7/631,4/C984

# UNIVERSIDAD NACIONAL DE CAJAMARCA FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL



# MEJORAMIENTO DE SUELOS ARCILLOSOS UTILIZANDO CAUCHO GRANULAR DE NEUMÁTICOS PARA FINES CONSTRUCTIVOS DE PAVIMENTO

### **TESIS**

Para optar el título profesional de:

### **INGENIERO CIVIL**

Presentado por el Bachiller:

### WILDER DANNY CUSQUISIBÁN OCAS

Asesor:
ING. EVER RODRÍGUEZ GUEVARA

Cajamarca, diciembre de 2014

#### UNIVERSIDAD NACIONAL DE CAJAMARCA

#### **FACULTAD DE INGENIERÍA**

#### ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL



# MEJORAMIENTO DE SUELOS ARCILLOSOS UTILIZANDO CAUCHO GRANULAR DE NEUMATICOS PARA FINES CONSTRUCTIVOS DE PAVIMENTOS

#### **TESIS**

Para optar el Título Profesional de:

#### **INGENIERO CIVIL**

Presentado por el Bachiller:

WILDER DANNY CUSQUISIBÁN OCAS

Asesor

Ing. Ever Rodríguez Guevara

Cajamarca, diciembre de 2014

#### **DEDICATORIA**

Con mucha gratitud y cariño:

A mi padre, Elías, y a mi madre, Jesús, quienes me brindaron su apoyo en todo momento; porque me enseñaron la perseverancia, la constancia, el hábito por el estudio y por darme una carrera para mi futuro.

A mis hermanos, German, Wilfredo, Irma y Maly, con quienes nos apoyamos mutuamente para nuestra superación personal y profesional; y por apoyarme para la culminación de estos estudios.

Wilder Danny

#### **AGRADECIMIENTO**

A la Universidad Nacional de Cajamarca, que gracias a sus aulas y maestros termine mi carrera profesional.

A mi asesor, Ing. Ever Rodríguez Guevara, quien con su experiencia profesional, apoyo en la consecución del presente trabajo, de Investigación.

Al Comité de Jurado del presente trabajo, Ing. José Lezama Leiva, Ing. Rosa Hayde Llique Mondragón e Ing. Judith Montoya Chávez, por las sugerencias y revisiones realizadas.

Al Ing. Wilfredo Fernández Muñoz, docente principal de la UNC, quien me brindó su apoyo constante para desarrollar mi tesis en su laboratorio de mecánica de suelos.

A todas las personas, quienes colaboraron con sugerencias, información o trabajo de campo para el presente estudio.

Wilder Danny

#### ÍNDICE

#### Título:

## "Mejoramiento de suelo arcillosos utilizando caucho granular de neumáticos para fines constructivos de pavimentos"

|                   | Pág. |
|-------------------|------|
| Dedicatoria       | · ii |
| Agradecimiento    | iii  |
| Índice de Tablas  | ix   |
| Índice de Figuras | ix   |
| Índice de Cuadros | х    |
| Índice de Anexos  | хi   |
| Resumen           | xii  |
| Abstract          | xiii |
|                   |      |

#### **CAPITULO I: INTRODUCCION**

| 1.1.   | Problema de investigación                         | 01 |
|--------|---------------------------------------------------|----|
| 1.1.1. | Antecedentes                                      | 01 |
| 1.1.2. | Planteamiento del problema                        | 01 |
| 1.1.3. | Selección del problema                            | 02 |
| 1.1.4. | Formulación del problema                          | 02 |
| 1.2.   | Justificación de la investigación                 | 03 |
| 1.3.   | Objetivos de la investigación                     | 03 |
| 1.3.1. | Objetivo general                                  | 03 |
| 1.3.2. | Objetivos específico                              | 04 |
| 1.4.   | Hipótesis                                         | 04 |
| 1.5.   | Delimitaciones y limitaciones de la investigación | 04 |
| 1.5.1. | Delimitaciones                                    | 04 |

| 1.5.2. Lir                                      | mitaciones                                                        | 04   |
|-------------------------------------------------|-------------------------------------------------------------------|------|
| 1.6. Ti                                         | po de investigación                                               | 05   |
| 1.7. Te                                         | écnicas e instrumentos de recopilación de información             | 05   |
| 1.8. Te                                         | écnicas de procesamiento y análisis de información                | 05   |
| 1.9. Va                                         | àriables                                                          | 06   |
| 1.10. Di                                        | seño de la ejecución del plan como desarrollo de la investigación | 06   |
| 1.10.1.                                         | El universo de la investigación                                   | 06   |
| 1.10.2.                                         | Muestra – unidad de análisis                                      | 06   |
|                                                 | CAPITULO II: MARCO TEORICO                                        |      |
| 2.1. Ante                                       | cedentes                                                          | 07   |
| 2.2. Base                                       | es Teóricas                                                       | 07   |
| 2.2.1. Ge                                       | eneralidades                                                      | 07   |
| 2.2.2. Su                                       | elo arcilloso                                                     | 80   |
| 2.2.2.1. F                                      | actores que afectan el comportamiento expansivo                   | 80   |
| 2.2.2.2. F                                      | Reconocimiento e identificación de suelos arcillosos              | 10   |
| 2.2.2.3. F                                      | Predicción de hinchamiento                                        | . 10 |
| 2.2.2.4. \$                                     | Suelos arcillosos e ingeniería civil                              | 10   |
| 2.2.2.5. E                                      | Evidencias físicas para el reconocimiento de suelos arcillosos    | 12   |
| 2.2.2.6. 1                                      | mportancia de los suelos arcillosos en la ingeniería civil        | 12   |
| 2.2.2.7. F                                      | Flujo de agua en suelos arcillosos                                | 12   |
| 2.2.2.8 <i>.                               </i> | Alternativas para contrarrestar el efecto de suelos arcillosos    | 16   |
| 2.2.3. Ne                                       | eumáticos                                                         | . 17 |
| 2.2.3.1. (                                      | Origen, Composición y Características                             | 17   |
| 2.2.3.2. (                                      | Componentes de un Neumático y sus Funciones                       | 22   |
| 2.2.4. Ca                                       | nucho                                                             | 27   |
| 2.2.4.1. [                                      | Definición                                                        | 27   |
| 2.2.5. Pa                                       | vimentos                                                          | 32   |
| 2.2.5.1. F                                      | Pavimentos Flexibles                                              | 32   |

| 2.2.5.2. Pavimentos Rígidos                              | 34 |
|----------------------------------------------------------|----|
| 2.2.5.3. Componentes estructurales                       | 35 |
| 2.2.5.3.1. Subrasante                                    | 35 |
| 2.2.5.3.2. Subbase                                       | 36 |
| 2.2.5.3.3. Base                                          | 36 |
| 2.2.5.3.4. Capa de rodadura                              | 37 |
| 2.3. Definición de Términos Básicos                      | 37 |
| •                                                        |    |
| CAPITULO III: MATERIALES Y METODOS                       |    |
| 3.1. Ubicación geográfica                                | 38 |
| 3.2. Determinación numero calicatas y numero ensayos CBR | 40 |
| 3.3. Equipos, herramientas, materiales e insumos         | 42 |
| 3.3.1. Maquinaria                                        | 42 |
| 3.3.2. Equipos                                           | 42 |
| 3.3.3. Herramientas                                      | 42 |
| 3.3.4. Materiales                                        | 42 |
| 3.3.5. Insumos                                           | 42 |
| 3.4. Ensayos de laboratorio                              | 42 |
| 3.4.1. Análisis granulométrico                           | 42 |
| 3.4.1.1. Método                                          | 43 |
| 3.4.1.2. Muestreo                                        | 43 |
| 3.4.1.3. Materiales                                      | 43 |
| 3.4.1.4. Equipo                                          | 43 |
| 3.4.1.5. Procedimiento                                   | 43 |
| 3.4.2. Contenido de humedad                              | 45 |
| 3.4.2.1. Equipos                                         | 45 |
| 3.4.2.2. Muestreo                                        | 45 |
| 3.4.2.3. Espécimen de ensayo                             | 45 |
| 3.4.2.4. Procedimiento                                   | 45 |
| 3.4.2.5. Cálculos                                        | 46 |

| 3.4.3. Límite liquido                           | 46 |
|-------------------------------------------------|----|
| 3.4.3.1. Materiales                             | 47 |
| 3.4.3.2. Equipos                                | 47 |
| 3.4.3.3. Procedimiento                          | 47 |
| 3.4.3.4. Cálculos                               | 48 |
| 3.4.3.5. Elaboración de la curva de flujo       | 49 |
| 3.4.4. Limite plástico e índice de plasticidad  | 49 |
| 3.4.4.1. Muestra                                | 49 |
| 3.4.4.2. Equipo                                 | 49 |
| 3.4.4.3. Procedimiento                          | 49 |
| 3.4.4.4. Cálculos                               | 50 |
| 3.4.4.5. Determinación de limite plástico       | 50 |
| 3.4.4.6. Cálculo del índice de plasticidad      | 51 |
| 3.4.5. Proctor modificado                       | 52 |
| 3.4.5.1. Material                               | 53 |
| 3.4.5.2. Equipo                                 | 53 |
| 3.4.5.3. Procedimiento                          | 54 |
| 3.4.5.4. Cálculos                               | 54 |
| 3.4.6. California bearing ratio (CBR)           | 55 |
| 3.4.6.1. Equipo                                 | 55 |
| 3.4.6.2. Muestra                                | 56 |
| 3.4.6.3. Procedimiento                          | 56 |
| 3.4.6.3.1. Compactación (proctor)               | 56 |
| 3.4.6.3.2. Expansión (Hinchamiento)             | 57 |
| 3.4.6.3.3. Esfuerzo – penetración               | 57 |
| 3.5. Presentación de Resultados                 | 59 |
| CAPITULO IV: ANALISIS Y DISCUSION DE RESULTADOS |    |
| 4.1. Análisis del suelo                         | 64 |
| 4.2. Contenido optimo de humedad                | 65 |
|                                                 |    |

| 4.3. Capacidad dei soporte dei terreno en condiciones normales       | 65 |
|----------------------------------------------------------------------|----|
| 4.4. Capacidad de soporte del terreno con adición de caucho granular | 66 |
| CAPITULO V: CONCLUSIONES Y RECOMENDACIONES                           | 6  |
| 5.1. Conclusiones                                                    | 67 |
| 5.2. Recomendaciones                                                 | 68 |
| Referencia bibliográficas                                            | 69 |

#### **INDICE DE TABLAS**

| Tabla 3.1: Clasificación se suelos arcillosos, sistema AASHTO           | 44 |
|-------------------------------------------------------------------------|----|
| Tabla 3.2: Porcentaje de material que pasa de calicata nº 01            | 59 |
| Tabla 3.3: Porcentaje de material que pasa de calicata n° 02            | 59 |
| Tabla 3.4: Porcentaje de material que pasa de calicata nº 03            | 60 |
| Tabla 3.5: Limites de atterberg de calicatas n° 01, 02 y 03             | 60 |
| Tabla 3.6: Resultado ensayo proctor modificado (0% caucho)              | 61 |
| Tabla 3.7: Resultado ensayo proctor modificado (20% caucho)             | 61 |
| Tabla 3.8: Resultado ensayo proctor modificado (40% caucho)             | 61 |
| Tabla 3.9: Resultado ensayo proctor modificado (60% caucho)             | 62 |
| Tabla 3.10: Capacidad de soporte a condiciones normales                 | 62 |
| Tabla 3.11: Capacidad soporte con adición 20% caucho granular           | 62 |
| Tabla 3.12: Capacidad soporte con adición 40% caucho granular           | 63 |
| Tabla 3.12: Capacidad soporte con adición 60% caucho granular           | 63 |
| Tabla 4.1: Características de los suelo de la carretera de las avenidas |    |
| El Porongo – Sebastián Díaz Marín – Zarate Miranda y Chachapoyas        |    |
| y su clasificación según AASHTO y SUCS                                  | 64 |
| Tabla 4.2: Categoría de subrasante                                      | 66 |
|                                                                         |    |
| INDICE DE FIGURAS                                                       |    |
| Figura 2.1: Segmento de polímero de caucho natural y segmento de        |    |
| cadena polimérica de la gutapercha                                      | 19 |
| Figura 2.2: Posibilidades de deformación de caucho natural y caucho     |    |
| natural vulcanizado                                                     | 20 |
| Figura 2.3: Componentes de un neumático                                 | 22 |
| Figura 2.4: Proceso constructivo de un neumático                        | 23 |
| Figura 2.5: Proceso de mezclado del caucho con resto de materias primas | 24 |

| Figura 2.6: Proceso de calandrado                                         | 24   |
|---------------------------------------------------------------------------|------|
| Figura 2.7: Etapa de extrusión                                            | 25   |
| Figura 2.8: Conformado de talón                                           | 25   |
| Figura 2.9: Elaboración de cinturones estabilizadores                     | 26   |
| Figura 2.10: Obtención del neumático verde                                | 26   |
| Figura 2.11: Proceso de vulcanizado                                       | 27   |
| Figura 2.12: Inspección final de la elaboración del neumático             | 27   |
| Figura 2.13: Paviṃento flexible                                           | 33   |
| Figura 2.14: Pavimento flexible de concreto asfaltico                     | 34   |
| Figura 2.15: Pavimento rígido                                             | 34 , |
| Figura 3.1: Ubicación geográfica de zona de estudio a nivel departamental | 38   |
| Figura 3.2: Ubicación geográfica a nivel provincial                       | 39   |
| Figura 3.3: Ubicación geográfica a nivel distrital                        | 39   |
| Figura 3.4: Ubicación local                                               | 40   |
| Figura 3.5: Carta de plasticidad                                          | 51   |
| INDICE DE CUADROS                                                         |      |
| Cuadro 2.1: Tipos de suelos arcillosos                                    | 11   |
| Cuadro 2.2: Coeficiente de permeabilidad                                  | 13   |
| Cuadro 2.3: Grado de permeabilidad                                        | 15   |
| Cuadro 2.4: Componentes generales de un neumático                         | 21   |
| Cuadro 2.5: Composición química                                           | 21   |
| Cuadro 3.1: Numero de calicatas para exploración de suelos                | 41   |
| Cuadro 3.2: Numero de ensayos CBR                                         | 41   |
| Cuadro 3.3: Número mínimo de calicatas y ensayos CBR                      | 41   |
| Cuadro 3.4: Clasificación de suelos según el índice de plasticidad        | 52   |

#### **INDICE DE ANEXOS**

| Anexo 1. Datos de los ensayos realizados | 71  |
|------------------------------------------|-----|
| Anexo 2. Panel fotográfico               | 114 |
| Anexo 3. Planos                          | 122 |

#### RESUMEN

Dentro del grupo de materiales que afectan negativamente a las obras que sobre ellos se construyen destacan los materiales arcillosos. Los efectos provocados por estos materiales, asociados a sus características resistentes, sus cambios de estado, su deformabilidad o sus cambios volumétricos son ampliamente conocidos en el sector de la construcción desde tiempos remotos. El objetivo en el presente estudio es mejorar los suelos arcillosos con caucho granular obtenidos a partir de neumáticos reciclados, los ensayos de suelos realizados están basados en las normas ASTM y AASHTO. Los suelos considerados como parte del presente proyecto de investigación, son de la carretera Porongo - Sebastián Díaz Marín -Zarate Miranda y Chachapoyas en un tramo de 3.519m, extraídos de calicatas con una profundidad de 1.50m, esta carretera se encuentra en el Distrito de Baños del Inca, Provincia de Cajamarca, Región Cajamarca. El tipo de suelo en estudio es OH y OL clasificado según el sistema de clasificación SUCS, y según el sistema AASHTO A-7-5. Estos suelos están conformados arcillas orgánicas de media plasticidad y Arcillas limosas orgánicas de baja plasticidad. Estos suelos arcillosos tienen como máximo un CBR de 7.10%, estos suelos son no recomendables como material de subrasante o base, con la adición de 20% de caucho granular el CBR de los suelos arcillosos se incrementa hasta 10%, esta combinación como material de subrasante es regular, con la adicción de 40% de caucho granular se obtiene un CBR de 30.40%. Con la adición del 60% de caucho granular, los suelos logra tener un CBR igual a 41%, esta es mezcla buena como material de subrasante, de acuerdo a lo especificado por el Manual de Carreteras "Suelos, geología, Geotecnia y Pavimentos".

#### **ABSTRACT**

Inside the group of materials that you/they affect negatively to the works that it has more than enough they are built they highlight the loamy materials. The effects caused by these materials, associated to their resistant characteristics, their state changes, their deformabilidad or their volumetric changes are broadly known in the sector of the construction from remote times. The objective presently study is to improve the loamy floors with granular rubber obtained starting from recycled tires, the rehearsals of carried out floors are based on the norms ASTM and AASHTO. The floors considered as part of the present investigation project, are of the highway Porongo - Sebastian Díaz Marín - Zarate Miranda and Chachapoyas in an extracted tract of 3.519m, of test pit with a depth of 1.50m, this highway is in the District of Bathrooms of the Inca, County of Cajamarca, Region Cajamarca. The floor type in study is OH and OL classified according to the classification system SUCS, and according to the system AASHTO TO-7-5. These floors are conformed organic clays of half plasticity and organic oozy Clays of low plasticity. These loamy floors have as maximum a CBR of 7.10%, these floors are not advisable as subgrade material or base, with the addition of 20% of granular rubber the CBR of the loamy floors is increased up to 10%, this combination like subrasante material is to regulate, with the addiction of 40% of granular rubber a CBR of 30.40% obtains. With the addition of 60% of granular rubber, the floors are able to have a CBR equal to 41%, this it is good mixture as subgrade material, according to that specified by the Manual of Highways "Floors, geology, Geotechnics and Pavements."

#### CAPÍTULO I: INTRODUCCIÓN

#### 1.1. Problema de investigación

#### 1.1.1. Antecedentes

En el trabajo práctico el ingeniero civil se enfrenta con muy diversos e importantes problemas en el terreno. Todas las estructuras de ingeniería civil. Edificios, puentes, carreteras, túneles, muros, torres, canales o presas, deben cimentarse sobre la superficie de la tierra o dentro de ella.

Dentro del grupo de los materiales que afectan negativamente a las obras que sobre ellos se construyen destacan en el Departamento de Cajamarca los materiales arcillosos. Los efectos provocados por estos materiales, asociados a sus características resistentes, sus cambios de estado, su deformabilidad o sus cambios volumétricos son ampliamente conocidos en el sector de la construcción desde tiempos remotos.

Desde el punto de vista ingenieril, una vez asumida esta circunstancia, es preciso estudiar cómo minimizar los riesgos y limitar la influencia de dichos materiales sobre la obra proyectada. El desarrollo de las posibles soluciones suele pasar, bien por la actuación directa sobre los materiales nocivos, bien por actuaciones indirectas sobre las estructuras proyectadas,

El ingenio para resolver esta problemática ha llevado no sólo a buscar soluciones novedosas sino incluso a rescatar del pasado algunas más tradicionales, cuya práctica estaba casi abandonada, y éste es el caso de la mejora de los suelos arcillosos con caucho granulado.

#### 1.1.2. Planteamiento del problema

La presencia de materiales en el terreno natural que originan efectos nocivos sobre las construcciones de pavimentos podría decirse que es casi una característica inherente a las mismas. El hecho de que la ubicación o el trazado no puedan condicionarse sólo a la existencia de un sustrato de soporte adecuado hace que, en numerosas ocasiones, no quede más remedio que asumir estos efectos perjudiciales como un mal menor. (Castelló - 2008).

Dentro del grupo de los materiales que afectan negativamente a los pavimentos son los suelos arcillosos, por su extensión y por la tipología de sus daños. Los efectos provocados por estos materiales, asociados a sus características resistentes, sus cambios de estado, su deformabilidad o sus cambios volumétricos son ampliamente conocidos en el sector de la construcción desde tiempos remotos.

Si bien los daños que originan los suelos arcillosos sobre las construcciones de pavimentos no son los más aparatosos ni los más llamativos, podríamos con casi toda seguridad afirmar que son los que más repercusiones tienen sobre las mismas en cuanto al número de incidencias e, incluso, en cuanto al coste de reparación. ¿Quién no puede mencionar un caso conocido y cercano de fisuración por suelos arcillosos expansivos o de deformación de una vía por un blandón? Desde el punto de vista ingenieril, una vez asumida esta circunstancia, es preciso estudiar cómo minimizar los riesgos y limitar la influencia de dichos materiales sobre la obra proyectada. El desarrollo de las posibles soluciones suele pasar, bien por la actuación directa sobre los materiales nocivos, bien por actuaciones indirectas sobre las estructuras proyectadas, adaptando su tipología, las cargas que transmite, o incluso el proceso constructivo. (Bauzá - 2008).

#### 1.1.3.- Selección del problema

Los suelos arcillosos son un problema que el ingeniero civil deben solucionar para la construcción de diferentes obras, dentro de ellos la construcción de pavimentos.

#### 1.1.4.- Formulación del problema

El problema de Investigación de este trabajo se precisa mediante la siguiente pregunta.

¿Cuál es el efecto al adicionar caucho granular de neumáticos a suelos arcillosos para para fines constructivos pavimentos?

#### 1.2.- Justificación de la investigación

Este proyecto de tesis se justifica por lo siguiente:

- ❖ Actualmente, hay una necesidad de cuidar la naturaleza para brindar a la humanidad un ambiente saludable en beneficio de la generación presente y futura; por lo cual, la investigación debe buscar, en todos los campos de la actividad humana, prácticas y productos más amigables con el medio ambiente; y es en este enfoque que se realiza este trabajo.
- ❖ En Cajamarca, no se han realizado trabajos de investigación de mejoramiento de suelos arcillosos propio del lugar del proyecto con caucho granular, que excluya el mejoramiento con material de cantera.
- ❖ La universidad Nacional de Cajamarca, y en particular la Facultad de Ingeniería Civil, debe responder a solucionar problemas prácticos existentes en la sociedad, como en este caso realizar el mejoramiento de suelos arcillosos con caucho granular.
- ❖ Los resultados de esta investigación que busca el mejoramiento de suelos arcillosos siguiendo el procedimiento especificado en las normas técnicas astm y mtc, conllevaría en el futuro al mejoramiento masivo de los suelos arcillosos con caucho granular.

#### 1.3.- Objetivos de la investigación

#### 1.3.1.- Objetivo general

Mejorar la capacidad de soporte de los suelos arcillosos utilizando gaucho granular de neumáticos para contribuir a la protección del medio ambiente; y que sea utilizable para la construcción de pavimentos, cumpliendo las especificaciones mínimas del Manual de Carreteras – Suelos, Geología, Geotecnia y Pavimentos.

#### 1.3.2.- Objetivo específico

 Determinar las características físico – mecánicas de los suelos arcillosos.

#### 1.4.- Hipótesis

Mediante la adición de caucho granular a suelos arcillosos, será posible mejorar la capacidad de soporte y el efecto será directamente proporcional al porcentaje de caucho que excluya el mejoramiento con material de cantera para contribuir a la protección del medio ambiente; y que sea utilizable para la construcción de pavimentos, cumpliendo las especificaciones mínimas del "manual de carreteras – suelos, geología, geotecnia y pavimentos -2013"

#### 1.5. Delimitaciones y limitaciones de la investigación

#### 1.5.1. Delimitaciones

El estudio se realizó en el Distrito de Baños del Inca – Provincia Cajamarca – Región Cajamarca, entre las progresivas Km 00+000 – Km 03+519.93 de las avenidas El Porongo – Sebastián Díaz Marín – Zarate Miranda y Chachapoyas con suelos arcillosos.

El estudio se realizó durante los meses de agosto – octubre del año 2014

#### 1.5.2. Limitaciones

Para la investigación se han realizado los ensayos de suelos en el laboratorio de geotécnica ubicado en la urbanización Los Docentes de la UNC del Ing. Wilfredo Fernández Muñoz, sin embargo es probable que los equipos del laboratorio carezcan de una buena calibración por razones del tiempo de uso; por lo que se reconoce este limitante.

El tesista no ha agotado todas las fuentes bibliográficas existentes sobre el tema de investigación que se hayan desarrollado en otros lugares del país y el

extranjero, ya sea por falta de recursos y por escaso conocimiento de idiomas extranjeros, por lo que se reconoce esta limitante.

#### 1.6. Tipo de investigación

Según su aplicación, esta investigación fue de tipo aplicada porque se basó en conocimientos existentes, sobre los diferentes procesos y materiales, para el mejoramiento de suelos arcillosos con caucho granular utilizable para la construcción de pavimentos por la sociedad y que contribuya a la conservación del medio ambiente. También por su fin, es de tipo proyectiva porque se orienta a elaborar una propuesta dirigida a resolver un problema existente en la sociedad. (Hurtado, 2008).

Asimismo, por la naturaleza de la información a recolectar, es de tipo experimental ya que se ha manipulado diversas variables para evaluar sus efectos y resultados.

#### 1.7. Técnicas e instrumentos de recopilación de información

Para recopilar la información se usaron métodos cualitativo y cuantitativo.

El método cuantitativo se usó para evaluar las características de los suelos arcillosos sin combinación con el caucho granular y en combinación con el caucho granular; para lo cual se emplearon las máquinas y los equipos del Laboratorio de Geotecnia del Ingeniero Wilfredo Fernández Muñoz, tales como: Mallas ASTM (tamices), taras balanzas, estufa, molde cilíndrico metálico de 4", pisón de 4.536 kg, martillo, pesas, prensa de ensayo, etc.

El método cualitativo, se usó para obtener información acerca del proceso de mejoramiento de suelos arcillosos con material de cantera.

#### 1.8. Técnicas de procesamiento y análisis de información

La información cuantitativa, que se obtuvo de los análisis que se realizaron a los prototipos fue procesada mediante técnicas estadísticas para determinar las diferencias de los prototipos, que se elaboran según los diferentes porcentajes de suelo/caucho. Para tal efecto, se usó programas computarizados como Microsoft excel; con el que se obtuvo los CBR.

#### 1.9. Variables

- Independiente
   Suelo arcilloso, caucho granular
- Dependiente Capacidad de Soporte del suelo arcilloso con incremento de caucho granulado.

#### 1.10.- Diseño de la ejecución del plan como desarrollo de la investigación

#### 1.10.1.- El universo de la investigación

El universo está conformado por todos los suelos arcillosos que se encuentran en la carretera de las avenidas El Porongo – Sebastián Díaz Marín – Zarate Miranda y Chachapoyas.

#### 1.10.2.- Muestra – Unidad de análisis

La muestra corresponde a las 03 calicatas excavadas teniendo en cuenta el "Manual de carreteras – suelos, geología, geotecnia y pavimentos" aprobada según RD Nº 05-2013-MTC/14

#### CAPÍTULO II: MARCO TEÓRICO

#### 2.1.- Antecedentes

En el estudio del mejoramiento de suelos arcillosos utilizando caucho granular de neumáticos para fines constructivos de pavimentos, no se ha encontrado a la fecha investigaciones realizadas en el ámbito internacional, nacional o local, por motivos económicos, y por el escaso conocimiento de idiomas.

#### 2.2.- Bases teóricas

#### 2.2.1.- Generalidades

La presencia de materiales naturales y su influencia en las obras de construcción es casi inevitable. Pero más concretamente, la utilización de los suelos, como materiales locales fácilmente excavables y de uso sencillos, hace que su profusión y presencia en el entorno de cualquier obra sea incluso provocada.

Es posible encontrar suelos arcillosos en las etapas de movimiento de tierras para la construcción de una obra, especialmente de pavimentos.

Así por ejemplo pueden formar parte de los:

- a) Materiales subyacentes a la obra: En concreto bajo las cimentaciones de edificios y como asiento de terraplenes o estructuras de tierra.
- b) Materiales de aportación: En que es posible que se hayan empleado como:
  - ✓ Rellenos bajo construcciones, por motivos tales como la falta de materiales mejores, motivos económicos o medio ambientales.
  - ✓ Rellenos en los trasdoses de muros y estructuras de contención.
  - ✓ Capas con funcionalidad específica, resistentes o impermeables por ejemplo, de estructuras en los que se disponen estos suelos en sustitución de otros, evidentemente, de peor calidad.
- c) Materiales adyacentes a las estructuras u obras, configurando los taludes de excavaciones o los taludes naturales del entorno. (Bauza. 2008)

#### 2.2.2.- Suelo arcilloso

El suelo arcilloso es aquél en el que predomina la arcilla sobre otras partículas de otros tamaños. La arcilla es un conjunto de partículas minerales muy pequeñas, de menos de 0,001 mm. de diámetro, en contraposición a otras partículas más grandes como son el limo y la arena, por orden de tamaño, de menor a mayor.

Un suelo arcilloso tendrá también parte de limo y de arena, pero predominará la arcilla, en distintas proporciones según el suelo en cuestión. (Quesada, 2008).

## 2.2.2.1.- Factores que afectan el comportamiento expansivo de los suelos arcillosos

Existen numerosos factores que afectan el comportamiento expansivo de los suelos.

- Mineralogía de las Arcillas.- Los minerales de arcilla exhiben diferentes características expansivas. La capacidad de la masa de suelo a expandirse depende enteramente del tipo y cantidad del mineral de arcilla presente. Los Minerales de arcilla que causan los cambios volumétricos son del grupo Smectita (Montmorilonita) y Vermiculita. Ilitas y Caolinitas son raramente expansivos, pero pueden sufrir cambios volumétricos cuando el tamaño de sus partículas son muy pequeñas (<0.10um).</p>
- Química del Agua Subterránea.- Cationes de Sodio, Calcio, Magnesio y Potasio disueltos en el agua son absorbidos sobre la superficie de las arcillas como cationes intercambiables para balancear las cargas eléctricas superficiales. Dependiendo del tipo de catión intercambiable, se alteraran las propiedades expansivas de un suelo.
- Succión en el Suelo.- La succión en los suelos está representada por presión de poros negativa en los suelos no-saturados. A mayor succión, mayor hinchamiento.
- ❖ Plasticidad.- En general, los suelos que presentan un comportamiento plástico sobre un rango grande de contenidos de humedad, y que tienen un alto Límite Líquido, tienen un gran potencial al encogimiento e hinchamiento.

- ❖ Estructura y Arreglo de Partículas del Suelo.- Arcillas con una estructura Floculada tienden a ser más expansivos que las arcillas con estructura dispersa.
- ❖ Densidad Seca Inicial.- Una densidad alta, usualmente, significa que las partículas de suelo están más cerca, lo cual indica que existen mayores fuerzas de repulsión entre partículas y por ende mayor tendencia a hinchamiento cuando absorbe agua.
- Condición de Humedad Inicial.- Un suelo expansivo desecado tiene más afinidad al agua o la alta succión que el mismo suelo a mayor contenido de humedad. A menor humedad inicial mayor expansión.
- ❖ Variaciones de Humedad.- Los cambios de humedad en la zona activa del perfil de suelo son los que definen el hinchamiento o encogimiento.
- Clima.- Evapotranspiración y precipitación hacen fluctuar la humedad del suelo.
- Condiciones del Agua Subterránea.- Fluctuaciones en el nivel freático contribuyen a los cambios de humedad.
- ❖ Drenajes y Otras fuentes de agua.- Tuberías rotas, riego, etc. producen cambios en el contenido de humedad de los suelos.
- Vegetación.- Árboles, arbustos y grama absorben humedad del suelo, produciendo zonas de humedad diferencial.
- Permeabilidad de la Masa del Suelo.- Una permeabilidad alta, debida a la presencia de grietas y fisuras en la masa del suelo, permite una migración de agua más rápida y una mayor velocidad de expansión,
- ❖ Temperatura.- El incremento de la temperatura causa que la humedad se difunda a zonas más frescas debajo de pavimentos o edificios
- Historia de Esfuerzos.- Un suelo sobre-consolidado es más expansivo que uno normalmente consolidado.
- Condiciones de Esfuerzos Iniciales.- Una reducción considerable de los esfuerzos iniciales en un estrato, producirá un gran relajamiento y por ende mayores cambios volumétricos.
- ❖ Perfil del Suelo.- El espesor y posición del estrato expansible determinan la magnitud y velocidad de hinchamiento. (Angelone, 2006).

#### 2.2.2.2. Reconocimiento e identificación de suelos arcillosos

Existen cuatro métodos de clasificación e identificación de suelos expansivos

- ✓ Primero, la experiencia local indicará si existen suelos potencialmente expansivos.
- ✓ La identificación mineralógica y tipo de mineral de arcilla son útiles en la identificación de suelos potencialmente expansivos, pero no determinan la magnitud de hinchamiento del suelo.
- ✓ Los métodos indirectos tales, como las Propiedades Índice, Clasificación, Potencial a Cambios Volumétricos (PVC), Actividad, son excelentes herramientas para evaluar el potencial de hinchamiento de suelos, pero no se deben usar independientemente, y se requiere de la determinación de más de una prueba para evitar conclusiones erróneas.
- ✓ Los métodos directos ofrecen la mejor opción para determinar el potencial de encogimiento e hinchamiento de un suelo. La prueba de Consolidación e Hinchamiento sobre muestras no-alteradas (ASTM D-4546) ofrece un método directo para evaluar el hinchamiento-encogimiento de suelos y los parámetros necesarios para el diseño de cimientos sobre suelos expansivos. (Nadeo, 2007).

#### 2.2.2.3.- Predicción de hinchamiento

Existen varios métodos para predecir la magnitud de expansión de un suelo. Sin embargo, se recomienda el método que se basa en la presión de hinchamiento medida en una prueba de consolidación-hinchamiento (ASTM D-4546). La presión de hinchamiento en muestras no alteradas se puede medir por dos métodos: 1) prueba de expansión libre y 2) prueba de volumen constante. (Nadeo, 2007).

#### 2.2.2.4.- Suelos arcillosos e ingeniería civil

Los suelos arcillosos son los materiales geológicos más contradictorios desde el punto de vista de su utilidad en ingeniería civil. Son fuente inagotable de problemas de estabilidad en buen número de obras, pero constituyen por sí mismas un material de valiosas propiedades ingenieriles. Por otro lado, durante los últimos años, las arcillas han cobrado un interés especial en la medida que constituyen potenciales emplazamientos de repositorios de residuos nucleares de alta actividad o se considera su empleo en las barreras de ingeniería previstas para retardar o evitar la migración de radionucleidos y su interacción con la biosfera.

Para la mayor parte de actuaciones sobre el terreno, las propiedades que determinan el comportamiento de un suelo pueden determinarse a partir de ensayos estandarizados de laboratorio más o menos laboriosos. La mayor parte de estos ensayos se ocupan de la evaluación de parámetros tales como el contenido de humedad, permeabilidad, porosidad, densidad, forma y tamaño de las partículas (granulometría), estructura, plasticidad, capacidad de hinchamiento, etc. Sin embargo, hay situaciones en las que es importante comprender por qué un suelo se comporta de la manera que lo hace antes de poder aplicar una solución geotécnica adecuada a un problema. Para ello es necesario conocer el suelo no sólo desde el punto de vista macroestructural sino también del microestructural, esto es, su mineralogía, composición y las interacciones con los fluidos de su entorno, principalmente agua. (García, P. 2010).

Cuadro 2.1 Tipos de suelos arcillosos

| Denominaciones típicas de los                                                                                                       | Símbolo   | PROPIEDADES MAS IMPORTANTES               |                                                                    |                                               |                                        |
|-------------------------------------------------------------------------------------------------------------------------------------|-----------|-------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------|----------------------------------------|
| grupos de suelos arcillosos                                                                                                         | del grupo | Permeabilida<br>d en estado<br>compactado | Resistencia al corte<br>en estado compacto<br>y saturado excelente | Compresibilidad en estado compacto y saturado | Facilidad de<br>tratamiento<br>en obra |
| Limos inorgánicos y arenas muy finas<br>polvo de roca, arenas finas arcillosas o<br>limosas con ligera plasticidad                  | ML        | Semipermeabl<br>e o<br>impermeable        | Regular                                                            | Media                                         | Regular                                |
| Arcillas inorgánicas de baja a media<br>plasticidad, arcillas con grava, arcillas<br>arenosas, arcillas limosas, arcillas<br>magras | CL        | Impermeable                               | Regular                                                            | Media                                         | Buena a<br>Regular                     |
| Limos orgánicos y arcillas limosas orgánicas de baja plasticidad                                                                    | OL        | Semipermeabl<br>e a<br>impermeable        | Deficiente                                                         | Media                                         | Regular                                |
| Limos orgánicos, suelos finos arenosos<br>o limosos con mica o diatomeas, limos<br>elásticos                                        | MH        | Semipermeable e a impermeable             | Regular a deficiente                                               | elevada                                       | Deficiente                             |
| Arcillas inorgánicas de elevada plasticidad, arcillas grasas                                                                        | СН        | Impermeable                               | Deficiente                                                         | elevada                                       | Deficiente                             |
| Arcillas inorgánicas de plasticidad media o alta                                                                                    | ОН        | Impermeable                               | Deficiente                                                         | elevada                                       | Deficiente                             |
| Turba y otros suelos inorgánicos                                                                                                    | Pt        | •                                         | -                                                                  | •                                             |                                        |

FUENTE: Universidad Católica de Valparaíso - 2003

## 2.2.2.5.- Evidencias físicas para el reconocimiento de suelos arcillosos en pavimentos

Agrietamiento longitudinal
Grietas piel de cocodrilo
Superficies irregulares y onduladas

#### 2.2.2.6.- Importancia de los suelos arcillosos en la ingeniería civil

En el campo de trabajo, el ingeniero civil constantemente se enfrenta a diversos problemas surgidos por el tipo de suelo arcilloso con el cual tratará, el suelo es lo que soportará el peso de una estructura, y si este no cumple con ese objetivo, la estructura sufrirá problemas de agrietamiento, hundimientos y otros que también dañaran la obra realizada.

Pero el suelo no sólo es utilizado como base para soportar las cargas, sino también en taludes, como material para construcción de viviendas, y como el enunciado de esta investigación lo dice como componente de la combinación suelo arcilloso – caucho granular; la diversidad de usos que ahora en día se le da al suelo arcilloso es el resultado de mucho tiempo de investigación.

Esta demás discutir el papel fundamental que lleva a cabo el suelo en cualquier tipo de construcción, es por eso que se han desarrollado métodos para determinar sus propiedades, y la mejor manera en que se le puede sacar el mayor provecho a este. (García, P. 2010).

#### 2.2.2.7.- Flujo de agua en los suelos arcillosos.

Quesada, (2008), menciona, al tratar con el tema de permeabilidad de los suelos arcillosos, es necesario mantener en mente los conceptos más importantes referentes al estado energético del agua.

#### a) Fenómeno capilar en suelos arcillosos

El fenómeno capilar en suelos arcillosos es la respuesta a las fuerzas de cohesión y adhesión que se generan en los líquidos en la interface con un

cuerpo sólido.

#### b) Cohesión y adhesión

Las fuerzas básicas responsables de la retención y movimiento del agua en el suelo, se define como cohesión y adhesión. La fuerza de cohesión es la atracción entre moléculas de agua, mientras la adhesión es la atracción de las moléculas con la superficie sólidas. La fuerza de adhesión hace que algunas moléculas de agua estén rígidamente unidas a las partículas de suelo arcilloso y se llama agua absorbida; en cambio las moléculas unidas por fuerzas de cohesión sobre superficie de los granos de suelo pueden ser fácilmente removidas. Las fuerzas de cohesión y adhesión juntas regulan el movimiento de agua. En suelos arcillosos la adhesión y cohesión ejercen sus fuerzas sobre sus propiedades de plasticidad.

#### c) Permeabilidad en los suelos.

Es la facilidad o dificultad que tiene un suelo arcilloso de permitir que lo atraviese el agua a través de sus vacíos. Estos suelos tienen un grado de permeabilidad muy bajo, en algunos casos son impermeables. El cuadro 2.2 muestra los valores tipos de permeabilidad para diferentes tipos de suelos.

Cuadro 2.2: Coeficiente de permeabilidad

| Oddaro 2:2: Oddriolorito do pormodolindad |                                      |                                         |                                     |  |
|-------------------------------------------|--------------------------------------|-----------------------------------------|-------------------------------------|--|
| Tipos de suelos                           | Grado de permeabilidad               | Coeficiente de permeabilidad K (cm/seg) | Propiedades de drenajes             |  |
| Limos                                     | Bajo                                 | 1x10 <sup>-3</sup> a 1x10 <sup>-5</sup> | Franca a pobre                      |  |
| Arena limo<br>arcilloso                   | Muy bajo                             | 1x10 <sup>-4</sup> a 1x10 <sup>-7</sup> | Pobre o prácticamente imperceptible |  |
| Arcilla<br>homogénea                      | Muy bajo o prácticamente impermeable | <1x10 <sup>-7</sup>                     | Prácticamente imperceptible         |  |

Fuente: Juárez Badillo, 2005

Los suelos arcillosos son casi impermeables, por esta razón es que estos tipos de suelos retienen gran cantidad de agua causando a su vez problemas para la construcción de pavimentos.

Los factores más importantes que intervienen en la permeabilidad son:

#### c.1) Relación de vacíos

El espacio de los vanos es proporcional al tamaño de la partícula. En otras palabras, a mayor tamaño mayor cantidad de vanos.

Los suelos arcillosos generalmente poseen una proporción de vacíos mucho más alta que la que es posible en suelos granulares. Esto se debe a la actividad electroquímica asociada con las partículas de mineral de arcilla, que dan lugar a la formación de estructuras muy abiertas.

$$e = \frac{v_V}{v_S}$$
,  $n = \frac{v_V}{v_t}$ 

Dónde:

e: Relación de vacíos

n: Porosidad

Vv: volumen de vacíos de la muestra de suelo (volumen de vacíos).

Vs: volumen de la fase sólida de la muestra (volumen de sólidos).

Vt : volumen total de la muestra del suelo (volumen da la masa).

Generalmente la relación de vacíos en suelos arcillosos varios entre 0,55 - 5,00 y su porosidad 35% - 83 % (Leoni – 2005).

#### c.2) La estructura y estratificación del suelo arcilloso

En un suelo arcilloso se pueden encontrar diferentes permeabilidades en estado inalterado y remoldeado, aun cuando la relación de vacíos sea la misma en ambos casos; esto puede ser debido a los cambios en la estructura y estratificación del suelo inalterado o una combinación de los factores.

