.1.1.	Mecanismos asociados a la inestabilidad del talud	
4.1.1.1.	Factores condicionantes	
4.1.2.	Factor de seguridad	
	-	

		r ag.
4.2.	CONTRASTACIÓN DE LA HIPÓTESIS	98
	CAPÍTULO V.	
	CONCLUSIONES Y RECOMENDACIONES	
5.1.	CONCLUSIONES	99
5.2.	RECOMENDACIONES	100
REFERE	ENCIAS BIBLIOGRÁFICAS	101
ANEXOS	S	103
	ÍNDICE DE FIGURAS	
	INDICE DE FIGURAS	
		Pág
Figura 1.	Nomenclatura de taludes y laderas.	5
Figura 2.	Círculo de Mohr Coulomb	10
Figura 3.	Criterio de rotura en suelos.	11
Figura 4.	Zonificación sísmica del Perú	14
Figura 5.	Ejemplo de modelización de estabilidad de taludes en el software Slide	18
Figura 6.	Tipos de Movimientos en masa según el Grupo de Estándares para los Movim	iientos
	en Masa, 2007	19
Figura 7.	Desplazamiento de rotación en una ladera	21
Figura 8.	Reptación	22
Figura 9.	Arcillitas blanquecinas en intercalación con arcillitas blanquecinas, arenas lir	nosa y
	conglomerado fino. 817048-E, 9189075-N	38
Figura 10	. Curvas de Precipitación durante los años 2017 - 2021	47
Figura 11	. Curvas de Precipitación durante los años 2021- 2023	48
Figura 12	. Cálculo de coeficientes sísmicos con Load Cap	57
Figura 13	. Análisis de estabilidad en Condiciones Naturales Estación 01	59
Figura 14	. Análisis de estabilidad en Condiciones Pseudoestáticas Estación 01	60

		Pág.
Figura 15.	Análisis de estabilidad en Condiciones Saturadas Estación 01	60
Figura 16.	Análisis de estabilidad en Condiciones Saturadas - Pseudoestáticas de la	Estación
	01	61
Figura 17.	Estación 02	62
Figura 18.	Análisis de estabilidad en Condiciones Naturales Estación 02	63
Figura 19.	Análisis de estabilidad en Condiciones Pseudoestáticas Estación 02	63
Figura 20.	Análisis de estabilidad en Saturación Parcial Estación 02	64
Figura 21.	Análisis de estabilidad en Condiciones Saturadas-Pseudoestáticas Estación	n 0264
Figura 22.	Geometría del Talud 03	66
Figura 23.	Análisis de estabilidad en condiciones naturales Estación 03	67
Figura 24.	Análisis de estabilidad en Condiciones Pseudoestáticas Estación 03	67
Figura 25.	Análisis de estabilidad en Saturación Parcial Estación 03	68
Figura 26.	Análisis de estabilidad en Condiciones Saturadas-Pseudoestáticas Estación	n 0368
Figura 27.	Análisis de estabilidad en condiciones naturales Estación 04	70
Figura 28.	Análisis de estabilidad en Condiciones Pseudoestáticas Estación 04	71
Figura 29.	Análisis de estabilidad en Saturación Parcial Estación 04	71
Figura 30.	Análisis de estabilidad en Condiciones Saturación Parcial - Pseudoestátic	cas de la
	Estación 04	72
Figura 31.	Geometría del talud 05	74
Figura 32.	Análisis de estabilidad en condiciones naturales Estación 05	75
Figura 33.	Análisis de estabilidad en Condiciones Pseudoestáticas Estación 05	75
Figura 34.	Análisis de estabilidad en Saturación Parcial Estación 05	76
Figura 35.	Análisis de estabilidad en Condiciones Saturadas-Pseudoestáticas Estación	n 0576
Figura 36.	Geometría del Talud 06	78
Figura 37.	Análisis de estabilidad en condiciones naturales Estación 06	79
Figura 38.	Análisis de estabilidad en Condiciones Pseudoestáticas Estación 06	79
Figura 39.	Análisis de estabilidad en Saturación Parcial Estación 06	80
Figura 40.	Análisis de estabilidad en Condiciones Saturadas-Pseudoestáticas Estación	n 0680
Figura 41.	Geometría de la ladera de Perfil A-A'	82
Figura 42.	Análisis de estabilidad en condiciones naturales Perfil A-A'	83
Figura 43.	Geometría de ladera de perfil B-B'	85
Figura 44.	Análisis de estabilidad en condiciones naturales Perfil B-B'	85
Figura 45.	Estadística de la ocurrencia de peligros geológicos como movimientos en	n masa y
	otros	87

Figura 47.	Análisis de Roc Data para la Unidad I. Formación Cajabamba
Figura 48.	Análisis de Roc Data para la Unidad II. Formación Condebamba
Figura 49.	Análisis de Roc Data para la Unidad I. Depósito Coluvial
Figura 50.	Análisis de Roc Data para la Unidad IV. Depósito aluvial
Figura 51.	Análisis de Roc Data para la Unidad V. Depósito coluvio deluvial
	ÍNDICE DE FOTOS
	Pág.
Foto 1.	Terrazas formadas en el recorrido del río Huanga. 817424-E, 9188833-N30
Foto 2.	Lomadas de 10° - 12° de pendiente utilizadas en productividad agrícola. 817940- E,
	9189271- N30
Foto 3.	Laderas con pendientes pronunciada >35°. 817269-E, 9188800-N
Foto 4.	Escarpes con pendientes altas y pronunciadas, elevaciones de 2800 m.s.n.m.
	817718- E, 9188725-N
Foto 5.	Relieve colinado, laderas en rocas sedimentarias del Pleistoceno, terrazas contiguas
	al Río Huanga. 817122- E, 9188726- N
Foto 6.	Pie de monte, depósitos coluvio deluviales producto de la erosión de laderas.
	817888-E, 9189314-N
Foto 7.	Río Huanga, se puede apreciar el valle fluvial que deja en su curso. 817154-E,
	9188752-N
Foto 8.	Erosión de cárcavas. 818083- E, 9189251-N
Foto 9.	Formación Cajabamba, arenas limosas hacia el techo de la formación, 818015- E,
	9188649- N
Foto 10.	Limolitas verde parduzcas. 817048-E, 9189075-N
Foto 11.	Arenas limosas, en intercalación con conglomerados de clastos de arenisca
	redondeados, en matriz areno limosa. 817781- E, 9188672- N
Foto 12.	(a) Depósitos coluvial- deluviales producto de la erosión de las formaciones
	geológicas circundantes. 817166- E, 9189114- N. (b) Depósito fluvial, contiguo a
	depósitos aluviales conformando terrazas, Rio Huanga. 817822- E, 9189084- N. 40
Foto 13.	Falla Normal, con dirección NW- SE. 817797- E, 9188690- N

Figura 46.

Pág.

Foto 14.	Arcillolitas plegadas. 817804- E, 9188976- N.	41
Foto 15.	Estación 01	58
Foto 16.	Estación 03, surcos erosivos por acción del agua	55
Foto 17.	Estación 04	59
Foto 18.	Estación 05	73
Foto 19.	Estación 06	77
Foto 20.	Perfil A-A'	31
Foto 21.	Perfil B-B'	34
Foto 22.	(a) Deslizamiento rotacional. (b) Erosión de laderas. (c) Caída de rocas p	or
	desprendimiento en el cauce del Río Huanga. (d) Erosión en surcos	€1

ÍNDICE DE TABLAS

	Pág	
Tabla 1.	Clasificación de suelos según SUCS	7
Tabla 2.	Nombres de los grupos de los distintos suelos según S.U.C.S	3
Tabla 3.	Factores Z para cada Zona sísmica	3
Tabla 4.	Factores influyentes de inestabilidad de taludes	5
Tabla 5.	Métodos de análisis de estabilidad de taludes	5
Tabla 6.	Vértices que delimitan en área de investigación24	ļ
Tabla 7.	Accesibilidad	ļ
Tabla 8.	Variables Dependientes e Independientes	5
Tabla 9.	ropiedades geomecánicas para suelos	3
Tabla 10.	Factores Condicionantes de Estabilidad y Desencadenantes)
Tabla 11.	Unidades Litoestratigráficas)
Tabla 12.	Ubicación de la Estación Metereológica San Marcos	2
Tabla 13.	Cálculo de Factor de Transposición	3
Tabla 14.	Datos de Precipitación tomados de la Estación Metereológica San Marcos 45	5
Tabla 15.	Transposición de Datos de Precipitación a la Zona Las Chamanas y Montesorco 45	5
Tabla 16.	Análisis estadístico de precipitaciones transpuestas y cálculo de la LCRP46	5
Tabla 17.	Balance Hidrológico)

Tabla 18.	Unidades Hidrogeológicas	•••••	50
Tabla 19.	Propiedades físicas y geomecánicas de l	a Unida	
Tabla 20.	Propiedades físicas y geomecánicas de la Unidad II		
Tabla 21.	Propiedades físicas y geomecánicas de la Unidad III		53
Tabla 22.	Propiedades físicas y geomecánicas de la Unidad IV		53
Tabla 23.	Propiedades físicas y geomecánicas de la Unidad V		54
Tabla 24.	Ensayo de laboratorio para muestra 01		55
Tabla 25.	Ensayo de laboratorio para muestra 02		55
Tabla 26.	Cálculo de coeficientes sísmicos horizontal y vertical		56
Tabla 27.	Escenarios de análisis de estabilidad de laderas y taludes		57
Tabla 28.	Propiedades físicas y geomecánicas de la Estación 01		58
Tabla 29.	Factores de Seguridad en el análisis de estabilidad de la Estacio	5n 01	59
Tabla 30.	Propiedades físicas y geomecánicas de la Estación 02		61
Tabla 31.	Factores de Seguridad en el análisis de estabilidad de la Estacio	5n 02	62
Tabla 32.	Propiedades físicas y geomecánicas de la Estación 03		65
Tabla 33.	Factores de Seguridad en el análisis de estabilidad de la Estacio	5n 03	66
Tabla 34.	Propiedades físicas y geomecánicas de la Estación 04		69
Tabla 35.	Factores de Seguridad en el análisis de estabilidad de la Estacio	5n 04	70
Tabla 36.	Propiedades físicas y geomecánicas de la Estación 05		73
Tabla 37.	Factores de Seguridad en el análisis de estabilidad de la Estacio	on 05	74
Tabla 38.	Propiedades físicas y geomecánicas de la Estación 06		77
Tabla 39.	Factores de Seguridad en el análisis de estabilidad de la Estacio	on 06	78
Tabla 40.	Propiedades físicas y geomecánicas del del Perfil A-A'		82
Tabla 41.	Factores de Seguridad en el análisis de estabilidad del Perfil A	A'	83
Tabla 42.	Propiedades físicas y geomecánicas del Perfil B-B'		84
Tabla 43.	Factores de Seguridad en el análisis de estabilidad del Perfil B-	В'	86
Tabla 44.	Porcentaje de ocurrencia de peligros geológicos		86
Tabla 45.	Inventario de Peligros Geológico		88
Tabla 46.	Distribución de pendiente		93
Tabla 47.	Estadística de Precipitación durante los años 2017-2023		94
Tabla 48.	Coeficientes de seguridad según normativa vigente		95
Tabla 49.	Factores de Seguridad para las estaciones analizadas		96

]	Pág.
Tabla 50.	Factores de Seguridad para las Estaciones 03 y 05	97
Tabla 51.	Factores de Seguridad para las Estaciones 01, 02, 04 y 06	97
Tabla 52.	Factores de Seguridad para los perfiles A-A' y B-B'	97
Tabla 53.	Data Geológica y Cálculo de Parámetros geomecánicos	109

LISTA DE ABREVIATURAS

ASTM : Sociedad Americana para Pruebas y Materiales

c : Cohesión

cm : Centímetros

E : Este

et al. : Y otros

Fm: Formación

F.S : Factor de seguridad

GPS : Sistema de Posicionamiento Global

INGEMMET: Instituto Geológico Minero y Metalúrgico

km2 : Kilómetros cuadrados

kN : Kilo Newton

LL : Límite líquido

LP : Límite plástico

m : Metros

M.a : Millones de años

MDE : Modelo Digital de Elevaciones

mm : Milímetros

MMC : Millones de metros cúbicos

MPa : Mega Pascales

m.s.n.m. : Metros sobre el nivel del mar

MVCS : Ministerio de Vivienda, Construcción y Saneamiento

N : Norte

NE : Noreste

Pág. : Página

RNE : Reglamento Nacional de Edificaciones

S : Sur

SW : Suroeste

SENAMHI: Servicio Nacional de Meteorología e Hidrología del Perú

SUCS : Sistema Unificado de Clasificación de Suelos

UTM : Universal Transverse Mercator

W : Oeste

WGS-84 : World Geodetic System 1984 (Sistema geodésico mundial de 1984)

RESUMEN

La presente investigación se desarrolló en San Marcos, Cajamarca, en taludes y laderas donde afloran la Formación Cajabamba, la Formación Condebamba, además de depósitos coluviales, aluviales y coluvio deluviales que se ven afectados por procesos geodinámicos, producto de la interacción de los factores intrínsecos o condicionantes de los materiales y los factores detonantes o externos. El objetivo se basó en evaluar los factores geológicos y geomecánicos que intervienen en el comportamiento inestable además de realizar el cartografiado geológico y la caracterización geomecánica de los taludes mediante el Software RocData v.4.0 de Rocscience, describir los factores desencadenantes de inestabilidad en las laderas y taludes, aplicar el análisis de estabilidad de taludes y laderas utilizando el software Slide v.6.0 además de realizar la zonificación de movimientos en masa y zonas inestables. El procedimiento se basó en la realización de 8 estaciones geomecánicas geotécnicas donde se llegó a determinar mediante el Software Slide v.6.0, taludes inestables con Factores de Seguridad de 0.7- 1, y taludes estables con F.S de 1.2-1.3 que analizados bajo condiciones pseudoestáticas y de saturación parcial se tornan inestables con F.S de 0.6-0.7, con lo que podemos concluir que los factores detonantes como precipitaciones, infiltración y sismicidad disminuyen la resistencia de los materiales generando la probabilidad de movimientos en masa.

Palabras claves: Talud, Ladera, Propiedades Geomecánicas, Inestabilidad

ABSTRACT

The present investigation was carried out in San Marcos, Cajamarca, on slopes and hillsides where the Cajabamba Formation, the Condebamba Formation emerge, as well as colluvial, alluvial and deluvial colluvium deposits that are affected by processes . geodynamic, product of the interaction of the intrinsic or conditioning factors of the materials and the triggering or external factors. The objective was based on evaluating the geological and geomechanical factors that intervene in unstable behavior in addition to carrying out geological mapping and geomechanical characterization of the slopes using the RocData v.4.0 Software from Rocscience, describing the triggering factors of instability on the slopes and slopes, apply the stability analysis of slopes and slopes using the Slide v.6.0 software in addition to performing the zoning of mass movements and unstable areas. The procedure was based on the realization of 8 geomechanical - geotechnical stations where unstable slopes with Safety Factors of 0.7-1 were determined using Slide Software v.6.0, and stable slopes with F.S of 1.2-1.3 that analyzed under conditions pseudostatic and partial saturation become unstable with F.S of 0.6-0.7, with which we can conclude that triggering factors such as precipitation, infiltration and seismicity decrease the resistance of the materials, generating the probability of mass movements.

Keywords: Slope, Hillside, Geomechanical Properties, Instability.

CAPÍTULO I. INTRODUCCIÓN

Los Caseríos Las Chamanas y Montesorco, ubicados al NE de la provincia de San Marcos, departamento de Cajamarca, comprenden geomorfológicamente colinas bajas y grandes quebradas, en el lugar en época de lluvia ocurren movimientos en masa como deslizamientos, además de erosión y socavamiento del pie de laderas. En algunos casos estos eventos obstaculizan vías e impiden el acceso de los poblados hacia la capital de la provincia y en otros generan pérdida de terrenos de cultivo e interrumpen el cauce de ríos.

Con ello nos lleva a realizarnos la pregunta ¿Cómo intervienen los factores geológicos y geomecánicos en el comportamiento inestable de laderas y taludes en los caseríos de Las Chamanas y Montesorco, San Marcos Cajamarca? teniendo como hipótesis que los factores geológicos y geomecánicos junto con los factores detonantes precipitaciones, infiltración y sismicidad intervienen en el comportamiento de laderas y taludes en los caseríos mencionados pues generan la inestabilidad.

El interés por estudiar la zona, está dado por la presencia de taludes y laderas inestables que afectan directamente terrenos cultivables. Debido a que no se ha realizado estudios que aborden la problemática descrita, fenómenos de movimientos en masa, estos eventos representan una amenaza latente en la zona, cuya evaluación geológica y geomecánica es necesaria para contribuir a la estabilización de los mismos u otras acciones a tomar por las autoridades competentes como Defensa Civil y Gobierno local.

El objetivo general que nos planteamos es evaluar los factores geológicos y geomecánicos que intervienen en el comportamiento inestable de laderas y taludes en los caseríos de Las Chamanas y Montesorco, San Marcos Cajamarca además de realizar el cartografiado geológico y la caracterización geomecánicas de los taludes, describir los factores desencadenantes de inestabilidad en las laderas y taludes, aplicar el análisis de estabilidad

de taludes y laderas utilizando el software Slide v.6.0, además de realizar la zonificación de movimientos en masa y zonas inestables.

El contenido de la investigación se describe a continuación:

CAPÍTULO II. Se mencionan los antecedentes teóricos, bases teóricas, haciendo referencia y estudio de los conceptos de taludes y laderas, suelos, criterios de rotura para suelos, precipitaciones, infiltración, sismicidad, estabilidad de taludes y movimientos en masa además de la definición de términos básicos. En el CAPÍTULO III: Se refiere a los materiales y métodos utilizados en la investigación, la ubicación política y geográfica, así como accesibilidad, clima; se describe la metodología: el tipo y diseño de la investigación y las técnicas e instrumentos de recolección de datos, así como los aspectos geomorfológicos, geología local, la hidrología e hidrogeología, el comportamiento geomecánico, estabilidad de taludes y peligros geológicos. En el CAPÍTULO IV se detalla el análisis y discusión de resultados, se presenta la información tratada en la investigación y los resultados obtenidos mediante cuadros y gráficas, se contrasta la hipótesis y finalmente en el CAPÍTULO V, se detalla las conclusiones a las que se arribó en la investigación y recomendaciones pertinentes.

CAPÍTULO II. MARCO TEÓRICO

2.1. ANTECEDENTES TEÓRICOS

2.1.1. Antecedentes Internacionales

Flores & Oporta (2019). En su tesis "Evaluación de estabilidad de talud en el Mirador de Catarina, Nicaragua" tiene como objetivo determinar la estabilidad de taludes naturales en el Mirador inducido por cargas estáticas y dinámicas, para ello utiliza el método de recolección de datos y posterior análisis de estabilidad mediante el Método de Equilibrio Límite. Concluye, el análisis estático y dinámico se plasman en los mapas elaborados, que muestran las zonas de amenazas: alta, media y baja.

García (2018). Realizó la investigación "Monitoreo de laderas con fines de prevención para la ciudad de Tijuana, Baja California, para la gestión del riesgo asociado a la inestabilidad de laderas" tiene como objetivo sembrar las bases de un sistema de monitoreo que genere la información necesaria para la gestión del riesgo asociado a la inestabilidad de laderas en la ciudad; utiliza la metodología de monitoreo de los desplazamientos superficiales, supervisión del agrietamiento superficial y observación y monitoreo de la perdida de verticalidad en elementos localizados en la posible zona de afectación. Concluye en la evaluación de laderas, los factores influyentes en la estabilidad y el monitoreo constante de los mismos.

2.1.2. Antecedentes Nacionales

Carrillo (2015). Realiza la investigación "Evaluación de zonas susceptibles a movimientos en masa del tipo deslizamiento en el centro poblado de Carampa, distrito de Pazos, provincia de Tayacaja, región Huancavelica". Cuyo objetivo es caracterizar la

dinámica del deslizamiento y desarrollar la estimación de la peligrosidad haciendo uso del protocolo de CENEPRED. Para ello utiliza la metodología de planos temáticos para la elaboración de perfiles geológicos – geotécnicos y el análisis de estabilidad mediante software SLIDE V6. Concluye que la ladera sobre la que se asienta el C.P Carampa presenta nivel de estabilidad generalmente inestable o precario.

Gómez (2018). Realiza el "Análisis de riesgos por inestabilidad de taludes en la subcuenca río Canipaco, tramo distrito de colca provincia de Huancayo departamento de Junín", tiene como objetivo identificar zonas vulnerables para prevenir los daños materiales y agrícolas que ocasionan los taludes y laderas inestables, utiliza métodos de análisis de estabilidad de Equilibrio Limite y llega a la conclusión que determinando las zonas vulnerables por la situación de los taludes y laderas inestables en la subcuenca Canipaco se podría prevenir los daños materiales y agrícolas que ocasionan los fenómenos naturales en la zona.

2.1.3. Antecedentes Locales

Alcántara (2017). Realiza la "Aplicación de los métodos de equilibrio límite, elementos finitos y diferencias finitas en el comportamiento de laderas y taludes sector Calispuquio-Cajamarca", tiene como objetivo aplicar los métodos de Equilibrio Límite, Elementos Finitos y Diferencias Finitas en las laderas y taludes. En la metodología usada, realiza el estudio geológico a través de mapas temáticos y la evaluación de diferentes métodos de análisis de taludes. Concluye que la zona de Calispuquio, está constituido por suelos (depósitos aluviales, coluviales, deluviales y coluvio-aluviales) y macizos rocosos de mala calidad (Formaciones Farrat, Inca, Chúlec y Porculla), además que el software Slide v7 destaca por su velocidad de análisis y confiabilidad de los resultados en el análisis de laderas y taludes, pero requiere entrenamiento para poder elegir los métodos de análisis adecuados.

Eugenio (2017). En su tesis "Análisis de inestabilidad de taludes mediante equilibrio límite y elementos finitos, tramo Santa Rosa— Tuco bajo carretera Bambamarca— centro poblado Tuco", tiene como objetivo analizar la inestabilidad de taludes en el tramo Santa Rosa — Tuco Bajo, en la Carretera Bambamarca — Centro Poblado Tuco mediante los métodos de equilibrio límite y elementos finitos. Utiliza la metodología de caracterización

geométrica y geotécnica de los taludes inestables de suelos y rocas y obtención del factor de seguridad mediante equilibrio limite y elementos finitos mediante los Softwares Slide y Phase2. Concluye que el análisis de inestabilidad de los taludes, demostró que el 32.25 % son taludes con una estabilidad muy alta, el 4.27% son taludes con inestabilidad alta, el 1.95% son taludes de inestabilidad baja y el 61.54% son taludes estables.

2.2. BASES TEÓRICAS

2.2.1. Taludes y laderas

Un talud o ladera es una masa de tierra que posee pendiente o cambios de altura significativo (no es plana). Se define como ladera cuando su conformación actual tuvo como origen un proceso natural y talud cuando se conformó artificialmente (Suárez, 2009).

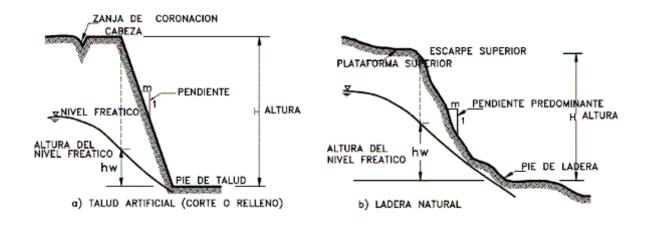


Figura 1. Nomenclatura de taludes y laderas.

Fuente: Tomado de Suárez (2009)

En el talud o ladera se definen los siguientes elementos constitutivos:

- Altura: Es la distancia vertical entre el pie y la cabeza, la cual se presenta bien definida en taludes artificiales, pero es complicada de cuantificar en las laderas debido a que el pie y la cabeza no son accidentes topográficos bien marcados.
- Pie: es el lugar donde se produce cambio brusco de pendiente en la parte inferior final del talud.
- Cabeza o escarpe: Se refiere al lugar de cambio brusco de pendiente en la parte superior.

- Altura de nivel freático: Distancia vertical desde el pie del talud o ladera hasta el nivel de agua medida debajo de la cabeza.
- Pendiente: Es la medida de inclinación que presenta el talud o ladera. Puede medirse en grados, en porcentaje o en relación m/1, en la cual m es la distancia horizontal que corresponde a una unidad de distancia vertical. Ejemplo: Pendiente: 45°, 100%, o 1H:1V.

2.2.2. Suelos

Los suelos tienen su origen en la disgregación de macizos rocosos sometidos a la acción ambiental disgregadora de la erosión, están conformados por partículas pequeñas desde micras hasta centímetros, individuales, no cementados (González de Vallejo, 2004).

2.2.2.1. Tipos de suelos

Se han clasificado los suelos en cuatro grupos de acuerdo a su granulometría según las nomas D.I.N, A.S.T.M y A.E.N.O.R. así tenemos:

- Gravas, diámetro de grano 8-10 cm hasta 2mm, sus granos se observan a simple vista, no retienen agua, por la inactividad de su superficie y los huecos existentes entre una partícula y otra.
- Arenas: diámetro de grano comprendidos entre 2mm y 0.060mm, son aún observables a simple vista, al mezclarse con el agua, sus partículas se pueden separar de ella fácilmente.
- Limos: diámetro de partículas comprendidas entre 0.060 mm y 0.002 mm. Retienen mejor el agua que las arenas y gravas. Mezclados con agua forman una pasta que, al golpearla, el agua filtra con facilidad.
- Arcillas: diámetro de partículas menores a 0.002 mm. Están formadas por minerales silicatados, unidos por enlaces químicos covalentes débiles en cuya estructura puede ingresar moléculas de agua entre las cadenas produciendo aumento de volumen, por ello su capacidad de retención es muy grande.

2.2.2.2. Clasificación de suelos

El Sistema Unificado de Clasificación del Suelo (SUCS), regido por la norma ASTM D-2487, es el de uso más extendido en la práctica geotécnica para la clasificación de suelos, el cual se basa en el análisis granulométrico y en los límites de Atterberg (límites líquido y plástico) de los suelos.

Tabla 1. Clasificación de suelos según SUCS

Sistema Unificado para Clasificación del Suelo SUCS					
	Divisio	nes	Símbolo del grupo	Nombre	
	grava	n°200	GW	grava bien graduada, fina a gruesa	
	<50% de la fracción gruesa que		GP	grada pobremente graduada	
Suelos de grano	pasa el tamiz n°4	grava con más de	GM	grava limosa	
grueso el 50% o	(4.75mm)	12% finos pasantes del tamiz n°200	GC	grava arcillosa	
más se retuvo en el	arena ≥ 50% de fracción gruesa que pasa el tamiz n°4	arena limpia menos del 5% pasa el tamiz n°200	SW	arena fina a gruesa	
tamiz n°200 (0.075mm)			SP	arena pobremente graduada	
		pasa el 12% de finos		SM	arena limosa
			SC	arena arcillosa	
	limos y		ML	limo	
Suelos de	arcillas		CL	arcilla	
grano fino más del	limite		OL	limo orgánico	
50% de la	líquido <50	orgánico		arcilla orgánica	
muestra	limos y	inorgánico	MH	limo de alta plasticidad	
pasa el	arcillas	inorgánico	CH	arcilla de alta plasticidad	
tamiz n°200	limite	, .	OTT	arcilla orgánica	
(0.075)	5) líquido > orgánico 50	organico	ОН	limo orgánico	
	Suelos alta	mente orgánicos	Pt	turba	
G: grava, S: arena, M: limo, C: arcilla, O: orgánico					
P: Pobremente graduado, W: bien graduado, H: alta plasticidad, L: baja plasticidad					

Fuente: Modificado de Wikipedia (2022) & González de Vallejo (2004).

