UNIVERSIDAD NACIONAL DE CAJAMARCA

FACULTAD DE INGENIERÍA

ESCUELA PROFESIONAL DE INGENIERÍA DE MINAS

TESIS

CARACTERIZACIÓN GEOMECÁNICA DEL MACIZO ROCOSO PARA LA DETERMINACIÓN DEL MÉTODO DE EXPLOTACIÓN DE MÁRMOL EN EL DISTRITO DE JORGE CHÁVEZ CELENDÍN

PARA OPTAR EL TÍTULO PROFESIONAL DE:

INGENIERO DE MINAS

Por:

Bach. SALDAÑA ABANTO LUIS RODRIGO

Asesor:

Dr. LAGOS MANRIQUE ALEJANDRO CLAUDIO

Cajamarca – Perú 2025

CONSTANCIA DE INFORME DE ORIGINALIDAD

- FACULTAD DE INGENIERÍA -

1. Investigador : SALDAÑA ABANTO LUIS RODRIGO : 70190957 DNI : INGENIERÍA DE MINAS **Escuela Profesional** 2. Asesor : ALEJANDRO CLAUDIO LAGOS MANRIQUE : INGENIERÍA Facultad 3. Grado académico o título profesional □Bachiller Título profesional □Segunda especialidad □Maestro Doctor 4. Tipo de Investigación: Tesis □ Trabajo de investigación □ Trabajo de suficiencia profesional □ Trabajo académico 5. Título de Trabajo de Investigación: CARACTERIZACIÓN GEOMECÁNICA DEL MACIZO ROCOSO PARA LA DETERMINACIÓN DEL MÉTODO DE EXPLOTACIÓN DE MÁRMOL EN EL DISTRITO DE JORGE CHÁVEZ CELENDÍN 6. Fecha de evaluación: 30 DE DICIEMBRE DE 2024 7. Software antiplagio: TURNITIN □ URKUND (OURIGINAL) (*) 8. Porcentaje de Informe de Similitud: 15% 9. Código Documento: oid:3117:419048241 10. Resultado de la Evaluación de Similitud: APROBADO 🗆 PARA LEVANTAMIENTO DE OBSERVACIONES O DESAPROBADO Fecha Emisión: 30 DE DICIEMBRE DE 2024

FIRMA DEL ASESOR Alejandro Claudio Lagos Manrique DNI: 09224934

UNIVERSIDAD NACIONAL DE CAJAMARCA FACULTAD DE INGENIERÍA UNIDAD DE INVESTIGACIÓN Dra. Ing. Laura Softa Bazán Díaz DIRECTORA

UNIDAD DE INVESTIGACIÓN FI

Universidad Nacional de Cajamarca

"Norte de la Universidad Peruana

Fundada por Ley 14015 del 13 de Febrero de 1962 FACULTAD DE INGENIERÍA

Teléf. Nº 365976 Anexo Nº 1129-1130

ACTA DE SUSTENTACIÓN PÚBLICA DE TESIS.

TITULO : "CARACTERIZACIÓN GEOMECÁNICA DEL MACIZO ROCOSO PARA LA DETERMINACIÓN DEL MÉTODO DE EXPLOTACIÓN DE MÁRMOL EN EL DISTRITO DE JORGE CHÁVEZ CELENDÍN."

ASESOR : Dr. Ing. Alejandro Claudio Lagos Manrique.

En la ciudad de Cajamarca, dando cumplimiento a lo dispuesto por el Oficio Múltiple Nº 0024-2025-PUB-SA-FI-UNC, de fecha 08 de enero de 2025, de la Secretaría Académica de la Facultad de Ingeniería, a los **diez días del mes de enero de 2025**, siendo las diez horas (10:00 a.m.) en el Auditorio de la Escuela Profesional de Ingeniería Geológica (Ambiente 4J – 210), se reunieron los Señores Miembros del Jurado Evaluador:

Presidente: Dr. Ing. Segundo Reinaldo Rodríguez Cruzado.Vocal: Dr. Ing. Crispín Zenón Quispe Mamani.Secretario: M.Cs. Ing. Víctor Ausberto Arapa Vilca.

Para proceder a escuchar y evaluar la sustentación pública de la tesis titulada "CARACTERIZACIÓN GEOMECÁNICA DEL MACIZO ROCOSO PARA LA DETERMINACIÓN DEL MÉTODO DE EXPLOTACIÓN DE MÁRMOL EN EL DISTRITO DE JORGE CHÁVEZ CELENDÍN" presentado por el Bachiller en Ingeniería de Minas LUIS RODRIGO SALDAÑA ABANTO, asesorado por el Dr. Ing. Alejandro Claudio Lagos Manrique, para la obtención del Título Profesional

Los Señores Miembros del Jurado replicaron al sustentante debatieron entre sí en forma libre y reservada y lo evaluaron de la siguiente manera:

Dr. Ing. Segundo Reinaldo Rodríguez Cruzado. Presidente

M.Cs. Ing. Víctor Ausberto Arapa Vilca. Secretario

Dr. Ing. Crispin Zerón Quispe Mamani.

Dr. Ing. Alejandro Claudio Labos Manrique. Asesor

Universidad Nacional de Cajamarca "Morte de la Universidad Peruana" Fundada por Ley 14015 del 13 de Febrero de 1962 FACULTAD DE INGENIERÍA

Teléf. Nº 365976 Anexo Nº 1129-1130

EVALUACIÓN DE LA SUSTENTACIÓN PÚBLICA DE TESIS.

Bachiller en Ingeniería de Minas: LUIS RODRIGO SALDAÑA ABANTO.

	PUNTAJE
RUBRO	Máximo/Calificación
2. DE LA SUSTENTACIÓN PÚBLICA	
2.1. Capacidad de síntesis	3
2.2. Dominio del tema	3
2.3. Consistencia de las alternativas presentadas	3
2.4. Precisión y seguridad en las respuestas	2
PUNTAJE TOTAL (MÁXIMO 12 PUNTOS)	11

Cajamarca, 10 de enero de 2025

Quispe Mamani. Dr. Ing. Crispin Zenon

Dr. Ing. Alejandro Claudio Lagos Manrique.

f=1 2 7:.

Dr. Ing. Segundo Reinaldo Rodríguez Cruzado. Presidente

M.Cs. Ing. Víctor Ausberto Arapa Vilca. Secretario

GENTERIA

FACULTAD DE INGENIERÍA Teléf. N° 365976 Anexo N° 1129-1130

EVALUACIÓN FINAL DE LA SUSTENTACIÓN DE TESIS.

Bachiller en Ingeniería de Minas: LUIS RODRIGO SALDAÑA ABANTO.

	RUBRO	PUNTAJE
A EVALUACI	ÓN DE LA SUSTENTACIÓN PRIVADA	3
B EVALUACI	ÓN DE LA SUSTENTACIÓN PÚBLICA	1/
E	VALUACIÓN FINAL	
EN NÚMEROS (A + B)	14
EN LETRAS (A	+ B)	CATORCE
- Excelente	20 - 19	
- Muy Bueno	18 - 17	BUGNO
- Bueno	16 - 14	
- Regular	13 a 11	
- Desaprobado	10 a menos	

Cajamarca, 10 de enero de 2025

Dr. Ing. Segundo Reinaldo Rodríguez Cruzado. Presidente

M.Cs. Ing. Víctor Ausberto Arapa Vilca. Secretario

Dr. Ing. Crispin Zerón Quispe Mamani. Nøcal

Dr. Ing. Alejandro Claudio Lagos Manrique. Aseso

AGRADECIMIENTO

Un agradecimiento a la UNC por abrirme las alas a ser un mejor profesional, así mismo a todos los docentes de la EPIM y en especial a mi asesor, Dr. Alejandro Claudio Lagos Manrique por su constante entrega y asesoramiento durante la elaboración de la presente tesis.

LRSA

DEDICATORIA

A mis padres Héctor y Manuela y familiares que me apoyaron, confiaron en mí y nunca me dieron la espalda.

A mis amigos quienes me han ayudado de una u otra forma a ser mejor persona y profesional.

LRSA

ÍNDICE

AGRADECIMIENTO	ii
DEDICATORIA	iii
ÍNDICE DE FIGURAS	vii
ÍNDICE DE TABLAS	x
RESUMEN	xiii
ABSTRACT	xiv

CAPÍTULO I

INTRODUCCIÓN

1.1	PLANTEAMIENTO DEL PROBLEMA	1
1.2	FORMULACIÓN DEL PROBLEMA	2
1.2.1	General	2
1.2.2	Específicos	2
1.3	JUSTIFICACIÓN DE LA INVESTIGACIÓN	2
1.4	ALCANCES O DELIMITACIONES DE LA INVESTIGACIÓN	2
1.5	LIMITACIONES DE LA INVESTIGACIÓN	2
1.6	OBJETIVOS	3
1.6.1	General	3
1.6.2	Específico	3

CAPÍTULO II MARCO TEÓRICO

2.1	ANTECEDENTES TEÓRICOS	4
2.1.1	Internacionales	4
2.1.2	Nacionales	4
2.1.3	Locales	5
2.2	BASES TEÓRICAS	5
2.2.1	Marmol	5
2.2.2	Geomecánica	7
2.2.3	Macizo rocoso	7
2.2.4	Clasificaciones geomecánicas	7
2.2.5	Criterio de ruptura Hoek y Brown	13
2.2.6	Criterio de Mohr-Coulomb	14

	F	٬ág.
2.2.7	Martillo Schmidt	16
2.2.8	Resistencia a la compresión uniaxial	18
2.2.9	Parámetros para determinar el método de explotación	20
2.3	DEFINICIÓN DE TÉRMINOS BÁSICOS	21

CAPÍTULO III MATERIALES Y MÉTODOS

3.1	UBICACIÓN DE LA INVESTIGACIÓN	23
3.1.1	Geografía	23
3.1.2	Política	23
3.2	ACCESIBILIDAD	23
3.3	GEOLOGÍA LOCAL	24
3.4	METODOLOGÍA DE LA INVESTIGACIÓN	25
3.4.1	Tipo, nivel, diseño y método de la investigación	25
3.4.2	Técnicas e instrumentos de recolección de datos	26

CAPÍTULO IV

	ANALISIS I DISCUSION DE RESULTADOS	
4.1	RESULTADOS DEL TRATAMIENTO Y ANÁLISIS DE INFORMACIÓN	27
4.2	CARACTERIZACIÓN GEOMECÁNICA DEL MACIZO ROCOSO	27
4.2.1	Peso específico	28
4.2.2	Resistencia a la compresión uniaxial (RCU)	29
4.2.3	Cartografiado geomecánico	33
4.3	DETERMINACIÓN DE ÁNGULO DE FRICCIÓN Y COHESIÓN	49
4.4	ANÁLISIS CINEMÁTICO	53
4.4.1	Análisis cinemático EG-01	54
4.4.2	Análisis cinemático EG-02	59
4.4.3	Análisis cinemático EG-03	64
4.4.4	Análisis cinemático EG-04	69
4.5	MÉTODO DE EXPLOTACIÓN DEL MARMOL	74
4.5.1	Secuencia de explotación del marmol	74
4.5.2	Parámetros de diseño del marmol	76
4.5.3	Métodos en la extracción del marmol	81
4.5.4	Secuencia de explotación del marmol	82

		Pág.
4.5.5	Etapas de explotación del marmol	84
4.5.6	Tipo de marmol - Cantera Jorge Chávez	87
4.6	ESTUDIO PETROGRÁFICO	88
4.7	CONTRASTACIÓN DE LA HIPÓTESIS	93

CAPÍTULO V

CONCLUSIONES Y RECOMENDACIONES

5.1.	CONCLUSIONES	94
3.2.	RECOMENDACIONES	95

REFERENCIAS BIBLIOGRÁFICAS

ANEXOS

ANEXO A: PLANOS	101
ANEXO B: PANEL FOTOGRÁFICO	
ANEXO C: CÁLCULO DE PESO ESPECÍFICO	112
ANEXO D: ANÁLISIS QUÍMICO	118

ÍNDICE DE FIGURAS

		Pág.
Figura 2.1.	Estimación del Índice GSI en base a	12
3	descripciones geológicas	
	Fuente: González de Vallejo, 2002.	
Figura 2.2	Representación gráfica de la ecuación de	15
0	Coulomb.	
	Fuente: Suarez, 2019.	
Figura 2.3.	Sección longitudinal a través del martillo	17
5	mostrando sus componentes.	
	Fuente: Lozano, 2009.	
Figura 2.4.	Principio de funcionamiento del martillo	17
U	Fuente: Lozano, 2009.	
Figura 2.5.	Ábaco para la resistencia a compresión simple	18
-	de una roca.	
	Fuente: Miller, (1966). Mejorado Rodríguez,	
	2024.	
Figura 3.1.	Columna estratigráfica del Departamento de	24
	Cajamarca.	
	Fuente: Reyes, 1980.	
Figura 4.1.	a) Falla planar, b) Falla en cuña y c) Falla por	28
	vuelco.	
	Fuente: Gonzalez de Vallejo, 2002.	
Figura 4.2.	Secuencia que se siguió en la elaboración	28
	de la tesis.	
Figura 4.3.	Martillo de Schmidt CONTROLS, tipo L,	29
	Modelo 45- 561.	
Figura 4.4.	Macizo rocoso de la Estación Geomecánica 01	34
	(EG-01).	
Figura 4.5.	Cálculo del GSI, EG-01.	36
Figura 4.6.	Macizo rocoso de la Estación Geomecánica 02	37
	(EG-02).	10
Figura 4.7.	Cálculo del GSI, EG-02.	40
Figura 4.8.	Macizo rocoso de la Estación Geomecánica 03	41
- : 4.0	(EG-03).	
Figura 4.9.	Calculo del GSI, EG-03.	44
Figura 4.10.	Macizo rocoso de la Estación Geomecanica 04	45
	(EG-04). Cáloula dal COL EC 04	40
Figura 4.11.	Calculo del GSI, EG-04.	48
Figura 4.12.	Calculo del angulo de Incción y conesión del	50
	niacizo locoso de la Estación Geomecanica o I,	
	Pochata	
Figure 4.12	Rocidada. Cálcula dal ángula da fricción y cohosión dal	51
Figura 4.15.	macizo rocoso de la Estación Geomocánica 02	51
	anlicando ol mótodo oquivaloncia do ároas	
	Rochata	
Figure / 1/	Cálculo del ángulo de fricción y cobesión del	50
- iguia - . i - .	macizo rocoso de la Estación Geomecánica 03	52
	anlicando el método equivalencia de áreas -	

Pág.

	RocData.		
Figura 4.15.	Cálculo del ángulo de fricción y cohesión del		53
	macizo rocoso de la Estación Geomecánica 04,		
	aplicando el método equivalencia de áreas –		
	RocData.		
Figura 4.16.	Diagrama de rosas de las fracturas – EG-01		55
Figura 4.17.	Diagrama de polos de las fracturas – EG-01		55
Figura 4.18.	Probabilidad de ruptura planar 34.78%,		56
U U	englobando al polo de la familia D-2; a favor		
	del talud, EG-01.		
Figura 4.19.	Probabilidad de ruptura en cuña con 45.45%,		57
0	englobando a la intersección de las familias:		
	D-2 y D-1, EG-01.		
Figura 4.20.	Probabilidad de ruptura por vuelco con 4.35%,		58
5	englobando al polo de la familia D-4, EG-01.		
Figura 4.21.	Diagrama de rosas de las fracturas – EG-02		60
Figura 4.22.	Diagrama de polos de las fracturas – EG-02.		60
Figura 4.23.	Probabilidad de ruptura planar 33.33%.		61
J	englobando al polo de la familia D-1: a		-
	favor del talud. EG-02.		
Figura 4.24.	Probabilidad de ruptura en cuña con 37.78%.		62
	englobando a la intersección de las familias:		
	D-1 v D-2. EG-02.		
Figura 4.25.	Probabilidad de ruptura por vuelco con		63
5	25.00%, englobando al polo de la familia D-3,		
	EG-03.		
Figura 4.26.	Diagrama de rosas de las fracturas – EG-03		65
Figura 4.27.	Diagrama de polos de las fracturas – EG-03	65	
Figura 4.28.	Probabilidad de ruptura planar 28.00%,		66
0	englobando al polo de la familia D-2; a		
	favor del talud, EG-03.		
Figura 4.29.	Probabilidad de ruptura en cuña con 37.46%,		67
0	englobando a la intersección de las familias:		
	D-1 y D-2, EG-03.		
Figura 4.30.	Probabilidad de ruptura por vuelco con		68
C C	28.00%, englobando al polo de la familia		
	D-4, EG-03.		
Figura 4.31.	Diagrama de rosas de las fracturas – EG-04		70
Figura 4.32.	Diagrama de polos de las fracturas – EG-04		70
Figura 4.33.	Probabilidad de ruptura planar 33.33%,		71
C C	englobando al polo de las familias: D-2 y		
	D-1; a favor del talud, EG-04.		
Figura 4.34.	Probabilidad de ruptura en cuña con		72
0	34.19%, englobando a la intersección		
	de las familias: D-1 y D-2, EG-04.		
Figura 4.35.	Probabilidad de ruptura por vuelco con		73
-	18.52%, englobando al polo de la familia		
	D-3, EG-04.		
Figura 4.36.	Método de explotación adecuado para la		74

		Pág.
	cantera de marmol.	
	Fuente: Quispe, 2019.	
Figura 4.37.	Secuencia de explotación de las calizas	75
	marmolizadas.	
	Fuente: Quipe, 2019.	
Figura 4.38.	Sección transversal de una explotación	77
	superficial	
	Fuente: Herrera, 2007.	
Figura 4.39.	Parámetros de diseño calculados.	82
	Fuente: Herrera, 2007.	
Figura 4.40.	Etapas recomendadas para explotación del	83
	marmol - Distrito de Jorge Chávez	
	Fuente: Zegarra, 2015.	
Figura 4.41.	Secuencia de extracción de los bloques de	84
	marmol- Distrito de Jorge Chavez	
E: 4.40	Fuente: Zegarra, 2015.	0.5
Figura 4.42.	Desprendimiento de bloque de marmol	85
	mediante tecnicas: a) covado y b) voicadura	
	Zegarra, 2015.	05
Figura 4.43.	Extracción del bioque de marmol tercera etapa.	85
Figure 4.44	Fuenie: Lopez, 2006. Méquina razadora tina Dallagrini	96
Figura 4.44.	Fuente: Zegerre, 2015	00
Eiguro 4 45	Fuence. Zegana, 2015. Figura Cuña hidráulica	96
i iyula 4.45.	Fuente: Lónez 2006	00
Figura 4.46	Ciclo de extracción de cada bloque de marmol	87
i igula 4.40.	Fuente: Lónez 2006	07
Figura 5 1	Midiendo el espaciamiento de las	103
rigara o.r.	discontinuidades.	100
Figura 5.2.	Midiendo el espaciamiento de las	103
- igener en l	discontinuidades.	
Figura 5.3.	Midiendo la apertura de las discontinuidades.	104
Figura 5.4.	Midiendo la apertura de las discontinuidades.	104
Figura 5.5.	Midiendo el rumbo y buzamiento de las	105
0	discontinuidades.	
Figura 5.6.	Utilización del marmol en las escaleras del	105
	parque de Jorge Chávez.	