La permeabilización sufre variaciones debido a que en el remoldeo quedan libres algunas partículas del suelo y al fluir el agua, esta las mueve y las reacomoda, tapando los canales o arrastrándolas a la superficie o al exterior de la muestra causando turbidez en el agua.

#### c.3) Tamaño de las partículas

La permeabilidad del suelo arcilloso será más baja cuando más pequeñas sean

sus partículas y por ende menor serán los vacíos que forman los canales de flujo.

Cuadro 2.3: Grado de permeabilidad

| Partícula | Tamaño               | Grado de                             |
|-----------|----------------------|--------------------------------------|
| mineral   | <u></u>              | <u>permeabilidad</u>                 |
| Limo      | 0.05mm a 0.02mm      | Muy bajo                             |
| Arcilla   | De 0.02mm a<br>menos | Muy bajo o prácticamente impermeable |

Fuente: Angelone y Garibay. 2006

#### c.4) Grado de saturación

Es la relación entre el volumen de agua y el volumen de vacíos de una muestra de suelo arcilloso; cuando mayor sea el grado de saturación mayor será la permeabilidad, debido a la reducción en los canales disponibles al flujo del agua.

#### c.5) Polaridad

Depende de la movilidad del flujo que rodea a las partículas de suelo arcilloso y del movimiento del fluido en dirección opuesta al flujo neto debido al potencial eléctrico generado por la filtración.

En el intercambio catiónico se produce procesos reversibles en las cuales las partículas sólidas del suelo se unen a iones de la fase acuosa expulsando al mismo tiempo cantidades iguales de otro catión generando así un equilibrio entre estos dos procesos y, una compensación de cargas positivas por partes de los aniones que están presentes en la masa del suelo.

#### c.6) Peso especifico

Los suelos arcillosos tienen su peso específico mayor de los suelos de fracción gruesa.

A mayor peso específico será menor la permeabilidad.

$$\gamma_s = \frac{W_s}{V_s}$$

#### Dónde:

 $\gamma_s$ : Peso específico del suelo, también llamado peso volumétrico de los sólidos.

W<sub>s</sub>: Peso de la fase solida de la muestra

V<sub>s</sub>: Volumen de la fase solida de la muestra.

El peso específico de los suelos arcillosos varía entre el rango: 2,5 - 2,9 gr/cm³ Con un valor medio estadístico de 2,7 gr/cm³ (Leoni – 2005).

#### 2.2.2.8. Alternativas para contrarrestar el efecto de suelos arcillosos

Nadeo (2007), menciona que el efecto negativo de suelos arcillosos puede ser contrarrestado por dos métodos. Primero, se puede estabilizar el suelo para minimizar el hinchamiento y encogimiento del mismo, y segundo, se pueden diseñar los cimientos para resistir las presiones de hinchamiento y deformaciones que genera el suelo bajo el cimiento.

- a) Estabilización del suelo arcilloso: Todo procedimiento escogido para estabilizar un suelo arcilloso deberá estar respaldado por una adecuada investigación de sitio y laboratorio y las recomendaciones del Profesional Idóneo
  - 1. Remoción y reemplazo: Remoción del suelo arcilloso y su reemplazo por un suelo no expansivo. Se recomienda remover entre 0.90m y 1.50m del material en la zona activa. Remover profundidades mayores puede ser muy costoso. Todo material no clasificado como CL, CH, MH, OH, OL y SC (con Límite Líquido mayor que 30%) puede ser usado como material de reemplazo.
  - 2. Remoldeo y compactación: Especialmente rellenos con suelo de potencial a expansión bajo a mediano, pueden ser mejorados sustancialmente compactándolos a un contenido de humedad mayor que el óptimo estimado en la prueba Proctor Estándar. Se deberá llevar un estricto control de compactación por un Profesional Idóneo.

- **3. Sobrecarga**: Para suelos arcillosos la presión de hinchamiento puede ser controlada por una sobrecarga o relleno. Su aplicación requiere de una investigación de las características expansiva del suelo.
- **4. Pre-mojado**: Suelos altamente fisurados y desecados responden favorablemente al pre-humedecimiento para minimizar futuros hinchamientos. El contenido de humedad del mismo debe incrementarse al menos hasta un 3% sobre el Límite Plástico (PL).
- 5. Tratamiento del suelo con aditivos: El tratamiento de suelos arcillosos con aditivos (mezclado o inyectado) como cal, cemento, sal, ceniza fina y resinas (compuestos orgánicos) reducen la capacidad expansiva de los suelos. La dosificación adecuada depende de tipo de arcilla que se esté estabilizando y requiere de pruebas de laboratorios y el criterio del Profesional Idóneo.
- 6. Control de la humedad por medio de barreras horizontales y/o verticales: El propósito de barreras para el control humedad es promover un contenido de humedad uniforme en el suelo arcilloso debajo del cimiento por medio de la minimización de la pérdida o ganancia de humedad, y por ende reduciendo los cambios volumétricos del suelo. También, un buen drenaje perimetral a la construcción mejorará el desempeño de los cimientos en suelos expansivos como son los arcillosos.

#### 2.2.3.- Neumáticos

#### 2.2.3.1. Origen, composición y características de los neumáticos

Un neumático es básicamente un elemento que permite a un vehículo desplazarse en forma suave a través de superficies lisas. Consiste en una cubierta principalmente de caucho que contiene aire el cual soporta al vehículo y su carga. Su invención se debe al norteamericano Charles Goodyear quién descubrió, accidentalmente en 1880, el proceso de vulcanización, con el que se da al caucho la resistencia y solidez necesaria para fabricarlo.

En la actualidad, la mayoría de los neumáticos de vehículos de pasajeros como los de camión son radiales, por lo que están compuestos de una banda de rodamiento elástica, una cintura prácticamente inextensible y una estructura de arcos radialmente orientada, sobre una membrana inflada y sobre unos aros también inextensibles que sirven de enganche a otro elemento rígido, que es la llanta. También existe otro tipo de neumáticos llamados diagonales, utilizados principalmente en camiones.

La complejidad de la forma y de las funciones que cada parte del neumático tiene que cumplir se traduce también en una complejidad de los materiales que lo componen. El principal componente del neumático es el caucho: casi la mitad de su peso.

La fabricación de neumáticos concentra un gran porcentaje de la industria del caucho constituyendo el 60 % de la producción anual del mismo.

Los elastómeros o cauchos son materiales poliméricos cuyas dimensiones pueden variar según sea el tipo de esfuerzo al que son sometidos, volviendo a su forma cuando el esfuerzo se retira. El caucho natural se extrae a partir del árbol Hevea Brasiliensis que es un látex con partículas de caucho en suspensión. Después de un proceso de secado y de ahumado se utilizan diferentes productos. Hoy en día alcanza el 30 % del mercado de los cauchos, el resto lo ocupan los cauchos sintéticos, todos basados en hidrocarburos. Los tipos de caucho más empleados en la fabricación de los neumáticos son:

Cauchos naturales (NR) Polibutadienos (BR)
Estireno – Butadieno (SBR) Polisoprenos sintéticos (IR)

La matriz de caucho más utilizada es el copolímero estireno-butadieno (SBR), en el que la proporción es de aproximadamente un 25 % en peso de estireno, o una mezcla de caucho natural y SBR. (Castro, P. 2008)

Castro (2008), menciona que odos los tipos de cauchos poseen diferentes propiedades, pero también con algo en común: todos, una vez vulcanizados, pueden ser muy duraderos, por lo que necesitarían una gran cantidad de tiempo para su degradación. La combinación se realiza de modo que los cauchos naturales proporcionen elasticidad y los sintéticos, estabilidad térmica.

Esta combinación de efectos favorece la durabilidad y la capacidad de adaptarse a las nuevas exigencias del tránsito. La estructura de los cauchos naturales está formada por cis-1,4 polisopreno mezclado con pequeñas cantidades de proteínas, lípidos y sales inorgánicas, entre otros. Se encuentra así un polímero de cadena larga y enredada en forma de espiral, de peso molecular medio, 5x105 g/mol, que a temperatura ambiente está en un estado de agitación continua. Este comportamiento general es debido en parte al impedimento estérico del grupo metilo y el átomo de hidrógeno, en el mismo lado del doble enlace carbono-carbono. Esta cadena se complementa con otro isómero estructural llamado gutapercha.

Fig. 2.1: Segmento de una cadena de polímero de caucho natural – segmento de cadena polimérica de la gutapercha

$$CH_3$$
  $CH_3$   $CH_3$   $C = CH$   $C = CH$   $C = CH_2$   $CH_2 - CH_2$   $CH_2 - CH_2$   $CH_3 - CH_4$ 

Segmento de una cadena de polímeros de caucho natural

$$\begin{array}{c|ccccc} CH_3 & CH_3 & CH_3 \\ & & & & & \\ & & & & & \\ C & CH_2 & C & CH_2 & C & CH_2 \\ \hline CH_2 & CH & CH_2 & CH & CH_2 & CH \\ \end{array}$$

Segmento de cadena polimérica de la gutapercha

El proceso de vulcanización a que se someten los neumáticos es un entrelazamiento de cadenas de polímeros con moléculas de azufre a alta presión y temperatura:

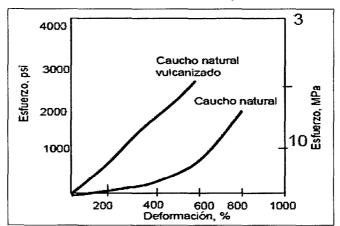



Fig. 2.2: Posibilidades de deformación de caucho natural y caucho natural vulcanizado

En el proceso de vulcanización el caucho pasa de ser un material termoplástico a ser uno elastomérico. Las posibilidades de deformación son muy diferentes, como se ilustra en la Figura 2.2.

La adición de cargas hace abaratar el valor del neumático, dándole cuerpo y rigidez, se utilizan negro de humo y arcillas modificadas. Se agregan además, otros materiales al caucho para mejorar sus propiedades, tales como: suavizantes, que aumentan la trabajabilidad del caucho, antes de la vulcanización; óxido de Zinc y de Magnesio, comúnmente denominados activadores, pues son mezclados para reducir el tiempo de vulcanización de varias a horas a pocos minutos; antioxidantes, para dar mayor vida al caucho sin que se degrade por la acción del oxígeno y el ozono; y finalmente negro de humo, especie de humo negro obtenido por combustión incompleta de gases naturales, que entrega mayor resistencia a la abrasión y a la tensión. (Castro, P. 2008)

Además de caucho, los neumáticos están compuestos por:

- ✓ Rellenos reforzantes: el negro de humo, formado de partículas muy pequeñas de carbono, que aumenta la tenacidad y la resistencia a la tracción, a la torsión y al desgaste.
- ✓ Fibras reforzantes: textiles y de acero, usualmente en forma de hilos, que aportan resistencia a los neumáticos: algodón, nylon y poliéster. La cantidad de acero y fibras sintéticas reforzantes en los neumáticos varía según el fabricante.

- ✓ Plastificantes: se adicionan para facilitar la preparación y elaboración de las mezclas, utilizándose para el control de la viscosidad. Reducen la fricción interna durante el procesado y mejoran la flexibilidad a bajas temperaturas del producto: aceites minerales (aromáticos, nafténicos y parafínicos) y de de tipo éster.
- ✓ Agentes vulcanizantes: el azufre se usa para entrecruzar las cadenas de polímero en el caucho:
- ✓ Acelerantes: compuestos órgano sulfurados, benzotiazol y derivados, óxido de zinc y ácido esteárico.
- ✓ Retardantes: N-nitroso difenil amina.
- ✓ Otros componentes (antioxidantes o antiozonizantes, adhesivos).

En forma general el neumático está compuesto por los siguientes componentes:

Cuadro 2.4: Componentes generales de un neumático

| Componentes    | Tipo vehículo         |                    |                              |
|----------------|-----------------------|--------------------|------------------------------|
|                | Automóviles % en peso | Camiones % en peso | Función                      |
| Cauchos        | 48                    | 45                 | Estructural –<br>deformación |
| Negro Humo     | 22                    | 22                 | Mejora oxidación             |
| Óxido de zinc  | 1.2                   | 2.1                | Catalizador                  |
| Materia textil | 5                     | 0                  | Esqueleto estructural        |
| Acero          | 15                    | 25                 | Esqueleto estructural        |
| Azufre         | 1                     | 1                  | Vulcanización                |
| Otros          | 12                    |                    | Juventud                     |

Fuente: Delarze, 2008

Delarze (2008), menciona que la Composición química, puede variar según el uso a que están destinados, tal como se observa en el cuadro N° 2.5.

Cuadro 2.5: Composición Química

| Elementos | %         |
|-----------|-----------|
| Carbono   | 70 - 83   |
| Hidrogeno | 5 – 7-5   |
| Azufre    | 1.2 – 1.9 |
| Color     | 0.1 – 0.8 |
| Nitrógeno | 1.5       |
| Oxigeno   | 5         |
| Zinc      | 1.2 – 2.7 |
| Hierro    | 5 – 18    |
| Otros     | 5         |

Fuente: Delarze, 2008

#### 2.2.3.2.- Componentes de un neumático y sus funciones

- ✓ Cinturones Estabilizadores
- ✓ Tela de cuerpo
- ✓ Pestañas
- ✓ Banda de Rodamiento
- ✓ Laterales
- ✓ Innerliner

talones

Fig. 2.3: Componentes de un Neumático

banda de rodamiento

telas

pared lateral

Fuente: Castro, P. 2008

- ❖ Tela de Cuerpo: Sus funciones es: Resistir la presión del aire, soportar la carga y aislar las irregularidades del camino.
- Cinturones Estabilizadores: Sus Funciones es; Otorgar estabilidad al neumático, otorgar rigidez a la banda de rodamiento y mejorar la pisada del neumático.
- ❖ Innerliner: Su función principal es retener el aire comprimido en el neumático.
- ❖ Banda de Rodamiento: sus funciones es; Proveer tracción, adherencia en superficies secas y mojadas, resistir la fricción.
- ❖ Laterales (Pared)

Otorgar flexibilidad al neumático

❖ Pestañas (Talones)

Fijar el Neumático a la Llanta

Conformado de cinturones

Materias Primas

Mezclado

Extrusión

Construcción del neumático

Inspección final

Fig. 2.4: Proceso Constructivo de un Neumático

# ❖ Materias Primas

- ✓ Caucho Natural
- ✓ Caucho Sintético
- ✓ Cuerdas Textiles
- ✓ Cargas de Refuerzo
  - Negro de Humo
  - Sílices y caolines
- ✓ Antioxidantes
- ✓ Plastificantes
- ✓ Activadores de vulcanización
- √ Agentes vulcanizadores
- ✓ Acelerantes de vulcanización
- ✓ Azul ultramarino
- Mezclado: En esta etapa es mezclado el caucho con el resto de las materias primas, para obtener láminas de goma, que serán derivadas a otras capas del proceso.

Mezclado

Din esta ctapa es mezclado el caudio y con el cesto de las materias primas, para obrance tambras del goma, que cerán dentradas a obras etapas del proceso

Goma

Soma

Fig. 2.5: Proceso de Mezclado del caucho con resto de materias primas

Calandrado: En esta etapa las telas son recubiertas de goma, además en esta etapa se obtiene las telas de carcasa.

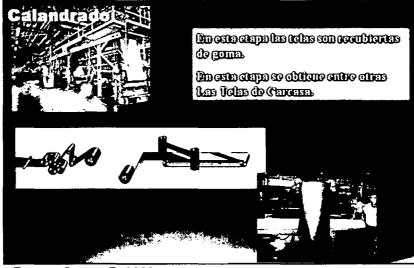
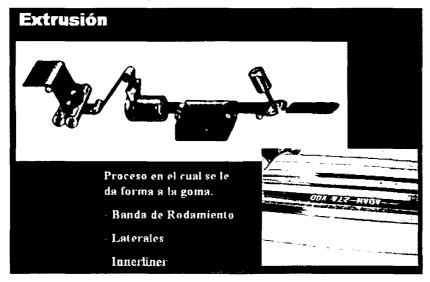




Fig. 2.6: Proceso de Calandrado

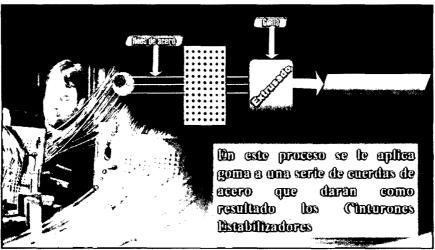
Fuente: Castro, P. 2008

❖ Extrusión: Proceso en el cual se da forma a la goma; Banda de rodamiento, laterales e Innerliner.

Fig. 2.7: Etapa de extrusión



❖ Conformado del talón: En esta etapa las cuerdas de acero son recubiertas con goma para dar como resultado el talón del neumático.


Fig. 2.8: Conformado de talón



Fuente: Castro, P. 2008

Elaboración de Cinturones Estabilizadores: En este proceso se le aplica goma a una serie de cuerdas de acero que darán como resultado los cinturones estabilizadores.

Fig. 2.9: Elaboración de Cinturones estabilizadores



- Construcción del Neumático: En esta etapa se une el Innerliner con la Tela de cuerpo, los laterales y los talones dando como resultado la carcasa.
- ❖ Neumático Verde: Consiste en la unión de la carcasa con los cinturones estabilizadores y la banda de rodamiento.

Fig. 2.10: Obtención del neumático verde



Fuente: Castro, P. 2008

❖ Vulcanizado: El neumático verde se inserta en una prensa donde se le aplica altas temperaturas y adquiere los diseños de la Banda de Rodamiento.

Fig. 2.11: Proceso de vulcanizado

# ❖ Inspección Final



# 2.2.4.- Caucho

# 2.2.4.1.- Definición

Caucho (materia prima) látex producido por varias moráceas y eufobiaceas intertropicales, entre las que se destaca la Hevea Brasiliensis.

Cuando por cortes o incisiones se rompen los conductos lactíferos de los árboles productores de caucho, estos segregan un líquido lechoso y turbio que

contiene el caucho en suspensión y dividido en pequeñas gotitas de aspecto emulsionado. Como la secreción es relativamente abundante la misma se recoge en recipientes especiales en forma de pequeños baldes que se cuelgan al termino de las incisiones; luego el jugo recolectado es sometido a un tratamiento para solidificarlo por evaporación o coagulación, ahumado, etc. en el mismo lugar de la cosecha.

El caucho es el cuerpo sólido que tiene el mayor coeficiente de dilatación conciso y que aumenta considerablemente con la vulcanización.

Un corte reciente de caucho crudo, o sea sin vulcanizar, se puede volver a unir soldándose entre sí con solo presionar uno contra otro. Una vez vulcanizado pierde esta propiedad pero adquiere una mayor elasticidad, pudiendo alargarse hasta seis veces su longitud primitiva.

El alargamiento del caucho vulcanizado es acompañado de una elevación de temperatura y en cambio se produce un enfriamiento cuando retorna a su estado normal. Por síntesis se han elaborado diferentes productos de propiedades físicas parecidas a las del producto vegetal. (Delarze. 2008).

# Caucho natural y sintético

El caucho es un hidrocarburo de gran importancia que se obtiene del látex de ciertos árboles de la zona tropical. Cuando se calienta el látex o se le añade ácido acético, los hidrocarburos en suspensión, con pequeñas cantidades de otras sustancias se coagulan y pueden extraerse del líquido. El producto obtenido es el caucho bruto, viscoso y pegajoso, blando en caliente y duro y quebradizo en frío. Al estirarlo, no vuelve a adquirir después la forma primitiva. El producto, observado ya por Colon en las indias occidentales, permaneció prácticamente sin valor hasta que en 1839, Charles Goodyear descubrió que amasando bien el caucho con azufre y calentándolo a una temperatura superior a 100°C, el azufre se combina químicamente con el caucho y el producto que resulta tiene propiedades mucho más útiles; no se deforma por el calor, no es quebradizo en frío y sobre todo, no es pegajoso. A demás, si se estira un trozo, recupera después de la tensión su forma primitiva. Los anillos del S8 se abren y se combinan con los dobles enlaces de las moléculas de caucho formando puentes de cadenas de azufre de una molécula de caucho a otra y dando lugar

a una trama total. Este proceso se llama vulcanización. Distintas sustancias como el negro de humo y óxidos de zinc y plomo, y muchos productos orgánicos, actúan de acelerantes de la vulcanización, dando además un caucho más tenaz y duradero (cámaras para ruedas de automóvil). El caucho natural se considera como un polímero del isopreno.

La formación de los distintos cauchos sintéticos se basa en la polimerización del butadieno o de homólogos (isopreno) o derivados (cloropreno) que tiene la misma estructura. (Castro, P. 2008).

# Elastómeros - Definición y clasificación

Un elastómero posee un alto grado de elasticidad que es característico del caucho: puede ser deformado considerablemente, para, sin embargo, volver a su forma original. Como en el caso de las fibras sus moléculas son alargadas y delgadas, y se alinean cuando se estira el material. La gran diferencia es esta: cuando se elimina la fuerza de estiramiento las moléculas de un elastómero no permanecen extendidas y alineadas; vuelven a sus conformaciones desordenadas originales favorecidas por la entropía. No permanecen alineadas, porque las fuerzas intermoleculares necesarias para sujetarlas en este ordenamiento son más débiles que la de las fibras. En general, los elastómeros no tiene grupos muy polares o lugares muy aptos para puentes de hidrogeno: las cadenas extendidas no se ajustan muy bien entre sí por lo que no pueden operar eficientemente las fuerzas de Van Der Waals. En un elastómero la entropía derrota a la entalpía.

Un requisito adicional: las cadenas largas de un elastómero se conectan entre si por enlaces cruzados ocasionales: deben ser suficientes para evitar el deslizamiento de las moléculas, pero no privar a las cadenas de la flexibilidad necesaria para extenderse con facilidad y volver nuevamente al desorden.

El caucho natural ilustra estos requisitos estructurales de un elastómero; cadenas largas y flexibles; fuerzas intermoleculares débiles y enlaces intermoleculares ocasionales. Al no tener sustituyentes fuertemente polares, la atracción intermolecular queda limitada a las fuerzas de Van Der Waals, débiles por la configuración cis en todos los dobles enlaces. Apreciamos que la configuración trans permita cadenas extendidas muy regularmente zigzagueantes que pueden juntarse bien, cosa que no es posible para la

configuración cis. El estereoisómero totalmente trans se encuentra en la naturaleza en forma de gutapercha; es altamente cristalino y carece de elasticidad. (Delarze, 2008).

#### Caucho Natural Bruto

En estado natural, el caucho aparece en forma de suspensión coloidal en el látex de plantas productoras de caucho. Una de estas plantas es el árbol de la especie Hevea Brasiliensis, de la familia de las Euforbiáceas, originario del Amazonas. Otra planta productora de caucho es el árbol del hule, Castilloa elástica, originario de México (de ahí el nombre de hule), muy utilizado desde la época prehispánica para la fabricación de pelotas, instrumento primordial del juego de pelota, deporte religioso y simbólico que practicaban los antiguos mayas. Indonesia, Malaysia,

Tailandia, China y la India producen actualmente alrededor del 90% del caucho natural.

El caucho en bruto obtenido de otras plantas suele estar contaminado por una mezcla de resinas que deben extraerse para que el caucho sea apto para el consumo. Entre estos cauchos se encuentran la gutapercha y la balata, que se extraen de ciertos árboles tropicales. (Ramírez, 2006).

# Propiedades físicas y químicas

El caucho bruto en estado natural es un hidrocarburo blanco o incoloro.

El compuesto de caucho más simple es el isopreno o 2-metilbutadieno, cuya fórmula química es

C5H8. A la temperatura del aire líquido, alrededor de -195 °C, el caucho puro es un sólido duro y transparente. De 0 a 10 °C es frágil y opaco, y por encima de 20 °C se vuelve blando, flexible y translúcido. Al amasarlo mecánicamente, o al calentarlo por encima de 50 °C, el caucho adquiere una textura de plástico pegajoso. A temperaturas de 200 °C o superiores se descompone.

El caucho puro es insoluble en agua, álcali o ácidos débiles, y soluble en benceno, petróleo, hidrocarburos clorados y disulfuro de carbono. Con agentes oxidantes químicos se oxida rápidamente, pero con el oxígeno de la atmósfera lo hace lentamente.

Las propiedades físicas del caucho bruto varían con la temperatura. A bajas temperaturas, se vuelve rígido, y cuando se congela en estado de extensión adquiere estructura fibrosa. Calentando a más de 100 °C., se ablanda y sufre alteraciones permanentes. El caucho bruto adquiere gran deformación permanente debido a su naturaleza plástica. La plasticidad del caucho varía de un árbol a otro y también depende de la cantidad de trabajo dedo al caucho desde el estado látex, de las bacterias que lo acompañan e influyen en su oxidación y de otros factores. La plasticidad puede modificarse dentro de ciertos límites por la acción de productos químicos.

La densidad del caucho a 0 °C. es de 0.950, y a 20 °C. es de 0.934. El caucho bruto deshelado después de la masticación por cilindros fríos no varía de densidad. (Ramírez, 2006).

Cuando el caucho bruto ha sido estirado y deformado durante algún tiempo, no vuelve completamente a su estado original. Si entonces se calienta, la recuperación es mayor que a la temperatura ordinaria. Este fenómeno se denomina deformación residual o estiramiento permanente y es propio del caucho.

El caucho bruto absorbe agua. Los coagulantes usados en el látex al preparar el caucho afectan al grado de absorción de agua; usando ácido clorhídrico, sulfúrico o alumbre se obtienen cauchos con poder de absorción relativamente elevado. El poder de absorción de agua del caucho purificado es muy bajo.

Gran variedad de sustancias son solubles o pueden dispersarse en caucho bruto, tales como el azufre, colorantes, ácido estiárico, N-fenil-2-naftilamina, mercaptobenzitiazol, pigmentos, aceites, resinas, ceras, negro de carbono y otras.

El efecto deteriorante de luz y el calor sobre el caucho se reconoció largo antes del descubrimiento de la vulcanización.

El látex está disponible hoy en varias formas y diferentes concentraciones. Cuando el látex apareció por primera vez en grandes cantidades (preservado en amoniaco, en proporciones menores al 1 %), El caucho contenido variaba del 29 al 40 %, de acuerdo a las condiciones de los árboles, y especialmente a los métodos de extracción y recolección en las plantaciones. Debido a las diferentes condiciones de recolección, preservación y transporte, los procesos

se vieron limitados por muchos años. Gradualmente la calidad se uniformo y aumento más allá del estándar.

Más recientemente, las concentraciones de látex disponibles en el mercado se clasificaron por su preparación: por evaporación, ó por separación parcial de sueros sólidos por métodos mecánicos.

El mejor ejemplo del primer tipo es el Revertex, preparado por evaporación del látex en presencia de un mineral alcalino (hidróxido de potasio), u otro agente estabilizante, como el jabón de potasio o alguna sal de carácter coloidal. Este posee una consistencia cremosa y contiene cerca del 75 % de los sólidos totales, de los cuales un 7 al 8 % consiste en sueros sólidos y sustancias estabilizantes agregadas.

En la segunda categoría hay dos importantes ejemplos de concentración. El primero, comercializado bajo varias denominaciones, como por ejemplo Utermark látex, Jatex o Dunlop, posee una concentración del 60 % de caucho seco, obtenido por centrifugaron del látex original.

Este látex concentrado tiene una ligera consistencia cremosa, y contiene solo una fracción de los componentes que no son caucho presentes en el látex original. Está estabilizado con amoniaco (en una concentración de aproximadamente 0,5 % de NH3 en peso), y es capaz de dar un color pálido característico. (Ramírez, 2006).

#### 2.2.5.- Pavimento

El pavimento es una estructura vial que tiene como fin principal ofrecer una superficie de tránsito vehicular limpio, cómodo, seguro y durable. Esta estructura se la construye directa y continuamente apoyada sobre el suelo.

Existen dos tipos de pavimentos, los pavimentos flexibles y los pavimentos rígidos.

#### 2.2.5.1.- Pavimentos flexibles

Están conformados estructuralmente por capas de materiales granulares compactados y una superficie de rodadura (construida normalmente a base de

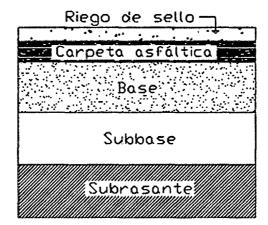
concreto asfáltico) la cual forma parte de la estructura del pavimento. La superficie de rodadura al tener menos rigidez se deforma más y se producen mayores tensiones en la sub-rasante. (Rico – 1998).

Becerra (2012), respecto a la estructura expresa que es diseñada con la finalidad de cumplir los siguientes propósitos:

- Soportar y transmitir las cargas que se presenta con el paso de vehículos
- Ser lo suficientemente impermeable.
- Soportar el desgaste producido por el tránsito y por el clima.
- Mantener una superficie cómoda y segura (antideslizante) para el rodamiento de los vehículos.
- Mantener un grado de flexibilidad para cubrir los asentamientos que presente la capa inferior (base o subbase).

Valor Relativo de Soporte

Los materiales de estos pavimentos necesitan tener una gran resistencia al corte para evitar las posibles fallas. De esta forma el diseño de este tipo de pavimento se basa en ensayos de penetración, es decir mediante la determinación del valor de soporte de California o C.B.R.



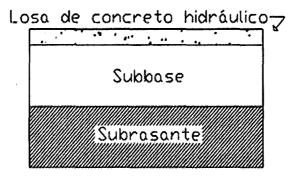


Fig. 2.13: Pavimento Flexible

Fig. 2.14: Pavimento Flexible de concreto asfaltico



# 2.2.5.2. Pavimentos rígidos

Fig. 2.15: Pavimento Rígido



Estos pavimentos se conforman por una base y por una losa de concreto hidráulico, la cual le va a dar una alta resistencia a la flexión (Fig. N° 15). Además de los esfuerzos a flexión y compresión, este tipo de pavimento se va a ver afectado en gran parte los esfuerzos que tenga que resistir al expandirse o contraerse por cambios de temperatura y por las condiciones climáticas. Es por esto que su diseño toma como parámetros los siguientes conceptos:

- Volumen tipo y peso de los vehículos que transitan por esa viabilidad.
- Módulo de reacción de la subrasante.
- Resistencia del concreto que se va a utilizar.
- · Condiciones climáticas.

Crespo (2002), menciona que las características del tránsito puede ser calculado a través de aforos, el de la resistencia del concreto puede

proponerse y el de las condiciones climáticas puede ser obtenido de cartas climáticas.

Los pavimentos rígidos pueden ser: de concreto simple con varillas de transferencia de carga (pasadores), de concreto reforzado y con refuerzo continuo.

a. Los pavimentos de concreto simple, se construyen sin acero de refuerzo o varillas de transferencia de carga en las juntas.

b. Los pavimentos de concreto simple con varillas de transferencia de carga (pasadores), se construyen sin acero de refuerzo, para lo cual se colocan varillas lisas en cada junta de construcción, las mismas que actúan como dispositivos de transferencia de carga, por lo que se requiere que la separación entre juntas sea corta para controlar el agrietamiento.

c. Los pavimentos reforzados contienen acero de refuerzo y pasadores en las juntas de construcción.

d. Los pavimentos de refuerzo continuo, se construyen sin juntas de construcción, sin embargo, por la presencia del refuerzo se desarrolla un alto grado de transferencia de carga en las caras de las fisuras.

# 2.2.5.3. Componentes estructurales

#### 2.2.5.3.1. Subrasante

El manual de carreteras, sección suelos y pavimentos (2013), expresa, la Subrasante es la superficie terminada de la carretera a nivel de movimiento de tierras (corte y relleno), sobre la cual se coloca la estructura del pavimento o afirmado.

La subrasante es el asiento directo de la estructura del pavimento y forma parte del prisma de la carretera que se construye entre el terreno natural allanado o explanada y la estructura del pavimento. La subrasante es la capa superior del terraplén o el fondo de las excavaciones en terreno natural, que soportará la estructura del pavimento, y está conformada por suelos seleccionados de características aceptables y compactados por capas para constituir un cuerpo estable en óptimo estado, de tal manera que no se vea afectada por la carga de diseño que proviene del tránsito. Su capacidad de soporte en condiciones de servicio, junto con el tránsito y las características de los materiales de construcción de la superficie de rodadura, constituyen las variables básicas para el diseño de la estructura del pavimento que se colocará encima. En la etapa constructiva, los últimos 0.30m de suelo debajo del nivel superior de la subrasante, deberán ser compactados al 95% de la máxima densidad seca obtenida del ensayo proctor modificado (MTC EM 115).

Los suelos por debajo del nivel superior de la subrasante, en una profundidad no menor de 0.60 m, deberán ser suelos adecuados y estables con CBR ≥ 6%. Sí los suelos no cumplen esta condición por tratarse de suelos de mala calidad, CBR < 6%, es decir suelos blandos o muy compresibles o con materia orgánica o suelos pobres e inadecuados; se considerará la estabilización, mejora o refuerzo de los suelos, según la naturaleza de los mismos, efectuando estudios geotécnicos de estabilidad y de asentamientos

#### 2.2.5.3.2. Subbase

Es una capa de material especificado y con un espesor de diseño, el cual soporta a la base y a la carpeta. Además se utiliza como capa de drenaje y controlador de la capilaridad del agua. Dependiendo del tipo, diseño y dimensionamiento del pavimento, esta capa puede obviarse. Esta capa puede ser de material granular (CBR ≥ 40%) o mejorada con asfalto, cal o cemento. (Manual de carreteras, sección suelos y pavimentos - 2013).

En el presente estudio se efectúa el mejoramiento de suelo arcilloso con caucho granular

#### 2.2.5.3.3. Base

Es la capa inferior a la capa de rodadura, que tiene como principal función de sostener, distribuir y transmitir las cargas ocasionadas por el tránsito. Esta capa será de material granular drenante (CBR ≥ 80%) o será tratada con asfalto, cal o cemento. (Manual de carreteras, sección suelos y pavimentos - 2013).

En la presente tesis se efectúa el mejoramiento de suelo arcilloso o expamsivo con caucho granular

## 2.2.5.3.4. Capa de rodadura

Es la parte superior de un pavimento, que puede ser de tipo bituminoso (flexible) o de concreto de cemento Portland (rígido) o de adoquines, cuya función es sostener directamente el tránsito. (Manual de carreteras, sección suelos y pavimentos - 2013)

### 2.3.- Definición de términos básicos.

- Capacidad de Soporte: Resistencia que presenta el material subrasante con fines de diseño de pavimentos.
- Suelo: Agregados naturales de partículas minerales granulares y cohesivas separables por medios mecánicos de poco energía o por agitación de agua.
- ❖ Reciclaje: Consiste en convertir materiales ya utilizados en materias primas para fabricar nuevos productos.
- Mejoramiento: Ejecución de las actividades constructivas para dotar a una carretera existente, en bueno, regular o mal estado de mejores condiciones físicas y operativas de las que disponía anteriormente, para ampliar su capacidad o simplemente ofrecer un mejor servicio al usuario.
- Subrasante: Capa de terreno de una carretera, que soporta la estructura del pavimento y que se extiende hasta una profundidad en que no le afecte la carga de diseño que corresponde al tránsito previsto.

# CAPÍTULO III: MATERIALES Y MÉTODOS

# 3.1. Ubicación geográfica

El estudio de los suelos arcillosos se encuentra ubicado en el Distrito de Baños del Inca – Provincia de Cajamarca – Región Cajamarca, en las avenidas El Porongo – Sebastián Díaz Marín – Zarate Miranda y Chachapoyas, entre las progresivas Km 00+000 – Km 03+519.93

El tiempo en el cual se realizó el presente estudio data entre los meses de agosto – octubre del presente año.

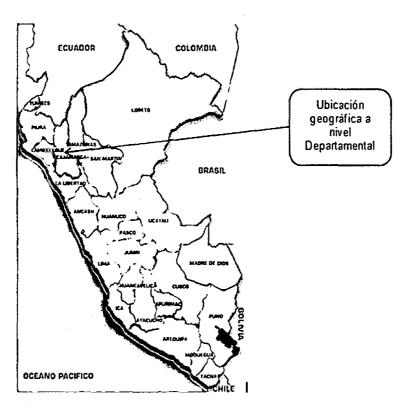



Fig. 3.1: Ubicación geográfica de la zona estudiada en el presente proyecto de investigación a nivel departamental

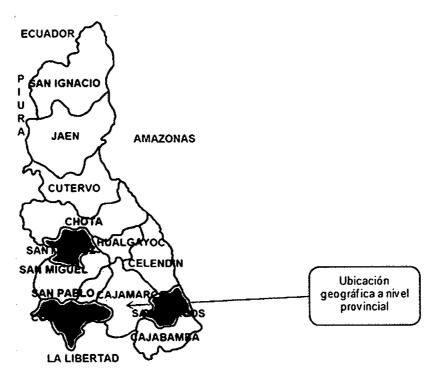



Fig. 3.2: Ubicación geográfica a nivel provincial

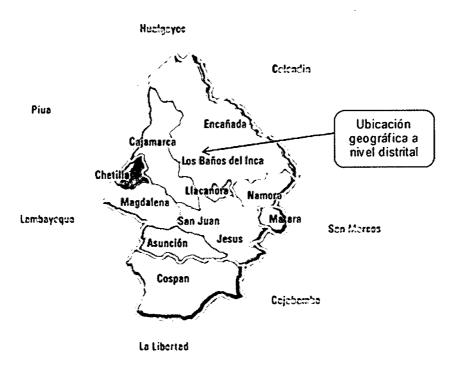



Fig. 3.3: Ubicación geográfica a nivel distrital



Fig. 3.4: Ubicación local de la carretera avenidas Porongo – Sebastián Díaz Marín – Zarate Miranda y Chachapoyas (Disponible en Google Earth, 2014).

# 3.2. Determinación del número de calicatas y número de ensayos CBR a realizar.

Para la ubicación de las calicatas de manera práctica se tomó en cuenta en campo las características de suelos arcillosos, siendo estas las muestras básicas para el desarrollo de la presente investigación, se efectuaron excavaciones de acuerdo a lo que especifica el manual de Ensayo de Materiales del MTC, el cual específica para carreteras de tercera clase se hará un CBR por cada 2 Km, las calicatas tuvieron una profundidad mínima de 1.50m, la excavación se efectuó con maquinaria (retroexcavadora).

Se recolectaron las muestras y se colocó en bolsas plásticas las que se identificaron mediante tarjetas en las cuales se colocaron el N° de calicata, asimismo se tomó las coordenadas de las calicatas.

Se efectuó la evaluación de 03 calicatas elaboradas de las Avenidas Porongo – Sebastián Díaz Marín - Zarate Miranda y Chachapoyas del Distrito de los Baños del Inca con una profundidad mínima de 1.50m, de las cuales se tomaron muestras para llevarlas al laboratorio y efectuar los ensayos necesarios.

El número de calicatas se determinó teniendo en cuenta estadísticamente el Manual de Carreteras "Suelos, Geología, Geotecnia y Pavimentos" - Sección: Suelos y Pavimentos, específicamente en el cuadro N° 3.1, para determinar la cantidad mínima de calicatas:

Cuadro 3.1: Número de Calicatas para exploración de suelos.

| Tipo de Carretera                  | Profundidad (m)     | Número Mínimo |
|------------------------------------|---------------------|---------------|
|                                    |                     | de Calicatas  |
| Carretera de Tercera Clase:        | 1.50m respecto al   | 2 calicatas x |
| carreteras con un IMD entre 400 –  | nivel de subrasante | Km            |
| 201 veh/dia, de una calzada de dos | del proyecto        |               |
| carriles.                          |                     |               |

El IMD se consideró, de los estudios realizados de las avenidas con fines de pavimentación por parte de la Municipalidad Distrital de Baños del Inca.

Se determinó la cantidad mínima de ensayos CBR que debe efectuarse para dicha carretera teniendo en cuenta el tipo de carretera y lo establecido por el manual de ensayo de materiales del MTC.

Cuadro 3.2: Numero de Ensayos CBR

| Tipo de Carretera                                        | CBR              |  |
|----------------------------------------------------------|------------------|--|
| Carretera de Tercera Clase: carreteras con un IMD        | Cada 2 Km un CBR |  |
| entre 400 – 201 veh/día, de una calzada de dos carriles. |                  |  |

Teniendo en cuenta lo establecido por el Manual de ensayo de Materiales del Ministerio de Transportes y Comunicaciones detallado en el Cuadro N° 3.2 se dedujo en número mínimo de ensayos CBR a realizar, tal como se detalla en el cuadro N° 3.3

Cuadro 3.3: Número Mínimo de Calicatas y Ensayos CBR

| Long. Carretera | N° Calicatas                | N° Ensayos CBR       |
|-----------------|-----------------------------|----------------------|
| 3.5 Km          | 3.5Km*2 cal / Km = 7 Calics | 3.5Km/2CBR*Km=1.75≈2 |
|                 |                             | CBR                  |

En la tesis se consideró el estudio de tres calicatas ubicadas en las progresivas Km 00+000, Km 01+500, Km 02+500.

# 3.3. Equipos, herramientas, materiales e insumos

3.3.1.- Maquinaria: Retroexcavadora CAT 420e

# **3.3.2. Equipos**

a. De campo: Wincha, cámara fotográfica

b. De laboratorio: Se describe en el ítem 3.4.

c. De gabinete: computadora, calculadora.

## 3.3.3. Herramientas: Picos, palanas

#### 3.3.4. Materiales

a. De campo: Bolsas plásticas, costales de rafia, etiquetas de identificación.

b. De laboratorio: Librete de registro

c. Planos, útiles de escritorio.

#### 3.3.5. Insumos

- ✓ Suelo arcilloso extraído de las avenidas Porongo Sebastián Díaz Marín
  - Zarate Miranda y Chachapoyas
- ✓ Agua potable
- ✓ El caucho granular para este estudio se obtuvo a partir de los neumáticos de reciclados granulado en la rencauchadora Rubbers. S.R.L ubicado en la Av. Héroes del Cenepa 1708. Cajamarca – Perú. Luego el caucho granulado obtenido se tamizo por la malla de ½" y con el caucho que pasa este tamiz se trabajó en la presente tesis.