Tabla 2. Nombres de los grupos de los distintos suelos según S.U.C.S

Símbolo de grupo		Nombre de grupo		
GW	<15% de arena	Grava bien graduada		
	≥15% de arena	Grava bien graduada con arena		
GP	<15% de arena	Grava mal graduada		
	≥15% de arena	Grava mal graduada con arena		
GW-GM	<15% de arena	Grava bien graduada con limo		
	≥15% de arena	Grava bien graduada con limo y arena		
GW-GC	<15% de arena	Grava bien graduada con arcilla (o arcilla limosa)		
	≥15% de arena	Grava bien graduada con arcilla y arena (o arcilla limosa y arena		
GP-GM	<15% de arena	Grava mal graduada con limo		
GP-GM	≥15% de arena	Grava mal graduada con limo y arena		
GP-GC	<15% de arena	Grava mal graduada con arcillo (o arcilla limosa)		
GP-GC	≥15% de arena	Grava mal gradada con arcilla y arena (o arcilla limosa y arena)		
GM	<15% de arena	Grava limosa		
	≥15% de arena	Grava limosa con arena		
GC	<15% de arena	Grava arcillosa		
	≥15% de arena	Grava arcillosa con arena		
GC-GM	<15% de arena	Grava limo arcillosa		
ОС-ОМ	≥15% de arena	Grava limo arcillosa con arena		
SW	<15% de grava	Arena bien graduada		
	≥15% de grava	Arena bien graduada con grava		
SP	<15% de grava	Arena mal graduada		
	≥15% de grava	Arena mal graduada con grava		
SW-SM	<15% de grava	Arena bien graduada con limo		
2 W - 2 M	≥15% de grava	Arena bien graduada con limo y grava		
SW-SC	<15% de grava	Arena bien graduada con arcilla (o arcilla limosa)		
	≥15% de grava	Arena bien graduada con arcilla y grava (o arcilla y grava)		
SP-SM	<15% de grava	Arena mal graduada con limo		
	≥15% de grava	Arena mal graduada con limo y grava		
SP-SC	<15% de grava	Arena mal graduada con arcilla (o arcilla limosa)		
	≥15% de grava	Arena mal graduada con arcilla y grava (o arcilla y grava)		
SM	<15% de grava	Arena limosa		
21/1	≥15% de grava	Arena limosa con grava		
SC	<15% de grava	Arena arcillosa		
	≥15% de grava	Arena arcillosa con grava		
SC-SM	<15% de grava	Arena limo arcillosa		
	≥15% de grava	Arena limo arcillosa con grava		

Fuente. Tomado de Braja M. Das (2015)

2.2.2.3. Tensiones efectivas

Tensión efectiva es la tensión que se aplica sobre un cuerpo poroso seco es decir la fuerza normal repartida por unidad de área que se transmite de partícula a partícula, como postula Terzagui: "las tensiones en cualquier punto de un plano que atraviesa una masa de suelo pueden calcularse a través de las tensiones principales totales σ_1 , σ_2 , σ_3 que actúan en un punto". Si los poros del suelo están llenos de agua bajo presión μ , las tensiones principales se componen de dos partes:

- μ: presión intersticial, que actúa sobre el agua y las partículas sólidas en todas las direcciones y en la misma intensidad.
- Tensiones efectivas, que son un exceso de presión sobre la presión μ y que actúan solo en la parte seca del suelo. Los cambios de tensiones efectivas son los responsables de la compresión, distorsión o la modificación de resistencia al corte de un suelo. Se representan por las diferencias $\sigma'_1 = \sigma_1 \mu$, $\sigma'_2 = \sigma_2 \mu$, $\sigma'_3 = \sigma_3 \mu$. (González de Vallejo, 2004).

2.2.3. Criterios de rotura de Mohr-Coulomb

Es un criterio de rotura lineal, expresa la resistencia al corte a lo largo de un plano en un estado triaxial de tensiones, obteniendo la relación entre esfuerzos normal y tangencial actuantes en el momento de rotura (González de Vallejo, 2004), expresada mediante la ecuación:

$$\tau = c + \sigma_n tag\Phi$$

Donde:

 τ , σ_n : son la tensión tangencial y la tensión normal sobre el plano de rotura

c: cohesión

 Φ : ángulo de rozamiento.

El criterio se puede expresar en función de esfuerzos principales:

$$\sigma_1 = \frac{2c + \sigma_3[sen2\theta + tg\Phi(1 - cos2\theta)]}{sen2\theta - tg\Phi(1 + cos2\theta)}$$

En la Figura 2 se representa el criterio de Mohr-Coulomb en el espacio de tensiones normal y tangencial. Se puede apreciar que la ecuación de la superficie de rotura es la ecuación de la recta tangente a todos los círculos de falla.

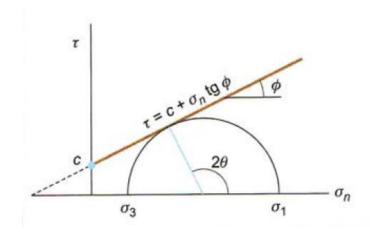


Figura 2. Círculo de Mohr Coulomb.

Fuente: Tomado de González de Vallejo (2004)

En el caso de suelos tenemos que el Criterio de Mohr Coulomb relaciona tensiones efectivas normales y tensiones tangenciales actuando en cualquier plano del suelo, este criterio establece para un suelo saturado (González de Vallejo. 2004), la resistencia de corte que viene dada por:

$$\tau = c' + (\sigma_n - u)tag\Phi'$$

Donde:

 τ , σ_n es la resistencia de corte y la tensión total normal en un determinado plano

u es la presión intersticial,

c' es cohesión efectiva,

 Φ' es el ángulo de rozamiento interno efectivo.

La recta de la ecuación es la línea de resistencia intrínseca o envolvente de rotura del suelo, esta línea va a proporcionar, para cada valor de la tensión efectiva normal a un plano que atraviesa un elemento del suelo, la máxima tensión movilizable a favor del plano mencionado.

Así tenemos que:

- La cohesión efectiva es la ordenada en el origen de la envolvente de rotura, y representa la máxima resistencia tangencial movilizable en un plano cualquiera cuando la tensión efectiva normal en el plano es nula.
- La máxima tensión tangencial movilizable en un plano es mayor si la tensión efectiva normal aumenta, el suelo es más resistente cuanto mayor es su nivel de tensiones efectivas.
- La línea de resistencia actúa como una envolvente o superficie de estado, separando estados posibles e imposibles como se puede apreciar en la siguiente figura:

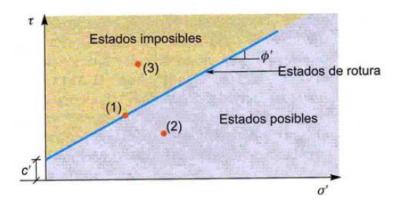


Figura 3. Criterio de rotura en suelos.

Fuente: Tomado de González de Vallejo (2004)

En la figura 3, podemos evidenciar el punto (1) estado de rotura, (2) es un estado posible, una combinación de σ' y τ que cuenta con un cierto factor de seguridad y (3) es un estado imposible (se sitúa por encima de la envolvente de rotura).

2.2.4. Precipitación

La precipitación es toda forma de humedad que, originándose en las nubes, llega hasta la superficie del suelo, en forma de lluvias, granizadas, garúas y nevadas la cual se mide en términos de la altura de lámina de agua (hp) y se expresa comúnmente en milímetros, esta altura de lámina de agua indica la altura del agua que se acumularía en una superficie horizontal si la precipitación permanece en donde cayó, el registro de precipitaciones se realizan usando pluviómetros y pluviogramas (Villón, 2002).

Las estaciones metereológicas son las encargadas de registrar las precipitaciones en un determinado territorio, datos disponibles a través del sitio web del Servicio Nacional de Meteorología e Hidrología del Perú (Senamhi).

2.2.4.1. Transposición de Datos de Precipitaciones

La Transposición de Datos de Precipitación se realiza a través de la Ecuación de Oswald según Ortiz (2004), desde la estación metereológica más cercana a una altitud H1 hacia la microcuenca del área de investigación cuya altitud media (H) que se obtiene mediante parámetros geomorfológicos de cuenca según Rodríguez (2016). El procedimiento inicia con la obtención del Factor de Transposición (Ft), el cual se multiplica a cada valor de precipitación de la Estación Metereológica, obteniéndose los nuevos valores de precipitación para la Subcuenca del área de investigación.

La ecuación de Oswald es la siguiente:

$$PP = \frac{H}{H1} * PP1$$

Donde:

PP = Precipitación a la Altitud H

PP1 = Precipitación a la Altitud H1

H = Altitud Media de la Subcuenca a Trasponer

H1 = Altitud de la Estación de Origen

2.2.5. Infiltración.

Es el paso del agua a través de la superficie del suelo, debido a la interacción de fuerzas capilares y gravitacionales (fenómenos de cohesión y adherencia). Es fuente de alimentación de la humedad del suelo y de la recarga de acuíferos. Tiene, además, una marcada importancia por su influencia en la relación precipitación- escorrentía directa (Villón, 2002).

2.2.6. Sismicidad

Según la Modificación de la Norma Técnica E.030 Diseño Sismorresistente del Reglamento Nacional de Edificaciones (RNE) realizada por el Ministerio de Vivienda, Construcción y Saneamiento (2018), el territorio nacional se divide en cuatro zonas sísmicas como muestra la Figura 4. Esta zonificación se basa en la distribución espacial de la sismicidad, las características generales de los movimientos sísmicos y la atenuación de éstos con la distancia epicentral e información neotectónica. A cada zona se asigna un factor Z, que se interpreta como la aceleración máxima horizontal en suelo rígido con una probabilidad de 10 % de ser excedida en 50 años. El factor Z se expresa como una fracción de la aceleración de la gravedad, como podemos ver en la Tabla 3.

Tabla 3. Factores Z para cada Zona sísmica

Factores de zona "Z"				
ZONA	Z			
4	0.45			
3	0.35			
2	0.25			
1	0.10			

Fuente. Tomado de Norma Técnica E.030 Diseño Sismorresistente del RNE (2018).

Figura 4. Zonificación sísmica del Perú. Fuente Norma Técnica E.030 Diseño Sismorresistente del RNE (2018)

2.2.7. Estabilidad de taludes

La estabilidad de un talud está determinada por factores:

Condicionantes como factores geométricos, factores geológicos, factores hidrogeológicos y factores geotécnicos o relacionados al comportamiento mecánico del terreno, que son intrínsecos a los materiales naturales.

Desencadenantes o activos son aquellos que actúan sobre los suelos o macizos rocosos modificando sus características y propiedades, y las condiciones de equilibrio del talud.

Tabla 4. Factores influyentes de inestabilidad de taludes

Factores influyentes en la inestabilidad de taludes **Factores condicionantes Factores desencadenantes** Estratigrafía y litología Sobrecargas estáticas Estructura geológica Cargas dinámicas Condiciones hidrogeológicas y comportamiento Cambios en las condiciones hidrogeológico de los materiales hidrogeológicas Propiedades físicas, resistentes y Factores climáticos deformacionales Variación en la geometría Tensiones naturales y estado tenso-Reducción de parámetros resistentes deformacional

Fuente: Tomado de González de Vallejo (2004)

2.2.7.1. Análisis de estabilidad

El análisis de estabilidad busca determinar las condiciones que generan estabilidad en un talud o ladera y cuál es el margen de este, analizan como ocurre la falla, determinan la susceptibilidad de los taludes a los mecanismos de activación de falla como el efecto de lluvias y sismos, comparan las diferentes opciones de estabilización y su efecto sobre la estabilidad del talud, así como proporcionar el diseño óptimo de un talud en términos de seguridad y economía (Suárez, 2009).

Existen diferentes metodologías usadas para el análisis: métodos de límite de equilibrio, métodos numéricos: Diferencias Finitas, Elementos Finitos, Elementos Discretos.

Método de Equilibrio Límite

Consiste en dividir la masa del terreno potencialmente inestable en rebanadas verticales, calculando el equilibrio en cada una de ellas para luego analizar el equilibrio global obteniendo un factor de seguridad (F.S). Calculado el F.S para una curva de rotura potencial se repite el proceso para otra curva distinta y así sucesivamente hasta obtener un valor mínimo de F.S. La mayoría de métodos de equilibrio límite comparan las fuerzas o momentos resistentes y actuantes sobre una determinada superficie de falla. (Valiente, 2015). En la tabla 5 podemos ver los diferentes métodos y sus diferencias.

Tabla 5. Métodos de análisis de estabilidad de taludes

Método	Superficies de falla	Equilibrio	Características
Talud Infinito	Rectas	Fuerzas	Bloque delgado con nivel freático, falla paralela a la superficie
Bloques o cuñas	Cuñas con tramos rectos	Fuerzas	Cuñas simples, dobles o triples, analizando las fuerzas que actúan sobre cada cuña.
Espiral logarítmica (Frohlich,1953)	Espiral Logarítmica	Fuerzas y momentos	Superficie de falla en espiral logarítmica. El radio de la espiral varía con el ángulo de rotación.
Arco circular (Fellinius, 1922)	Circulares	Momentos	Círculo de falla, el cual es analizado como un solo bloque. Se requiere que un suelo sea cohesivo $\phi=0$
Ordinario o de Fellenius (1927)	Circulares	Fuerzas	Obtiene las fuerzas actuantes y resultantes para cada tajada y con la sumatoria de los momentos con respecto al centro del círculo se obtiene el Factor de Seguridad.
Bishop simplificado (Bishop 1955)	Circulares	Momentos	Asume que las fuerzas entre dovelas son horizontales, no tiene en cuenta las fuerzas de cortante.
Janbú simplificado (Jambú 1968)	Cualquier forma	Fuerzas	Se basa en que las fuerzas entre dovelas son horizontales y no toma en cuenta las fuerzas de cortante, además Inserta un factor de corrección.
Método del Cuerpo de Ingenieros (Sueco Modificado) (1970)	Cualquier forma	Fuerzas	La inclinación de las fuerzas entre dovelas, es seleccionada por el analista y tiene el mismo valor para todas las dovelas
Método de Lowe y Karafiath (1960)	Cualquier forma	Fuerzas	La dirección de las fuerzas entre partículas, varía de borde a borde en cada dovela.
Spencer (1967)	Cualquier forma	Momentos y fuerzas	Satisface totalmente el equilibrio tanto de momentos como de esfuerzos. supone que las fuerzas entre dovelas son paralelas las unas con las otras (tienen el mismo ángulo de inclinación).
Morgenstern y Price (1965)	Cualquier forma	Momentos y fuerzas	Asume que existe una función que relaciona las fuerzas de cortante y las fuerzas normales entre dovelas.
Sarma (1973)	Cualquier forma	Momentos y fuerzas	Considera que el coeficiente sísmico y el factor de seguridad son desconocidos. Asume entonces, un factor de seguridad y se encuentra cuál es el coeficiente sísmico requerido para producir éste.

Fuente: Tomado de Suárez (2009)

Los parámetros de entrada para los cálculos son: la geometría del talud, parámetros geológicos, presencia de grietas de tensión, cargas dinámicas por acción de los sismos, flujo de agua, propiedades de resistencia y peso unitario de los suelos, etc.

Factor de Seguridad:

Es la relación entre la resistencia al corte real, calculada del material en el talud y los esfuerzos de corte críticos que tratan de producir la falla, a lo largo de una superficie de posible falla:

$$F.S = \frac{Resistencia\ al\ cortante\ disponible}{Esfuerzo\ al\ cortante\ actuante}$$

Superficie de Falla:

Es una superficie asumida a lo largo de la que puede ocurrir el deslizamiento o la rotura del talud; se pueden estudiar superficies planas, circulares, logarítmicas, parabólicas y combinaciones de éstas y hasta de forma no geométrica.

Software Slide V.6.0:

Es un software de análisis de Estabilidad de Taludes en 2D (dos dimensiones) que utiliza métodos de equilibro límite para el cálculo de la estabilidad. Puede analizar tanto superficies circulares como no circulares, analiza una superficie en particular o se puede realizar la búsqueda de una superficie crítica con la finalidad de encontrar la superficie de falla con el menor factor de seguridad. Incluye análisis de agua subterránea por elementos finitos en estado estacionario, e integra capacidades de análisis de sensibilidad, probabilísticos y análisis retrospectivos (https://www.rocscience.com/ , 2022).

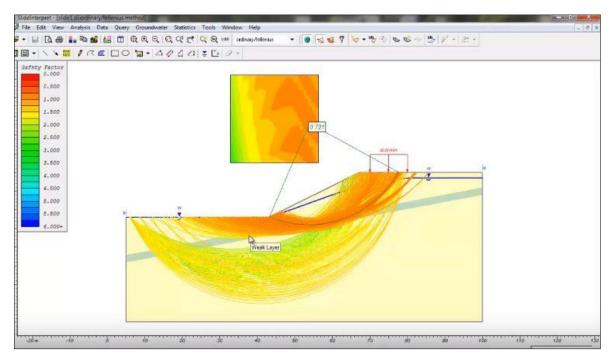


Figura 5. Ejemplo de modelización de estabilidad de taludes en el software Slide.

Fuente: Página web disponible en https://www.rocscience.com/. (2022)

2.2.7.2. Análisis Pseudoestático

Este análisis determina la estabilidad sísmica de taludes, en el cual el efecto del sismo se representa por el uso de aceleraciones horizontales y verticales que producen fuerzas inerciales Fh y Fv, usando los coeficientes horizontales y verticales pseudoestáticos, kh y kv, los cuales pueden ser representados por las ecuaciones:

$$F_h \frac{a_h W}{g} = k_h W$$
 y $F_v \frac{a_v W}{g} = k_v W$

Donde a_h , a_v son aceleraciones pseudoestáticas horizontal y vertical; k_h , k_v son coeficientes sísmicos horizontal y vertical respectivamente; W, es el peso de masa fallada y g es la gravedad. Estas fuerzas intervienen en el cálculo de equilibrio para cada una de las piezas individuales que componen la superficie de falla y la determinación del F.S. (Martínez, R., et.al.2011).

2.2.8. Movimientos en masa

Los movimientos en masa abarcan una variedad de procesos que dan como resultado el movimiento hacia abajo y hacia afuera de materiales formadores de taludes (roca, suelo, relleno artificial o una combinación de estos). Los materiales pueden moverse al caer, volcarse, deslizarse, extenderse o fluir. Los tipos de movimiento en masa varían por el tipo de material que envuelven y la naturaleza del movimiento, la velocidad de movimiento y el contenido de agua, aire o hielo en los materiales del movimiento en masa (Highland & Johnson, 2004). En la Figura 6 podemos ver los diferentes movimientos en masa.

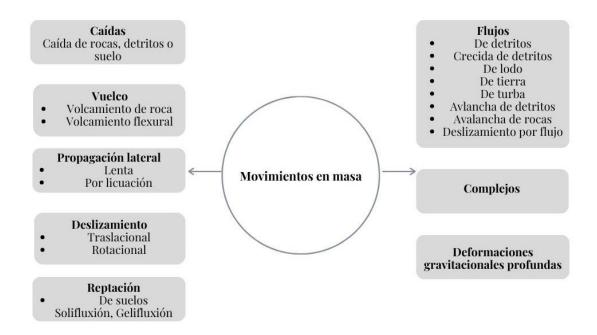


Figura 6 . Tipos de Movimientos en masa según el Grupo de Estándares para los Movimientos en Masa, 2007.

2.2.8.1. Caídas.

Son movimientos bruscos de masas de materiales geológicos, tales como rocas y cantos rodados, que se desprenden y se mueven por caída libre, rebote y laminación. La separación ocurre a lo largo de discontinuidades tales como fracturas, juntas y planos de estratificación. Se generan por la gravedad, la meteorización mecánica y la presencia de agua intersticial (Highland & Johnson, 2004). Los derrumbes son desprendimientos de

masas de roca, suelo o ambas, a lo largo de superficies irregulares de arranque o desplome en un solo conjunto, desde pocos a centenas de metros (SGP, 2022).

2.2.8.2. Inclinación o volteo.

Consiste en la rotación hacia delante de una unidad o unidades de material térreo con centro de giro por debajo del centro de gravedad de la unidad. Se generan por la fuerza de unidades adyacentes, el agua en grietas o juntas, expansiones y los movimientos sísmicos (Suárez, 2009). Hay 2 tipos: vuelco de bloques, roca relativamente competente cuyo movimiento es controlado por una orientación de discontinuidades y generalmente está asociado a velocidades altas y el vuelco flexural, roca más frágil y densamente diaclasada; el fallamiento ocurre por el doblamiento de columnas de rocas delgadas, de movimientos lentos y graduales (Grupo de Estándares para los Movimientos en Masa, 2007).

2.2.8.3. Deslizamientos

Es un movimiento ladera abajo de una masa de suelo o roca cuyo desplazamiento ocurre predominantemente a lo largo de una superficie de falla, o de una delgada zona en donde ocurre una gran deformación cortante (Grupo de Estándares para los Movimientos en Masa, 2007). Los deslizamientos pueden ser de una sola masa que se mueve o pueden comprender varias unidades o masas semi-independientes (Suárez, 2009).

Estado de actividad.

De acuerdo a su estado de actividad actual, los deslizamientos se clasifican:

- Activo. Deslizamiento que tiene movimiento en el momento actual.
- Reactivado. Deslizamiento que estuvo inactivo y vuelve a activarse, generalmente cuando superficies de falla antiguas se reactivan.
- Suspendido. Deslizamientos. Deslizamientos activos durante últimos ciclos estacionales, pero que en la actualidad no se están moviendo.
- Inactivo. No hay movimiento hace varios ciclos estacionales
- Dormido. Deslizamiento inactivo, donde aparentemente las causas del movimiento permanecen.

 Estabilizado. El movimiento está suspendido por acción de obras remediales artificiales.

Deslizamiento Traslacional

La masa se mueve a lo largo de una superficie de falla plana u ondulada. Suelen ser más superficiales que los rotacionales y el desplazamiento ocurre con frecuencia a lo largo de discontinuidades como fallas, diaclasas, planos de estratificación o planos de contacto entre la roca y el suelo residual o transportado que yace sobre ella. (Cruden y Varnes, 1996). La velocidad de los movimientos traslacionales va desde rápida a extremadamente rápida.

Deslizamiento rotacional

La masa se mueve a lo largo de una superficie de falla curva y cóncava, estos movimientos se caracterizan por un escarpe principal pronunciado y un contrapendiente de la superficie de la cabeza del deslizamiento hacia el escarpe principal. La deformación interna de la masa desplazada es usualmente muy poca. Debido a que el mecanismo rotacional es auto estabilizante, y éste ocurre en rocas poco competentes, la tasa de movimiento es con frecuencia baja, excepto en presencia de materiales altamente frágiles como las arcillas sensitivas. Los deslizamientos rotacionales pueden ocurrir lenta a rápidamente, con velocidades menores a 1 m/s. (Suárez, 2009).

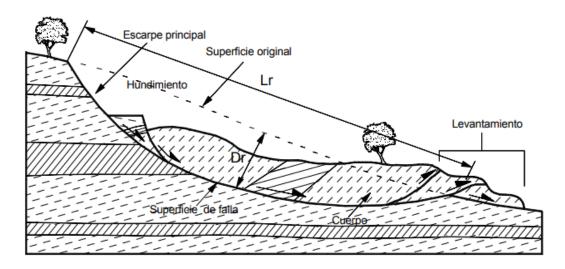


Figura 7. Desplazamiento de rotación en una ladera

Fuente. Tomado de Suárez (2009).

2.2.8.4. Flujo

Es un tipo de movimiento en masa que durante su desplazamiento tiene un comportamiento similar a un fluido; puede ser rápido o lento, saturado o seco. En muchos casos se originan a partir de otro tipo de movimiento, ya sea un deslizamiento o una caída (Varnes, 1978). Así se tienen los siguientes subtipos:

Flujo de detritos: Comprende una combinación de suelo suelto, roca, materia orgánica, aire y agua se moviliza como un lodo que fluye pendiente abajo (<50 % de finos), causados por un intenso flujo de agua superficial, debido a fuertes precipitaciones o al rápido derretimiento de la nieve, que erosiona y moviliza suelo suelto o rocas en pendientes empinadas.

2.2.8.5. Reptación

Es el movimiento descendente lento (imperceptible) y constante del suelo o roca que forma pendientes, causado por un esfuerzo cortante suficiente para producir una deformación permanente, pero demasiado pequeño para producir una falla por cortante (Highland & Johnson, 2004).

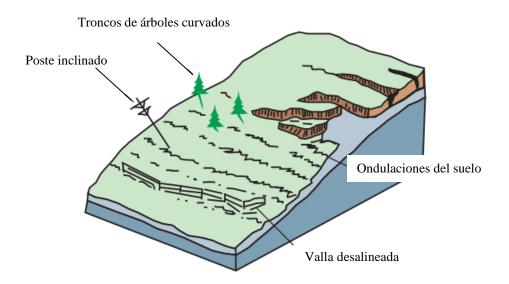


Figura 8. Reptación

Fuente. Tomado de Highland & Johnson (2004)

2.3. DEFINICIÓN DE TÉRMINOS BÁSICOS

Depósito aluvial: Materiales transportados y depositados por el agua, su tamaño varía desde arcillas hasta gravas, cantos y bloques (González de Vallejo, 2004).

Depósito deluvial: Capas de suelo fino y arcillas arenosas con inclusiones de fragmentos rocosos pequeños a medianos, que se depositan y cubren las laderas de cerros, estos fueron removidos por agua de lluvia (Gradusov et al. 2002).

Depósito coluvial: Material acumulado en la pendiente de los cerros y transportado por acción de la gravedad (Dávila, 2011).

Estable: Dícese de un área o parte de la corteza terrestre que no muestra ningún tipo de deformación ni signos de movimientos tectónicos a través de mucho tiempo geológico (Dávila, 2011).

Infiltración: Movimiento de agua a través de la superficie del suelo y hacia dentro del mismo, producido por la acción de fuerzas gravitacionales y capilares (Dávila, 2011).

Precipitación pluvial: Caída de aguas de la atmósfera por el cambio de temperatura, en forma de lluvia, nieve o granizo (Dávila, 2011).

Movimientos de ladera: Reajustes de terreno para conseguir el equilibrio ante un cambio de condiciones. (González de Vallejo, 2004).

Propiedades resistentes o geomecánicas: Son aquellas que controlan la resistencia de los materiales y su rotura. (González de Vallejo, 2004).

Resistencia: Es el esfuerzo que soporta una roca para determinadas deformaciones (González de Vallejo, 2004).

Superficie de falla: Superficie asumida a lo largo de la cual puede ocurrir el deslizamiento o la rotura del talud (Suárez, 2009).

Superficie crítica de falla: Superficie más probable para que se produzca el deslizamiento (Suárez, 2009)

CAPÍTULO III. MATERIALES Y MÉTODOS

3.1. UBICACIÓN POLÍTICA Y GEOGRÁFICA

Se ubica en los Caseríos Las Chamanas y Montesorco, Distrito de Pedro Gálvez, Provincia de San Marcos, Departamento de Cajamarca, altitud de 2600 m.s.n.m. Geográficamente se ubica al Este de la ciudad de Cajamarca, en las coordenadas que definen el perímetro del área de investigación dadas en la Tabla 6 en sistema de coordenadas UTM, Datum WGS84 Zona 17 Sur.

Tabla 6. Vértices que delimitan en área de investigación

Vértices	Este	Norte
V1	818500	9189400
V2	818500	9188400
V3	817000	9188400
V4	817000	9189400

3.2. ACCESIBILIDAD

La vía de acceso se realiza mediante la carretera Cajamarca- San Marcos, siguiendo el itinerario de la Tabla 7 y el Plano P-01.

Tabla 7. Accesibilidad

Т	ramo	Distancia	Tiempo en	Tipo de vía
Desde	Hacia			
Plaza de Armas	Plaza Mayor de San	60 km	1 hora 40	Asfaltada
Cajamarca	Marcos		min	
Plaza Mayor de San	Desvío caserío Alfonso	5 km	20 min	Trocha
Marcos	Ugarte- Las Chamanas			

3.3. CLIMA

Los caseríos de Las Chamanas y Montesorco, San Marcos, tienen veranos largos y nublados y los inviernos son cortos, fríos, secos y parcialmente nublados. Durante el transcurso del año, la temperatura generalmente varía de 6 °C a 21 °C y rara vez baja a menos de 4 °C o sube a más de 24 °C (SENAMHI, 2023).

3.3.1. Precipitaciones

Según los datos de precipitación de la Estación Metereológica San Marcos (SENAMHI,2023) la temporada de precipitaciones dura 6.9 meses, entre octubre hacia inicios de mayo, con una probabilidad de más del 17 % de que cierto día será un día con lluvias. Marzo tiene mayor probabilidad de lluvias. La temporada más seca dura 5.1 meses desde mayo hacia octubre, siendo Julio el mes con menos precipitaciones (Ver gráficos de precipitaciones en las Figuras 10 y 11 en la pág. 48).

3.4. METODOLOGÍA

3.4.1. Tipo y diseño de la investigación

La investigación utilizara el tipo de investigación descriptivo, enfocándose en realizar un informe detallado de las características; el tipo explicativo, para encontrar la relación existente entre la causa y consecuencia del fenómeno en específico; el tipo no experimental sin manipular o alterar la variable, sino basándose en la interpretación, la observación o las interacciones para llegar a una conclusión y el tipo transversal en el tiempo fijando el estudio en un momento específico, además de usar los métodos descriptivos, deductivos y explicativos.

3.4.2. Población de estudio

Los taludes y laderas de los Caseríos de Las Chamanas y Montesorco

3.4.3. Muestra

Estaciones geomecánicas

3.4.4. Unidad de análisis

Unidades litoestratigráficas, geoformas, propiedades geomecánicas de los materiales geológicos, precipitación, infiltración y sismicidad.

3.4.5. Identificación de variables

En la investigación se han identificado las variables independientes y dependientes, que se relacionan directamente y se detallan en la Tabla 8.

Tabla 8. Variables Dependientes e Independientes

Variables Dependientes	Variables independientes
Unidades Litoestratigráficas	Precipitación
Geoformas	Infiltración
Propiedades Geomecánicas	Sismicidad

3.4.6. Técnicas e instrumentos de recolección de datos

Cartografiado geológico: En la realización de la investigación se recaudará toda la información geológica de la zona: la litología, estratigrafía, geomorfología teniendo en cuenta la hidrología e hidrogeología.