ÍNDICE DE TABLAS

	1		
Р	а	a	
•	-		-

T 1 1 0 4		-
l abla 2.1.	Clasificación Geomecánica RQD.	8
Table 2.2	Calidad dal magiza racesa sogún PMP	0
1 4014 2.2	Fuente: Bienjawski, 1989	9
Tabla 2.3	Estimación y clasificación de la resistencia	9
1 4514 2.0.	a compresión simple de: Suelos v rocas, a	0
	partir de índices de campo	
	Fuente: González de Valleio, 2002.	
Tabla 2.4.	Parámetros de Clasificación Geomecánica RMR ₈₉ .	10
	Fuente: Gonzalez de Vallejo, 2002.	-
Tabla 2.5.	Clasificación rocosa con GSI.	12
	Fuente: González de Vallejo, 2002.	
Tabla 2.6.	Valores aproximados para c y φ, del macizo	15
	rocoso según su calidad.	
	Fuente: González de Vallejo, 2002.	
Tabla 2.7.	Parámetros de clasificación numérica por	21
	geometría del yacimiento y distribución de leyes.	
	Fuente: Nicholas, 1981.	
Tabla 3.1.	Accesibilidad al área de estudio.	23
Tabla 4.1.	1Resultado del peso específico promedio del	29
	macizo rocoso.	
	Fuente: INGEOCONSULT & LAB. SRL, 2024.	
Tabla 4.2.	Cálculo del valor promedio de RCU, EG-01.	31
Tabla 4.3.	Cálculo del valor promedio de RCU, EG-02.	31
Tabla 4.4.	Cálculo del valor promedio de RCU, EG-03.	32
Tabla 4.5.	Calculo del valor promedio de RCU, EG-04.	32
Tabla 4.6.	Resumen de los valores calculados de la	33
Table 17	resistencia a la compresion uniaxial.	22
	Céleule del ROD, EC 01	33
Tabla 4.0.	Calculo del RQD, EG-01.	34 24
1 4014 4.9	Euonto: Dooro, 1067	54
Tabla / 10	Cálculo del RMR_EG-01	35
Tabla 4.10.	Valor del RMR del macizo rocoso, EG-01	36
	Fuente: Bienjawski, 1989	00
Tabla 4 12	Valor de RMR y GSI del macizo rocoso	37
	EG-01.	0.
Tabla 4.13.	Cálculo del RQD. EG-02.	38
Tabla 4.14.	Calidad del macizo rocoso, EG-02.	38
	Fuente: Deere, 1967.	
Tabla 4.15.	Cálculo del RMR, EG-02.	39
Tabla 4.16.	Valor del RMR del macizo rocoso, EG-02.	40
	Fuente: Bieniawski, 1989.	
Tabla 4.17.	Valor de RMR y GSI del macizo rocoso, EG-02.	41
Tabla 4.18.	Cálculo del RQD, EG-03.	41
Tabla 4.19.	Calidad del macizo rocoso, EG-03.	42
	Fuente: Deere, 1967.	
Tabla 4.20.	Cálculo del RMR, EG-03.	43

		Pág.
Tabla 4 21	Valor del RMR del macizo rocoso, EG-03	44
	Fuente: Bieniawski, 1989.	
Tabla 4.22.	Valor de RMR v GSI del macizo rocoso.	45
	EG-03.	
Tabla 4.23.	Cálculo del RQD, EG-04.	46
Tabla 4.24.	Calidad del macizo rocoso, EG-04.	46
	Fuente: Deere, 1967.	
Tabla 4.25.	Cálculo del RMR, EG-04.	47
Tabla 4.26.	Valor del RMR del macizo rocoso, EG-04.	48
	Fuente: Bieniawski, 1989.	
Tabla 4.27.	Valor de RMR y GSI del macizo rocoso,	49
	EG-04.	
Tabla 4.28.	Valores del RMR y GSI de las 04 estaciones	49
-	geomecánicas.	10
Tabla 4.29.	Valores de la cohesion y angulo de friccion	49
Table 100	calculadas de 4 estaciones geomecanicas.	F 4
Tabla 4.30.	Caracterización geomecanica mediante la	54
Tabla 1 21	Caracterización de discontinuidades, EG-01.	50
1 4018 4.31.	oriontación do discontinuidados. EG-02	59
Tabla 1 32	Caracterización de omecánica mediante la	64
1 4014 4.02.	orientación de discontinuidades. EG-03	04
Tabla 4 33	Caracterización geomecánica mediante la	69
	orientación de discontinuidades. EG-04	00
Tabla 4.34	Factores geométricos del vacimiento de marmol.	76
Tabla 4.35.	Propiedades geomecánicas del marmol.	76
Tabla 4.36.	Clasificación de las rocas según	79
	Protodyakonov.	
	Fuente: Montalar, 2009.	
Tabla 4.37.	Resumen de los parámetros calculados.	80
Tabla 3.38.	Método convencional.	81
	Fuente: Quipe, 2019.	
Tabla 4.39.	Método mecanizado.	81
	Fuente: Quipe, 2019.	
Tabla 4.40.	Servicios e instalaciones auxiliares.	82
	Fuente: Quipe, 2019.	
I abla 4.41.	Clasificacion del marmol segun su	88
	composicion química.	
Table 1 10	Fuente: Lopez, 2006.	00
1 abia 4.42.	Descripción macroscopica de la muestra	89
Table 1 12	SA-UI. Descripción macroscópico de la musetra	00
Tabla 4.43.		90
Tabla 4 44	SA- U2. Descripción macroscópica de la muestra	01
i avia 4.44.	$S\Delta$ - Ω	91
Tabla 4 45	Descripción macroscónica de la muestra	92
	SA- 04.	52
Tabla 4.46	Descripción macroscópica de la muestra	93
	SA- 05.	00

LISTA DE ABREVIATURAS

GPS	:	Global Positioning System.
UTM	:	Universal Transversal Mercator.
INGEMMET	:	Instituto Geológico Minero Metalúrgico.
S.A.	:	Sociedad anónima.
IHSN	:	International Household Survey Network.
ISSN	:	Número internacional normalizado de publicaciones seriadas.
AIME	:	Asociación de ingenieros de minas del Ecuador.
UNCP	:	Universidad Nacional del Centro del Perú.
RMR	:	Rock Masing Rating.
GSI	:	Geological Strength Index.
RQD	:	Rock Quality Designations.
M-C	:	Morh-Coulomb.
H-B	:	Hoek-Brown.
σci	:	Resistencia a la compresión uniaxial.
σ3máx	:	Tensión de confinamiento.
σ´t	:	Resistencia a la tracción.
σ´ct	:	Resistencia global.
σ1	:	Esfuerzo principal mayor.
σ2	:	Esfuerzo principal intermedio.
σ3	:	Esfuerzo principal menor.
Т	:	Esfuerzo de corte.
σn	:	Esfuerzo normal.
σ´cm	:	Resistencia del macizo rocoso.
σ0	:	Esfuerzo vertical.
mi	:	Constante de Hoek & Brown.
mb	:	Constante de Hoek & Brown.
s, a	:	Constantes de Hoek & Brown.
С	:	Cohesión.
φ	:	Ángulo de fricción.
ט	:	Módulo de poisson.
Ei	:	Módulo de deformación de laboratorio de la matriz rocosa.
Em	:	Módulo de deformación.
D	:	Factor de disturbancia.
EG-01,	:	Estacion geomecánica.

RESUMEN

La tesis consistió en la realización de la caracterización geomecánica del macizo rocoso donde afloran los minerales de marmol con la finalidad de determinar el método de explotación más idóneo. La investigación se ubica al Sur-Este del Distrito de Jorge Chávez y en afloramientos de las calizas de la Formación Cajamarca. El marmol se originó por un proceso metamórfico debido al contacto de las calizas con un cuerpo ígneo intrusivo caliente. Se seleccionaron cuatro (04) estaciones geomecánicas denominadas SA-01, SA-02, SA-03 y SA-04, en cada una se realizó el análisis geomecánico. El peso específico calculado para cada macizo rocoso en el laboratorio INGEOCONSULT & LAB SRL tiene valor promedio de 2.59 TM/m³. Los valores del RMR de 53 a 59 (TIPO III, regular calidad) y el GSI calculado insitu tiene 51 a 57 siendo una roca regular. La cohesión y el ángulo de fricción calculados con el software ROCDATA tiene entre 4.273 MPa a 4.926 MPa y para el ángulo de fricción entre 22.496º a 24.991º. El método idóneo elegido es el de explotación a cielo abierto en ladera con pendiente empinada, en explotación de bancos de arriba hacia abajo (descendente). Esta caracterización geomecánica permite aplicar la tabla de Protodyakonov para calcular los parámetros de diseño. De dicha tabla, para un macizo rocoso de regular calidad, se eligió el coeficiente de 2, con este valor se realizaron los cálculos de los parámetros de diseño, siendo la profundidad de explotación de 100 m, número de bancos 10, altura de banco 10 m, ángulo de talud de 63º, ángulo de talud final de 39º y ancho de plataforma de 7 m. Los mármoles poseen colores de gris blanquecinos por el alto contenido de CO₃Ca, encima de los 90% y colores gris amarillentos a gris anaranjados por el contenido de óxidos de hierro, Los mármoles de colores blanquecinos son muy cotizados en el mercado.

Palabra claves: caracterización, coeficiente, ángulo de talud, cohesión.

ABSTRACT

The present thesis consisted of the geomechanical characterization of the rock massif where the marble minerals outcrop in order to determine the most suitable method of exploitation. This work was carried out in the south-east of the Jorge Chávez District and within the limestones of the Cajamarca Formation. The marble mineralization originated by a metamorphic process due to the contact of the limestones of the Cajamarca Formation with a hot intrusive igneous body. Five (04) geomechanical stations called SA-01, SA-02, SA-03 and SA-04 were selected, in each of these the respective geomechanical analysis was carried out. The specific gravity calculated for each rock mass by the INGEOCONSULT & LAB SRL laboratory yields an average value of 2.59 MT/m3. The values of the RMR show values of 53 to 59 (TYPE III, fair quality) and the GSI calculated in situ show values of 51 to 57 being a regular rock. The cohesion and friction angle calculated with the ROCDATA software yield values for cohesion between 4,273 MPa to 4,926 MPa and for friction angle between 22,496° to 24,991°. The ideal exploitation method chosen is open-pit mining on a steep slope, with the banks being exploited from top to bottom (see annex). This geomechanical characterization allowed us to apply Protodyakonov's table as suggested by Montalar (2009) to calculate the design parameters. From this table, for a rock mass of regular quality, the coefficient of 2 was chosen, with this value the calculations of the design parameters were made, being: exploitation depth of 100m, number of banks 10, bank height 10m, slope angle of 63°, final slope angle of 39° and platform width of 7 m. This distance is ideal because it avoids excessive expenses in transporting the ore for sale, and the road starts at the deposit itself. The marbles have whitish-gray colors due to the high CO3Ca content, above 90% and yellowish-gray to orange-gray colors due to the content of iron oxides, as can be seen in the results of chemical analyses. Whitish marbles are highly valued in the market.

Keywords: Characterization, coefficient, slope angle, cohesion.

CAPÍTULO I INTRODUCCIÓN

1.1 PLANTEAMIENTO DEL PROBLEMA

Los yacimientos de marmol más importantes en el mundo se encuentran principalmente en Italia, China, Turquía, Filipinas, Francia, Brasil, Estados Unidos, India, Marruecos, Austria, Rusia, Japón, Portugal y Grecia. Italia cuenta con abundantes recursos de marmol de alta calidad, posicionando a la nación como un productor y exportador clave de marmol en el mundo. El marmol se usa ampliamente en la industria de la edificación y la construcción con fines decorativos y estructurales, desde esculturas al aire libre hasta paredes, revestimientos, pisos, elementos ornamentales, escaleras y pasillos. El marmol encuentra su aplicación en revestimientos de paredes interiores y exteriores, pavimentos interiores y exteriores, revestimientos de chimeneas y hogares, y artículos de novedad. Además de los mercados tradicionales que ya están acostumbrados a usar marmol, los nuevos mercados en el Medio Oriente y el Sudeste Asiático ahora son cada vez más conscientes de los beneficios del marmol.

El distrito de Jorge Chávez se observa la existencia de minerales de marmol que se ha formado por el metamorfismo de las calizas. Estos minerales merecen ser explotados y comercializados por lo que es necesario realizar la caracterización geomecánica del macizo rocoso donde se encuentran estos minerales no metálicos con la finalidad de elegir el método de explotación más idóneo.

1.2 FORMULACIÓN DEL PROBLEMA

1.2.1 General

¿Cuál es la Caracterización Geomecánica del Macizo Rocoso para determinar el método de explotación más adecuado de los minerales de marmol en el distrito de Jorge Chávez?

1.2.2 Específicos

¿Cuál es el resultado del análisis del macizo rocoso utilizando los parámetros de RMR, RQD y GSI donde se presenta la mineralización de marmol en el distrito de Jorge Chávez- Celendín?

1.3 JUSTIFICACIÓN DE LA INVESTIGACIÓN

Esta investigación tiene la finalidad de determinar la caracterización geomecánica del macizo rocoso con la finalidad de lograr una mejor elección del método de explotación de los minerales de marmol en el distrito de Jorge Chávez. Esta investigación también dará mayores conocimientos de la calidad del macizo rocoso de este sector del distrito de Jorge Chávez.

1.4 ALCANCES O DELIMITACIONES DE LA INVESTIGACIÓN

Está investigación se realizará en el distrito de Jorge Chávez ubicada en la provincia de Celendín. La presente investigación comprenderá una extensión de 20 Km².

1.5 LIMITACIONES DE LA INVESTIGACIÓN

La ausencia de laboratorios para los ensayos de mecánica de rocas podría constituir una limitación.

2

1.6 OBJETIVOS

1.6.1 General

 Realizar la caracterización geomecánica del macizo rocoso para determinar el método de explotación de marmol en el distrito de Jorge Chávez – Celendín.

1.6.2 Específico

- Realizar el cartografiado geológico
- Obtener los parámetros geomecánicos
- Definir el método de explotación

El presente trabajo de investigación está compuesto por cinco capítulos: El Capítulo I que lleva por título: Introducción, contiene todo lo referente a una explicación de cómo está estructurado el presente trabajo de investigación. El Capítulo II, denominado Marco Teórico contiene dos subcapítulos, el primero denominado Antecedentes de la investigación tanto internacionales, nacionales y locales y el segundo denominado Bases Teóricas que van a servir de apoyo para la presente investigación. El capítulo III, denominado Materiales y Métodos, contiene el contexto de la investigación, los procedimientos, la metodología, la identificación de variables, las técnicas utilizadas, los instrumentos y equipos utilizados, además contiene el desarrollo de los objetivos y los resultados de la investigación. En el capítulo IV, denominado como Análisis y discusión de resultados, aquí se relacionan los resultados de la investigación con el planteamiento del problema, se contrata la hipótesis con los resultados obtenidos, para así poder llegar a las conclusiones correspondientes. El capítulo V, denominado Conclusiones y recomendaciones. En este capítulo las conclusiones deberán estar de acuerdo necesariamente, a los objetivos planteados y así mismo las recomendaciones deben corresponder a las partes de la investigación que no se hicieron. Y por último se tienen las referencias bibliográficas de acuerdo con el formato establecido por la Facultad, además están los anexos.

CAPÍTULO II MARCO TEÓRICO

2.1 ANTECEDENTES TEÓRICOS

2.1.1 Internacionales

Trigueros (2013), realizó "Parámetros de viabilidad para la explotación de marmol y calizas marmóreas mediante métodos de explotación subterráneos". Estableció el conocimiento de la influencia de parámetros de rendimientos de la explotación como: Capacidad de producción, productividad, rentabilidad de utilidad para el tratamiento preliminar del yacimiento de marmol o calizas marmóreas. Las 14 canteras permitieron hacer síntesis geológica y geomecánica de parámetros de capa como: Espesor, buzamiento y calidad de la roca.

Tobón, Aristizábal y Arango (2003), Investigaron "Geología de los mármoles de la concesión minera Rioclaro de Sumucil S.A.". Los mármoles pertenecen a la era Paleozoica, originándose por depositación primaria de sedimentos bajo ambiente transicional, evidenciándose el metamorfismo dinámico sobreimpuesto al metamorfismo regional. Presentando diaclasas muy abiertas > 16 mm. con tendencia dominantes E-W/ verticales, N30°W/45°NE, N60°E/85°S.

2.1.2 Nacionales

Zegarra (2015), Investigó "Estudio de factibilidad de un proyecto de explotación y transformación de marmol". Concluye que proyecto de explotación de marmol tiene un costo de operación de 33.04 US\$/m³ con una recuperación de material del 60 % en condiciones más desfavorables. Se calculó la vida útil de 80 años, explotando en promedio 3000 m³ /mes. Además, se determina que la inversión para instalación de la planta, sin considerar costos sociales y administrativos externos es de US\$ 3,802,390. Con una tasa interna de retorno de

37.87 %, que está por encima del costo de oportunidad de 28 %, lo cual indica la rentabilidad del proyecto. Asimismo, la planta propiedad del Proyecto producirá baldosas de alta calidad en diferentes medidas, principalmente las más comerciales: 12"x12", 18"x18", 24"x24" a 1.0 y 29 1.5 cm y también a 2 y 3 cm de espesor.

Aguilar (2019), "Optimización de los procesos de transformación productiva del marmol travertino mediante la filosofía Kaisen en el Instituto Regional del Marmol". Llegó a las siguientes conclusiones. Los procesos de transformación productiva del marmol travertino en el Instituto Regional del Marmol en el periodo 2017- 2018 se han optimizado significativamente mediante la filosofía Kaizen, las herramientas que se utilizaron para la optimización de los procesos de transformación productiva del marmol travertino mediante la filosofía Kaizen fueron: El control de tiempos y movimientos, luego: El diagrama SIPOC en la cual se detallan los proveedores, las entradas, las salidas y los clientes de cada proceso.

2.1.3 Locales

Rimarachín (2016), realizó "Estimación de Reservas de Marmol para su explotación minera en la Concesión Santa Rita en el distrito Jorge Chávez, Provincia Celendín, Región Cajamarca, 2017". Llegó a las siguientes conclusiones: El cálculo de reservas probables se realizó con el apoyo del software ArcGis, considerando una profundidad 30 m., el castigo 30% y la densidad 2.8 TM/m³. Se calculó 3 573 549.29 TM, en los tres bloques estudiados. El método de explotación minera empleado será el de cielo abierto mediante bancos el cual tendrá 7.26 metros de alto con una berma inicial de 10 metros y la segunda de 8 metros, con un ángulo de talud de 63°.