## 3.4.- Ensayos de laboratorio

Para el desarrollo del proyecto de investigación se realizaron los siguientes ensayos en el laboratorio de suelos.

### 3.4.1. Análisis granulométrico (Normas ASTM D-422 y AASHTO T 88)

Se realizó el análisis granulométrico mecánico de un suelo para obtener datos y resultados y considerando tablas de la Norma ASTM D 422, se especificó el tipo de suelo con en el que está realizando los ensayos.

#### 3.4.1.1. Método

Debido a que las muestras extraídas contienen gran cantidad de partículas cohesivas (finos) se optó a efectuar el ensayo de análisis granulométrico por el método de tamizado.

#### 3.4.1.2. Muestreo

La muestra de suelo, tal como se obtuvo de campo, se expuso al aire en un cuarto temperado, hasta su secado total. Los terrones de suelo se desmenuzaron utilizando un mortero.

#### 3.4.1.3. Materiales

Se tomó 200 gramos de muestra del Suelo Arcilloso.

## 3.4.1.4. Equipo

- ✓ Juego de tamices que cumplen la NPT 350.001, N° 4, 10, 20,30, 40, 60, 80, 100, 140 y 200.
- ✓ Mortero y mango de mortero, adecuado para desmenuzar los terrones del suelo.
- ✓ Balanzas de capacidad conveniente y con aproximación de 0.1 g.
- ✓ Estufa con control de temperatura
- ✓ Recipientes (Taras)
- ✓ Cepillo y brocha para limpiar las mallas de los tamices.

#### 3.4.1.5. Procedimiento

- a) Se seco una porcion de muestra y se peso la muestra seca Pms (antes del lavado).
- b) Se coloco la muestra en un recipiente, y se empapo la muestra con agua.
- c) Se coloco la muestra empapada en la malla N° 200 y se lavo cuidadosamente el material, utilizando agua a chorro, se tuvo bastante cuidado de no causar daño al tamiz y evitar la perdida de suelo que eventualmente

pueda salpicar fuera del tamiz.

- d) Se vacio en un recipiente las particulas retenidas en la malla N° 200 y se puso a las estufa para secar durante 24 horas a una temperatura de 105°C.
- e) La muestra seca se paso por el juego de tamices agitandolos manualmente.
- f) Se peso el material retenido en cada tamiz (PR) y se deterrmino el peso del suelo perdido durante el lavado, cual nos indico el suelo que paso el tamiz N° 200.
- g) Con los datos obtenidos se determino los porcentajes de los pesos retenidos en cada tamiz.

$$%PR = 100*PR/Pms$$

- h) Luego se determino los porcentajes de los pesos retenidos acumulado (%PAR).
- i) se determino los complemetos a 100% que son los pasantes acumulativos por los tamices.

- j) Con los datos obtenidos se procedio a dibujar la curva granulometrica, en escala semilogaritmica a partir del tamaño que corresponde a la malla N° 200 teniendo como abcisas y en escala logaritmica a los tamaños de los tamices.
- k) Se clasifico el suelo según su granulometria, mediante el sistema aashto, teniendo en cuenta la tabla N° 3.1.

Tabla 3.1: Clasificación de suelos arcillosos, sistema AASHTO

| Clasificación general        | Material arcilloso (Más del 35% pasa el tamiz N° 200) |         |         |         |
|------------------------------|-------------------------------------------------------|---------|---------|---------|
| Grupos                       | A-4                                                   | A-5     | A-6     | A-7     |
| Porcentaje que pasa el       |                                                       |         |         |         |
| tamiz:                       |                                                       |         |         |         |
| N° 10 (2.00 mm)              | -                                                     | -       | _       | -       |
| N° 40 (0.425 mm)             | -                                                     | -       | -       | _       |
| N° 200 (0.0075 mm)           | 36 min.                                               | 36 min. | 36 min. | 36 min. |
| Características del material | -                                                     |         |         |         |
| que pasa el tamiz N° 40      |                                                       |         |         |         |
| (0.425 mm)                   |                                                       |         |         |         |
| Limite liquido               | 40 máx.                                               | 41 min. | 40 máx. | 41 min. |
| Índice de plasticidad        | 10 máx.                                               | 10 máx. | 11 min. | 11 min. |
| Terreno de fundación         | Regular a malo                                        |         |         |         |

1) Se hizo el mismo procedimiento con las muestras de las demas calicatas.

# 3.4.2. Contenido de humedad (Normas ASTM D 2216 y AASHTO 265)

El presente modo operativo estableció el método de ensayo para determinar el contenido de humedad de las arcillas.

La humedad o contenido de humedad de un suelo es expresada como porcentaje, del peso de agua en una masa dada del suelo, al peso de las partículas sólidas.

# 3.4.2.1. Equipos

- ✓ Horno de secado con control de temperatura.
- ✓ Dos Balanzas con aproximaciones de 0.01g para muestras menos de 200g y 0.1g para muestras mayores a 200g.
- ✓ Recipientes o taras.
- ✓ Guantes, tenazas para mover y manipular los recipientes calientes después que se han secado.
- ✓ Otros utensilios.- Como cuchillos, espátulas, cucharas, lona para cuarteo, divisores de muestras.

#### 3.4.2.2. Muestreo

La determinación del contenido de humedad se realizó tan pronto como fue posible después del muestreo, se utilizaron bolsas plásticas.

### 3.4.2.3. Espécimen de ensayo

Se usó una muestra mayor a 20 g para que sea representativa.

### 3.4.2.4. Procedimiento

- a) Se pesó y se registró la masa de la tara limpia y seca.
- b) Se colocó el espécimen de ensayo húmedo en el contenedor y se determina el peso del contenedor y material húmedo usando la balanza con sensibilidad a 0.1g. y se registró este valor.

- c) Se colocó el material húmedo en el horno a una temperatura de 110 °C, hasta alcanzar una masa constante.
- d) Luego el material secado a peso constante se retiró del horno y se dejó a temperatura ambiente, hasta que este pueda ser manipulado cómodamente.
- e) Luego se determinó el peso del contenedor y el material secado al homo usando la misma balanza de sensibilidad a 0.1g, se registró este valor.

### 3.4.2.5. Cálculos

Se calculó el contenido de Humedad de la Muestra, mediante la siguiente formula.

$$W = \frac{\text{Peso de Agua}}{\text{Peso Suelo Secado al Horno}} x100$$

$$W = \frac{M_{CWS} - M_{CS}}{M_{CS} - M_{C}} \times 100 = \frac{M_{W}}{M_{S}} \times 100$$

#### Dónde:

W = es el contenido de humedad (%).

Mcws = es el peso del contenedor más el suelo húmedo, en gramos

Mcs = es el peso del contenedor más el suelo secado en horno, en gramos

Mc = es el peso del contenedor, en gramos

Mw = es el peso del agua, en gramos

Ms = es el peso de las partículas sólidas, en gramos

**NOTA:** El equipo usado, el procedimiento y los cálculos fueron los mismos para las muestras de las demás calicatas.

## 3.4.3. Limite líquido (Normas ASTM D 4318 y AASHTO T 89)

Con este método determinamos el límite líquido de un suelo mediante la elaboración de una curva de flujo, resultado de la determinación de tres puntos, con la ayuda del equipo de Casagrande.

#### 3.4.3.1. Materiales

La cantidad de suelo utilizado fue de 100 g que pasa la malla N° 40, la muestra original fue previamente secada al aire.

## 3.4.3.2. **Equipos**

- ✓ Tamiz N° 40
- ✓ Copa de Casagrande
- ✓ Acanalador
- ✓ Espátula
- ✓ Balanza de precisión con sensibilidad a 0.01gramo.
- ✓ Estufa con control de temperatura.
- ✓ Probeta graduada.
- ✓ Mortero y mango.
- ✓ Pipetas.
- ✓ Regla metaliza graduada.

# Ajuste y Control de la Copa de Casagrande

Se ajustó la altura de caída de la taza, para lo cual se giró la manivela hasta que la taza se eleve a su mayor altura. Utilizando el calibrador de 10 mm, se verifico que la distancia entre el punto de percusión y base sea 10 mm exactamente.

#### 3.4.3.3. Procedimiento

- a) Se colocó la muestra dentro de un recipiente adecuado que nos permitió mezclarlo con agua.
- b) Se adiciono agua y empezó un proceso de homogenización, de tal forma que el agua se incorpore totalmente a la muestra del suelo.
- c) Una vez que el suelo y el agua han formado una masa uniforme y consistente, se colocó una porción en el recipiente del equipo de Casagrande, con la ayuda de la espátula se verifico que el nivel de la muestra del suelo no supere el borde le recipiente y que el nivel máximo

- entre la base del recipiente y el suelo sea de 10 mm. El exceso de suelo se retiró y retorno al recipiente donde se ha realizado la mezcla.
- d) Con la ayuda del ranurador (se pasó manteniéndolo perpendicular a la superficie interior de la taza), se dividió la muestra del suelo que está en el recipiente del equipo de Casagrande en dos mitades, mediante un movimiento suave a lo largo del diámetro de este, de atrás hacia la parte frontal. El movimiento fue cuidadoso propiciando la construcción de la ranura en un solo movimiento y de manera que esta llegue hasta el fondo y quede limpia y no se dañen los bordes de las mitades de suelo generadas.
- e) Una vez hecho el surco o ranura, con la ayuda de manivela del equipo, se dio golpes sin parar a la cuchara a una velocidad aproximada de 2 golpes/segundo, hasta que las dos mitades se junten (cierren) aproximadamente 12.7 mm. Se registró el número de golpes en las cuales se cerró la ranura.
- f) Se removió del equipo parte de la muestra del suelo (10 gr), tomándola del sector donde se cerró la ranura. La muestra tomada fue llevada a un recipiente, se registró su peso y se sometió a secado para determinar la humedad.
- g) Luego se retiró el resto de la muestra el recipiente de mezclado, se limpió y seco la copa de Casagrande así como el ranurador.
- h) Este proceso se repitió tres veces, adicionando agua o extendiendo la muestra para someterla a secado, facilitando así la obtención de otros puntos con diferente humedad y numero de golpes.

#### 3.4.3.4. Cálculos

Se determinó el contenido de agua, expresado en porcentaje de peso respecto al peso del suelo seco, mediante la siguiente ecuación.

$$W = \frac{Ww}{Ws} x 100$$

Dónde:

Ww: Peso del agua presente dentro de la muestra. Se determinó como la diferencia entre el peso húmedo y el peso seco de la muestra.

Ws: Peso seco de la muestra.

## 3.4.3.5. Elaboración de la curva de flujo

- ✓ El objetivo de este procedimiento fue obtener los puntos suficientes para construir un gráfico semilogarítmico con el número de golpes como abscisa en escala logarítmica vs Contenido de Humedad como ordenada en escala aritmética.
- ✓ Se dibujó los puntos correspondientes a los resultados de cada una de las tres ensayos efectuados y se construyó una recta (curva de flujo).
- ✓ Se expresó el Limite Liquido del suelo como la humedad correspondiente a la intersección de la curva de flujo con la abscisa de 25 golpes, aproximando al entero más próximo.

# 3.4.4. Limite plástico e índice de plasticidad (Nomas ASTM D 4318 y AASHTO T 90)

#### 3.4.4.1. Muestra

La cantidad que se uso fue 100 g que pasa malla N° 40 de la muestra original, previamente secada al aire.

## 3.4.4.2. Equipo

- ✓ Tamiz N° 40
- ✓ Balanza de precisión, con sensibilidad a 0.01g.
- ✓ Estufa con control de temperatura
- ✓ Mortero y mango
- ✓ Espátula
- ✓ Patrón de comparación (plástico de 3 mm de diámetro).
- ✓ Placa de vidrio esmerilado.
- ✓ Probeta graduada de 25 ml de capacidad.
- √ Pipetas
- √ Recipientes (taras)

# 3.4.4.3. Procedimiento

- a) Se colocó la muestra dentro de un recipiente que nos permitió mezclarlo con agua.
- b) Se adiciono agua para empezar un proceso de homogenización, de tal manera que el agua se incorporó al suelo.
- c) Una vez que el agua con el suelo han formado una masa consistente, con la ayuda de la mano se moldeo una especie de balón, el cual se lo dividio en tres pedacitos más pequeños.
- d) Se tomó uno de los pedazos y con una suave y uniforme presión (peso de la mano), se rodó sobre el vidrio esmerilado hasta ir formando rollos, los cuales en su proceso de rodado disminuyeron poco a poco su tamaño.
- e) El proceso de rodado se realizó hasta llegar a un diámetro de 3mm, hasta que el rollito se empezó a resquebrajar.
- f) Luego se tomó los rollitos con estas características, se llevó a un recipiente, se tomó su peso y determino su humedad.
- g) El proceso de llevar los rollitos hasta el diámetro deseado en las condiciones deseadas, se repitió de igual forma con los baloncitos separados originalmente separados, de manera que se pudo completar tres recipientes con rollitos.

#### 3.4.4.4. Cálculos

Para determinar el contenido de agua, expresado en porcentaje de peso respecto al peso del suelo seco, se utilizó la siguiente formula.

$$W = \frac{Ww}{Ws} x100$$

Dónde:

Ww: Peso del agua presente dentro de la muestra. Se determina como la diferencia entre el peso seco húmedo y el peso seco de la muestra.

Ws: Peso seco de la muestra.

#### 3.4.4.5. Determinación del límite plástico

Se determinó dos valores de humedad, de los cuales el promedio de los dos valores represento el valor del Limite Plástico.

# 3.4.4.6. Cálculo del índice de plasticidad

Definimos al índice de plasticidad de un suelo como la diferencia entre su límite líquido y su límite plástico.

$$L.P = L.L. - L.P.$$

Dónde:

L.L. = Limite Liquido

P.L = Limite Plástico

L.L. y L.P., son números enteros

Calculado en índice de plasticidad clasificamos al suelo, teniendo en cuenta la carta de plasticidad de Casagrande según Norma ASTM D – 2487 -93, fig. 3.5.

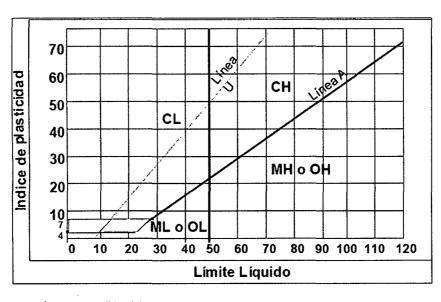



Fig. 3.5: Carta de Plasticidad

Linea A = 0,73 ( LL - 20 ) Linea U = 0,90 ( LL - 8 )

El manual de carreteras "Suelos, Geología, Geotecnia y Pavimento" en la sección: Suelos y pavimentos, da a conoces la característica del suelo en base al índice de plasticidad, tal como se observa en el cuadro N° 3.4 y de acuerdo a esto se dedujo las características del suelo ensayado.

Cuadro 3.4: Clasificación de Suelos según Índice de Plasticidad

| Índice de   | Plasticidad      | Característica            |
|-------------|------------------|---------------------------|
| Plasticidad |                  |                           |
| IP > 20     | Alta             | Suelos muy arcillosos     |
| IP ≤ 20     | Media            | Suelos Arcillosos         |
| IP > 7      |                  |                           |
| IP < 7      | Baja             | Suelos poco arcillosos    |
|             |                  | plasticidad               |
| IP = 0      | No Plástico (NP) | Suelos exentos de arcilla |

# 3.4.5. Proctor modificado (Norma ASTM D 1557)

Este ensayo consistió en compactar el suelo, en cinco capas, dentro de un molde de dimensiones de 4" de diámetro y de 4.59" de altura de forma cilíndrica, por medio de 25 golpes con un pisón de lb, que se dejó caer libremente desde una altura de 18" y repartidos en el área del cilindro. La energía especificada de compactación fue 27.2 kg cm/cm3, la que se calcula mediante la siguiente formula:

$$Ec = (N*n*W*h) / V$$

# Dónde:

Ec = Energía especifica

N = Numero de golpes por capa

n = Numero de capas de suelo

W = Peso del pisón

h = Altura de caída libre del pisón

V = Volumen del suelo compactado

Con este procedimiento se estudió la influencia que ejercía en el proceso el contenido de agua, observándose a contenido de humedad crecientes, a partir de valores bajos, se obtenían más altas Densidades Secas, y por lo tanto, mejor compactación del suelo, pero que esa tendencia no se mantenía indefinidamente, sino que al pasar la humedad de un cierto valor, las densidades secas obtenidos disminuían, resultando peores compactaciones en

la muestra, por lo que proctor manifestó que para un suelo dado y con el procedimiento descrito, existe una humedad, llamada "optima", que produce la máxima Densidad Seca que puede lograrse con este procedimiento de compactación.

#### 3.4.5.1. Material

- Muestra seca de suelo al aire (25 kg).
- Papel Filtro
- Agua

# 3.4.5.2. Equipo

- ✓ Molde Cilíndrico Metálico de 4" (10.16 cm) de diámetro, 4.59" (11.64 cm) de altura.
- ✓ Extensión del molde, desmontable y de igual diámetro y 2" (5.08 cm) de altura.
- ✓ Base metálica, con tornillos de mariposa, para fijar el molde.
- ✓ Pisón, de 4.536 kg (10 lb) de peso, los golpes se aplicaron dejando caer el pisón desde una altura de 18" (45.72 cm).
- ✓ Extractor de muestras, para sacar la muestra compactada.
- ✓ Balanza de capacidad mayor a 20 kg, con sensibilidad de 1 g.
- ✓ Balanza de 500 g de capacidad, con sensibilidad a 0.01 g.
- ✓ Horno de secado con control de temperatura.
- ✓ Enrasador de acero de 25 cm de largo con un biselado recto.
- ✓ Tamices 2", ¾", N° 4
- ✓ Probeta graduada de 1000ml
- ✓ Martillo
- ✓ Recipientes metálicos para mezclar y para muestras para contenido de humedad.

#### 3.4.5.3. Procedimiento

- a) Se pasó el suelo a través del tamiz N° 4 (Debido a que el porcentaje retenido es menor a 20 % se realizó el ensayo en el molde de 4", caso contrario se hubiese realizado en un molde de 6").
- b) Se pesó el molde Wm (después de haberlo limpiado y engrasado la parte interior).
- c) Se colocó en la base del molde papel filtro y se se puso la extensión (collarín).
- d) La muestra se dividió en 4 fracciones (para obtener 4 puntos para la curva).
- e) A cada una de estas fracciones se le agrego agua, de tal manera que el contenido de humedad vario de 1 ½ a 2 % aproximadamente.
- f) A cada una de estas facciones se lo dividió en cinco porciones iguales y se lo distribuyo uniformemente dentro del molde (número de capas) y se lo compacta cada capa con 25 golpes con el pisón de 4.536 kg con una altura de caída de 18" (45.72 cm). (El número de golpes se eligió en función al método y este se basó en que el material retenido es menor a 20 % en la malla N° 4, método A, por consiguiente 25 golpes).
- g) La última (5°) capa excedió el borde del molde y luego se retiró el collarín, para luego enrasar cuidadosamente el suelo compactado. Se rellenó algunas concavidades dadas en algunos de los ensayos.
- h) Se limpió el molde suelo suelto que pudo haberse adherido en el exterior, luego se pesó el molde con la muestra. (Wmh + m).
- i) Luego se extrajo dos muestras, una de la parte superior y otra de la parte inferior de la muestra compactada y se determinó su contenido de humedad.

#### 3.4.5.4. Cálculos

✓ Se calculó la densidad húmeda de cada una de las fracciones de muestra compactada, mediante la fórmula:

$$Dh = Wmh / Vm$$

- ✓ Se determinó la humedad promedio de cada muestra compactada.
- ✓ Se calculó las respectivas densidades secas, para cada una de las

fracciones de muestras compactadas, con la fórmula:

$$Ds = ((Dh / 1 + (w\% / 100)))$$

- ✓ Con los resultados obtenidos se graficó las densidades secas del suelo como ordenadas y sus correspondientes humedades como abscisas, en un gráfico a escala natural.
- ✓ La humedad correspondiente a la cumbre de la curva dibujada, se le llama contenido óptimo de humedad y la correspondiente Densidad seca se le llama Densidad Máxima.

# 3.4.6. California bearing ratio (Normas ASTM D 1883 y AASHTO T 193)

Este ensayo nos permitió determinar el índice de resistencia de los suelos denominado valor de relación de soporte, que es muy conocido como CBR (California Bearing Ratio), este ensayo se realizó sobre suelo preparado en el laboratorio, teniendo en cuenta el contenido optimo de Humedad, determinado mediante el ensayo de proctor modificado.

Mediante este ensayo determinaremos la capacidad de soporte de las arcillas, en condiciones normales y en combinación con caucho granular, objetivo del presente proyecto de investigación.

# 3.4.6.1. Equipo

- ✓ Molde CBR (base, collarín de extensión, plato o disco perforado con vástago, trípode).
- ✓ Disco espaciador
- ✓ Pisón
- √ 02 Pesas de 5lb cada una (sobrecargas)
- ✓ Prensa de ensayo (Ensayo de penetración).
- ✓ Pistón de penetración
- ✓ Extensómetros (cuadrantes) con aproximación a 0.001"
- ✓ Estufa con control de temperatura
- ✓ Balanza 500 g. con sensibilidad a 1g.
- ✓ Balanzas (20 kg) con sensibilidad a 1g.
- ✓ Probeta de 1000 ml de capacidad

- √ Regla metálica
- ✓ Tamices ¾", N° 4
- √ Papel filtro
- ✓ Cronometro
- ✓ Recipiente para mezclado de la muestra.
- ✓ Taras

#### 3.4.6.2. Muestra

Para cada de determinación de densidad (un punto de la curva de compactación), se necesitó 5kg de muestra, secada previamente al aire.

Cada muestra se utilizó una sola vez.

#### 3.4.6.3. Procedimiento

El método comprendió 3 ensayos:

Determinación de la Densidad – Humedad (Compactación – Proctor).

Determinación de las propiedades expansivas del material (Expansión-Hinchamiento).

Determinación de la resistencia a la penetración (Esfuerzo – Penetración).

# 3.4.6.3.1.- Compactación (Proctor):

- ✓ Se ensamblo el molde cilíndrico, se introdujo el disco espaciador y se colocó encima de este un papel filtro, también se puso el collarín de extensión.
- ✓ La muestra debidamente preparada se humedeció añadiendo la cantidad de agua determinada en el ensayo de proctor modificado y se determinó en el contenido de humedad.
- ✓ Se mezcló bien el material con el agua a fin de obtener una muestra uniformemente húmeda.
- ✓ Se colocó la muestra dentro del molde y se compacto en 5 capas con un espesor aproximadamente igual.
- ✓ La primera muestra se compacto con 12 golpes, la segunda con 25 y la

- tercera con 56 golpes por capa.
- ✓ Se quitó el collarín de expansión, se enraso la parte superior corrigiendo la irregularidad superficial.
- ✓ Se pesó el molde con la muestra y se determinó la densidad y la humedad de la muestra.
- ✓ Se determinó la densidad seca de cada muestra.

# 3.4.6.3.2.- Expansión del material (Hinchamiento):

- ✓ Se invirtió el molde y se ensamblo el molde con la muestra en la placa de base.
- ✓ Sobre la superficie libre se colocó un papel filtro, luego se puso el plato con el vástago graduable y sobre el las pesas de sobrecarga.
- ✓ Se colocó cuidadosamente el molde dentro de un depósito lleno con agua.
- ✓ Una vez colocado el molde dentro del depósito con agua, se montó el trípode con un extensómetro y se registró la lectura inicial.
- ✓ Cada 24 horas, por un periodo de 96 horas (4 días) se tomaron y se registraron las lecturas del extensómetro.
- ✓ Luego de 96 horas se tomó y anoto la lectura final para calcular el hinchamiento, la cual es referida en porcentaje a la altura inicial de la muestra antes de ser sumergida en agua.

## 3.4.6.3.3.- Esfuerzo - penetración:

- ✓ Después de saturada la muestra durante 4 días, se sacó el cilindro y se dreno, durante 15 minutos, para drenar bien se volteó el cilindro.
- ✓ Se pesó la muestra.
- ✓ Se colocó encima de la muestra las pesas de sobrecarga y se llevó debajo de la prensa y se baja el pistón sobre la muestra.
- ✓ Luego de asentado el pistón se colocó en ceros el extensómetro y se hinco el pistón en incrementos de 0.025" a la velocidad de 0.05"/minuto y se leyeron las cargas totales que ha sido necesario aplicar hasta hincar el pistón 0.50 pulgadas.

- ✓ Luego de haber hincado hasta 0.50". se soltó la carga lentamente, se retiró el molde de la prensa, se quitan las bases y la base metálica.
- ✓ Se determinó el contenido de humedad y la densidad humedad de la muestra, determinando de la parte superior y de la parte inferior y considerando el valor promedio de los dos valores.

Calculo del C.B.R:

- ✓ Las lecturas tanto de las penetraciones como de las cargas (reducidas a cargas unitarias) se representaron gráficamente (3 curvas, esfuerzo penetración) a escala natural, en las abscisas la penetración y el esfuerzo en las ordenadas.
- ✓ En las curvas se determinó las cargas unitarias (esfuerzos) correspondiente a 0.10" y 0.20" de penetración.
- ✓ Se determinó el C.B.R para 0.10 y 0.20", tomando como material de comparación la piedra triturada (macadám), para ello se dividió los esfuerzos correspondiente a 0,10" y 0.20" de la muestra con los correspondientes de la muestra patrón, con la siguiente formula:

C.B.R = 
$$100*\sigma_e/\sigma_n k$$

Dónde:

σ<sub>e</sub>: Esfuerzo de la muestra ensayada

σ<sub>p</sub>: Esfuerzo de la muestra patrón

- ✓ Con los resultados obtenidos se dibujó una curva Densidad Seca CBR, correspondiente a 0.15" de penetración.
- ✓ El valor del C.B.R para diseño es el menor valor obtenido, correspondiente al 95% de la densidad seca máxima.

#### 3.5. Presentación de resultados

## A) Análisis Granulométrico

## A.1. Calicata N° 01, progresiva Km 000+500

Tabla 3.2: Porcentaje de material que pasa según la abertura el diámetro del tamiz de calicata nº 01

| Т      | Tamiz         |                     |
|--------|---------------|---------------------|
| Número | Abertura (mm) | % que pasa la malla |
| N°4    | 4.75          | 100.00              |
| N 10   | 2.00          | 90.70               |
| N 20   | 0.85          | 84.16               |
| N 30   | 0.60          | 80.50               |
| N 40   | 0.43          | 75.22               |
| N 60   | 0.25          | 71.78               |
| N 100  | 0.15          | 70.40               |
| N 200  | 0.08          | 68.74               |

## A.2. Calicata N° 02, progresiva Km 001+500

Tabla 3.3: Porcentaje de material que pasa según la abertura el diámetro del tamiz de calicata nº 02

| Та     | Tamiz         |                        |
|--------|---------------|------------------------|
| Número | Abertura (mm) | % que pasa la<br>malla |
| N°4    | 4.75          | 100.00                 |
| N 10   | 2.00          | 87.40                  |
| N 20   | 0.85          | 83.80                  |
| N 30   | 0.60          | 77.40                  |
| N 40   | 0.43          | 73.20                  |
| N 60   | 0.25          | 67.60                  |
| N 100  | 0.15          | 64.80                  |
| N 200  | 0.08          | 63.60                  |

## A.3. Calicata N° 03, progresiva Km 002+500

Tabla 3.4: Porcentaje de material que pasa según la abertura el diámetro del tamiz de calicata n° 03

| T      | amiz          | % que pasa la |
|--------|---------------|---------------|
| Número | Abertura (mm) | malla         |
| N°4    | 4.75          | 100.00        |
| N 10   | 2.00          | 87.00         |
| N 20   | 0.85          | 81.60         |
| N 30   | 0.60          | 77.94         |
| N 40   | 0.43          | 76.66         |
| N 60   | 0.25          | 75.22         |
| N 100  | 0.15          | 73.32         |
| N 200  | 0.08          | 72.68         |

## B) Límites de atterberg

Tabla 3.5: Límites de atterberg de calicatas n° 01, 02, 03.

| Calicata   | Limite liquido | Limite plástico | Índice de   |
|------------|----------------|-----------------|-------------|
| Progresiva |                |                 | Plasticidad |
| Km 00+500  | 55.00%         | 35.00%          | 20.00%      |
| Km 01+500  | 43.00%         | 30.00%          | 13.00%      |
| Km 02+500  | 52.00%         | 33.00%          | 19.00%      |

## C) Proctor Modificado a condiciones normales

Tabla 3.6: Datos de ensayo proctor modificado (0% caucho)

| Calicata<br>Progresiva | Densidad<br>seca máxima | Contenido<br>optimo de<br>humedad |
|------------------------|-------------------------|-----------------------------------|
| Km 00+500              | 1.779 gr/cm3            | 15.70%                            |
| Km 01+500              | 1.764 gr/cm3            | 14.20%                            |
| Km 02+500              | 1.774gr/cm3             | 13.50%                            |

## D) Proctor Modificado con adición de 20% de caucho granular

Tabla 3.7: Ensayo proctor modificado (20% caucho)

| Calicata<br>Progresiva | Densidad<br>seca máxima | Contenido<br>optimo de<br>humedad |
|------------------------|-------------------------|-----------------------------------|
| Km 00+500              | 1.783 gr/cm3            | 14.30%                            |
| Km 01+500              | 1.799 gr/cm3            | 12.60%                            |
| Km 02+500              | 1.787 gr/cm3            | 13.50%                            |

### E) Proctor Modificado con adición de 40% de caucho granular

Tabla 3.8: Datos de ensayo proctor modificado (40% caucho)

| Calicata   | Densidad     | Contenido |
|------------|--------------|-----------|
| Progresiva | seca máxima  | optimo de |
|            |              | humedad   |
| Km 00+500  | 1.826 gr/cm3 | 13.80%    |
| Km 01+500  | 1.854 gr/cm3 | 11.50%    |
| Km 02+500  | 1.840 gr/cm3 | 12.80%    |

## F) Proctor Modificado con adición de 60% de caucho granular

Tabla 3.9: Ensayo proctor modificado (60% caucho)

| Calicata<br>Progresiva | Densidad<br>seca máxima | Contenido<br>optimo de<br>humedad |
|------------------------|-------------------------|-----------------------------------|
| Km 00+500              | 2.223 gr/cm3            | 7.60%                             |
| Km 01+500              | 2.175 gr/cm3            | 6.80%                             |
| Km 02+500              | 2.150 gr/cm3            | 8.60%                             |

## G) CBR a condiciones normales

Tabla 3.10: Capacidad de soporte a condiciones normales

| Calicata   | CBR 95% MDS 100% MDS |        |
|------------|----------------------|--------|
| Progresiva |                      |        |
|            | (0.1")               | (0.1") |
| Km 00+500  | 7.00%                | 21.5%  |
| Km 01+500  | 7.10%                | 11.05% |
| Km 02+500  | 6.00%                | 22.00% |

## H) CBR con adición 20% de caucho

Tabla 3.11: Capacidad de soporte con adición 20% de caucho granular

| Calicata   | CBR              |        |
|------------|------------------|--------|
| Progresiva | 95% MDS 100% MDS |        |
|            | (0.1")           | (0.1") |
| Km 00+500  | 8.00 %           | 20.10% |
| Km 01+500  | 10.00%           | 25.10% |
| Km 02+500  | 7.60%            | 22.20% |

## I) CBR con adición 40% de caucho

Tabla 3.12: Capacidad de soporte con adición 40% de caucho granular

| Calicata   | CBR 95% MDS 100% MDS |        |
|------------|----------------------|--------|
| Progresiva |                      |        |
|            | (0.1")               | (0.1") |
| Km 00+500  | 26.30%               | 29.80% |
| Km 01+500  | 30.40%               | 34.40% |
| Km 02+500  | 29.00%               | 32.60% |

## J) CBR con adición 60% de caucho

Tabla 3.13: Capacidad de soporte con adición 60% de caucho granular

| Calicata   | CBR              |        |
|------------|------------------|--------|
| Progresiva | 95% MDS 100% MDS |        |
|            | (0.1")           | (0.1") |
| Km 00+500  | 38.50%           | 53.40% |
| Km 01+500  | 41.00%           | 56.50% |
| Km 02+500  | 38.50%           | 58.20% |

#### CAPÍTULO IV: ANÁLISIS Y DISCUSIÓN DE RESULTADOS

#### 4.1. Análisis del suelo

Se realizó los ensayos de: Análisis granulométrico mediante tamizado, según Norma ASTM D421, limite líquido y limite plástico según norma ASTM D 421. Los resultados del análisis granulométrico se presentan en la Tabla N° 3.2, Tabla N° 3.3 y Tabla N° 3.4; los resultados del ensayo de limite líquido y limite plástico se presentan en las Tabla N° 3.5, en base a los datos de estas tablas se procesó la Tabla N° 4.1 que nos permito clasificar el suelo según AASHTO y SUCS. (Braja, 2001:27-44).

Tabla 4.1: Características del suelo de la carretera de las avenidas El Porongo – Sebastián Díaz Marín – Zarate Miranda y Chachapoyas, y su clasificación según AASHTO y SUCS.

| Та          | miz         | % (         | que pasa la m | alla        |
|-------------|-------------|-------------|---------------|-------------|
|             | Abertura    | Muestra     | Muestra       | Muestra     |
| Número      | (mm)        | Calicata 01 | Calicata 02   | Calicata 03 |
| N°4         | 4.75        | 100.00      | 100.00        | 100.00      |
| N 10        | 2.00        | 90.70       | 87.40         | 87.00       |
| N 20        | 0.85        | 84.16       | 83.80         | 81.60       |
| N 30        | 0.60        | 80.50       | 77.40         | 77.94       |
| N 40        | 0.43        | 75.22       | 73.20         | 76.66       |
| N 60        | 0.25        | 71.78       | 67.60         | 75.22       |
| N 100       | 0.15        | 70.40       | 64.80         | 73.32       |
| N 200       | 0.08        | 68.74       | 63.60         | 72.68       |
| Limite Liq  | uido% (LL)  | 55.00       | 43.00         | 52.00       |
| Limite Plás | stico% (LP) | 35.00       | 30.00         | 33.00       |
| Índice Plá  | stico% (IP) | 20.00       | 13.00         | 19.00       |
| IP > L      | L - 30      | 25.00       | 13.00         | 22.00       |
| CLASIFICAC  | ION AASHTO  | A-7-5       | A-7-5         | A-7-5       |
| CLASIFICA   | CION SUCS   | ОН          | OL            | ОН          |

Según datos obtenidos, presentados en la Tabla N° 4.3, el suelo se clasifico de dos formas:

Clasificación AASHTO: A-7-5. Suelos arcillosos, ya que los porcentajes que pasan la malla N° 200 es mayor a 35%, estos suelos tienen un índice de plasticidad moderada, altamente compresible y sujetos a importantes cambios de volumen.

Clasificación SUCS: Dado que más del 50% pasan por la malla N° 200, y teniendo en cuenta la carta de plasticidad, se determinó que los suelos son del tipo OH y OL.

OH. Arcillas orgánicas de media plasticidad.

OL. Arcillas limosas orgánicas de baja plasticidad.

#### 4.2. Contenido optimo de humedad

Mediante este ensayo realizado en base a la norma ASTM D 1557 se determinó el contenido óptimo de humedad y la densidad seca máxima, resultados que se exponen en la Tabla N° 3.6, Tabla N° 3.7, Tabla N° 3.8 y Tabla N° 3.9 a los porcentajes de adición de caucho granular de 0%, 20%, 40% y 60% respectivamente.

En las tablas se observa que el contenido de humedad va disminuyendo a medida que se va agregando o adicionando caucho granular, caso contrario sucede con la densidad seca máxima que va aumentado.

Estos datos de contenido de humedad óptimo y densidad seca máxima nos ayudan a determinar en CBR.

#### 4.3. Capacidad de soporte el terreno en condiciones normales

Se realizó las pruebas CBR basado en la norma ASTM D 1883, para cada una de las muestras, los resultados se muestran en la Tabla N° 3.10.

El Manual de Carreteras "Suelos, Geología, Geotecnia y Pavimentos" - Sección: Suelos y Pavimentos, especifica que los suelos por debajo del nivel superior de la subrasante, en una profundidad no menor de 0.60 m, deberán ser suelos adecuados y estables con CBR ≥ 6%.

De acuerdo a lo señalado por el manual de carreteras los suelos en estudio pueden ser como material se subrasante, puesto que poseen un CBR mínimo de

6.00% y un máximo de 7.10% de acuerdo a los datos obtenido de las muestras de las 03 calicatas.

# 4.4. Capacidad de soporte el terreno con adición del 20, 40% y 60% de caucho granular

Los resultados de los ensayos CBR basado en la norma ASTM D 1883, obtenidos a partir de la adición de 20%, 40% y 60% de caucho granular, en peso a los suelos arcillosos se muestran en la Tabla N° 3.11, Tabla N° 3.12, Tabla N° 3.13, respectivamente.

Esta combinación de suelo arcilloso puede ser utilizada como subrasante de carreteras con fines constructivos de pavimentos, puesto que el manual de carreteras especifica que los suelos deben tener un CBR mínimo de 6%, en este caso sin embargo en los ensayos de laboratorio se obtuvo un CBR mayor a 6 por ciento.

De acuerdo al porcentaje de adición de caucho granular podemos y de acurdo al manual de carreteras, se obtiene la Tabla N° 4.2.

Tabla 4.2: Categoría de subrasante

| Categoría  | CBR         | Calicata   | CBR      | Condición  |
|------------|-------------|------------|----------|------------|
| de         | (MTC)       | Progresiva | obtenido |            |
| Subrasante |             |            |          |            |
| Regular    |             | Km 00+500  | 7.00 %   | 0% caucho  |
|            |             | Km 01+500  | 7.10 %   |            |
|            | 6%≤CBR<10%  | Km 02+500  | 6.00 %   |            |
|            |             | Km 00+500  | 8.0030 % | 20% caucho |
|            |             | Km 02+500  | 7.60 %   |            |
| Buena      | 10%≤CBR<20% | Km 01+500  | 10.00 %  | 20% caucho |
|            |             |            |          |            |
| Muy Buena  |             | Km 00+500  | 26.30 %  | 40% caucho |
|            | 20%≤CBR<30% | Km 02+500  | 29.00 %  |            |
| Excelente  |             | Km 01+500  | 30.40 %  | 40% caucho |
|            | 30%≤CBR     | Km 00+500  | 38.50 %  | 60% caucho |
|            |             | Km 01+500  | 41.00 %  |            |
|            |             | Km 02+500  | 38.50%   |            |

De acuerdo a la Tabla N° 4.2 podemos decir que la categoría de la subrasante a la que se logró alcanzar es excelente, con un CBR igual 41.00%

#### CAPÍTULO V: CONCLUSIONES Y RECOMENDACIONES

#### 5.1. Conclusiones

- 5.1.1 Se mejoró los suelos arcillosos de la carretera de las avenidas El Porongo Sebastián Díaz Marín Zarate Miranda y Chachapoyas con caucho granular de neumáticos para fines constructivos de pavimentos, cumpliendo las especificaciones mínimas de manual de carreteras, como material de subrasante.
- 5.1.2 Se determinó la capacidad de soporte de los suelos arcillosos del área delimitada sin caucho granular y en adición con caucho granular en porcentajes 20%, 40% y 60%.
- 5.1.3 Con la adición de 20% de caucho granular se obtuvo un valor máximo del CBR igual 10.00% y un valor mínimo igual a 8.00% (Ver Tabla N° 3.11).
- 5.1.4 Agregando 40% de caucho granular a los suelos arcillosos se logró obtener un CBR con valor máximo igual a 30.40 y un valor mínimo 26.30%. (Ver Tabla N° 3.12).
- 5.1.5 Incorporando a los suelos arcillosos 60% caucho granular se alcanzó obtener un CBR con valor máximo a 41.00%. (Ver Tabla N° 3.12).
- 5.1.5. En el diseño y control de la mejora de suelos con caucho granular fue suficiente la realización de los ensayos básicos usuales en el ámbito de la construcción. Los efectos y utilidad del tratamiento se cuantifican mediante el control de características indirectas como son la determinación de los límites de Atterberg, del índice C.B.R. o el ensayo de compactación Proctor.
- 5.1.6. Los tratamientos de mejora de suelos arcillosos realizados con porcentajes de caucho granular añadidos en valores de 20, 40 y 60 por

ciento sobre el suelo, los efectos que se consiguen son directamente proporcionales a dichas cantidades.

- 5.1.7. El empleo de la mejora de suelos arcillosos es una buena alternativa ante limitaciones de disponibilidad de suelos aptos en las cercanías de las obras o condicionantes medioambientales para préstamos o vertederos en las mismas. La aplicación de cantidades limitadas de caucho granular suele ser una solución económicamente competitiva en estas situaciones.
- 5.1.8. La adición de caucho granular a suelo arcilloso es la alteración del comportamiento mecánico de un material para conseguir una resistencia estructural que podría decirse es impropia de dicho tipo de material.
- 5.1.9. El reciclaje de residuos neumáticos se presenta como una solución saludable para el medio ambiente, inocua para el ser humano y multifuncional para el área de la construcción, porque queda demostrada la viabilidad de la aplicación exitosa de este residuo, pues, ofrece múltiples posibilidades para la fabricación de insumos, con ventajas que son innumerables y rentables, que resultan coherente con un desarrollo sustentable y sostenido de nuestro país.

#### 5.2. Recomendaciones

- 5.1.1 Efectuar el estudio de suelos arcillosos en cantidades de adición mayores a las que se ha considerado en el presente estudio.
- 5.1.2 Realizar más pruebas o ensayos de CBR de los suelos arcillosos en combinación con caucho granular.
- 5.1.3 Investigar el aspecto económico de los suelos arcillosos con adición de caucho granular, determinar si es más rentable mejorar los suelos arcillosos con caucho granular o utilizar material de cantera o préstamo.