Tablas de uso geomecánico: Recopilación de la información geomecánica de las unidades geológicas (en taludes y laderas) caracterizando el material y detallando los tipos de inestabilidad (deslizamiento, caída de rocas, etc.).

Toma de muestras para ensayos de laboratorio: Ensayo de Corte directo, para la obtención de parámetros resistentes del material.

3.4.7. Instrumentos y equipos

Brújula Brunton: Utilizada en la medición de rumbo y buzamiento.

GPS Garmin Oregon 750: en la obtención de coordenadas geográficas.

Picota Estwing mango corto.

Lápiz rayador: Usado para la estimación de dureza en campo.

Lupa 20x Iwamoto: Visualización óptica de muestras de mano.

Protactor Escala 1/1000: Usado en el cartografiado de la zona.

Cámara digital: Toma de fotografías de la zona.

Tablas geomecánicas: Utilizadas para la caracterización de macizos rocosos.

Libreta de Geólogo: Utilizada para la anotación de detalles.

Útiles de escritorio: Portaminas, Lapiceros, Colores, entre otros.

Laptop: Utilizada para el procesamiento de los datos.

Softwares:

ArcMap v. 10.4.1: utilizado en la creación de planos.

Microsoft Office v2019 (Word, Excel, PowerPoint): utilizados para la elaboración del informe y la presentación del mismo.

Roc Data v.4.0: utilizado para el cálculo de propiedades geomecánicas y su posterior uso en el análisis de estabilidad.

Sas Planet v.02: en la obtención de imágenes satelitales.

Slide v.6.0: utilizado en el análisis de estabilidad.

3.4.8. Procedimiento y técnicas de recolección de datos

La investigación se ha desarrollado en etapas las que se detallan a continuación:

Etapa Preliminar:

Se realiza el reconocimiento de la zona, así como la preparación de imágenes satelitales, y planos topográficos, así como la revisión de investigaciones precedentes.

Reconocimiento general:

En esta etapa se realiza la caracterización de la geología (unidades litoestratigráficas), geomorfología (pendientes), hidrología e hidrogeología.

Evaluación de condiciones de estabilidad:

Para las posibles zonas críticas, se realiza la evaluación geomecánica de taludes y laderas en la que se realiza con la recolección de información en formatos y la toma de muestras para la obtención de los parámetros resistentes de suelos y materiales.

Para los movimientos de ladera, se describe el tipo de movimiento, el material, dimensiones, estado de actividad, contenido de agua.

Cálculo de parámetros resistentes de los materiales

A través del software Roc Data v.4.0 realizamos el cálculo de los parámetros resistentes para suelos y Formaciones Geológicas, usando los Criterios de Rotura de Mohr Coulomb, para el análisis se sintetiza la información a través de la tabla 9.

Tabla 9. Propiedades geomecánicas para suelos

Mohr- Coulomb Criterio	
Cohesión	(c)
Fricción	(Φ)
Resistencia a la compresión uniaxial	(σ_c)
Resistencia a la tracción	(σ_t)
Alfa	(a)

Análisis de Estabilidad

Con los datos de campo y los parámetros resistentes antes calculados y procedentes del ensayo de Corte directo se procede al análisis de estabilidad, donde a través del software Slide v.6.0, que utiliza el método de Equilibrio límite en el análisis, se modela un diagrama donde queda representada la geometría del talud/ ladera a tratar, así queda determinado el mecanismo de falla cuando el análisis se realiza para movimientos en masa y el factor de seguridad.

Mecanismos asociados a la inestabilidad del talud

Tabla 10. Factores Condicionantes de Estabilidad y Desencadenantes.

Código Talud /ladera		Presencia de movimiento		Pendiente	F	actor condicionante	d	Factor esencadenante
	•	Movimiento en masa	•	Baja	•	Factor Litológico	•	Precipitaciones
		activo o inactivo.	•	Baja-	•	Factor	•	Infiltración
	•	Zona critica.		media		Geomecánico	•	Sismicidad
	•	Zona estable o sin	•	Moderada-	•	Factor		
		movimiento.		alta		Geomorfológico		

Fuente. Modificado de González de Vallejo. 2004 e Ingemmet.

3.5. GEOMORFOLOGÍA

Las formas que ha tomado el relieve en la zona de estudio han sido modeladas por los procesos geológicos y superficiales a lo largo del tiempo geológico, caracterizando el área la presencia de lomadas y colinas en rocas de origen sedimentario, disectadas por ríos y quebradas, donde los agentes geológicos, ciclos erosivos y fluviales han dado forma a los paisajes y a la actual configuración geomorfológica.

3.5.1. Unidades Morfogenéticas

El área de estudio ha sido clasificada en unidades morfogenéticas, entendiendo la morfogénesis como "el estudio del origen, desarrollo y evolución de las formas de los paisajes terrestres" (Dávila, 2011). Las características morfogenéticas que clasifica el terreno de acuerdo a la pendiente (Rodríguez, 2016) que divide el terreno en 4 clases:

3.5.1.1. Planicies

Comprende terrenos de pendiente suave de 0-8°, las planicies encontradas en el área tienen una topografía ligeramente ondulada y están manifestadas al margen del río Huanga, constituyen terrazas aprovechadas para la agricultura y ganadería, comprendiendo depósitos aluviales. Durante los meses de noviembre hacia abril se ven afectadas por precipitaciones.

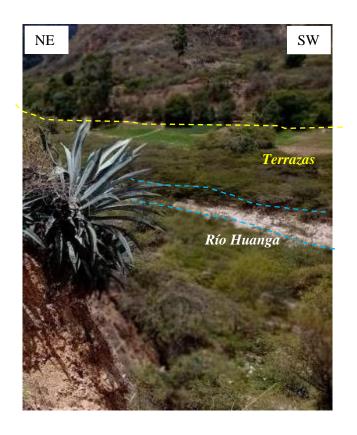


Foto 1. Terrazas formadas en el recorrido del río Huanga. 817424-E, 9188833-N.

3.5.1.2. Lomada o colinas.

Presentan pendientes de 8- 20°, se evidencian en las zonas bajas del Caserío Las Chamanas, de topografía ondulada y pequeñas elevaciones.

Foto 2. Lomadas de 10° - 12° de pendiente utilizadas en productividad agrícola. 817940- E, 9189271- N.

3.5.1.3. Laderas.

Constituyen pendientes fuertes de 20- 50°, véase Foto 3, que por procesos de intemperismo y el agua, han sido erosionadas creando escarpes y drenando las laderas, modelando el terreno, ocasionando zonas inestables, de deslizamientos y derrumbes cuanto más pronunciada sea la pendiente.

Foto 3. Laderas con pendientes pronunciada >35°. 817269-E, 9188800-N.

3.5.1.4. Escarpes

Denota una fuerte pendiente desde los 50° a más, véase Foto 4, modelados por agentes externos, donde se evidencia la erosión y caída de material, derrumbes, flujo de detritos y constantes movimientos de material. Clase menos extendida en el área de estudio.

El estudio de la pendiente del terreno es un parámetro de gran importancia en la evaluación de movimientos en masa puesto que es un factor condicionante y dinámico de la generación de estos movimientos. En el Plano P-03 se evidencia la distribución de pendiente del terreno, diseñado teniendo como base el modelo de elevación digital DEM de 12.5 m de resolución (Alos Palsar de Alaska Satellite Facility) y procesado mediante el software ArcGIS v.10.4.

Foto 4. Escarpes con pendientes altas y pronunciadas, elevaciones de 2800 m.s.n.m. 817718- E, 9188725-N.

3.5.2. Unidades Geomorfológicas

Las unidades geomorfológicas han sido clasificadas de acuerdo a la homogeneidad litológica y caracterización conceptual en base a relieve, procesos de erosión, denudación y sedimentación (Vílchez, et al., 2019) (Ingemmet), Plano P-04, así se diferencian las siguientes unidades:

3.5.2.1. Colinas y lomadas en roca sedimentaria

Están conformadas por el afloramiento de rocas sedimentarias de origen lacustre de las Formaciones Cajabamba y Condebamba que por el componente litológico y denudativo son constantemente erosionadas. Tienen pendientes moderadas a fuertes. Se ubican en los Caseríos Las Chamanas y Montesorco y representan la unidad de mayor amplitud en el área.

Geodinámicamente se asocian a la ocurrencia de procesos de flujo de detritos, deslizamientos y derrumbes cuando las secuencias sedimentarias se encuentran alteradas y poco consolidadas. Las lomadas, tienen cimas redondeadas y alargadas, que sirven de zonas de cultivo en altitudes de 2620 m.s.n.m.

3.5.2.2. Terrazas aluviales

Están conformadas por depósitos aluviales contiguas al curso de Rio Huanga y quebradas sobre estos terrenos se desarrollan actividades agrícolas y ganaderas, por la topografía plana y aportes de agua.

Foto 5. Relieve colinado, laderas en rocas sedimentarias del Pleistoceno, terrazas contiguas al Río Huanga. 817122- E, 9188726- N.

3.5.2.3. Pie de monte coluvio deluvial

Consta de la interestratificación de materiales de origen coluvial y deluvial. Se encuentra acumulada al pie de laderas resultado de procesos de meteorización y erosión.

Los depósitos coluviales están conformados por bloques rocosos heterométricos y de litología homogénea en predominancia areniscosos, acumulados al pie de taludes y laderas escarpados, en forma de conos. Gradan de clastos grandes en la base y pequeños en el ápice, son sueltos y conforman taludes de reposo poco estables. Los agentes formadores son el intemperismo, las precipitaciones, la gravedad, movimientos sísmicos, derrumbes y vuelcos. Los depósitos deluviales se caracterizan por suelos finos y arcillas areno limosas con pequeños fragmentos rocosos. Se sitúan y cubren en las laderas de los cerros. El principal agente formador son las precipitaciones pluviales que remueven los detritos en un

recorrido corto. Entre otros agentes están los procesos de erosión de suelos, la gravedad, el viento y la reptación de suelos.

Foto 6. Pie de monte, depósitos coluvio deluviales producto de la erosión de laderas. 817888-E, 9189314-N.

3.5.2.4. Valle fluvial

El curso del río Huanga ha ido erosionando y abriéndose paso formando valles en forma de V, erosionando la base de laderas y formando escarpes.

Foto 7. Río Huanga, se puede apreciar el valle fluvial que deja en su curso. 817154-E, 9188752-N

3.5.2.5. *Cárcavas*

Producidas por la presencia de rocas fácilmente erosionables como arcillas, limolitas y areniscas finas ante precipitaciones pluviales, el agua arrastra los sedimentos, se concentran en zonas de poca o escasa vegetación y fuerte pendiente. Contiguos al río Huanga y quebradas.

Foto 8. Erosión de cárcavas. 818083- E, 9189251-N.

3.6. GEOLOGÍA REGIONAL

La geología ha sido desarrollada teniendo como base el Boletín N° 31 Serie A de la carta Geológica Nacional de los Cuadrángulos de Cajamarca, San Marcos y Cajabamba y el mapa A-31- Mapa 02 – San Marcos – 15 G a escala 1:100 000 (Ingemmet, 1980), complementando la información con imágenes satelitales, modelos de elevación digital y observaciones de campo.

La geología de la provincia de San Marcos está caracterizada por rocas sedimentarias tanto continentales y marinas depositadas desde el Jurásico hasta el Cretáceo, así como Formaciones lagunares del Neógeno y depósitos Cuaternarios. Entre las Formaciones que afloran tenemos el Grupo Pucará, Formación Chicama, el Grupo Goyllarizquizga, Formación Inca, Formación Chúlec, Formación Pariatambo, Formación Yumagual, Formaciones Quilquiñam y Mujarrun, Formación Cajamarca, Formación

Celendín, Formación Chota, el Grupo Calipuy, el Volcánico Huambos, Formación Cajabamba, Formación Condebamba y depósitos lagunares, glaciares, aluviales y fluviales.

3.7. GEOLOGÍA LOCAL

Como evidencia la Geología Histórica, un largo periodo de peneplanización cíclica se dio desde el Oligoceno 33.9 M.a hacia el Plioceno 3.6 M.a, se inicia en forma cíclica el cuarto movimiento deformativo del Ciclo Andino (epirogenético) dando como resultado varias superficies de erosión entre las que destaca la superficie Puna de 4200 m.s.n.m, lo que significó un ascenso de más de 3000 m.s.n.m. desde su posición original lo que produjo la profundización de valles dando a los andes una topografía accidentada; en este periodo de ascención, el Volcánico Huambos y sedimentos lacustres en las cuencas continentales (Formación Cajabamba) cubrieron y rellenaron parte de la superficie. Posterior a ello la glaciación Plio- Pleistocénica acumuló por acción fluvial, sedimentos de origen fluvioglacial (Formación Condebamba) en lagunas y partes bajas y . depósitos del Cuaternario coluviales, deluviales, fluviales y aluviales. (Reyes, 1980). Ver Plano P-05.

Se depositaron en un extenso lago donde en la parte más profunda de la cuenca se depositaria la Formación Cajabamba y en la periferia, la Formación Condebamba.

3.7.1. Unidades Litoestratigráficas

Las unidades Litoestratigráficas que afloran son principalmente de origen sedimentario lagunar, destacando las Formaciones Cajabamba y Condebamba y depósitos del cuaternario reciente coluvio- deluvial, coluvial, aluvial y fluvial.

3.7.1.1. Formación Cajabamba (Nm-cjb).

La edad asignada para esta formación de ambiente lacustre data al Mioceno inferior a medio (Reyes, 1980). Litológicamente consta de arenas limosas, arcillolitas, lodolitas y hacia el techo aumenta el contenido arenoso, pasando muchas veces a un conglomerado fino. Infrayace a la Formación Condebamba con discordancia erosional subparalela y suprayace con discordancia angular a las Formaciones Cretácicas y Jurásicas. La presencia de diatomitas también es característico de esta formación. Geográficamente se extiende

ampliamente en la zona de estudio siendo visible en las laderas contiguas al río Huanga y Quebrada Uñigan. En la Foto 9 se puede apreciar la litología de la Formación Cajabamba que consta de arenas limosas, pardo amarillentas de espesor 30 cm, cuyos estratos tienen dirección N350°y buzamiento 2°.

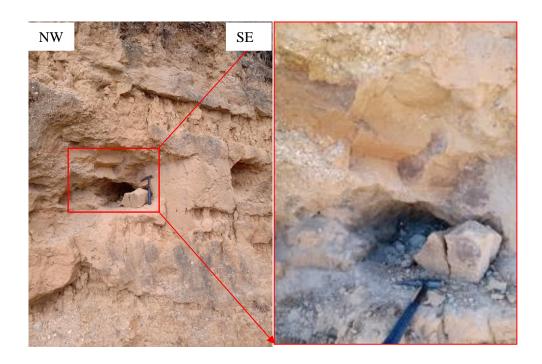


Foto 9. Formación Cajabamba, arenas limosas hacia el techo de la formación, 818015- E, 9188649- N.

Foto 10. Limolitas verde parduzcas. 817048-E, 9189075-N.

Figura 9. Arcillolitas blanquecinas en intercalación con arenas limosas y conglomerado fino. 817048-E, 9189075-N.

3.7.1.2. Formación Condebamba (N-con)

Formación de edad asignada al Plioceno superior y Pleistoceno (Reyes, 1980). Litológicamente consiste de intercalaciones de conglomerado fino hacia la base gradando hacia arriba en un conglomerado grueso de clastos redondeados y sub-redondeados, con mayormente de cuarcitas en matriz arenosa, con espesor de hasta 60 cm y capas de arenas y hacia el techo la presencia de arcillas rojizas. Subyace con discordancia leve a los depósitos cuaternarios. Extensamente desarrollada en el Caserío de Montesorco.

Foto 11. Arenas limosas, en intercalación con conglomerados de clastos de arenisca redondeados, en matriz areno limosa. 817781- E, 9188672- N.

3.7.1.3. Depósitos cuaternarios

Estos depósitos provienen de las Formaciones circundantes y se generan a partir de la meteorización y erosión que los agentes externos han ido produciendo a lo largo del tiempo geológico. Así tenemos:

- Depósitos coluvio- deluviales (Qh-cl/dl). Matriz compuesta por finos limo arcillosos y arenosos con fragmentos de arenisca angulares a subangulares producto de la meteorización de rocas sedimentarias, acción de la gravedad y aguas de escorrentía, localizados al pie de laderas de forma caótica.
- Depósitos coluviales (Qh-cl). Consisten de clastos angulosos a subangulosos mal clasificados y con poca o nula compactación, además de material orgánico. Están presentes debido a la erosión de laderas, al pie de taludes escarpados.
- Depósitos aluviales (Qh-al). Litológicamente consiste en arcillas, arena, gravas, cantos y bloques, redondeados bien seleccionados variando la densidad de los materiales, semiconsolidadas. Son producto de material transportado y depositado por el agua en

- las quebradas y ríos, Constituyen terrazas de productividad agrícola y ganadera. Susceptibles a erosión fluvial.
- Depósitos fluviales (Qh- fl). Se encuentra ubicados en los cauces del río Huanga, son redondeados y heteromicticos, gravas y arenas mal seleccionada en matriz limo arcillosa.

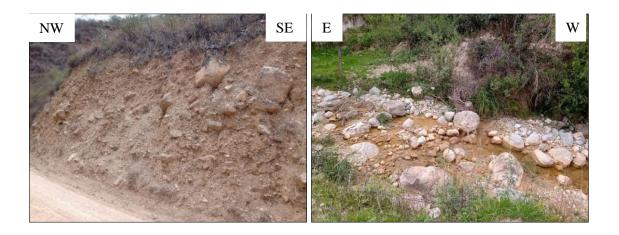


Foto 12. (a) Depósitos coluvial- deluviales producto de la erosión de las formaciones geológicas circundantes. 817166- E, 9189114- N. (b) Depósito fluvial, contiguo a depósitos aluviales conformando terrazas, Rio Huanga. 817822- E, 9189084- N.

Tabla 11. Unidades Litoestratigráficas

Era	Sistema	Serie	Unidad Litoestratigráfica	Abreviatura
			Depósitos coluviales	Qh-cl
	Cuaternario	Holoceno	Depósitos fluviales	Qh-fl
Cenozoico	Cuaternario		Depósitos aluviales	Qh-al
		Pleistoceno	Fm. Condebamba	N-con
	Neógeno	Mio -Plioceno	Fm. Cajabamba	Nm-cjb

3.7.2. Geología Estructural

3.7.2.1. Fallas

La Formación Condebamba ha sido afectada por reactivaciones de fallas preexistentes, lo que ha generado flexuras, desplazamientos y erosión. En la carretera hacia el Caserío Montesorco se observa el cambio de litología, izquierda Formación Cajabamba

con una intercalación de arenas de grano fino con delgados niveles de limolitas y arcillitas blanquecinas y bruscamente el cambio de litología a conglomerados de cuarcita en intercalación con areniscas limosas como se puede aprecia en la Foto 13, cuya orientación es SE- NW. La Formación Cajabamba tiene azimut N 357° y buzamiento de 36°, la Formación Condebamba, azimut N350° y buzamiento 2°.

Foto 13. Falla Normal, con dirección NW- SE. 817797- E, 9188690- N.

3.7.2.2. Plegamientos

La Formación Cajabamba presenta pliegues relacionados a fallas inversas situadas a ambos lados de sus afloramientos, de manera que estos han incidido para su acomodo por gravedad sumado a ello la plasticidad del material componente de su litología.

Foto 14. Arcillolitas plegadas. 817804- E, 9188976- N.

3.8. HIDROLOGÍA

Hidrográficamente la zona de estudio está drenada por el río Huanga de dirección NE- SW y la quebrada Uñigan de dirección NE- SW tributaria del río Huanga (ver Plano P-01) pertenecientes a la microcuenca Cascasén, además de la presencia de otras quebradas de menor longitud. El río Huanga, que drena la zona se caracteriza por presentar avenidas máximas en los periodos de mayores precipitaciones de octubre a mayo y con caudal reducido en el periodo de estiaje, que comprende el periodo junio hacia setiembre.

La precipitación pluvial representa una variable detonante en el análisis de estabilidad de laderas y movimientos en masa (Rodríguez, 2016) por ello para comprender los efectos de las lluvias sobre las unidades Litoestratigráficas se obtuvo los datos de precipitación de la Estación San Marcos de altitud 2287 m.s.n.m. (H), por periodo de años desde el 2017 al 2023 (6 ciclos) como se detalla en la Tabla 14.

Tabla 12. Ubicación de la Estación Metereológica San Marcos

Estación Metereológica San Marcos													
Provincia:	SAN MARCOS	Distrito:	PEDRO GALVEZ										
Longitud:	78°10'21.72"	Altitud:	2287 m.s.n.m										

Fuente: Tomado de Senamhi (2024)

3.8.1. Transposición de Datos de Precipitación de la Estación Metereológica San Marcos a la microcuenca Cascasén.

Se realiza la transposición de datos a través de la Ecuación de Oswald, obteniendo el Factor de Transposición Ft= 1.31 (ver Tabla 13), hacia la microcuenca Cascasén donde pertenece el área de investigación, la altura media de la microcuenca fue calculada mediante los Parámetros geomorfológicos de cuencas utilizando el software ArcGis v.4.0 siendo 3002.62 m.s.n.m. (H1). Finalmente, el factor Ft se multiplicó por cada valor de precipitación de la Estación Metereológica resultando en los valores de precipitación para el área de investigación, dados por la Tabla 15.

La ecuación de Oswald es la siguiente:

$$PP = \frac{H}{H1} * PP1$$

Tabla 13. Cálculo de Factor de Transposición

CÁLO	CÁLCULO DE FACTOR DE TRANSPOSICIÓN DE PRECIPITACIONES Estación San Marcos- a la Zona Las Chamanas- Montesorco (Ecuación de Oswald)													
Zona Las Chamanas- Montesorco	Precipitación a la altitud H	PP	130.90	mm										
Estación San Marcos	Precipitación a la altitud H1	PP1	99.70	mm										
Zona Las Chamanas- Montesorco	Altitud media de la zona Las Chamanas- Montesorco	3002.62	m.s.n.m	PP1 en enero 2018: 99.7 mm										
Estación San Marcos	Altitud media de la Estación San Marcos	H1	2287	m.s.n.m										
Factor de Transposición	Ft			1.31										

Fuente. Formato de Rodríguez (2016), Datos del tesista

El resultado de las precipitaciones transpuestas se sintetiza mediante un gráfico de líneas en Excel por ciclo de precipitación tomando desde el mes de junio a diciembre del año anterior y de enero a mayo del año posterior, esta metodología sugerida por Rodríguez (2016), muestra de manera didáctica la tendencia de precipitaciones (Ver Figura 10 y 11)

Para comprensión de las gráficas de líneas, se define la Línea de Precipitación Referencial Conservadora (LPRC) ya que proporciona un valor límite hacia arriba y permite analizar el comportamiento de las curvas de precipitación mensual (Rodríguez, 2016). La LCRP se calcula mediante la sumatoria del Promedio de Precipitaciones anuales desde el 2017- 2023 (x= 90.73) más la desviación estándar de dichos promedios DS= 13.52 (ver Tabla 16), totalizando 104.26. Para efectos de manipulación de datos se castigó con el 4% de error, resultando la LCRP = 100.26, la que se representó en las gráficas con color azul. Analizando los gráficos de líneas vemos como hay dos épocas bien definidas, la de mayores precipitaciones pluviales que corresponde a los meses desde octubre hacia abril que

representa el 90.70% de precipitaciones entre los años 2017- 2023 y los de menores o escasa

precipitaciones de mayo- setiembre con 9.3 (Ver Figuras 10 y 11).

3.8.2. Escurrimiento e Infiltración

La infiltración es la variable externa de mayor importancia ya que afecta los

parámetros geomecánicos como la cohesión y el ángulo de fricción de los materiales cuando

ingresa por la porosidad primaria y secundaria, probable responsable de los eventos

geodinámicos antiguos y activador de los futuros eventos (Rodríguez, 2016).

A través de la Tabla 17, del Balance Hidrológico, la Precipitación Efectiva o

Escurrimiento (Pe en mm) y la infiltración (F en mm), son parámetros que se obtienen a

través de los datos de Precipitación antes calculados, además de hallar los volúmenes de

infiltración en el área de investigación (VF), Huamán y Rodríguez (2010), sostienen que el

coeficiente de escurrimiento es igual a 0.65 en razón de la presencia de suelos arcillosos y

franco arcillosos limosos.

Fórmulas para el cálculo:

PP = Pe + F

Donde:

PP: Precipitación Total

Pe: Precipitación Efectiva o Escurrimiento

F: Infiltración

Escurrimiento o Coeficiente de Escorrentía:

C = Pe/PP = 0.65

Coeficiente de Infiltración: Ci = 1 - C = 0.35 (cálculos según Huamán, F. 2010)

44

Tabla 14. Datos de Precipitación tomados de la Estación Metereológica San Marcos

DATOS	DATOS RECOGIDOS DE PRECIPITACIÓN ESTACIÓN SAN MARCOS													
			ΑÑ	O ANT	ERIOR	AÑO POSTERIOR								
CICLO DE PRECIPITACIÓN	JUN	JUL	AGO	SEP	OCT	NOV	DIC	ENE	FEB	MAR	ABR	MAY		
PRECIPITACIÓN 2017-2018	0.0	0.0	18.6	36.5	149.6	36.9	166.0	99.7	114.1	91.1	63.3	81.9		
PRECIPITACIÓN 2018-2019	0.3	0.0	0.0	27.4	99.1	128.2	90.5	45.1	142.0	304.3	83.0	18.9		
PRECIPITACIÓN 2019-2020	0.0	0.0	0.0	11.2	71.9	101.5	187.1	78.5	51.4	111.0	70.4	20.7		
PRECIPITACIÓN 2020-2021	1.3	47.1	0.0	7.9	14.2	59.3	151.2	140.1	35.8	186.0	78.9	37.2		
PRECIPITACIÓN 2021-2022	14.7	0.9	18.5	16.9	123.1	139.7	125.4	127.6	133.7	226.9	64.2	10.2		
PRECIPITACIÓN 2022-2023	28.9	2.1	0.0	26.0	54.3	4.2	102.4	165.3	97.5	120.5	78.2	35.3		

Tabla 15. Transposición de Datos de Precipitación a la Zona Las Chamanas y Montesorco

TRANSPOSICIÓN DE PRECIP	TRANSPOSICIÓN DE PRECIPITACIÓN ESTACIÓN SAN MARCOS A LA ZONA LAS CHAMANAS – MONTESORCO													
			ΑÑ	O ANT	ERIOR	AÑO POSTERIOR								
CICLO DE PRECIPITACIÓN	JUN	JUL	AGO	SEP	OCT	NOV	DIC	ENE	FEB	MAR	ABR	MAY		
PRECIPITACIÓN 2017-2018	0.0	0.0	24.4	47.9	196.4	48.4	217.9	130.9	149.8	119.6	83.1	107.5		
PRECIPITACIÓN 2018-2019	0.4	0.0	0.0	36.0	130.1	168.3	118.8	59.2	186.4	399.5	109.0	24.8		
PRECIPITACIÓN 2019-2020	0.0	0.0	0.0	14.7	94.4	133.3	245.6	103.1	67.5	145.7	92.4	27.2		
PRECIPITACIÓN 2020-2021	1.7	61.8	0.0	10.4	18.6	77.9	198.5	183.9	47.0	244.2	103.6	48.8		
PRECIPITACIÓN 2021-2022	19.3	1.2	24.3	22.2	161.6	183.4	164.6	167.5	175.5	297.9	84.3	13.4		
PRECIPITACIÓN 2022-2023	37.9	2.8	0.0	34.1	71.3	5.5	134.4	217.0	128.0	158.2	102.7	46.3		

Tabla 16. Análisis estadístico de precipitaciones transpuestas y cálculo de la LCRP

TRANSPO	TRANSPOSICIÓN DE PRECIPITACIÓN ESTACIÓN SAN MARCOS A LA ZONA LAS CHAMANAS - MONTESORCO																
		AÑO ANTERIOR								RIOR							
CICLO DE PRECIPITACIÓN	JUN	JUL	AGO	SEP	OCT	NOV	DIC	ENE	FEB	MAR	ABR	MAY	TOTAL PP ANUAL	PROMEDIO PP ANUAL	PP TOTAL (OCT- ABR)	%PP TOTAL (OCT- ABR)	
PRECIPITACIÓN 2017-2018	0.0	0.0	24.4	47.9	196.4	48.4	217.9	130.9	149.8	119.6	83.1	107.5	1126.08	93.84	946.21	84.03	
PRECIPITACIÓN 2018-2019	0.4	0.0	0.0	36.0	130.1	168.3	118.8	59.2	186.4	399.5	109.0	24.8	1232.56	102.71	1171.38	95.04	
PRECIPITACIÓN 2019-2020	0.0	0.0	0.0	14.7	94.4	133.3	245.6	103.1	67.5	145.7	92.4	27.2	923.89	76.99	882.01	95.47	
PRECIPITACIÓN 2020-2021	1.7	61.8	0.0	10.4	18.6	77.9	198.5	183.9	47.0	244.2	103.6	48.8	996.50	83.04	873.74	87.68	
PRECIPITACIÓN 2021-2022	19.3	1.2	24.3	22.2	161.6	183.4	164.6	167.5	175.5	297.9	84.3	13.4	1315.27	109.61	1234.92	93.89	
PRECIPITACIÓN 2022-2023	37.9	2.8	0.0	34.1	71.3	5.5	134.4	217.0	128.0	158.2	102.7	46.3	938.34	78.19	817.15	87.09	