2.2 BASES TEÓRICAS

2.2.1 Marmol

El marmol es una roca metamórfica de textura compacta y cristalina que se origina por el contacto de las calizas y un cuerpo intrusivo caliente. Estos procesos geológicos inducen cambios mineralógicos y estructurales (alto grado de cristalización) tanto en las rocas ígneas como en las rocas sedimentarias carbonatadas. Los principales agentes que producen estas transformaciones son los fluidos mineralizantes, la presión y la temperatura. Los mármoles proceden del metamorfismo de las rocas calizas tras una recristalización de sus minerales. El marmol es considerado una roca ornamental, estas rocas son aquellas que luego de pasar por procesos de corte nos permiten tener un material apto para obras monumentales, escultóricas y además luego de ser debidamente elaborados nos brindan un material de enchape ya sea para interiores o exteriores. Estos mármoles están presentes en una gran cantidad de acabados de obras civiles, desde grandes pedestales, estatuas, columnas, lapidas, así como productos que han sido elaborados y poseen un fino acabado, tales como baldosas, planchas para exteriores, interiores, techados y muchas otras cosas más (Zegarra, 2015).

Cuando mencionamos al marmol se tiene en cuenta su valor en el mercado siendo el color una de las principales características para esta valoración, los mármoles blancos presentan escasa pigmentación; siguen los grises con bandeados decorativos de tonalidad más oscura. Los amarillos deben su color a la presencia de arcilla, llegando hasta el 10 % de contenido. Los mármoles rojos deben su gradación del rosa pálido al rojo intenso, a la dispersión del óxido de hierro o hematita. La presencia de material carbonatado da lugar a diversas tonalidades de marrón y la presencia de compuestos de magnesio origina mármoles de coloración violeta, variando su coloración desde el gris en diversos grados, hasta el negro intenso. La variedad de mármoles verdes debe su coloración a la presencia de serpentina, clorita, mica u óxidos ferrosos (Zegarra, 2015).

Se clasifican de acuerdo con el color, los mármoles se agrupan en: blancos, turquesas, amarillos, rosas, negros y verdes diversos. Los mármoles tienen los siguientes grados de calidades:

- Calidad 1: Marmol de grano uniforme y fresco, fácilmente laborable, exento de manchas u otros defectos (Zegarra, 2015).
- Calidad 2: Marmol de pequeñas venillas o manchas de color cafecino, debido a la presencia de granates (Zegarra, 2015).

• **Calidad 3:** Marmol con machas y venas continúas de color cafecino; puede contener manchas gris negruzcas de sulfuros (Zegarra, 2015).

2.2.2 Geomecánica

Se ocupa del estudio de las propiedades y comportamiento mecánico de los macizos rocosos, y de su respuesta ante la acción de fuerzas aplicadas en su entorno físico. Los ensayos de laboratorio son los que permiten determinar las propiedades físicas y mecánicas de la matriz rocosa que definen su comportamiento mecánico, del mismo modo que los ensayos in situ las propiedades de los macizos rocosos en su estado y condición natural y a escalas representativas (González de Vallejo, 2002).

2.2.3 Macizo rocoso

El estudio del comportamiento mecánico del macizo rocoso se debe tener en cuenta las propiedades tanto de la matriz como de las discontinuidades. Es un medio discontinuo, anisótropo y heterogéneo conformado en conjunto tanto por bloques de matriz rocosa y distintos tipos de discontinuidades que afectan al medio rocoso, mecánicamente los macizos rocosos pueden considerarse que presentan resistencia a la tracción nula. El conjunto de discontinuidades y bloques de matriz gobiernan el comportamiento mecánico global del macizo rocoso, es así, que para el estudio del comportamiento mecánico del macizo rocoso se debe analizar las propiedades de la matriz rocosa y de las discontinuidades. La heterogeneidad que se presenta en el macizo rocoso se relaciona a la variabilidad de propiedades físicas y mecánicas en distintas zonas del macizo rocoso controlado por cambios de la matriz rocosa y las discontinuidades geológicas (González de Vallejo, 2002).

2.2.4 Clasificaciones geomecánicas

Existen métodos cualitativos y cuantitativos para clasificar el comportamiento geomecánico de los macizos rocosos. Con la utilización de software se establece mejor las relaciones entre las distintas teorías. Los mas conocidos son: RQD (Rock Quality Designation), (Geological Strentgh Index), RMR

(Rock Mass Rating), entre otros.

Rock Quality Designation (RQD)

El índice RQD (Rock Quality Designation) fue desarrollado en (1964-1967) por Deere. Establece la calidad del macizo rocoso in situ a partir del grado de fracturación, de manera cuantitativa. Definiendo la siguiente formula:

 $RQD = 100e^{(0.1*\lambda)} * (0.1*\lambda + 1)$

Donde: $\lambda = \frac{N^{\circ} \text{ discontinuidades}}{\text{longitud total del macizo rocoso}}$

Tabla 2.1. Clasificación Geomecánica RQD.

RQD (%)	Calidad de la roca
100-90	Muy buena
90-75	Buena
75-50	Mediana
50-25	Mala
25-0	Muy mala

Fuente: Deere, 1967.

En la actualidad, el índice RQD se utiliza como parámetro estándar en el registro de testigos de perforación y es un elemento básico de los principales sistemas de clasificación de masa: el sistema de clasificación geomecánica de Bienawiski (RMR) y el sistema Q Barton. (SGS, 2021).

• Clasificación de la Masa Rocosa Rock Mass Rating (RMR)

Según Gonzales de Vallejo (2004), el RMR es una clasificación geomecánica de los macizos rocosos desarrollada por Bieniawski en 1973, con actualizaciones en 1979 y 1989. Esta clasificación tiene en cuenta los siguientes parámetros geomecánicos:

- Resistencia uniaxial de la matriz rocosa.
- Grado de fracturación en términos del RQD.

- Espaciado de las discontinuidades.
- Condiciones de las discontinuidades.
- Condiciones hidrogeológicas.
- Orientación de las discontinuidades con respecto a la excavación (túneles).

Clase	Calidad	Calidad de la roca
I	Muy buena	81 – 100
II	Buena	61 – 80
	Media	41 – 60
IV	Mala	21 – 40
V	Muy mala	< 20

Tabla 2.2 Calidad del macizo rocoso según RMR₈₉.

Fuente: Bieniawski, 1989.

Tabla 2.3. Estimación y clasificación de la resistencia a compresión simple de: Suelos y rocas, a partir de índices de campo.

Clas e	Descripción	Identificación de campo.	Aproximación al rango de resistencia a compresión simple (MPa)
S1	Arcilla muy blanda	El puño penetra fácilmente varios cm.	<0.025
S2	Arcilla débil	El dedo penetra fácilmente varios cm.	0.025- 0.05
S3	Arcilla firme	Se necesita una pequeña presión para hincar el dedo.	0.05- 0.1
S4	Arcilla rígida	Se necesita alta presión para hincar el dedo.	0.1- 0.25
S5	Arcilla muy rígida	Con cierta presión puede marcarse con la uña.	0.25- 0.5
S6	Arcilla dura	Se marca con dificultad al presionar con la uña.	>0.5
R0	Roca extremadamente blanda	Se puede marcar con la uña	0.25-1.0
R1	Roca muy blanda	La roca se desmenuza al golpear con la punta el martillo. Con una navaje se talla fácilmente.	1.0- 5.0
R2	Roca blanda	Se talla con dificultad con una navaja. Al golpear con la punta del martillo	5.0- 25
R3	Roca moderadamente dura	No puede tallarse con la navaja. Puede fracturarse con un golpe fuerte del martillo.	25- 50
R4	Roca dura	Se requiere más de un golpe del martillo para fracturarla	50- 100
R5	Roca muy dura	Se requiere muchos golpes del martillo para fracturarla	100- 250
R6	Roca extremadamente dura	Al golpearlas con el martillo solo saltan esquirlas	>250

Fuente: González de Vallejo, 2002.

Parámetro	Rango de valores					
Resistencia de la	Ensayo de	> 10	4 – 10	2 – 4	1 – 2	
roca intacta	carga puntual					
	Compresión	> 250	100 - 250	50 - 100	25 – 50	5-25 1-5 <1
	simple (MPa)					
	Puntuación	15	12	7	4	2 1 0
		90 - 100	75 - 90	50 – 75	25 – 50	< 25
RQD (/%)	Puntuación	20	17	12	8	3
Espaciado de las		> 2m	0.6 – 2 m	0.2 – 0.6 m	6 – 20 cm	< 6 cm
discontinuidades	Puntuación	20	15	10	8	5
	Longitud de la	<1m	1 – 3 m	3 – 10 m	10 – 20 m	> 20 m
	discontinuidad					
	Valor	6	4	2	1	0
	Abertura	Nada	< 0.1 mm	0.1 – 1 mm	1 – 5 mm	> 5 mm
	Valor	6	5	3	1	0
	Rugosidad	Muy	rugosa	Ligeramente	ondulada	Suave
Estado de las		rugosa		rugosa		
discontinuidades	Valor	6	5	3	1	0
	Relleno	Ninguno	duro < 5 mm	duro > 5 mm	blando < 5 mm	blando > 5 mm
	Valor	6	4	2	1	0
	Alteración	Sana	Lig. Alt.	Mod. Alt.	Muy alterada	Descompuesta
	Valor	6	5	3	2	0
	Puntuación	30	23	13	6	0
	Caudal por 10	Nulo	< 10 l/min	10-25 l/min	25-125l/min	> 125 l/min
	m de Túnel					
	Relación					
Agua freática	presión de	0	0 - 0.1	0.1 - 0.2	0.2 - 0.5	> 0.5
	agua/ Tensión					
	principal					
	mayor					
	Estado	Seco	Ligeramente	Húmedo	Goteando	Agua fluyendo
	general		húmedo			
	Puntuación	15	10	7	4	0

Tabla 2.4. Parámetros de Clasificación Geomecánica RMR₈₉.

Fuente: Gonzalez de Vallejo, 2002.

• Geological Strenght Index (GSI)

El GSI estima la disminución de la resistencia que presenta un macizo rocoso (González de Vallejo, 2002). Es un sistema de caracterización de las propiedades geomecánicas de los macizos rocosos, a través de la evaluación visual de las propiedades geológicas en el campo. Las observaciones se basan en la apreciación del macizo a nivel estructural y de las condiciones presentes en su superficie (discontinuidades), por lo cual, el criterio toma en cuenta el nivel de alteración- meteorización de las rocas, su historia geológica y condiciones de formación, estado de

fracturación presente en ellas, así como la disposición de las juntas o discontinuidades.

El GSI, presenta una puntuación final comprendida dentro del intervalo 0-Con idéntica ponderación entre los distintos parámetros que lo 100. componen. La clasificación de GSI, pese a ser más moderna, tiene asociado, a la misma, un criterio de rotura, no lineal, implementado en una gran cantidad de software de ingeniería. Por ello, durante los últimos años diversos autores han derivado grandes esfuerzos en recoger una relación entre ambas magnitudes. Entre los que destaca: Hoek et al. (1995), cuya propuesta, de carácter general, índice de resistencia geológica fue presentado por Hoek et al (1995) como complemento del criterio de falla generalizado en roca, para la estimación de los parámetros "s" y "m", ya que el sistema RMR se había vuelto altamente inadecuado para el caso específico de rocas débiles (se obtenían valores de s y m poco representativos de la realidad). Los valores de las constantes se obtienen como se muestra a continuación: El valor de m, se obtiene con la siguiente expresión:

$$S = Exp((\frac{GSI-100}{9}))$$

Los valores de s y α se obtienen de distintas expresiones, dependiendo de si el valor de GSI es mayor o menor que 25 (valor arbitrario) donde los valores mayores a 25 representan macizos rocosos de media a buena calidad y los menores a 25 de mala a muy mala calidad. Las expresiones son las siguientes:

Para macizos rocosos con GSI > 25

$$S = Exp((\frac{GSI-100}{9}))$$

 α = 0.5 para macizos rocosos con GSI < 25 S = 0

$$\alpha = 0.65 - (\frac{\text{GSI}}{200})$$

Para macizos rocosos con un valor de GSI mayor a 25 establece una relación entre GSI y el RMR 89seco con la siguiente ecuación:

$$GSI = RMR89 - 5$$

Calidad del macizo rocoso	Clase	Valor de GSI
Muy mala	V	0 - 20
Mala	VI	21 - 40
Regular		41 - 60
Buena		61 - 80
Excelente	I	81 - 100

Tabla 2.5. Clasificación rocosa con GSI.

Fuente: González de Vallejo, 2002.

Figura 2.1. Estimación del Índice GSI en base a descripciones geológicas Fuente: González de Vallejo, 2002.

Relaciones entre RMR y GSI

Las relaciones existentes entre GSI y RMR, dependiendo del RMR utilizado, se detallan a continuación: Para el caso de RMR76: RMR76 >18 \rightarrow GSI = RMR76 RMR76 <18 \rightarrow No se puede utilizar el RMR89 para la obtención del GSI RMR89 > 23 \rightarrow GSI = RMR89 - 5 RMR89 < 23 \rightarrow No se puede utilizar el RMR89 para la obtención del GSI.

2.2.5 Criterio de ruptura Hoek y Brown

El criterio de ruptura de Hoek y Brown, se utiliza con el propósito de valorar la resistencia del macizo rocoso y las propiedades de deformación; para predecir con anticipación los esfuerzos que se generan en el macizo rocoso con la puesta en marcha del diseño de explotación. Se utiliza la siguiente ecuación:

$$\sigma_1' = \sigma_3' + \sigma_{ci} \left(m_b \frac{\sigma_3'}{\sigma_{ci}} + s \right)^a$$

Donde:

 σ'_1 y σ'_3 : Esfuerzos efectivos principales máximos y mínimos respectivamente.

- s y a: Constantes que dependen de las condiciones estructurales del macizo rocoso.
- mb: Valor reducido de la constaste mi para macizos rocosos

El Criterio de Hoek y Brown en su última versión tiene la misma expresión que la versión generalizada del año 1997, pero introduce un nuevo parámetro, el factor de alteración (D), dando lugar a una distinta formulación para la obtención de los valores mb, s y a.

El factor D representa un factor reductor de la resistencia que depende del grado de alteración que ha sufrido el macizo rocoso por efecto de voladuras o descompresión, es decir por efectos antrópicos. Adopta valores desde 0 para la roca no alterada en condiciones in situ, hasta el valor de 1 para roca muy alterada.

Los autores presentan una tabla con valores estimados del factor de alteración D para distintos estados del macizo rocoso.

El valor mb es el valor reducido del correspondiente al material intacto m0 y viene dado por la siguiente expresión:

$$m_b = m_i \exp\left(\frac{GSI - 100}{28 - 14D}\right)$$

Los valores s y a vienen dados por las siguientes expresiones:

$$s = \exp\left(\frac{GSI - 100}{9 - 3D}\right)$$
$$a = \frac{1}{2} + \frac{1}{6}\left(e^{-GSI/15} - e^{-20/3}\right)$$

Con esta expresión se produce una transición suave de los parámetros del modelo tanto en función del GSI como de la incidencia de la alteración, perturbación, de origen humano.

2.2.6 Criterio de Mohr-Coulomb

Introducido por primera vez en el año 1973, inicialmente realizado para el estudio de suelos. A partir de una serie de pruebas de compresión, llevadas a cabo sobre muestras idénticas de suelo, con presiones de confinamiento diferentes, representadas por un conjunto de círculos de Mohr que representan la falla. Se ha definido en la práctica que una envolvente de falla es tangente a estos círculos, representándose como una línea recta sobre un amplio rango de tensiones. La ecuación de la envolvente se puede expresar de la misma forma que la ley de coulomb.

$$t = c' + tan \phi'$$

Dónde:

c': cohesión efectiva. Es una constante que representa la tensión cortante que puede ser resistida sin que haya ninguna tensión normal aplicada.

φ´: el ángulo de rozamiento interno.

r: Tensión tangencial que actúa en el plano de rotura.

 σ : Tensión normal que actúa en el plano de rotura.

Figura 2.2 Representación gráfica de la ecuación de Coulomb. Fuente: Suarez, 2019.

La ventaja del criterio de Mohr-Coulomb es su simplicidad. Sin embargo, presenta inconvenientes para el caso de la matriz rocosa, sobre todo los relacionados con el comportamiento tensión-deformación no lineal de los macizos rocosos, por lo que no es un criterio adecuado para la estimación de su resistencia. No obstante, en determinados casos el criterio puede ser empleado para macizos rocosos resistentes en los que la rotura se produzca a favor de superficies de discontinuidad, teniendo en cuenta que deben adoptarse valores para la cohesión y para el ángulo de rozamiento representativo del macizo rocoso. Bieniawski (1979), propone unos valores orientativos para ambos parámetros, en función de la calidad del macizo rocoso dada por el índice RMR (González de Vallejo, 2002).

Tabla 2.6. Valo	ores aproximados	para c v & del	macizo rocoso	según su	calidad
	5105 aproximados	ραια σ γ ψ, ασι	11000000	Segun Su	ounduu.

Clase de roca	I	II	III	IV	V
RMR	> 80	61- 80	41- 60	21- 40	< 20
Cohesión (Mpa)	> 0.4	0.3- 0.4	0.2- 0.3	0.1- 0.2	< 0.1
Angulo de rozamiento interno	> 45°	35°- 45°	25°- 35°	15º- 25º	< 15°

Fuente: González de Vallejo, 2002.

2.2.7 Martillo Schmidt

También llamado martillo de rebote consiste en un pistón de acero que se impulsa por un resorte contra la superficie de la roca a medir. El rebote de este pistón sobre la superficie indica un valor adimensional entre dureza y resistencia de la muestra de roca. El ensayo consiste en medir la resistencia al rebote de la superficie de la roca. La medida del rebote se correlaciona con la resistencia a compresión simple mediante un gráfico que contempla la densidad de la roca y la orientación del martillo respecto del plano ensayado. Su uso es muy frecuente dada la manejabilidad del aparato, pudiendo aplicarse sobre roca matriz y sobre las discontinuidades.

El ensayo consiste en medir la resistencia al rebote de la superficie de la roca ensayada. La medida del rebote se correlaciona con la resistencia a compresión simple mediante un gráfico debido a Miller (1966) que contempla la densidad de la roca y la orientación del martillo respecto del plano ensayado.

Tipos de Martillo

Se utilizan dos tipos de martillo, el tipo L con una energía de impacto de 0.735 N.m y el tipo N con una energía de impacto de 2.207 N.m. Los rebotes medidos con estos martillos se denotan con los símbolos RL y RN, respectivamente. Ambos martillos proporcionan buenos resultados para valores de compresión simple de la roca o la discontinuidad ensayada dentro del rango 20-150 MPa.