#### Referencias Bibliográficas

- ✓ AASHTO, Guía para el Diseño de estructuras de pavimento, 1993.
- ✓ Angelone y Garibay. 2006. Geología y Geotecnia. Rosario, Argentina.
- ✓ Barra, B.M. 2009. Realización de Ensayos de Laboratorio de Hormigón con Caucho Procedente de Neumáticos fuera de Uso. Catalunya, España.
- ✓ Bauza, Juan. 2008. El Tratamiento de Suelos Arcillosos Mediante Cal. Barcelona, España.
- ✓ Becerra, S.R. 2012. Análisis Comparativo de las Alternativas de Pavimentación. Guayaquil, Ecuador.
- ✓ Braja, 2001, Fundamentos de Ingeniería Geotecnia, México.
- ✓ Castro, Guillermo. 2008. Materiales y compuestos Para la industria del Neumático. Buenos Aires, Argentina.
- ✓ Castro, Guillermo. 2008. Reutilización, reciclado y Disposición final de Neumáticos. Buenos Aires, Argentina.
- ✓ Coronado, I.J. 2002. Manual Centroamericano para Diseño de Pavimentos. Guadalajara, México.
- ✓ Delarze, D.P. 2008. Reciclaje de Neumáticos y Su Aplicación en la Construcción. Tesis de la UACH. Valdivia, Chile.
- ✓ Dirección de Transporte Conae. 2009. Manual de Información Técnica de Neumáticos. México.
- ✓ García, R.E. 2002. Las Arcillas: Propiedades y Usos. Madrid, España.
- ✓ Manual de Carreteras, Suelos, Geología, Geotecnia y Pavimentos Sección: Suelos y Pavimentos. 2014. Lima, Perú.
- ✓ Manuel de carreteras Especificaciones técnicas para construcción EG. 2013. Lima, Perú.
- ✓ Manual de Ensayo de Materiales (EM 2000).
- ✓ Nadeo, J.R. 2007. Introducción a algunas propiedades de los suelos arcillosos. Rio de la Plata, Argentina.
- ✓ Ramírez, P. N. 2006. Estudio de la Utilización de Caucho de Neumáticos en Mezclas Asfálticas en Caliente Mediante Proceso Seco. Tesis de la UCH. Santiago, Chile.
- ✓ Rico, R.A. 1998. Pavimentos Flexibles. Problemática, metodologías de

- diseño y tendencias. México.
- ✓ Rubio, E.J. y Moragues, T.A. 1990. Descriptiva de Polímeros Sintéticos. Madrid, España.
- ✓ Steven Quesada, 2008. Clasificación de un suelo según el Sistema Unificado de Clasificación de Suelos (SUCS). Costa Rica.
- ✓ UNI FIC, 2006. Laboratorio de Mecánica de Suelos.
- ✓ AASHTO (1996). "Standards Specifications for Highway Bridges", Division I-A, Seismic Design, Washington, D.C.
- ✓ Casagrande, A. (1948) "Classification and Identification of Soils", Transactions ASCE, 113, pp. 901,992.

#### **ANEXOS 01**

## **DATOS DE ENSAYOS REALIZADOS**

- > Análisis Granulométrico Por Tamizado
- > Contenido De Humedad
- > Limite Liquido
- > Limite Plástico
- Índice de Plasticidad
- > Proctor Modificado
- > California Bearing Ratio (CBR)

#### ANALISIS GRANULOMETRICO POR TAMIZADO

#### **ASTM D 422**

TESIS:

MEJORAMIENTO DE SUELOS ARCILLOSOS UTILIZANDO CAUCHO GRANULAR DE NEUMATICOS PARA FINES CONSTRUCTIVOS DE PAVIMENTOS

UBICACIÓN:

DIST. BAÑOS DEL INCA, PROV. CAJAMARCA, DPTO CAJAMARCA - (PORONGO - AEROPUERTO)

CALICATA:

N° 01 - M -1

PROFUNDIDAD (m): 1.50

PROGRESIVA (Km): 000+500

TESISTA:

WILDER DANNY CUSQUISIBAN OCAS

FECHA:

NOVIEMBRE 2014

COORDENADAS UTM. N 9,207,742.98 E. 779007.35

| [           | ANAL          | ISIS FRACC | ON GRUESA    | <u> </u>   |        |                                     | MUESTRA          | TOTAL                                      | ·:       |
|-------------|---------------|------------|--------------|------------|--------|-------------------------------------|------------------|--------------------------------------------|----------|
|             | FAMIZ         | P.RET      | PORCENTAJE   | PORCENTAJE | % QUE  | TEMPERATURA                         | AMBIENTE         | 60° C                                      | 110° C   |
| N°          | ABERTURA (mm) | PARCIAL    | RET. PARCIAL | RET. ACUM  | PASA   | DE SECADO                           | MINIDICIALE      | ₩.C                                        | 110 C    |
| 3"          | 76.20         | 0.00       | 0.00         | 0.00       | 100.00 | PESO TOTAL MUESTRA HU               | MEDA (or)        | 560.30                                     |          |
| 2 1/2"      | 63.50         | 0.00       | 0.00         | 0.00       | 100.00 | T COO TOTAL MICLOTRATIO             |                  | 300.30                                     |          |
| 2"          | 50.80         | 0.00       | 0.00         | 0.00       | 100.00 | PESO TOTAL MUESTRA HU               | MEDA < Nº 4 (or) | 560.30                                     |          |
| 1 1/2"      | 38.10         | 0.00       | 0.00         | 0.00       | 100.00 | LSO TOTAL MIDESTICATIO              | MEDA (N 4 (gr)   | 300.30                                     |          |
| 1"          | 25.40         | 0.00       | 0.00         | 0.00       | 100.00 | PESO TOTAL MUESTRA HU               | MEDA > NP 4 (as) | 0.00                                       |          |
| 3/4"        | 19.05         | 0.00       | 0.00         | 0.00       | 100.00 | LSO TOTAL MOZSTICK HO               | MEDA > 14 4 (gi) | 0.00                                       |          |
| 1/2"        | 12.70         | 0.00       | 0.00         | 0.00       | 100.00 | PESO TOTAL MUESTRA SE               | CA < NO 4 (~)    | 500.00                                     |          |
| 3/8"        | 9.52          | 0.00       | 0.00         | 0.00       | 100.00 | PESO TOTAL MUESTRA SE               | CA < N 4 (gr)    | 500.00                                     |          |
| 1/4"        | 6.35          | 0.00       | 0.00         | 0.00       | 100.00 | PESO TOTAL MUESTRA SECA > N° 4 (gr) |                  | 0.00                                       |          |
| N°4         | 4.75          | 0.00       | 0.00         | 0.00       | 100.00 | PESO TOTAL MUESTRA SE               | CA > N° 4 (gr)   | 0.00                                       |          |
| TOTAL       | W G =         | 0.00       |              |            |        |                                     |                  | 500.00                                     |          |
|             | ANA           | LISIS FRAC | CION FINA    |            |        | PESO TOTAL MUESTRA SE               | CA (gr)          | 500.00                                     |          |
| CORRECCION  | MUESTRA CUAR  | TEADA:     |              | 0.200000   |        | CONTENIDO DI                        | THURSDAD         | LIMITE DE COMO                             | ICTENCIA |
| PESO ENSAYO | PORCION SECA: |            |              | 500.00     |        | A.A.S.H.T.                          |                  | LIMITES DE CONSISTENCIA<br>A.S.T.M. D 4318 |          |
| N 10        | 2.00          | 46.50      | 9.30         | 9.30       | 90.70  | AA3.11.1,                           | J. 1 203         | A.O. I.M. D4                               | 310      |
| N 20        | 0.85          | 32.70      | 6.54         | 15.84      | 84.16  | TARA №                              | 1                | LIMITE LIQUIDO :                           | 55%      |
| N 30        | 0.60          | 18.30      | 3.66         | 19.50      | 80.50  | PESO HUMEDO + TARA (gr)             | 1243.00          | LIMITE LIQUIDO .                           | 3376     |
| N 40        | 0.43          | 26.40      | 5.28         | 24.78      | 75.22  | PESO SECO + TARA (gr)               | 1126.00          | LIMITE PLASTICO :                          | 35%      |
| N 60        | 0.25          | 17.20      | 3.44         | 28.22      | 71.78  | PESO TARA (gr)                      | 107.00           | LIMITE FEASITIOU:                          | 3376     |
| N 100       | 0.15          | 6.90       | 1.38         | 29.60      | 70.40  | PESO DEL AGUA (gr)                  | 117.00           | INDICE PLASTICO :                          | 20%      |
| N 200       | 0.08          | 8.30       | 1.66         | 31.26      | 68.74  | PESO SECO (gr)                      | 1019.00          | INDICE FLASTICO                            | 20%      |
| CAZOLETA    | -,-           |            |              |            |        | C. HUMEDAD (%)                      | 11.48            |                                            |          |
| TOTAL       | }             |            |              |            |        | V. RUMEDAD (A)                      | 11.40            |                                            |          |



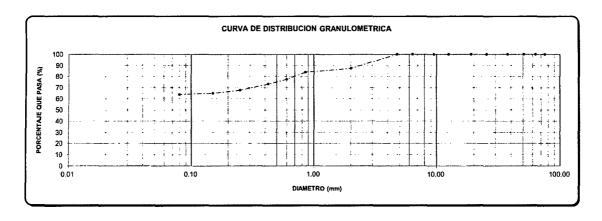
#### ANALISIS GRANULOMETRICO POR TAMIZADO

**ASTM D 422** 

TESIS:

FECHA:

MEJORAMIENTO DE SUELOS ARCILLOSOS UTILIZANDO CAUCHO GRANULAR DE NEUMATICOS PARA FINES CONSTRUCTIVOS DE PAVIMENTOS


UBICACIÓN: DIST. BAÑOS DEL INCA, PROV. CAJAMARCA, DPTO CAJAMARCA - (PORONGO - AEROPUERTO)

CALICATA: N° 02 - M -1 PROFUNDIDAD (m): 1.50 PROGRESIVA (Km): 001 + 500

TESISTA: WILDER DANNY CUSQUISIBAN OCAS

NOVIEMBRE 2014 COORDENADAS UTM. N 9,208,477.44 E. 778,847.38

|          | ANAL                           | ISIS FRACC  | ION GRUESA   |                    |        | [                           | MUESTRA           | TOTAL                           |        |
|----------|--------------------------------|-------------|--------------|--------------------|--------|-----------------------------|-------------------|---------------------------------|--------|
| 1        | AMIZ                           | P.RET       | PORCENTAJE   | PORCENTAJE         | % QUE  | TEMPERATURA                 | AMBIENTE          | 60° C                           | 110° C |
| N°       | ABERTURA (mm)                  | PARCIAL     | RET. PARCIAL | RET. ACUM          | PASA   | DE SECADO                   | AMDIENTE          | 80°C                            | 110-6  |
| 3"       | 76.20                          | 0.00        | 0.00         | 0.00               | 100.00 | PÉSO TOTAL MUESTRA HU       | MEDA (cr)         | 583.00                          |        |
| 2 1/2"   | 63.50                          | 0.00        | 0.00         | 0.00               | 100.00 | - Loo To Trie Mocorrottio   | (gr)              | 303.00                          | _      |
| 2*       | 50.80                          | 0.00        | 0.00         | 0.00               | 100.00 | PESO TOTAL MUESTRA HU       | MEDA < Nº4 (nr)   | 583.00                          |        |
| 1 1/2"   | 38.10                          | 0.00        | 0.00         | 0.00               | 100.00 | - Loo To The Modernor       | INCOM THE GIT     | 303.00                          |        |
| 1"       | 25.40                          | 0.00        | 0.00         | 0.00               | 100.00 | PESO TOTAL MUESTRA HU       | IMEDA > Nº 4 (ar) | 0.00                            |        |
| 3/4"     | 19.05                          | 0.00        | 0.00         | 0.00               | 100.00 |                             |                   | 0.00                            |        |
| 1/2"     | 12.70                          | 0.00        | 0.00         | 0.00               | 100.00 | PESO TOTAL MUESTRA SE       | CA < Nº 4 (ar)    | 500.00                          |        |
| 3/8"     | 9.52                           | 0.00        | 0.00         | 0.00               | 100.00 |                             |                   | 300.00                          |        |
| 1/4"     | 6.35                           | 0.00        | 0.00         | 0.00               | 100.00 | PESO TOTAL MUESTRA SE       | CA > Nº 4 (or)    | 0.00                            |        |
| N°4      | 4.75                           | 0.00        | 0.00         | 0.00               | 100.00 |                             | O/ 1 1 4 (g/)     | 0.00                            |        |
| TOTAL    | WG=                            | 0.00        |              |                    |        | PESO TOTAL MUESTRA SE       | CA (m)            | 500.00                          |        |
|          | AN                             | ALISIS FRAC | CION FINA    |                    |        | FESO TOTAL MIDESTRA SE      | CA (gr)           | 300.00                          |        |
|          | MUESTRA CUART<br>PORCION SECA: | EADA:       |              | 0.200000<br>500.00 |        | CONTENIDO DI<br>A.A.S.H.T.( |                   | LIMITES DE CONS<br>A.S.T.M. D 4 |        |
| N 10     | 2.00                           | 63.00       | 12.60        | 12.60              | 87.40  | A.A.S.H.I.                  | J. I 205          | A.S.I.M. D4                     | 318    |
| N 20     | 0.85                           | 18.00       | 3.60         | 16.20              | 83.80  | TARA Nº                     | 1                 | LIMITE LIQUIDO:                 | 43%    |
| N 30     | 0.60                           | 32.00       | 6.40         | 22.60              | 77.40  | PESO HUMEDO + TARA (gr)     | 2233.00           | LIMITE EIQUIDO .                | 43%    |
| N 40     | 0.43                           | 21.00       | 4.20         | 26.80              | 73.20  | PESO SECO + TARA (gr)       | 2021.00           | LIMITE PLASTICO :               | 30%    |
| N 60     | 0.25                           | 28.00       | 5.60         | 32.40              | 67.60  | PESO TARA (gr)              | 525.00            | LIIII LAGIOO.                   |        |
| N 100    | 0.15                           | 14.00       | 2.80         | 35.20              | 64.80  | PESO DEL AGUA (gr)          | 212.00            | INDICE PLASTICO :               | 13%    |
| N 200    | 0.08                           | 6,00        | 1.20         | 36.40              | 63.60  | PESO SECO (gr)              | 1496.00           | INDIOL I DASTICO .              | .576   |
| CAZOLETA | -,-                            | 2.00        | 0.40         |                    | L      | C. HUMEDAD (%)              | 14.17             |                                 | _      |
| TOTAL    | 1                              |             |              |                    |        | \$                          | 14.17             |                                 |        |



#### ANALISIS GRANULOMETRICO POR TAMIZADO

#### AASHTO T-27 ASTM D 422

TESIS:

MEJORAMIENTO DE SUELOS ARCILLOSOS UTILIZANDO CAUCHO GRANULAR DE NEUMATICOS PARA FINES CONSTRUCTIVOS DE PAVIMENTOS

UBICACIÓN:

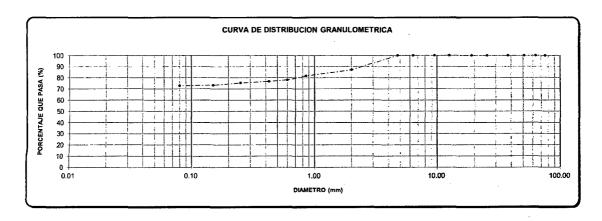
DIST. BAÑOS DEL INCA, PROV. CAJAMARCA, DPTO CAJAMARCA - (PORONGO - AEROPUERTO)

CALICATA:

N° 03 - M -1

PROFUNDIDAD (m): 1.50

PROGRESIVA (Km): 002 + 500


TESISTA:

WILDER DANNY CUSQUISIBAN OCAS

NOVIEMBRE 2014

COORDENADAS UTM. N 9,209,121.95 E. 778,563.22

|             | ANAL              | ISIS FRACC  | ION GRUESA   |            |        |                                       | MUESTRA          | TOTAL            |         |
|-------------|-------------------|-------------|--------------|------------|--------|---------------------------------------|------------------|------------------|---------|
|             | ramiz '           | P.RET       | PORCENTAJE   | PORCENTAJE | % QUE  | TEMPERATURA                           | AMBIENTE         | 60° C            | 110° C  |
| N°          | ABERTURA (mm)     | PARCIAL     | RET. PARCIAL | RET. ACUM  | PASA   | DE SECADO                             | AMBIENTE         | W C              | 110 0   |
| 3"          | 76.20             | 0.00        | 0.00         | 0.00       | 100.00 | PESO TOTAL MUESTRA HU                 | MEDA (m)         | 560.30           |         |
| 2 1/2"      | 63.50             | 0.00        | 0.00         | 0.00       | 100.00 | LOO TOTAL MIDEOTOTIO                  | mcon (gr)        | 300.30           |         |
| 2"          | 50.80             | 0.00        | 0.00         | 0.00       | 100.00 | PESO TOTAL MUESTRA HU                 | MEDA - MILL (m)  | 560.30           |         |
| 1 1/2"      | 38.10             | 0.00        | 0.00         | 0.00       | 100.00 | PESO TOTAL MOLSTRON HO                | MCDA - Is 4 (B)  | 360.30           |         |
| 1"          | 25.40             | 0.00        | 0.00         | 0.00       | 100.00 | PESO TOTAL MUESTRA HUMEDA > Nº 4 (gr) |                  | 0.00             |         |
| 3/4"        | 19.05             | 0.00        | 0.00         | 0.00       | 100.00 | PESO TOTAL MUESTRA HU                 | MEDA > N 4 (gr)  | 0.00             |         |
| 1/2"        | 12.70             | 0.00        | 0.00         | 0.00       | 100.00 | PESO TOTAL MUESTRA SE                 | 0                | 500.00           |         |
| 3/8"        | 9.52              | 0.00        | 0.00         | 0.00       | 100.00 | PESO TOTAL MUESTRA SE                 | CALCHE + (gr)    | 500.00           |         |
| 1/4"        | 6.35              | 0.00        | 0.00         | 0.00       | 100.00 | PESO TOTAL MUESTRA SECA > Nº 4 (cr)   |                  | 0.00             |         |
| N°4         | 4.75              | 0.00        | 0.00         | 0.00       | 100.00 | PESO TOTAL MUESTRA SE                 | CA > N° 4 (gr)   | 0.00             |         |
| TOTAL       | W G =             | 0.00        |              |            |        |                                       |                  |                  |         |
|             | AN                | ALISIS FRAC | CION FINA    |            |        | PESO TOTAL MUESTRA SE                 | CA (gr)          | 500.00           |         |
| ORRECCION I | UESTRA CUARTEADA: |             |              | 0.200000   |        | CONTENTO O                            |                  | LIMITES DE CONS  | CTENCIA |
| ESO ENSAYO  | PORCION SECA:     |             |              | 500.00     |        | CONTENIDO DE                          |                  | A.S.T.M. D4      |         |
| N 10        | 2.00              | 65.00       | 13.00        | 13.00      | 87.00  | A.A.S.H.1X                            | J. 1 203         | A.S.1.M. D.      | 3.0     |
| N 20        | 0.85              | 27.00       | 5.40         | 18.40      | 81.60  | TARA №                                | 1                | LIMITE LIQUIDO:  | 52%     |
| N 30        | 0.60              | 18.30       | 3.66         | 22.06      | 77.94  | PESO HUMEDO + TARA (gr                | 1745.00          | LIMITE LICOIDO:  | 5276    |
| N 40        | 0.43              | 6.40        | 1.28         | 23.34      | 76.66  | PESO SECO + TARA (gr)                 | 1568.00          | LOSTE DI ACTICO. | 2200    |
| N 60        | 0.25              | 7.20        | 1.44         | 24.78      | 75.22  | PESO TARA (gr)                        | 532.00           | LIMITE PLASTICO: | 33%     |
| N 100       | 0.15              | 9.50        | 1.90         | 26.68      | 73.32  | PESO DEL AGUA (gr) 177.00             | BEDICE DE ACTICO | 400              |         |
| N 200       | 0.08              | 3.20        | 0.64         | 27.32      | 72.68  | PESO SECO (gr)                        | 1036.00          | INDICE PLASTICO: | 19%     |
| CAZOLETA    | -,-               |             |              |            |        | C. HUMEDAD (%)                        | 17.08            |                  |         |
| TOTAL       |                   |             |              |            |        | C. NUMEDAD (%)                        | 17.08            |                  |         |



#### LIMITES DE ATTERBERG A.S.T.M. D 4318

TESIS:

MEJORAMIENTO DE SUELOS ARCILLOSOS UTILIZANDO CAUCHO GRANULAR DE NEUMATICOS PARA FINES CONSTRUCTIVOS DE PAVIMENTOS

UBICACIÓN:

DIST. BAÑOS DEL INCA, PROV. CAJAMARCA, DPTO CAJAMARCA - (PORONGO - AEROPUERTO)

CALICATA:

N° 01 - M -1

PROFUNDIDAD (m): 1.50

PROGRESIVA (Km): 000+500

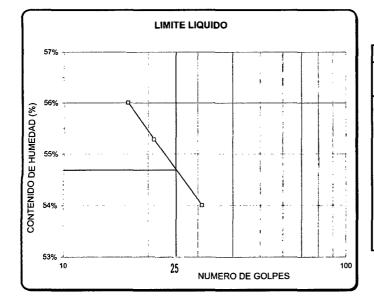
TESISTA:

WILDER DANNY CUSQUISIBAN OCAS

FECHA:

NOVIEMBRE 2014

COORDENADAS UTM. N 9,207,742.98 E. 779007.35


LABORATORIO:

| LIMITE LIQUIDO |        |        |        |  |
|----------------|--------|--------|--------|--|
| TARA Nº        | 1      | 2_     | 3      |  |
| Wt+ M.Húmeda   | 43.30  | 40.24  | 42.90  |  |
| Wt+ M. Seca    | 36.12  | 34.23  | 36.16  |  |
| W agua         | 7.18   | 6.01   | 6.74   |  |
| W tara         | 23.30  | 23.36  | 23.68  |  |
| W M.Seca       | 12.82  | 10.87  | 12.48  |  |
| W(%)           | 56.01% | 55.29% | 54.01% |  |
| N.GOLPES       | 17     | 21     | 31     |  |

| TEMPERATURA DE SECADO  |
|------------------------|
| PREPARACION DE MUESTRA |
| 60°C                   |
| CONTENIDO DE HUMEDAD   |
| 110° C                 |
| AGUA USADA             |
| POTABLE                |

| LIMITE PLASTICO |        |        |          |  |
|-----------------|--------|--------|----------|--|
| TARA №          | 4      | 5      | Promedio |  |
| Wt+ M.Húmeda    | 35.14  | 32.96  |          |  |
| Wt+ M. Seca     | 32.05  | 30.52  |          |  |
| W agua          | 3.09   | 2.44   |          |  |
| W tara          | 23.10  | 23.60  |          |  |
| W M.Seca        | 8.95   | 6.92   |          |  |
| W(%)            | 34.53% | 35.26% | 34.89%   |  |

| LIMITE<br>LIQUIDO        | 55% |
|--------------------------|-----|
| LIMITE<br>PLASTICO       | 35% |
| INDICE<br>DE PLASTICIDAD | 20% |



| PUNTO  |
|--------|
| FACTOR |
| К      |
| 0.974  |
| 0.979  |
| 0.985  |
| 0.990  |
| 0.995  |
| 1.000  |
| 1.005  |
| 1.009  |
| 1.014  |
| 1.018  |
| 1.022  |
|        |

#### LIMITES DE ATTERBERG A.S.T.M. D 4318 - 93

TESIS:

MEJORAMIENTO DE SUELOS ARCILLOSOS UTILIZANDO CAUCHO GRANULAR DE NEUMATICOS PARA FINES

CONSTRUCTIVOS DE PAVIMENTOS

Laboratorio de mecanica de suelos y ensayo de materiales del Ing. Wilfredo Fernandez Muños. Docente principal UNC.

UBICACIÓN:

DIST. BAÑOS DEL INCA, PROV. CAJAMARCA, DPTO CAJAMARCA - (PORONGO - AEROPUERTO)

CALICATA:

N° 02 - M -1 PROFUNDIDAD (m): 1.50

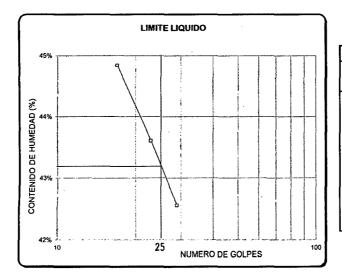
TESISTA:

WILDER DANNY CUSQUISIBAN OCAS

PROGRESIVA (Km): 001 + 500

FECHA: LABORATORIO: NOV!EMBRE 2014 COORDENADAS UTM. N 9,208,477.44 E. 778,847.38

 LIMITE LIQUIDO


 TARA N°
 1
 2
 3

Wt+ M.Húmeda 40.62 40.10 38.85 Wt+ M. Seca 35.32 34.92 34.287 W agua 5.30 5.18 4.57 23.50 23.04 23.54 W M.Seca 11.82 11.88 10.74 W(%) 44,84% 43.60% 42.55% N.GOLPES 17 23 29

|                        | _ |
|------------------------|---|
| TEMPERATURA DE SECADO  |   |
| PREPARACION DE MUESTRA |   |
| 60°C                   |   |
| CONTENIDO DE HUMEDAD   |   |
| 110° C                 |   |
| AGUA USADA             |   |
| POTABLE                |   |
| FORBLE                 |   |
|                        |   |

| LIMITE PLASTICO |        |        |          |  |
|-----------------|--------|--------|----------|--|
| TARA Nº         | 4      | 5      | Promedio |  |
| Wt+ M.Húmeda    | 38.20  | 38.36  | }        |  |
| Wt+ M. Seca     | 34.80  | 35.04  |          |  |
| W agua          | 3.40   | 3.32   |          |  |
| W tara          | 23.65  | 23.70  |          |  |
| W M.Seca        | 11.15  | 11.34  |          |  |
| W(%)            | 30.49% | 29.28% | 29.89%   |  |

| LIMITE         | 43% |
|----------------|-----|
| LIQUIDO        |     |
| LIMITE         | 30% |
| PLASTICO       |     |
| INDICE         | 13% |
| DE PLASTICIDAD |     |



| UNIPUNTO  |        |  |  |  |  |  |
|-----------|--------|--|--|--|--|--|
| Nº GOLPES | FACTOR |  |  |  |  |  |
| N         | к      |  |  |  |  |  |
| 20        | 0.974  |  |  |  |  |  |
| 21        | 0.979  |  |  |  |  |  |
| 22        | 0.985  |  |  |  |  |  |
| 23        | 0.990  |  |  |  |  |  |
| 24        | 0.995  |  |  |  |  |  |
| 25        | 1.000  |  |  |  |  |  |
| 26        | 1.005  |  |  |  |  |  |
| 27        | 1.009  |  |  |  |  |  |
| 28        | 1.014  |  |  |  |  |  |
| 29        | 1.018  |  |  |  |  |  |
| 30        | 1.022  |  |  |  |  |  |

#### LIMITES DE ATTERBERG A.S.T.M. D 4318

TESIS:

MEJORAMIENTO DE SUELOS ARCILLOSOS UTILIZANDO CAUCHO GRANULAR DE NEUMATICOS PARA FINES CONSTRUCTIVOS DE PAVIMENTOS

UBICACIÓN:

DIST. BAÑOS DEL INCA, PROV. CAJAMARCA, DPTO CAJAMARCA - (PORONGO - AEROPUERTO)

CALICATA:

PROFUNDIDAD (m): 1.50 N° 03 - M -1

NOVIEMBRE 2014

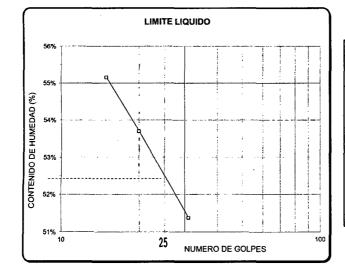
PROGRESIVA (Km): 002 + 500

TESISTA:

WILDER DANNY CUSQUISIBAN OCAS

FECHA:

COORDENADAS UTM. N 9,209,121.95 E. 778,563.22


LABORATORIO:

| LIMITE LIQUIDO |        |        |        |  |  |  |
|----------------|--------|--------|--------|--|--|--|
| TARA Nº        | 1      | 2      | 3      |  |  |  |
| Wt+ M.Húmeda   | 42.22  | 40.23  | 42.19  |  |  |  |
| Wi+ M. Seca    | 35.64  | 34.42  | 35.83  |  |  |  |
| W agua         | 6.58   | 5.81   | 6.36   |  |  |  |
| W tara         | 23.71  | 23.60  | 23.45  |  |  |  |
| W M.Seca       | 11.93  | 10.82  | 12.38  |  |  |  |
| W(%)           | 55.16% | 53.70% | 51.37% |  |  |  |
| N.GOLPES       | 15     | 20     | 31     |  |  |  |

| TEMPERATURA DE SECADO  |  |  |  |  |  |  |
|------------------------|--|--|--|--|--|--|
| PREPARACION DE MUESTRA |  |  |  |  |  |  |
| 60°C                   |  |  |  |  |  |  |
| CONTENIDO DE HUMEDAD   |  |  |  |  |  |  |
| 110° C                 |  |  |  |  |  |  |
| AGUA USADA             |  |  |  |  |  |  |
|                        |  |  |  |  |  |  |
| POTABLE                |  |  |  |  |  |  |
|                        |  |  |  |  |  |  |

| LIMITE PLASTICO |        |        |          |  |  |  |
|-----------------|--------|--------|----------|--|--|--|
| TARA Nº         | 4      | 5      | Promedio |  |  |  |
| Wt+ M.Húmeda    | 26.06  | 26.80  |          |  |  |  |
| Wt+ M. Seca     | 25.42  | 25.95  | Ĭ        |  |  |  |
| W agua          | 0.64   | 0.85   |          |  |  |  |
| W tara          | 23.37  | 23.44  |          |  |  |  |
| W M.Seca        | 2.05   | 2.51   |          |  |  |  |
| W(%)            | 31.22% | 33.86% | 32.54%   |  |  |  |

| LIMITE<br>LIQUIDO        | 52% |
|--------------------------|-----|
| LIMITE<br>PLASTICO       | 33% |
| INDICE<br>DE PLASTICIDAD | 19% |



| UNIPUNTO  |        |  |  |  |  |
|-----------|--------|--|--|--|--|
| Nº GOLPES | FACTOR |  |  |  |  |
| N         | к      |  |  |  |  |
| 20        | 0.974  |  |  |  |  |
| 21        | 0.979  |  |  |  |  |
| 22        | 0.985  |  |  |  |  |
| 23        | 0.990  |  |  |  |  |
| 24        | 0.995  |  |  |  |  |
| 25        | 1.000  |  |  |  |  |
| 26        | 1.005  |  |  |  |  |
| 27        | 1.009  |  |  |  |  |
| 28        | 1.014  |  |  |  |  |
| 29        | 1.018  |  |  |  |  |
| 30        | 1.022  |  |  |  |  |

TESIS:

MEJORAMIENTO DE SUELOS ARCILLOSOS UTILIZANDO CAUCHO GRANULAR DE NEUMATICOS PARA FINES CONSTRUCTIVOS DE PAVIMENTOS

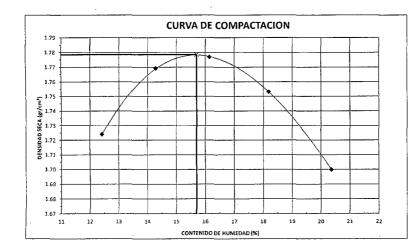
UBICACIÓN:

DIST. BAÑOS DEL INCA, PROV. CAJAMARCA, DPTO CAJAMARCA - (PORONGO - AEROPUERTO)

CALICATA:

N° 01 - M -1

PROFUNDIDAD (m): 1.50


PROGRESIVA (Km): 000+500

TESISTA: FECHA:

WILDER DANNY CUSQUISIBAN OCAS

NOVIEMBRE 2014 COORDENADAS UTM. N 9,207,742.98 E. 779007.35 CONDICION: 0% CAUCHO

|          | NUMERO DE ENSAYO                   | 1                                    |         | 2       |                   | 3       |         | 4       |         | 5       |         |
|----------|------------------------------------|--------------------------------------|---------|---------|-------------------|---------|---------|---------|---------|---------|---------|
|          | N° de Capas                        | 5                                    |         | . 5     | 5                 |         | 5       |         | 5       | 5       |         |
| 1        | N° de Golpes por Capa              | 25                                   | 25      |         | 25                |         | 25      |         | 5       | 25      |         |
| DENSIDAD | Peso Húmedo + Molde (gr)           | 6202.00                              |         | 6282    | 6282.00           |         | 6322.00 |         | 0.00    | 6305.00 |         |
| Sã.      | Peso Molde (gr)                    | 4349.00                              |         | 4349    | 4349.00           |         | 4349.00 |         | 9.00    | 4349.00 |         |
|          | Peso Húmedo (gr)                   | 1853.00                              |         | 1933    | 1933.00<br>956.00 |         | 1973.00 |         | 1.00    | 1956.00 |         |
| ļ        | Volumen del Molde (cm³)            | 956.00                               |         | 956.    |                   |         | 956.00  |         | 5.00    | 956,00  |         |
|          | Densidad Húmeda (gr/cm³)           | 1.938                                |         | 2.0     | 2.022             |         | 2.064   |         | )72     | 2.046   |         |
| ļ        | Ensayo                             | 1 2                                  |         |         | 3                 |         | 4       |         | 5       |         |         |
|          | Peso Húmedo + Tara (gr)            | 1458.00                              | 1245.00 | 1745.00 | 1632.00           | 1245.00 | 1187.00 | 1452.00 | 1374.00 | 1391.00 | 1355.00 |
|          | Peso Seco + Tara (gr)              | 1307.00                              | 1118.00 | 1539.00 | 1439.00           | 1085.00 | 1035.00 | 1244.00 | 1176.00 | 1171.00 | 1142.00 |
| HUMEDAD  | Peso Agua (gr)                     | 151.00                               | 127.00  | 206.00  | 193,00            | 160.00  | 152.00  | 208.00  | 198.00  | 220.00  | 213.00  |
| Æ        | Peso Tara (gr)                     | 97.00                                | 92.00   | 95.00   | 90.00             | 93.00   | 95.00   | 98.00   | 90.00   | 92.00   | 95.00   |
|          | Peso Muestra Seca (gr)             | 1210.00                              | 1026.00 | 1444.00 | 1349.00           | 992.00  | 940.00  | 1146.00 | 1086.00 | 1079.00 | 1047.00 |
|          | Contenido de Humedad (% )          | 12.48                                | 12.38   | 14.27   | 14.31             | 16.13   | 16.17   | 18.15   | 18.23   | 20.39   | 20.34   |
|          | C. Humedad (% ) promedio           | C. Humedad (% ) promedio 12.43 14.29 |         | 16.15   |                   | 18.19   |         | 20.37   |         |         |         |
|          | DENSIDAD SECA (gr/cm³) 1.724 1.769 |                                      | 1.777   |         | 1.753             |         | 1.      | 700     |         |         |         |



| DENSIDAD SECA MAXIMA :    | 1.779 | gr/cm3 |  |
|---------------------------|-------|--------|--|
| CONT. DE HUMEDAD OPTIMO : | 15.70 | %      |  |

| METODO DE ENSAYO :   | "A"          |
|----------------------|--------------|
| DIAMETRO DE MOLDE :  | 4"           |
| CONDICION DE SECADO: | HORNO 110 °C |
| OBSERVACIONES:       |              |
|                      |              |

TESIS:

MEJORAMIENTO DE SUELOS ARCILLOSOS UTILIZANDO CAUCHO GRANULAR DE NEUMATICOS PARA FINES CONSTRUCTIVOS DE PAVIMENTOS

CALICATA:

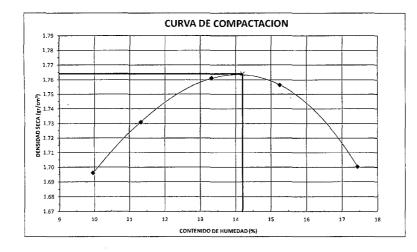
DIST. BANOS DEL INCA, PROV. CAJAMARCA, DPTO CAJAMARCA - (PORONGO - AEROPUERTO) N° 02 - M -1

PROFUNDIDAD (m): 1.50

PROGRESIVA (Km): 001+500

TESISTA: FECHA:

WILDER DANNY CUSQUISIBAN OCAS


NOVIEMBRE 2014

COORDENADAS UTM. N 9,208,477.44 E. 778,847.38

CONDICION: 0% CAUCHO

LABORATORIO: Laboratorio de mecanica de suelos y ensayo de materiales del Ing. Wilfredo Fernandez Muños. Docente principal UNC.

|          | NUMERO DE ENSAYO         | 1                         |         | 2       |         | 3                        |         | 4                        |         | 5                        |        |
|----------|--------------------------|---------------------------|---------|---------|---------|--------------------------|---------|--------------------------|---------|--------------------------|--------|
|          | N° de Capas              | 5                         |         | 5       |         | 5                        |         | 5                        |         | 5                        |        |
| ۵        | N* de Golpes por Capa    | 25                        |         | 25      | 5       | 25<br>6257.00<br>4349.00 |         | 25<br>6284.00<br>4349.00 |         | 25<br>6258.00<br>4349.00 |        |
| DENSIDAD | Peso Húmedo+ Molde (gr)  | 6132.00                   | )       | 6191    | .00     |                          |         |                          |         |                          |        |
| DEN      | Peso Molde (gr)          | 4349.00                   | )       | 4349    | .00     |                          |         |                          |         |                          |        |
|          | Peso Húmedo (gr)         | 1783.00                   | )       | 1842.00 | 1908.00 |                          | 1935.00 |                          | 1909.00 |                          |        |
|          | Volumen del Moide (cm³)  | 956.00                    |         | 956.    | 956.00  |                          | 956.00  |                          | 5.00    | 956.00                   |        |
|          | Densidad Húmeda (gr/cm³) | neda (gr/cm³) 1.865 1.927 |         | 27      | 1.996   |                          | 2.024   |                          | 1.997   |                          |        |
|          | Ensayo                   | 0 1 2                     |         | 3       |         | 4                        |         | 5                        |         |                          |        |
|          | Peso Húmedo + Tara (gr)  | 1292.00                   | 1512.00 | 1421.00 | 1532.00 | 958.00                   | 955.00  | 989.00                   | 888.00  | 941.00                   | 966.00 |
| _        | Peso Seco + Tara (gr)    | 1185.00                   | 1384.00 | 1288.00 | 1386,00 | 860.00                   | 855.00  | 875.00                   | 789.00  | 821.00                   | 838.00 |
| нимерар  | Peso Agua (gr)           | 107.00                    | 128.00  | 133.00  | 146.00  | 98.00                    | 100.00  | 114.00                   | 99.00   | 120.00                   | 128.00 |
| Š        | Peso Tara (gr)           | 104.00                    | 107.00  | 98.00   | 112.00  | 112.00                   | 117.00  | 121.00                   | 145.00  | 128.00                   | 109.00 |
|          | Peso Muestra Seca (gr)   | 1081.00                   | 1277.00 | 1190.00 | 1274.00 | 748.00                   | 738.00  | 754.00                   | 644.00  | 693.00                   | 729.00 |
|          | Contenido de Humedad (%) | 9.90                      | 10.02   | 11.18   | 11.46   | 13.10                    | 13.55   | 15.12                    | 15.37   | 17.32                    | 17.56  |
|          | C. Humedad (%) promedio  | 9.96                      |         | 11.32   |         | 13.33                    |         | 15.25                    |         | 17,44                    |        |
|          | DENSIDAD SECA (gr/cm²)   | 1,696                     |         | 1.73    | 31      | 1.76                     | 1       | 1.7                      | 756     | 1,700                    |        |



1.764 gr/cm3 DENSIDAD SECA MAXIMA : CONT. DE HUMEDAD OPTIMO: 14.20 %

| METODO DE ENSAYO :   | "A"          |
|----------------------|--------------|
| DIAMETRO DE MOLDE :  | 4"           |
| CONDICION DE SECADO: | HORNO 110 °C |
| OBSERVACIONES:       |              |
|                      |              |
|                      |              |
|                      |              |
|                      |              |

TESIS:

MEJORAMIENTO DE SUELOS ARCILLOSOS UTILIZANDO CAUCHO GRANULAR DE NEUMATICOS PARA FINES CONSTRUCTIVOS DE

UBICACIÓN:

DIST. BAÑOS DEL INCA, PROV. CAJAMARCA, DPTO CAJAMARCA - (PORONGO - AEROPUERTO)

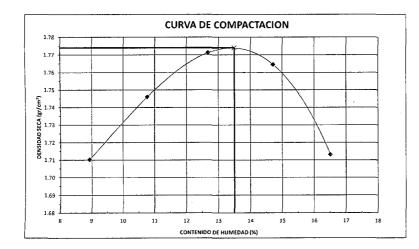
PROFUNDIDAD (m): 1.50

CALICATA:

PROGRESIVA (Km): 002+500

TESISTA: WILDER DANNY CUSQUISIBAN OCAS

FECHA:


NOVIEMBRE 2014

COORDENADAS UTM. N 9,209,121.95 E. 778,563.22

CONDICION: 0% CAUCHO

LABORATORIO: Laboratorio de mecanica de suelos y ensayo de materiales del Ing. Wilfredo Fernandez Muños. Docente principal UNC.