		A	.ÑO Al	NTERI	IOR			A]	ÑO PO					
	JUN	JUL	AGO	SEP	OCT	NOV	DIC	ENE	FEB	MAR	ABR	MAY	TOTAL PP ANUAL	PROMEDIO PP ANUAL
PROMEDIO	9.9	11.0	8.1	27.5	112.1	102.8	180.0	143.6	125.7	227.5	95.8	44.7	1088.77	90.73
MEDIANA	1.1	0.6	0.0	28.2	112.3	105.6	181.6	149.2	138.9	201.2	97.5	36.8	1061.29	88.44
DESVIACIÓN ESTÁNDAR	15.7	24.9	12.6	14.3	64.2	70.4	49.3	57.5	57.2	107.7	10.8	33.6	162.30	13.52
MÁXIMO	37.9	61.8	24.4	47.9	196.4	183.4	245.6	217.0	186.4	399.5	109.0	107.5	1315.27	109.61
MÍNIMO	0.0	0.0	0.0	10.4	18.6	5.5	118.8	59.2	47.0	119.6	83.1	13.4	923.89	76.99

Línea de Precipitación Referencial Conservadora: $(X) + (DS)^* 4\% = 100.26$

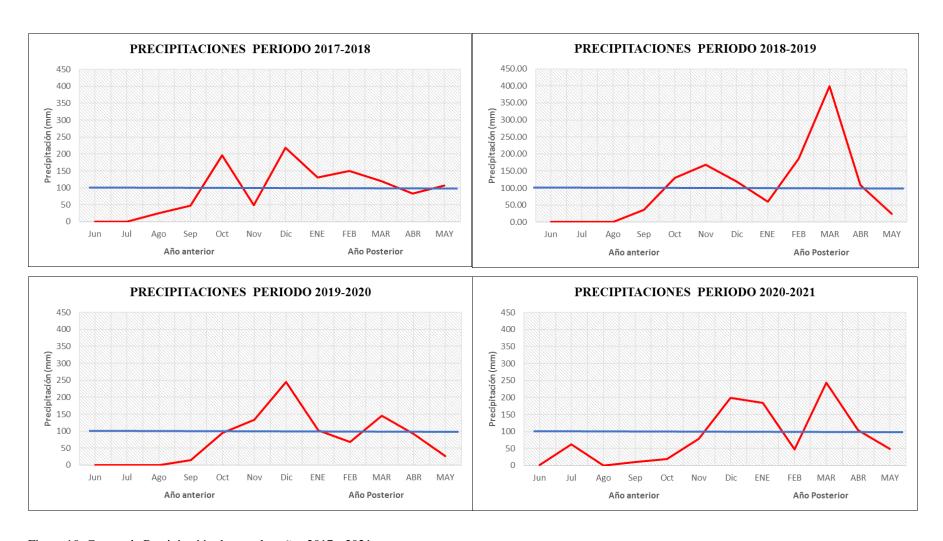


Figura 10. Curvas de Precipitación durante los años 2017 - 2021

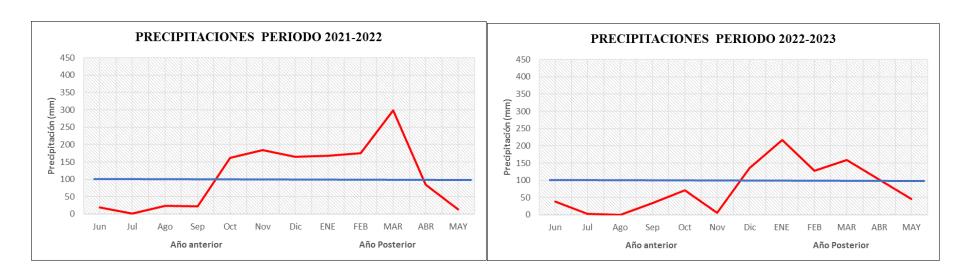


Figura 11. Curvas de Precipitación durante los años 2021- 2023

Tabla 17. Balance Hidrológico

BALANCE HIDROLÓGICO									
SUBCUENCA RIO CASCASEN									
		1	2	3=1*2	4=1-3	5=4/1000	6=5*Asc	7=6/1'000,000	8=7*100/261.96
		PP	C	Pe	F	F	VF	VF	%
			C=Pe/PP	Pe=C*PP	F=PP-Pe	F=PP-Pe	VF=F*Asc	VF=F*Asc	%
		mm		mm	mm	m	m3	MMC	%
CICLOS DE PRECIPITACIÓN EN AÑOS	NÚMERO DE AÑOS POR CICLO	PRECIPITACIÓN TOTAL (PP)	COEF. ESCORRENTIA (C)	PRECIPITACIÓN EFECTIVA O ESCURRIMIENTO (Pe)	INFILTRACIÓN (F)	INFILTRACIÓN (F)	VOLÚMEN DE INFILTRACIÓN (VF)	VOLÚMEN DE INFILTRACIÓN (VF)	% PARCIAL DE LA PRECIPITACIÓN TOTAL
2017-2018	1	1,126.08	0.65	731.95	394.13	0.39	45,155,283.78	45.16	17.23
2018-2019	1	1,232.56	0.65	801.16	431.40	0.43	49,424,950.93	49.42	18.86
2019-2020	1	923.89	0.65	600.53	323.36	0.32	37,047,654.42	37.05	14.14
2020-2021	1	996.50	0.65	647.72	348.77	0.35	39,959,030.42	39.96	15.25
2021-2022	1	1,315.27	0.65	854.93	460.34	0.46	52,741,708.39	52.74	20.13
2022-2023	1	938.34	0.65	609.92	328.42	0.33	37,626,770.80	37.63	14.36
Total	6.00	6532.64	0.65	4246.21	2286.42	2.29	261955398.74	261.96	100
Asc Área De La Subcuenca Del Rio Cascasen En Km2 Área De La Subcuenca Del Rio Cascasen En m2				114.57 114570000			261.96	100	
Ainvest	Área De Investigación En Km2				1.5			3.43	1.31
MMC: millones of	de metros cú	bicos							

Fuente. Formato tomado de Rodríguez (2016)

3.9. HIDROGEOLOGÍA

En la clasificación hidrogeológica se utilizó la clasificación propuesta por INGEMMET (2009), así la zona de estudio presenta acuíferos porosos no consolidados y acuíferos porosos consolidados.

Acuíferos porosos no consolidados con permeabilidad elevada

Esta unidad está compuesta por sedimentos no consolidados, pertenecientes al cuaternario reciente. Presentan alta porosidad primaria y permeabilidad.

- Depósitos fluviales y aluviales. Depósitos porosos no consolidados distribuidos en los cauces, relleno de río, terrazas y llanuras aluviales.
- Depósitos coluviales/ deluviales. Ubicados en el pie de laderas productos de la constante erosión de las Formaciones Cajabamba y Condebamba.

Acuíferos porosos semiconsolidados (permeabilidad media)

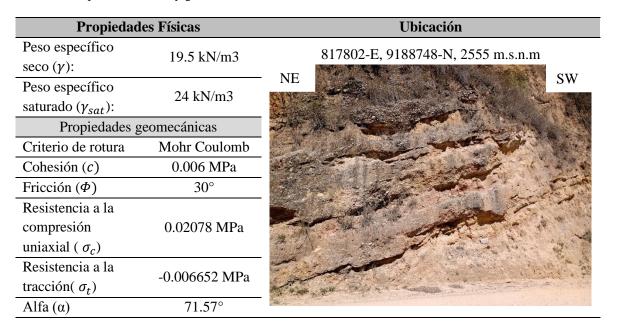
Estos son de origen sedimentario lacustre, de litología arenas finas, limolitas, arcillolitas y conglomerados.

Tabla 18. Unidades Hidrogeológicas

Unidad	Tipo	Abreviatura	Periodo	Origen
	Depósitos	Qh-cl	Cuaternario	Transportado
_	coluviales	QII-CI		
Acuífero poroso	Depósitos	Qh-al	Cuaternario	Transportado
no consolidado -	aluviales			
no consondado =	Depósitos			_
	coluvio	Qh-cl/dl	Cuaternario	Transportado
	deluviales			
	Formación	N-con	Neógeno	Sedimentario
Acuífero poroso	Condebamba	N-COII		lacustre
semiconsolidado	Formación	Nm-cjb	Neógeno	Sedimentario
	Cajabamba	14111-630		lacustre

3.10. COMPORTAMIENTO GEOMECÁNICO

El comportamiento geomecánico es el resultado de una estrecha relación entre: las propiedades físico mecánicas de los materiales, sus características geológicas (litología,


estratigrafía, estructuras, estados de esfuerzo in situ, etc.) y los factores extrínsecos como las condiciones hidrogeológicas, ambientales, fenómenos meteorológicos que actúan sobre el medio geológico y dan lugar a los procesos de meteorización, modificando las propiedades iniciales de los macizos rocosos (González de Vallejo, 2002).

3.10.1. Propiedades Geomecánicas

Se ha realizado la caracterización de cada Unidad Litoestratigráfica a fin de encontrar las propiedades geomecánicas definiendo las propiedades físicas o índice, y los parámetros resistentes y tenso deformacionales, detalladas en la Tabla 53 (Anexo II), cuyas Gráficas de RocData v. 4.0 se presentan en el Anexo I.

Unidad I. Formación Cajabamba: Presencia de arenas limosas de grano fino (<0.2mm) de espesor 20- 30 cm, color pardo amarillento, además delgadas capas (< 5cm) de arcillolitas blanquecinas. Meteorización moderada.

Tabla 19. Propiedades físicas y geomecánicas de la Unidad I.

Unidad II. Formación Condebamba: Presencia de conglomerados clasto soportado de hasta 1m de espesor, clastos redondeados a subredondeados de areniscas y calcáreos en matriz arenosa, en intercalación con arenas limosas de espesor 70 cm. Meteorización moderada.

Tabla 20. Propiedades físicas y geomecánicas de la Unidad II

Propiedad	les Físicas	Ubicación			
Peso específico	20 kN/m3	811792-E, 9188678-N, 2592 m.s.n.m			
seco (γ):	20 KI V/III3	- NE SW			
Peso específico	26 kN/m3	IVE SW			
saturado (γ_{sat}):	20 KI (/III)	Company of the Compan			
Propiedades g	geomecánicas				
Criterio de	Mohr				
rotura	Coulomb				
Cohesión (c)	0.008 MPa				
Fricción (Φ)	32°	THE RESERVE THE PROPERTY OF THE PERSON OF TH			
Resistencia a la					
compresión	0.02886 MPa				
uniaxial (σ_c)					
Resistencia a la	-0.008329MPa				
tracción(σ_t)	-0.000329WIPa				
Alfa (α)	72.92°				

Unidad III. Depósito coluvial. Comprende arenas, limos y gravas subredondeados desplazados por gravedad y depositadas in situ. Segú la clasificación S.U.C.S (Según Tabla 02), es un suelo SW-SM (Arena bien graduada con grava y limos, gravas ≥15%). Las Propiedades físicas y geomecánicas de la Unidad se describen en la Tabla 21.

Unidad IV. Depósito aluvial. Este depósito contiene materiales finos como arcillas, limos y arenas hasta gravas y bloques heterométricos de hasta 50 cm diámetro, los clastos son subredondeados de arenisca. Según la clasificación S.U.C.S (Según Tabla 02) es un suelo tipo GP-GM (Grava mal graduada con limo y arena, ≥ 15% de arenas). Las Propiedades físicas y geomecánicas de la Unidad se describen en la Tabla 22.

Unidad V. Depósito coluvio deluvial. Contiene sedimentos finos como arcillas y arenas con fragmentos pequeños de gravas (<3cm) que fueron removidos por agua de lluvia que se depositan y cubren las laderas. Los clastos se presentan subangulosos. Según la clasificación S.U.C.S (Según Tabla 02), nos encontramos con un suelo tipo SW-SC (Arena bien graduada con arcilla y grava o arcilla limosa y grava, ≥15% de grava). Las Propiedades físicas y geomecánicas de la Unidad se describen en la Tabla 23.

Tabla 21. Propiedades físicas y geomecánicas de la Unidad III

Propiedad	es Físicas	Ubicación		
Peso específico	19 kN/m3	817619E, 9189036N, 2469 m.s.n.m.		
seco (γ):		- SW NE		
Peso específico	24 kN/m3	NE NE		
saturado (γ_{sat}):	21 81 7 113			
Propiedades g	eomecánicas			
Criterio de	Mohr			
rotura	Coulomb			
Cohesión (c)	0.006 MPa			
Fricción (Φ)	36°			
Resistencia a la				
compresión	0.02355 MPa			
uniaxial (σ_c)		Qh-cl		
Resistencia a la	-0.006114			
tracción(σ_t)	MPa			
Alfa (α)	75.45°			

Tabla 22. Propiedades físicas y geomecánicas de la Unidad IV

Propieda	ndes Físicas	Ubicación			
Peso específico seco (γ):	19 kN/m3	817353 E, 9189117 N, 2507 m.s.n.m.			
Peso específico saturado (γ_{sat}):	24 kN/m3	SW			
	geomecánicas				
Criterio de rotura	Mohr Coulomb				
Cohesión (c)	0.006 MPa				
Fricción (Φ)	34°				
Resistencia a la compresión uniaxial (σ_c)	0.02257MPa				
Resistencia a la tracción(σ_t)	-0.006114MPa				
Alfa (α)	74.21	LOUIS TO THE PARTY CAN BE A SECOND OF THE PAR			

Tabla 23. Propiedades físicas y geomecánicas de la Unidad V

Propied	ades Físicas	Ubicación		
Peso específico seco (γ):	18 kN/m3	817729- E, 9188726-N, 2546 m.s.n.m. NE SW		
Peso específico saturado (γ_{sat}):	22 kN/m3			
Propiedades	s geomecánicas			
Criterio de rotura	Mohr Coulomb			
Cohesión (c)	0.006 MPa	THE PARTY OF THE P		
Fricción (Φ)	30°	发展的扩展的企业的基础。		
Resistencia a la compresión uniaxial (σ_c)	0.02078 MPa			
Resistencia a la tracción(σ_t)	-0.006114 MPa			
Alfa (α)	71.57			

Ensayo de laboratorio para suelos:

Análisis granulométrico: Las muestras ensayadas en el laboratorio han sido clasificadas de acuerdo al Sistema Unificado de Clasificación de Suelos (S.U.C.S), bajo las normas A.S.T.M D2487 y la norma Técnica A.A.S.H.T.O M 145.

Límites de Atterberg: la muestra se analizó bajo la temperatura de secado de 60°C y el tipo de material es el que pasa malla N°40.

Contenido de Humedad y Densidad húmeda y seca (Método volumétrico): Las muestras han sido secadas en espacio de 16 horas a la temperatura de 110°C. Para la estimación de densidad se utilizó el molde para densidad descrito en el gráfico (Ver Anexo III) y sus dimensiones.

Tabla 24. Ensayo de laboratorio para muestra 01

	CM. Amana	1:	Porcent	Porcentajes (%)		
		limosa, color marrón	Grava	0.00		
Clasificación S.U.C.S	oscuro, mezclada con 47.64% de partículas finas menores que 0.075mm.		Arena gruesa	22.20		
			Arena fina	30.16		
		0.075mm.	Finos	47.64		
	I	Límites de Atterberg	3			
Límite Líquido	LL:	Según gráfico	34 %			
Límite Plástico	Límite Plástico LP: Humedao			26.17%		
Índice de plasticidad		IP= LL-LP	8	3%		
Contenido de Humedad						
		7.9%				
Densidad h	úmeda		Densidad see	Densidad seca		
1.691 g/o	cm3		1.576 g/cm ³	3		
Realizando las co	onversiones:		Realizando las conversiones:			
Peso específico saturado ((γ_{sat}) : 16.58	3 kN/m3 Peso	eso específico seco (γ): 15.455kN/m3			
Ensayo de corte directo						
Espécimen Esfue	rzo normal	Esfuerzo de corte	Cohesión (c)	Fricción (Φ)		
(K	(g/cm2)	(Kg/cm2)				
1	0.5	0.332	0.125 kg/cm2 o	22.49°		
2	1.0	0.543	12.258 kN/m2			
3	2.0	0.953				

Tabla 25. Ensayo de laboratorio para muestra 02

		Porcentajes (%)		
	·	Grava	0.00	
	,	Arena gruesa	26.58	
		Arena fina	48.18	
IIICI	iores que 0.075mm.	Finos	25.24	
C	ontenido de humedad			
	2.29%			
]	Ensayo de densidad			
meda		Densidad seca		
n3		1.675 g/cm3		
nversiones:	R	Realizando las conversiones:		
_{sat}): 16.77	9 kN/m3 Peso es	pecífico seco (γ):	16.426 kN/m3	
Eı	nsayo de corte directo			
Esfuerzo normal Esfuerzo de corte		Cohesión (c)	Fricción (Φ)	
(/cm2)	(Kg/cm2)		. ,	
0.5	0.280			
1.0	0.564	0	29.23	
2.0	1.119			
	amari 25.24 mer 25.24 mer 25.24 meda n3 aversiones: sat): 16.77 En 20 normal /cm2)	2.29% Ensayo de densidad meda n3 aversiones: R sat): 16.779 kN/m3 Peso es Ensayo de corte directo co normal Esfuerzo de corte /cm2) (Kg/cm2) 0.5 0.280 1.0 0.564	SM: Arena limosa, color amarillento, mezclada con 25.24% de partículas finas menores que 0.075mm . Contenido de humedad 2.29% Ensayo de densidad meda Densidad secons reversiones: Realizando las conversiones: Realizando las conversiones: Ensayo de corte directo co normal Esfuerzo de corte (Kg/cm2) 0.5 0.280 1.0 O.564 Orena gruesa Arena fina Finos Penosidad secons Realizando las conversiones Cohesión (c)	

3.11. ESTABILIDAD DE TALUDES Y LADERAS

El análisis de estabilidad se ha realizado siguiendo los siguientes lineamientos:

- Criterios de rotura: Mohr Coulomb
- Métodos de análisis de estabilidad: Equilibrio Límite

 Se ha utilizado los métodos de análisis Bishop Simplificado (1955) ya que es una forma práctica de entender el comportamiento de los materiales solo con el estudio de equilibrio de momentos, es más conservador y el método Morgenstern y Price (1965) que basa el análisis en el equilibrio de momentos y fuerzas.
- Tipo de superficie de falla: circular, método de búsqueda Auto Refine Search
- Análisis Pseudoestático: Para el análisis se calcularon los coeficientes sísmicos horizontal y vertical considerando la Zona sísmica 3 con Factor de Zona 0.35, a la cual pertenece la zona de estudio según la Norma Técnica E.030 Diseño Sismorresistente del Reglamento Nacional de Edificaciones (RNE) realizada por el Ministerio de Vivienda, Construcción y Saneamiento (2018), mediante el software Load Cap como se muestra en la Tabla 26 y la Figura 12.

Tabla 26. Cálculo de coeficientes sísmicos horizontal y vertical

Coeficientes sísmicos horizontal y vertical		
Zona sísmica	3	
Máxima aceleración sísmica	0.35	
Coeficiente de ampliación topográfica	1.2	
Perfil estratigráfico del terreno	C =1.25	
Coeficiente sísmico horizontal	kh= 0.263	
Coeficiente sísmico vertical	kv= 0.132	

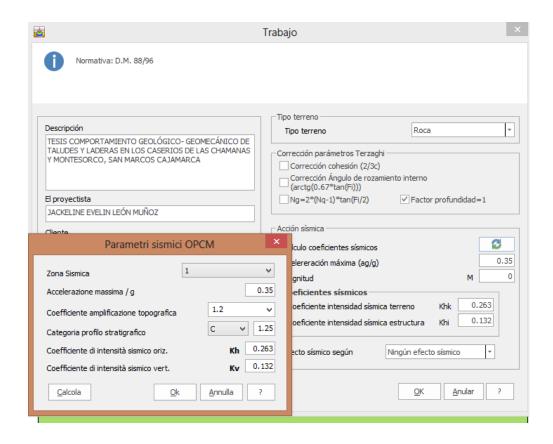


Figura 12. Cálculo de coeficientes sísmicos con Load Cap

 Escenarios de análisis: Teniendo en cuenta 4 escenarios, bajo los cual se analizó cada estación y perfil.

Tabla 27. Escenarios de análisis de estabilidad de laderas y taludes

N°	Condiciones	Nivel Freático	kh	kv	Macizo rocoso/suelo en:
1	Naturales	-	-	-	Condiciones drenadas y estáticas
2	Pseudoestáticas	-	0.263	0.132	Condiciones de máximas aceleraciones sísmicas, usando los coeficientes kh y kv
3	Saturación parcial	Profundidad media del nivel critico	-	-	Condiciones de precipitaciones intensas
4	Saturación parcial- Pseudoestáticas	Profundidad media del nivel critico	0.263	0.132	Combinación de las condiciones 2 y 3

3.11.1. Estación 01

El talud se presenta en depósitos aluviales, consta de materiales finos como arcillas, limos y arenas hasta gravas y bloques de hasta 10 cm de diámetro, de clastos subredondeados. No contiene humedad visible. Se evidencia deslizamientos sobre la carretera en estado activo. En la Tabla 28 podemos ver propiedades físicas y geomecánicas de la Estación.

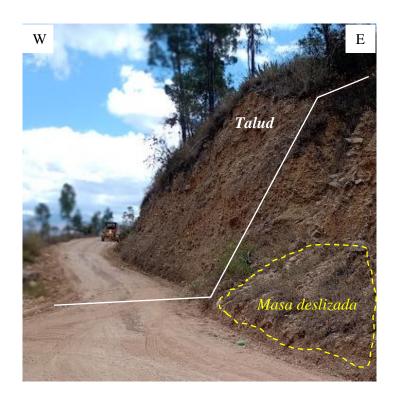


Foto 15. Estación 01

Tabla 28. Propiedades físicas y geomecánicas de la Estación 01

Estación 01				
Progresiva (Km)	1+282			
Sistema	WGS 84 Zona 17S			
Ubicación	817161 E, 9189088 N, 2503 m.s.n.m.			
Talud	Altura: 10m Azimut: N70 Dip: 49°			
Tipo de depósito	Aluvial			
Clasificación SUCS	GP-GM (Grava mal graduada con limo y			
Clasificación 50C5	arena)			
Peso específico seco (γ): 19 kN/m3	Peso específico saturado (γ _{sat}): 24 kN/m3			
Cohesión (<i>c</i>): 0.006 MPa	Fricción (Φ): 34°			

En la Tabla 29, vemos que en condiciones naturales el talud presenta inestabilidad (Factor de Seguridad F.S=1.023), el Factor de seguridad decrece hasta FS= 0.519 en condiciones combinadas pseudoestáticas y de saturación parcial.

Tabla 29. Factores de Seguridad en el análisis de estabilidad de la Estación 01

Factores de Seguridad				
		Método de a	nálisis	
Id	Condición	GLE/Morgenstern-	Bishop	
		Price	Simplificado	
	Naturales	1.023	1.031	
Estación 01 -	Pseudoestáticas	0.699	0.701	
Estacion or	Saturación Parcial	0.738	0.739	
-	Pseudoestáticas + Saturación Parcial	0.519	0.503	

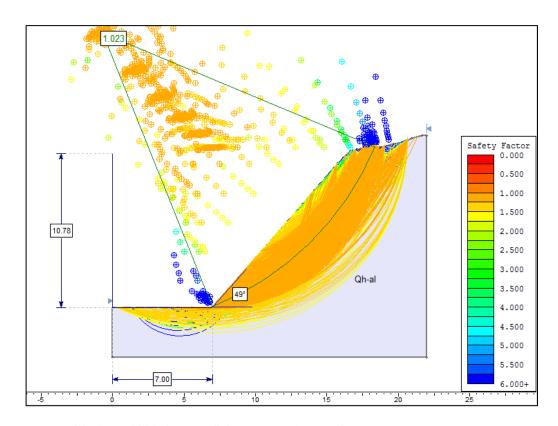


Figura 13. Análisis de estabilidad en Condiciones Naturales Estación 01

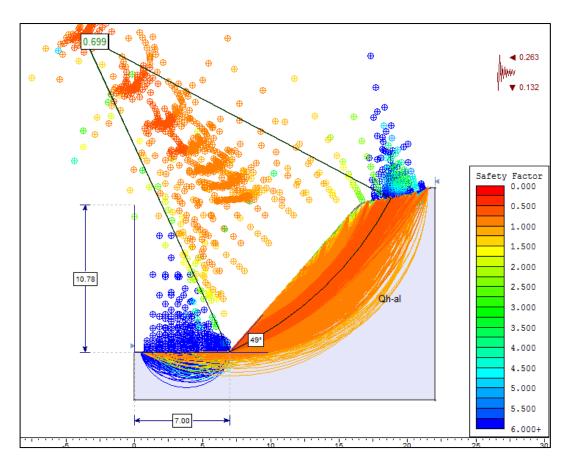


Figura 14. Análisis de estabilidad en Condiciones Pseudoestáticas Estación 01

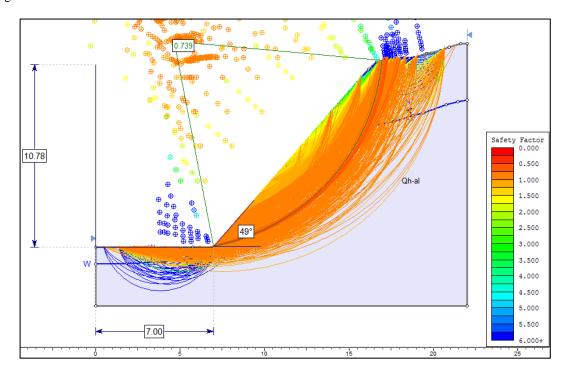


Figura 15. Análisis de estabilidad en Condiciones Saturadas Estación 01

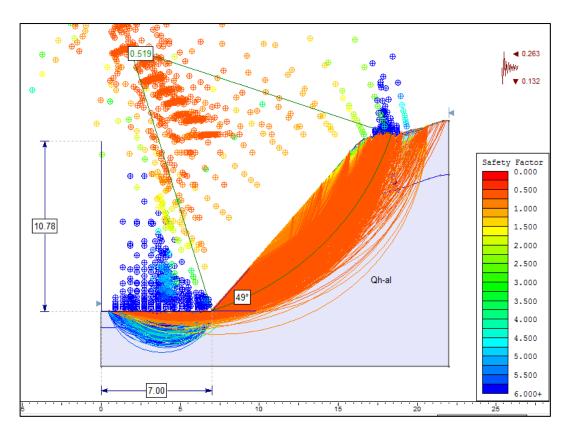


Figura 16. Análisis de estabilidad en Condiciones Saturadas- Pseudoestáticas Estación 01

3.11.2. Estación 02

El talud se presenta en depósitos aluviales, consta de materiales finos como arcillas, limos y arenas hasta gravas y bloques heterométricos de hasta 50 cm diámetro, los clastos son subredondeados de arenisca. Evidente caída de bloques. En la Tabla 30 podemos ver propiedades físicas y geomecánicas de la Estación.

Tabla 30. Propiedades físicas y geomecánicas de la Estación 02

Estación 02				
Progresiva (Km)	1+560			
Sistema	WGS 84 Zona 17S			
Ubicación	817353 E, 9189117 N, 2507 m.s.n.m.			
Talud	Altura: 8m Azimut: N93 Dip: 55°			
Tipo de depósito	Aluvial			
Clasificación SUCS	GP-GM (Grava mal graduada con limo y			
Clasificación SOCS	arena)			
Peso específico seco (γ): 19 kN/m3	Peso específico saturado (γ _{sat}): 24 kN/m3			
Cohesión (<i>c</i>): 0.006 MPa	Fricción (Φ): 34°			

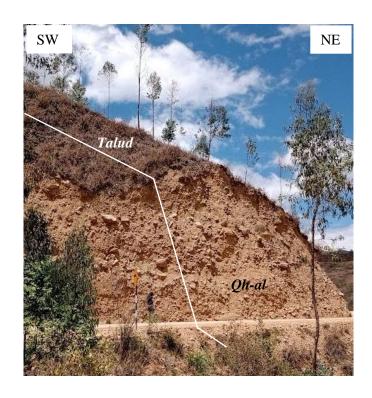


Figura 17. Estación 02

En la Tabla 31, vemos que en condiciones naturales el talud presenta inestabilidad (F.S= 0.949), el Factor de seguridad decrece hasta FS= 0.555 en condiciones combinadas pseudoestáticas y de saturación parcial.