• Descripción y Principio de Funcionamiento

El martillo de Schmidt es un dispositivo mecánico usado para realizar ensayos no destructivos en materiales como las rocas. Se aplica presionando la punta del mismo sobre una superficie de roca hasta que salte el muelle, el cual golpea la roca a través de una punta cilíndrica. En función de la dureza de la roca o superficie de ensayo, el muelle sufre un mayor o menor rebote. A mayor rebote mayor resistencia de la roca.

- 1 Resorte de Compresión
- 2 Disco de Resorte
- 3 Barra de guía del martillo
- 4 Varilla metálica
- 5 Cara del Pulsador
- 6 Resorte del botón
- 7 Resorte de Impacto
- 8 Resorte de Percusión
- 9 Abrazadora
- 10 Émbolo de impacto
- 11 Cubierta Posterior
- 12 Tuerca de Bloqueo
- 13 Tornillo de Disparo
- 14 Trinquete
- 15 Tornillo
- 16 Tuerca Regulable
- 17 Barra de deslizamiento
- 18 Martillo
- 19 Manga de guía
- 20 Casquillos de dos partes
- 21 Junta de Filtro

Figura 2.4. Principio de funcionamiento del martillo Fuente: Lozano, 2009.

Figura 2.5. Ábaco para la resistencia a compresión simple de una roca. Fuente: Miller, (1966). Mejorado Rodríguez, 2024.

2.2.8 Resistencia a la compresión uniaxial

La resistencia es el esfuerzo que soporta una roca para determinadas deformaciones. Cuando la resistencia se mide en probetas de roca sin confinar se
denomina resistencia a compresión simple, y su valor se emplea para la clasificación geotécnica de las rocas (Lozano, 2009).

Cálculo de la Resistencia a la Compresión Uniaxial

La resistencia a compresión simple de los lados de las discontinuidades o JCS se puede obtener mediante la aplicación del martillo de Schmidt tipo L sobre la discontinuidad y utilizando el ábaco. Este Aparato consiste básicamente en un vástago que lleva conectado un muelle. Se coloca el vástago sobre la roca y se introduce en el martillo empujando este contra la roca lo que da lugar a que se almacene energía en un muelle que se libera automáticamente cuando esa energía elástica alcanza un cierto nivel y lanza una masa contra el vástago. La altura que alcanza esta marca al rebotar que se mide en una escala graduada de 0 a 60 es directamente proporcional a la dureza y por tanto a la resistencia a compresión simple de la superficie de roca (Miller, 1966).

Para obtener el valor de esta resistencia o JCS, conociendo el número de rebotes, R, el resultado medio de varios ensayos, se aplica la siguiente expresión:

$$RCU = 10^{0.00088*\gamma*R+1,01}$$

Donde γ es el peso específico de la roca expresado en kN/m³ y R es el número de rebotes del martillo de Schmidt. Este número se debe corregir en el caso de que el martillo no se aplique verticalmente y hacia abajo (Miller, 1966).

En general el valor de RCU que se obtenga para una determinada discontinuidad deberá ser inferior a la resistencia a compresión simple de la roca sana, de forma que en general se podría estimar JCS como la resistencia a compresión simple del material sano dividida entre una constante que se aproximará a 2,5 para rocas densas, a 5 para rocas intermedias y que llegara a 10 para el caso de rocas porosas (Miller, 1966).

Log (RCU)= 0.00088* densidad unitaria de la roca* (LMS)+1.01MN/m² Siendo:

> LMS= Lectura del martillo de Schmidt Log(RCU)= 0,00088*2.6*30

2.2.9 Parámetros para determinar el método de explotación

Los parámetros que se utilizan para la determinación del método de explotación son:

Banco: Escalón comprendido entre dos niveles que constituyen la rebanada que se explota puede ser de estéril y/o mineral, y que es objeto de excavación desde un punto del espacio hasta una posición final preestablecida (Gómez, 2010).

Altura de banco: Distancia vertical entre dos niveles, desde el pie del banco hasta la parte más alta o cresta (Gómez, 2010).

Talud de banco: Ángulo delimitado entre la horizontal y la línea de máxima pendiente de la cara del banco (Gómez, 2010).

Talud de trabajo: Ángulo determinado por los pies de los bancos entre los cuales se encuentra alguno de los tajos o plataformas de trabajo. Es, en consecuencia, una pendiente provisional de la excavación (Gómez, 2010).

Berma: Son aquellas plataformas horizontales existentes en los límites de la excavación sobre los taludes finales, que coadyuvan a mejorar la estabilidad de un talud y las condiciones de seguridad frente a deslizamientos o caídas de rocas. (Gómez, 2010).

Cantera: Se refiere a las explotaciones de rocas industriales, ornamentales y de materiales de construcción. Constituyen el sector más importante en cuanto a

número, ya que desde la antigüedad se han venido explotando para la extracción y abastecimiento de materias primas con uso final en la construcción y en obras de infraestructura (Trigueros, 2013).

Tabla 2.7. Parámetros de clasificación numérica por geometría del yacimiento y distribución de leyes.

1.	FORMA
•	Equidimensional o masivo: todas las dimensiones son similares en cualquier
	dirección
•	Tabular: dos de las dimensiones son mucho mayor que la tercera
•	Irregular: las dimensiones varían a distancias muy pequeñas .
2.	POTENCIA DEL YACIMIENTO
	Estrecha < a 10m
•	Intermedia: 10- 30m
•	Potente: 30- 100m
•	Muy potente > mayor a 100m
3.	INCLINACIÓN
•	Echado< a 20°
•	Intermedio 20 a 55º
•	Inclinado > a 55º
4.	PROFUNDIDAD DESDE LA SUPERFICIE
•	Pequeña< a 150 m
•	Intermedia de 150 a 600m
•	Alta > a 600m
5.	DISTRIBUCIONES DE LEYES
•	Uniforme: la ley del yacimiento se mantiene prácticamente constante en
	cualquier punto del yacimiento mineralizado
•	Graduado o diseminado: las leyes tienen una distribución zonal,
	identificándose cambios graduales de un punto a otro
•	Errático: no existe una relación entre las leyes, ya que estas cambian
	radicalmente de un punto a otro en distancias muy pequeñas

Fuente: Nicholas, 1981.

2.3 DEFINICIÓN DE TÉRMINOS BÁSICOS

Clasificación Geomecánica: Descripción sistemática de la calidad del macizo rocoso, mediante la cuantificación de parámetros de naturaleza subjetiva y objetiva, expresado en cantidades, denominado índice de clasificación (Berrocal, 2015).

Criterio de rotura: Modelo numérico o teórico que limita las regiones de comportamiento elástico y no elástico de un material (Gavilanes y Andrade, 2004).

Zonas críticas. Delimitación espacial que hace referencia del estado actual respecto a variables físicas y temporales (Dávila, 2011).

Diaclasa: Son fracturas en rocas a lo largo de las cuales apenas o ningún movimiento ha tenido lugar. (Lisle y Lesión, 2002).

Modelo geomecánico: Cuantifica diversos parámetros que componen el modelo geológico para que puedan utilizarse en los cálculos propios del modelo matemático (Ramírez, et al., 2008)

Método minero: Proceso iterativo tanto del punto de vista temporal espacial, que permite llevar a cabo la explotación minera de un yacimiento por medio de conjunto de sistemas, procesos y maquinarias que operan de forma ordenada, repetitiva y rutinaria (Herrera, 2006). Fracturación del macizo: Relación con el número y características de las fracturas: Espaciado, tipo y estado, etc. (Rodríguez, 2007).

Fracturación del macizo: Relación con el número y características de las fracturas: Espaciado, tipo y estado, etc. (Rodríguez, 2007).

CAPÍTULO III MATERIALES Y MÉTODOS

3.1 UBICACIÓN DE LA INVESTIGACIÓN

3.1.1 Geografía

El área de estudio se encuentra ubicado al NW del Distrito de Sucre en la provincia de Celendín a una altura de 2800m.s.n.m. Dentro de las siguientes coordenadas UTM: (A: N9232100, E822500; B: N9232100, E823100; C: N9231200, E823100 y D: N9231200, E822500)

3.1.2 Política

Políticamente se ubica en el distrito de Jorge Chávez, provincia de Celendín, Región de Cajamarca.

3.2 ACCESIBILIDAD

A la zona de estudio se accede por varias vías siguiendo las vías provinciales y distritales, siendo en algunos casos: Trochas carrozables y vías asfaltadas; ocasionando tardanzas de llegada a la zona de investigación, las cuales se muestran en la siguiente tabla:

TRAMO	TIPO DE VÍA	DISTANCIA (Km.)	TIEMPO (H.)
Cajamarca- Celendín	Asfaltada	200	2.5
Celendín- Jorge Chávez	Herradura	10	0.6
Jorge Chávez- zona de estudio	Herradura	0.5	0.4

Tabla 3.1. Accesibilidad al área de estudio.

3.3 GEOLOGÍA LOCAL

Dentro del área de estudio afloran secuencias sedimentarias del cretácico inferior al reciente. Las secuencias sedimentarias están formando el flanco oriental de un sinclinal y que posee una orientación preferencial del NW al SE. por lo que los estratos presentan buzamiento promedio de 30° al SW.

ERA	SISTEMA	LI	UNID TOLĆ)AD)GICA	ESPESOR (m)	LITOLOGÍA	DESCRIPCCIÓN
4	ONARIO	DEPÓ	SITO AL	UVIAL	30		Arenas y gravas subredondeadas a subangulosas arcillas, limos de coloración gris marrón
oíc	cuater	DEPÓ	SITO LA	CUSTRINO	100	REPORT (EVER	Arenas finas, arcillas, gravas dispuestas en estratos delgados,
ZON	ENO	VOLO	ÁNICOS	HUAMBOS	200	* * * * * * * * *	Tobas traquiticas a riolíticas, presencia de bloques y algunas bombas flujos andesíticos.
CEI	PALEÓG NEÓGEN	GRUPO CALIPUY	VO PO	LCÁNICOS RCULLA	300	7	CUERPOS INTRUSIVOS SUBVOLCÁNICOS Tobas traquiticas a riolíticas, presencia de bioques y algunas bombas de coloración gris verdosa y de naturaleza andesítica DISCORDANCIA
	RIOR	1	ORMAC	CIÓN RCA	450		Calizas grises, muy compactas , estratos medianos a gruesos.
	O SUPE	GRUF QUILQU	'O IÑÁN	FORMACIÓN COÑOR FORMACIÓN ROMIRÓN	300		Calizas margosas, estratos medianos a gruesos arcilitas calcareas en estratos delgados.
	TÁCIC			FORMACIÓN MUJARRUN	250		Calizas margosas, estratos medianos a gruesos limoarcilitas y arcilitas calcareas en estratos delgados presencia de nodulos calcareos
	CRE.	GRU PULLUI	PO	FORMACIÓN YUMAGUAL	500		Calizas, limoarcilitas calcareas, calizas margosas en estratos delgados
		E IAS		FORMACIÓN PARIATAMBO	180		Calizas nodulares de color gris oscuro, estrato creciente Calizas gris oscuro, olor fétido
OZOÍCA				FORMACIÓN CHULEC	480		calizas gris blanquecinas, estratos gruesos calizas y margas gris blanquecinas, estratos gruesos bien definidos
ES		F	ORMAC		100		calizas arcillosas de color gris verdosa
Σ					100	<u></u>	Areniscas limosas
	NFERIOR	ЗА	FORI	MACIÓN RAT	400		Areniscas cuarzosas con cemento siliceo, gris blanquecinas estratos gruesos areniscas de grano grueso Areniscas cuarzosas con cemento siliceo, gris blanquecinas
	COL	SUIZO					estratos delgados a gruesos, grano medio a grueso algunos lentes de arcillas tipo caoln en la base
	CRETÁCI	'LLARISC	FOR	MACIÓN	200		Arcilitas y limoarcilitas gris verdosa, gris marron, gris amarilienta en estratos delgados
		IPO GO	CAR	IUAZ	380		Areniscas gris violaceas, gris marrones, gris azulinas en estratos delgados a medianos.
		GRL	SANT	ACION A	50	-2-2-2-	Arcilitas gris oscuras, en estratos delgados, arensicas de grano fino en estratos delgados, a veces calcareos
			FORI	MACIÓN Ú	300		Areniscas grano medio cuarzosas estratos gruesos Areniscas cuarzosas con cemento silicao, gris blanquecinas estratos medianos a gruesos, grano medio a grueso algunos lientes de carbón en la base

Figura 3.1. Columna estratigráfica del Departamento de Cajamarca. Fuente: Reyes, 1980.

3.4 METODOLOGÍA DE LA INVESTIGACIÓN

La metodología de investigación empleada en la tesis:

3.4.1 Tipo, nivel, diseño y método de la investigación

- Tipo de investigación: Exploratoria, descriptiva, explicativa, basada en observaciones y toma de datos directamente del macizo rocoso. Tomando datos como: Dirección de buzamientos (Dip Direction), buzamiento (Dip), fallas, pliegues, diaclasas y los parámetros geomecánicos que se requieren para la caracterización del macizo rocoso.
- Nivel de investigación: Es de carácter descriptivo y cuantitativo donde se determinará el diseño de los parámetros de explotación mediante la caracterización geomecánica.
- **Diseño de investigación:** Es de carácter transversal debido a que se estudia en un lapso determinado de inicio al término.
- Método de investigación: El método de investigación es carácter deductivo porque con la determinación de la caracterización geomecánica se logrará deducir la calidad del macizo rocoso.
- Población de estudio: Los macizos rocosos que se ubican en el distrito de Jorge Chávez en un área de 10 km².
- Muestras: Las muestras corresponden a las obtenidas en los macizos rocosos donde se encuentra el reemplazamiento de marmol en el distrito de Jorge Chávez.
- Unidad de análisis: Se refiere a las características del macizo rocoso (grado de mineralización alteración, tipo de roca, presencia de agua) del macizo rocoso donde se ubican los minerales de marmol.

3.4.2 Técnicas e instrumentos de recolección de datos

- Técnicas: Este trabajo de investigación se empezará con una recopilación bibliográfica de todos los trabajos referidos al tema. Posteriormente se realizarán salidas al campo para obtener datos del macizo rocoso. Estos datos serán plasmados en formatos según las tablas geomecánicas existentes.
- Instrumentos y equipos: Para la presente investigación se utilizarán los siguientes instrumentos: Brújula tipo Brunton, GPS Garmin, picota de geólogo, lupas de 20x, rayador, ácido clorhídrico diluido 10%, lápices de colores, flexómetro de 5m., plano topográfico y geológico en sistema UTM, Datum WGS- 84 escala 1/100000, protactor a escala 1/500 a 1/1000, cámara fotográfica digital 16MP, bolsas de muestreo, wincha de 30 m., fichas o formatos de evaluación geomecánica para registrar los datos obtenidos durante la etapa de campo.
- Análisis e interpretación de datos: Todos los datos del macizo rocoso (fracturamientos, grado de alteración, persistencia, presencia de agua), obtenidos en campo serán analizados y procesados mediante los métodos RQD, GSI y RMR. El resultado de estos tres métodos dará la calidad del macizo rocoso y de esta manera se podrá elegir el diseño y planeamiento de explotación más idóneo de los minerales de marmol.

CAPÍTULO IV ANÁLISIS Y DISCUSIÓN DE RESULTADOS

4.1 RESULTADOS DEL TRATAMIENTO Y ANÁLISIS DE INFORMACIÓN

La caliza roca sedimentaria compuesta mayoritariamente por carbonato de calcio (CaCO₃), generalmente calcita, aunque frecuentemente presenta trazas de magnesita (MgCO₃) y otros carbonatos. También puede contener pequeñas cantidades de minerales como arcilla, hematita, siderita, cuarzo, que modifican el color y el grado de coherencia de la roca. El carácter prácticamente monomineral de las calizas permite reconocerlas fácilmente gracias a dos características físicas y químicas fundamentales de la calcita y reacciona con efervescencia en presencia.

4.2 CARACTERIZACIÓN GEOMECÁNICA DEL MACIZO ROCOSO

Se ubicaron 04 estaciones geomecánicas denominadas: EG-01, EG-02, EG-03 y EG-04, las cuales fueron evaluadas mediante el RQD, RMR y GSI. La secuencia de análisis efectuado fue de la siguiente manera: en primer lugar, se determinó el peso específico mediante cálculo en laboratorio, luego la resistencia a la compresión uniaxial de la roca mediante la utilización del martillo de Schmidt, seguidamente la calidad del macizo rocoso mediante la aplicación del RQD, RMR, GIS, y por último la cohesión y el ángulo de fricción determinados por el software Rocdata. Con los datos así calculados se procedió al análisis cinemático a las 5 estaciones geomecánicas determinadas en el área de estudio. Dicho análisis consistió en representar las orientaciones de las fracturas medidas por el método de la mano derecha (DIP y DIPDIR) con la finalidad de determinar las orientaciones preferenciales de las fracturas, además de la determinación de los esfuerzos tectónicos que generaron las fracturas. Así mismo se analizó las fallas planares, fallas en cuña y fallas por volcamiento con el apoyo del software Dip.

Figura 4.1. a) Falla planar, b) Falla en cuña y c) Falla por vuelco. Fuente: Gonzalez de Vallejo, 2002.

Figura 4.2. Secuencia que se siguió en la elaboración de la tesis.

4.2.1 Peso específico

Los valores del peso específico de las cuatro (04) muestras de las calizas marmolizadas fueron determinadas por el laboratorio INGEOCONSULT & LAB. SRL. Aplicado las siguientes formulas:

VH20desp = (VolH20 + Frag.Roca) - (VolH20sinFrag.Roca)VH20desp. = Volumen de agua desplazado (cm³) Vol H₂O = Volumen de H₂O Frag. Roca = Fragmento de roca

Para la determinación del peso específico (PE):

 $PE = \frac{Peso \ de \ la \ masa \ de \ roca \ (gr)}{Diferencia \ de \ volumenes \ (cm3)}$

El informe proporcionado por el laboratorio se encuentra en el anexo y cuyos resultados se muestran a continuación:

Muestra	Peso específico gr/cm ³
SA-01	2.62
SA-02	2.59
SA-03	2.60
SA-04	2.57
Promedio	2.60

Tabla 4.1. 2Resultado del peso específico promedio del macizo rocoso.

Fuente: INGEOCONSULT & LAB. SRL, 2024.

4.2.2 Resistencia a la compresión uniaxial (RCU)

La determinación de la resistencia a la compresión uniaxial de las 05 estaciones se determinó utilizando el martillo de Schmidt CONTROLS, tipo L, Modelo 45- 561.

Figura 4.3. Martillo de Schmidt CONTROLS, tipo L, Modelo 45-561.

Número de Rebotes (NR): Para calcular el número de rebotes (NR) se ha utilizado el Martillo de SCHMIDT. Se han realizado 08 rebotes para cada estación. Luego para obtener los valores de la Resistencia a la compresión uniaxial se ha utilizado el ábaco en donde se plotea el valor promedio de los 08 rebotes vs densidad de la roca caliza en KN/m³, obteniéndose un promedio general de la resistencia a la compresión uniaxial en MPa para cada estación, cuyo valor se observa en la parte izquierda del ábaco.