|          | NUMERO DE ENSAYO         | 1       |         | 2       |         | 3       |        |         | 4      |         | 5      |
|----------|--------------------------|---------|---------|---------|---------|---------|--------|---------|--------|---------|--------|
|          | N° de Capas              | 5       |         | 5       |         | 5       |        |         | 5      | !       | 5      |
| _        | N° de Golpes por Capa    | 25      |         | 25      |         | 25      | 25     |         | :5     | 25      |        |
| DENSIDAD | Peso Húmedo+ Molde (gr)  | 6130.00 | )       | 6198.00 |         | 6257.00 |        | 628     | 4.00   | 625     | 7.00   |
| DEN      | Peso Molde (gr)          | 4349.00 | 0       | 4349.00 |         | 4349.00 |        | 434     | 9.00   | 434     | 9.00   |
|          | Peso Húmedo (gr)         | 1781.00 | 0       | 1849.00 |         | 1908.00 |        | 1935.00 |        | 1908,00 |        |
|          | Volumen dei Molde (cm³)  | 956.00  |         | 956.00  |         | 956.00  |        | 956.00  |        | 956.00  |        |
|          | Densidad Húmeda (gr/cm²) | 1.863   |         | 1.934   |         | 1.996   |        | 2.024   |        | 1.9     | 996    |
|          | Ensayo                   | 1       |         | 2       |         | 3       |        |         | 4 .    |         | 5      |
|          | Peso Húmedo + Tara (gr)  | 1282.00 | 1514,00 | 1444.00 | 1222.00 | 968.00  | 958.00 | 814.00  | 902.00 | 956.00  | 975.00 |
|          | Peso Seco + Tara (gr)    | 1186.00 | 1398.00 | 1312.00 | 1115.00 | 871.00  | 864.00 | 725.00  | 805.00 | 838.00  | 853.00 |
| нимерар  | Peso Agua (gr)           | 96.00   | 116.00  | 132.00  | 107.00  | 97.00   | 94.00  | 89.00   | 97.00  | 118.00  | 122.00 |
| HUM      | Peso Tara (gr)           | 104.00  | 107.00  | 98.00   | 112.00  | 112.00  | 117.00 | 121.00  | 145.00 | 128.00  | 109.00 |
|          | Peso Muestra Seca (gr)   | 1082.00 | 1291.00 | 1214.00 | 1003.00 | 759.00  | 747.00 | 604.00  | 660.00 | 710.00  | 744.00 |
|          | Contenido de Humedad (%) | 8.87    | 8.99    | 10.87   | 10.67   | 12.78   | 12.58  | 14.74   | 14.70  | 16.62   | 16.40  |
|          | C. Humedad (%) promedio  | 8.93    | 8.93    |         | 10.77   |         | 12.68  |         | .72    | 16.51   |        |
|          | DENSIDAD SECA (gr/cm²)   | 1.710   |         | 1.7     | 1,746   |         | 1.771  |         | 764    | 1,713   |        |



DENSIDAD SECA MAXIMA : 1.774 gr/cm3 CONT. DE HUMEDAD OPTIMO: 13.59 %

METODO DE ENSAYO : DIAMETRO DE MOLDE : CONDICION DE SECADO: HORNO 110 °C OBSERVACIONES:

TESIS:

MEJORAMIENTO DE SUELOS ARCILLOSOS UTILIZANDO CAUCHO GRANULAR DE NEUMATICOS PARA FINES **CONSTRUCTIVOS DE PAVIMENTOS** 

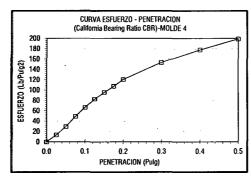
UBICACIÓN: DIST. BAÑOS DEL INCA, PROV. CAJAMARCA, DPTO CAJAMARCA - (PORONGO - AEROPUERTO)

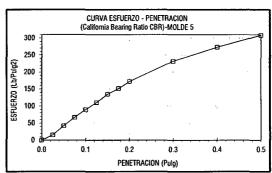
CALICATA: Nº 01 - M -1

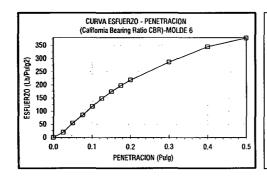
PROFUNDIDAD (m): 1.50

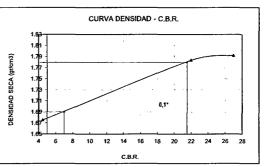
PROGRESIVA (Km): 000+500

TESISTA: WILDER DANNY CUSQUISIBAN OCAS


NOVIEMBRE 2014 COORDEN/COORDENADAS UTM. N 9,207,742.98 E. 779007.35


CONDICION: 0% CAUCHO


|                          |            |                     | COM     | PACTACION C       | BR            |         |          |         |         |  |
|--------------------------|------------|---------------------|---------|-------------------|---------------|---------|----------|---------|---------|--|
| NUMERO MOLDE             |            | 4                   |         |                   | 5             |         |          | 6       |         |  |
| Altura Molde (mm)        |            | 126                 |         | ĺ                 | 126           | ĺ       |          | 126     |         |  |
| N° Capas                 |            | 5                   |         | İ                 | 5             |         |          | 5       |         |  |
| N°Golpes x Capa          |            | 12                  | 25      |                   | 25            |         |          | 56      |         |  |
| Condición de Muestra     | ANTES DE E | ANTES DE EMPAPAR DE |         | ANTES DE EMPAPAR  |               | DESPUES | ANTES DE | EMPAPAR | DESPUES |  |
| P. Húmedo + Molde        | 11954      | 4.0                 | 12098.0 | 12098.0 12549.0   |               | 12569.0 | 1270     | 02.0    | 12742.0 |  |
| Peso Molde (gr)          | 7801       | .0                  | 7801.0  | 7955.0            |               | 7965.0  | 7945.0   |         | 7945.0  |  |
| Pesa Húmedo (gr)         | 4153       | 4153.0 4297.0       |         | 4594.0            |               | 4614.0  | 4757.0   |         | 4797.0  |  |
| Volumen del Molde (cm3)  | 2323.      | 2323.00             |         |                   | 2306.00       | 2306.00 | 230      | 8.00    | 2308.00 |  |
| Densidad Húmeda (gr/cm3) | 1.78       | 88                  | 1.850   | 1.992             |               | 2.001   | 2.0      | 61      | 2.078   |  |
| Número de Ensayo         | 1-A        | 1-B                 | 1-C     | 2-A               | 2-B           | 2-C     | 3-A      | 3-B     | 3-C     |  |
| P.Húmedo + Tara          | 840.00     | 848.00              | 818.00  | 859.00            | 752.00        | 928.00  | 920.00   | 850.00  | 986.00  |  |
| Peso Seco + Tara         | 781.00     | 782.00              | 750.00  | 785.00            | 686.00        | 838.00  | 824.00   | 761.00  | 865.00  |  |
| Peso Agua (gr)           | 59.00      | 66.00               | 68.00   | 74.00             | 66.00         | 90.00   | 96.00    | 89.00   | 121.00  |  |
| Peso Tara (gr)           | 95.00      | 95.00               | 97.00   | 102.00            | 91.00         | 101.00  | 106.00   | 106.00  | 108.00  |  |
| P. Muestra Seca          | 686.00     | 687.00              | 653.00  | .00 683.00 595.00 |               | 737.00  | 718.00   | 655.00  | 757.00  |  |
| Contenido de Humedad     | 8.60%      | 60% 9.61% 10.41%    |         | 10.83%            | 10.83% 11.09% |         | 13.37%   | 13.59%  | 15.98%  |  |
| C.Humedad Promedio       | 9.10       | %                   | 10,41%  |                   | 10.96%        | 12.21%  | 13.4     | 48%     | 15,98%  |  |
| DENSIDAD SECA (gr/cm3)   | 1.63       | 1.639               |         | 1.795             |               | 1.783   | 1,816    |         | 1.792   |  |


|           |        |         |              | ENSA    | O DE HINCHAMII | ENTO            |      |         |              |      |
|-----------|--------|---------|--------------|---------|----------------|-----------------|------|---------|--------------|------|
| TIE       | MPO    | NUM     | ERO DE MOL   | DE Nº 4 | NUM            | IERO DE MOLDE N | 5    | NUME    | LDE Nº 6     |      |
| ACUMULADO |        | LECTURA | HINCHAMIENTO |         | LECTURA        | HINCHAMIENTO    |      | LECTURA | HINCHAMIENTO |      |
| (Hs)      | (Dias) | DEFORM. | (mm)         | (%)     | DEFORM.        | (mm)            | (%)  | DEFORM. | (mm)         | (%)  |
| 0         | 0      | 0.000   | 0.000        | 0.00    | 0.000          | 0.000           | 0.00 | 0.000   | 0.000        | 0.00 |
| 24        | 1      | 0.447   | 11.354       | 9.01    | 0.062          | 1.575           | 1.25 | 0.040   | 1.016        | 0.81 |
| 48        | 2      | 0.703   | 17.856       | 14.17   | 0.088          | 2.235           | 1.77 | 0.041   | 1.041        | 0.83 |
| 72        | 3      | 0.183   | 4.648        | 3.69    | 0.095          | 2.413           | 1.92 | 0.061   | 1.549        | 1.23 |
| 96        | 4      | 0.203   | 5,156        | 4.09    | 0.124          | 3,150           | 2.50 | 0.068   | 1.727        | 1.37 |

|        |        |        |            | ENSAYO     | CARGA - PENETI | RACION     |            |        |          |            |  |  |
|--------|--------|--------|------------|------------|----------------|------------|------------|--------|----------|------------|--|--|
| PENETR | ACION  |        | MOLDE Nº 4 | 1          |                | MOLDE N° 5 |            |        |          | MOLDE N° 6 |  |  |
| (mm)   | (pulg) | CARGA  | ES         | SFUERZO    | CARGA          | ESFUERZO   |            | CARGA  | ESFUERZO |            |  |  |
|        |        | KG.    | (Kg/Cm2)   | (Lb/Pulg2) | KG.            | (Kg/Cm2)   | (Lb/Pulg2) | KG.    | (Kg/Cm2) | (Lb/Pulg2) |  |  |
| 0.00   | 0.000  | 0.00   | 0.00       | 0.00       | 0.00           | 0.00       | 0.00       | 0.00   | 0.00     | 0.00       |  |  |
| 0.64   | 0.025  | 18.16  | 0.94       | 13.41      | 20.62          | 1.07       | 15.22      | 26.61  | 1.38     | 19.64      |  |  |
| 1.27   | 0.050  | 39.75  | 2.05       | 29.35      | 56.92          | 2.94       | 42.03      | 74.11  | 3.83     | 54.72      |  |  |
| 1.91   | 0.075  | 66.63  | 3.44       | 49.19      | 90.44          | 4.67       | 66.77      | 115.29 | 5.96     | 85.12      |  |  |
| 2.54   | 0.100  | 90.14  | 4.66       | 66.55      | 121.17         | 6.26       | 89.46      | 159.65 | 8.25     | 117,87     |  |  |
| 3.18   | 0.125  | 112.13 | 5.79       | 82.78      | 149.11         | 7.71       | 110.08     | 200.85 | 10.38    | 148,28     |  |  |
| 3.81   | 0.150  | 129.50 | 6.69       | 95.61      | 182.64         | 9.44       | 134.84     | 235.72 | 12.18    | 174.03     |  |  |
| 4.45   | 0,175  | 145.54 | 7.52       | 107.45     | 205.00         | 10.59      | 151.35     | 267.42 | 13.82    | 197.43     |  |  |
| 5.08   | 0.200  | 163.40 | 8.44       | 120.63     | 232.95         | 12.04      | 171.98     | 295.96 | 15.29    | 218.50     |  |  |
| 7.62   | 0.300  | 208.05 | 10.75      | 153.60     | 313.93         | 16.22      | 231.77     | 387.93 | 20.05    | 286.40     |  |  |
| 10.16  | 0.400  | 240.91 | 12.45      | 177.86     | 369.97         | 19.12      | 273.14     | 467.26 | 24.15    | 344.97     |  |  |
| 12.70  | 0.500  | 269.73 | 13.94      | 199.13     | 417.53         | 21.58      | 308.25     | 511.69 | 26.44    | 377.77     |  |  |









| MOLDE   | PENETRAC. | PRESION APLICADA     | PRESION PATRON | C.B.R. | DENSIDAD SECA |
|---------|-----------|----------------------|----------------|--------|---------------|
| N°      | (pulg)    | CORREGIDA (Lb/pulg2) | (Lb/pulg2)     | %      | (gr/cm3)      |
| MOLDE 4 | 0.1       | 45.00                | 1000           | 4.50   | 1.68          |
| MOLDE 5 | 0,1       | 220.00               | 1000           | 22.00  | 1.78          |
| MOLDE 6 | 0.1       | 270.00               | 1000           | 27.00  | 1.79          |

| ENSAYO PROCTOR MODIFICADO         |       | VALOR RELATIVO DE SOPORTE C.B.R.         |       |  |  |  |  |
|-----------------------------------|-------|------------------------------------------|-------|--|--|--|--|
| DENSIDAD SECA MAXIMA (gr/cm3) :   | 1.779 | C.B.R. Para et 95% de la M.D.S. (0,1")=  | 7.0%  |  |  |  |  |
| CONTENIDO DE HUMEDAD OPTIMO (%) : | 15.70 | C.B.R. Para el 100% de la M.D.S. (0,1")= | 21.5% |  |  |  |  |

#### **ENSAYO CALIFORNIA BEARING RATIO (CBR)**

A.A.S.H.T.O. T 193 - A.S.T.M. D 1883 (99)

TESIS:

MEJORAMIENTO DE SUELOS ARCILLOSOS UTILIZANDO CAUCHO GRANULAR DE NEUMATICOS PARA FINES **CONSTRUCTIVOS DE PAVIMENTOS** 

UBICACIÓN: DIST. BAÑOS DEL INCA, PROV. CAJAMARCA, DPTO CAJAMARCA - (PORONGO - AEROPUERTO)

FECHA:

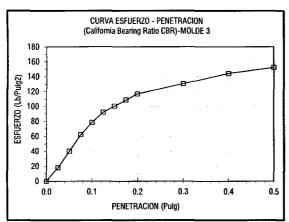
CALICATA: N° 02 - M -1

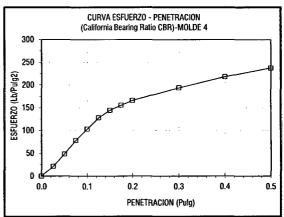
PROFUNDIDAD (m): 1.50

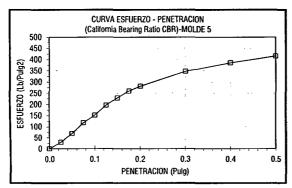
NOVIEMBRE 2014 COORDENADAS UTM. N 9,208,477.44 E. 778,847.38

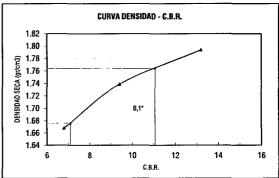
PROGRESIVA (Km): 001+500

TESISTA:


WILDER DANNY CUSQUISIBAN OCAS


**CONDICION: 0% CAUCHO** 


|                          |        |            | COMPAC  | TACION CBR |                  |         |        |            |         |
|--------------------------|--------|------------|---------|------------|------------------|---------|--------|------------|---------|
| NUMERO MOLDE             |        | 3          |         |            | 4                |         |        | 5          |         |
| Altura Molde (mm)        |        | 126        |         | 126        |                  |         |        |            |         |
| N° Capas                 |        | 5          | 5       |            |                  |         | 5      |            |         |
| N°Golpes x Capa          |        | 12         | 25      |            | 25               |         |        | 56         |         |
| Condición de Muestra     | ANTES  | DE EMPAPAR | DESPUES | ANTES D    | ANTES DE EMPAPAR |         | ANTES  | DE EMPAPAR | DESPUES |
| P. Húmedo + Molde        | 12     | 322.0      | 12452.0 | 12         | 478.0            | 12666.0 | 13     | 171.0      | 13308.0 |
| Peso Molde (gr)          | 7      | 752.0      | 7752.0  | 7802.0     |                  | 7802.0  | 8380.0 |            | 8380.0  |
| Peso Húmedo (gr)         | 4:     | 570.0      | 4700.0  | 4676.0     |                  | 4864.0  | 4791.0 |            | 4928.0  |
| Volumen del Molde (cm3)  | 23     | 15.00      | 2315.00 | 2321.00    |                  | 2321.00 | 23     | 323.00     | 2323.00 |
| Densidad Húmeda (gr/cm3) | 1      | .974       | 2.030   | 2.015      |                  | 2.096   | ] 2    | 2.062      | 2.121   |
| Número de Ensayo         | 1-A    | 1-B        | 1-C     | 2-A        | 2-B              | 2-C     | 3-A    | 3-B        | 3-C     |
| P.Húmedo + Tara          | 752.00 | 785.00     | 874.00  | 762.00     | 763.00           | 889.00  | 795.00 | 721.00     | 874.00  |
| Peso Seco + Tara         | 646.00 | 674.00     | 732.00  | 669.00     | 669.00           | 751.00  | 698.00 | 634.00     | 752.00  |
| Peso Agua (gr)           | 106.00 | 111.00     | 142.00  | 93.00      | 94.00            | 138.00  | 97.00  | 87.00      | 122.00  |
| Peso Tara (gr)           | 75.00  | 82.00      | 78.00   | 96.00      | 86.00            | 79.00   | 85.00  | 75.00      | 84.00   |
| P. Muestra Seca          | 571.00 | 592.00     | 654.00  | 573.00     | 583.00           | 672.00  | 613.00 | 559.00     | 668.00  |
| Contenido de Humedad     | 18.56% | 18.75%     | 21.71%  | 16.23%     | 16.12%           | 20.54%  | 15.82% | 15.56%     | 18.26%  |
| C.Humedad Promedio       | 1:     | 8.66%      | 21.71%  | 16         | 16.18%           |         | 15.69% |            | 18.26%  |
| DENSIDAD SECA (gr/cm3)   | 1      | .664       | 1.668   | 1          | .734             | 1.739   | 1      | .783       | 1.794   |


|           |                                                          |         |       | ENSAYO   | DE HINCHAMIENT | 0      |        |         |       |         |  |  |
|-----------|----------------------------------------------------------|---------|-------|----------|----------------|--------|--------|---------|-------|---------|--|--|
| TIE       | TIEMPO NUMERO DE MOLDE № 3 NUMERO DE MOLDE № 4 NUMERO DE |         |       |          |                |        |        |         |       |         |  |  |
| ACUMULADO |                                                          | LECTURA | HINC  | HAMIENTO | LECTURA        | HINCHA | MIENTO | LECTURA | HINCH | AMIENTO |  |  |
| (Hs)      | (Días)                                                   | DEFORM. | (mm)  | (%)      | DEFORM.        | (mm)   | (%)    | DEFORM. | (mm)  | (%)     |  |  |
| 0         | 0                                                        | 0.000   | 0.000 | 0.00     | 0.000          | 0.000  | 0.00   | 0.000   | 0.000 | 0.00    |  |  |
| 24        | 1                                                        | 0.094   | 2.388 | 1.89     | 0.073          | 1.854  | 1.47   | 0.049   | 1.245 | 0.99    |  |  |
| 48        | 2                                                        | 0.179   | 4.547 | 3.61     | 0.101          | 2.565  | 2.04   | 0.082   | 2.083 | 1.65    |  |  |
| 72        | 3                                                        | 0.201   | 5.105 | 4.05     | 0.197          | 5.004  | 3.97   | 0.137   | 3.480 | 2.76    |  |  |
| 96        | 4                                                        | 0.258   | 6.553 | 5.20     | 0.234          | 5.944  | 4.72   | 0.201   | 5.105 | 4.05    |  |  |

|        |        |        |          | ENSAYO CAR | RGA - PENETRA | CION       |            |        |            |           |  |
|--------|--------|--------|----------|------------|---------------|------------|------------|--------|------------|-----------|--|
| PENETR | ACION  |        | MOLDE N° | 3          | T             | MOLDE N° 4 |            |        | MOLDE N° 5 |           |  |
| (mm)   | (pulg) | CARGA  | ES       | FUERZO     | CARGA         | ESFU       | ERZO       | CARGA  | ESF        | UERZO     |  |
|        |        | KG.    | (Kg/Cm2) | (Lb/Pulg2) | KG.           | (Kg/Cm2)   | (Lb/Pulg2) | KG.    | (Kg/Cm2)   | (Lb/Pulg2 |  |
| 0.00   | 0.000  | 0.00   | 0.00     | 0.00       | 0.00          | 0.00       | 0.00       | 0.00   | 0.00       | 0.00      |  |
| 0.64   | 0.025  | 24.24  | 1.25     | 17.90      | 28.36         | 1.47       | 20.94      | 39.49  | 2.04       | 29.15     |  |
| 1.27   | 0.050  | 54.32  | 2.81     | 40.10      | 65.44         | 3.38       | 48.31      | 94.29  | 4.87       | 69.61     |  |
| 1.91   | 0.075  | 83.98  | 4.34     | 62.00      | 106.24        | 5.49       | 78.43      | 159.61 | 8.25       | 117.84    |  |
| 2.54   | 0.100  | 106.24 | 5.49     | 78.43      | 139.62        | 7.22       | 103.08     | 206.41 | 10.67      | 152.39    |  |
| 3.18   | 0.125  | 124.78 | 6.45     | 92.13      | 173.01        | 8.94       | 127.73     | 265.79 | 13.74      | 196.23    |  |
| 3.81   | 0.150  | 135.91 | 7.02     | 100.34     | 195.27        | 10.09      | 144.17     | 310.34 | 16.04      | 229.12    |  |
| 4.45   | 0.175  | 147.04 | 7.60     | 108.56     | 210.12        | 10.86      | 155.13     | 351.18 | 18.15      | 259.27    |  |
| 5.08   | 0.200  | 158.17 | 8.17     | 116.77     | 224.96        | 11.63      | 166.09     | 380.89 | 19.68      | 281.21    |  |
| 7.62   | 0.300  | 176,72 | 9.13     | 130.47     | 262.08        | 13.54      | 193.49     | 470.05 | 24.29      | 347.03    |  |
| 10.16  | 0.400  | 195.27 | 10.09    | 144.17     | 295.49        | 15.27      | 218.15     | 522.08 | 26.98      | 385.44    |  |
| 12.70  | 0.500  | 206.41 | 10.67    | 152.39     | 321.48        | 16.61      | 237.34     | 562.96 | 29.09      | 415.62    |  |









| 1401.05 | PENETRAC. | PRESION APLICADA     | PRESION PATRON | C.B.R. | DENSIDAD SECA |
|---------|-----------|----------------------|----------------|--------|---------------|
| MOLDE   | PENETRAC. |                      | PRESION PATRON | C.B.K. | DENSIDAD SECA |
| Nº      | (pulg)    | CORREGIDA (Lb/pulg2) | (Lb/pulg2)     | %      | (gr/cm3)      |
| MOLDE 3 | 0.1       | 68.00                | 1000           | 6.80   | 1.67          |
| MOLDE 4 | 0.1       | 94.00                | 1000           | 9.40   | 1.74          |
| MOLDE 5 | 0.1       | 132.00               | 1000           | 13.20  | 1.79          |

| ENSAYO PROCTOR MODIFICADO         |       | VALOR RELATIVO DE SOPORTE C.B.R.         |        |
|-----------------------------------|-------|------------------------------------------|--------|
| DENSIDAD SECA MAXIMA (gr/cm3) :   | 1.764 | C.B.R. Para el 95% de la M.D.S. (0,1")=  | 7.10%  |
| CONTENIDO DE HUMEDAD OPTIMO (%) : | 14.20 | C.B.R. Para el 100% de la M.D.S. (0,1")= | 11.05% |

TESIS:

MEJORAMIENTO DE SUELOS ARCILLOSOS UTILIZANDO CAUCHO GRANULAR DE NEUMATICOS PARA FINES CONSTRUCTIVOS DE PAVIMENTOS

UBICACIÓN: DIST. BAÑOS DEL INCA, PROV. CAJAMARCA, DPTO CAJAMARCA - (PORONGO - AEROPUERTO)

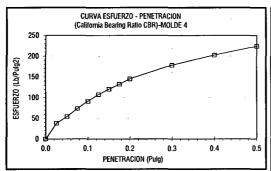
CALICATA: Nº 03 - M -1

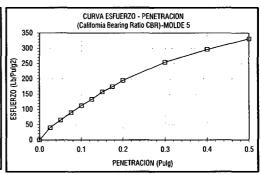
PROFUNDIDAD (m): 1.50

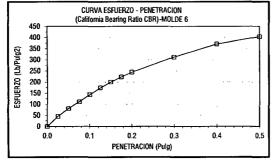
PROGRESIVA (Km): 002+500

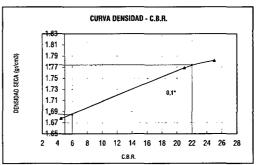
TESISTA: WILDER DANNY CUSQUISIBAN OCAS

FECHA: NOVIEMBRE 2014


COORDENADAS UTM. N 9,209,121.95 E. 778,563.22


CONDICION: 0% CAUCHO


|                          |             |                  | COMPACT | ACION CBR        |         |         |           |            |         |
|--------------------------|-------------|------------------|---------|------------------|---------|---------|-----------|------------|---------|
| NUMERO MOLDE             |             | 4                |         | T                | 5       |         |           | 6          |         |
| Altura Molde (mm)        |             | 126              |         |                  |         |         | 126       | 126        |         |
| N° Capas                 |             | 5                |         | 5                |         |         | 5         |            |         |
| N°Golpes x Capa          |             | 12               |         | 25               |         |         | 56        |            |         |
| Condición de Muestra     | ANTES DE EM | ANTES DE EMPAPAR |         | ANTES DE EMPAPAR |         | DESPUES | ANTES     | DE EMPAPAR | DESPUES |
| P. Húmedo + Molde        | 11954.0     |                  | 12098.0 | 12559.0          |         | 12569.0 | 12        | 2724.0     | 12758.0 |
| Peso Molde (gr)          | 7801.0      | 7801.0           |         | 7955.0           |         | 7955.0  | 7945.0    |            | 7945.0  |
| Peso Húmedo (gr)         | 4153.0      |                  | 4297.0  | 4604.0           |         | 4614.0  | 4779.0    |            | 4813.0  |
| Volumen del Molde (cm3)  | 2323.00     | )                | 2323.00 | 230              | 2306.00 |         | 2:        | 308.00     | 2308.00 |
| Densidad Húmeda (gr/cm3) | 1.788       |                  | 1.850   | 1.997            |         | 2.001   | <u></u> : | 2.071      | 2.085   |
| Número de Ensayo         | 1-A         | 1-B              | 1-C     | 2-A              | 2-B     | 2-C     | 3-A       | 3-B        | 3-C     |
| P.Húmedo + Tara          | 841.00      | 851.00           | 828.00  | 856.00           | 758.00  | 833.00  | 928.00    | 844.00     | 995.00  |
| Peso Seco + Tara         | 786.00      | 784.00           | 760.00  | 786.00           | 694.00  | 748.00  | 832.00    | 755.00     | 866.00  |
| Peso Agua (gr)           | 55.00       | 67.00            | 68.00   | 70.00            | 64.00   | 85.00   | 96.00     | 89.00      | 129.00  |
| Peso Tara (gr)           | 95.00       | 95.00            | 97.00   | 102.00           | 91.00   | 101.00  | 106,00    | 106,00     | 108.00  |
| P. Muestra Seca          | 691.00      | 689.00           | 663.00  | 684.00           | 603.00  | 647.00  | 726.00    | 649.00     | 758.00  |
| Contenido de Humedad     | 7.96%       | 9.72%            | 10.26%  | 10.23%           | 10.61%  | 13.14%  | 13.22%    | 13.71%     | 17.02%  |
| C.Humedad Promedio       | 8.84%       | 8.84%            |         | 10.42%           |         | 13.14%  | 13.47%    |            | 17.02%  |
| DENSIDAD SECA (gr/cm3)   | 1.643       |                  |         | 1.               | 808     | 1.769   | 1.825     |            | 1.782   |


|           |        |         |              | ENSAYO DE | HINCHAMIENTO |              |                   |         |              |      |
|-----------|--------|---------|--------------|-----------|--------------|--------------|-------------------|---------|--------------|------|
| TIE       | MPO    | NUME    | RO DE MOLDE  | N° 4      | NUMER        | O DE MOLDE   | NUMERO DE MOLDE N |         |              |      |
| ACUMULADO |        | LECTURA | HINCHAMIENTO |           | LECTURA      | HINCHAMIENTO |                   | LECTURA | HINCHAMIENTO |      |
| (Hs)      | (Dias) | DEFORM. | (mm)         | (%)       | DEFORM.      | (mm)         | (%)               | DEFORM. | (mm)         | (%)  |
| 0         | 0      | 0.000   | 0.000        | 0.00      | 0.000        | 0.000        | 0.00              | 0.000   | 0.000        | 0.00 |
| 24        | 1      | 0.447   | 11.354       | 9.01      | 0.058        | 1,473        | 1.17              | 0.036   | 0.914        | 0.73 |
| 48        | 2      | 0.703   | 17.856       | 14.17     | 0.078        | 1.981        | 1.57              | 0.054   | 1.372        | 1.09 |
| 72        | 3      | 0.183   | 4.648        | 3.69      | 0.088        | 2.235        | 1.77              | 0.068   | 1.727        | 1.37 |
| 96        | 4      | 0.203   | 5.156        | 4.09      | 0.102        | 2.591        | 2.06              | 0.078   | 1.981        | 1.57 |

|       |                        |        |          | ENSAYO CARG | A - PENETRACIO | N          |            |            |          |            |  |
|-------|------------------------|--------|----------|-------------|----------------|------------|------------|------------|----------|------------|--|
| PENET | PENETRACION MOLDE Nº 4 |        |          |             | 1              | MOLDE N° 5 |            | MOLDE N° 6 |          |            |  |
| (mm)  | (pulg)                 | CARGA  | ESFUERZO |             | CARGA          | ESFUERZO   |            | CARGA      | ESFUERZO |            |  |
|       |                        | KG.    | (Kg/Cm2) | (Lb/Pulg2)  | KG.            | (Kg/Cm2)   | (Lb/Pulg2) | KG.        | (Kg/Cm2) | (Lb/Pulg2) |  |
| 0.00  | 0.000                  | 0.00   | 0.00     | 0.00        | 0.00           | 0.00       | 0.00       | 0.00       | 0.00     | 0.00       |  |
| 0.64  | 0.025                  | 51,48  | 2.66     | 38.01       | 54.06          | 2.79       | 39.91      | 61.34      | 3.17     | 45.29      |  |
| 1.27  | 0.050                  | 73.08  | 3.78     | 53.95       | 87.83          | 4.54       | 64.84      | 108.86     | 5.63     | 80.37      |  |
| 1.91  | 0.075                  | 99.96  | 5.17     | 73.80       | 121.35         | 6.27       | 89.59      | 150.05     | 7.75     | 110.78     |  |
| 2.54  | 0.100                  | 123.48 | 6.38     | 91.16       | 152.08         | 7.86       | 112.28     | 194.41     | 10,05    | 143.53     |  |
| 3.18  | 0.125                  | 145.46 | 7.52     | 107.39      | 180.03         | 9.30       | 132.91     | 235.62     | 12.18    | 173.95     |  |
| 3.81  | 0.150                  | 162.84 | 8.42     | 120.22      | 213.57         | 11.04      | 157.67     | 270.49     | 13.98    | 199.70     |  |
| 4.45  | 0.175                  | 178.88 | 9.24     | 132.06      | 235.93         | 12.19      | 174.18     | 302.20     | 15,62    | 223.11     |  |
| 5.08  | 0.200                  | 196.74 | 10.17    | 145.25      | 263.88         | 13.64      | 194.82     | 330.74     | 17.09    | 244.18     |  |
| 7.62  | 0.300                  | 241.41 | 12.48    | 178.23      | 344.87         | 17.82      | 254.61     | 422.73     | 21.85    | 312.09     |  |
| 10.16 | 0.400                  | 274.26 | 14.17    | 202.48      | 400.92         | 20.72      | 295.99     | 502.07     | 25,95    | 370.67     |  |
| 12.70 | 0.500                  | 303.09 | 15.66    | 223.76      | 448.48         | 23.18      | 331.11     | 546.51     | 28.24    | 403.48     |  |









| MOLDE   | PENETRAC. PRESION APLICADA |                      | PRESION PATRON | C.B.R. | DENSIDAD SECA |
|---------|----------------------------|----------------------|----------------|--------|---------------|
| N°      | (puig)                     | CORREGIDA (Lb/pulg2) | (Lb/pulg2)     | %      | (gr/cm3)      |
| MOLDE 4 | 0.1                        | 45.00                | 1000           | 4.50   | 1.68          |
| MOLDE 5 | 0.1                        | 210.00               | 1000           | 21.00  | 1,77          |
| MOLDE 6 | 0.1                        | 250.00               | 1000           | 25.00  | 1.78          |

| ENSAYO PROCTOR MODIFICADO         |       | VALOR RELATIVO DE SOPORTE C.B.R.         |       |
|-----------------------------------|-------|------------------------------------------|-------|
| DENSIDAD SECA MAXIMA (gr/cm3) :   | 1.774 | C.B.R. Para el 95% de la M.D.S. (0,1")≔  | 6.0%  |
| CONTENIDO DE HUMEDAD OPTIMO (%) : | 13.50 | C.B.R. Para el 100% de la M.D.S. (0,1")= | 22.0% |

TESIS:

MEJORAMIENTO DE SUELOS ARCILLOSOS UTILIZANDO CAUCHO GRANULAR DE NEUMATICOS PARA FINES CONSTRUCTIVOS DE PAVIMENTOS

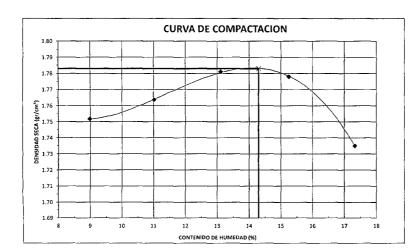
UBICACIÓN: CALICATA:

N° 01 - M -1 PROFUNDIDAD (m): 1.50

PROGRESIVA (Km): 000+500

TESISTA: FECHA:

WILDER DANNY CUSQUISIBAN OCAS


NOVIEMBRE 2014 COORDENADAS UTM. N 9,207,742.98 E. 779,007.35

CONDICION: 20% CAUCHO

LABORATORIO: Laboratorio de mecanica de suelos y ensayo de materiales del Ing. Wilfredo Fernandez Muños. Docente principal UNC.

DIST. BAÑOS DEL INCA, PROV. CAJAMARCA, DPTO CAJAMARCA - (PORONGO - AEROPUERTO)

|          | NUMERO DE ENSAYO         | 1         |        | 2       |         | 3       |         |         | 4      |         | 5      |
|----------|--------------------------|-----------|--------|---------|---------|---------|---------|---------|--------|---------|--------|
|          | N° de Capas              | 5         |        | 5       | 5       |         | 5       |         | 5      | 5       |        |
|          | N° de Golpes por Capa    | 25        |        | 25      |         | 25      | 25      |         | 5      | 25      |        |
| DENSIDAD | Peso Húmedo+ Molde (gr)  | 6174.00   |        | 6221.00 |         | 6275.00 |         | 6308.00 |        | 6295.00 |        |
| DEN      | Peso Molde (gr)          | 4349.00   |        | 4349.00 |         | 4349.00 |         | 4349.00 |        | 4349.00 |        |
| •        | Peso Húmedo (gr)         | 1825.00   |        | 1872    | 1872.00 |         | 1926.00 |         | 9.00   | 1946.00 |        |
|          | Volumen del Molde (cm³)  | 956.00    |        | 956.    | 956.00  |         | 956.00  |         | 6.00   | 956.00  |        |
|          | Densidad Húmeda (gr/cm³) | m³) 1.909 |        | 1.958   |         | 2.01    | 5       | 2.0     | 149    | 2.      | 036    |
| 1        | Ensayo                   | 1         |        | 2       |         | 3       | 3       |         | 4      |         | 5      |
|          | Peso Húmedo + Tara (gr)  | 953.00    | 968.00 | 932.00  | 962.00  | 916.00  | 998.00  | 982.00  | 857.00 | 959.00  | 969.00 |
|          | Peso Seco + Tara (gr)    | 881.00    | 897.00 | 849.00  | 876.00  | 820.00  | 894.00  | 864.00  | 756.00 | 831.00  | 840.00 |
| HUMEDAD  | Peso Agua (gr)           | 72.00     | 71.00  | 83.00   | 86.00   | 96.00   | 104.00  | 118.00  | 101.00 | 128.00  | 129.00 |
| HCM      | Peso Tara (gr)           | 90.00     | 96,00  | 98.00   | 95.00   | 97.00   | 91.00   | 95.00   | 90.00  | 96,00   | 92.00  |
|          | Peso Muestra Seca (gr)   | 791.00    | 801.00 | 751.00  | 781.00  | 723.00  | 803.00  | 769.00  | 666.00 | 735.00  | 748.00 |
| 1        | Contenido de Humedad (%) | 9,10      | 8.86   | 11,05   | 11.01   | 13.28   | 12.95   | 15.34   | 15.17  | 17,41   | 17.25  |
|          | C. Humedad (%) promedio  | 8.98      |        | 11.03   |         | 13.11   |         | 15.25   |        | 17,33   |        |
| <u></u>  | DENSIDAD SECA (gr/cm³)   | 1.752     |        | 1.70    | 64      | 1.78    | 1       | 1.7     | 78     | 1.      | 735    |



DENSIDAD SECA MAXIMA : 1.783 gr/cm3 CONT. DE HUMEDAD OPTIMO: 14.30 %

| "A"          |
|--------------|
| 4"           |
| HORNO 110 °C |
|              |
|              |
|              |
|              |
|              |
|              |

TESIS:

MEJORAMIENTO DE SUELOS ARCILLOSOS UTILIZANDO CAUCHO GRANULAR DE NEUMATICOS PARA FINES CONSTRUCTIVOS DE PAVIMENTOS

UBICACIÓN: CALICATA:

DIST. BAÑOS DEL INCA, PROV. CAJAMARCA, DPTO CAJAMARCA - (PORONGO - AEROPUERTO)

1.762

N° 02 - M -1 PROFUNDIDAD (m): 1.50 PROGRESIVA (Km): 001+500

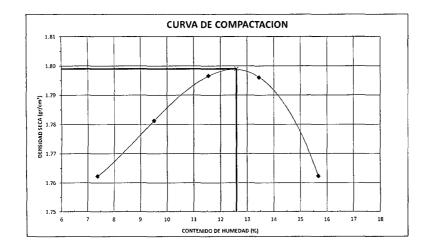
TESISTA:

WILDER DANNY CUSQUISIBAN OCAS

FECHA:

DENSIDAD SECA (gr/cm³)

NOVIEMBRE 2014 COORDENADAS UTM. N 9,208,477.44 E. 778,847.38 LABORATORIO: Laboratorio de mecanica de suelos y ensayo de materiales del Ing. Wilfredo Fernandez Muños. Docente principal UNC.