Tabla 31. Factores de Seguridad en el análisis de estabilidad de la Estación 02

Factores de Seguridad				
Método de análisis				
Id	Condición	GLE/Morgenst	Bishop Simplificado	
		ern- Price		
_	Naturales	0.949	0.956	
Estación	Pseudoestáticas	0.652	0.652	
02	Saturación Parcial	0.786	0.783	
	Pseudoestáticas + Saturación Parcial	0.555	0.544	

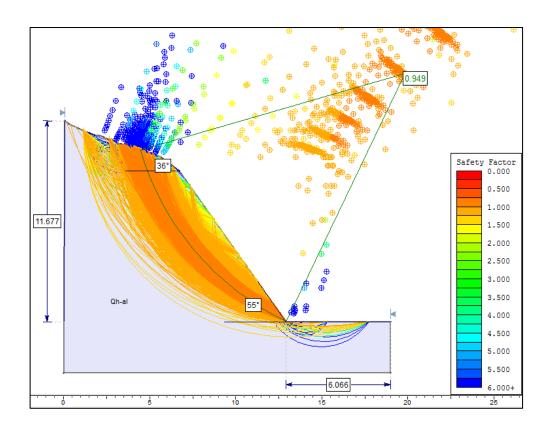


Figura 18. Análisis de estabilidad en Condiciones Naturales Estación 02

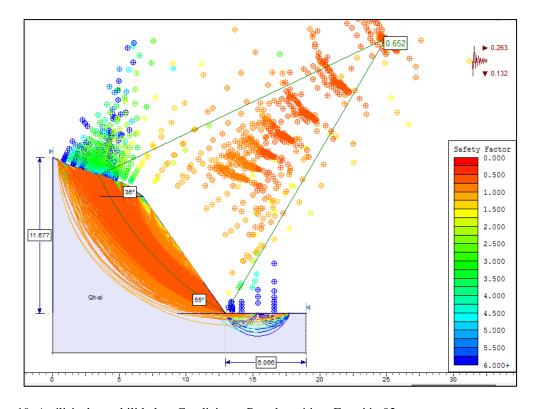


Figura 19. Análisis de estabilidad en Condiciones Pseudoestáticas Estación 02

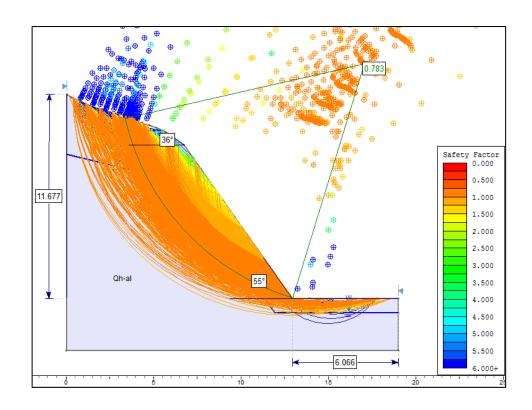


Figura 20. Análisis de estabilidad en Saturación Parcial Estación 02

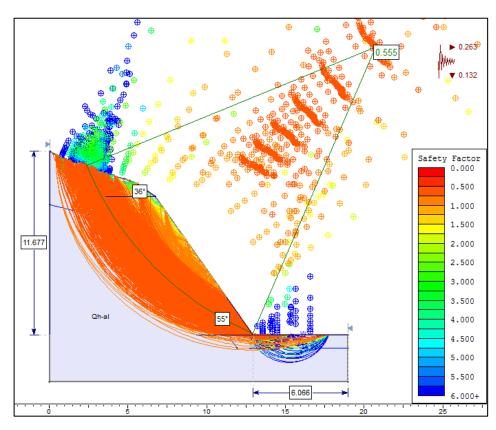


Figura 21. Análisis de estabilidad en Condiciones Saturadas- Pseudoestáticas Estación 02

3.11.3. Estación 03

En el talud se observan surcos erosivos por acción del agua, depositando gravas, arenas y finos como depósito coluvio deluvial sobre la Formación Cajabamba. La Formación Cajabamba, litológicamente consta de arenas limosas en la base, pasando hacia el techo a un conglomerado fino, de matriz arenosa y clastos de arenisca redondeados de hasta 5 cm de diámetro. En la Tabla 32 podemos ver propiedades físicas y geomecánicas de la Estación.

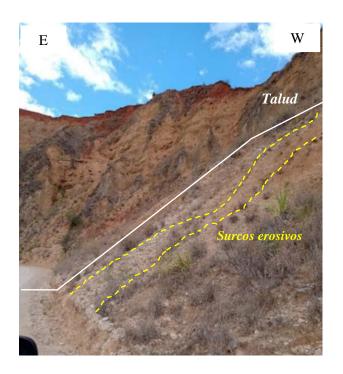


Foto 16. Estación 03, surcos erosivos por acción del agua

Tabla 32. Propiedades físicas y geomecánicas de la Estación 03

Estación 03				
Progresiva (Km)	3+637			
Sistema	WGS 84 Zona 17S			
Ubicación	817664 E, 9188701 N, 2542 m.s.n.m.			
Talud	Altura: 17m Azimut: N269 Dip: 39°			
Formación Geológica	Fm. Cajabamba			
Descripción	Arena limosa semiconsolidada en intercalación con conglomerados finos			
Peso específico seco (γ): 19.5 kN/m3	Peso específico saturado (γ_{sat}): 24kN/m3			
Cohesión (<i>c</i>): 0.006 MPa	Fricción (Φ): 30°			
Tipo de depósito	Coluvio deluvial			
Clasificación SUCS	SW-SC (Arena bien graduada con arcilla y grava o arcilla limosa y grava)			
Peso específico seco (γ): 18 kN/m3	Peso específico saturado (γ_{sat}): 22 kN/m3			
Cohesión (c): 0.006 MPa	Fricción (Φ): 30°			

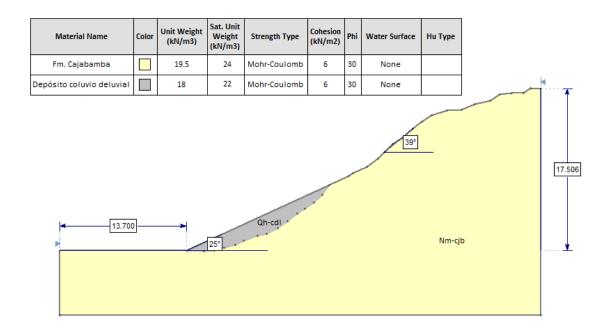


Figura 22. Geometría del Talud 03

En la Tabla 33, vemos que en condiciones naturales el talud es estable, el Factor de seguridad decrece hasta FS= 0.712 en condiciones combinadas pseudoestáticas y de saturación parcial tornándose inestable.

Tabla 33. Factores de Seguridad en el análisis de estabilidad de la Estación 03

Factores de Seguridad				
		Método de a	nálisis	
Id	Condición	GLE/Morgenstern-	Bishop	
		Price	Simplificado	
	Naturales	1.377	1.382	
Estación 03 -	Pseudoestáticas	0.897	0.896	
Estacion 03	Saturación Parcial	1.130	1.132	
-	Pseudoestáticas + Saturación Parcial	0.712	0.714	

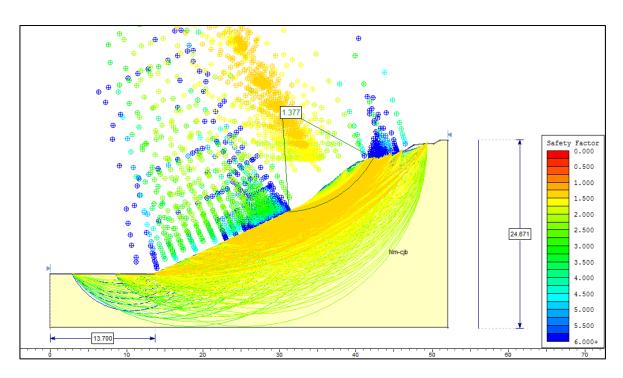


Figura 23. Análisis de estabilidad en condiciones naturales Estación 03

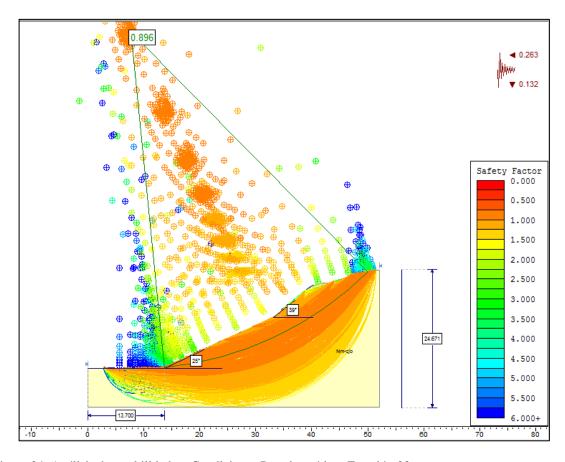


Figura 24. Análisis de estabilidad en Condiciones Pseudoestáticas Estación 03

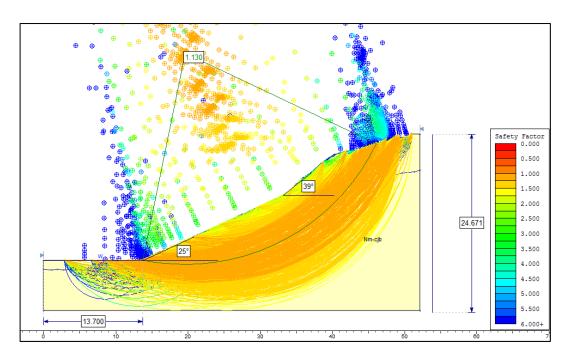


Figura 25. Análisis de estabilidad en Saturación Parcial Estación 03

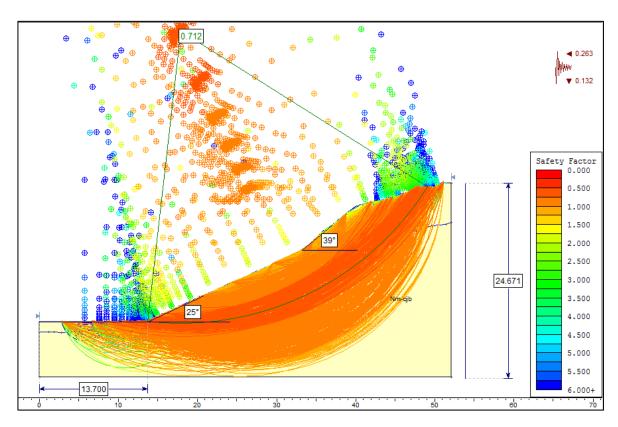


Figura 26. Análisis de estabilidad en Condiciones Saturadas-Pseudoestáticas Estación 03

3.11.4. Estación 04

En el talud aflora la Formación Condebamba, en su litología representativa, intercalación de arenas de grano medio semiconsolidadas de 60 cm de espesor y conglomerado clasto soportado de hasta 80 cm, de clastos redondeados y matriz limo arcillosa. En la Tabla 34 podemos ver propiedades físicas y geomecánicas de la Estación.

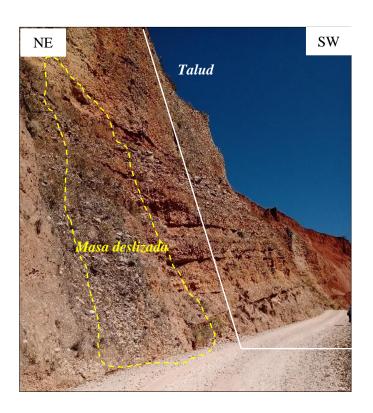


Foto 17. Estación 04

Tabla 34. Propiedades físicas y geomecánicas de la Estación 04

Estación 04				
Progresiva (Km)	4+346			
Sistema	WGS 84 Zona 17S			
Ubicación	817792 E, 9188678 N, 2592 m.s.n.m.			
Talud	Altura: 18m Azimut: N220 Dip: 51°			
Formación Geológica	Fm. Condebamba			
Descripción	Arenas de grano medio semiconsolidadas intercalado con conglomerado clasto soportado			
Estratificación	Dip: 23 Dip Direction: 96			
Peso específico seco (γ): 20 kN/m3	Peso específico saturado (γ_{sat}): 26 kN/m3			
Cohesión (c): 0.008MPa	Fricción (Φ): 36°			

En la Tabla 35, vemos que en condiciones naturales el talud presenta inestabilidad (F.S= 1), el Factor de seguridad decrece hasta FS= 0.570 en condiciones combinadas pseudoestáticas y de saturación parcial.

Tabla 35. Factores de Seguridad en el análisis de estabilidad de la Estación 04

Factores de Seguridad				
		Método de a	nálisis	
Id	Condición	GLE/Morgenstern-	Bishop	
		Price	Simplificado	
	Naturales	1.0	0.993	
Estación 04 -	Pseudoestáticas	0.674	0.678	
Estacion 04	Saturación Parcial	0.836	0.835	
- -	Pseudoestáticas + Saturación Parcial	0.570	0.582	

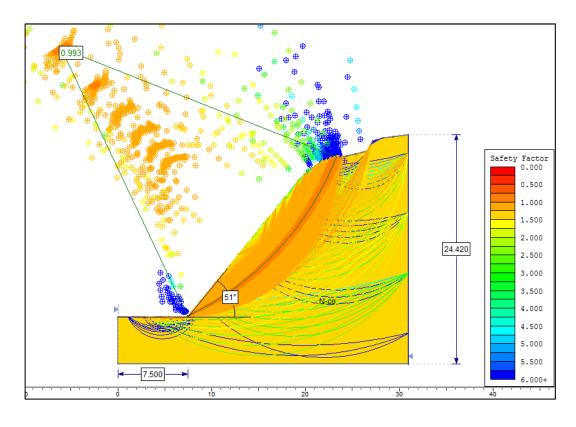


Figura 27. Análisis de estabilidad en condiciones naturales Estación 04

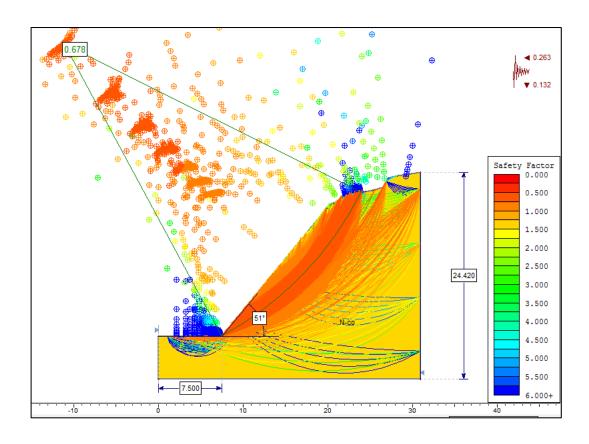


Figura 28. Análisis de estabilidad en Condiciones Pseudoestáticas Estación 04

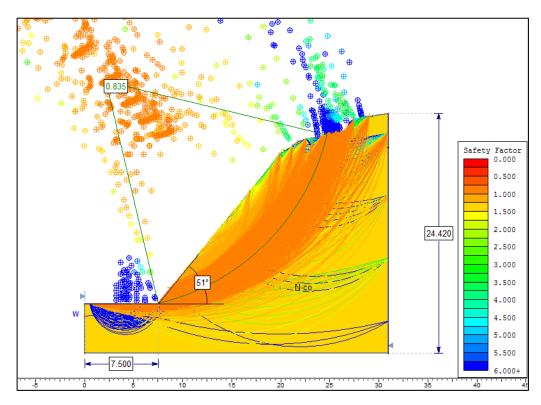


Figura 29. Análisis de estabilidad en Saturación Parcial Estación 04

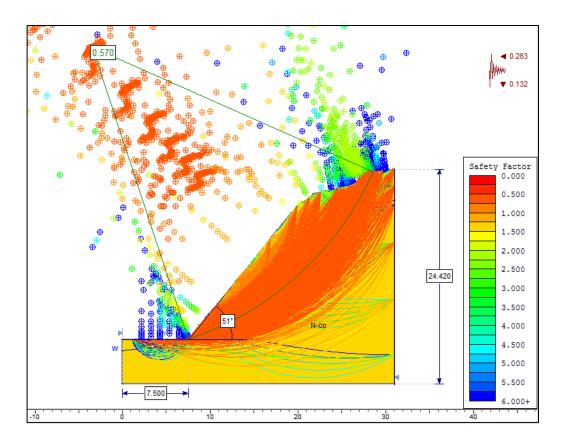


Figura 30. Análisis de estabilidad en Condiciones Saturadas-Pseudoestáticas Estación 04

3.11.5. Estación 05

En el talud aflora la Formación Condebamba, arena limosa en la base y hacia el techo conglomerados clasto soportado de 2 cm de diámetro y capas de arcillas rojas en espesor de hasta 2 m, nótese los deslizamientos producto de la alta erosión. En la Tabla 36 podemos ver propiedades físicas y geomecánicas de la Estación.

Foto 18. Estación 05

Tabla 36. Propiedades físicas y geomecánicas de la Estación 05

Estación 05				
Progresiva (Km)	4+429			
Sistema	WGS 84 Zona 17S			
Ubicación	817721 E, 9188644 N, 2581 m.s.n.m.			
Talud	Altura: 11m Azimut: N269 Dip: 45°			
Formación Geológica	Fm. Condebamba			
Descripción	Arenas de grano medio semiconsolidadas intercalado con conglomerado clasto soportado			
Estratificación	Dip: 25 Dip Direction: 96			
Peso específico seco (γ): 20 kN/m3	Peso específico saturado (γ_{sat}): 24 kN/m3			
Cohesión (c): 0,008 MPa	Fricción (Φ): 32			
Suelos				
Tipo	SM (arena limosa)			
Peso específico seco (γ): 15.455 kN/m3	Peso específico saturado (γ_{sat}): 16.583 kN/m3			
Cohesión: 0.012258 MPa	Fricción: 22.49°			

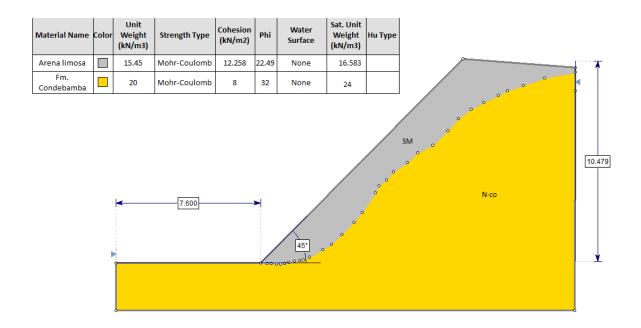


Figura 31. Geometría del talud 05

En la Tabla 37, vemos que en condiciones naturales el talud es estable (F.S= 1.228), el Factor de seguridad decrece hasta FS= 0.663 en condiciones combinadas pseudoestáticas y de saturación parcial tornándose inestable.

Tabla 37. Factores de Seguridad en el análisis de estabilidad de la Estación 05

Factores de Seguridad				
		Método de a	nálisis	
Id	Condición	GLE/Morgenstern-	Bishop	
		Price	Simplificado	
	Naturales	1.228	1.250	
Estación 05 -	Pseudoestáticas	0.851	0.851	
Estacion 05	Saturación Parcial	0.960	0.968	
_	Pseudoestáticas + Saturación Parcial	0.663	0.663	

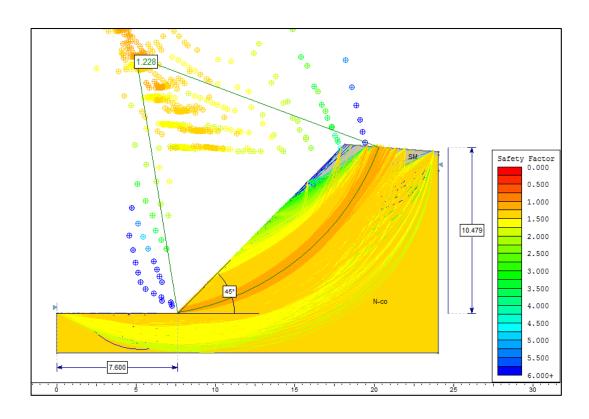


Figura 32. Análisis de estabilidad en condiciones naturales Estación 05

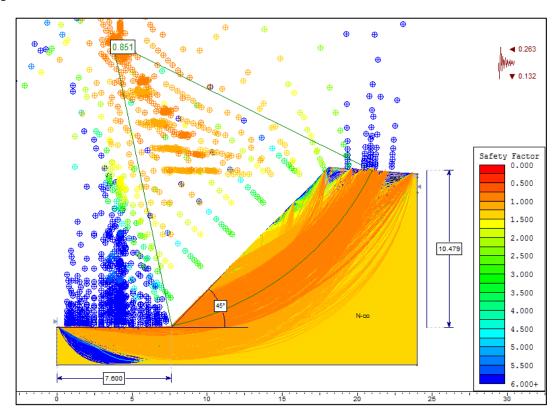


Figura 33. Análisis de estabilidad en Condiciones Pseudoestáticas Estación 05

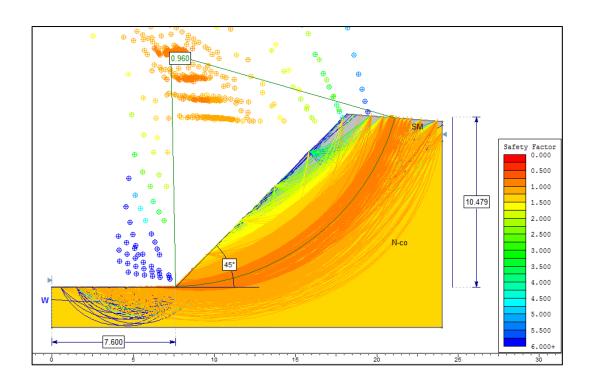


Figura 34. Análisis de estabilidad en Saturación Parcial Estación 05

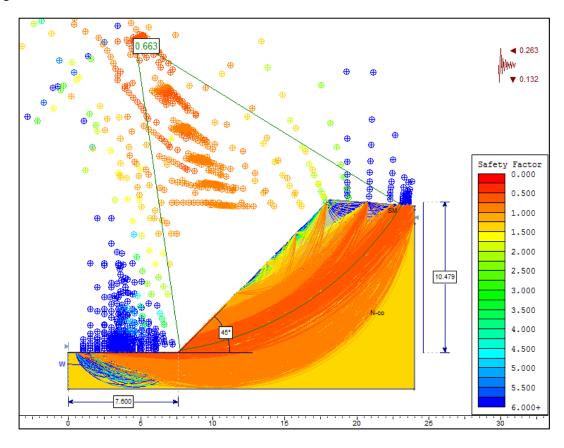


Figura 35. Análisis de estabilidad en Condiciones Saturadas-Pseudoestáticas Estación 05

3.11.6. Estación 06

En el talud se observa altamente meteorizado, formando un depósito coluvio deluvial sobre la Formación Cajabamba, el depósito litológicamente consta de una matriz de arenas y partículas finas y clastos redepositados. En la Tabla 38 podemos ver propiedades físicas y geomecánicas de la Estación.

Foto 19. Estación 06

Tabla 38. Propiedades físicas y geomecánicas de la Estación 06

Estación 06						
Progresiva (Km)	5+080					
Sistema	WGS 84 Zona 17S					
Ubicación	818018 E, 9188643 N, 2660m.s.n.m.					
Talud	Altura: 25m Azimut: N 241 Dip: 36°					
Formación Geológica	Fm. Cajabamba					
Descripción	Arenas de grano medio intercalado con conglomerado fino					
Estratificación	Dip: 23 Dip Direction: 87					
Peso específico seco (γ): 19 kN/m3	Peso específico saturado (γ_{sat}): 24 kN/m3					
Cohesión (<i>c</i>): 0,008 MPa	Fricción (Φ): 30°					
Suelos						
Tipo de depósito	Coluvio deluvial					
Clasificación SUCS	SW-SC (Arena bien graduada con arcilla y grava o arcilla limosa y grava)					
Peso específico seco (γ): 18 kN/m3	Peso específico saturado (γ _{sat}): 22 kN/m3					
Cohesión (<i>c</i>): 0,006 MPa	Fricción (Φ): 30°					

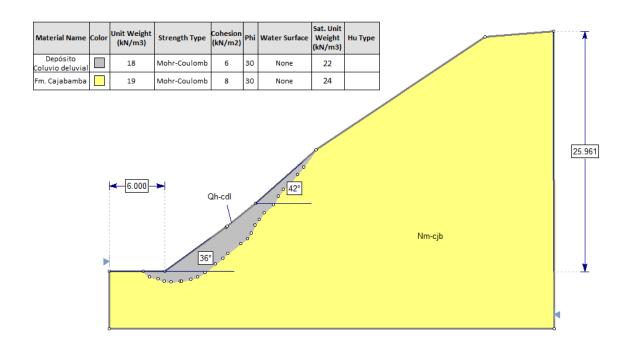


Figura 36. Geometría del Talud 06

En la Tabla 39, vemos que en condiciones naturales el talud presenta inestabilidad (Factor de Seguridad F.S =1.064), el Factor de seguridad decrece hasta FS= 0.554 en condiciones combinadas pseudoestáticas y de saturación parcial.

Tabla 39. Factores de Seguridad en el análisis de estabilidad de la Estación 06

Factores de Seguridad									
		Método de a	nálisis						
Id	Condición	GLE/Morgenstern-	Bishop						
		Price	Simplificado						
	Naturales	1.064	1.069						
Estación 06 -	Pseudoestáticas	0.696	0.697						
Estacion 00 -	Saturación Parcial	0.815	0.816						
_	Pseudoestáticas + Saturación Parcial	0.554	0.557						

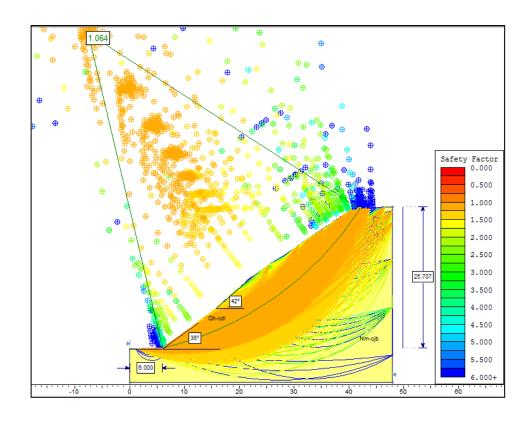


Figura 37. Análisis de estabilidad en condiciones naturales Estación 06

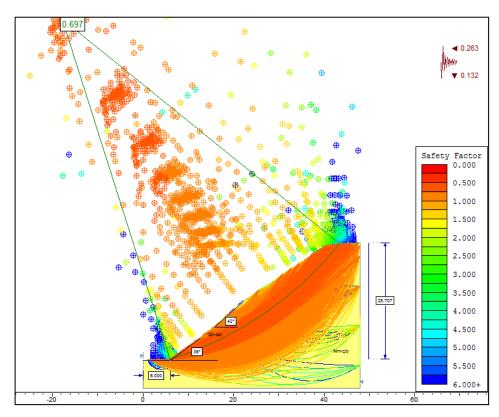


Figura 38. Análisis de estabilidad en Condiciones Pseudoestáticas Estación 06

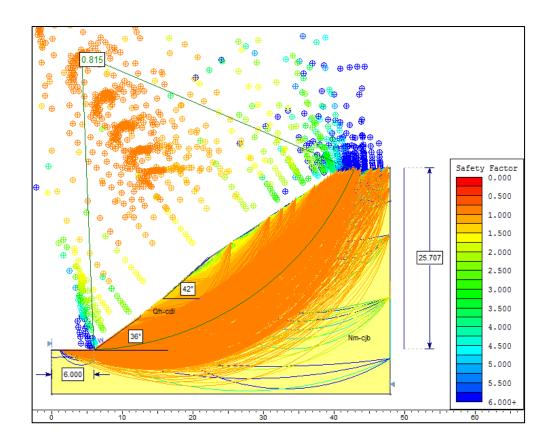


Figura 39. Análisis de estabilidad en Saturación Parcial Estación 06

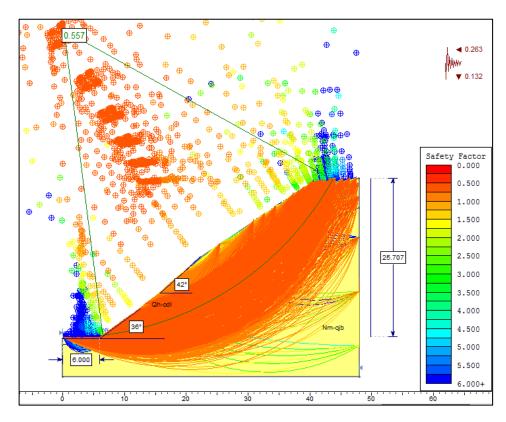


Figura 40. Análisis de estabilidad en Condiciones Saturadas-Pseudoestáticas Estación 06

3.11.7. Perfil A-A'

Esta estación geomecánica describe ladera de 92 m de altura, donde aflora en gran extensión la Formación Cajabamba, el cual consta de arenas limosas en la base gradando hacia el techo con intercalación de conglomerados de matriz soportada, con clastos redondeados de hasta 5 cm de diámetro. Evidencia de deslizamiento suspendido y erosión constituyendo depósitos coluviales al pie de la ladera. En la Tabla 40 podemos ver propiedades físicas y geomecánicas de la Estación.