Ubicación: Distrito: Jorg	Dicación: Strito: Jorge Chávez E=822709.867 m.				Numero de rebote por estación 8							
	Macizo rocos	SO	Esp	pecificaciones de	el martillo de Schmidt	Ensayo de campo						
Estación	Litología	Peso especifico (PE) (KN/m3)	Tipo de martillo Fecha		Orientación	Valor del disparo (VD)	Valor de la división del intervalo RCU (MPa) Log(RCU)=(0.00088*PE*VD) + 1.01	RCU promedio (MPa)				
					Horizontal	50	141					
					Horizontal	47	120					
					Horizontal	39	79					
EG 01	Caliza	25.0						14/06/04	Horizontal	46	114	123.40
EG-01	marmolizada	20.9	L	14/00/24	Horizontal	38	75					
					Horizontal	45	108					
					Horizontal	49	134					
					Horizontal	38	75					

Tabla 4.2. Cálculo del valor promedio de RCU, EG-01.

Tabla 4.3. Cálculo del valor promedio de RCU, EG-02.

Ubicación: Coordenadas:				Numero de disparo				
Distrito: Jorge Chávez			N=9231721.415 m.			por estación		
			E=822758.	551 m.		8		
Macizo rocoso			Esp	ecificaciones de	el martillo de Schmidt	Ensayo de campo		
Estación	Litología	Peso especifico (PE) (KN/m3)	Tipo de martillo	Fecha	Orientación Horizontal	Valor del disparo (VD)	Valor de la división del intervalo RCU (MPa) Log(RCU)=(0.00088*PE*VD) + 1.01	RCU promedio (MPa)
					Horizontal	51	149	
					Horizontal	50	141	
					Horizontal	39	79	
	Caliza	25.0		14/06/04	Horizontal	47	121	106.60
EG- 02	marmolizada	25.9	L	14/00/24	Horizontal	46	114	120.00
					Horizontal	37	71	
					Horizontal	45	109	
					Horizontal	39	79.23	

Ubicación:	o Chávoz		Coordena N=02218	adas:		Numero de disparo					
Distrito. Jorge Chavez			E=82281	1.468 m.		8					
-	Macizo rocos	0	Es	pecificaciones o	lel martillo de Schmidt	Ensayo de campo					
Estación	Litología	Peso especifico (PE) (KN/m3)	Tipo de martillo	Fecha	Orientación	Valor del disparo (VD)	Valor de la división del intervalo RCU (MPa) Log(RCU)=(0.00088*PE*VD) + 1.01	RCU promedio (MPa)			
					Diagonal hacia abajo	45	109				
					Diagonal hacia abajo	43	98				
					Diagonal hacia abajo	39	79				
EG- 03	Caliza	25.0	1	14/06/24	Diagonal hacia abajo	37	71	123.5			
LG- 03	Marmolizada	20.9	L	14/00/24	Diagonal hacia abajo	50	141	125.5			
								Diagonal hacia abajo	49	134	
					Diagonal hacia abajo	47	121				
					Diagonal hacia abajo	38	75				

Tabla 4.4. Cálculo del valor promedio de RCU, EG-03.

Tabla 4.5. Cálculo del valor promedio de RCU, EG-04.

Ubicación:			Coordenadas:			Numero de disparo								
Distrito: Jorge Chávez			N=9231687.548 m.			por estación								
			E=82285	1.684 m.		8								
Macizo rocoso		SO	Es	pecificaciones c	del martillo de Schmidt	Ensayo de campo								
Estación	Litología	Peso especifico (PE) (KN/m3)	Tipo de martillo	Fecha	Orientación	Valor del disparo (VD)	Valor de la división del intervalo RCU (MPa) Log(RCU)=(0.00088*PE*VD) + 1.01	RCU promedio (MPa)						
					Horizontal	36	68							
					Horizontal	46	114							
					Horizontal	47	121							
	Caliza	05.0	05.0		44/00/04	Horizontal	40	84	104					
EG- 04	marmolizada	25.9	L	14/00/24	Horizontal	49	134	124						
								_	l		Horizontal	35	64	
					Horizontal	48	127							
					Horizontal	38	75							

Estaciones geomecánicas	Resistencia a la compresión uniaxial (MPa)
EG- 01	123.40
EG- 02	126.60
EG- 03	123.50
EG- 04	124.00
EG- 05	126.75

Tabla 4.6. Resumen de los valores calculados de la Resistencia a la compresión uniaxial.

4.2.3 Cartografiado geomecánico

Los datos obtenidos se calcula la calidad del macizo de las 05 estaciones. Se empezó realizando una descripción geológica de cada estación, luego se calcula el RQD, el RMR y GSI en ese orden.

Tabla 4.7. Ubicación de las estaciones geomecánicas.

Coordenadas UTM			
Norte (m.)	Este (m.)		
9231854.765	822709.867		
9231721.415	822758.551		
9231818.782	822811.468		
9231687.548	822851.684		
	Coordenad Norte (m.) 9231854.765 9231721.415 9231818.782 9231687.548		

4.2.3.1 Estación geomecánica-01 (EG-01)

La estación geomecánica denominada EG- 01, se encuentra ubicada en rocas calizas de la Formación Cajamarca de edad cretácico superior. Las calizas son de color gris oscuras, poseen superficies de erosión denominadas lapiáz. Estas rocas se muestran fracturadas y se observan abundantes vetillas de calcitas. Estas calizas han sido afectadas por un proceso de metamorfismo de contacto aparentemente de regular intensidad. La orientación general de las calizas es N40°O- S40°E y un ángulo de buzamiento promedio de 30° al SW.

• Cálculo RQD

Nº de disc.	Long. (m)	λ	$e^{(-0.1*\lambda)}$	(0.1*λ)+1	RQD
21	1.5	14	0.247	2.4	59.28
	Calidad	de la roc	a (75- 50)		Regular

Tabla 4.8. Cálculo del RQD, EG-01.

Tabla 4.9 Calidad del macizo rocoso, EG-01.

RQD (%)	Calidad de la roca
100-90	Muy buena
90-75	Buena
75-50	Mediana
50-25	Mala
25-0	Muy mala

Fuente: Deere, 1967.

Figura 4.4. Macizo rocoso de la Estación Geomecánica 01 (EG-01).

• Cálculo RMR

A. Parámetros de clasificación con sus valores Va						Valor		
	Parán	netros		Rango de valores				
		Índice Resistencia Carga Puntual (MPa)	> 10	4-10	2 -4	1 -2	Para estos rangos es recomendable ensayos de resistencia a la compresión (MPa)	
	Resistencia de la roca intacta	Resistencia a la compresión uniaxial (MPa)	> 250	100 - 250	50 - 100	25 - 50	5 - 2 5 - 1-5 <1	
1	Pu	untaje	15	12	7	4	2 1 0	12
	F	RQD	90-100	75 - 90	50 - 75	25 – 50	< 25	
2	Pu	untaje	20	17	13	8	3	13
3	Espaciad	lo del estrato	> 2 m	0.6 - 2 m	200- 600 mm	60 - 200 mm	< 60 mm	10
_	Pi	untaje	20	15	10	8 (Dec. (Dec.	5	10
	В. С	bulas para la clas	ificación seg	un las cond dise	continuidades)	scontinuidades (Pro	medio del Estrato y	
	Longitud (P	ersistencia) (m)	< 1	1 -3 m	3 - 10 m	10 - 20 m	> 20 m	
	pu	untaje	6	4	2	1	0	2
	Separaci	ón (abertura)	Cerrada	< 0.1 mm	0.1 - 1.0 mm	1- 5mm	> 5 mm	
	Pu	untaje	6	5	4	1	0	0
	Ruç	gosidad	Muy rugosa	Rugosa	Ligeramente rugosa	Lisa	Superficies pulidas	
4	Pu	untaje	6	5	3	1	0	3
	Re	elleno	Ninguno	duro < 5 mm	duro > 5 mm	Blando < 5mm	Blando > 5 mm	
	Pu	untaje	6	4	2	1	0	1
	Mete	orización	Inalt.	Lig. meteoriza da	Mod. meteorizada	Altamente meteorizada	Descompuesta	
	Puntaje		6	5	3	1	0	3
			Suma d	e condiciór	n de discontinuid	ades	1	9
		flujo por cada 10m. De longitud del túnel (1/min)	Ninguno	< 10	10 a 25	25 – 125	> 125	
5	Agua subterránea	(Presión de agua en la diacl.) (Tensión principal mayor o1)	0	< 0.1	0.1 - 0.2	0.2 - 0.5	> 0.5	
		Condiciones generales	Completam ente seco	Húmedo	Mojado	Goteo	Flujo	
	pu	untaje	15	10	7	4	0	10
		c. Tipo	s de macizos	determinad	dos a partir de la	valuación total		
	Pur	ntaje	100 - 81	80 - 61	60 - 41	40 – 21	< 21	70
	Tipos c	le rocas	I		111	IV	V	
	Desci	ripción	Muy buena	Buena	Regular	Mala	Muy mala	Buena

Tabla 4.10. Cálculo del RMR, EG-01.

Sumatoria= 12+13+10+9+10=54

RMR= 54

Este valor se comparó con la tabla de Bieniawski 1989, dando como resultado el valor de roca tipo III (roca regular)

Clase	Calidad	Calidad de la roca
l	Muy buena	81 – 100
	Buena	61 – 80
	Media	41 – 60
IV	Mala	21 – 40
V	Muy mala	< 20

Tabla 4.11. Valor del RMR del macizo rocoso, EG-01.

Fuente: Bieniawski, 1989.

Cálculo GSI

Este método es muy simple y está basada en la impresión visual de la estructura rocosa en términos de bloques y de las condiciones superficiales de las discontinuidades indicadas por la rugosidad, alteración de las discontinuidades. La combinación de estos dos parámetros proporciona un rango amplio de tipos de macizos rocosos. La determinación de los parámetros del GSI se basa en las descripciones de la calidad del macizo rocoso. El GSI es principalmente útil para macizos rocoso más blandos con RMR menor a 20.

Pick GSI V	alue								×
Rock Typ	ie:	General	•			SURFA	CE CONE	DITIONS	
GSI Selec	tion:	51	ОК		VERY GOOD	GOOD	FAIR	POOR	VERY POOR
	STRUC	TURE			DECRE	ASING SU	RFACE Q	UALITY 4	
	INTACT rock sp situ roc disconti	OR MASSIV ecimens or ma k with few wid inuities	E - intact assive in ely spaced	ECES	90			N/A	N/A
	BLOCK disturbe of cubic intersec	Y - well interlo d rock mass o al blocks form ting discontinu	cked un- consisting ed by three uity sets	OF ROCK PIE		70 60			
	VERY B partially multi-fac formed	LOCKY- inter disturbed mas ceted angular by 4 or more j	ocked, ss with blocks pint sets	ERLOCKING		7-7-	50		
	BLOCK - folded formed disconti of bedd	Y/DISTURBEI with angular by many inters nuity sets. Per ing planes or s	D/SEAMY blocks secting sistence schistosity	REASING INTE			40	30	
	DISINTI locked, with mix rounded	EGRATED - po heavily broker ture of angula frock pieces	oorly inter- n rock mass r and	L DEC				20	
	LAMINA of block of weak	TED/SHEARI iness due to c schistosity or	ED - Lack lose spacing shear planes	v ·	N/A	N/A		$\left \right $	10

Figura 4.5. Cálculo del GSI, EG-01.

Tabla	Tabla 4.12. Valor de RMR y GSI del macizo rocoso, EG-01.								
	Puntuación	53							
RMR	Clase	111							
	Descripción	Regular							
CSI	Rango	51							
631	Calidad	Regular							

4.2.3.2 Estación geomecánica-02 (EG-02)

Esta estación geomecánica denominada EG- 02, se encuentra ubicada en rocas calizas de la Formación Cajamarca del Cretácico superior. Estas rocas se muestran fracturadas, se observan marmolizaciones como consecuencia de un proceso metamórfico de contacto aparentemente de regular intensidad. La orientación general de las rocas es N35°W- S35°E y un ángulo de buzamiento de 30° al SW.

Figura 4.6. Macizo rocoso de la Estación Geomecánica 02 (EG-02).

Cálculo RQD

Nº de disc.	Long. (m)	λ	$e^{(-0.1*\lambda)}$	(0.1*λ)+1	RQD
20	1.5	16	0.264	2.33	61.6
	Regular				

Tabla 4.13. Cálculo del RQD, EG-02.

Tabla 4.14. Calidad del macizo rocoso, EG-02.

RQD (%)	Calidad de la roca
100-90	Muy buena
90-75	Buena
75-50	Mediana
50-25	Mala
25-0	Muy mala

Fuente: Deere, 1967.

• Cálculo RMR

A. Parámetros de clasificación con sus valores Va							Valor			
Parámetros Rango de valores										
		Índice Resistencia Carga Puntual (MPa)	> 10	4-10	2 -4	1 -2	Para esto recomend ensayos resistencia compresió	os rangos dable a a ón (MPa)	de la	
	Resistencia de la roca intacta	Resistencia a la compresión uniaxial (MPa)	> 250	100 - 250	50 - 100	25 - 50	5 - 25 1	- 5 <	: 1	
1	Pu	untaje	15	12	7	4	2	1	0	12
	F	RQD	90-100	75 - 90	50 - 75	25 – 50	<	< 25		
2	Pu	untaje	20	17	13	8		3		13
3	Espaciad	lo del estrato	> 2 m	0.6 - 2 m	200- 600 mm	<u>60 - 200 mm</u>	< 6	60 mm		_
_	Ρι	untaje	20	15	10	8		5		8
	B. Guias par	a la clasificación	según las co	ndiciones d	le las discontinui	dades (Promedio d	del Estrato	o y disco	ntin	uidades)
	Longitud (P	ersistencia) (m)	< 1	1 -3 m	3 - 10 m	10 - 20 m	> 2	20 m		
	ρι	untaje	6	4	2	1		0		4
	Separaci	ón (abertura)	Cerrada	< 0.1 mm	0.1 - 1.0 mm	1- 5mm	> 5	5 mm		
	Pu	untaje	6	5	4	1		0		1
	Ruç	gosidad	Muy rugosa	Rugosa	Ligeramente rugosa	Lisa	Superfic	ies pulida	as	
4	Pu	untaje	6	5	3	1		0		3
-	Re	elleno	Ninguno	duro < 5 mm	duro > 5 mm	Blando < 5mm	Blando	o > 5 mm	I	
	Pu	untaje	6	4	2	1		0		4
	Mete	orización	Inalt.	Lig. meteoriza da	Mod. meteorizada	Altamente meteorizada	Desco	ompuesta		
Puntaje		6	5	3	1		0		3	
			Suma d	e condición	de discontinuid	ades	-			15
		flujo por cada 10m. De longitud del túnel (1/min)	Ninguno	< 10	10 a 25	25 – 125	>	125		
5	Agua subterránea	(Presión de agua en la diacl.) (Tensión principal mayor o1)	0	< 0.1	0.1 - 0.2	0.2 - 0.5	>	0.5		
		Condiciones generales	Completam ente seco	Húmedo	Mojado	Goteo	F	lujo		
	pu	untaje	15	10	7	4		0		10
		c. Tipo	s de macizos	determinac	los a partir de la	valuación total				
	Pur	ntaje	100 - 81	80 - 61	60 - 41	40 - 21	<	< 21		70
	Tipos c	le rocas		11	III	IV		V		11
Descripción		Muy buena	Buena	Regular	Mala	Muy	y mala		Buena	

Tabla 4.15. Cálculo del RMR, EG-02.

Sumatoria = 12+13+8+15+10=58

RMR = 58

Este valor se comparó con la tabla de Bieniawski, 1989 dando como resultado el valor de roca tipo III (roca regular)

Clase	Calidad	Calidad de la roca
	Muy buena	81 – 100
	Buena	61 – 80
	Media	41 – 60
IV	Mala	21 – 40
V	Muy mala	< 20

Tabla 4.16. Valor del RMR del macizo rocoso, EG-02.

Fuente: Bieniawski, 1989.

Cálculo GSI

Esta caracterización geomecánica es muy simple y está basada en la impresión visual de la estructura rocosa en términos de bloques y de las condiciones superficiales de las discontinuidades indicadas por la rugosidad, alteración de las discontinuidades. La combinación de estos dos parámetros proporciona un rango amplio de tipos de macizos rocosos. En la siguiente figura se muestra como se ha calculado el GSI en campo que fue de 56.

Pick GSI Va	alue								×
Bock Type: General			SURFACE CONDITIONS						
GSI Select	tion:	56	ОК		VERY GOOD	GOOD	FAIR	POOR	VERY POOR
	STRUC	TURE			DECRE	ASING SU	RFACE Q	UALITY 4	
	INTACT rock spe situ rock discontin	OR MASSIV ecimens or m with few wid nuities	'E - intact assive in lely spaced	CES	90			N/A	N/A
	BLOCKY disturbed of cubica intersect	 well interlo d rock mass of al blocks form ing disconting 	ocked un- consisting ned by three uity sets	OF ROCK PIE		70	56	GSI- 50	
	VERY BLOCKY- interlocked, partially disturbed mass with multi-faceted angular blocks formed by 4 or more joint sets			ERLOCKING (50		$\left[\right]$
	BLOCKY - folded formed b discontin of beddir	//DISTURBE with angular by many inter nuity sets. Pe ng planes or	D/SEAMY blocks secting rsistence schistosity	REASING INTE			40	30	//
	DISINTE locked, h with mixt rounded	GRATED - p neavily broke ture of angula rock pieces	oorly inter- n rock mass ar and	DEC				20	//
	LAMINA of blockin of weak	TED/SHEAR ness due to c schistosity or	ED - Lack close spacing shear planes	v	N/A	N/A		\langle / \rangle	10

Figura 4.7. Cálculo del GSI, EG-02.

Estación geomecánica SA-02								
	Puntuación	58						
RMR	Clase	III						
	Descripción	Regular						
	Rango	56						
631	Calidad	Regular						

Tabla 4.17. Valor de RMR y GSI del macizo rocoso, EG-02.

4.2.3.3 Estación geomecánica-03 (EG-03)

Está estación geomecánica denominada EG-03, se encuentra ubicada en rocas calizas de la Formación Cajamarca del cretácico superior. Estas rocas muestran un fracturamiento, estas calizas poseen abundantes vetillas de calcita. La orientación general de las rocas es N35ºW- S35ºE y un ángulo de buzamiento de 30º al SW.

Figura 4.8. Macizo rocoso de la Estación Geomecánica 03 (EG-03).

Tabla 4.18. Calculo del RQD, EG-03.	Tabla 4.18.	Cálculo (del RQD,	EG-03.
-------------------------------------	-------------	-----------	----------	--------

Nº de disc.	Long. (m)	λ	$e^{(-0.1*\lambda)}$	(0.1 *λ)+1	RQD
23	1.5	15.33	0.216	2.53	54.72
	Regular				

Tabla 4.19. Calidad del macizo rocoso, EG-03.