CONDICION: 20% CAUCHO

1.796

|          | NUMERO DE ENSAYO          | 1       |         | 2       | 2       |        | 3       |        | 4      | 5       |        |
|----------|---------------------------|---------|---------|---------|---------|--------|---------|--------|--------|---------|--------|
|          | N° de Capas               | 5       |         | 5       | 5       |        | 5       |        | 5      | 5       |        |
| 1        | Nº de Golpes por Capa     | 25      |         | 25      |         | 25     |         | 25     |        | 25      |        |
| DEMSIDAD | Peso Húmedo+ Molde (gr)   | 6158.00 | 6158.00 |         | 6214.00 |        | 6265.00 |        | 7.00   | 6298.00 |        |
| DE       | Pesa Molde (gr)           | 4349.00 |         | 4349    | 4349.00 |        | 4349.00 |        | 9.00   | 43      | 49.00  |
|          | Peso Húmedo (gr)          | 1809.00 |         | 1865.00 |         | 1916.  | 1916.00 |        | 8.00   | 1949.00 |        |
|          | Volumen del Molde (cm³)   | 956.00  |         | 956.00  |         | 956.0  | .00 95  |        | 5.00   | 956.00  |        |
|          | Densidad Húmeda (gr/cm³)  | 1.892   |         | 1.951   |         | 2.00   | 04 2    |        | 38     | 2.039   |        |
|          | Ensayo                    | 1       |         | 2       |         | 3      |         | 4      |        | 5       |        |
|          | Peso Húmedo + Tara (gr)   | 952.00  | 967.00  | 986.00  | 967.00  | 924.00 | 857.00  | 654.00 | 745.00 | 784.00  | 687.00 |
|          | Peso Seco + Tara (gr)     | 892.00  | 908.00  | 908.00  | 892.00  | 838.00 | 778.00  | 588.00 | 667.00 | 690.00  | 607.00 |
| HUMEDAD  | Peso Agua (gr)            | 60.00   | 59.00   | 78.00   | 75.00   | 86.00  | 79.00   | 66.00  | 78.00  | 94.00   | 80.00  |
| 臺        | Peso Tara (gr)            | 90.00   | 96.00   | 98.00   | 95.00   | 97.00  | 91.00   | 95.00  | 90.00  | 96.00   | 92.00  |
|          | Peso Muestra Seca (gr)    | 802.00  | 812.00  | 810.00  | 797.00  | 741.00 | 687.00  | 493.00 | 577.00 | 594.00  | 515.00 |
|          | Contenido de Humedad (% ) | 7.48    | 7.27    | 9.63    | 9.41    | 11.61  | 11.50   | 13.39  | 13.52  | 15.82   | 15.53  |
|          | C. Humedad (% ) promedio  | 7.37    |         | 9.5     | 2       | 11.5   | 5       | 13     | .45    | 15.68   |        |

1,781

1,797



| DENSIDAD SECA MAXIMA :    | 1.799 | gr/cm3 |
|---------------------------|-------|--------|
| CONT. DE HUMEDAD OPTIMO : | 12.6  | %      |

1.762

| METODO DE ENSAYO :   | "A"          |
|----------------------|--------------|
| DIAMETRO DE MOLDE :  | 4"           |
| CONDICION DE SECADO: | H0RN0 110 °C |
| OBSERVACIONES ;      |              |

TESIS:

MEJORAMIENTO DE SUELOS ARCILLOSOS UTILIZANDO CAUCHO GRANULAR DE NEUMATICOS PARA FINES CONSTRUCTIVOS DE PAVIMENTOS

UBICACIÓN:

DIST. BAÑOS DEL INCA, PROV. CAJAMARCA, DPTO CAJAMARCA - (PORONGO - AEROPUERTO)

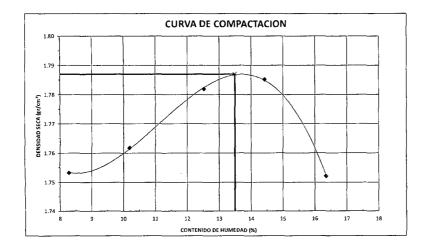
CALICATA:

N° 03 - M -1

PROFUNDIDAD (m): 1.50

PROGRESIVA (Km): 001+500

TESISTA: FECHA:


WILDER DANNY CUSQUISIBAN OCAS

NOVIEMBRE 2014 COORDENADAS UTM. N 9,209,121.95 E. 778,563.22

CONDICION: 20% CAUCHO

LABORATORIO: Laboratorio de mecanica de suelos y ensayo de materiales del Ing. Wilfredo Fernandez Muños. Docente principal UNC.

|          | NUMERO DE ENSAYO         | 1                              |        | 2      |         | 3        |         |        | 4      |         | 5      |
|----------|--------------------------|--------------------------------|--------|--------|---------|----------|---------|--------|--------|---------|--------|
|          | N° de Capas              | 5                              | _      | 5      | 5       |          | 5       |        | 5      | 5       |        |
|          | N° de Golpes por Capa    | 25                             |        | 25     |         | 25       |         | 25     |        | 25      |        |
| DENSIDAD | Peso Húmedo+ Molde (gr)  | 6164.00                        |        | 6205   | 6205.00 |          | 6266.00 |        | 2.00   | 6298.00 |        |
| O C      | Peso Molde (gr)          | 4349.00                        |        | 4349   | 4349.00 |          | 4349.00 |        | 9.00   | 4349.00 |        |
|          | Peso Húmedo (gr)         | 1815.00                        |        | 1856   | 1856.00 |          | 1917.00 |        | 3.00   | 1949.00 |        |
| -        | Volumen del Molde (cm³)  | 956.00                         |        | 956.00 |         | 956.0    | 00 98   |        | 5.00   | 956.00  |        |
|          | Densidad Húmeda (gr/cm³) | Densidad Húmeda (gr/cm³) 1.899 |        | 1.9    | 11      | 2.005    |         | 2.043  |        | 2.039   |        |
|          | Ensayo                   | 1                              |        | 2      |         | 3        | 3       |        | 4      | 5       |        |
| 1        | Peso Húmedo + Tara (gr)  | 955.00                         | 969.00 | 934.00 | 966.00  | 918.00   | 994.00  | 985.00 | 856.00 | 958.00  | 966.00 |
|          | Peso Seco + Tara (gr)    | 889.00                         | 902.00 | 857.00 | 885.00  | 827.00 . | 893.00  | 872.00 | 760.00 | 836.00  | 844.00 |
| HUMEDAD  | Peso Agua (gr)           | 66.00                          | 67.00  | 77.00  | 81.00   | 91.00    | 101.00  | 113.00 | 96.00  | 122.00  | 122.00 |
| P        | Peso Tara (gr)           | 90.00                          | 96.00  | 98.00  | 95.00   | 97.00    | 91.00   | 95.00  | 90.00  | 96.00   | 92.00  |
| 1        | Peso Muestra Seca (gr)   | 799.00                         | 806.00 | 759.00 | 790.00  | 730.00   | 802.00  | 777.00 | 670.00 | 740.00  | 752.00 |
|          | Contenido de Humedad (%) | 8.26                           | 8.31   | 10.14  | 10.25   | 12.47    | 12.59   | 14.54  | 14.33  | 16.49   | 16.22  |
|          | C. Humedad (% ) promedio | 8.29                           |        | 10.20  |         | 12.53    |         | 14.44  |        | 16.35   |        |
|          | DENSIDAD SECA (gr/cm³)   | 1.753                          |        | 1.70   | 62      | 1.78     | 2       | 1.1    | 785    | 1.      | 752    |



DENSIDAD SECA MAXIMA : 1.787 gr/cm3 CONT. DE HUMEDAD OPTIMO: 13.5 %

| "A"          |
|--------------|
| 4"           |
| HORNO 110 °C |
|              |
|              |
|              |
|              |
|              |

TESIS:

MEJORAMIENTO DE SUELOS ARCILLOSOS UTILIZANDO CAUCHO GRANULAR DE NEUMATICOS PARA FINES CONSTRUCTIVOS DE PAVIMENTOS

UBICACIÓN: DIST. BAÑOS DEL INCA, PROV. CAJAMARCA, DPTO CAJAMARCA - (PORONGO - AEROPUERTO)

CALICATA: N° 01 - M -1

PROFUNDIDAD (m): 1.50

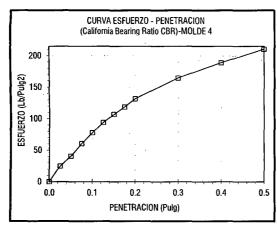
000+500

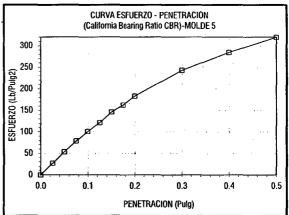
TESISTA:

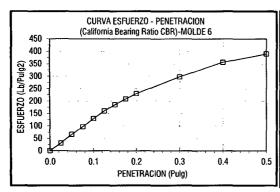
WILDER DANNY CUSQUISIBAN OCAS

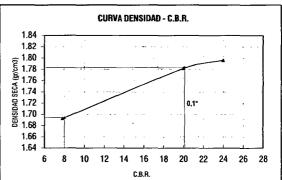
FECHA:

NOVIEMBRE 2014


COORDENADAS UTM. N 9,207,742.98 E. 779,007.35


CONDICION: 20% CAUCHO


|                          |                                 |        | COMPA   | CTACION C        | BR     |         |               |         |         |
|--------------------------|---------------------------------|--------|---------|------------------|--------|---------|---------------|---------|---------|
| NUMERO MOLDE             |                                 | 4      |         |                  | 5.     |         |               | 6       |         |
| Altura Molde (mm)        |                                 | 126    |         | ļ                | 126    |         |               |         |         |
| N° Capas                 |                                 | 5      |         |                  | 5      | •       | l             | 5       |         |
| N°Golpes x Capa          |                                 | 12     |         |                  | 25     |         | i             | 56      |         |
| Condición de Muestra     | ANTES DE E                      | MPAPAR | DESPUES | ANTES DE EMPAPAR |        | DESPUES | ANTES DE      | EMPAPAR | DESPUES |
| P. Húmedo + Molde        | 12108                           | .0     | 12244.0 | 12540.0          |        | 12557.0 | 1254          | 14.0    | 12558.0 |
| Peso Molde (gr)          | 7801.                           | 0      | 7801.0  | 7955.0           |        | 7955.0  | 7945.0        |         | 7945.0  |
| Peso Húmedo (gr)         | 4307.                           | 0      | 4443.0  | 4585.0           |        | 4602.0  | 4599.0        |         | 4613.0  |
| Volumen del Molde (cm3)  | 2323.0                          | 00     | 2323.00 | 2306.00          |        | 2306.00 | 2308.00       |         | 2308.00 |
| Densidad Húmeda (gr/cm3) | 1.854                           | 1      | 1.913   |                  | 1.988  | 1.996   | 1.993         |         | 1.999   |
| Número de Ensayo         | 1-A                             | 1-B    | 1-C     | 2-A              | 2-B    | 2-C     | 3-A           | 3-B     | 3-C     |
| P.Húmedo + Tara          | 856.00                          | 867.00 | 852.00  | 878.00           | 761.00 | 968.00  | 944.00        | 868.00  | 1026.00 |
| Peso Seco + Tara         | 785.00                          | 795.00 | 765.00  | 806.00           | 699.00 | 875.00  | 867.00        | 797.00  | 933.00  |
| Peso Agua (gr)           | 71.00                           | 72.00  | 87.00   | 72.00            | 62.00  | 93.00   | 77.00         | 71.00   | 93.00   |
| Peso Tara (gr)           | 95.00                           | 95.00  | 97.00   | 102.00           | 91.00  | 101.00  | 106.00        | 106.00  | 108.00  |
| P. Muestra Seca          | 690.00                          | 700.00 | 668.00  | 704.00           | 608.00 | 774.00  | 761.00        | 691.00  | 825.00  |
| Contenido de Humedad     | 10.29%                          | 10.29% | 13.02%  | 10.23%           | 10.20% | 12.02%  | 10.12%        | 10.27%  | 11.27%  |
| C.Humedad Promedio       | 10.29                           | %      | 13.02%  |                  | 10.21% | 12.02%  | 12.02% 10.20% |         | 11.27%  |
| DENSIDAD SECA (gr/cm3)   | SIDAD SECA (gr/cm3) 1.681 1.692 |        |         | 1.804            | 1.782  | 1.808   |               | 1.796   |         |


|       |        |         |            | ENSAYO   | DE HINCHAMIEN | то           |       |         |          |          |
|-------|--------|---------|------------|----------|---------------|--------------|-------|---------|----------|----------|
| TIE   | MPO    | NUME    | RO DE MOLD | E Nº 4   | NUM           | ERO DE MOLDE | Nº 5  | NUME    | RO DE MO | DLDE №6  |
| ACUMU | LADO   | LECTURA | HINC       | HAMIENTO | LECTURA       | HINCHAN      | MENTO | LECTURA | HINC     | HAMIENTO |
| (Hs)  | (Días) | DEFORM. | (mm)       | (%)      | DEFORM.       | (mm)         | (%)   | DEFORM  | (mm)     | (%)      |
| 0     | 0      | 0.000   | 0.000      | 0.00     | 0.000         | 0.000        | 0.00  | 0.000   | 0.000    | 0.00     |
| 24    | 1      | 0.147   | 3.734      | 2.96     | 0.060         | 1.524        | 1.21  | 0.045   | 1.143    | 0.91     |
| 48    | 2      | 0.700   | 17.780     | 14.11    | 0.090         | 2.286        | 1.81  | 0.055   | 1.397    | 1.11     |
| 72    | 3      | 0.180   | 4.572      | 3.63     | 0.099         | 2.515        | 2.00  | 0.065   | 1.651    | 1.31     |
| 96    | 4      | 0.200   | 5.080      | 4.03     | 0.128         | 3.251        | 2.58  | 0.071   | 1.803    | 1.43     |

|        |        |        |            | ENSAYO CA  | RGA - PENETR | ACION    |            |            |          |            |
|--------|--------|--------|------------|------------|--------------|----------|------------|------------|----------|------------|
| PENETR | ACION  |        | MOLDE N° 4 |            | MOLDE N° 5   |          |            | MOLDE N° 6 |          |            |
| (mm)   | (pulg) | CARGA  | ES         | FUERZO     | CARGA        | ESFUE    | RZO        | CARGA      | ES       | FUERZO     |
|        |        | KG.    | (Kg/Cm2)   | (Lb/Pulg2) | KG.          | (Kg/Cm2) | (Lb/Pulg2) | KG.        | (Kg/Cm2) | (Lb/Pulg2) |
| 0.00   | 0.000  | 0.00   | 0.00       | 0.00       | 0.00         | 0.00     | 0.00       | 0.00       | 0.00     | 0.00       |
| 0.64   | 0.025  | 33.51  | 1.73       | 24.74      | 35.97        | 1.86     | 26.55      | 41.95      | 2.17     | 30.97      |
| 1.27   | 0.050  | 55.10  | 2.85       | 40.68      | 72.27        | 3.74     | 53.36      | 89.46      | 4.62     | 66.05      |
| 1.91   | 0.075  | 81.98  | 4.24       | 60.52      | 105.79       | 5.47     | 78.11      | 130.65     | 6.75     | 96.46      |
| 2.54   | 0.100  | 105.50 | 5.45       | 77.89      | 136.52       | 7.06     | 100.79     | 175.01     | 9.04     | 129.21     |
| 3.18   | 0.125  | 127.48 | 6.59       | 94.12      | 164.47       | 8.50     | 121.42     | 216.21     | 11.17    | 159.63     |
| 3.81   | 0.150  | 144.86 | 7.49       | 106.95     | 198.00       | 10.23    | 146.18     | 251.08     | 12.98    | 185.37     |
| 4.45   | 0.175  | 160.89 | 8.31       | 118.79     | 220.36       | 11.39    | 162.69     | 282.79     | 14.61    | 208.78     |
| 5.08   | 0.200  | 178.76 | 9.24       | 131.97     | 248.32       | 12.83    | 183.33     | 311.33     | 16.09    | 229.85     |
| 7.62   | 0.300  | 223.42 | 11.55      | 164.94     | 329.30       | 17.02    | 243.11     | 403.31     | 20.84    | 297.76     |
| 10.16  | 0.400  | 256.27 | 13.24      | 189.20     | 385.34       | 19.91    | 284.49     | 482.64     | 24.94    | 356.32     |
| 12.70  | 0.500  | 285.09 | 14.73      | 210.48     | 432.90       | 22.37    | 319.60     | 527.08     | 27.24    | 389.13     |









| MOLDÉ   | PENETRAC. | PRESION APLICADA     | PRESION PATRON | C.B.R. | DENSIDAD SECA |
|---------|-----------|----------------------|----------------|--------|---------------|
| N°      | (pulg)    | CORREGIDA (Lb/pulg2) | (Lb/pulg2)     | %      | (gr/cm3)      |
| MOLDE 4 | 0.1       | 77.89                | 1000           | 7.79   | 1.69          |
| MOLDE 5 | 0.1       | 200.00               | 1000           | 20.00  | 1.78          |
| MOLDE 6 | 0.1       | 240.00               | 1000           | 24.00  | 1.80          |

| ENSAYO PROCTOR MODIFICADO       |       | VALOR RELATIVO DE SOPORTE C.B.R.         |       |
|---------------------------------|-------|------------------------------------------|-------|
| DENSIDAD SECA MAXIMA (gr/cm3) : | 1.783 | C.B.R. Para el 95% de la M.D.S. (0,1")=  | 8.00% |
| CONTENIDO DE HUMEDAD OPTIMO (%) | 14.30 | C.B.R. Para el 100% de la M.D.S. (0,1")= | 20.1% |

#### **ENSAYO CALIFORNIA BEARING RATIO (CBR)**

A.A.S.H.T.O. T 193 - A.S.T.M. D 1883 (99)

TESIS:

MEJORAMIENTO DE SUELOS ARCILLOSOS UTILIZANDO CAUCHO GRANULAR DE NEUMATICOS PARA FINES CONSTRUCTIVOS DE PAVIMENTOS

UBICACIÓN: DIST. BAÑOS DEL INCA, PROV. CAJAMARCA, DPTO CAJAMARCA - (PORONGO - AEROPUERTO)

CALICATA: N° 02 - M -1

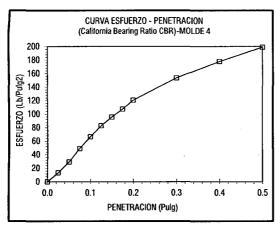
PROFUNDIDAD (m): 1.50

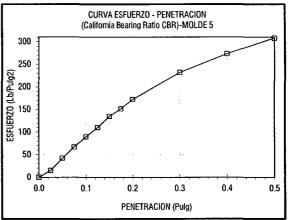
001+500

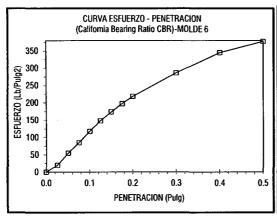
TESISTA: WILD

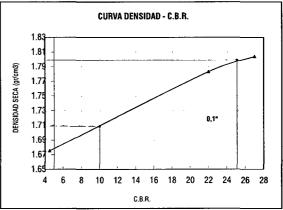
WILDER DANNY CUSQUISIBAN OCAS

FECHA: NO


NOVIEMBRE 2014 COORDENADAS UTM. N 9,208,477.44 E. 778,847.38


CONDICION: 20% CAUCHO


|                          |            |        | COMPA     | CTACION C    | BR            |               |          |         |         | ١ |
|--------------------------|------------|--------|-----------|--------------|---------------|---------------|----------|---------|---------|---|
| NUMERO MOLDE             |            | 4      |           | 1            | 5 .           |               |          | 6       |         | 1 |
| Altura Molde (mm)        |            | 126    |           |              | 126           |               |          | 126     |         | ı |
| N° Capas                 |            | 5      |           |              | 5             |               |          | 5       | 5       |   |
| N°Golpes x Capa          |            | 12     |           |              | 25            |               |          | 56      |         | ١ |
| Condición de Muestra     | ANTES DE E | MPAPAR | ' DESPUES | ANTI         | ES DE EMPAPAR | DESPUES       | ANTES DE | EMPAPAR | DESPUES | 1 |
| P. Húmedo + Molde        | 11954      | .0     | 12098.0   |              | 12549.0       | 12569.0       | 1270     | 02.0    | 12742.0 | 1 |
| Peso Molde (gr)          | 7801       | .0     | 7801.0    |              | 7955.0        | 7955.0        | 794      | 5.0     | 7945.0  | ı |
| Peso Húmedo (gr)         | 4153       | .0     | 4297.0    |              | 4594.0        | 4614.0 4757.0 |          | 4757.0  |         | ı |
| Volumen del Molde (cm3)  | 2323.      | 00     | 2323.00   | 2306.00 2306 |               | 2306.00       | 2308.00  |         | 2308.00 | ١ |
| Densidad Húmeda (gr/cm3) | 1.78       | 8      | 1.850     | 1.992        |               | 2.001         | 2.0      | 2.061   |         | 1 |
| Número de Ensayo         | 1-A        | 1-B    | 1-C       | 2-A          | 2-B           | 2-C           | 3-A      | 3-B     | 3-C     | 1 |
| P.Húmedo + Tara          | 840.00     | 848.00 | 818.00    | 859.00       | 752.00        | 928.00        | 920.00   | 850.00  | 986.00  | I |
| Peso Seco + Tara         | 781.00     | 782.00 | 750.00    | 785.00       | 686.00        | 838.00        | 824.00   | 761.00  | 870.00  | J |
| Peso Agua (gr)           | 59.00      | 66.00  | 68.00     | 74.00        | 66.00         | 90.00         | 96.00    | 89.00   | 116.00  | ı |
| Peso Tara (gr)           | 95.00      | 95.00  | 97.00     | 102.00       | 91.00         | 101.00        | 106.00   | 106.00  | 108.00  | ı |
| P. Muestra Seca          | 686.00     | 687.00 | 653.00    | 683.00       | 595.00        | 737.00        | 718.00   | 655.00  | 762.00  | ı |
| Contenido de Humedad     | 8.60%      | 9.61%  | 10.41%    | 10.83%       | 11.09%        | 12.21%        | 13.37%   | 13.59%  | 15.22%  | ı |
| C.Humedad Promedio       | 9.10       | %      | 10.41%    |              | 10.96%        | 12.21%        | 13.4     | 48%     | 15.22%  | 1 |
| DENSIDAD SECA (gr/cm3)   | 1.63       | 9      | 1.675     |              | 1.795         | 1.783         | 1.8      | 16      | 1.804   | 1 |


|       |        |         |           | ENSAYO    | DE HINCHAMIE | ENTO          |       |         |         |          |
|-------|--------|---------|-----------|-----------|--------------|---------------|-------|---------|---------|----------|
| TIEN  | иРО    | NUME    | RO DE MOL | DE Nº 4   | NU           | MERO DE MOLDE | Nº 5  | NUME    | RO DE M | OLDE №6  |
| ACUMU | LADO   | LECTURA | HING      | CHAMIENTO | LECTURA      | HINCHAN       | MENTO | LECTURA | HINC    | HAMIENTO |
| (Hs)  | (Días) | DEFORM. | (mm)      | (%)       | DEFORM.      | (mm)          | (%)   | DEFORM. | (mm)    | (%)      |
| 0     | 0      | 0.000   | 0.000     | 0.00      | 0.000        | 0.000         | 0.00  | 0.000   | 0.000   | 0.00     |
| 24    | 1      | 0.447   | 11.354    | 9.01      | 0.062        | 1.575         | 1.25  | 0.040   | 1.016   | 0.81     |
| 48    | 2      | 0.703   | 17.856    | 14.17     | 0.088        | 2.235         | 1.77  | 0.041   | 1.041   | 0.83     |
| 72    | 3      | 0.183   | 4.648     | 3.69      | 0.095        | 2.413         | 1.92  | 0.061   | 1.549   | 1.23     |
| 96    | 4      | 0.203   | 5.156     | 4.09      | 0.124        | 3.150         | 2.50  | 0.068   | 1.727   | 1.37     |

|        |        |        |            | ENSAYO C   | RGA - PENETR | ACION      |            |        |            |           |  |
|--------|--------|--------|------------|------------|--------------|------------|------------|--------|------------|-----------|--|
| PENETR | ACION  |        | MOLDE Nº 4 | ı          |              | MOLDE N° 5 |            |        | MOLDE N° 6 |           |  |
| (mm)   | (pulg) | CARGA  | ES         | FUERZO     | CARGA        | ESFUE      | RZO        | CARGA  | ESFUERZO   |           |  |
|        |        | KG.    | (Kg/Cm2)   | (Lb/Pulg2) | KG.          | (Kg/Cm2)   | (Lb/Pulg2) | KG.    | (Kg/Cm2)   | (Lb/Pulg2 |  |
| 0.00   | 0.000  | 0.00   | 0.00       | 0.00       | 0.00         | 0.00       | 0.00       | 0.00   | 0.00       | 0.00      |  |
| 0.64   | 0.025  | 18.16  | 0.94       | 13.41      | 20.62        | 1.07       | 15.22      | 26.61  | 1.38       | 19.64     |  |
| 1.27   | 0.050  | 39.75  | 2.05       | 29.35      | 56.92        | 2.94       | 42.03      | 74.11  | 3.83       | 54.72     |  |
| 1.91   | 0.075  | 66.63  | 3.44       | 49.19      | 90.44        | 4.67       | 66.77      | 115.29 | 5.96       | 85.12     |  |
| 2.54   | 0.100  | 90.14  | 4.66       | 66.55      | 121.17       | 6.26       | 89.46      | 159.65 | 8.25       | 117.87    |  |
| 3.18   | 0.125  | 112.13 | 5.79       | 82.78      | 149.11       | 7.71       | 110.08     | 200.85 | 10.38      | 148.28    |  |
| 3.81   | 0.150  | 129.50 | 6.69       | 95.61      | 182.64       | 9.44       | 134.84     | 235.72 | 12.18      | 174.03    |  |
| 4.45   | 0.175  | 145.54 | 7.52       | 107.45     | 205.00       | 10.59      | 151.35     | 267.42 | 13.82      | 197.43    |  |
| 5.08   | 0.200  | 163.40 | 8.44       | 120.63     | 232.95       | 12.04      | 171.98     | 295.96 | 15.29      | 218.50    |  |
| 7.62   | 0.300  | 208.05 | 10.75      | 153.60     | 313.93       | 16.22      | 231.77     | 387.93 | 20.05      | 286.40    |  |
| 10.16  | 0.400  | 240.91 | 12.45      | 177.86     | 369.97       | 19.12      | 273.14     | 467.26 | 24.15      | 344.97    |  |
| 12.70  | 0.500  | 269.73 | 13.94      | 199.13     | 417.53       | 21.58      | 308.25     | 511.69 | 26.44      | 377.77    |  |









| MOLDE   | PENETRAC. | PRESION APLICADA     | PRESION PATRON | C.B.R. | DENSIDAD SECA |
|---------|-----------|----------------------|----------------|--------|---------------|
| N°      | (pulg)    | CORREGIDA (Lb/pulg2) | (Lb/pulg2)     | %      | (gr/cm3)      |
| MOLDE 4 | 0.1       | 45.00                | 1000           | 4.50   | 1.68          |
| MOLDE 5 | 0.1       | 220.00               | 1000           | 22.00  | 1.78          |
| MOLDE 6 | 0.1       | 270.00               | 1000           | 27.00  | 1.80          |

| ENSAYO PROCTOR MODIFICADO         |       | VALOR RELATIVO DE SOPORTE C.B.R.         |       |
|-----------------------------------|-------|------------------------------------------|-------|
| DENSIDAD SECA MAXIMA (gr/cm3) :   | 1.799 | C.B.R. Para el 95% de la M.D.S. (0,1")=  | 10.0% |
| CONTENIDO DE HUMEDAD OPTIMO (%) : | 12.60 | C.B.R. Para el 100% de la M.D.S. (0,1")= | 25.1% |

TESIS:

MEJORAMIENTO DE SUELOS ARCILLOSOS UTILIZANDO CAUCHO GRANULAR DE NEUMATICOS PARA FINES CONSTRUCTIVOS DE PAVIMENTOS

UBICACIÓN: DIST. BAÑOS DEL INCA, PROV. CAJAMARCA, DPTO CAJAMARCA - (PORONGO - AEROPUERTO)

CALICATA: N° 03 - M -1

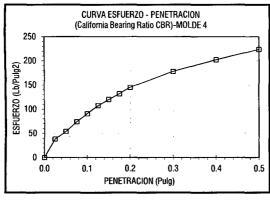
PROFUNDIDAD (m): 1.50

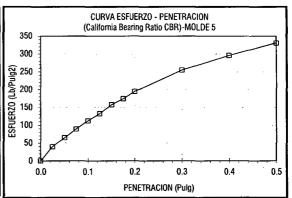
002+500

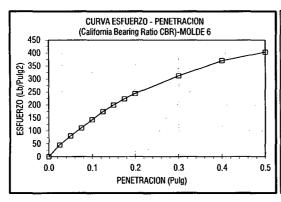
TESISTA:

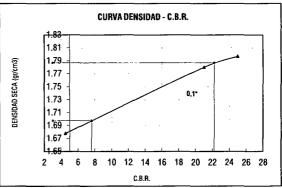
WILDER DANNY CUSQUISIBAN OCAS

FECHA: NOVIEMBRE 2014


COORDENADAS UTM. N 9,209,121.95 E. 778,563.22


CONDICION: 20% CAUCHO


|                           |             |                                                 | COMPA   | ACTACION C | BR       |         |         |        |         |
|---------------------------|-------------|-------------------------------------------------|---------|------------|----------|---------|---------|--------|---------|
| NUMERO MOLDE              |             | 4                                               |         |            | 5        |         | i       | 6      |         |
| Altura Molde (mm)         |             | 126                                             |         | ł          | 126      |         |         | 126    |         |
| N° Capas                  |             | 5                                               |         | 5          |          |         | 5       |        |         |
| N°Golpes x Capa           | 12          |                                                 |         | ſ          | 25       |         | 1       | 56     |         |
| Condición de Muestra      | ANTES DE EI | ANTES DE EMPAPAR DESPUES ANTES DE EMPAPAR DESPU |         | DESPUES    | ANTES DE | EMPAPAR | DESPUES |        |         |
| P. Húmedo + Molde         | 11954       | .0                                              | 12098.0 | 1          | 12559.0  | 12599.0 | 12724.0 |        | 12741.0 |
| Peso Molde (gr)           | 7801.       | 0                                               | 7801.0  | ļ          | 7955.0   | 7955.0  | 794     | 5.0    | 7945.0  |
| Peso Húmedo (gr)          | 4153.       | 0                                               | 4297.0  | ł          | 4604.0   | 4644.0  | 477     | 4779.0 |         |
| Volumen del Molde (cm3)   | 2323.0      | 00                                              | 2323.00 |            | 2306.00  | 2306.00 | 2308.00 |        | 2308.00 |
| Densidad Húrneda (gr/cm3) | 1.788       | 3                                               | 1.850   | L          | 1.997    | 2.014   | 2.071   |        | 2.078   |
| Número de Ensayo          | 1-A         | 1-B                                             | 1-C     | 2-A        | 2-B      | 2-C     | 3-A     | 3-B    | 3-C     |
| P.Húmedo + Tara           | 841.00      | 851.00                                          | 828.00  | 856.00     | 758.00   | 833.00  | 928.00  | 844.00 | 995.00  |
| Peso Seco + Tara          | 786.00      | 784.00                                          | 760.00  | 786.00     | 694.00   | 748.00  | 832.00  | 755.00 | 875.00  |
| Peso Agua (gr)            | 55.00       | 67.00                                           | 68.00   | 70.00      | 64.00    | 85.00   | 96.00   | 89.00  | 120.00  |
| Peso Tara (gr)            | 95.00       | 95.00                                           | 97.00   | 102.00     | 91.00    | 101.00  | 106.00  | 106.00 | 108.00  |
| P. Muestra Seca           | 691.00      | 689.00                                          | 663.00  | 684.00     | 603.00   | 647.00  | 726.00  | 649.00 | 767.00  |
| Contenido de Humedad      | 7.96%       | 9.72%                                           | 10.26%  | 10.23%     | 10.61%   | 13.14%  | 13.22%  | 13.71% | 15.65%  |
| C.Humedad Promedio        | 8.84        | %                                               | 10.26%  |            | 10.42%   | 13.14%  | 13.4    | 17%    | 15.65%  |
| DENSIDAD SECA (gr/cm3)    | 1.643       | 3                                               | 1.678   | T          | 1.808    | 1.780   | 1.8     | 25     | 1.797   |


|       |        |         |              | ENSAYO  | DE HINCHAMIEN | то           |      |         |          |           |
|-------|--------|---------|--------------|---------|---------------|--------------|------|---------|----------|-----------|
| TIE   | MPO    | NUME    | RO DE MOLE   | DE Nº 4 | NUM           | ERO DE MOLDE | N° 5 | NUME    | RO DE MO | OLDE Nº 6 |
| ACUMU | LADO   | LECTURA | HINCHAMIENTO |         | LECTURA       | HINCHAMIENTO |      | LECTURA | HINC     | HAMIENTO  |
| (Hs)  | (Dias) | DEFORM. | (mm)         | (%)     | DEFORM.       | (mm)         | (%)  | DEFORM  | (mm)     | (%)       |
| 0     | 0      | 0.000   | 0.000        | 0.00    | 0.000         | 0.000        | 0.00 | 0.000   | 0.000    | 0.00      |
| 24    | 1      | 0.447   | 11.354       | 9.01    | 0.058         | 1.473        | 1.17 | 0.036   | 0.914    | 0.73      |
| 48    | 2      | 0.703   | 17.856       | 14.17   | 0.078         | 1.981        | 1.57 | 0.054   | 1.372    | 1.09      |
| 72    | 3      | 0.183   | 4.648        | 3.69    | 0.088         | 2.235        | 1.77 | 0.068   | 1.727    | 1.37      |
| 96    | 4      | 0.203   | 5.156        | 4.09    | 0.102         | 2.591        | 2.06 | 0.078   | 1.981    | 1.57      |

|        |        |        |            | ENSAYO CA  | RGA - PENETR | ACION      |            |        |          |             |
|--------|--------|--------|------------|------------|--------------|------------|------------|--------|----------|-------------|
| PENETR | ACION  |        | MOLDE Nº 4 | ļ .        |              | MOLDE N° 5 |            | !      | MOLDE N  | <b>1°</b> 6 |
| (mm)   | (pulg) | CARGA  | ES         | FUERZO     | CARGA        | ESFUE      | RZO        | CARGA  | ES       | FUERZO      |
|        |        | KG.    | (Kg/Cm2)   | (Lb/Pulg2) | KG.          | (Kg/Cm2)   | (Lb/Pulg2) | KG.    | (Kg/Cm2) | (Lb/Pulg2   |
| 0.00   | 0.000  | 0.00   | 0.00       | 0.00       | 0.00         | 0.00       | 0.00       | 0.00   | 0.00     | 0.00        |
| 0.64   | 0.025  | 51.48  | 2.66       | 38.01      | 54.06        | 2.79       | 39.91      | 61.34  | 3.17     | 45.29       |
| 1.27   | 0.050  | 73.08  | 3.78       | 53.95      | 87.83        | 4.54       | 64.84      | 108.86 | 5.63     | 80.37       |
| 1.91   | 0.075  | 99.96  | 5.17       | 73.80      | 121.35       | 6.27       | 89.59      | 150.05 | 7.75     | 110.78      |
| 2.54   | 0.100  | 123.48 | 6.38       | 91.16      | 152.08       | 7.86       | 112.28     | 194.41 | 10.05    | 143.53      |
| 3.18   | 0.125  | 145.46 | 7.52       | 107.39     | 180.03       | 9.30       | 132.91     | 235.62 | 12.18    | 173.95      |
| 3.81   | 0.150  | 162.84 | 8.42       | 120.22     | 213.57       | 11.04      | 157.67     | 270.49 | 13.98    | 199.70      |
| 4.45   | 0.175  | 178.88 | 9.24       | 132.06     | 235.93       | 12.19      | 174.18     | 302.20 | 15.62    | 223.11      |
| 5.08   | 0.200  | 196.74 | 10.17      | 145.25     | 263.88       | 13.64      | 194.82     | 330.74 | 17.09    | 244.18      |
| 7.62   | 0.300  | 241.41 | 12.48      | 178.23     | 344.87       | 17.82      | 254.61     | 422.73 | 21.85    | 312.09      |
| 10.16  | 0.400  | 274.26 | 14.17      | 202.48     | 400.92       | 20.72      | 295.99     | 502.07 | 25.95    | 370.67      |
| 12.70  | 0.500  | 303.09 | 15.66      | 223.76     | 448.48       | 23.18      | 331.11     | 546.51 | 28.24    | 403.48      |









| MOLDE   | PENETRAC. | PRESION APLICADA     | PRESION PATRON | C.B.R. | DENSIDAD SECA |
|---------|-----------|----------------------|----------------|--------|---------------|
| N°      | (pulg)    | CORREGIDA (Lb/pulg2) | (Lb/pulg2)     | %      | (gr/cm3)      |
| MOLDE 4 | 0.1       | 45.00                | 1000           | 4.50   | 1.68          |
| MOLDE 5 | 0.1       | 210.00               | 1000           | 21.00  | 1.78          |
| MOLDE 6 | 0.1       | 250.00               | 1000           | 25.00  | 1.80          |

| ENSAYO PROCTOR MODIFICADO         |       | VALOR RELATIVO DE SOPORTE C.B.R.         |       |
|-----------------------------------|-------|------------------------------------------|-------|
| DENSIDAD SECA MAXIMA (gr/cm3) :   | 1.787 | C.B.R. Para el 95% de la M.D.S. (0,1")=  | 7.6%  |
| CONTENIDO DE HUMEDAD OPTIMO (%) : | 13.50 | C.B.R. Para el 100% de la M.D.S. (0,1")= | 22.2% |

TESIS:

MEJORAMIENTO DE SUELOS ARCILLOSOS UTILIZANDO CAUCHO GRANULAR DE NEUMATICOS PARA FINES CONSTRUCTIVOS DE PAVIMENTOS

UBICACIÓN:

DIST. BAÑOS DEL INCA, PROV. CAJAMARCA, DPTO CAJAMARCA - (PORONGO - AEROPUERTO)

CALICATA:

FECHA:

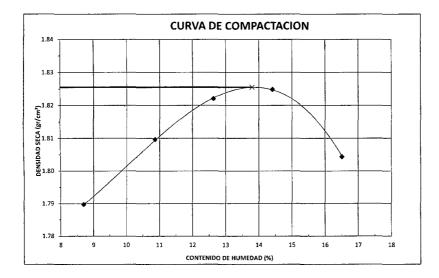
N° 01 - M -1

PROFUNDIDAD (m): 1.50

PROGRESIVA (Km): 000+500

TESISTA:

WILDER DANNY CUSQUISIBAN OCAS


NOVIEMBRE 2014

COORDENADAS UTM. N 9,207,742.98 E. 779,007.35

CONDICION: 40% CAUCHO

LABORATORIO: Laboratorio de mecanica de suelos y ensayo de materiales del Ing. Wilfredo Fernandez Muños. Docente principal UNC.

|               | NUMERO DE ENSAYO               | 1      |         | 2       |             | 3      |        |        | 4      | 5      |        |  |
|---------------|--------------------------------|--------|---------|---------|-------------|--------|--------|--------|--------|--------|--------|--|
|               | N° de Capas                    | 5      |         | 5       |             | 5      |        |        | 5      |        | 5      |  |
|               | N° de Golpes por Capa          | 25     |         | 25      |             | 25     |        | 25     |        | 25     |        |  |
| DENSIDAD      | Peso Húmedo+ Molde (gr)        | 6209.  | 00      | 6267.00 |             | 6311   | .00    | 634    | 5.00   | 63     | 59.00  |  |
| DEN           | Peso Moide (gr)                | 4349.  | 00      | 4349    | 4349.00     |        | .00    | 434    | 9.00   | 43     | 49.00  |  |
|               | Peso Húmedo (gr)               | 1860.  | 1860.00 |         | 3.00        | 1962   | 2.00   | 199    | 6.00   | 20     | 10.00  |  |
|               | Volumen del Molde (cm³) 956.00 |        | 00      | 956     | .00         | 956    | .00    | 956    | 6.00   | 956.00 |        |  |
|               | Densidad Húmeda (gr/cm³)       | 1.946  |         | 2.0     | 2.006 2.052 |        | 2.088  |        | 2.103  |        |        |  |
|               | Ensayo                         | 11     |         | 2       |             | 33     |        | 4      |        | 5      |        |  |
|               | Peso Húmedo + Tara (gr)        | 965.00 | 905.00  | 928.00  | 856.00      | 968.00 | 976.00 | 998.00 | 981.00 | 944.00 | 958.00 |  |
|               | Peso Seco + Tara (gr)          | 894.00 | 841.00  | 846.00  | 782.00      | 870.00 | 877.00 | 885.00 | 868.00 | 824.00 | 835.00 |  |
| номерар       | Peso Agua (gr)                 | 71.00  | 64.00   | 82.00   | 74.00       | 98.00  | 99.00  | 113.00 | 113.00 | 120.00 | 123.00 |  |
| Ş             | Peso Tara (gr)                 | 90.00  | 96.00   | 98.00   | 95.00       | 97.00  | 91.00  | 95.00  | 90.00  | 96.00  | 92.00  |  |
|               | Peso Muestra Seca (gr)         | 804.00 | 745.00  | 748.00  | 687.00      | 773.00 | 786.00 | 790.00 | 778.00 | 728.00 | 743.00 |  |
|               | Contenido de Humedad (% )      | 8.83   | 8,59    | 10.96   | 10.77       | 12.68  | 12.60  | 14.30  | 14.52  | 16.48  | 16.55  |  |
| $\sqsubseteq$ | C. Humedad (% ) promedio       | 8.7    | 1       | 10.     | 87          | 12.64  |        | 14.41  |        | 16.52  |        |  |
|               | DENSIDAD SECA (gr/cm³)         | 1.79   | 0       | 1.8     | 1.810       |        | 1.822  |        | 1.825  |        | 1.804  |  |



DENSIDAD SECA MAXIMA 1.826 gr/cm3 CONT. DE HUMEDAD OPTI 13.80 %

| METODO DE ENSAYO :   | "A"          |
|----------------------|--------------|
| DIAMETRO DE MOLDE :  | 4"           |
| CONDICION DE SECADO: | HORNO 110 °C |
| OBSERVACIONES:       |              |
| 4                    |              |
|                      |              |
|                      |              |
|                      |              |

TESIS:

MEJORAMIENTO DE SUELOS ARCILLOSOS UTILIZANDO CAUCHO GRANULAR DE NEUMATICOS PARA FINES CONSTRUCTIVOS DE PAVIMENTOS

UBICACIÓN:

DIST. BAÑOS DEL INCA, PROV. CAJAMARCA, DPTO CAJAMARCA - (PORONGO - AEROPUERTO)

CALICATA:

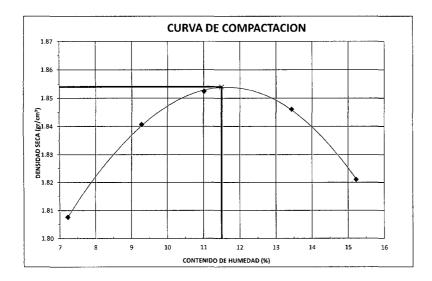
N° 02 - M -1

PROFUNDIDAD (m): 1.50

PROGRESIVA (Km): 001+500

TESISTA:

WILDER DANNY CUSQUISIBAN OCAS


CONDICION: 40% CAUCHO

FECHA:

NOVIEMBRE 2014 COORDENADAS UTM. N 9,208,477.44 E. 778,847.38

LABORATORIO: Laboratorio de mecanica de suelos y ensayo de materiales del Ing. Wilfredo Fernandez Muños. Docente principal UNC.

|          | NUMERO DE ENSAYO          | 1                     |        |        | 2       | 3               | 3      |        | 4      |        | 5      |
|----------|---------------------------|-----------------------|--------|--------|---------|-----------------|--------|--------|--------|--------|--------|
|          | N° de Capas               | 5                     |        |        | 5       |                 | 5      |        | 5      | 5      |        |
|          | N° de Golpès por Capa     | 2                     | 5      | 25     |         | 2               | 25     |        | 25     | 25     |        |
| DENSIDAD | Peso Húmedo+ Molde (gr)   | 6202                  | 2.00   | 627    | 6272.00 |                 | 5.00   | 635    | 1.00   | 63     | 55.00  |
| DEN      | Peso Molde (gr)           | so Molde (gr) 4349.00 |        | 434    | 9.00    | 4349            | 9.00   | 434    | 9.00   | 43     | 49.00  |
|          | Peso Húmedo (gr)          | 1853                  | 3.00   | 192    | 3.00    | 1966.00 2002.00 |        | 2.00   | 20     | 06.00  |        |
| 1        | Volumen del Molde (cm³)   | 956.00                |        | 956.00 |         | 956.00          |        | 956.00 |        | 956.00 |        |
|          | Densidad Húmeda (gr/cm³)  | 1,9                   | 38     | 2.9    | 012     | 2.0             | 56     | 2.0    | 094    | 2.098  |        |
|          | Ensayo                    | 1                     |        |        | 2       |                 | 3      | 4      |        |        | 5      |
|          | Peso Húmedo + Tara (gr)   | 945.00                | 961.00 | 925.00 | 952.00  | 963.00          | 968.00 | 991.00 | 975.00 | 952.00 | 969.00 |
| _ ا      | Peso Seco + Tara (gr)     | 887.00                | 903.00 | 854.00 | 880.00  | 877.00          | 881.00 | 884.00 | 871.00 | 838.00 | 854.00 |
| HUMEDAD  | Peso Agua (gr)            | 58.00                 | 58.00  | 71.00  | 72.00   | 86.00           | 87.00  | 107.00 | 104.00 | 114.00 | 115.00 |
| Ē        | Peso Tara (gr)            | 90.00                 | 96.00  | 98.00  | 95.00   | 97.00           | 91.00  | 95.00  | 90.00  | 96.00  | 92.00  |
|          | Peso Muestra Seca (gr)    | 797.00                | 807.00 | 756.00 | 785.00  | 780.00          | 790.00 | 789.00 | 781.00 | 742.00 | 762.00 |
|          | Contenido de Humedad (% ) | 7.28                  | 7.19   | 9.39   | 9.17    | 11.03           | 11.01  | 13.56  | 13.32  | 15.36  | 15.09  |
| <u></u>  | C. Humedad (% ) promedio  | 7.2                   | 23     | 9.28   |         | 11.02           |        | 13.44  |        | 15.23  |        |
|          | DENSIDAD SECA (gr/cm³)    | 1.8                   | 08     | 1.3    | 841     | 1.8             | 52     | 1.8    | 346    | 1      | .821   |