Foto 20. Perfil A-A'

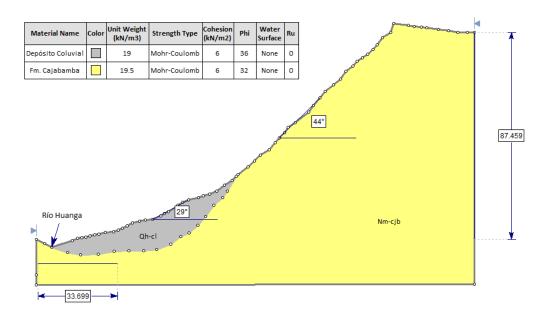


Figura 41. Geometría de la ladera de Perfil A-A'

Tabla 40. Propiedades físicas y geomecánicas del Perfil A-A'

	Perfil A-A'				
Sistema	WGS 84 Zona 17S				
Ubicación	817219E, 9188795N, 2441m.s.n.m.				
Talud	Altura: 87m Azimut: Dip: 44°				
Formación Geológica	Fm. Condebamba				
Descripción	Arenas de grano medio semiconsolidadas intercalado con conglomerado fino				
Estratificación	Dip: 12 Dip Direction: 88				
Peso específico seco (γ): 19.5 kN/m3	Peso específico saturado (γ_{sat}): 25 kN/m3				
Cohesión (c): 0,006 MPa	Fricción (Φ): 32°				
Suelos					
Tipo de depósito	Coluvial				
Clasificación SUCS	SW-SM (Arena bien graduada con grava y limos)				
Peso específico seco (γ): 19 kN/m3	Peso específico saturado (γ_{sat}): 24 N/m3				
Cohesión: 0,006 MPa	Fricción: 36°				

En la Tabla 41, vemos que en condiciones naturales el talud presenta inestabilidad con F.S 0.789.

Tabla 41. Factores de Seguridad en el análisis de estabilidad del Perfil A-A'

Factores de Seguridad						
		Método de	análisis			
Id	Condición	GLE/Morgenstern- Price	Bishop Simplificado			
Perfil A-A'	Naturales	0.789	0.794			

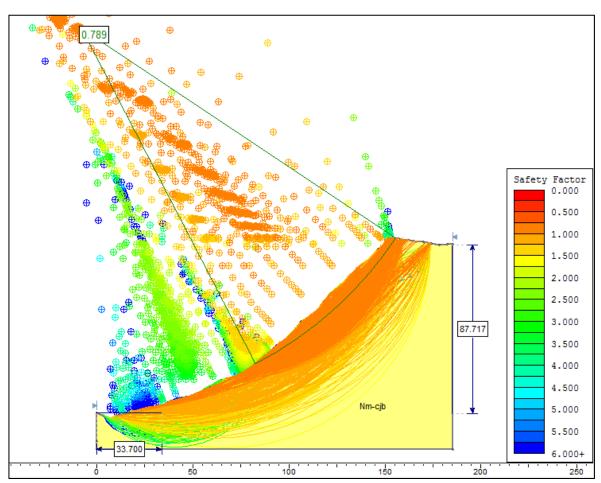


Figura 42. Análisis de estabilidad en condiciones naturales Perfil A-A'

3.11.8. Perfil B-B'

Esta estación geomecánica describe ladera de 30 m de altura, donde aflora la Formación Cajabamba, la cual consta de arenas limosas en la base gradando hacia el techo con intercalación de conglomerados de matriz soportada, con clastos redondeados de hasta 5 cm de diámetro. Evidencia de deslizamiento suspendido y erosión constituyendo depósitos

coluviales al pie de la ladera. En la Tabla 42 podemos ver propiedades físicas y geomecánicas de la Estación.

Foto 21. Perfil B-B'

Tabla 42. Propiedades físicas y geomecánicas del Perfil B-B'

Perfil B-B'							
Sistema	WGS 84 Zona 17S						
Ubicación	817619E, 9189036N, 2469m.s.n.m.						
Talud	Altura: 30m Azimut: N68 Dip:49°						
Formación Geológica	Fm. Condebamba						
Descripción	Arenas de grano medio semiconsolidadas intercalado con conglomerado fino						
Estratificación	Dip: 15 Dip Direction: 84						
Peso específico seco (γ): 19.5 kN/m3	Peso específico saturado (γ_{sat}): 25 kN/m3						
Cohesión (c): 0.006MPa	Fricción (Φ): 30°						
Suelos							
Tipo de depósito	Coluvial						
Clasificación SUCS	SW-SM (Arena bien graduada con grava y limos)						
Peso específico seco (γ): 19 kN/m3	Peso específico saturado (γ _{sat}): 24 kN/m3						
Cohesión: 0,006 MPa	Fricción: 36°						

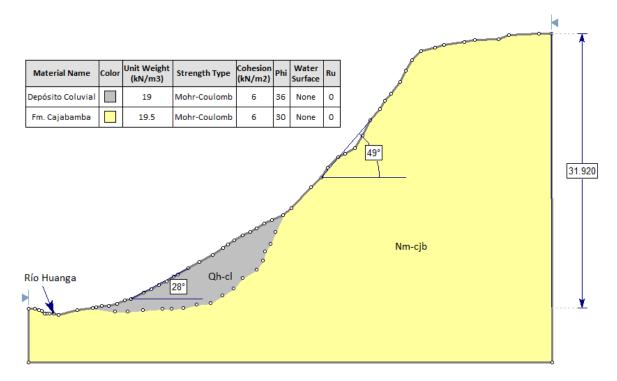


Figura 43. Geometría de ladera de perfil B-B'

En la Tabla 43, vemos que en condiciones naturales el talud presenta inestabilidad (Factor de Seguridad F.S=0.775).

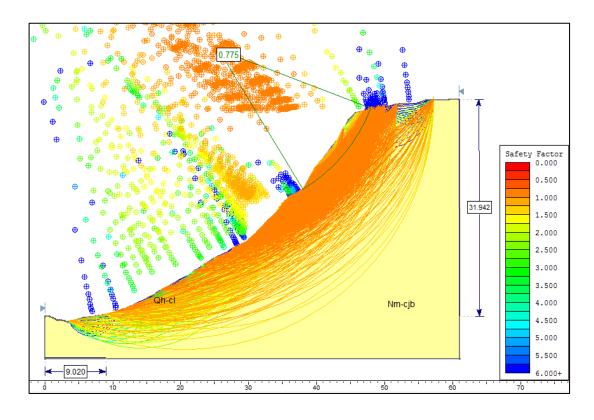


Figura 44. Análisis de estabilidad en condiciones naturales Perfil B-B'

Tabla 43. Factores de Seguridad en el análisis de estabilidad del Perfil B-B'

Factores de Seguridad						
		Método de a	nálisis			
Id	Condición	GLE/Morgenstern- Price	Bishop Simplificado			
Perfil A-A'	Naturales	0.775	0.781			

3.12. PELIGROS GEOLÓGICOS

Los peligros geológicos identificados en los Caseríos Las Chamanas y Montesorco corresponden a los subtipos agrupados como movimientos en masa: deslizamientos (40% de ocurrencia, ver Figura 45) donde las masas deslizadas por acción del agua, movimientos sísmicos o perturbación antrópica que obstaculizan las vías de acceso o dañan áreas de cultivo así como erosión de laderas (32%) destacando la ocurrencia de erosión en surcos y cárcavas, de decenas de metros de extensión; flujo de detritos (12%) que por la saturación de los materiales; caídas de bloques (12%) donde los materiales se deprenden de las laderas, taludes y zonas de escarpes que con su desprendimiento generan rodamiento y finalmente acumulación en el pie de talud/ladera y reptación de suelos (4%). Véase Foto 22. Según la clasificación dada por Ingemmet (2009) sobre la susceptibilidad ante la ocurrencia de movimientos en masa, el área de investigación se clasifica como de susceptibilidad alta, por ello en este apartado se realiza un inventario de los puntos de ocurrencia de estos movimientos, destacando los de mayor importancia en la Tabla 45 y el Plano P-07.

Tabla 44. Porcentaje de ocurrencia de peligros geológicos

Ocurrencia de Peligros geológicos					
Tipo	N° ocurrencias	%			
Deslizamientos	10	40			
Caída de rocas	3	12			
Reptación de suelos	1	4			
Flujo de detritos	3	12			
Erosión de laderas	8	32			
Total	25	100			

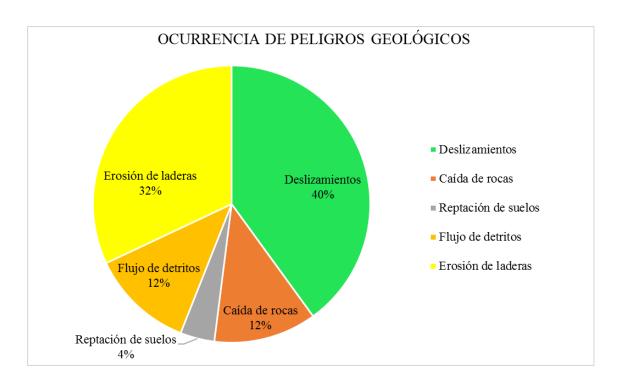


Figura 45. Estadística de la ocurrencia de peligros geológicos como movimientos en masa y otros.

Tabla 45. Inventario de Peligros Geológicos

			Ubicación		- Tipo de		
Código	Lugar/Sector	Este	Norte	Cota m.s.n.m.	movimiento	Litología	Observaciones
D1	Rio Huanga	817057	9188735	2446	Deslizamiento	Arenas intercaladas con conglomerados /Fm Cajabamba	Erosión y socavamiento del pie de laderas, 70° de pendiente y 58m de altura
D2	Rio Huanga	817219	9188795	2441	Deslizamiento	Arenas intercaladas con conglomerados /Fm Cajabamba	Irrumpe el cauce del río y ocasiona pérdida de zonas de pastoreo, 69° de pendiente y 92 m de altura
D3	Rio Huanga	817619	9189036	2469	Deslizamiento	Arenas intercaladas con conglomerados /Fm Cajabamba	Irrumpe el cauce del río, de pendiente 48° y 40 m de altura
D4	Carretera a Alfonso Ugarte	817161	9189088	2503	Deslizamiento	Depósito aluvial	Masa deslizada yace sobre el talud 01
D5	Quebrada Uñigan	818207	9189219	2515	Deslizamiento	Arenas intercaladas con conglomerados /Fm Cajabamba	Irrumpe en el cauce de la Quebrada Uñigan. Pendiente 50°, 57 m de altura
D6	Quebrada Uñigan	818415	9189280	2539	Deslizamiento	Arenas intercaladas con conglomerados /Fm Cajabamba	Irrumpe en el cauce de la Quebrada Uñigan. Pendiente 48°, 40 m de altura
D7	Carretera a Montesorco	817792	9188678	2592	Deslizamiento	Arenas grano medio intercaladas con conglomerados gruesos /Fm. Condebamba	Masa deslizada yace sobre el talud de la estación 04
D8	Carretera a Montesorco	817721	9188644	2581	Deslizamiento	Arenas intercaladas con conglomerados y arcillas rojas /Fm. Condebamba	Masa deslizada yace sobre el talud de la estación 05
D9	Terrazas del Rio Huanga	817681	9188476	2435	Deslizamiento rotacional	Depósito aluvial	Ocasiona pérdida de terreno de cultivo Va

Va...

.Viene

Lugar/Sector Caserío Las	Este	Norte	Cota	Tipo de	T :4-1/-	Observaciones
Caserío Las		110100	m.s.n.m.	movimiento	Litología	Observaciones
Chamanas	817654	9189217	2500	Deslizamiento rotacional	Arenas y conglomerados finos /Fm Cajabamba	Formación de deslizamientos por la saturación del sustrato.
Caserío Las Chamanas	817778	9189033	2473	Caída de rocas	Diatomitas/ Fm Cajabamba	Bloques de diatomitas caen irrumpiendo el curso del rio Huanga Pendiente 68°, 18 m de altura
Quebrada Uñigan	818010	9189139	2493	Deslizamiento	Arenas y conglomerados finos/Fm Cajabamba	Irrumpe en el cauce de la Quebrada Uñigan. Pendiente 65°, 15 m de altura
Las Chamanas	817353	9189117	2517	Caída de rocas	Depósito coluvial	Bloques de roca sueltos caen sobre la carretera
Las Chamanas	817880	9189227	2491	Reptación de suelos	Depósito aluvial	Movimiento de suelos en material cuaternario, evidente inclinación de arbustos.
Caserío Las Chamanas	817652	9189179	2496	Flujo de detritos	Arenas y conglomerados finos /Fm Cajabamba	Formación de flujos de detritos por la sobresaturación de agua en suelos y ausencia de vegetación.
Carretera hacia Caserío Montesorco	817706	9188663	2572	Flujo de detritos	Arenas y conglomerados finos/Fm Cajabamba	Colapso de canales por saturación de agua lo que genera flujos de detritos.
Carretera hacia Caserío Montesorco	817800	9188716	2574	Flujo de detritos	Arenas y conglomerados /Fm Cajabamba/ Condebamba	La presencia de quebrada y saturación de agua er época de lluvias ocasiona flujo de detritos
Caserío Montesorco	818486	9189025	2681	Erosión de laderas	Arenas de grano fino y conglomerados/Fm Cajabamba	Erosión en surcos por acción del agua, con pendiente de 50°, ladera de 200 m de altura
Caserío Montesorco	817681	9188668	2563	Erosión de laderas	Arenas de grano fino y conglomerados/Fm Cajabamba	Erosión en surcos por acción del agua, ocasiona flujo de detritos, bloqueando la carretera hacia el Caserío Montesorco. Pendiente 38°, 35 m de altura
Caserío Montesorco	818159	9188485	2616	Erosión de laderas	Arenas de grano fino y conglomerados/Fm Cajabamba	Fuerte pendiente, 70°, altura 94 m.
	Chamanas Quebrada Uñigan Las Chamanas Las Chamanas Caserío Las Chamanas Carretera hacia Caserío Montesorco Carretera hacia Caserío Montesorco Caserío Montesorco Caserío Montesorco Caserío Caserío Caserío Caserío Caserío Caserío Caserío	Chamanas 817/78 Quebrada Uñigan 818010 Las Chamanas 817353 Las Chamanas 817880 Caserío Las Chamanas 817652 Carretera hacia Caserío Montesorco 817706 Carretera hacia Caserío Montesorco 817800 Caserío Montesorco 818486 Caserío Montesorco 817681 Caserío 818159	Chamanas 8177/8 9189033 Quebrada Uñigan 818010 9189139 Las Chamanas 817353 9189117 Las Chamanas 817880 9189227 Caserío Las Chamanas 817652 9189179 Carretera hacia Caserío Montesorco 817706 9188663 Carretera hacia Caserío Montesorco 817800 9188716 Caserío Montesorco 818486 9189025 Caserío Montesorco 817681 9188668 Caserío Montesorco 818159 9188485	Chamanas 817/78 9189033 24/3 Quebrada Uñigan 818010 9189139 2493 Las Chamanas 817353 9189117 2517 Las Chamanas 817880 9189227 2491 Caserío Las Chamanas 817652 9189179 2496 Carretera hacia Caserío Montesorco 817706 9188663 2572 Montesorco 817800 9188716 2574 Montesorco 818486 9189025 2681 Caserío Montesorco 817681 9188668 2563 Caserío Montesorco 818159 9188485 2616	Chamanas 817/78 9189033 24/3 Caida de rocas Quebrada Uñigan 818010 9189139 2493 Deslizamiento Las Chamanas 817353 9189117 2517 Caída de rocas Las Chamanas 817880 9189227 2491 Reptación de suelos Caserío Las Chamanas 817652 9189179 2496 Flujo de detritos Carretera hacia Caserío Montesorco 817706 9188663 2572 Flujo de detritos Carretera hacia Caserío Montesorco 817800 9188716 2574 Flujo de detritos Caserío Montesorco 818486 9189025 2681 Erosión de laderas Caserío Montesorco 817681 9188668 2563 Erosión de laderas Caserío 818159 9188485 2616 Erosión de	Chamanas8177/891890332473Caida de rocasCajabambaQuebrada Uñigan81801091891392493DeslizamientoArenas y conglomerados finos/Fm CajabambaLas Chamanas81735391891172517Caída de rocasDepósito coluvialLas Chamanas81788091892272491Reptación de suelosDepósito aluvialCaserío Las Chamanas81765291891792496Flujo de detritosArenas y conglomerados finos /Fm CajabambaCarretera hacia Caserío Montesorco81770691886632572Flujo de detritosArenas y conglomerados finos/Fm CajabambaCarretera hacia Caserío Montesorco81780091887162574Flujo de detritosArenas y conglomerados /Fm CajabambaCaserío Montesorco81848691890252681Erosión de laderasArenas de grano fino y conglomerados/Fm CajabambaCaserío Montesorco81768191886682563Erosión de laderasArenas de grano fino y conglomerados/Fm CajabambaCaserío Montesorco81815991884852616Erosión de laderasArenas de grano fino y conglomerados/Fm

...Viene

Código	go Lugar/Sector Ubicación		-	Tipo de	Litología	Observaciones	
	Zugur, Zutier	Este	Norte	Cota	movimiento		
EL4	Caserío Montesorco	818273	9188413	2589	Erosión de laderas	Arenas de grano fino y conglomerados/Fm Cajabamba	Ausencia de vegetación, formación geológica deleznable, propiciando por escarpes 63° pendiente, altura 200m. Generan derrumbes con caída hacia la Quebrada Mala Muerte
EL5	Caserío Montesorco	817856	9188414	2567	Erosión de laderas	Arenas de grano fino y conglomerados/Fm Cajabamba	Formación geológica deleznable, el fuerte pendiente propiciado por escarpes 60°, 140 m de altura, generan derrumbes con caída hacia la Quebrada Mala Muerte
EL6	Puente Quebrada Uñigan	818003	9189214	2502	Erosión de laderas	Arenas de grano fino y conglomerados/Fm Cajabamba	Formación geológica deleznable, propiciando escarpes 70°, altura 80 m.
EL7	Carretera a Montesorco	818018	9188643	2660	Erosión de laderas	Arenas de grano fino y conglomerados hacia el techo/Fm Cajabamba	Erosión en surcos, por acción del agua Estación 06
EL8	Carretera a Montesorco	817664	9188701	2542	Erosión de laderas	Arenas de grano fino y conglomerados/Fm Cajabamba	Erosión en surcos, por acción del agua Estación 03

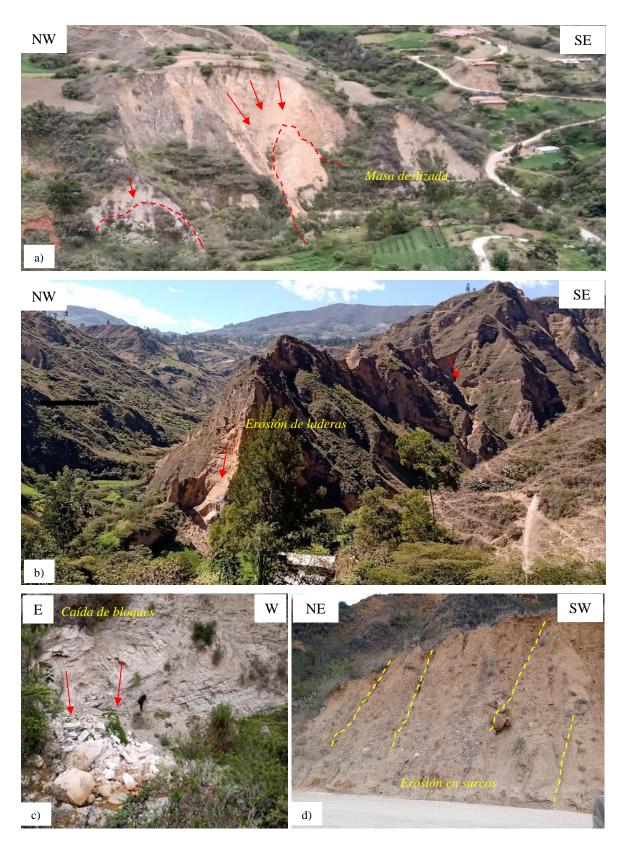


Foto 22. (a) Deslizamiento rotacional. (b) Erosión de laderas. (c) Caída de rocas por desprendimiento en el cauce del Río Huanga. (d) Erosión en surcos

CAPÍTULO IV ANÁLISIS Y DISCUSIÓN DE RESULTADOS

4.1. PRESENTACIÓN DE RESULTADOS

4.1.1. Mecanismos asociados a la inestabilidad del talud

Las estaciones geomecánicas analizadas presentan un estadio de inestabilidad de acuerdo a los factores condicionantes y detonantes:

4.1.1.1. Factores condicionantes

Factor litológico

Las unidades Litoestratigráficas que afloran en el área de investigación son de origen sedimentario lagunar, Formación Cajabamba (Nm-cjb) y Condebamba (N-con) y depósitos del cuaternario reciente coluvio- deluvial, coluvial y aluvial.

Propiedades Geomecánicas

De acuerdo a sus propiedades geomecánicas destalladas en la base de datos ("Véase Anexo II) se definen: la Unidad I Formación Cajabamba , la Unidad II Formación Condebamba , la Unidad III Depósito coluvial clasificada según S.U.C.S como SW-SM (Arena bien graduada con grava y limos, la Unidad IV Depósito aluvial clasificada como GP-GM (Grava mal graduada con limo y arena) y la Unidad V Depósito coluvio deluvial clasificada como SW-SC (Arena bien graduada con arcilla y grava o arcilla limosa y grava) cuyos parámetros geomecánicos se detallan en la Tabla 53 . El ensayo de suelos, indica la presencia de suelos areno limosos (SM) cuyos parámetros físicos y geomecánicos se detallan en las Tablas 24-25.

Factor geomorfológico

De acuerdo a la clasificación de Rodríguez (2016) que divide el terreno en unidades morfogenéticas, el área de investigación de 1.5 km2, se divide en 4 tipos: planicies, lomadas o colinas, laderas y escarpes. La unidad preponderante es de tipo laderas de 20°-50° representando el 54.34% del total de área, producto de la erosión e intenso desgaste de la superficie, predominando en extensión respecto al tipo lomadas o colinas: 8°-20° con área que representa el 33. 56% según la Tabla 46 y Figura 46.

Tabla 46. Distribución de pendiente

Unidad Morfogenéticas	Área (m2)	Porcentaje de ocurrencia (%)
Planicies: 0°-8°	167016	11.13
Lomadas o colinas: 8°-20°	503436	33.56
Laderas: 20°-50°	815110	54.34
Escarpes: >50°	14438	0.96
Total	1500000	100

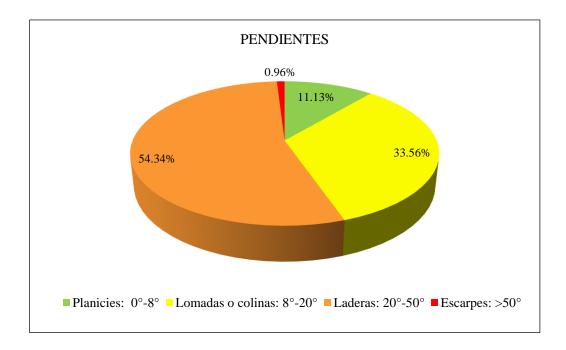


Figura 46. Distribución de la pendiente

Factores detonantes o desencadenantes

• Precipitaciones e Infiltración

Se ha desarrollado la hidrología de la Subcuenca Cascasén a la cual pertenece la zona de investigación transponiendo datos de precipitación de la Estación Metereológica San Marcos (el área no cuenta con estación metereológica propia o más próxima) a través de la Ecuación de Oswald para obtener el valor del Factor de Transposición y siguiendo la metodología de Rodríguez (2016), datos que se pueden divisar en las Tablas 14- 16.

Del cálculo de Línea de Precipitación Referencial Conservadora (100.26) y de la Transposición de data de precipitación podemos divisar que hay dos ciclos marcados, iniciando por los meses de poca a escasa probabilidad de lluvias junio- setiembre, iniciado según las gráficas de precipitación (ver Figura 10 y 11) y terminando con curvas mayor pronunciadas respecto a los meses de octubre a mayo del año posterior. Representando el 90.70 % en los 6 años de análisis el porcentaje total de precipitación pluvial en los meses de octubre – mayo.

Tabla 47. Estadística de Precipitación durante los años 2017-2023

	TOTAL PP	PROMEDIO	PP TOTAL	%PP TOTAL
CICLO DE PRECIPITACIÓN	ANUAL	PP ANUAL	(OCT-ABR)	(OCT-ABR)
PRECIPITACIÓN 2017-2018	1126.08	93.84	946.21	84.03
PRECIPITACIÓN 2018-2019	1232.56	102.71	1171.38	95.04
PRECIPITACIÓN 2019-2020	923.89	76.99	882.01	95.47
PRECIPITACIÓN 2020-2021	996.50	83.04	873.74	87.68
PRECIPITACIÓN 2021-2022	1315.27	109.61	1234.92	93.89
PRECIPITACIÓN 2022-2023	938.34	78.19	817.15	87.09
Total	6532.64	544.39	5925.42	90.70

A través de los datos de precipitación transpuesta se calcularon los datos de Precipitación Efectiva o Escurrimiento (Pe en mm) y la infiltración (F en mm) así como la infiltración en el área de investigación (VF), véase el cálculo de Balance Hidrológico (Tabla 17), donde durante los 6 años el volúmen de infiltración ha sido 261. 96 millones de metros cúbicos (MMC), de los cuales la probabilidad de volumen de infiltración en el área de investigación fue 3.43 MMC (1.31%).

• Sismicidad:

Según Norma Técnica E.030 Diseño Sismorresistente del Reglamento Nacional de Edificaciones (RNE) realizada por el Ministerio de Vivienda, Construcción y Saneamiento (2018), el área de investigación se ubica en la Zona sísmica 3, con factor de zona Z=0.35, con el cual se calculó los coeficientes sísmicos horizontal Kh= 0.263 y coeficiente sísmico vertical kv= 0.132 desarrollados en el análisis Pseudoestático de las Estaciones.

Factores antrópicos

- Cortes de talud para la realización de nuevas vías de acceso.
- Mal sistema de riego que saturan los suelos y genera inestabilidad.

4.1.2. Factor de seguridad

A través de la evaluación de estabilidad del Software Slide V.6.0 de Rocscience, se han identificado Factores de Seguridad de rango inestable, el análisis se ha realizado buscando la superficie de falla circular, método de búsqueda Auto Refine Search y método de análisis GLE- Morgenstern -Price y Bishop Simplificado.

Tabla 48. Coeficientes de seguridad según normativa vigente

Coeficientes de seguridad a emplear en el análisis de estabilidad de taludes								
Normativa _	Talud Te	emporal	Talud Per	rmanente				
1 tormativa _	Estática	Sísmica	Estática	Sísmica				
AASHTO LRFD	1.33-1.53	1.1	1.33-1.53	1.1				
NAVFAC-DM7	1.3-1.25	1.2-1.15	1.5	1.2-1.15				
FHWA-NHI-11-032	-	1.1	-	1.1				
CE.020	-	-	1.5	1.25				

Fuente Revista CIVILIZATE (2015).

Según la Tabla 48, que recopila factores de seguridad según normativas vigentes para Perú, podemos ver que para taludes permantes, un talud es inestable con Factor de seguridad menor a 1.3 en condiciones estáticas (naturales) y menor a 1.1 en condiciones Pseudoestáticas.

Tabla 49. Factores de Seguridad para las estaciones analizadas

		Métodos de Análisis			
Estación	Condiciones	GLE- Morgenstern Price	Bishop		
			simplificado		
E01	Naturales	1.023	1.031		
	Pseudoestáticas	0.699	0.701		
	Saturación Parcial	0.738	0.739		
	Pseudoestáticas-Sat Parcial	0.519	0.503		
E02	Naturales	0.949	0.956		
	Pseudoestáticas	0.652	0.652		
	Saturación Parcial	0.786	0.783		
	Pseudoestáticas-Sat Parcial	0.555	0.544		
E03	Naturales	1.377	1.382		
	Pseudoestáticas	0.897	0.896		
	Saturación Parcial	1.130	1.132		
	Pseudoestáticas-Sat Parcial	0.712	0.714		
E04	Naturales	1.0	0.993		
	Pseudoestáticas	0.674	0.678		
	Saturación Parcial	0.836	0.835		
	Pseudoestáticas-Sat Parcial	0.570	0.582		
E05	Naturales	1.228	1.250		
	Pseudoestáticas	0.851	0.851		
	Saturación Parcial	0.960	0.968		
	Pseudoestáticas-Sat Parcial	0.663	0.663		
E06	Naturales	1.064	1.069		
	Pseudoestáticas	0.696	0.697		
	Saturación Parcial	0.815	0.816		
	Pseudoestáticas-Sat Parcial	0.5543	0.557		
Perfil A-A'	Naturales	0.789	0.794		
Perfil B-B'	Naturales	0.775	0.781		

Así tenemos que:

Bajo condiciones naturales: el talud 03 y 05 se presentan estables (Factor de seguridad mayor a 1.1), sometido al análisis de estabilidad bajo Condiciones Pseudoestáticas y de saturación parcial el F.S desciende hasta 0.7-0.6.