	RQD (%) Calidad de la roca		
100-90 Muy buena			
	90-75	Buena	
	75-50	Mediana	
	50-25	Mala	
	25-0	Muy mala	

Fuente: Deere, 1967.

• Cálculo RMR

A. Parámetros de clasificación con sus valores								
Parámetros Rango de valores								
		Índice Resistencia Carga Puntual (MPa)	> 10	4-10	2 -4	1 -2	Para estos rangos es recomendable ensayos de resistencia a la compresión (MPa)	
	Resistencia de la roca intacta	Resistencia a la compresión uniaxial (MPa)	> 250	100 - 250	50 - 100	25 - 50	5 - 2 5 - 1-5 <1	
1	P	untaje	15	12	7	4	2 1 0	12
	F	RQD	90-100	75 - 90	50 - 75	25 – 50	< 25	
2	<u> </u>	untaje	20	17	13	8	3	13
3	Espaciac	lo del estrato	> 2 m	0.6 - 2 m	200- 600 mm	60 - 200 mm	< 60 mm	10
		untaje	20	15 (m. 100 o m. 1	10 isismos do los div	8 a a antinuida da a (Drau	5	10
	Б. С	sulas para la clas	incación seg	un las cond dise	continuidades)	scontinuidades (Proi	nedio del Estrato y	
	Longitud (P	oreistoncia) (m)	< 1	1 -3 m	3 - 10 m	10 - 20 m	> 20 m	
		intaie	6	4	2	1	0	2
	Separaci	ón (abertura)	Cerrada	< 0.1 mm	0 1 - 1 0 mm	1- 5mm	> 5 mm	2
	Pi	untaie	6	5	4	1	0	0
	Ruç	gosidad	Muy rugosa	Rugosa	Ligeramente rugosa	Lisa	Superficies pulidas	
4	Pu	untaje	6	5	3	1	0	5
	R	elleno	Ninguno	duro < 5 mm	duro > 5 mm	Blando < 5mm	Blando > 5 mm	
	Pu	untaje	6	4	2	1	0	1
	Mete	orización	Inalt.	Lig. meteoriza da	Mod. meteorizada	Altamente meteorizada	Descompuesta	
	Puntaje		6	5	3	1	0	3
		r	Suma d	e condiciór	de discontinuid	ades	1	11
		flujo por cada 10m. De longitud del túnel (1/min)	Ninguno	< 10	10 a 25	25 – 125	> 125	
5	Agua subterránea	(Presión de agua en la diacl.) (Tensión principal mayor o1)	0	< 0.1	0.1 - 0.2	0.2 - 0.5	> 0.5	
		Condiciones generales	Completa. seco	Húmedo	Mojado	Goteo	Flujo	
	р	untaje	15	10	7	4	0	10
		c. Tipo	s de macizos	determinad	los a partir de la	valuación total	[
	Pur	ntaje	100 - 81	80 - 61	60 - 41	40 – 21	< 21	70
	Tipos o	de rocas	l.			IV	V	
	Desci	ripcion	Muy buena	Buena	Regular	Mala	Muy mala	Buena

Tabla 4.20. Cálculo del RMR, EG-03.

Sumatoria = 12+13+10+11+10=56

RMR = 56

Este valor se comparó con la tabla de Bieniawski, 1989 dando como resultado el valor de roca tipo III (roca regular).

Clase	Calidad	Calidad de la roca
I	Muy buena	81 – 100
II	Buena	61 – 80
III	Media	41 – 60
IV	Mala	21 – 40
V	Muy mala	< 20

Tabla 4.21. Valor del RMR del macizo rocoso, EG-03.

Fuente: Bieniawski, 1989.

Cálculo GSI

Esta caracterización geomecánica es muy simple y está basada en la impresión visual de la estructura rocosa en términos de bloques y de las condiciones superficiales de las discontinuidades indicadas por la rugosidad, alteración de las discontinuidades. La figura siguiente indica que el GSI determinado es de 53:

Pick GSI Valı	ue								×
Bock Tupe: General 🔻			SURFACE CONDITIONS						
GSI Selectio	n:	53	OK		VERY GOOD	GOOD	FAIR	POOR	VERY POOR
5	STRUCT	URE			DECRE	ASING SU	RFACE Q	UALITY 4	
	NTACT (rock spec situ rock discontine	OR MASSIV cimens or m with few wid uities	'E - intact assive in lely spaced	CES	90			N/A	N/A
E do o	BLOCKY listurbed of cubical ntersectir	- well interlo rock mass o blocks form ng discontin	ocked un- consisting ned by three uity sets	OF ROCK PIE		70	10	GSI	<mark>- 53</mark>
V P fi	VERY BLOCKY- interlocked, partially disturbed mass with multi-faceted angular blocks formed by 4 or more joint sets			ERLOCKING			50		
fi do	BLOCKY/ - folded v ormed by discontinu	DISTURBE with angular many inter uity sets. Pe g planes or	D/SEAMY blocks secting rsistence schistosity	REASING INTE			40	30	
L L L L L L L L L L L L L L L L L L L	DISINTEC ocked, he vith mixtu ounded r	GRATED - p eavily broke ire of angula ock pieces	oorly inter- n rock mass ar and	L BEC				20	
	AMINAT of blocking of weak se	ED/SHEAR ess due to c chistosity or	ED - Lack close spacing shear planes	v	N/A	N/A	\square	\langle / \rangle	10

Figura 4.9. Cálculo del GSI, EG-03.

Tabla						
	Estación geomecánica SA-03					
	Puntuación	55				
RMR	Clase	III				
	Descripción	Regular				
CSI	Rango	53				
991	Calidad	Regular				

Tabla 4.22. Valor de RMR y GSI del macizo rocoso, EG-03.

4.2.3.4 Estación geomecánica-04 (EG-04)

Esta estación geomecánica denominada EG- 04, se encuentra ubicada en rocas calizas de la Formación Cajamarca del cretácico superior. Estas rocas se muestran muy fracturadas. Estas calizas. La orientación general de las rocas es N35ºO- S35ºE y un ángulo de buzamiento de 350º al SW.

Figura 4.10. Macizo rocoso de la Estación Geomecánica 04 (EG-04).

N⁰ de disc.	Long. (m)	λ	$e^{(-0.1*\lambda)}$	(0.1*λ)+1	RQD
24	1.5	16	0.202	2.6	52.52
	Regular				

Tabla 4.23. Cálculo del RQD, EG-04.

Tabla 4.24. Calidad del macizo rocoso, EG-04.

RQD (%)	Calidad de la roca	
100-90	Muy buena	
90-75	Buena	
75-50	Mediana	
50-25	Mala	
25-0	Muy mala	

Fuente: Deere, 1967.

• Cálculo RMR

A. Parámetros de clasificación con sus valores Va									
Parámetros Rango de valores									
		Índice Resistencia Carga Puntual (MPa)	> 10	4-10	2 -4	1 -2	Para estos rangos es recomendable ensayos de resistencia a la compresión (MPa)		
	Resistencia de la roca intacta	Resistencia a la compresión uniaxial (MPa)	> 250	100 - 250	50 - 100	25 - 50	5 - 2 5 - 1-5 <1		
1	Pu	untaje	15	12	7	4	2 1 0	12	
	F	RQD	90-100	75 - 90	50 - 75	25 – 50	< 25		
2	Pu	untaje	20	17	13	8	3	13	
3	Espaciad	lo del estrato	> 2 m	0.6 - 2 m	200- 600 mm	60 - 200 mm	< 60 mm	10	
	Pl P Cuías par	untaje a la algoificación	20	15 ndiciones e	10 Io los discontinui	ö idadas (Promodia da	D Estrato y discontinu	uidadaa)	
	B. Guias par			indiciones d		tidades (Fromedio de		liuaues)	
	Longitud (P	ersistencia) (m)	< 1	1-3 m	3 - 10 m	10 - 20 m	> 20 m		
	pı	untaje	6	4	2	1	0	4	
	Separaci	on (abertura)	Cerrada	< 0.1 mm	0.1 - 1.0 mm	<u>1- 5mm</u>	> 5 mm	4	
	Pl	untaje	6	5	4		0		
	Rugosidad		Muy rugosa	Rugosa	rugosa	Lisa	Superficies pulidas		
4	Pu	untaje	6	5	3	1	0	3	
	Relleno		Ninguno	duro < 5 mm	duro > 5 mm	Blando < 5mm	Blando > 5 mm		
	Pu	untaje	6	4	2	1	0	1	
	Meteorización		Inalt.	Lig. meteoriza da	Mod. meteorizada	Altamente meteorizada	Descompuesta		
	Pu	untaje	6	5	3	1	0	5	
			Suma d	e condición	de discontinuid	ades		14	
		flujo por cada 10m. De longitud del túnel (1/min)	Ninguno	< 10	10 a 25	25 – 125	> 125		
5	Agua subterránea	(Presión de agua en la diacl.) (Tensión principal mayor o1)	0	< 0.1	0.1 - 0.2	0.2 - 0.5	> 0.5		
		Condiciones generales	Completam ente seco	Húmedo	Mojado	Goteo	Flujo		
	pu	untaje	15	10	7	4	0	10	
		c. Tipo	s de macizos	determinad	los a partir de la	valuación total			
	Pur	ntaje	100 - 81	80 - 61	60 - 41	40 – 21	< 21	70	
	Tipos c	le rocas	I		III	IV	V		
	Desci	ripción	Muy buena	Buena	Regular	Mala	Muy mala	Buena	

Tabla 4.25. Cálculo del RMR, EG-04.

Sumatoria = 12+13+10+14+10=59

RMR = 59

Este valor se comparó con la tabla de Bieniawski, 1989 dando como resultado el valor de roca tipo III (roca regular).

Clase	Calidad	Calidad de la roca
I	Muy buena	81 – 100
	Buena	61 – 80
III	Media	41 – 60
IV	Mala	21 – 40
V	Muy mala	< 20

Tabla 4.26. Valor del RMR del macizo rocoso, EG-04.

Fuente: Bieniawski, 1989.

Cálculo GSI

Esta caracterización geomecánica es muy simple y está basada en la impresión visual de la estructura rocosa en términos de bloques y de las condiciones superficiales de las discontinuidades indicadas por la rugosidad, alteración de las discontinuidades. La siguiente figura muestra el método utilizado para calcular el GSI en el campo. Este valor determinado es de 57.

Pick GSI V	alue								×
Rock Type: General 💌			SURFACE CONDITIONS						
GSI Selec	tion:	57	ОК		VERY GOOD	GOOD	FAIR	POOR	VERY POOR
	STRUCT	URE			DECREA	ASING SU	RFACE Q	UALITY 4	\Rightarrow
	INTACT rock spe situ rock discontin	OR MASSIV cimens or ma with few wid uities	E - intact assive in lely spaced	ECES	90			N/A	N/A
	BLOCKY disturbed of cubica intersecti	- well interlo rock mass o I blocks form ng discontine	ocked un- consisting led by three uity sets	OF ROCK PIE		70 	57 A	GSI- 57	
	VERY BL partially of multi-face formed by	OCKY- inter listurbed ma eted angular y 4 or more j	locked, ss with blocks oint sets	ERLOCKING			50		$\left[\right]$
	BLOCKY - folded formed by discontine of beddin	/DISTURBE with angular y many inters uity sets. Per g planes or s	D/SEAMY blocks secting rsistence schistosity	REASING INTE			40	30	
	DISINTE locked, h with mixto rounded	GRATED - p eavily broke ure of angula rock pieces	oorly inter- n rock mass ar and	EC.				20	//
	LAMINAT of blockin of weak s	ED/SHEARI ess due to c chistosity or	ED - Lack lose spacing shear planes	v	N/A	N/A			10

Figura 4.11. Cálculo del GSI, EG-04.

	Estación geomecánica SA	-04
	Puntuación	59
RMR	Clase	
-	Descripción	Regular
	Rango	57
631 -	Calidad	Regular

Tabla 4.27. Valor de RMR y GSI del macizo rocoso, EG-04.

Tabla 4.28. Valores del RMR y GSI de las 04 estaciones geomecánicas.

Estación		RMR		GS	5
geomecánica	Puntuación	Clase	Descripción	Rango	Calidad
EG- 01	53		Regular	51	Regular
EG- 02	58		Regular	56	Regular
EG- 03	55	III	Regular	53	Regular
EG- 04	59		Regular	57	Regular

4.3 DETERMINACIÓN DE ÁNGULO DE FRICCIÓN Y COHESIÓN

Los valores de la resistencia a la compresión uniaxial (RCU) y el GSI se procedió a calcular los valores del ángulo de fricción y la cohesión mediante el software ROCDATA. Los valores de los macizos rocosos se muestran en una tabla resumen:

Tabla 4.29. Valores de la cohesión y ángulo de fricción calculadas de 4 estaciones geomecánicas.

Estación geomecánica	Cohesión (MPa)	Angulo de fricción (º)
SA- 01	4.273	22.496°
SA- 02	4.917	24.569°
SA- 03	4.560	23.318º
SA- 04	4.926	24.991°

Los valores del ángulo de fricción de los macizos rocosos de las 05 estaciones geomecánicas están entre 22.496º a 24.991º. La cohesión varía entre 4.273 MPa y 4.926 MPa. Estas pequeñas variaciones se interpretan como macizos rocosos que poseen similares características geomecánicas lo que indica además que las rocas calizas marmolizadas poseen similares composiciones químicas y que han sido afectadas en igual intensidad por los procesos metamórficos y tectónicos.

Figura 4.12. Cálculo del ángulo de fricción y cohesión del macizo rocoso de la Estación Geomecánica 01, aplicando el método equivalencia de áreas – RocData.

Figura 4.13. Cálculo del ángulo de fricción y cohesión del macizo rocoso de la Estación Geomecánica 02, aplicando el método equivalencia de áreas – RocData.

Figura 4.14. Cálculo del ángulo de fricción y cohesión del macizo rocoso de la Estación Geomecánica 03, aplicando el método equivalencia de áreas – RocData.

4.4 ANÁLISIS CINEMÁTICO

Con los valores del ángulo de fricción se procedió a la realización del análisis cinemático con el apoyo del software DIP versión 06. Posteriormente se procedió a

realizar el análisis de deslizamientos por rotura planar, rotura en cuña y rotura por vuelco. El método utilizado fue el de la mano derecha.

4.4.1 Análisis cinemático EG-01

La estación geomecánica EG-01, presenta 30 discontinuidades mediante el método de la mano derecha.

N°	Dip	Dip Direction	Familia
1	50°	45°	D-1
2	35°	30°	D-1
3	50°	40°	D-1
4	45°	50°	D-1
5	50°	90°	D-1
6	60°	65°	D-1
7	50°	30°	D-1
8	60°	118º	D-2
9	50°	115°	D-2
10	50°	110º	D-2
11	40°	135°	D-2
12	50°	120°	D-2
13	40°	150°	D-2
14	60°	210°	D-3
15	50°	215°	D-3
16	38º	210°	D-3
17	50°	260°	D-3
18	60°	200°	D-3
19	40°	220°	D-3
20	40°	310°	D-4
21	50°	315°	D-4
22	40°	320°	D-4
23	70°	130°	т

Tabla 4.30. Caracterización geomecánica mediante la orientación de discontinuidades, EG-01.

Figura 4.16. Diagrama de rosas de las fracturas - EG-01.

Figura 4.17. Diagrama de polos de las fracturas - EG-01.

Figura 4.18. Probabilidad de ruptura planar 34.78%, englobando al polo de la familia D-2; a favor del talud, EG-01.

	Symbol		Feature		
	\diamond		Polo vectors		
•			Critical vectors		
			Intersection		
	Color	Der	nsity concentrat	ions	
			0.00 – 1.50		
			1.50 – 3.00		
			3.00 – 4.50		
			4.50 – 6.00		
			6.00 – 7.50		
			7.50 – 9.00		
			9.00 - 10.50		
			10.50 - 12.00		
			12.00 - 13.50		
Maria	and a start site of		13.50 - 15.00	/	
Maximun density			14.57% Dele ved	0 toro	
Cont	Contour data		Polo vec		
Conte					
Kipor	nung circle size		Planar siliding		
Slope	nalic analysis			ung	
Slope	- Dip direction		130°		
Ericti	on angle		220		
THOU	on angle	Critical	Total	%	
Plan	ar siliding (All)	8	23	34 78%	
	Color	Dip	Dip direction	Label	
		User pla	nes		
1		49°	50°	D-1	
2		48°	125°	D-2	
3		50°	219°	D-3	
4		43°	315	D-4	
5		70°	130°	Т	
Plot I	Mode		Pole vectors		
Vector count			23 (23 entries))	
Intersection mode			Grid data plan	es	
Inters	sections count		253		
Hemi	isphere		Lower		
Proje	ection		Equal area		

Figura 4.19. Probabilidad de ruptura en cuña con 45.45%, englobando a la intersección de las familias: D-2 y D-1, EG-01.

Symbol			Feature	
	\diamond		Polo vectors	
			Critical intersection	
			Intersection	
	Color	Dei	nsity concentrat	ions
			0.00 – 1.50	
			1.50 – 3.00	
			3.00 – 4.50	
			4.50 – 6.00	
			6.00 – 7.50	
			7.50 – 9.00	
			9.00 - 10.50	
			10.50 - 12.00	
			12.00 - 13.50	
Ma			13.50 - 15.00	/
Ivia	ximun density		14.57% Dele vest	<u>'0</u>
00	ilour dala		Folo vectors	
00		<u>n</u>		
Kin	amotio opolygio	e	Wedge sliding	
SIO	entatic analysis)		ung
SIO	pe uip ne Din direction	`	130°	
Frid	tion angle	1	220	
1 110		Critical	Total	%
W	ledae slidina	115	253	45 45%
	Color	Dip	Dip direction	Label
		User pla	anes	
1		49°	50°	D-1
2		48°	125°	D-2
3		50°	219°	D-3
4		43°	315°	D-4
5 1 70°		70°	130°	Т
Plo	Plot Mode		Pole vectors	
Vector count		45 (45 entries)		
Intersection mode		Grid data planes		
Inte	ersections count	t	988	
Hei	misphere		Lower	
Pro	jection		Equal area	

Figura 4.20. Probabilidad de ruptura por vuelco con 4.35%, englobando al polo de la familia D-4, EG-01.