DENSIDAD SECA MAXIMA: 1.854 gr/cm3 CONT. DE HUMEDAD OPT. 11.50 %

| METODO DE ENSAYO :   | "A"   |        |  |
|----------------------|-------|--------|--|
| DIAMETRO DE MOLDE :  | 4'    | •      |  |
| CONDICION DE SECADO: | HORNO | 110 °C |  |
| OBSERVACIONES:       |       |        |  |
|                      |       |        |  |
|                      |       |        |  |
|                      |       |        |  |
|                      |       |        |  |

TESIS:

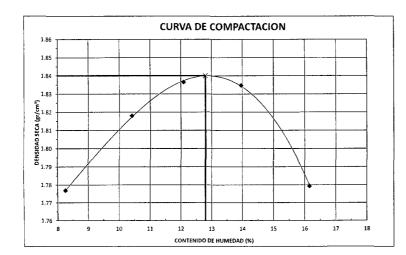
MEJORAMIENTO DE SUELOS ARCILLOSOS UTILIZANDO CAUCHO GRANULAR DE NEUMATICOS PARA FINES CONSTRUCTIVOS DE PAVIMENTOS

DIST. BAÑOS DEL INCA, PROV. CAJAMARCA, DPTO CAJAMARCA - (PORONGO - AEROPUERTO) UBICACIÓN:

N° 03 - M -1 CALICATA:

PROFUNDIDAD (m): 1.50

PROGRESIVA (Km): 002+500


TESISTA: FECHA:

WILDER DANNY CUSQUISIBAN OCAS

NOVIEMBRE 2014 COORDENADAS UTM, N 9,209,121.95 E. 778,563.22

CONDICION: 40% CAUCHO

|          | NUMERO DE ENSAYO         | 1       |        | 2      | !      | 3      |        |        | 4      | · ·    | 5      |
|----------|--------------------------|---------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
|          | N° de Capas              | 5       |        |        |        | 5      |        | 5      |        |        | 5      |
|          | N° de Golpes por Capa    | 25      | i      | 25     |        | 25     |        | 25     |        | 25     |        |
| DENSIDAD | Peso Húmedo+ Molde (gr)  | 6188.00 |        | 6268   | 3.00   | 6317   | 7.00   | 634    | 8.00   | 632    | 5.00   |
| DEN      | Peso Molde (gr)          | 4349.00 |        | 434    | 9.00   | 4349   | 9.00   | 434    | 9.00   | 434    | 9.00   |
| 1        | Peso Húmedo (gr)         | 1839.00 |        | 1919   | 9.00   | 1968   | 3.00   | 199    | 9.00   | 1976   | 5.00   |
|          | Volumen del Molde (cm³)  | 956.00  |        | 956.00 |        | 956.00 |        | 956.00 |        | 956.00 |        |
|          | Densidad Húmeda (gr/cm³) | 1.924   |        | 2.007  |        | 2.059  |        | 2.091  |        | 2.067  |        |
|          | Ensayo                   | 1       |        | 2      |        | 3      |        | 4      |        | 5      |        |
|          | Peso Húmedo + Tara (gr)  | 949.00  | 966.00 | 930.00 | 960.00 | 963.00 | 977.00 | 900.00 | 950.00 | 954.00 | 966.00 |
|          | Peso Seco + Tara (gr)    | 884.00  | 899.00 | 851.00 | 879.00 | 869.00 | 882.00 | 801.00 | 845.00 | 834.00 | 845.00 |
| нимерар  | Peso Agua (gr)           | 65.00   | 67.00  | 79.00  | 81.00  | 94.00  | 95.00  | 99.00  | 105.00 | 120.00 | 121.00 |
| 2 2      | Pesc Tara (gr)           | 90.00   | 96.00  | 98.00  | 95.00  | 97.00  | 91.00  | 95.00  | 90.00  | 96.00  | 92.00  |
|          | Pesc Muestra Seca (gr)   | 794.00  | 803.00 | 753.00 | 784.00 | 772.00 | 791.00 | 706.00 | 755.00 | 738.00 | 753.00 |
|          | Contenido de Humedad (%) | 8.19    | 8.34   | 10.49  | 10.33  | 12,18  | 12.01  | 14.02  | 13.91  | 16.26  | 16.07  |
|          | C. Humedad (% ) promedio | 8.2     | 8.27   |        | 10.41  |        | 12.09  |        | .96    | 16.16  |        |
|          | DENSIDAD SECA (gr/cm³)   | 1.77    | 7      | 1.8    | 18     | 1.8    | 36     | 1.835  |        | 1.779  |        |



| DENSIDAD SECA MAXIMA :  | 1.840 | gr/cm3 |
|-------------------------|-------|--------|
| CONT. DE HUMEDAD OPT. : | 12.80 | %      |

| METODO DE ENSAYO :   | "A"          |
|----------------------|--------------|
| DIAMETRO DE MOLDE :  | 4"           |
| CONDICION DE SECADO: | HORNO 110 °C |
| OBSERVACIONES:       |              |
|                      |              |
|                      |              |
|                      |              |
|                      |              |

TESIS:

MEJORAMIENTO DE SUELOS ARCILLOSOS UTILIZANDO CAUCHO GRANULAR DE NEUMATICOS PARA FINES CONSTRUCTIVOS DE PAVIMENTOS

UBICACIÓN: DIST. BAÑOS DEL INCA, PROV. CAJAMARCA, DPTO CAJAMARCA - (PORONGO - AEROPUERTO)

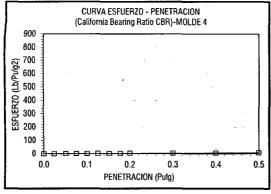
CALICATA: N° 01 - M -1

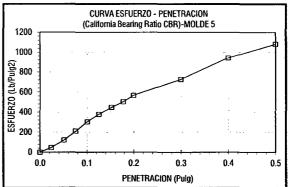
PROFUNDIDAD (m): 1.50

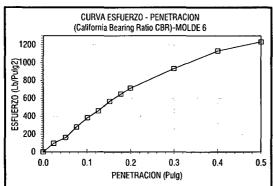
000+500

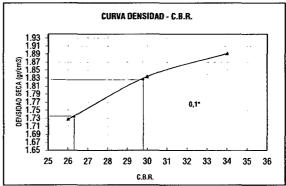
TESISTA: FECHA:

WILDER DANNY CUSQUISIBAN OCAS


NOVIEMBRE 2014 COORDENADAS UTM. N 9,207,742.98 E. 779,007.35


CONDICION: 40% CAUCHO


|                          |            |        | COMPA   | CTACION C  | BR            |                      |             |         |         |  |
|--------------------------|------------|--------|---------|------------|---------------|----------------------|-------------|---------|---------|--|
| NUMERO MOLDE             |            | 4      |         |            | 5             | -                    |             | 6       |         |  |
| Altura Molde (mm)        |            | 126    |         | 126        |               |                      | 126         |         |         |  |
| N° Capas                 |            | 5      |         |            | 5             |                      | 5           |         |         |  |
| N°Golpes x Capa          |            | 12     |         | Í          | 25            |                      | 1           | 56      |         |  |
| Condición de Muestra     | ANTES DE E | MPAPAR | DESPUES | ANTE       | S DE EMPAPAR  | DESPUES              | ANTES DE    | EMPAPAR | DESPUES |  |
| P. Húmedo + Molde        | 12160      | .0     | 12331.0 | 12591.0    |               | 12700.0              | 1273        | 38.0    | 12798.0 |  |
| Peso Molde (gr)          | 7801.      | 0      | 7801.0  | 1.0 7955.0 |               | 7955.0               | 55.0 7945.0 |         | 7945.0  |  |
| Peso Húmedo (gr)         | 4359.      | .0     | 4530.0  | 4636.0     |               | 4636.0 4745.0 4793.0 |             | 4853.0  |         |  |
| Volumen del Molde (cm3)  | 2323.      | 00     | 2323.00 | 0 2306.00  |               | 2306.00              | 230         | 3.00    | 2308.00 |  |
| Densidad Húmeda (gr/cm3) | 1.87       | 5      | 1.950   | 2.010      |               | 2.058                | 2.0         | 77      | 2.103   |  |
| Número de Ensayo         | 1-A        | 1-B    | 1-C     | 2-A        | 2-B           | 2-C                  | 3-A         | 3-B     | 3-C     |  |
| P.Húmedo + Tara          | 858.00     | 866.00 | 859.00  | 878.00     | 768.00        | 965.00               | 942.00      | 864.00  | 1024.00 |  |
| Peso Seco + Tara         | 787.00     | 796.00 | 772.00  | 806.00     | 705.00        | 871.00               | 864.00      | 794.00  | 932.00  |  |
| Peso Agua (gr)           | 71.00      | 70.00  | 87.00   | 72.00      | 63.00         | 94.00                | 78.00       | 70.00   | 92.00   |  |
| Peso Tara (gr)           | 95.00      | 95.00  | 97.00   | 102.00     | 91.00         | 101.00               | 106.00      | 106.00  | 108.00  |  |
| P. Muestra Seca          | 692.00     | 701.00 | 675.00  | 704.00     | 704.00 614.00 |                      | 758.00      | 688.00  | 824.00  |  |
| Contenido de Humedad     | 10.26%     | 9.99%  | 12.89%  | 10.23%     | 10.26%        | 12.21%               | 10.29%      | 10.17%  | 11.17%  |  |
| C.Humedad Promedio       | 10.12      | %      | 12.89%  |            | 10.24%        | 12.21%               | 10.2        | 23%     | 11.17%  |  |
| DENSIDAD SECA (gr/cm3)   | 1.70       | 4      | 1.727   |            | 1.824         | 1,834 1.884          |             | 84      | 1.891   |  |


|       |        |         |            | ENSAYO   | DE HINCHAMIEN | то                           |      |        |              |         |
|-------|--------|---------|------------|----------|---------------|------------------------------|------|--------|--------------|---------|
| TIE   | MPO    | NUME    | RO DE MOLI | DE Nº 4  | NUM           | ERO DE MOLDE                 | Nº 5 | NUME   | RO DE M      | OLDE №6 |
| ACUMU | ILADO  | LECTURA | HINC       | HAMIENTO | LECTURA       | LECTURA HINCHAMIENTO LECTURA |      | HINC   | HINCHAMIENTO |         |
| (Hs)  | (Días) | DEFORM. | (mm)       | (%)      | DEFORM.       | (mm)                         | (%)  | DEFORM | (mm)         | (%)     |
| 0     | 0      | 0.000   | 0.000      | 0.00     | 0.000         | 0.000                        | 0.00 | 0.000  | 0.000        | 0.00    |
| 24    | 1      | 0.140   | 3.556      | 2.82     | 0.055         | 1.397                        | 1.11 | 0.048  | 1.219        | 0.97    |
| 48    | 2      | 0.152   | 3.861      | 3.06     | 0.075         | 1.905                        | 1.51 | 0.066  | 1.676        | 1.33    |
| 72    | 3      | 0.170   | 4.318      | 3.43     | 0.095         | 2.413                        | 1.92 | 0.076  | 1.930        | 1.53    |
| 96    | 4      | 0.180   | 4.572      | 3.63     | 0.120         | 3.048                        | 2.42 | 0.085  | 2.159        | 1.71    |

|        |        |         |            | ENSAYO CA  | RGA - PENETR | RACION     |            |         |            |           |
|--------|--------|---------|------------|------------|--------------|------------|------------|---------|------------|-----------|
| PENETR | ACION  |         | MOLDE N° 4 |            |              | MOLDE N° 5 |            |         | MOLDE Nº 6 |           |
| (mm)   | (pulg) | CARGA   | ES         | FUERZO     | CARGA        | ESFUE      | RZO        | CARGA   | ES         | FUERZO    |
|        |        | KG.     | (Kg/Cm2)   | (Lb/Pulg2) | KG.          | (Kg/Cm2)   | (Lb/Pulg2) | KG.     | (Kg/Cm2)   | (Lb/Pulg2 |
| 0.00   | 0,000  | 0.00    | 0.000      | 0.00       | 0.00         | 0.00       | 0.00       | 0.00    | 0.00       | 0.00      |
| 0.61   | 0.024  | 66.01   | 0.025      | 0.36       | 62.57        | 3.23       | 46.20      | 128.63  | 6.65       | 94.97     |
| 1.30   | 0.051  | 140.75  | 0.050      | 0.71       | 162.41       | 8.39       | 119.91     | 217.95  | 11.26      | 160.91    |
| 1.93   | 0.076  | 237.96  | 0.075      | 1.07       | 283.72       | 14.66      | 209.46     | 376.08  | 19.44      | 277.65    |
| 2.57   | 0.101  | 320.26  | 0.100      | 1.43       | 412.23       | 21.30      | 304.34     | 517.32  | 26.74      | 381.93    |
| 3.18   | 0.126  | 424.84  | 0.125      | 1.79       | 512.24       | 26,47      | 378.18     | 620.59  | 32.07      | 458.17    |
| 3.81   | 0.152  | 514.89  | 0.150      | 2.14       | 605.15       | 31.27      | 446.77     | 765.24  | 39.55      | 564.96    |
| 4.45   | 0.178  | 589.80  | 0.175      | 2.50       | 683.80       | 35.34      | 504.84     | 875.52  | 45.25      | 646.38    |
| 5.08   | 0.200  | 664.74  | 0.200      | 2.86       | 769.64       | 39.77      | 568.21     | 965.17  | 49.88      | 712.57    |
| 7.62   | 0.300  | 822.20  | 0.300      | 4.29       | 984.38       | 50.87      | 726.75     | 1263.20 | 65.28      | 932.59    |
| 10.16  | 0.400  | 934.74  | 0.400      | 5.71       | 1278.23      | 66.06      | 943.69     | 1531.54 | 79.15      | 1130.71   |
| 12.70  | 0.500  | 1077.39 | 0.500      | 7.14       | 1464.79      | 75.70      | 1081.42    | 1669.92 | 86.30      | 1232.87   |









| MOLDE   | PENETRAC. | PRESION APLICADA     | PRESION PATRON | C.B.R. | DENSIDAD SECA |
|---------|-----------|----------------------|----------------|--------|---------------|
| N°      | (pulg)    | CORREGIDA (Lb/pulg2) | (Lb/pulg2)     | %      | (gr/cm3)      |
| MOLDE 4 | 0.1       | 260.00               | 1000           | 26.00  | 1.73          |
| MOLDE 5 | 0.1       | 300.00               | 1000           | 30.00  | 1.83          |
| MOLDE 6 | 0.1       | 340.00               | 1000           | 34.00  | 1.89          |

| ENSAYO PROCTOR MODIFICADO         | VALOR RELATIVO DE SOPORTE C.B.R. |                                          |       |
|-----------------------------------|----------------------------------|------------------------------------------|-------|
| DENSIDAD SECA MAXIMA (gr/cm3) :   | 1.826                            | C.B.R. Para el 95% de la M.D.S. (0,1")=  | 26.3% |
| CONTENIDO DE HUMEDAD OPTIMO (%) : | 13.80                            | C.B.R. Para el 100% de la M.D.S. (0,1")= | 29.8% |

# ENSAYO CALIFORNIA BEARING RATIO (CBR)

A.A.S.H.T.O. T 193 - A.S.T.M. D 1883 (99)

TESIS:

MEJORAMIENTO DE SUELOS ARCILLOSOS UTILIZANDO CAUCHO GRANULAR DE NEUMATICOS PARA FINES CONSTRUCTIVOS DE PAVIMENTOS

UBICACIÓN: DIST. BAÑOS DEL INCA, PROV. CAJAMARCA, DPTO CAJAMARCA - (PORONGO - AEROPUERTO)

CALICATA: N° 02 - M -1

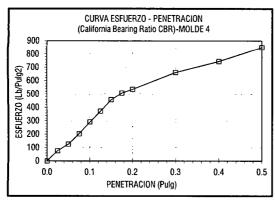
PROFUNDIDAD (m): 1.50

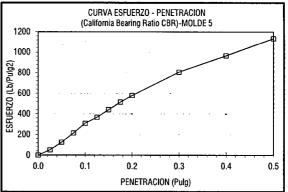
001+500

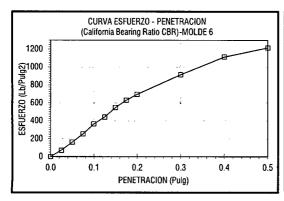
TESISTA:

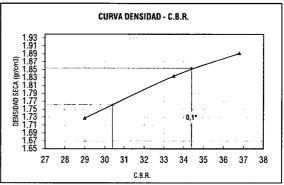
WILDER DANNY CUSQUISIBAN OCAS

FECHA: NOVIEMBRE 2014


4 COORDENADAS UTM. N 9,208,477.44 E. 778,847.38


CONDICION: 40% CAUCHO


|                          |             |        | COMPA   | CTACION C               | BR     |         |          |         |         |
|--------------------------|-------------|--------|---------|-------------------------|--------|---------|----------|---------|---------|
| NUMERO MOLDE             | -           | 4      |         | ì                       | 5      |         |          | 6       |         |
| Altura Molde (mm)        |             | 126    |         | 1                       | 126    |         | 126      |         |         |
| N° Capas                 |             | 5      |         | 1                       | 5      |         |          | 5       |         |
| N°Golpes x Capa          |             | 12     |         | 25                      |        |         | i        | 56      |         |
| Condición de Muestra     | ANTES DE EI | MPAPAR | DESPUES | ANTES DE EMPAPAR DESPUE |        | DESPUES | ANTES DE | EMPAPAR | DESPUES |
| P. Húmedo + Molde        | 12180       | .0     | 12331.0 | 12591.0 12700.0         |        | 1273    | 38.0     | 12798.0 |         |
| Peso Molde (gr)          | 7801.       | 0      | 7801.0  | 7955.0                  |        | 7955.0  | 7945.0   |         | 7945.0  |
| Peso Húmedo (gr)         | 4379.       | 0      | 4530.0  | 4636.0                  |        | 4745.0  | 4793.0   |         | 4853.0  |
| Volumen del Molde (cm3)  | 2323.0      | 00     | 2323.00 | 2306.00                 |        | 2306.00 | 2308     | 3.00    | 2308.00 |
| Densidad Húmeda (gr/cm3) | 1.885       | 5      | 1.950   | 2.010                   |        | 2.058   | 2.077    |         | 2.103   |
| Número de Ensayo         | 1-A         | 1-B    | 1-C     | 2-A                     | 2-B    | 2-C     | 3-A      | 3-B     | 3-C     |
| P.Húmedo + Tara          | 858.00      | 866.00 | 859.00  | 878.00                  | 768.00 | 965.00  | 942.00   | 864.00  | 1024.00 |
| Peso Seco + Tara         | 787.00      | 796.00 | 772.00  | 806.00                  | 705.00 | 871.00  | 864.00   | 794.00  | 932.00  |
| Peso Agua (gr)           | 71.00       | 70.00  | 87.00   | 72.00                   | 63.00  | 94.00   | 78.00    | 70.00   | 92.00   |
| Peso Tara (gr)           | 95.00       | 95.00  | 97.00   | 102.00                  | 91.00  | 101.00  | 106.00   | 106.00  | 108.00  |
| P. Muestra Seca          | 692.00      | 701.00 | 675.00  | 704.00                  | 614.00 | 770.00  | 758.00   | 688.00  | 824.00  |
| Contenido de Humedad     | 10.26%      | 9.99%  | 12.89%  | 10.23%                  | 10.26% | 12.21%  | 10.29%   | 10.17%  | 11.17%  |
| C.Humedad Promedio       | 10.12       | %      | 12.89%  |                         | 10.24% | 12.21%  | 10.23%   |         | 11.17%  |
| DENSIDAD SECA (gr/cm3)   | 1.712       | 2      | 1.727   |                         | 1.824  | 1.834   | 1.8      | 84      | 1.891   |


|       |                          |         |                   | ENSAYO | DE HINCHAMIEN | то                   |        |         |       |                      |  |  |
|-------|--------------------------|---------|-------------------|--------|---------------|----------------------|--------|---------|-------|----------------------|--|--|
| TIE   | MPO NUMERO DE MOLDE Nº 4 |         |                   |        | NUM           | NUMERO DE MOLDE Nº 5 |        |         |       | NUMERO DE MOLDE Nº 6 |  |  |
| ACUMU | ILADO                    | LECTURA | TURA HINCHAMIENTO |        | LECTURA       | HINCHA               | MIENTO | LECTURA | HINC  | HAMIENTO             |  |  |
| (Hs)  | (Dias)                   | DEFORM. | (mm)              | (%)    | DEFORM.       | (mm)                 | (%)    | DEFORM  | (mm)  | (%)                  |  |  |
| 0     | 0                        | 0.000   | 0.000             | 0.00   | 0.000         | 0.000                | 0.00   | 0.000   | 0.000 | 0.00                 |  |  |
| 24    | 1                        | 0.146   | 3.708             | 2.94   | 0.065         | 1.651                | 1.31   | 0.044   | 1.118 | 0.89                 |  |  |
| 48    | 2                        | 0.162   | 4.115             | 3.27   | 0.096         | 2.438                | 1.94   | 0.060   | 1.524 | 1.21                 |  |  |
| 72    | 3                        | 0.175   | 4.445             | 3.53   | 0.102         | 2.591                | 2.06   | 0.070   | 1.778 | 1.41                 |  |  |
| 96    | 4                        | 0.184   | 4.674             | 3.71   | 0.136         | 3.454                | 2.74   | 0.078   | 1.981 | 1.57                 |  |  |

| DEMETO | 401011 |         | 1404 DE NO 4 |            | RGA - PENETR |            |            |            | ****     |           |
|--------|--------|---------|--------------|------------|--------------|------------|------------|------------|----------|-----------|
| PENETR | ACION  |         | MOLDE Nº 4   |            |              | MOLDE Nº 5 |            | MOLDE Nº 6 |          |           |
| (mm)   | (pulg) | CARGA   | ES           | FUERZO     | CARGA        | ESFUE      | RZO        | CARGA      | ES       | FUERZO    |
|        |        | KG.     | (Kg/Cm2)     | (Lb/Pulg2) | KG.          | (Kg/Cm2)   | (Lb/Pulg2) | KG.        | (Kg/Cm2) | (Lb/Pulg2 |
| 0.00   | 0.000  | 0.00    | 0.00         | 0.00       | 0.00         | 0.00       | 0.00       | 0.00       | 0.00     | 0.00      |
| 0.64   | 0.025  | 103.38  | 5.34         | 76.32      | 69.70        | 3.60       | 51.46      | 94.29      | 4.87     | 69.61     |
| 1.27   | 0.050  | 170.66  | 8.82         | 125.99     | 169.55       | 8.76       | 125.17     | 217.95     | 11.26    | 160.91    |
| 1.91   | 0.075  | 275.37  | 14.23        | 203.30     | 290.85       | 15.03      | 214.73     | 341.69     | 17.66    | 252.26    |
| 2.54   | 0.100  | 395.09  | 20.42        | 291.69     | 419.37       | 21.67      | 309.61     | 493.03     | 25.48    | 364.00    |
| 3.18   | 0.125  | 504.98  | 26.10        | 372.81     | 497.95       | 25.73      | 367.63     | 596.28     | 30.82    | 440.22    |
| 3.81   | 0.150  | 619.78  | 32.03        | 457.57     | 598.01       | 30.90      | 441.50     | 740.92     | 38.29    | 547.01    |
| 4.45   | 0.175  | 687.23  | 35.52        | 507.37     | 698.11       | 36.08      | 515.40     | 851.19     | 43.99    | 628.42    |
| 5.08   | 0.200  | 724.71  | 37.45        | 535.04     | 783.95       | 40.51      | 578.77     | 940.83     | 48.62    | 694.59    |
| 7.62   | 0.300  | 897.22  | 46.37        | 662.40     | 1091.84      | 56.43      | 806.08     | 1238.82    | 64.02    | 914.59    |
| 10.16  | 0.400  | 1009.81 | 52.19        | 745.52     | 1306.92      | 67.54      | 964.87     | 1507.13    | 77.89    | 1112.69   |
| 12.70  | 0.500  | 1152.50 | 59.56        | 850.87     | 1536.59      | 79.41      | 1134.43    | 1645.49    | 85.04    | 1214.83   |









| MOLDE   | PENETRAC. | PRESION APLICADA     | PRESION PATRON | C.B.R. | DENSIDAD SECA |
|---------|-----------|----------------------|----------------|--------|---------------|
| N°      | (pulg)    | CORREGIDA (Lb/pulg2) | (Lb/pulg2)     | %      | (gr/cm3)      |
| MOLDE 4 | 0.1       | 290.00               | 1000           | 29.00  | 1.73          |
| MOLDE 5 | 0.1       | 335.00               | 1000           | 33.50  | 1.83          |
| MOLDE 6 | 0.1       | 368.00               | 1000           | 36.80  | 1.89          |

| ENSAYO PROCTOR MODIFICADO         |       | VALOR RELATIVO DE SOPORTE C.B.R.         |       |  |
|-----------------------------------|-------|------------------------------------------|-------|--|
| DENSIDAD SECA MAXIMA (gr/cm3) :   | 1.854 | C.B.R. Para el 95% de la M.D.S. (0,1")=  | 30.4% |  |
| CONTENIDO DE HUMEDAD OPTIMO (%) : | 11.50 | C.B.R. Para el 100% de la M.D.S. (0,1")= | 34.4% |  |

TESIS:

MEJORAMIENTO DE SUELOS ARCILLOSOS UTILIZANDO CAUCHO GRANULAR DE NEUMATICOS PARA FINES CONSTRUCTIVOS DE PAVIMENTOS

UBICACIÓN: DIST. BAÑOS DEL INCA, PROV. CAJAMARCA, DPTO CAJAMARCA - (PORONGO - AEROPUERTO)

CALICATA: N° 03 - M -1

PROFUNDIDAD (m): 1.50

002+500

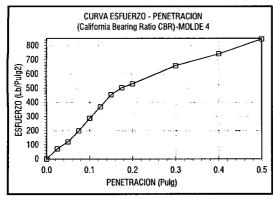
TESISTA:

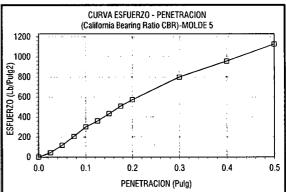
WILDER DANNY CUSQUISIBAN OCAS

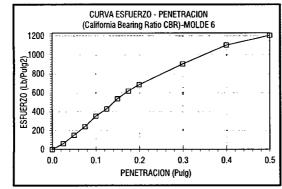
FECHA: NOVIEMBRE 2014

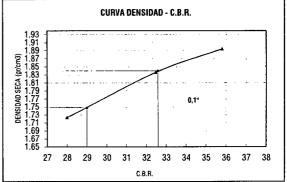
COORDENADAS UTM. N 9,209,121.95 E. 778,563.22

**CONDICION: 40% CAUCHO** 


LABORATORI Laboratorio de mecanica de suelos y ensayo de materiales del Ing. Wilfredo Fernandez Muños. Docente principal UNC.


| 1 111                    |                 |        | COMPA   | CTACION C                | BR      |         |          |         |         |
|--------------------------|-----------------|--------|---------|--------------------------|---------|---------|----------|---------|---------|
| NUMERO MOLDE             |                 | 4      |         |                          | 5       |         |          | 6       |         |
| Altura Molde (mm)        |                 | 126    |         |                          | 126     |         |          |         |         |
| N° Capas                 | 5               |        |         | 5                        |         |         | 5        |         |         |
| N°Golpes x Capa          | 12              |        |         | 25                       |         |         | 56       |         |         |
| Condición de Muestra     | ANTES DE E      | MPAPAR | DESPUES | DESPUES ANTES DE EMPAPAR |         | DESPUES | ANTES DE | EMPAPAR | DESPUES |
| P. Húmedo + Molde        | 12187.0 12335.0 |        |         | 12596.0                  | 12706.0 | 1274    | 13.0     | 12805.0 |         |
| Peso Molde (gr)          | 7801.           | 0      | 7801.0  | 1                        | 7955.0  | 7955.0  | 794      | 5.0     | 7945.0  |
| Peso Húmedo (gr)         | 4386.           | 0      | 4534.0  | 4641.0                   |         | 4751.0  | 4798.0   |         | 4860.0  |
| Volumen del Molde (cm3)  | 2323.0          | 00     | 2323.00 |                          | 2306.00 | 2306.00 | 230      | 3.00    | 2308.00 |
| Densidad Húmeda (gr/cm3) | 1.888           | 3      | 1.952   | 2.013                    |         | 2.060   | 2.079    |         | 2.106   |
| Número de Ensayo         | 1-A             | 1-B    | 1-C     | 2-A                      | 2-B     | 2-C     | 3-A      | 3-B     | 3-C     |
| P.Húmedo + Tara          | 854.00          | 865.00 | 849.00  | 875.00                   | 759.00  | 965.00  | 942.00   | 864.00  | 1024.00 |
| Peso Seco + Tara         | 784.00          | 795.00 | 761.00  | 803.00                   | 698.00  | 871.00  | 864.00   | 794.00  | 932.00  |
| Peso Agua (gr)           | 70.00           | 70.00  | 88.00   | 72.00                    | 61.00   | 94.00   | 78.00    | 70.00   | 92.00   |
| Peso Tara (gr)           | 95.00           | 95.00  | 97.00   | 102.00                   | 91.00   | 101.00  | 106.00   | 106.00  | 108.00  |
| P. Muestra Seca          | 689.00          | 700.00 | 664.00  | 701.00                   | 607.00  | 770.00  | 758.00   | 688.00  | 824.00  |
| Contenido de Humedad     | 10.16%          | 10.00% | 13.25%  | 10.27%                   | 10.05%  | 12.21%  | 10.29%   | 10.17%  | 11.17%  |
| C.Humedad Promedio       | 10.08           | %      | 13.25%  |                          | 10.16%  | 12.21%  | 10.2     | 23%     | 11.17%  |
| DENSIDAD SECA (gr/cm3)   | 1.71            | 5      | 1.723   |                          | 1.827   | 1.836   | 1.8      | 86      | 1.894   |


|       |        |                      |            | ENSAYO  | DE HINCHAMIEN | то           |                  |                      |          |      |
|-------|--------|----------------------|------------|---------|---------------|--------------|------------------|----------------------|----------|------|
| TIE   | MPO    | NUME                 | RO DE MOLE | DE Nº 4 | NUM           | ERO DE MOLDE | N° 5             | NUMERO DE MOLDE Nº 6 |          |      |
| ACUMU | LADO   | LECTURA HINCHAMIENTO |            | LECTURA | HINCHA        | MIENTO       | LECTURA HINCHAMI |                      | HAMIENTO |      |
| (Hs)  | (Días) | DEFORM.              | (mm)       | (%)     | DEFORM.       | (mm)         | (%)              | DEFORM               | (mm)     | (%)  |
| 0     | 0      | 0.000                | 0.000      | 0.00    | 0.000         | 0.000        | 0.00             | 0.000                | 0.000    | 0.00 |
| 24    | 1      | 0.145                | 3.683      | 2.92    | 0.062         | 1.575        | 1.25             | 0.044                | 1.118    | 0.89 |
| 48    | 2      | 0.168                | 4.267      | 3.39    | 0.094         | 2.388        | 1.89             | 0.058                | 1.473    | 1.17 |
| 72    | 3      | 0.710                | 18.034     | 14.31   | 0.097         | 2.464        | 1.96             | 0.068                | 1.727    | 1.37 |
| 96    | 4      | 0.188                | 4.775      | 3.79    | 0.133         | 3.378        | 2.68             | 0.073                | 1.854    | 1.47 |


|             |        |         |            | ENSATUCE   | RGA - PENETR | ACION      |            |            |          | _         |
|-------------|--------|---------|------------|------------|--------------|------------|------------|------------|----------|-----------|
| PENETRACION |        |         | MOLDE N° 4 |            | ·            | MOLDE N° 5 |            | MOLDE Nº 6 |          |           |
| (mm)        | (pulg) | CARGA   | ES         | FUERZO     | CARGA        | ESFUE      | RZO        | CARGA      | ES       | FUERZO    |
|             |        | KG.     | (Kg/Cm2)   | (Lb/Pulg2) | KG.          | (Kg/Cm2)   | (Lb/Pulg2) | KG.        | (Kg/Cm2) | (Lb/Pulg2 |
| 0.00        | 0.000  | 0.00    | 0.00       | 0.00       | 0.00         | 0.00       | 0.00       | 0.00       | 0.00     | 0.00      |
| 0.64        | 0.025  | 96.91   | 5.01       | 71.55      | 60.01        | 3.10       | 44.30      | 80.55      | 4.16     | 59.47     |
| 1.27        | 0.050  | 164.19  | 8.49       | 121.22     | 159.85       | 8.26       | 118.01     | 204.21     | 10.55    | 150.76    |
| 1.91        | 0.075  | 268.90  | 13.90      | 198.52     | 281.15       | 14.53      | 207.57     | 327.94     | 16.95    | 242.11    |
| 2.54        | 0.100  | 388.62  | 20.08      | 286.91     | 409.66       | 21.17      | 302.44     | 479.27     | 24.77    | 353.84    |
| 3.18        | 0.125  | 498.50  | 25.76      | 368.03     | 488.24       | 25.23      | 360.45     | 582.51     | 30.10    | 430.06    |
| 3.81        | 0.150  | 613.29  | 31.69      | 452.78     | 588.29       | 30.40      | 434.32     | 727.14     | 37.58    | 536.83    |
| 4.45        | 0.175  | 680.75  | 35.18      | 502.58     | 688.38       | 35.58      | 508.22     | 837.40     | 43.28    | 618.24    |
| 5.08        | 0.200  | 718.23  | 37.12      | 530.25     | 774.22       | 40.01      | 571.59     | 927.04     | 47.91    | 684.41    |
| 7.62        | 0.300  | 890.73  | 46.03      | 657.61     | 1082.10      | 55.92      | 798.89     | 1225.01    | 63.31    | 904.40    |
| 10.16       | 0.400  | 1003.31 | 51.85      | 740.73     | 1297.17      | 67.04      | 957.67     | 1493.30    | 77.17    | 1102.48   |
| 12.70       | 0.500  | 1146.01 | 59.23      | 846.07     | 1526.82      | 78.91      | 1127.22    | 1631.65    | 84.32    | 1204.62   |

103









| MOLDE   | PENETRAC. | PRESION APLICADA     | PRESION PATRON | C.B.R. | DENSIDAD SECA |
|---------|-----------|----------------------|----------------|--------|---------------|
| N°      | (pulg)    | CORREGIDA (Lb/pulg2) | (Lb/pulg2)     | %      | (gr/cm3)      |
| MOLDE 4 | 0.1       | 280.00               | 1000           | 28.00  | 1.72          |
| MOLDE 5 | 0.1       | 325.00               | 1000           | 32.50  | 1.84          |
| MOLDE 6 | 0.1       | 358.00               | 1000           | 35.80  | 1.89          |

| ENSAYO PROCTOR MODIFICADO         |       | VALOR RELATIVO DE SOPORTE C.B.R.         |       |  |
|-----------------------------------|-------|------------------------------------------|-------|--|
| DENSIDAD SECA MAXIMA (gr/cm3) :   | 1.840 | C.B.R. Para el 95% de la M.D.S. (0,1")=  | 29.0% |  |
| CONTENIDO DE HUMEDAD OPTIMO (%) : | 12.80 | C.B.R. Para el 100% de la M.D.S. (0,1")= | 32.6% |  |

TESIS:

MEJORAMIENTO DE SUELOS ARCILLOSOS UTILIZANDO CAUCHO GRANULAR DE NEUMATICOS PARA FINES CONSTRUCTIVOS DE PAVIMENTOS

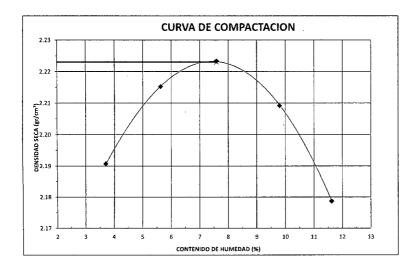
UBICACIÓN: CALICATA:

PROFUNDIDAD (m): 1.50

DIST. BAÑOS DEL INCA, PROV. CAJAMARCA, DPTO CAJAMARCA - (PORONGO - AEROPUERTO)

TESISTA:

PROGRESIVA (Km): 000+500


FECHA:

WILDER DANNY CUSQUISIBAN OCAS NOVIEMBRE 2014 COORDENADAS UTM. N 9,207,742.98 E. 779,007.35

CONDICION: 60% CAUCHO

LABORATORIO: Laboratorio de mecanica de suelos y ensayo de materiales del Ing. Wilfredo Fernandez Muños. Docente principal UNC.

|          | NUMERO DE ENSAYO          | 1      |         | 2      | !      | :      | 3      |        | 4      |        | 5      |
|----------|---------------------------|--------|---------|--------|--------|--------|--------|--------|--------|--------|--------|
|          | N° de Capas               | 5      |         |        | i      |        | 5      |        | 5      | 5      |        |
|          | N° de Golpes por Capa     | 25     | 25      |        | 25     |        | 25     |        | 5      | 25     |        |
| DENSIDAD | Peso Húmedo+ Molde (gr)   | 6521   | 6521.00 |        | 5.00   | 663    | 6.00   | 666    | 8.00   | 667    | 4.00   |
| DEN      | Peso Molde (gr)           | 4349   | 00.     | 4349   | 9.00   | 434    | 9.00   | 434    | 9.00   | 434    | 9.00   |
|          | Peso Húmedo (gr)          | 2172   | 2.00    | 223    | 7.00   | 228    | 7.00   | 231    | 9.00   | 232    | 5.00   |
|          | Volumen del Molde (cm³)   | . 956  | 956.00  |        | 956.00 |        | 956.00 |        | 5.00   | 956.00 |        |
|          | Densidad Húmeda (gr/cm³)  | 2.2    | 72      | 2.3    | 40     | 2.3    | 392    | 2.4    | 126    | 2.4    | 432    |
| 1        | Ensayo                    | 1      |         | 2      |        | :      | 3      | 4      |        |        | 5      |
|          | Peso Húmedo + Tara (gr)   | 895.00 | 945.00  | 866.00 | 988.00 | 858.00 | 902.00 | 904.00 | 908.00 | 866.00 | 857.00 |
|          | Peso Seco + Tara (gr)     | 866.00 | 915.00  | 825.00 | 940.00 | 804.00 | 845.00 | 832.00 | 835.00 | 785.00 | 778.00 |
| HUMEDAD  | Peso Agua (gr)            | 29.00  | 30.00   | 41.00  | 48.00  | 54.00  | 57.00  | 72.00  | 73.00  | 81.00  | 79.00  |
| ž        | Peso Tara (gr)            | 97.00  | 92.00   | 95.00  | 90.00  | 93.00  | 95.00  | 98.00  | 90.00  | 92.00  | 95.00  |
| ļ        | Peso Muestra Seca (gr)    | 769.00 | 823.00  | 730.00 | 850.00 | 711.00 | 750.00 | 734.00 | 745.00 | 693.00 | 683.00 |
|          | Contenido de Humedad (% ) | 3.77   | 3.65    | 5.62   | 5.65   | 7.59   | 7.60   | 9.81   | 9.80   | 11.69  | 11.57  |
|          | C. Humedad (%) promedio   | 3.7    | 11      | 5.63   |        | 7.60   |        | 9,80   |        | 11.63  |        |
|          | DENSIDAD SECA (gr/cm³)    | 2.1    | 91      | 2.2    | 2.215  |        | 223    | 2.209  |        | 2.179  |        |



DENSIDAD SECA MAXIMA : 2.223 gr/cm3 CONT. DE HUMEDAD OPTIMO: 7.60 %

| 4"           |
|--------------|
| HORNO 110 °C |
|              |
|              |
|              |
|              |
|              |

TESIS:

MEJORAMIENTO DE SUELOS ARCILLOSOS UTILIZANDO CAUCHO GRANULAR DE NEUMATICOS PARA FINES CONSTRUCTIVOS DE PAVIMENTOS

UBICACIÓN: CALICATA:

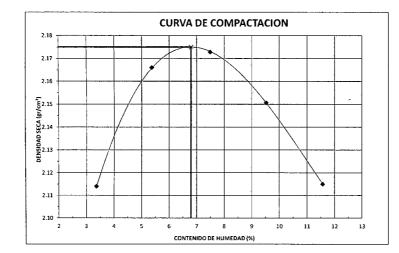
DIST. BAÑOS DEL INCA, PROV. CAJAMARCA, DPTO CAJAMARCA - (PORONGO - AEROPUERTO) N° 02 - M -1

PROFUNDIDAD (m): 1.50

PROGRESIVA (Km); 001+500

TESISTA:

FECHA:


WILDER DANNY CUSQUISIBAN OCAS

COORDENADAS UTM. N 9,208,477.44 E. 778,847.38 NOVIEMBRE 2014

CONDICION: 60% CAUCHO

LABORATORIO: Laboratorio de mecanica de suelos y ensayo de materiales del Ing. Wilfredo Fernandez Muños. Docente principal UNC.

|          | NUMERO DE ENSAYO          | 1       |         |         | 2       | 3       | ,      |        | 4      |        | 5      |
|----------|---------------------------|---------|---------|---------|---------|---------|--------|--------|--------|--------|--------|
|          | N° de Capas               | 5       | i       |         | 5       |         | 5      |        | 5      | 5      |        |
|          | N° de Golpes por Capa     | 2       | 5       | 25      |         | 2:      | 25     |        | 5      | 25     |        |
| DENSIDAD | Peso Húmedo+ Molde (gr)   | 6438.00 |         | 653     | 1.00 .  | 6582    | 2.00   | 660    | 1.00   | 660    | 5.00   |
| DEN      | Peso Molde (gr)           | 4349    | 9.00    | 434     | 9.00    | 4349    | 9.00   | 434    | 9.00   | 434    | 9.00   |
| 1        | Peso Húmedo (gr)          | 2089    | 9.00    | 218     | 2.00    | 2233    | 3.00   | 225    | 2.00   | 225    | 6.00   |
|          | Volumen del Molde (cm²)   | 956     | .00     | 956     | .00     | 956     | .00    | 956    | 6.00   | 95     | 6.00   |
|          | Densidad Húmeda (gr/cm³)  | 2.1     | 85      | 2.2     | 82      | 2.3     | 36     | 2.3    | 356    | 2.     | 360    |
|          | Ensayo                    | 1       |         | 2       |         | 3       |        | 4      |        |        | 5      |
|          | Peso Húmedo + Tara (gr)   | 1360.00 | 1140.00 | 1201.00 | 1005.00 | 1080.00 | 987.00 | 844.00 | 978.00 | 931,00 | 914.00 |
| ۵        | Peso Seco + Tara (gr)     | 1320.00 | 1105.00 | 1145.00 | 958.00  | 1012.00 | 924.00 | 778.00 | 902.00 | 845.00 | 828.00 |
| HUMEDAD  | Peso Agua (gr)            | 40.00   | 35.00   | 56.00   | 47.00   | 68.00   | 63.00  | 66.00  | 76.00  | 86.00  | 86.00  |
| ž        | Peso Tara (gr)            | 97.00   | 92.00   | 95.00   | 90.00   | 93.00   | 95,00  | 98.00  | 90.00  | 92.00  | 95.00  |
| 1        | Peso Muestra Seca (gr)    | 1223.00 | 1013.00 | 1050.00 | 868.00  | 919.00  | 829.00 | 680.00 | 812.00 | 753.00 | 733.00 |
|          | Contenido de Humedad (% ) | 3.27    | 3.46    | 5.33    | 5.41    | 7.40    | 7.60   | 9.71   | 9.36   | 11.42  | 11.73  |
|          | C. Humedad (% ) promedio  | 3,3     | 36      | 5.:     | 37      | 7.5     | 50     | 9.     | 53     |        | .58    |
|          | DENSIDAD SECA (gr/cm²)    | 2.1     | 14      | 2.1     | 2.166   |         | 73     | 2.151  |        | 2.115  |        |



DENSIDAD SECA MAXIMA: 2.175 gr/cm3 CONT. DE HUMEDAD OPTIMO: 6.80 %

| "A"          |
|--------------|
| 4"           |
| HORNO 110 °C |
|              |
|              |
|              |
|              |
|              |

TESIS:

MEJORAMIENTO DE SUELOS ARCILLOSOS UTILIZANDO CAUCHO GRANULAR DE NEUMATICOS PARA FINES CONSTRUCTIVOS DE PAVIMENTOS

UBICACIÓN: CALICATA:

N° 03 - M -1

PROFUNDIDAD (m): 1,50

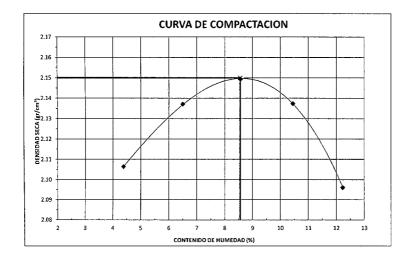
PROGRESIVA (Km): 002+500

TESISTA:

WILDER DANNY CUSQUISIBAN OCAS

FECHA:

NOVIEMBRE 2014


COORDENADAS UTM. N 9,209,121.95 E. 778,563.22

CONDICION: 60% CAUCHO

LABORATORIO: Laboratorio de mecanica de suelos y ensayo de materiales del Ing. Wilfredo Fernandez Muños. Docente principal UNC.