Tabla 50. Factores de Seguridad para las Estaciones 03 y 05

	Métodos de Análisis: GLE- Morgenstern Price					
Estación	Condiciones Naturales	Condiciones Pseudoestáticas-				
		Sat Parcial				
03	1.377	0.712				
05	1.228	0.663				

Bajo condiciones naturales: los taludes 01, 02, 04, 06 y se presentan inestables (Factor de seguridad cercanos a 1.1), descendiendo el Factor de seguridad bajo Condiciones Pseudoestáticas y de saturación parcial hasta F.S= 0.5.

Tabla 51. Factores de Seguridad para las Estaciones 01, 02, 04 y 06

	Métodos de Análisis: GLE- Morgenstern Price				
Estación	Condiciones Naturales	Condiciones Pseudoestáticas-			
		Sat Parcial			
01	1.023	0.519			
02	0.949	0.555			
04	1.0	0.570			
06	1.064	0.554			

Los perfiles A-A' y B-B' se presentan inestables bajo Condiciones naturales, llegando a F.S de $0.7\,$

Tabla 52. Factores de Seguridad para los perfiles A-A' y B-B'

		Métodos de Análisis					
Estación Condiciones		GLE- Morgenstern Price	Bishop				
			simplificado				
Perfil A-A'	Naturales	0.789	0.794				
Perfil B-B'	Naturales	0.775	0.781				

4.2. CONTRASTACIÓN DE LA HIPÓTESIS

Durante la investigación se ha demostrado que los factores intrínsecos propios de las condiciones geológicas como la litología, las propiedades geomecánicas de las unidades litoestratigráficas y suelos y la geomorfología intervienen en el comportamiento de laderas y taludes en los caseríos de Las Chamanas y Montesorco, San Marcos- Cajamarca así mismo los factores desencadenantes de inestabilidad han sido y siguen siendo las precipitaciones, infiltración y sismicidad, que se evidencia en la ocurrencia de deslizamientos, caídas, erosión de laderas y demás peligros geológicos zonificados validando así la hipótesis que nos planteamos al principio de esta investigación.

CAPÍTULO V. CONCLUSIONES Y RECOMENDACIONES

5.1. CONCLUSIONES

Se ha evaluado los factores geológicos y geomecánicos que intervienen en el comportamiento inestable de laderas y taludes mediante la caracterización de unidades litoestratigráficas, geomorfología y propiedades geomecánicas de los materiales.

Se ha realizado el cartografiado geológico del área de investigación donde afloran formaciones geológicas lagunares como la Formación Cajabamba que se compone de arenas, conglomerados fino, arcillolitas y lodolitas y la Formación Condebamba, de arenas de grano medio en intercalación de conglomerado grueso de clastos redondeados y sub-redondeados además de depósitos aluviales, coluviales y coluvio deluviales.

La caracterización geomecánica clasificó 5 unidades, Unidad I. Formación Cajabamba, Unidad II. Formación Condebamba, Unidad III. Depósito Aluvial, Unidad IV. Depósito coluvial y Unidad V. Depósito coluvial, con valores de cohesión que van entre 0.006- 0.008 MPa y ángulos de fricción de 30-36°.

Los factores desencadenantes de inestabilidad, son las precipitaciones que están presentes desde los meses de octubre hacia abril que representa el 90.70% de precipitaciones entre los años analizados desde 2017- 2023 y los de menores o escasa precipitaciones de mayosetiembre con 9.3%; la infiltración donde el volúmen de infiltración durante los años 2017 – 2023 fue 3.43 MMC para el área de 1.5Km2 y la sismicidad, que ubica a la zona de estudio en la zona 3, que corresponde a sismicidad alta con coeficientes de sismicidad Kh= 0.263 y Ky=0.132.

El análisis de estabilidad en taludes y laderas evidencia inestabilidad en los taludes 01, 02, 04, 06 y los perfiles A-A' y B-B' además de los taludes estables 03 y 05 que sometidos al análisis Pseudoestático y bajo condiciones de saturación parcial se tornan inestables.

La zonificación de peligros geológicos evidencia deslizamientos en mayor probabilidad de ocurrencia seguido por erosión de suelos, caída de rocas, flujo de detritos y reptación de suelos.

5.2. RECOMENDACIONES

Al Gobierno Local de Las Chamanas y Montesorco:

Realizar el monitoreo de taludes en épocas de mayor precipitación durante los meses de octubre – abril y monitoreo sísmico.

Programar medidas de estabilización adecuada para mitigar los peligros geológicos como movimientos en masa, entre ellos deslizamientos y flujo de detritos que se desencadenan en épocas de lluvia y ocasionan obstrucción de vías y carreteras.

REFERENCIAS BIBLIOGRÁFICAS

- Aparicio, F. 1992. Fundamentos de Hidrología de Superficie México D.F. Editorial Limusa.
- Dávila, J. 2011. Diccionario geológico. Lima, Perú. INGEMMET.
- Das, BM. 2013. Fundamentos de Ingeniería Geotécnica. 4ta Edición. México D.F., México, Cencage Learning.
- Gavilanes, H. & Andrade, B.2004. Introducción a la Ingeniería de Túneles: Caracterización, Clasificación y Análisis Geomecánico de los Macizos Rocosos. Quito Ecuador: Asociación de Ingenieros de Minas del Ecuador (AIME).
- GEMMA. 2007. Movimientos en Masa en la Región Andina: Una Guía para la Evaluación de Amenazas (1st ed.). Toronto, Canadá: Proyecto Multinacional Andino: Geociencias para las Comunidades Andinas.
- González de Vallejo, L. et. al. 2003. Ingeniería Geológica (1st ed.). Madrid, España. Editorial Pearson.
- Hernández, S. 2016. Evaluación sísmica de la estabilidad de taludes en presas de tierra. pág. 15. Instituto Tecnológico de Costa Rica.
- Highland L. & Johnson M. 2004. Landslide Types and Processes. USGS. Disponible en https://pubs.usgs.gov/fs/2004/3072/pdf/fs2004-3072.pdf
- Martínez, R., Barrera, S. y Gómez, P. (2011). El método Seudoestático de estabilidad en presas: un análisis crítico. Obras y Proyectos 9, p30-37.
- Ministerio de Vivienda Construcción y Saneamiento. 2018. Reglamento Nacional de Edificaciones. Norma Técnica Peruana E.030, Diseño Sismorresistente. Lima Perú.

- Rodríguez, R. 2016. Método de investigación geológico geotécnico para el análisis de inestabilidad de laderas por deslizamientos zona Ronquillo Corisorgona. Tesis de maestría en Geología. Lima, Perú, UNMSM.
- SENAMHI. 2023. Estación metereológica San Marcos Cajamarca. Perú. Disponible en https://www.senamhi.gob.pe/?p=estaciones
- Suárez, J. 1998. Deslizamientos estabilidad de taludes en zonas tropicales, Colombia: Publicaciones UIS.
- Reyes, L. 1980. Geología de los Cuadrángulos de Cajamarca, San Marcos y Cajabamba. Lima-Perú: INGEMMET.
- Rocscience. 2022. Rocscience Software Products. Toronto, Canadá. Disponible en https://www.rocscience.com
- Valiente, R. 2015. Estabilidad de Taludes: Conceptos Básicos, Parámetros de Diseño y Métodos de Cálculo. Revista CIVILIZATE Nº 7.
- Villon, M. 2002. Hidrología. Costa Rica. Taller de publicaciones del instituto tecnológico de Costa Rica.
- Vivanco, S. 2017. Análisis de estabilidad de talud en condiciones estáticas y pseudoestáticas de la ciudad de Huancabamba, provincia Huancabamba, región Piura. Instituto Geofísico del Perú.
- Zavala, B. 1999. Estudio geológico-geotécnico de la región suroccidental del Perú. Editorial Lima-Perú: INGEMMET.
- Zavala, B., et. al. 2011. Peligros geológicos y geohidrológicos en términos de susceptibilidad. Lima-Perú: INGEMMET.
- Zavala, B., Rosado, M. 2011. Riesgo Geológico de la Región Cajamarca. Lima, Perú INGEMMET, Boletín, Serie C.

ANEXOS

ANEXO I. ANÁLISIS CON ROC DATA DE UNIDADES GEOMECÁNICAS

ANEXO II. DATA GEOLÓGICA Y CÁLCULO DE PARÁMETROS GEOMECÁNICOS

ANEXO III. ANÁLISIS DE LABORATORIO

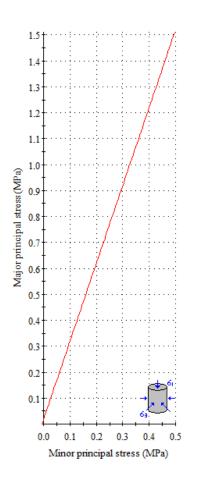
ANEXO IV. PLANOS

P-01: Plano de Ubicación- Imagen Satelital

P-02: Plano Digital de Elevaciones

P-03: Plano de Pendientes

P-04: Plano Unidades Geomorfológicas


P-05: Plano Unidades Litoestratigráficas

P-06: Plano Análisis de Estabilidad

P-07: Plano Peligros Geológicos

ANEXO I. ANÁLISIS CON ROC DATA DE UNIDADES GEOMECÁNICAS

Unidad I. FORMACIÓN CAJABAMBA

Mohr-Coulomb Criterion
cohesion = 0.006 MPa
friction angle = 30 deg
tensile strength = -0.006652 MPa
uniaxial compressive strength = 0.02078 MPa
alpha = 71.57 deg

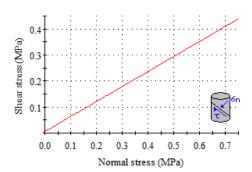
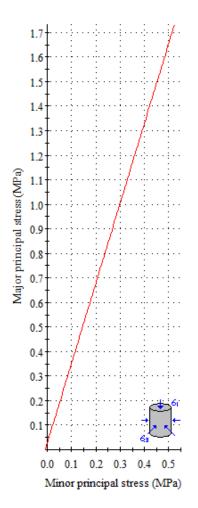



Figura 47. Análisis de Roc Data para la Unidad I. Formación Cajabamba

Unidad II. FORMACIÓN CONDEMBAMBA

Mohr-Coulomb Criterion

cohesion = 0.008 MPa friction angle = 32 deg tensile strength = -0.008329 MPa uniaxial compressive strength = 0.02886 MPa alpha = 72.92 deg

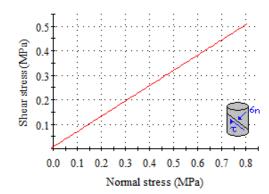
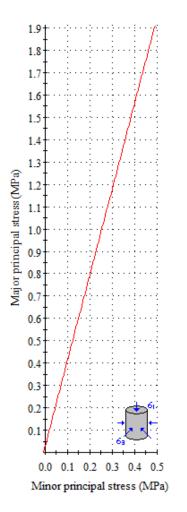



Figura 48. Análisis de Roc Data para la Unidad II. Formación Condebamba

Unidad III. DEPÓSITO COLUVIAL

Mohr-Coulomb Criterion

cohesion = 0.006 MPa friction angle = 36 deg tensile strength = -0.006114 MPa uniaxial compressive strength = 0.02355 MPa alpha = 75.45 deg

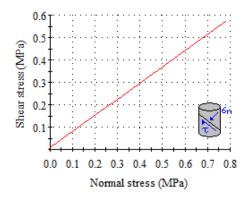
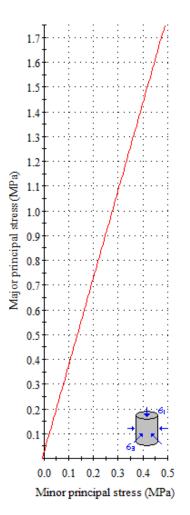



Figura 49. Análisis de Roc Data para la Unidad I. Depósito Coluvial

Unidad IV. DEPÓSITO ALUVIAL

Mohr-Coulomb Criterion

cohesion = 0.006 MPa friction angle = 34 deg tensile strength = -0.006114 MPa uniaxial compressive strength = 0.02257 MPa alpha = 74.21 deg

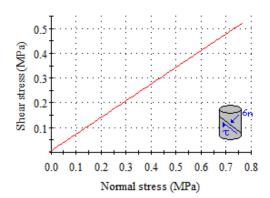
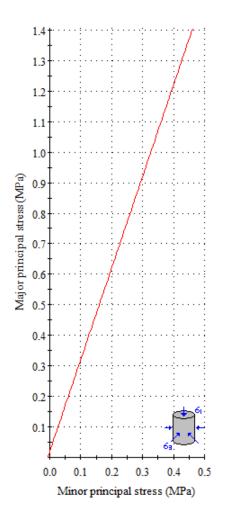



Figura 50. Análisis de Roc Data para la Unidad IV. Depósito aluvial

Unidad V. DEPÓSITO COLUVIO DELUVIAL

Mohr-Coulomb Criterion cohesion = 0.006 MPa friction angle = 30 deg tensile strength = -0.006114 MPa uniaxial compressive strength = 0.02078 MPa alpha = 71.57 deg

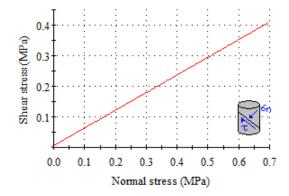


Figura 51. Análisis de Roc Data para la Unidad V. Depósito coluvio deluvial

ANEXO II. DATA GEOLÓGICA Y CÁLCULO DE PARÁMETROS GEOMECÁNICOS

Tabla 53. Data Geológica y Cálculo de Parámetros geomecánicos

(Coordenadas						Parámetros geomecánicos						
Este	Norte	Cota	Descripción	Discontinuidad	Nomenclatura	Peso específico seco	Azimut	Dip	Cohesión	Fricción	Resistencia a la Comprensión uniaxial	Resistencia a la tracción	Alpha
Е	N	m.s.n.m				kN/m3	•		(MPa)	(°)	(MPa)	(MPa)	(α)
818015	9188649	2514	Arenas limosas hacia el techo de la formación,	Estratificación	Nm-cjb	19	96	23	0.006	30	0.02078	-0.006652	71.57°
817048	9189075	2510	Arcillolitas blanquecinas en intercalación con arenas limosas y conglomerado fino.	Estratificación	Nm-cjb	19	84	15	0.006	30	0.02078	-0.006652	71.57°
817664	9188701	2501	Arenas limosas en la base, pasando hacia el techo a un conglomerado fino, de matriz arenosa y clastos de arenisca redondeados de hasta 5 cm de diámetro.	Estratificación	Nm-cjb	19.5	87	23	0.006	30	0.02078	-0.006652	71.57°
818018	9188643	2615	Matriz de arenas y partículas finas y clastos redepositados.	Estratificación	Nm-cjb	19	87	23	0.008	30	0.02771	-0.006114	71.57
817219	9188795	2422	Arenas limosas en la base gradando hacia el techo con intercalación de conglomerados de matriz soportada	Estratificación	Nm-cjb	19.5	88	12	0.006	32	0.02165	-0.006114	72.92
817619	9189036	2404	Arenas limosas semiconsolidadas en la base gradando hacia el techo con intercalación de conglomerados de matriz soportada	Estratificación	Nm-cjb	19.5	84	15	0.006	30	0.02078	-0.006114	71.57°
817802	9188748	2506	Presencia de arenas limosas de grano fino (<0.2mm) de espesor 20- 30 cm, color pardo amarillento, además delgadas capas (< 5cm) de arcillolitas blanquecinas. Meteorización moderada.	Estratificación	Nm-cjb	19.5	80	10	0.006	30	0.02078	-0.006652	71.57°
818018	9188643	2615	Arenas limosas bien graduadas con niveles finos de arcillolitas blanquecinas	Estratificación	Nm-cjb	19	92	23	0.008	30	0.02771	-0.006114	71.57
817219	9188795	2422	Arenas limosas, hacia el techo conglomerado fino redondeado a subredondeado, de clastos de hasta 4 cm	Estratificación	Nm-cjb	19	85	15	0.006	32	0.02165	-0.006114	72.92
811792	9.189E+10	2506	Conglomerados clasto soportado de hasta 1m de espesor en intercalación con arenas limosas de espesor 70 cm	Estratificación	N-con	20	98	25	0.008	32	0.02886	-0.008329	72.92°
													Va

Viene													
	Coordenada	S								P	arámetros geome	cánicos	
Este	Norte	Cota	Descripción	Discontinuidad	Nomenclatura	Peso específico seco	Q	Dip	Cohesión	Fricción	Resistencia a la Comprensión uniaxial	Resistencia a la tracción	Alpha
Е	N	m.s.n.m				kN/m3			(MPa)	(°)	(MPa)	(MPa)	(α)
817792	9188678	2506	Intercalación de arenas de grano medio semiconsolidadas de 60 cm de espesor y conglomerado clasto soportado de hasta 80 cm, de clastos redondeados y matriz limo arcillosa.	Estratificación	N-con	20	96	23	0.008	36	0.0314	-0.008152	75.45
817721	9188644	2507	Arena limosa en la base y hacia el techo conglomerados clasto soportado de 2 cm de diámetro y capas de arcillas rojas en espesor de hasta 2 m	Estratificación	N-con	20	96	25	0.008	32	0.02886	-0.008329	72.92°
817781	9188672	2500	Arenas limosas, en intercalación con conglomerados de clastos de arenisca redondeados, en matriz areno limosa.	Estratificación	N-con	20	90	2	0.008	36	0.0314	-0.006114	75.45
818018	9188643	2615	Conglomerados gruesos de clasto soportado intercalados con arenas limosas	Estratificación	N-con	20	82	4	0,006	36	0.02355	-0.006114	75.45
817219	9188795	2422	Arenas limosas en interclación con conglomerados gruesos de hasta 7 cm de diámetro y arcillas rojizas hacia el techo	Estratificación	N-con	20	79	2	0,008	32	0.02886	-0.06114	72.92
817797	9188690	2500	Falla normal	Falla	Nm-cjb	19	87	36	0.006	32	0.02165	-0.006114	72.92
817166	9189114	2513	Depósitos coluvial- deluviales producto de la erosión de las formaciones geológicas circundantes.	Suelo	N-con Qh-cldl	20 18	80	2	0.008	36	0.0314	-0.006114 -0.006114	75.45 71.57°
817729	9188726	2517	Sedimentos finos como arcillas y arenas con fragmentos pequeños de gravas (<3cm) que fueron removidos por agua de lluvia	Suelo	Qh-cldl	18			0.006	30	0.02078	-0.006114	71.57°
817161	9189088	2512	Arcillas, limos y arenas hasta gravas y bloques de hasta 10 cm de diámetro, de clastos subredondeados.	Suelo	Qh-al	19			0.006	34	0.02257	-0.006114	74.21
817353	9189117	2515	Materiales finos como arcillas, limos y arenas hasta gravas y bloques heterométricos de hasta 50 cm diámetro, los clastos son subredondeados de arenisca.	Suelo	Qh-al	19			0.006	34	0.02257	-0.006114MPa	74.21
817619	9189036	2404	Arenas, limos y gravas subredondeados desplazados por gravedad y depositados in situ	Suelo	Qh-cl	19			0.006	36	0.02355	-0.006114	75.45°
817822	9189084	2430	Depósito fluvial contiguo a depósitos aluviales conformando terrazas, Rio Huanga	Suelo	Qh-fl	19					0.008		

SUPERVISIÓN Y EJECUCIÓN DE OBRAS DE INGENIERÍA
ELABORACIÓN DE PERFILES Y EXPEDIENTES TÉCNICOS
ESTUDIO DE MECÁNICA DE SUELOS, CONCRETO Y PAVIMENTOS
SERVICIO DE TOPOGRAFÍA Y ESTUDIOS TOPOGRÁFICOS
CEL. 939291809 / TEL. 076 633319

RUC: 20602101488

Dirección: Psj. Diego Ferre Nº 295 - Barrio San Martín - Cajamarca.

CORREO: guersaningenieros@gmail.com

ESTUDIO DE MECÁNICA DE SUELOS CON FINES DE ESTABILIDAD DE TALUDES Y LADERAS

TESIS:

"COMPORTAMIENTO GEOLÓGICO GEOMECANICO DE TALUDES Y LADERAS EN LOS CASERIOS DE LAS CHAMANAS Y MONTESORCO, SAN MARCOS CAJAMARCA"

UBICACIÓN:

CASERIOS DE LAS CHAMANAS Y MONTESORCO, SAN MARCOS CAJAMARCA

TESISTA:

JACKELINE EVELIN LEÓN MUÑOZ

CAJAMARCA, 18 DE JULIO DEL 2022

GUERSAN INGENIEROS S.R.L.

Jhonny Vásquez Torres INGENIERO CIVIL REG. CIP N° 255748

GI-EMS-006-07-22 Fecha:

18/7/2022

CONTENIDO	DE HUMEDAD
A.S.T.M. D 2216 /	A.A.S.H.T.O. T 265

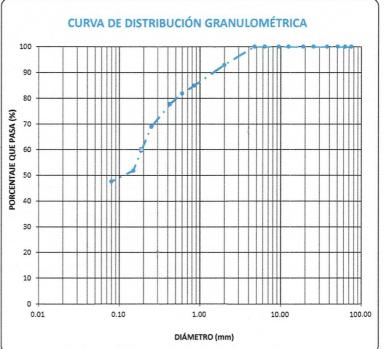
	A.S. I .IVI. D	2216 / A.A.S.H.1.U.	265					
TESISTA:	JACKELINE EVELIN LEÓN MUÑO	Z		4.3				
UBICACIÓN:	DISTRITO DE PEDRO GALVEZ, P	ROVINCIA DE SAN MARCO	OS, REGIÓN CAJAMAR	RCA				
ASESOR:	MCS. ING. ROBERTO GONZALE	MCS. ING. ROBERTO GONZALES YANA						
MUESTRA:	M - 1	PROFUNDIDAD.	COORDENADAS:	ESTE:	817737			
WOESTRA.	101 - 1	DE 0.00M. A 1.00M.	COORDENADAS:	NORTE:	9188642			

CARACTERÍSTICAS I	DEL PROCESO DE SEC	ADO DE MUESTRA	
TEMPERATURA DE SECADO	110 °C	TIEMPO DE SECADO	16 h

CONTENIDO DE HUMEDAD			
Identificación de Tara	M-1		
Masa de tara (g)	86.70		
M. Tara + M.Húmeda (g)	1603.00		
M. Tara + M. Seca (g)	1492.00		
Masa de agua (g)	111.00		
Masa de Muestra Seca (g)	1405.30		
W (%)	7.90%		

GUERSAN INGENIEROS S.R.L.

Jhonny Vásquez Torres
INGENIERO CIVIL
REG. CIP N° 255748


GI-EMS-006-07-22 Fecha: 18/7/2022

ANÁLISIS GRANULOMÉTRICO

	A.	3.1.W. D 422/ A.A.S.R.1.O. 1 0	0		
TESISTA:	JACKELINE EVELIN LEÓN MUÑOZ			* * * * * * * * * * * * * * * * * * * *	
UBICACIÓN:	DISTRITO DE PEDRO GALVEZ, PRO	OVINCIA DE SAN MARCOS, REGIÓN	CAJAMARCA		
ASESOR:	MCS. ING. ROBERTO GONZALES Y	ANA		. 2 7	
MUESTRA:	M 1	PROFUNDIDAD:	COORDENADAS	ESTE:	817737
MUESTRA: M - 1	DE 0.00M. A 1.00M.	COURDENADAS	NORTE:	9188642	

	CONDICIONES DE LA	MUESTRA TOTAL		
TEMPERATURA DE SECADO	110° C	PORCENTAJE DE GRAVA	, ARENAS Y FINOS	% TOTAL
PESO TOTAL MUESTRA SECA (g)	500.00	GRAVA (%):	0.00	
PESO TOTAL MUESTRA SECA < Nº 4 (g)	500.00	ARENA GRUESA (%):	22.20	
PESO TOTAL MUESTRA SECA > Nº 4 (g)	0.00	ARENA FINA (%):	30.16	100.00
PESO TOTAL MUESTRA HUMEDA (g)	539.49	FINOS (%):	47.64	

	Tamiz	Dana	Danasataia	Danasataia	
	Tarriz	Peso Retenido	Porcentaje Retenido	Porcentaje Retenido	Porcentaje
N°	Abertura (mm)	Parcial	Parcial	Acumulado	Que Pasa
3"	76.20	0.00	0.00	0.00	100.00
2 1/2"	63.50	0.00	0.00	0.00	100.00
2"	50.80	0.00	0.00	0.00	100.00
1 1/2"	38.10	0.00	0.00	0.00	100.00
1"	25.40	0.00	0.00	0.00	100.00
3/4"	19.05	0.00	0.00	0.00	100.00
1/2"	12.70	0.00	0.00	0.00	100.00
3/8"	9.52	0.00	0.00	0.00	100.00
1/4"	6.35	0.00	0.00	0.00	100.00
N°4	4.75	0.00	0.00	0.00	100.00
TOTAL	W G =	0.00			
	,	ANÁLISIS FRA	ACCIÓN FINA	١	
CORRECC	IÓN DE MUE	STRA CUART	ΓEADA:		0.2000
PESO SEC	O FRACCIÓN	FINA:			500.00
N 10	2.00	35.40	7.08	7.08	92.92
N 20	0.85	39.80	7.96	15.04	84.96
N 30	0.60	15.10	3.02	18.06	81.94
N 40	0.43	20.70	4.14	22.20	77.80
N 60	0.25	44.20	8.84	31.04	68.96
N 100	0.15	85.50	17.10	48.14	51.86
N 200	0.08	21.10	4.22	52.36	47.64
Cazoleta					
TOTAL					
LIMIT	ES DE CONSI	STENCIA A.S	.T.M. D 4318	/ A.A.S.H.T.	D. T 89
LÍMITE L	.ÍQUIDO :			34.00%	
LÍMITE F	PLÁSTICO:			26.00%	
ÍNDICE F	PLÁSTICO :			8.00%	
		CLASIF	ICACIÓN		
S.U.C.S	. :			SM	

DIAMETROS	EFECTIVOS	COEFICI	ENTES
D60 =	0.19	Cu=	-
D30=		Cc =	-
D10 =		•	

OBSERVACIONES:

LA MUESTRA EN ESTUDIO HA SIDO CLASIFICADA UTILIZANDO EL METODO S.U.C.S. Y CORRESPONDE A UNA ARENA LIMOSA, COLOR MARRÓN OSCURO, MEZCLADA CON 47.64% DE PARTICULAS FINAS MENORES QUE 0.075 MM Y EXENTA DE GRAVA.

GUERSAN INGENIEROS S.R.L.

Jhongy Vásquez Torres
iNGENIERO CIVIL
REG. CIP N° 255746

GI-EMS-006-07-22 Fecha: 18/7/2022

LÍMITES DE ATTERBERG A.S.T.M. D 4318 / A.A.S.H.T.O. T 89

TESISTA:	JACKELINE EVELIN LEÓN MUÑOZ					
UBICACIÓN:	DISTRITO DE PEDRO GALVEZ, PRO	DISTRITO DE PEDRO GALVEZ, PROVINCIA DE SAN MARCOS, REGIÓN CAJAMARCA				
ASESOR:	MCS. ING. ROBERTO GONZALES YA	ANA		a मा जु डे		
MUESTRA:	M - 1	PROFUNDIDAD:	COORDENADAS:	ESTE	817737	
WUESTRA:	IVI - I	DE 0.00M. A 1.00M.	COORDENADAS.	NORTE:	9188642	

	CONDICIONES DEL EI	NSAYO	
MUES	TRA A ENSAYAR	CONTENIDO DE HUME D2216)	DAD (ASTM
TEMP. DE SECADO:	60 °C	TEMP. DE SECADO:	110 °C
TIPO DE MATERIAL:	Pasa la malla N° 40	TIEMPO DE SECADO:	16 h
AGUA USADA:	Potable		

	LÍMITE LÍQUIDO			LÍMITI	PLÁSTICO	
TARA Nº	1	2	3	TARA Nº	4	5
M tara (g)	12.24	11.89	12.51	M tara (g)	11.14	10.96
Mt+ M.Húmeda (g)	34.62	33.45	34.78	Mt+ M.Húmeda (g)	18.83	17.49
Mt+ M. Seca (g)	28.77	27.93	29.24	Mt+ M. Seca (g)	17.23	16.14
M agua (g)	5.85	5.52	5.54	M agua (g)	1.60	1.35
M M.Seca (g)	16.53	16.04	16.73	M. Muestra Seca (g)	6.09	5.18
W(%)	35.39%	34.41%	33.11%	W(%)	26.27%	26.06%
N.GOLPES	15	21	32	Contenido de Humedad Promedio: 26.17%		

LÍMITE LÍQUIDO	LÍMITE PLÁSTICO	INDICE DE PLASTICIDAD
34.00%	26.00%	8.00%

GUERSAN INGENIEROS S.R.L.