	Symbol			Feature	
\$ 			Polo vectors		
•			Critical vectors	6	
			Intersection		
	Color		Den	sity concentrati	ions
				0.00 – 1.50	
				1.50 – 3.00	
				3.00 – 4.50	
				4.50 – 6.00	
				6.00 – 7.50	
				7.50 – 9.00	
				9.00 - 10.50	
				10.50 - 12.00	
				12.00 - 13.50	
Marine		4		13.50 - 15.00	,
Canto	un densi	ty		14.57%	0
Contou	li dala	ution		Polo vectors	
Countin					
Kinom	ng circle	Size		Elovural toppling	
Slope	alic anal	y515			piing
Slope	Jip Din diroc	tion		1200	
Sibpe I Eriction				130	
Latoral	limite			22	
Latera	mmis		Critical	Total	%
Floyura	al topplin		1	23	/0
TIEXUI		lor	Din	Din direction	Label
-	00		lser nlani		Laber
1		1	49°	50°	D-1
2			48°	125°	D-2
3			50°	219°	D-3
4			43°	315°	D-4
5			70°	130°	Т
Plot Mode			Pole vectors		
Vector count			23 (23 entries))	
Intersection mode			Grid data planes		
Intersections count			253		
Hemis	ohere			Lower	
Project	Projection			Equal area	

4.4.2 Análisis cinemático EG-02

La estación geomecánica EG-02, presenta 35 discontinuidades.

Tabla 4.31. Caracterización geomecánica mediante la orientación de discontinuidades, EG-02.

N°	Dip	Dip Direction	Familia
1	50°	80°	D-1
2	60°	10°	D-1
3	50°	28°	D-1
4	45°	30°	D-1
5	62°	45°	D-1
6	60°	30°	D-1
7	50°	75°	D-1
8	64°	10º	D-1
9	50°	80°	D-1
10	60°	70°	D-1
11	50°	80°	D-1
12	60°	130°	D-2
13	60°	130°	D-2
14	55°	100°	D-2
15	50°	128º	D-2
16	50°	135°	D-2
17	60°	132º	D-2
18	60°	120º	D-2
19	50°	140°	D-2
20	60°	215°	D-3
21	60°	260°	D-3
22	60°	210º	D-3
23	62°	250°	D-3
24	60°	250°	D-3
25	62°	255°	D-3
26	70°	240°	D-3
27	60°	260°	D-3
28	60°	245°	D-3
29	65°	330°	D-4
30	65°	320°	D-4
31	65°	325°	D-4
32	63°	320°	D-4
33	50°	325°	D-4
34	60°	320°	D-4
34	72°	330°	D-4
35	70°	60°	Т

Plot Mode	Rosette
Plot Data	Apparent Strike
Face Normal Trend	0.0
Face Normal Plunge	90.0
Bin Size	10°
Outer Circle	10 planes per arc
Planes Plotted	35
Minimum Angle To Plot	45.0°
Maximum Angle To Plot	90.0°

Figura 4.21. Diagrama de rosas de las fracturas – EG-02.

Figura 4.22. Diagrama de polos de las fracturas – EG-02.

Figura 4.23. Probabilidad de ruptura planar 33.33%, englobando al polo de la familia D-1; a favor del talud, EG-02.

Symbol			Feature	
\diamond			Polo vectors	
•			Critical vectors	5
			Intersection	
	Color	Der	nsity concentrat	ions
			0.00 – 1.50	
			1.50 – 3.00	
			3.00 – 4.50	
			4.50 - 6.00	
			6.00 - 7.50	
			7.50 - 9.00	
			9.00 - 10.50	
			10.50 - 12.00 12.00 12.50	
			12.00 - 15.00 13.50 - 15.00	
Maxi	mun density		14 479	6
Conte	our data		Polo vec	tors
Conte	our distribution		Fisher	
Cour	ting circle size		1.00%	
Kiner	matic analysis		Planar siliding	
Slope	e dip		70°	Ŭ
Slope	e Dip direction		60°	
Fricti	on angle		25°	
		Critical	Total	%
Plan	ar siliding (All)	12	36	33.33%
	Color	Dip	Dip direction	Label
		User pla	nes	
1		55°	49°	D-1
2		56°	127°	D-2
3		62°	243°	D-3
4		63°	324	D-4
5		70°	60°	Т
Plot I	Mode		Pole vectors	
Vector count			36 (36 entries))
Intersection mode			Grid data plan	es
Inters	sections count		625	
Hemi	isphere		Lower	
Proie	ection		Equal area	

	Symbol			Feature		
	\diamond			Polo vectors		
	•			Critical intersection		
				Intersection		
		Color	Der	nsity concentrat	ions	
				0.00 – 1.50		
				1.50 – 3.00		
				3.00 - 4.50		
				4.50 - 6.00		
				6.00 – 7.50		
				7.50 – 9.00		
				9.00 - 10.50		
				10.50 - 12.00		
				12.00 - 13.50		
	Ma	vine un elemeitre		13.50 - 15.00	/	
	ivia:	ximun density		14.47% Dele vez	6 toro	
		nour distribution	n	Full Vectors		
	Col	Inting circle size	<u>م</u>	1 00%		
	Kin	ematic analysis		Wedge sli	, dina	
	Slope dip			70°		
	Slo	pe Dip direction)	60°		
	Fric	tion angle		25°		
			Critical	Total	%	
	N	/edge sliding	236	625	37.76%	
		Color	Dip	Dip direction	Label	
			User pla	anes		
	1		55°	49°	D-1	
	2		56°	127°	D-2	
	3		62°	243°	D-3	
	4		63°	324°	D-4	
	5		70°	60°	Т	
	Plo	t Mode		Pole vectors		
	Vector count			36 (36 entries)		
	Intersection mode			Grid data plan	es	
	Inte	ersections count	t	625		
5	Her	misphere		Lower		
	Pro	jection		Equal area		

Figura 4.24. Probabilidad de ruptura en cuña con 37.78%, englobando a la intersección de las familias: D-1 y D-2, EG-02.

Figura 4.25. Probabilidad de ruptura por vuelco con 25.00%, englobando al polo de la familia D-3, EG-03.

	Symbol		Feature		
	\diamond		Polo vectors		
•			Critical vectors	6	
			Intersection		
	Color	Dei	nsity concentrat	ions	
			0.00 – 1.50		
			1.50 – 3.00		
			3.00 – 4.50		
			4.50 - 6.00		
			6.00 - 7.50		
			7.50 - 9.00		
			9.00 - 10.50		
			10.50 - 12.00		
			12.00 - 13.50		
Maxim	un density		13.30 - 13.00	4	
Contor	ur data			tore	
Contou	ir distribution		FUID VECIDIS		
Counti	na circle size		1 00%		
Kinema	atic analysis		Flexural toppling		
Slope	din		70°	philig	
Slope I	Dip direction		60°		
Friction	n angle		25°		
Lateral	limits		<u> </u>		
		Critical	Total	%	
Flexura	al toppling (All)	9	36	25.00%	
	Color	Dip	Dip direction	Label	
		Jser plan	es	•	
1		55°	49°	D-1	
2		56°	127°	D-2	
3		62°	243°	D-3	
4		63°	315°	D-4	
5		70°	60°	Т	
Plot Mode		Pole vectors			
Vector count		36 (36 entries))		
Intersection mode		Grid6 data planes			
Intersections count		625			
Hemisp	ohere		Lower		
Project	ion	Projection		Equal area	

4.4.3 Análisis cinemático EG-03

La estación geomecánica EG-03, presenta 30 discontinuidades.

Tabla 4.32. Caracterización geomecánica mediante la orientación de discontinuidades, EG-03.

N°	Dip	Dip Direction	Familia
1	70°	45°	D-1
2	60°	42°	D-1
3	60°	40°	D-1
4	60°	80°	D-1
5	70°	85°	D-1
6	60°	30°	D-1
7	55°	125°	D-2
8	70°	120°	D-2
9	60°	120°	D-2
10	50°	122º	D-2
11	60°	115°	D-2
12	30°	168º	D-2
13	70°	245°	D-3
14	70°	245°	D-3
15	60°	245°	D-3
16	65°	245°	D-3
17	60°	315°	D-4
18	60°	318º	D-4
19	70°	310º	D-4
20	50°	320°	D-4
21	50°	322°	D-4
22	65°	308°	D-4
23	70°	300°	D-4
24	70°	320°	D-4
25	70°	110°	Т

Plot Mode	Rosette
Plot Data	Apparent Strike
Face Normal Trend	0.0
Face Normal Plunge	90.0
Bin Size	10°
Outer Circle	10 planes per arc
Planes Plotted	23
Minimum Angle To Plot	45.0°
Maximum Angle To Plot	90.0°

Figura 4.26. Diagrama de rosas de las fracturas – EG-03.

Figura 4.27. Diagrama de polos de las fracturas – EG-03.

Figura 4.28. Probabilidad de ruptura planar 28.00%, englobando al polo de la familia D-2; a favor del talud, EG-03.

Symbol			Feature		
	\diamond		Polo vectors		
•			Critical vectors	S	
			Intersection		
	Color	Der	nsity concentrat	tions	
			0.00 – 1.60		
			1.60 – 3.20		
			3.20 – 4.80		
			4.80 - 6.40		
			6.40 – 8.00		
			8.00 – 9.60		
			9.60 – 11.20		
			11.20 – 12.80		
			12.80 - 14.40		
M .	1		14.40 - 16.00	1	
Maximun density			15.18%	<u>/o</u>	
Conte	our data			tors	
Conte			Fisher		
Coun	ting circle size		1.00%	.00%	
Kiner	natic analysis		Planar sill	aing	
Slope	e dip		70°		
Siope	e Dip direction		110-		
Fricti	on angle	Critical	Z3 ⁻	0/	
Dian	or oiliding (All)		10181	70	
Fian		/ Din	20 Dip direction	20.00%	
	000	Lleor plai		Laber	
1		63°	5/°	D-1	
2		54°	128	D-2	
3		66°	245°	D-3	
1		62°	31/	D_1	
5		70°	110°	 T	
Plot I	Mode	10	Pole vectors	I	
Vector count			25 (25 entries))	
Intersection mode			Grid data plan	, es	
Intersections count			299	~~	
Hemi	sphere		Lower		
Proie	ction		Equal area		

Figura 4.29. Probabilidad de ruptura en cuña con 37.46%, englobando a la intersección de las familias: D-1 y D-2, EG-03.

Symbol			Feature		
	\diamond		Polo vectors		
•		Critical intersection			
	•		Intersection		
	Color	Dei	nsity concentrat	ions	
			0.00 – 1.60		
			1.60 – 3.20		
			3.20 – 4.80		
			4.80 – 6.40		
			6.40 - 8.00		
			8.00 - 9.60		
			9.60 - 11.20		
			11.20 - 12.80		
			12.80 - 14.40		
Ma	vimun donsity		14.40 - 10.00	1	
Cor	ntour data		15.18%		
	nour distribution	n	Full vectors		
Col	Inting circle size	<u>0</u>	1 00%		
Kin	ematic analysis	5	Wedge sliding		
Slo	ne din		70°	ung	
Slo	pe Dip direction)	110°		
Fric	tion angle		23°		
	dien angle	Critical	Total	%	
V	/edae slidina	112	299	37.46%	
	Color	Dip	Dip direction	Label	
		User pla	anes		
1		63°	54°	D-1	
2		54°	128°	D-2	
3		66°	245°	D-3	
4		62°	314°	D-4	
5	5 7 0°		110° T		
Plo	Plot Mode		Pole vectors		
Vec	Vector count		25 (25 entries)		
Inte	ersection mode		Grid data planes		
Inte	ersections count	t	299		
Her	misphere		Lower		
Pro	jection		Equal area		

Figura 4.30. Probabilidad de ruptura por vuelco con 28.00%, englobando al polo de la familia D-4, EG-03.

	Symbol		Feature		
	⇒ Po				
 Critical vectors 			3		
	Intersection				
	Color	Der	nsity concentrat	tions	
			0.00 – 1.60		
			1.60 – 3.20		
			3.20 – 4.80		
			4.80 - 6.40		
			6.40 - 8.00		
			8.00 - 9.60		
			9.60 - 11.20		
			11.20 - 12.00		
			12.00 - 14.40		
Maxim	un donsity		14.40 - 10.00	/	
Conto	un density		Polo vec	tore	
Contou	ir distribution		T UIU VEC	r	
Countie			1 00%		
Kinomatic analysis		Elexural toppling			
		70°	sping		
Slope Dip direction		110°			
Friction angle		23°			
Lateral limits		<u></u> 30°			
		Total	%		
Flexura	al toppling (All)	7	25	28.00%	
	Color	Dip	Dip direction	Label	
	<u> </u>	Jser plan	es		
1		63°	54°	D-1	
2		54°	128°	D-2	
3		66°	245°	D-3	
4		62°	315°	D-4	
5		70°	110°	Т	
Plot Mo	Plot Mode		Pole vectors		
Vector	Vector count		25 (25 entries))	
Intersection mode		Grid6 data pla	nes		
Intersections count		229			
Hemisp	Hemisphere		Lower		
Projection			Equal area		

4.4.4 Análisis cinemático EG-04

La estación geomecánica EG-04, presenta 30 discontinuidades.

Tabla 4.33. Caracterización geomecánica mediante la orientación de discontinuidades, EG-04.

N°	Dip	Dip Direction	Familia
1	70°	60°	D-1
2	60°	72º	D-1
3	72°	70°	D-1
4	60°	68º	D-1
5	60°	15º	D-1
6	60°	70°	D-1
7	50°	145°	D-2
8	60°	130º	D-2
9	50°	135°	D-2
10	65°	150°	D-2
11	60°	155°	D-2
12	70°	148°	D-2
13	60°	145°	D-2
14	68°	105°	D-2
15	70°	110º	D-2
16	70°	250°	D-3
17	72°	250°	D-3
18	68°	208°	D-3
19	70°	210º	D-3
20	70°	240°	D-3
21	60°	250°	D-3
22	60°	315°	D-4
23	68°	320°	D-4
24	70°	315°	D-4
25	60°	310°	D-4
26	60°	310°	D-4
27	70°	100°	Т

Figura 4.31. Diagrama de rosas de las fracturas – EG-04.

Figura 4.32. Diagrama de polos de las fracturas-EG-04.

Figura 4.33. Probabilidad de ruptura planar 33.33%, englobando al polo de las familias: D-2 y D-1; a favor del talud, EG-04.

	Symbol		Feature	
	<u>.</u>		Polo vectors	
•		Critical vectors	5	
	Intersection			
	Color	Dei	nsity concentrat	ions
			0.00 – 1.60	
			1.60 – 3.20	
			3.20 – 4.80	
			4.80 – 6.40	
			6.40 – 8.00	
			8.00 - 9.60	
			9.60 - 11.20	
			11.20 - 12.80	
			12.80 - 14.40	
Maxie	en un alore situ		14.40 - 16.00	/
Cont			15.147 Dolo vooi	toro
Cont	our distribution		Folo vectors	
Coun				
Kinematic analysis		Planar siliding		
Slope din		70°	ung	
Slope Dip direction			100°	
Frictio	on angle			
		Critical	Total	%
Plan	ar siliding (All)	9	27	33.33%
	Color	Dip	Dip direction	Label
		User pla	nes	
1		64°	59°	D-1
2		61°	136°	D-2
3		68°	235°	D-3
4		66°	314	D-4
5		70°	100°	Т
Plot N	Mode		Pole vectors	
Vecto	Vector count		27 (27 Entries)	
Intersection mode		Grid data plan	es	
Inters	Intersections count		351	
Hemi	sphere		Lower	
Proie	ction		Equal area	

	Symbol	Feature			
	\diamond	Polo vectors			
	•	Critical intersection			
	•	Intersection			
	Color	Dei	nsity concentrat	ions	
			0.00 - 1.60		
			1.60 – 3.20		
			3.20 - 4.80		
			4.80 - 6.40		
			6.40 - 8.00		
			8.00 - 9.60		
			9.60 - 11.20		
			11.20 - 12.80		
			12.80 - 14.40		
Mo	vimun donaitu		14.40 - 16.00	/	
Cor	atour data		Polo voc	ore	
	tour distributio	n	FUID VEC		
	Inting circle size	0	1 00%		
Kin	ematic analysis		Wedge sliding		
		70°	ung		
Slope Dip direction		100°			
Sidpe Dip direction		25°			
1 IIC	lion angle	Critical	Total	0/	
١٨	ledae slidina	120	351	34 19%	
	Color	Din	Din direction	l ahal	
	00101	User nla	anes	Laber	
1		64°	59°	D-1	
2		61°	136°	D-2	
3		68°	235°	D-3	
4		66°	314°	D-4	
5		70°	100°	 T	
Plo	Plot Mode		Pole vectors		
Vector count		27 (27 entries)			
Inte	ersection mode		Grid data planes		
Inte	ersections coun	t	351		
Hemisphere		Lower			
Pro	jection		Equal area		

Figura 4.34. Probabilidad de ruptura en cuña con 34.19%, englobando a la intersección de las familias: D-1 y D-2, EG-04.

Figura 4.35. Probabilidad de ruptura por vuelco con 18.52%, englobando al polo de la familia D-3, EG-04.

	Symbol		Feature	
	\diamond		Polo vectors	
	•	Critical vectors		
		Intersection		
	Color	Dei	nsity concentrat	ions
			0.00 - 1.60	
			1.60 – 3.20	
			3.20 – 4.80	
			4.80 - 6.40	
			6.40 – 8.00	
			8.00 – 9.60	
			9.60 – 11.20	
			11.20 – 12.00	
			12.00 – 14.40	
			14.40 – 16.00	
Maxim	un density		15.14%	6
Contou	ir data		Polo vect	tors
Contou	Ir distribution		Fisher	
Counti	ng circle size		1.00%	
Kinematic analysis		Flexural top	opling	
Slope dip		70°		
Slope Dip direction		100°		
Friction	n angle		25°	
Lateral	limits			
Critical		Total	%	
Flexura	al toppling (All)	5	27	18.52%
	Color	Dip	Dip direction	Label
	(Jser plan	es	5.4
1		64°	<u>59°</u>	D-1
2		61°	136°	D-2
3		68°	235°	D-3
4		66°	<u>314°</u>	D-4
5	l <u>.</u>	70°	100° T	
Plot Mode		Pole vectors		
Vector count		27 (27 entries))	
Intersection mode		Grid6 data pla	nes	
Intersections count		351		
Hemisp	ohere		Lower	
Projection		i ⊢qual area		

4.5 MÉTODO DE EXPLOTACIÓN DEL MARMOL

La calidad del macizo rocoso (Roca Tipo III, Regular) y realizado el análisis cinemático, se procedió a realizar los cálculos de los parámetros de diseño de la cantera de marmol para su posterior explotación. La explotación del yacimiento de marmol que se ubica al SE del distrito de Jorge Chávez será aplicando el criterio de Quispe Alaya (2019) mediante la explotación a cielo abierto por terrazas, por cortes del terreno comenzando de la parte superior hacia la inferior, mediante bancos, al finalizar el primer corte se inicia con el segundo.

Figura 4.36. Método de explotación adecuado para la cantera de marmol. Fuente: Quispe, 2019.

4.5.1 Secuencia de explotación del marmol

La secuencia de explotación de marmol consistirá en la explotación de arriba hacia abajo, iniciando con el primer banco representado con el número 1, posteriormente se continuará con el banco 2, banco 3 y banco 4 tal como está representado en la figura de abajo:

Figura 4.37. Secuencia de explotación de las calizas marmolizadas.