DIST. BAÑOS DEL INCA, PROV. CAJAMARCA, DPTO CAJAMARCA - (PORONGO - AEROPUERTO)

|          | NUMERO DE ENSAYO          | 1       |         |        | 2      | 3      |        |        | 4      |        | 5      |
|----------|---------------------------|---------|---------|--------|--------|--------|--------|--------|--------|--------|--------|
|          | N° de Capas               | 5       |         |        | 5 .    | 5      | 5      | 5      |        |        | 5      |
|          | N° de Golpes por Capa     | 25      |         | 25     |        | 25     |        | 25     |        | 25     |        |
| DENSIDAD | Peso Húmedo+ Molde (gr)   | 6451.00 |         | 652    | 5.00   | 6580   | 0.00   | 660    | 6.00   | 659    | 8.00   |
| DEN      | Peso Molde (gr)           | 4349    | 4349.00 |        | 9.00   | 4349   | 9.00   | 434    | 9.00   | 434    | 9.00   |
| -        | Peso Húmedo (gr)          | 2102    | .00     | 217    | 6.00   | 223    | 1.00   | 225    | 7.00   | 224    | 9.00   |
|          | Volumen del Molde (cm²)   | 956.    | 00      | 956    | 5.00   | 956    | .00    | 956    | 5.00   | 956    | 5.00   |
|          | Densidad Húmeda (gr/cm³)  | 2.19    | 9       | 2.2    | 276    | 2.3    | 34     | 2.3    | 361    | 2.5    | 353    |
|          | Ensayo                    | 11      |         | 2      |        |        |        | 4      |        |        | 5      |
|          | Peso Húmedo + Tara (gr)   | 901.00  | 954.00  | 872.00 | 982.00 | 804.00 | 840.00 | 832.00 | 835.00 | 788.00 | 784.00 |
|          | Peso Seco + Tara (gr)     | 868.00  | 917.00  | 825.00 | 927.00 | 748.00 | 781.00 | 762.00 | 765.00 | 712.00 | 709.00 |
| HUMEDAD  | Peso Agua (gr)            | 33.00   | 37.00   | 47.00  | 55.00  | 56.00  | 59.00  | 70.00  | 70.00  | 76.00  | 75.00  |
| MO#      | Peso Tara (gr)            | 97.00   | 92.00   | 95.00  | 90.00  | 93.00  | 95.00  | 98.00  | 90.00  | 92.00  | 95.00  |
|          | Peso Muestra Seca (gr)    | 771.00  | 825.00  | 730.00 | 837.00 | 655.00 | 686.00 | 664.00 | 675.00 | 620.00 | 614.00 |
|          | Contenido de Humedad (% ) | 4.28    | 4.48    | 6.44   | 6.57   | 8.55   | 8.60   | 10.54  | 10.37  | 12.26  | 12.21  |
|          | C. Humedad (% ) promedio  | 4.3     | 8       | 6.     | 50     | 8.8    | 58     | 10     | .46    | 12     | .24    |
|          | DENSIDAD SECA (gr/cm²)    | 2.10    | 6       | 2.1    | 137    | 2.1    | 49     | 2.137  |        | 2.096  |        |



DENSIDAD SECA MAXIMA: 2.150 gr/cm3 CONT. DE HUMEDAD OPTIMO: 8.60 %

| METODO DE ENSAYO :   | "A"          |
|----------------------|--------------|
| DIAMETRO DE MOLDE :  | 4"           |
| CONDICION DE SECADO: | HORNO 110 °C |
| OBSERVACIONES :      |              |
|                      |              |
|                      |              |
|                      |              |
|                      |              |

TESIS:

MEJORAMIENTO DE SUELOS ARCILLOSOS UTILIZANDO CAUCHO GRANULAR DE NEUMATICOS PARA FINES CONSTRUCTIVOS DE PAVIMENTOS

UBICACIÓN: DIST. BAÑOS DEL INCA, PROV. CAJAMARCA, DPTO CAJAMARCA - (PORONGO - AEROPUERTO)

CALICATA: N° 01 - M -1

PROFUNDIDAD (m): 1.50

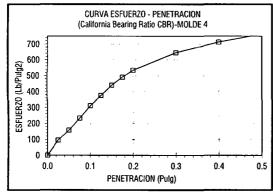
PROGRESIVA (Km): 000+500

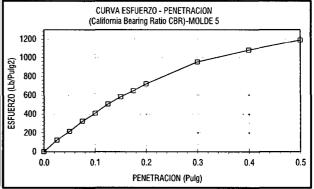
TESISTA:

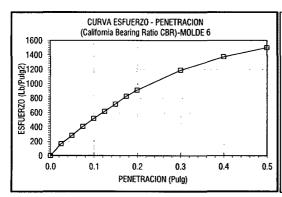
WILDER DANNY CUSQUISIBAN OCAS

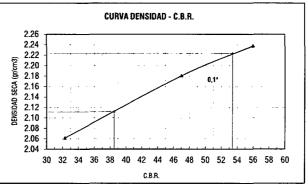
FECHA:

NOVIEMBRE 2014


COORDENADAS UTM. N 9,207,742.98 E. 779,007.35


**CONDICION: 60% CAUCHO** 


|                          |            |        | COR     | MPACTACION | CBR          |         |        |                  |         |  |
|--------------------------|------------|--------|---------|------------|--------------|---------|--------|------------------|---------|--|
| NUMERO MOLDE             |            | 4      |         |            | 5            |         |        | 6                |         |  |
| Altura Molde (mm)        |            | 126    |         |            | 126          |         |        | 126              |         |  |
| N° Capas                 |            | 5      |         |            | 5            |         |        |                  |         |  |
| N°Golpes x Capa          |            | 12     |         |            | 25           |         |        | 56               |         |  |
| Condición de Muestra     | ANTES DE E | MPAPAR | DESPUES | ANTI       | S DE EMPAPAR | DESPUES | ANTES  | ANTES DE EMPAPAR |         |  |
| P. Húmedo + Molde        | 12855      | 5.0    | 12935.0 |            | 13235.0      | 13330.0 | 1      | 13412.0          |         |  |
| Peso Molde (gr)          | 7801       | .0     | 7801.0  |            | 7955.0       | 7955.0  | ,      | 7945.0           |         |  |
| Peso Húmedo (gr)         | 5054       | .0     | 5134.0  |            | 5280.0       | 5375.0  | !      | 5467.0           |         |  |
| Volumen dei Molde (cm3)  | 2323.      | 00     | 2323.00 | j          | 2306.00      | 2306.00 | 2      | 2308.00          |         |  |
| Densidad Húmeda (gr/cm3) | 2.17       | 6      | 2.210   |            | 2.290        | 2.331   |        | 2.369            | 2.377   |  |
| Número de Ensayo         | 1-A        | 1-B    | 1-C     | 2-A        | 2-B          | 2-C     | 3-A    | 3-B              | 3-C     |  |
| P.Húmedo + Tara          | 759.00     | 881.00 | 871.00  | 898.00     | 951.00       | 968.00  | 971.00 | 1133.00          | 1050.00 |  |
| Peso Seco + Tara         | 724.00     | 839.00 | 819.00  | 852.00     | 908.00       | 912.00  | 925.00 | 1081.00          | 995.00  |  |
| Peso Agua (gr)           | 35.00      | 42.00  | 52.00   | 46.00      | 43.00        | 56.00   | 46.00  | 52.00            | 55.00   |  |
| Peso Tara (gr)           | 98.00      | 95.00  | 97.00   | 98.00      | 91.00        | 101.00  | 104.00 | 112.00           | 108.00  |  |
| P. Muestra Seca          | 626.00     | 744.00 | 722.00  | 754.00     | 817.00       | 811.00  | 821.00 | 821.00 969.00    |         |  |
| Contenido de Humedad     | 5.59%      | 5.65%  | 7.20%   | 6.10%      | 5.26%        | 6.91%   | 5.60%  | 5.37%            | 6.20%   |  |
| C.Humedad Promedio       | 5.62       | %      | 7.20%   |            | 5.68%        | 6.91%   |        | 5.48%            | 6.20%   |  |
| DENSIDAD SECA (gr/cm3)   | 2.06       | 0      | 2.062   |            | 2.167        | 2.180   |        | 2.246            | 2.238   |  |


|           |        |         |           | ENSA     | YO DE HINCHA | MIENTO          |       |                     |        |        |  |
|-----------|--------|---------|-----------|----------|--------------|-----------------|-------|---------------------|--------|--------|--|
| TIEM      | 1PO    | NUME    | RO DE MOL | DE Nº 4  | NU           | MERO DE MOLDE I | NUI   | NUMERO DE MOLDE № 6 |        |        |  |
| ACUMULADO |        | LECTURA | HINC      | HAMIENTO | LECTURA      | HINCHAM         | IENTO | LECTURA             | HINCHA | MIENTO |  |
| (Hs)      | (Días) | DEFORM. | (mm)      | (%)      | DEFORM.      | (mm)            | (%)   | DEFORM.             | (mm)   | (%)    |  |
| 0         | 0      | 0.000   | 0.000     | 0.00     | 0.000        | 0.000           | 0.00  | 0.000               | 0.000  | 0.00   |  |
| 24        | 1      | 0.007   | 0.165     | 0.13     | 0.005        | 0.127           | 0.10  | 0.004               | 0.102  | 0.08   |  |
| 48        | 2      | 0.011   | 0.279     | 0.22     | 0.010        | 0.254           | 0.20  | 0.006               | 0.152  | 0.12   |  |
| 72        | 3      | 0.013   | 0.330     | 0.26     | 0.013        | 0.330           | 0.26  | 0.009               | 0.229  | 0.18   |  |
| 96        | 4      | 0.016   | 0.406     | 0.32     | 0.015        | 0.381           | 0.30  | 0.011               | 0.279  | 0.22   |  |

| -      |        |         |          | ENSAYO     | CARGA - PE | NETRACION  |            |            |          | ,          |  |
|--------|--------|---------|----------|------------|------------|------------|------------|------------|----------|------------|--|
| PENETR | ACION  |         | MOLDE Nº | 4          |            | MOLDE N° 5 |            | MOLDE N° 6 |          |            |  |
| (mm)   | (pulg) | CARGA   | E        | ESFUERZO   |            | ESFUE      | RZO        | CARGA      | ESFUERZO |            |  |
|        |        | KG.     | (Kg/Cm2) | (Lb/Pulg2) | KG.        | (Kg/Cm2)   | (Lb/Pulg2) | KG.        | (Kg/Cm2) | (Lb/Pulg2) |  |
| 0.00   | 0.000  | 0.00    | 0.00     | 0.00       | 0.00       | 0.00       | 0.00       | 0.00       | 0.00     | 0.00       |  |
| 0.64   | 0.025  | 130.25  | 6.73     | 96.16      | 167.43     | 8.65       | 123.61     | 224.02     | 11.58    | 165.39     |  |
| 1.27   | 0.050  | 212.50  | 10.98    | 156.89     | 291.94     | 15.09      | 215.54     | 382.55     | 19.77    | 282.43     |  |
| 1.91   | 0.075  | 315.76  | 16.32    | 233.12     | 439.20     | 22.70      | 324.25     | 552.55     | 28.56    | 407.93     |  |
| 2.54   | 0.100  | 421.40  | 21.78    | 311.11     | 552.55     | 28.56      | 407.93     | 699.99     | 36.18    | 516.79     |  |
| 3.18   | 0.125  | 508.82  | 26.30    | 375.65     | 684.22     | 35.36      | 505.15     | 836.19     | 43.21    | 617.34     |  |
| 3.81   | 0.150  | 596.28  | 30.82    | 440.22     | 788.40     | 40.74      | 582.06     | 972.47     | 50.26    | 717.96     |  |
| 4.45   | 0.175  | 664.34  | 34.33    | 490.47     | 875.25     | 45.23      | 646.18     | 1120.22    | 57.89    | 827.04     |  |
| 5.08   | 0.200  | 722.68  | 37.35    | 533.54     | 972.47     | 50.26      | 717.96     | 1233.94    | 63.77    | 911.00     |  |
| 7.62   | 0.300  | 872.52  | 45.09    | 644.17     | 1290.83    | 66.71      | 952.99     | 1609.67    | 83.19    | 1188.39    |  |
| 10.16  | 0.400  | 965.98  | 49.92    | 713.17     | 1461.58    | 75.53      | 1079.05    | 1860.54    | 96.15    | 1373.60    |  |
| 12.70  | 0.500  | 1034.16 | 53.44    | 763.50     | 1609.67    | 83.19      | 1188.39    | 2031.76    | 105.00   | 1500.01    |  |









| MOLDE   | PENETRAC. | PRESION APLICADA     | PRESION PATRON | C.B.R. | DENSIDAD SECA |
|---------|-----------|----------------------|----------------|--------|---------------|
| N°      | (pulg)    | CORREGIDA (Lb/pulg2) | (Lb/pulg2)     | - %    | (gr/cm3)      |
| MOLDE 4 | 0.1       | 323.00               | 1000           | 32.30  | 2.06          |
| MOLDE 5 | 0.1       | 470.00               | 1000           | 47.00  | 2.18          |
| MOLDE 6 | 0.1       | 560.00               | 1000           | 56.00  | 2.24          |

| ENSAYO PROCTOR MODIFICADO         |       | VALOR RELATIVO DE SOPORTE C.B.R.         |       |  |  |  |
|-----------------------------------|-------|------------------------------------------|-------|--|--|--|
| DENSIDAD SECA MAXIMA (gr/cm3) :   | 2.223 | C.B.R. Para el 95% de la M.D.S. (0,1")=  | 38.5% |  |  |  |
| CONTENIDO DE HUMEDAD OPTIMO (%) : | 7.60  | C.B.R. Para el 100% de la M.D.S. (0,1")= | 53.4% |  |  |  |

TESIS:

MEJORAMIENTO DE SUELOS ARCILLOSOS UTILIZANDO CAUCHO GRANULAR DE NEUMATICOS PARA FINES CONSTRUCTIVOS DE PAVIMENTOS

UBICACIÓN: DIST. BAÑOS DEL INCA, PROV. CAJAMARCA, DPTO CAJAMARCA - (PORONGO - AEROPUERTO)

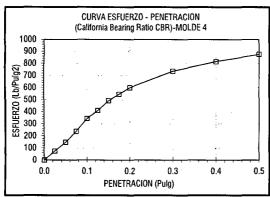
CALICATA: N° 02 - M -1

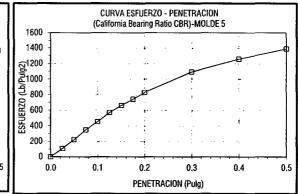
PROFUNDIDAD (m): 1.50

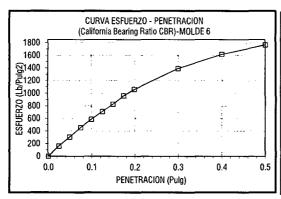
PROGRESIVA (Km): 001+500

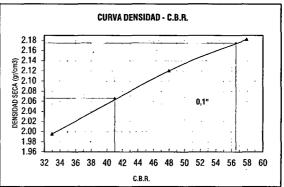
TESISTA: WILDER DANNY CUSQUISIBAN OCAS

FECHA: NOVIEMBRE 2014


COORDENADAS UTM. N 9,208,477.44 E. 778,847.38


**CONDICION: 60% CAUCHO** 


|                          |            |        | COMPA   | CTACION C | 3 R          |         |          |                  |         |  |
|--------------------------|------------|--------|---------|-----------|--------------|---------|----------|------------------|---------|--|
| NUMERO MOLDE             |            | 4      |         |           | 5            |         |          | 6                |         |  |
| Altura Molde (mm)        |            | 126    |         |           | 126          |         |          | 126              |         |  |
| N° Capas                 |            | 5      |         |           | 5            |         | 5        |                  |         |  |
| N°Golpes x Capa          |            | 12     |         |           | 25           |         |          | 56               |         |  |
| Condición de Muestra     | ANTES DE E | MPAPAR | DESPUES | ANTE      | S DE EMPAPAR | DESPUES | ANTES DE | ANTES DE EMPAPAR |         |  |
| P. Húmedo + Molde        | 12902      | 2.0    | 12960.0 |           | 13185.0      | 13345.0 | 134      | 13452.0          |         |  |
| Peso Molde (gr)          | 7801       | .0     | 7801.0  | l         | 7955.0       | 7955.0  | 794      | 5.0              | 7945.0  |  |
| Peso Húmedo (gr)         | 5101       | .0     | 5159.0  |           | 5230.0       | 5390.0  | 550      | 5507.0           |         |  |
| Volumen del Molde (cm3)  | 2323.      | 00     | 2323.00 | :         | 2306.00      | 2306.00 | 230      | 8.00             | 2308.00 |  |
| Densidad Húmeda (gr/cm3) | 2.19       | 6      | 2.221   |           | 2.268        | 2.337   | 2.3      | 86               | 2.392   |  |
| Número de Ensayo         | 1-A        | 1-B    | 1-C     | 2-A       | 2-B          | 2-C     | 3-A      | 3-B              | 3-C     |  |
| P.Húmedo + Tara          | 762.00     | 888.00 | 877.00  | 901.00    | 954.00       | 977.00  | 975.00   | 1141.00          | 1055.00 |  |
| Peso Seco + Tara         | 717.00     | 835.00 | 798.00  | 848.00    | 896.00       | 896.00  | 916.00   | 1073.00          | 972.00  |  |
| Peso Agua (gr)           | 45.00      | 53.00  | 79.00   | 53.00     | 58.00        | 81.00   | 59.00    | 68.00            | 83.00   |  |
| Peso Tara (gr)           | 94.00      | 96.00  | 99.00   | 97.00     | 94.00        | 105.00  | 103.00   | 110.00           | 109.00  |  |
| P. Muestra Seca          | 623.00     | 739.00 | 699.00  | 751.00    | 802.00       | 791.00  | 813.00   | 963.00           | 863.00  |  |
| Contenido de Humedad     | 7.22%      | 7.17%  | 11.30%  | 7.06%     | 7.23%        | 10.24%  | 7.26%    | 7.06%            | 9.62%   |  |
| C.Humedad Promedio       | 7.20       | %      | 11.30%  |           | 7.14%        | 10.24%  | 7.1      | 6%               | 9.62%   |  |
| DENSIDAD SECA (gr/cm3)   | 2.04       | 8      | 1.995   |           | 2.117        | 2.120   | 2.2      | 27               | 2.182   |  |


|       |        |                         |       | ENSAYO   | DE HINCHAMIEN | то           |       |               |                      |          |  |
|-------|--------|-------------------------|-------|----------|---------------|--------------|-------|---------------|----------------------|----------|--|
| TIEI  | MPO    | PO NUMERO DE MOLDE Nº 4 |       |          |               | ERO DE MOLDE | N° 5  | NUME          | NUMERO DE MOLDE Nº 6 |          |  |
| ACUMU | ILADO  | LECTURA                 | HINC  | HAMIENTO | LECTURA       | HINCHAN      | MENTO | LECTURA HINCH |                      | HAMIENTO |  |
| (Hs)  | (Días) | DEFORM.                 | (mm)  | (%)      | DEFORM.       | (mm)         | (%)   | DEFORM        | (mm)                 | (%)      |  |
| 0     | 0      | 0.000                   | 0.000 | 0.00     | 0.000         | 0.000        | 0.00  | 0.000         | 0.000                | 0.00     |  |
| 24    | 1      | 0.008                   | 0.191 | 0.15     | 0.005         | 0.127        | 0.10  | 0.003         | 0.076                | 0.06     |  |
| 48    | 2      | 0.013                   | 0.330 | 0.26     | 0.007         | 0.178        | 0.14  | 0.004         | 0.102                | 0.08     |  |
| 72    | 3      | 0.014                   | 0.356 | 0.28     | 0.009         | 0.229        | 0.18  | 0.006         | 0.152                | 0.12     |  |
| 96    | 4      | 0.016                   | 0.406 | 0.32     | 0.012         | 0.305        | 0.24  | 0.008         | 0.203                | 0.16     |  |

|        |                      |         |          | ENSAYO CA  | ARGA - PENETR | ACION    |            |         |          |            |
|--------|----------------------|---------|----------|------------|---------------|----------|------------|---------|----------|------------|
| PENETR | NETRACION MOLDE N° 4 |         |          | MOLDE N° 5 |               |          |            | MOLDE I | 1° 6     |            |
| (mm)   | (pulg)               | CARGA   | ES       | FUERZO     | CARGA         | ESFU     | RZO        | CARGA   | ES       | FUERZO     |
|        |                      | KG.     | (Kg/Cm2) | (Lb/Pulg2) | KG.           | (Kg/Cm2) | (Lb/Pulg2) | KG.     | (Kg/Cm2) | (Lb/Pulg2) |
| 0.00   | 0.000                | 0.00    | 0.00     | 0.00       | 0.00          | 0.00     | 0.00       | 0.00    | 0.00     | 0.00       |
| 0.64   | 0.025                | 100.83  | 5.21     | 74.44      | 145.44        | 7.52     | 107.38     | 218.19  | 11.28    | 161.09     |
| 1.27   | 0.050                | 199.53  | 10.31    | 147.31     | 299.71        | 15.49    | 221.27     | 413.30  | 21.36    | 305.13     |
| 1.91   | 0.075                | 323.43  | 16.71    | 238.78     | 471.58        | 24.37    | 348.16     | 617.35  | 31.90    | 455.77     |
| 2.54   | 0.100                | 464.78  | 24.02    | 343.14     | 612.48        | 31.65    | 452.19     | 794.35  | 41.05    | 586.45     |
| 3.18   | 0.125                | 555.14  | 28.69    | 409.85     | 770.55        | 39.82    | 568.88     | 957.87  | 49.50    | 707.17     |
| 3.81   | 0.150                | 664.98  | 34.37    | 490.94     | 895.62        | 46.29    | 661.22     | 1121.52 | 57.96    | 828.00     |
| 4.45   | 0.175                | 736.95  | 38.09    | 544.08     | 1004.77       | 51.93    | 741.80     | 1298.96 | 67.13    | 958.99     |
| 5.08   | 0.200                | 811.86  | 41.96    | 599.38     | 1121.52       | 57.96    | 828.00     | 1435.55 | 74.19    | 1059.84    |
| 7.62   | 0.300                | 996.63  | 51.51    | 735.79     | 1479.47       | 76.46    | 1092.26    | 1886.95 | 97.52    | 1393.09    |
| 10.16  | 0.400                | 1103.98 | 57.05    | 815.05     | 1704.12       | 88.07    | 1258.12    | 2188.42 | 113.10   | 1615.67    |
| 12.70  | 0.500                | 1185.85 | 61.28    | 875.49     | 1882.06       | 97.26    | 1389.48    | 2394.23 | 123.73   | 1767.61    |









| MOLDE   | PENETRAC. | PRESION APLICADA     | PRESION PATRON | C.B.R. | DENSIDAD SECA |
|---------|-----------|----------------------|----------------|--------|---------------|
| N°      | (pulg)    | CORREGIDA (Lb/puig2) | (Lb/pulg2)     | %      | (gr/cm3)      |
| MOLDE 4 | 0.1       | 330.00               | 1000           | 33.00  | 2.00          |
| MOLDE 5 | 0.1       | 480.00               | 1000           | 48.00  | 2.12          |
| MOLDE 6 | 0.1       | 579.00               | 1000           | 57.90  | 2.18          |

| ENSAYO PROCTOR MODIFICADO         |       | VALOR RELATIVO DE SOPORTE C.B.R.         |       |
|-----------------------------------|-------|------------------------------------------|-------|
| DENSIDAD SECA MAXIMA (gr/cm3) ;   | 2.175 | C.B.R. Para el 95% de la M.D.S. (0,1")=  | 41.0% |
| CONTENIDO DE HUMEDAD OPTIMO (%) : | 6.80  | C.B.R. Para el 100% de la M.D.S. (0,1")= | 56.5% |

# ENSAYO CALIFORNIA BEARING RATIO (CBR)

A.A.S.H.T.O. T 193 - A.S.T.M. D 1883 (99)

TESIS:

MEJORAMIENTO DE SUELOS ARCILLOSOS UTILIZANDO CAUCHO GRANULAR DE NEUMATICOS PARA FINES CONSTRUCTIVOS DE PAVIMENTOS

UBICACIÓN: DIST. BAÑOS DEL INCA, PROV. CAJAMARCA, DPTO CAJAMARCA - (PORONGO - AEROPUERTO)

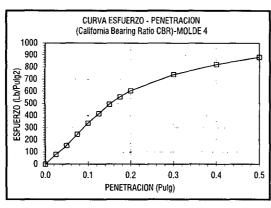
CALICATA: N° 03 - M -1

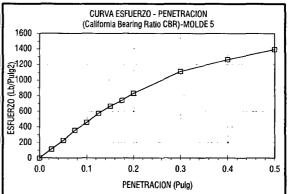
PROFUNDIDAD (m): 1.50

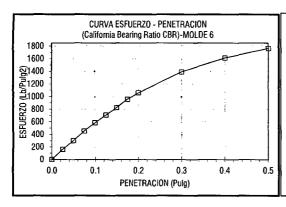
PROGRESIVA (Km): 002+500

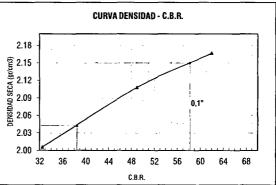
TESISTA:

WILDER DANNY CUSQUISIBAN OCAS


FECHA: NOVIEMBRE 2014 COORDENADAS UTM. N 9,209,121.95 E. 778,563.22


CONDICION: 60% CAUCHO


| L                        |            |        | COMP    | ACTACION C    | BR           |         |                  |         |         |
|--------------------------|------------|--------|---------|---------------|--------------|---------|------------------|---------|---------|
| NUMERO MOLDE             |            | 4      |         | 5             |              |         |                  |         |         |
| Altura Molde (mm)        |            | 126    |         | i             | 126          |         | 1                |         |         |
| N° Capas                 |            | 5      |         | 1             | 5            |         | 1                | 5       |         |
| N°Golpes x Capa          |            | 12     |         | ł _           | 25           |         |                  | 56      |         |
| Condición de Muestra     | ANTES DE E | MPAPAR | DESPUES | ANTE          | S DE EMPAPAR | DESPUES | ANTES DE EMPAPAR |         | DESPUES |
| P. Húmedo + Molde        | 12622      | .0     | 12816.0 | 1             | 12990.0      | 13140.0 | 13161.0          |         | 13284.0 |
| Peso Molde (gr)          | 7801       | .0     | 7801.0  | 7955.0 7955.0 |              | 7945.0  |                  | 7945.0  |         |
| Peso Húmedo (gr)         | 4821       | .0     | 5015.0  | 5035.0        |              | 5185.0  | 5216.0           |         | 5339.0  |
| Volumen del Molde (cm3)  | 2323.00 2  |        | 2323.00 | 2306.00       |              | 2306.00 | 230              | в.00    | 2308.00 |
| Densidad Húmeda (gr/cm3) | 2.07       | 5      | 2.159   | 2.183         |              | 2.248   | 2.260            |         | 2.313   |
| Número de Ensayo         | 1-A        | 1-B    | 1-C     | 2-A           | 2-B          | 2-C     | 3-A              | 3-B     | 3-C     |
| P.Húmedo + Tara          | 760.00     | 882.00 | 874.00  | 897.00        | 954.00       | 966.00  | 974.00           | 1132.00 | 1055.00 |
| Peso Seco + Tara         | 724.00     | 839.00 | 819.00  | 852.00        | 908.00       | 912.00  | 925.00           | 1081.00 | 995.00  |
| Peso Agua (gr)           | 36.00      | 43.00  | 55.00   | 45.00         | 46.00        | 54.00   | 49.00            | 51.00   | 60.00   |
| Peso Tara (gr)           | 98.00      | 95.00  | 97.00   | 98.00         | 91.00        | 101.00  | 104.00           | 112.00  | 108.00  |
| P. Muestra Seca          | 626.00     | 744.00 | 722.00  | 754.00        | 817.00       | 811.00  | 821.00           | 969.00  | 887.00  |
| Contenido de Humedad     | 5.75%      | 5.78%  | 7.62%   | 5.97%         | 5.63%        | 6.66%   | 5.97%            | 5.26%   | 6.76%   |
| C.Humedad Promedio       | 5.77       | %      | 7.62%   |               | 5.80%        | 6.66%   | 5.6              | 2%      | 6.76%   |
| DENSIDAD SECA (gr/cm3)   | 1.96       | 2      | 2.006   |               | 2.064        | 2.108   | 2.1              | 40      | 2.167   |


|       |        |         |            | ENSAYO   | DE HINCHAMIEN | то           |       |         |         |           |
|-------|--------|---------|------------|----------|---------------|--------------|-------|---------|---------|-----------|
| TIEI  | MPO    | NUME    | RO DE MOLI | DE Nº 4  | NUM           | ERO DE MOLDE | Nº 5  | NUME    | RO DE M | OLDE Nº 6 |
| ACUMU | JLADO  | LECTURA | HINC       | HAMIENTO | LECTURA       | HINCHAN      | MENTO | LECTURA | HINC    | HAMIENTO  |
| (Hs)  | (Días) | DEFORM. | (mm)       | (%)      | DEFORM.       | (mm)         | (%)   | DEFORM  | (mm)    | (%)       |
| 0     | 0      | 0.000   | 0.000      | 0.00     | 0.000         | 0.000        | 0.00  | 0.000   | 0.000   | 0.00      |
| 24    | 1      | 0.008   | 0.203      | 0.16     | 0.006         | 0.152        | 0.12  | 0.004   | 0.102   | 80.0      |
| 48    | 2      | 0.012   | 0.305      | 0.24     | 0.008         | 0.203        | 0.16  | 0.005   | 0.127   | 0.10      |
| 72    | 3      | 0.015   | 0.381      | 0.30     | 0.010         | 0.254        | 0.20  | 0.008   | 0.203   | 0.16      |
| 96    | 4      | 0.017   | 0.432      | 0.34     | 0.014         | 0.356        | 0.28  | 0.010   | 0.254   | 0.20      |

|        |        |         |            | ENSAYO CA  | RGA - PENETR | ACION      |            |          |          |            |  |
|--------|--------|---------|------------|------------|--------------|------------|------------|----------|----------|------------|--|
| PENETR | ACION  |         | MOLDE Nº 4 |            |              | MOLDE N° 5 |            | MOLDE N° |          | N° 6       |  |
| (mm)   | (pulg) | CARGA   | ES         | FUERZO     | CARGA        | ESFUE      | RZ0        | CARGA    | CARGA ES | SFUERZO    |  |
|        |        | KG.     | (Kg/Cm2)   | (Lb/Pulg2) | KG.          | (Kg/Cm2)   | (Lb/Pulg2) | KG.      | (Kg/Cm2) | (Lb/Pulg2) |  |
| 0.00   | 0.000  | 0.00    | 0.00       | 0.00       | 0.00         | 0.00       | 0.00       | 0.00     | 0.00     | 0.00       |  |
| 0.64   | 0.025  | 108.91  | 5.63       | 80.41      | 153.52       | 7.93       | 113.34     | 221.43   | 11.44    | 163.48     |  |
| 1.27   | 0.050  | 207.61  | 10.73      | 153.28     | 302.95       | 15.66      | 223.66     | 411.68   | 21.28    | 303.94     |  |
| 1.91   | 0.075  | 331.52  | 17.13      | 244.76     | 479.68       | 24.79      | 354.13     | 615.73   | 31.82    | 454.58     |  |
| 2.54   | 0.100  | 458.30  | 23.68      | 338.36     | 615.73       | 31.82      | 454.58     | 792.73   | 40.97    | 585.25     |  |
| 3.18   | 0.125  | 563.24  | 29.11      | 415.83     | 773.79       | 39.99      | 571.28     | 956.25   | 49.42    | 705.98     |  |
| 3.81   | 0.150  | 668.23  | 34.53      | 493.34     | 898.86       | 46.45      | 663.61     | 1119.90  | 57.88    | 826.80     |  |
| 4.45   | 0.175  | 749.92  | 38.76      | 553.65     | 1003.15      | 51.84      | 740.60     | 1297.33  | 67.05    | 957.79     |  |
| 5.08   | 0.200  | 819.97  | 42.38      | 605.37     | 1119.90      | 57.88      | 826.80     | 1433.92  | 74.10    | 1058.64    |  |
| 7.62   | 0.300  | 999.87  | 51.67      | 738.19     | 1502.25      | 77.64      | 1109.08    | 1885.32  | 97.43    | 1391.89    |  |
| 10.16  | 0.400  | 1112.10 | 57.47      | 821.04     | 1707.38      | 88.24      | 1260.52    | 2186.79  | 113.01   | 1614.46    |  |
| 12.70  | 0.500  | 1193.97 | 61.70      | 881.48     | 1885.32      | 97.43      | 1391.89    | 2392.59  | 123.65   | 1766.40    |  |









| MOLDE   | PENETRAC. | PRESION APLICADA     | PRESION PATRON | C.B.R. | DENSIDAD SECA |
|---------|-----------|----------------------|----------------|--------|---------------|
| Nº      | (pulg)    | CORREGIDA (Lb/pulg2) | (Lb/pulg2)     | %      | (gr/cm3)      |
| MOLDE 4 | 0.1       | 325.00               | 1000           | 32.50  | 2.01          |
| MOLDE 5 | 0.1       | 490.00               | 1000           | 49.00  | 2.11          |
| MOLDE 6 | 0.1       | 620.00               | 1000           | 62.00  | 2.17          |

| ENSAYO PROCTOR MODIFICADO       |       | VALOR RELATIVO DE SOPORTE C.B.R.         |       |
|---------------------------------|-------|------------------------------------------|-------|
| DENSIDAD SECA MAXIMA (gr/cm3) : | 2.150 | C.B.R. Para el 95% de la M.D.S. (0,1")=  | 38.5% |
| CONTENIDO DE HUMEDAD OPTIMO (%) | 8,60  | C.B.R. Para el 100% de la M.D.S. (0,1")= | 58.2% |

# Anexo 02 Panel Fotográfico



FOTO N° 01: Tesista tomando datos de la calicata Km. 000+500



FOTO N° 02: Tomando muestra de la calicata Km. 000+500calicata



FOTO N° 03: Tesista tomando datos de la calicata Km. 001+500calicata



FOTO N° 04: Tomando muestra de la calicata Km. 001+500calicata



FOTO N° 05: Recolectando muestras de la primera calicata Km 002+500



FOTO N° 06: Tomando datos de la segunda calicata km 002+500



FOTO N° 07: Muestras Recolectadas



FOTO N° 08: Arcillas extraídas para el presente proyecto de investigación



FOTO N° 09: Conjunto de Tamices



FOTO N° 10: Molde para ensayo de Proctor Modificado

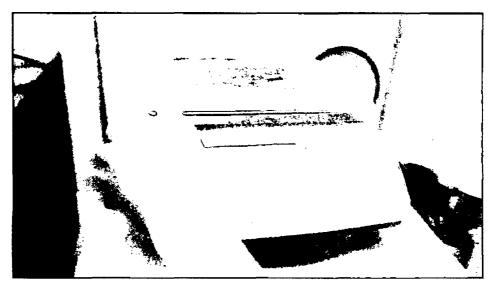



FOTO N° 11: Balanza con sensibilidad 0.1g

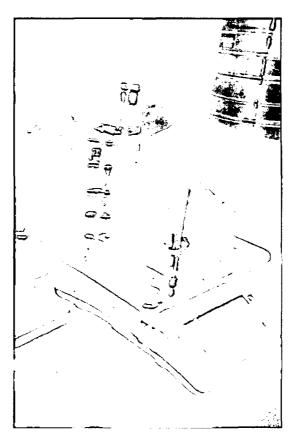



FOTO N° 12: Pesado del molde para ensayo de Proctor Modificado




FOTO N° 13: Colocado de material arcilloso al molde de 4"

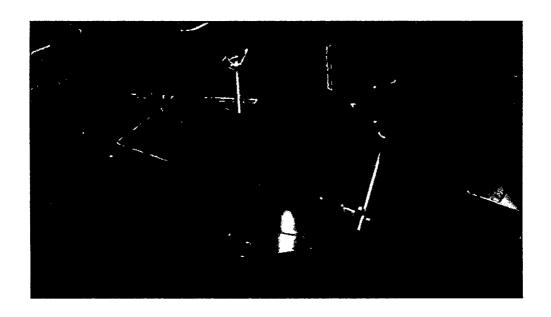



FOTO N° 14: Enrasado de la arcilla en el molde de 4"

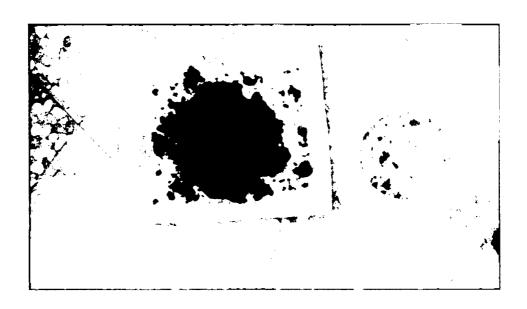



FOTO N° 15: Arcillas en Condiciones Normales



FOTO N° 16: Pesado del caucho granular para adicionar al suelo arcilloso

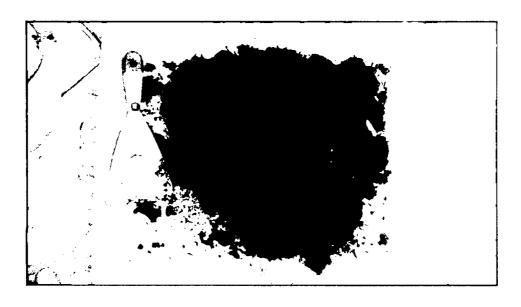



FOTO N° 17: Arcilla con 20% en peso de caucho.



FOTO N° 18: Realizando el ensayo esfuerzo - penetración.




FOTO N° 19: Materiales y equipos utilizados en la presente tesis.

# **ANEXOS 03**

# Planos

- > Ubicación de la zona de estudio
- > Ubicación de calicatas
- > Plano clave