Jhonny Vasquez Torres
INGENIERO CIVIL
REG. CIP N° 255748

GI-EMS-006-07-22 Fecha: 18/7/2022

	DENSIDAD HÚMEDA	A EN CAMPO (MÉTODO	VOLUMÉTRICO)		
TESISTA:	JACKELINE EVELIN LEÓN MUÑOZ				
UBICACIÓN:	BICACIÓN: DISTRITO DE PEDRO GALVEZ, PROVINCIA DE SAN MARCOS, REGIÓN CAJAMARCA				
ASESOR:	MCS. ING. ROBERTO GONZALES Y	ANA		य स्त्री उपने	
MUESTRA:	M - 1	PROFUNDIDAD:	COORDENADAS	ESTE:	817737.00
MUESTRA:	IVI - 1	DE 0.00M. A 1.00M.	COORDENADAS	NORTE:	9188642.00

	DENSIDAD HÚMEDA				
PROPIEDA	ADES	CILINDRO METÁLICO			
	Peso del anillo (Wc)	74.49			
a	Diámetro (a) (cm)	5.96			
-	Altura (b) (cm)	1.82			
	Volumen del anillo (Vc) (cm3)	50.78			
Peso de la muestra +	anillo (Wh+c) (g)	160.37			
Peso de la muesi	tra (Wh) (g)	85.9			
Dh (g/cı	m3)	1.691			

GUERSAN INGENIEROS S.R.L.

Jhonny Vásquez Torres
INGENIERO CIVIL
REG. CIP N° 255748

6.000

82.11

"COMPORTAMIENTO GEOLÓGICO GEOMECANICO DE TALUDES Y LADERAS EN LOS CASERIOS DE LAS CHAMANAS Y MONTESORCO, SAN MARCOS CAJAMARCA."

GI-EMS-006-07-22 Fecha:

Fecha: 18/7/2022

ENSAYO DE CORTE DIRECTO ESTÁNDAR EN SUELOS

		A.S. I .IVI. D 3000				
TESISTA:	JACKELINE EVELIN LEÓN MUÑO	JACKELINE EVELIN LEÓN MUÑOZ				
UBICACIÓN:	DISTRITO DE PEDRO GALVEZ, I	PROVINCIA DE SAN MARCOS, REGIÓN CAJAMAR	CA			
ASESOR:	MCS. ING. ROBERTO GONZALE	S YANA		4 4 4		
MUECEDA		PROFUNDIDAD:		ESTE:	817737	
MUESTRA: M - 1	DE 0.00M. A 1.00M.	COORDENADAS		9188642		

CARACTERISTICAS DE LA MILECTRA

			CARA	CTERISTICA	S DE LA MUE	STRA			
CLASIFI	CACIÓN S.U	.C.S. :	SA	1	ES.	TADO:		REMOLDEA	DO
				DATOS DE	L MOLDE				
MOLD	E	DIÁMETRO (cm)	ALTURA (cm)	ÁREA	A (cm2)	VOLUMEN	l (cm3)	P	ESO (g)
CIRCUL	.AR	5.96	1.82		.899	50.7	8		74.49
				DATOS DE	L ENSAYO				
ESFUERZO NOR	MAL		(kg/cm2)	0.500	Kg/cm2	1.000 Kg		2.000	0 Kg/cm2
VELOCIDAD ENS			(mm/min)		152	0.10			0.055
PESO DEL ANILL		STRA	(g)		.350	160.3			60.270
PESO MUESTRA			(g)		.860	85.9			5.780
DEFORMACIÓN I	FINAL		(mm)		212	-0.6			0.793
ETAPA				INICIAL	FINAL	INICIAL	FINAL	INICIAL	FINAL
TARA				1	2	3	4	5	6
PESO DE LA TAR			(g)	10.99	10.96	11.29	11.45	9.91	9.96
PESO TARA + MU			(g)	114.23	101.87	119.45	103.34	115.27	102.75
PESO TARA + MU	JESTRA SEC	CA	(g)	102.57	89.41	108.76	92.67	104.67	91.82
ALTURA			(cm)	1.82	1.80	1.82	1.75	1.82	1.74
DIAMETRO (cm)		5.96	5.96	5.96	5.96	5.96	5.96		
CONTENIDO DE			(%)	12.73%	15.88%	10.97%	13.14%	11.19%	13.35%
DENSIDAD HÚME	EDA		(g/cm3)	1.691	1.711	1.692	1.755	1.689	1.766
				A DE APLICA	ACIÓN DE CA				
DESPLAZA_MIE		0.50 Kg/cm2			1.00 Kg/cm			2.00 Kg/cm	T
NTO HORIZONTAL	CA	ARGA	ESFUERZO DE CORTE	CA	RGA	ESFUERZO DE CORTE	CA	RGA	CORTE
(mm)	N	kg	Kg (cm2)	N	kg	Kg (cm2)	N	kg	Kg (cm2)
0.000	0.00	0.000	0.000	0.00	0.000	0.000	0.00	0.000	0.000
0.100	7.12	0.726	0.026	22.43	2.287	0.082	74.49	7.596	0.272
0.200	14.89	1.519	0.054	38.02	3.877	0.139	110.27	11.244	0.403
0.300	23.99	2.446	0.088	56.37	5.748	0.206	134.12	13.676	0.490
0.400	35.12	3.582	0.128	70.59	7.198	0.258	151.61	15.460	0.554
0.500	44.88	4.576	0.164	85.63	8.732	0.313	166.39	16.967	0.608
1.000	73.94	7.540	0.270	111.02	11.321	0.406	196.29	20.016	0.717
1.500	87.58	8.931	0.320	126.13	12.862	0.461	214.97	21.921	0.786
2.000	90.88	9.267	0.332	138.14	14.086	0.505	228.40	23.291	0.835
2.500	90.09	9.186	0.329	143.66	14.649	0.525	238.18	24.288	0.871
3.000	90.09	9.186	0.329	146.00	14.888	0.534	245.89	25.074	0.899
3.500	88.24	8.998	0.323	147.59	15.050	0.539	250.66	25.561	0.916
4.000	86.46	8.817	0.323	148.28	15.120	0.539	255.12	26.015	0.932
		-							
4.500	85.80	8.749	0.314	148.49	15.142	0.543	258.06	26.314	0.943
5.000	84.48	8.615	0.309	147.59	15.050	0.539	260.76	26.590	0.953
5.500	82.44	8.407	0.301	146.21	14.909	0.534	260.76	26.590	0.953
0.000	00 44	0.070	0.000	445 05	1 44044	1 0 = 0.4	000 70	00 500	0.050

GUERSAN INGENIEROS S.R.L.

260.76

Jhohay Vásquez Torres
INGENIERO CIVIL
REG. CIP Nº 255748

26.590

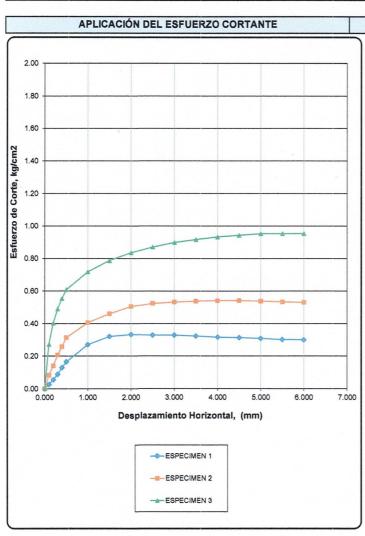
0.953

145.25

14.811

0.531

0.300


GI-EMS-006-07-22

Fecha: 18/7/2022

ENSAYO DE CORTE DIRECTO ESTÁNDAR EN SUELOS

		A.S.1.M. D 3080			
TESISTA:	JACKELINE EVELIN LEÓN MUÑO	DZ .			
UBICACIÓN:	DISTRITO DE PEDRO GALVEZ, I	PROVINCIA DE SAN MARCOS, REGIÓN CAJAMAR	RCA		
ASESOR:	MCS. ING. ROBERTO GONZALE	S YANA		4.6	
		PROFUNDIDAD:		ESTE:	817737
MUESTRA:	M - 1	DE 0.00M. A 1.00M.	COORDENADAS	NORTE:	9188642

CLASIFICACIÓN S.U.C.S. :	SM	ESTADO:	REMOLDEADO
--------------------------	----	---------	------------

2.500 2.000 2.000 1.500 0.500

ENVOLVENTES DE RESISTENCIA

ESPECIMEN	ESFUERZO NORMAL (kg/cm2)	ESFUERZO DE CORTE (kg/cm2)
1	0.500	0.332
2	1.000	0.543
3	2.000	0.953

1.000

ESFUERZO NORMAL, (kg/cm2)

2.000

1,500

2.500

COHESIÓN =	0.125	kg/cm ²
ÁNGULO DE FRICCIÓN INTERNA =	22.49	•

0.000

0.500

GUERSAN INGENIEROS S.R.L.

Jhonay Vasquez Torres
INGENIERO CIVIL
REG. CIP Nº 255746

GI-EMS-006-07-22 Fecha: 18/7/2022

	OALO	DEO DE GAI AGIDAD I GIVIA	INTE ADMINISTRE		
TESISTA:	JACKELINE EVELIN LE	EÓN MUÑOZ		9.1	
UBICACIÓN:	DISTRITO DE PEDRO	GALVEZ, PROVINCIA DE SAN MARC	OS, REGIÓN CAJAMARCA		
ASESOR:	MCS. ING. ROBERTO	GONZALES YANA		e 2 %	
MUESTRA:	M - 1	PROFUNDIDAD:	COORDEANDAS	ESTE:	817737
WUESTRA:	101-1	DE 0.00M. A 1.00M.	COORDEANDAS	NORTE:	9188642

DATOS

$$qad = \frac{(c N'c + \mathbf{q} N'q + \frac{1}{2} \mathbf{y}' B N'\mathbf{y})}{F.S}$$

q ad =
$$1.58$$
 Kg/cm²

DONDE:

TIPO DE SUELO			SM
ÁNGULO DE FRICCIÓN INTERNA	(°)	f =	22.49
COHESIÓN	(kg/cm2)	c =	0.125
PESO ESPECÍFICO DEL SUELO	(kg/cm3)	g =	0.00169
PROFUNDIDAD DE CIMENTACIÓN	(cm)	Df =	100.00
ANCHO DE CIMIENTO	(cm)	B =	100.00
FACTORES DE CAPACIDAD DE CARGA:		N'c =	20.992
		N'q =	9.697
		N'g =	5.534
FACTOR DE SEGURIDAD		F.S. =	3.000

GUERSAN INGENIEROS S.R.L.

Jhonny Vásquez Torres INGENIERO CIVIL REG. CIP N° 255748

GI-EMS-006-07-22 Fecha:

18/7/2022

	CON	IT	ENIDO	DE	HUME	DAD	
A.S	T.M.	D	2216/	A.A	.S.H.T.	D. T	265

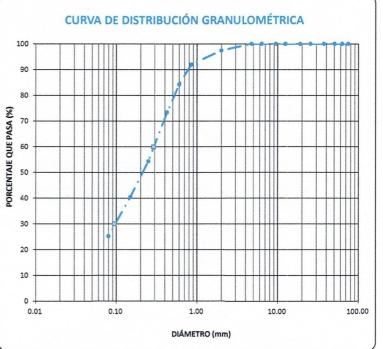
	A.S. 1 .IVI.	D 2216 / A.A.S.H.1.U.	200		
TESISTA:	JACKELINE EVELIN LEÓN MUÑ	ioz		- 3	#- #-
UBICACIÓN:	DISTRITO DE PEDRO GALVEZ	, PROVINCIA DE SAN MARCO	OS, REGIÓN CAJAMAF	RCA	
ASESOR:	MCS. ING. ROBERTO GONZA	ALES YANA			
MUESTRA:	M-02	PROFUNDIDAD.	- COORDENADAS:	ESTE:	818018
WOLSTKA.	WI-02	DE 0.00M. A 1.00M.	COORDENADAS.	NORTE:	9188643

CARACTERÍSTICAS D	EL PROCESO DE S	ECADO DE MUESTRA	
TEMPERATURA DE SECADO	110 °C	TIEMPO DE SECADO	16 h

CONTENIDO DE HUMEDAD				
Identificación de Tara	T-34			
Masa de tara (g)	127.40			
M. Tara + M.Húmeda (g)	2582.00			
M. Tara + M. Seca (g)	2527.00			
Masa de agua (g)	55.00			
Masa de Muestra Seca (g)	2399.60			
W (%)	2.29%			

GUERSAN INGENIEROS S.R.L.

Jhonny Vásquez Torres
INGENIERO CIVIL
REG. CIP Nº 255746


GI-EMS-006-07-22 Fecha: 18/7/2022

ANÁLISIS GRANULOMÉTRICO

	A.5	.1.IVI. D 422 / A.A.S.H.1.O. 1	00				
TESISTA:	JACKELINE EVELIN LEÓN MUÑOZ			8.5			
UBICACIÓN:	DISTRITO DE PEDRO GALVEZ, PROV	DISTRITO DE PEDRO GALVEZ, PROVINCIA DE SAN MARCOS, REGIÓN CAJAMARCA					
ASESOR:	MCS. ING. ROBERTO GONZALES YAI	NA		4 A X			
MUTOTO A.	11.00	PROFUNDIDAD:	000000000000000000000000000000000000000	ESTE:	818018		
MUESTRA:	M-02	DE 0.00M. A 1.00M.	COORDENADAS	NORTE:	9188643		

	CONDICIONES DE LA	MUESTRA TOTAL		
TEMPERATURA DE SECADO	110° C	PORCENTAJE DE GRAVA	% TOTAL	
PESO TOTAL MUESTRA SECA (g)	500.00	GRAVA (%):	0.00	
PESO TOTAL MUESTRA SECA < N° 4 (g)	500.00	ARENA GRUESA (%):	26.58	100.00
PESO TOTAL MUESTRA SECA > N° 4 (g)	0.00	ARENA FINA (%):	48.18	100.00
PESO TOTAL MUESTRA HUMEDA (g)	511.46	FINOS (%):	25.24	

	AN	IALISIS FRAC	CCIÓN GRUE	SA	
Tamiz		Peso Retenido	Porcentaje Retenido	Porcentaje Retenido	Porcentaje Que Pasa
N°	Abertura (mm)	Parcial	Parcial	Acumulado	Que Pasa
3"	76.20	0.00	0.00	0.00	100.00
2 1/2"	63.50	0.00	0.00	0.00	100.00
2"	50.80	0.00	0.00	0.00	100.00
1 1/2"	38.10	0.00	0.00	0.00	100.00
1"	25.40	0.00	0.00	0.00	100.00
3/4"	19.05	0.00	0.00	0.00	100.00
1/2"	12.70	0.00	0.00	0.00	100.00
3/8"	9.52	0.00	0.00	0.00	100.00
1/4"	6.35	0.00	0.00	0.00	100.00
N°4	4.75	0.00	0.00	0.00	100.00
TOTAL	WG=	0.00			
			ACCIÓN FINA	\	
	IÓN DE MUE		TEADA:		0.2000
PESO SEC	O FRACCIÓN	FINA:			500.00
N 10	2.00	12.50	2.50	2.50	97.50
N 20	0.85	27.30	5.46	7.96	92.04
N 30	0.60	38.90	7.78	15.74	84.26
N 40	0.43	54.20	10.84	26.58	73.42
N 60	0.25	95.10	19.02	45.60	54.40
N 100	0.15	69.50	13.90	59.50	40.50
N 200	80.0	76.30	15.26	74.76	25.24
Cazoleta			-		
TOTAL	ES DE CONSI	OTTAIOIA A O	T. W. D. 4545	/ A A O !! = !	7.00
		STENCIA A.S	1.M. D 4318		J. 1 89
	ÍQUIDO :			NP	
	PLÁSTICO :			NP	
ÍNDICE	PLÁSTICO :			NP	
		CLASI	FICACIÓN		
S.U.C.S	.:			SM	

DIAMETROS EFECTIVOS		COEFICIENTES	
D60 =	0.29	Cu =	-
D30=	0.095	Cc =	-
D10 =			

OBSERVACIONES:

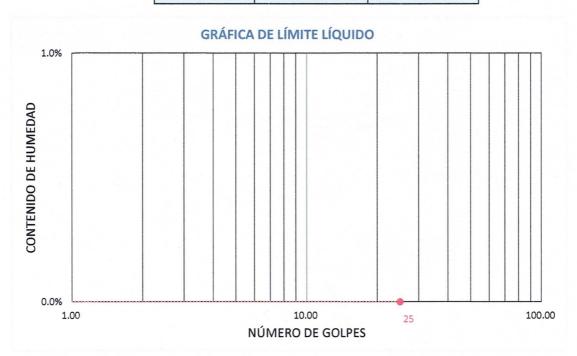
LA MUESTRA EN ESTUDIO HA SIDO CLASIFICADA UTILIZANDO EL METODO S.U.C.S. Y CORRESPONDE A UNA ARENA LIMOSA, COLOR AMARILLENTO, MEZCLADA CON 25.24% DE PARTICULAS FINAS MENORES QUE 0.075 MM Y EXENTA DE GRAVA.

GUERSAN INGENIEROS S.R.L.

Jhonty Vásquez Torres
NGENERO CIVIL
REG. CIP Nº 255748

GI-EMS-006-07-22

Fecha: 18/7/2022


LÍMITES DE ATTERBERG A.S.T.M. D 4318 / A.A.S.H.T.O. T 89

TESISTA:	JACKELINE EVELIN LEÓN MUÑOZ							
UBICACIÓN:	DISTRITO DE PEDRO GALVEZ, PRO	DISTRITO DE PEDRO GALVEZ, PROVINCIA DE SAN MARCOS, REGIÓN CAJAMARCA						
ASESOR:	MCS. ING. ROBERTO GONZALES YA	MCS. ING. ROBERTO GONZALES YANA						
MUESTRA:	M-02	PROFUNDIDAD:	COORDENADAS:	ESTE	818018			
	WI-02	DE 0.00M. A 1.00M.	COORDENADAS.	NORTE:	9188643			

	CONDICIONES DEL EI	NSAYO		
MUES	TRA A ENSAYAR	CONTENIDO DE HUMEDAD (ASTM D2216)		
TEMP. DE SECADO:	60 °C	TEMP. DE SECADO:	110 °C	
TIPO DE MATERIAL:	Pasa la malla N° 40	TIEMPO DE SECADO:	16 h	
AGUA USADA:	Potable			

LÍMITE LÍQUIDO				LÍMITE PLÁSTICO					
TARA Nº	1	2 3		TARA Nº	4	5			
M tara (g)			M tara (g)						
Mt+ M.Húmeda (g)			Mt+ M.Húmeda (g)						
Mt+ M. Seca (g)				Mt+ M. Seca (g)	NP				
M agua (g)		NP		M agua (g)	117				
M M.Seca (g)				M. Muestra Seca (g)					
W(%)	was a second of the second of			W(%)					
N.GOLPES				Contenido de Humedad Promedio:					

LÍMITE LÍQUIDO	LÍMITE PLÁSTICO	INDICE DE PLASTICIDAD	
NP	NP	NP	

GUERSAN INGENIEROS S.R.L.

Jhonny Vásquez Torres INGENIERO CIVIL REG, CIP Nº 255748

GI-EMS-006-07-22 Fecha: 18/7/2022

	DENSIDAD HÚMED	A EN CAMPO (MÉTODO	VOLUMÉTRICO)					
TESISTA:	JACKELINE EVELIN LEÓN MUÑOZ							
UBICACIÓN:	DISTRITO DE PEDRO GALVEZ, PR	DISTRITO DE PEDRO GALVEZ, PROVINCIA DE SAN MARCOS, REGIÓN CAJAMARCA						
ASESOR:	MCS. ING. ROBERTO GONZALES Y	MCS. ING. ROBERTO GONZALES YANA						
MIJESTDA.	M 02	PROFUNDIDAD:	COORDENADAS	ESTE:	818018.00			
MUESTRA:	M-02	DE 0.00M. A 1.00M.	COORDENADAS	NORTE:	9188643.00			

DENSIDAD HÚMEDA						
PROPIED	ADES	CILINDRO METÁLICO				
	Peso del anillo (Wc)	74.49				
a	Diámetro (a) (cm)	5.96				
D	Altura (b) (cm)	1.82				
	Volumen del anillo (Vc) (cm3)	50.78				
Peso de la muestra +	anillo (Wh+c) (g)	161.48				
Peso de la mues	tra (Wh) (g)	87.0				
Dh (g/c	m3)	1.713				

GUERSAN INGENIEROS S.R.L.

Jhorny Vásquez Torres
INGENIERO CIVIL
REG. CIP N° 255746

GI-EMS-006-07-22

Fecha: 18/7/2022

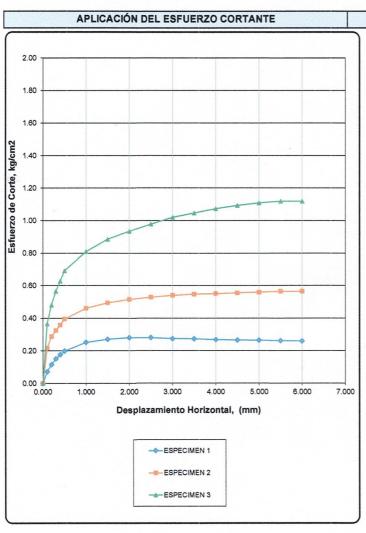
ENSAYO DE CORTE DIRECTO ESTÁNDAR EN SUELOS A S T M D 3080

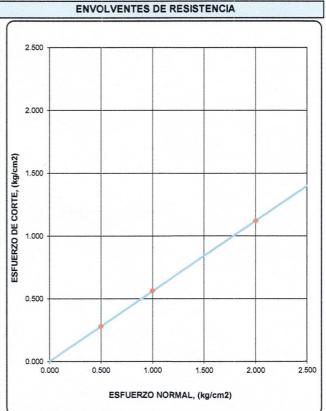
		A.S.1.W. D 3000						
TESISTA:	JACKELINE EVELIN LEÓN MUÑO)Z						
UBICACIÓN:	DISTRITO DE PEDRO GALVEZ, F	ISTRITO DE PEDRO GALVEZ, PROVINCIA DE SAN MARCOS, REGIÓN CAJAMARCA						
ASESOR:	MCS. ING. ROBERTO GONZALES YANA							
MUESTRA:		PROFUNDIDAD:		ESTE:	818018			
	M-02	DE 0.00M. A 1.00M.	COORDENADAS	NORTE:	9188643			

			CARA	CTERISTICA	S DE LA MUE	STRA					
CLASIFI	CLASIFICACIÓN S.U.C.S.: SI				ES'	TADO:		REMOLDEA	DO		
				DATOS DE	L MOLDE						
MOLD		DIÁMETRO (cm)	ALTURA (cm)	ÁREA	A (cm2)	VOLUMEN	N (cm3)	P	PESO (g)		
CIRCUL	.AR	5.96	1.82		.899	50.7	8		74.49		
					L ENSAYO						
ESFUERZO NOR			(kg/cm2)		Kg/cm2	1.000 Kg			0 Kg/cm2		
VELOCIDAD ENS			(mm/min)		152	0.10			0.055		
PESO DEL ANILL		STRA	(g)		.480	161.3			61.520		
PESO MUESTRA			(g)		.990	86.8			37.030		
DEFORMACIÓN I	FINAL		(mm)		198	-0.42			-0.655		
ETAPA				INICIAL	FINAL	INICIAL	FINAL	INICIAL	FINAL		
TARA			_	1	2	3	4	5	6		
PESO DE LA TAF			(g)	11.15	11.03	11.16	11.13	10.45	9.96		
PESO TARA + MI			(g)	114.39	107.61	112.85	106.21	115.27	103.69		
PESO TARA + MI	JESTRA SEC	CA	(g)	109.27	99.89	108.14	99.45	108.98	96.32		
ALTURA			(cm)	1.82	1.80	1.82	1.78	1.82	1.75		
DIAMETRO			(cm)	5.96	5.96	5.96	5.96	5.96	5.96		
CONTENIDO DE			(%)	5.22%	8.69%	4.86%	7.65%	6.38%	8.53%		
DENSIDAD HÚMEDA (g/cm3)				1.713	1.732	1.711	1.752	1.714	1.778		
				A DE APLICA	ACIÓN DE CA						
DESPLAZA_MIE		0.50 Kg/cm2			1.00 Kg/cm			2.00 Kg/cn	n2		
NTO	C	CARGA		CARGA ESFUERZO DE		CA	CARGA ESFUERZO DE		CARGA		ESFUERZO DE
HORIZONTAL (mm)			CORTE			CORTE	CORTE				
	N	kg	Kg (cm2)	N	kg	Kg (cm2)	N	kg	Kg (cm2)		
0.000	0.00	0.000	0.000	0.00	0.000	0.000	0.00	0.000	0.000		
0.100	19.45	1.984	0.071	58.99	6.016	0.216	99.86	10.183	0.365		
0.200	31.16	3.177	0.114	78.42	7.997	0.287	131.48	13.407	0.481		
0.300	40.99	4.180	0.150	88.79	9.054	0.325	154.52	15.756	0.565		
0.400	47.94	4.889	0.175	97.74	9.966	0.357	171.63	17.502	0.627		
0.500	54.33	5.540	0.199	108.04	11.017	0.395	189.14	19.287	0.691		
1.000	68.65	7.001	0.251	126.09	12.858	0.461	221.38	22.574	0.809		
1.500	73.78	7.523	0.270	135.22	13.788	0.494	242.22	24.700	0.885		
2.000	76.38	7.788	0.279	140.93	14.371	0.515	255.54	26.058	0.934		
2.500	76.58	7.809	0.280	144.85	14.771	0.529	267.80	27.308	0.979		
3.000	75.15	7.664	0.280	147.89	15.081	0.529	279.29	28.480	1.021		
3.500	74.61	7.608	0.273	149.89	15.284	0.548	286.52	29.217	1.047		
4.000	73.08	7.452	0.267	150.65	15.362	0.551	293.75	29.954	1.074		
4.500	72.52	7.395	0.265	152.03	15.503	0.556	299.20	30.510	1.094		
5.000	72.29	7.372	0.264	153.13	15.615	0.560	303.47	30.945	1.109		
5.500	71.34	7.275	0.261	154.39	15.744	0.564	306.22	31.226	1.119		
	70.91	7.231	0.259	154.39	15.744	0.564	306.22	31.226	1.119		

GUERSAN INGENIEROS S.R.L.

Jhonny Vasquez Torres
INGENIERO CIVIL
REG. CIP N° 255748


GI-EMS-006-07-22


Fecha: 18/7/2022

ENSAYO DE CORTE DIRECTO ESTÁNDAR EN SUELOS

		A.S. I .WI. D 3080			
TESISTA:	JACKELINE EVELIN LEÓN MUÑO	Z			
UBICACIÓN:	DISTRITO DE PEDRO GALVEZ, F	PROVINCIA DE SAN MARCOS, REGIÓN CAJAMA	RCA		
ASESOR:	MCS. ING. ROBERTO GONZALES	SYANA		3.5	
MUPOTO A	11.00	PROFUNDIDAD:	0000000000	ESTE:	818018
MUESTRA:	M-02	DE 0.00M. A 1.00M.	COORDENADAS	NORTE:	9188643

CLASIFICACIÓN S.U.C.S. :	SM	ESTADO:	REMOLDEADO

ESPECIMEN	ESFUERZO NORMAL (kg/cm2)	ESFUERZO DE CORTE (kg/cm2)
1	0.500	0.280
2	1.000	0.564
3	2.000	1.119

COHESIÓN =	0.000	kg/cm ²
NGULO DE FRICCIÓN INTERNA =	29.23	•

JUONNY Vasquez Torres
INGENIERO CIVIL
REG. CIP N° 255746

GI-EMS-006-07-22 Fecha: 18/7/2022

CÁLCULO DE CAPACIDAD PORTANTE ADMISIBLE

		=4			
TESISTA:	JACKELINE EVELIN L	EON MUNOZ			
UBICACIÓN:	DISTRITO DE PEDRO	GALVEZ, PROVINCIA DE SAN MARCO	OS, REGIÓN CAJAMARCA		
ASESOR:	MCS. ING. ROBERTO	GONZALES YANA		4 8 9	
MUESTRA:	M-02	PROFUNDIDAD:	COORDEANDAS	ESTE:	818018
MOLOTICA.	WI-02	DE 0.00M. A 1.00M.	COORDEANDAS	NORTE:	9188643

DATOS

$$qad = \frac{(c N'c + \mathbf{q} N'q + \frac{1}{2} \mathbf{y}' B N'\mathbf{y})}{F.S}$$

q ad =
$$1.66$$
 Kg/cm²

DONDE:

TIPO DE SUELO			SM
ÁNGULO DE FRICCIÓN INTERNA	(°)	f =	29.23
COHESIÓN	(kg/cm2)	c =	0.000
PESO ESPECÍFICO DEL SUELO	(kg/cm3)	g =	0.00171
PROFUNDIDAD DE CIMENTACIÓN	(cm)	Df =	100.00
ANCHO DE CIMIENTO	(cm)	B =	100.00
FACTORES DE CAPACIDAD DE CARGA	:	N'c =	34.911
		N'q =	20.550
		N'g =	16.858
FACTOR DE SEGURIDAD		F.S. =	3.000

GUERSAN INGENIEROS S.R.L.

Jhonny Vásquez Torres
INGENIERO CIVIL
REG. CIP Nº 255748