Fuente: Quipe, 2019.

4.5.2 Parámetros de diseño del marmol

El cálculo de los parámetros de diseño de la cantera de marmol ubicados al NE del Distrito de Jorge Chávez, tienen el objetivo de minimizar la remoción de material estéril y lograr la mayor recuperación del mineral por consiguientes con el menor gasto en la excavación. Para ello se analizaron los factores: Geométricos, geomecánicos, operativos y medioambientales:

Tabla 4.34 Factores geométricos del yacimiento de marmol.

Factores geométricos		
Ancho del yacimiento	135 m.	
Largo del yacimiento	289 m.	
Espesor del yacimiento	130 m.	
Forma del yacimiento	Estratificado	
Inclinación de tajo	84 ⁰	

Tabla 4.35. Propiedades geomecánicas del marmol.

Factores geométricos		
Peso específico	2.59 gr/cm ³	
Ángulo de fricción	23.73°	
Cohesión	4.615 MPa	
Resistencia a la compresión uniaxial	124.998 MPa	
RMR	56.2 Tipo III (regular)	
GSI	54.2 (regular)	

Después de conocerse la caracterización del macizo rocoso se procedió al diseño de las diferentes partes que conformarán el diseño de explotación del marmol. El yacimiento no metálico que aflora superficialmente que se proyecta iniciar el proceso de extracción debe tener las siguientes dimensiones:

Figura 4.38. Sección transversal de una explotación superficial Fuente: Herrera, 2007.

• Altura de explotación del yacimiento (H)

La altura de explotación del yacimiento de marmol del distrito de Jorge Chávez se calculó teniendo en cuenta las diferencias de cotas existentes entre la cota inferior y superior.

$$H = Hs - Hi$$

Donde:

Hs = Cota superior (m)

Hi = Cota inferior (m)

Para calcular la cota máxima y mínima se realiza un análisis del mapa topográfico y de la imagen digital. Para una primera etapa de la explotación se va a considerar 100 m. de profundidad.

Remplazando datos:

$$H = Hs - Hi = 2550 m - 2450m = 100m$$

• Altura de banco (HB)

Se denomina altura de banco a la distancia vertical que se mide entre los niveles consecutivos de explotación. Para la explotación del yacimiento de marmol se ha propuesto una altura `promedio de 10 m.

• Numero de bancos

El número de bancos se determina con la siguiente formula:

$$Nb = \frac{H}{Hb}$$

Donde:

Nb = Numero de bancos H = profundidad de la cantera (m) Hb = Altura del banco (m) Reemplazando: H= 100 m Hb= 10m

$$Nb = \frac{100}{10} = 10$$

Se tendrá 10 bancos de 10 m de altura cada uno.

• Ancho de la plataforma de trabajo

El ancho de la plataforma de trabajo se determina con la siguiente formula:

$$A = a (0.5 + 1.5 n)$$

Donde:

A = Ancho total de la plataforma (m)

a= Ancho del vehículo (m)

n = Número de carriles deseados

remplazando tenemos:

Ancho del vehículo= 4m

Número de carriles= 1

Reemplazando:

$$A = 4 (0.5 + 1.5 * 1) = 8m$$

Ángulo del talud de los bancos

El ángulo de los bancos está en función de la calidad de la roca y la altura. Es decir, mientras más resistencia tenga la roca y menos altura el banco, más vertical será el banco. Si la roca tiene menos resistencia y mayor altura el banco, más inclinación tendrá el talud. De acuerdo con el análisis geomecánico se tiene una roca regular por lo que se opta por un factor de 2.

Categoría	Descripción	f		
Excepcional	Cuarcita, basaltos y rocas de resistencia excepcional	20		
Alta resistencia	Granito, areniscas silíceas y calizas muy competentes	15 – 10		
Resistencia media	Caliza, granito algo alterado y areniscas.	8 – 6		
	Areniscas medias y pizarras	5		
	Arcillolitas, areniscas flojas y conglomerados	4		
	friables	3		
	Arcillolitas y esquistos, margas compactas			
Resistencia baja	Calizas y arcillolitas blandas, margas, areniscas			
-	friables, gravas y morrenas.	2		
	Terrazas, arcillolitas fisuradas y rotas, gravas	1.5		
	compactas y arcillas preconsolidadas.			
Resistencia muy baja	Arcillas y gravas arcillosas			
	Suelos orgánicos, turbas y arenas húmedas	0.6		
	Arenas y gravas finas	0.5		
	Limos, loes y fangos, etc.	0.3		

Tabla 4.36	Clasificación	de las	rocas	según	Protod	/akonov
1 4514 4.00.	Clasificación	40 145	100005	Jugun	riolouj	anonov.

Fuente: Montalar, 2009.

Teniendo en cuenta la tabla de Protodyakonov el ángulo óptimo de los bancos del depósito con la siguiente formula:

$$\varphi = arctg(f)$$

Donde:

 φ = Ángulo del talud del banco

f = Coeficiente de resistencia de Protodyakonov para calizas

Para nuestro caso, considerando los resultados del análisis geomecánicos de RMR y GSI en donde se determinó una roca de tipo III (regular calidad) por lo tanto aplicando el criterio geológico, se asume por seguridad un factor de 2. Por lo tanto, remplazando tenemos:

$$\varphi = arctg(2) = 63^{\circ}$$

Ángulo de talud final (β)

Se determina mediante la siguiente ecuación

$$\tan\beta = \frac{10}{B}$$

Siendo:

H= altura de banco (m)

B=B1+B2

 B_1 = ancho de banco (m)

B₂= longitud que genera el ángulo en la cara del banco (m)

 $B2 = Htan\theta$

Datos:

Hb= 10m

Se asume un ancho de banco de trabajo es de 7m

Siendo θ = ángulo que forma la cara de talud con la vertical que es= 27° (complemento del ángulo de 63°)

 $B2 = 10 * \tan 27^{\circ} = 5.095$

Reemplazando:

B=7+5.095=12.095

Reemplazando en:

$$\tan \beta = \frac{10}{B}$$
$$\tan \beta = \frac{10}{12.095}$$
$$\tan \beta = 0.014$$
$$\beta = 39^{\circ}$$

Tabla 4.37. Resumen de los parámetros calculados.

PARÁMETROS DE DISEÑO		
Profundidad de explotación	100 m.	
Numero de bancos	10	
Altura de banco	10 m.	
Angulo de talud	63°	
Angulo de talud final	39°	
Ancho de la plataforma de trabajo	7 m.	

4.5.3 Métodos en la extracción del marmol

Para la extracción del marmol existen dos métodos: El convencional y mecanizado. Para la presente investigación se proponen los dos métodos los cuales serán explicados a continuación:

Actividades	Procedimiento
Desbroce	Limpiar el material estéril que cubre el marmol, con palas
Desbioce	manuales.
	Se aplica la expansión desde las fisuras naturales
Arrangue primario	ocasionalmente con perforación neumática de taladros
Ananque primario	verticales y horizontales, los bloques naturales son de
	dimensiones variables.
Desprondimiente	Aplicación de cuñas expansoras explosivos rompedores
Desprendimento	y pólvoras
	Aplicación de palancas manuales y cuñas de trozos de
Volcado	roca para provocar el desequilibrio para caer sobre una
	cara mayor del block.
Carguío	Se emplea cuñas manuales o mecánicas.

Tabla 3.38. Método convencional.

Fuente: Quipe, 2019.

Actividades	Procedimiento
Desbroce	Limpieza de la cubierta con pala mecánica
	o pala sobre orugas.
Preparacion	Preparar el área de corte
Corte con hilo diamantado, rozadoras de	Equipos: Grupo motor, chasis móvil con
brazo y perforación de taladros	carriles, sistemas de control, hilo
	diamantado y otros.
Vuelco del bloque	Se desprende del macizo con empujadores
	hidráulicos.
Subdivisión	Se dividen en bloques aprovechables con
	equipos rotopercutivos hidráulicos con
	brocas o perforación neumática
Proceso de traslado	Con palas cargadoras

Tabla 4.39.	Método	mecanizado.
10010 1.001	111010000	moounzaao.

Fuente: Quipe, 2019.

	Tabla 4.40.	Servicios e	e instalaciones	auxiliares.
--	-------------	-------------	-----------------	-------------

Maquinas o equipos	Tipos, elementos y funciones
Empujadores de bloques	Empujadores de cilindros hidráulicos
	Empujadores de almohadilla
Grúas	Para tracción de bloques y traslado de
	maquinaría.
Palas mecánicas o cargadores frontales	Para labores en canteras con implementos
equipados	básicos
	Cuchara, horquilla, brazo saneador y de
	empuje.
Sistema de aire comprimido	Compresoras, tuberías, accesorios

Fuente: Quipe, 2019.

Figura 4.39. Parámetros de diseño calculados. Fuente: Herrera, 2007.

4.5.4 Secuencia de explotación del marmol

La explotación del marmol se ubica al NE del distrito de Jorge Chávez se realizará siguiendo las siguientes actividades:

- **Desbroce:** Para la explotación del marmol será necesario primero extraer todo el material arcilloso, limoso y materia orgánica que se presenta como cobertura. Este proceso se debe realizar con un cargador Frontal.
- Arranque primario: El arranque primario consiste en aplicar la rotura (expansión) desde las fracturas de los bloques de calizas marmolizadas

utilizando la perforación de taladros verticales y horizontales, los bloques extraídos serán de varios tamaños.

- Desprendimiento: En esta etapa se realizará la aplicación de cuñas expansoras explosivos rompedores y pólvoras.
- Volcado: En esta etapa se aplicarán las palancas manuales y cuñas de trozos de roca para provocar el desequilibrio.
- **Carguío:** En esta etapa se emplean cuñas manuales o mecánicas.
- Distancia de transporte hasta lugar de venta: La distancia de transporte desde la cantera de marmol hasta el lugar de venta más cercano, la ciudad de Celendín es de 15 km, lo que representa una distancia bastante aceptable. La carretera es poco sinuosa y parte desde la misma cantera y en 95% es trocha carrozable.

En el desarrollo de las operaciones de explotación se seguirá una secuencia de extracción, la cual se esquematiza de esta manera:

Figura 4.40. Etapas recomendadas para explotación del marmol - Distrito de Jorge Chávez

Fuente: Zegarra, 2015.

Una vez definidos los bancos de explotación se deberá seguir una secuencia de explotación de la cantera de marmol:

Figura 4.41. Secuencia de extracción de los bloques de marmol- Distrito de Jorge Chávez Fuente: Zegarra, 2015.

4.5.5 Etapas de explotación del marmol

Las técnicas sugeridas para la subdivisión de los bloques es el de voladuras controladas, teniendo cuidado de no maltratar las caras de los bloques de marmol. De acuerdo con Zegarra (2015), la extracción del marmol se realizará en tres etapas:

 Primera etapa: Se realizará el desprendimiento del bloque de marmol mediante técnicas de covado y de volcadura, utilizando técnicas de voladura controlada. Se debe tener cuidado en elegir la dirección de los cortes, el diámetro de los taladros, la longitud y el espaciamiento. El paralelismo de los taladros es fundamental en la obtención de caras lo menos deterioradas posibles.

Figura 4.42. Desprendimiento de bloque de marmol mediante técnicas: a) covado y b) volcadura Zegarra, 2015.

- Segunda etapa: Se utilizarán las mismas técnicas que la primera. Se procede a la separación de los bloques en planchas subhorizontales realizando levantes, para luego llevarlos a un lugar a la zona de trabajo donde se podrá subdividirlo en tamaños más pequeños y comercial.
- **Tercera etapa:** Se recuadran todos los bloques que se obtuvieron en la etapa anterior. La profundidad de los taladros para la separación de las caras de los bloques estará en función del tipo de roca y la altura de los bloques requeridos, debido a que los marmoles requieren perforaciones con taladros pasantes donde los taladros empiezan y terminan de cara a cara respectivamente.

Figura 4.43. Extracción del bloque de marmol tercera etapa. Fuente: López, 2006. En esta etapa se emplearán las cuñas cuya acción se conseguirá golpeando repetidamente por medio de un martillo de unos 4 kg de peso. También se utilizarán cuñas hidráulicas que están constituidas por una bomba hidráulica de alta presión y por varios cilindros hidráulicos, cada uno unido a la bomba a través de mangueras flexibles reforzadas. La bomba es accionada por un motor diésel, eléctrico o neumático.

Figura 4.44. Máquina rozadora tipo Pellegrini. Fuente: Zegarra, 2015.

Figura 4.45. Figura Cuña hidráulica.

Fuente: López, 2006.

Figura 4.46. Ciclo de extracción de cada bloque de marmol Fuente: López, 2006.

4.5.6 Tipo de marmol - Cantera Jorge Chávez

Después de realizar el análisis macroscópico de las 05 muestras de marmol obtenidas de la zona de estudio ubicada al SE del Distrito de Jorge Chávez, se determinaron que las coloraciones varían de un gris blanquecina con algunas vetas de calcita a una coloración gris anaranjadas- amarillentas. Las coloraciones gris blanquecinas probablemente por la transformación de las calizas de la Formación Cajamarca las mismas que poseen un alto contenido de CO₃Ca mayores al 90%, y las de coloraciones gros amarillentas a gris anaranjadas debido a que las calizas que tenían impurezas de óxidos de hierro. Los marmoles de coloraciones blanquecinas son muy requeridos en el mercado debido a que, de estos, se extrae el polvo mediante la trituración y luego se procesa para eliminar la mayor cantidad de impurezas. Este polvo se utiliza como agente colorante y relleno en pintura, blanqueado, masilla, plástico, lechada, cosméticos, papel y otros productos manufacturados. También se utiliza como aditivo del calcio como alimentos para animales, productos farmacéuticos y en la agricultura. A continuación, se muestra una tabla de la clasificación de los mármoles de acuerdo con su coloración:

Colores de marmol	Impurezas
Blanquecinos	Son ricos en CO3Ca suele estar a veces marcado por algunas vetas apenas visibles
Negros y grises	Contienen sustancias carbonosas u orgánicas
Rojos y rosados	Contienen óxidos como hematita, oligistos rojos.
Amarillos, cremas o pardos	Contienen limonita
Verdes	Contienen silicatos de magnesio

Tabla 4.41. Clasificación del marmol según su composición química.

Fuente: López, 2006.

Las muestras de marmol que se obtuvieron dentro de la zona de estudio entran en la clasificación de marmol blanquecinos por poseer alto contenido de CO₃Ca y mármoles de coloración rojizos, anaranjados y cremas por el contenido de óxidos de hierro.

4.6 ESTUDIO PETROGRÁFICO

A continuación, se muestra el estudio macroscópico de las 05 muestras de marmol obtenidas de cada una de las 04 estaciones geomecánicas:

Tabla 4.42. Descripciór	n macroscópica de la	muestra SA-01.
-------------------------	----------------------	----------------

Descripción macroscópica 01	
Código	SA- 01
Unidad geológica	Formación Cajamarca
Edad	Cretácico Superior
Lugar	Al Sur- Oeste del Distrito de Jorge Chávez
Color roca fresca	Gris marrón, anaranjado
Dureza	Media a alta
Peso especifico	Media
Efervescencia al HCI	Alta
Presencia de restos fosiles	No presenta

Comentarios:

Roca caliza ha sufrido un proceso de metamorfismo. Presenta además delgadas vetillas de calcita. Las manchas forman extrañas figuras que le proporciona un atractivo especial.

Marmol de color marrón- anaranjado

Descripción macroscópica 02	
Código	SA- 02
Unidad geológica	Formación Cajamarca
Edad	Cretácico Superior
Lugar	Al Sur- Oeste del Distrito de Jorge Chávez
Color roca fresca	Gris blanquecino
Dureza	Media a alta
Peso especifico	Media
Efervescencia al HCI	Alta
Presencia de restos fosiles	No presenta

Comentarios:

Roca caliza ha sufrido un proceso de metamorfismo. Presenta varias venillas de calcita dispuestas en forma paralela. El marmol de esta coloración es muy cotizado en el mercado.

Marmol de color blanquecino
Descripción macroscópica 03		
Código	SA- 03	
Unidad geológica	Formación Cajamarca	
Edad	Cretácico Superior	
Lugar	Al Sur- Oeste del Distrito de Jorge Chávez	
Color roca fresca	Gris blanquecino	
Dureza	Media a alta	
Peso especifico	Media	
Efervescencia al HCI	Alta	
Presencia de restos fosiles	No presenta	

Comentarios:

Roca caliza ha sufrido un proceso de metamorfismo. Presenta varias venillas de calcita dispuestas en forma paralela. El marmol de esta coloración es muy cotizado en el mercado.

Marmol de color gris blanquecino

Tabla 4.45.	Descripción	macroscópica o	de la muestra SA- 04.
-------------	-------------	----------------	-----------------------

Descripción macroscópica 04		
Código	SA- 04	
Unidad geológica	Formación Cajamarca	
Edad	Cretácico Superior	
Lugar	Al Sur- Oeste del Distrito de Jorge Chávez	
Color roca fresca	Gris anaranjado	
Dureza	Media a alta	
Peso especifico	Media	
Efervescencia al HCI	Alta	
Presencia de restos fosiles	Abundantes restos de pequeños fósiles.	

Comentarios:

Roca caliza ha sufrido un proceso de metamorfismo. Presenta varias venillas de calcita dispuestas en forma paralela. Las manchas negras representan restos de fosiles. Esta combinación le otorga al marmol una singular belleza.

Marmol de color gris anaranjado

Descripción macroscópica 05		
Código	SA- 05	
Unidad geológica	Formación Cajamarca	
Edad	Cretácico Superior	
Lugar	Al Sur- Oeste del Distrito de Jorge Chávez	
Color roca fresca	Gris marrón	
Dureza	Media a alta	
Peso especifico	Media	
Efervescencia al HCI	Alta	
Presencia de restos fosiles	Se observa	

Tabla 4.46. Descripción macroscópica de la muestra SA-05.

Comentarios:

Roca caliza ha sufrido un proceso de metamorfismo. Presenta varias venillas de calcita. En el centro se muestra una mancha de color gris rojizo.

Marmol de color gris marrón

4.7 CONTRASTACIÓN DE LA HIPÓTESIS

La caracterización geomecánica determinada en las cuatro (04) estaciones: SA-01, SA-02, SA-03 y SA-04; mediante el cálculo: RQD, RMR, y GSI reportan como resultado un macizo rocoso de calidad regular TIPO III, definiendo el método de explotación a cielo abierto por ser estructura masiva, siendo definido la ladera con pendiente casi empinada. Definiendo que la explotación y extracción de marmol será mediante bancos iniciando de la parte superior de la ladera hacia al pie de la ladera. Acotando además que definió el coeficiente de Protodyakonov tal como lo sugiere Montalar (2009), según la calidad del macizo rocoso, siendo 2 - Muy conservador, con el valor se realizaron los cálculos de los diferentes parámetros de diseño para mejores optimizaciones de explotación, contrastándose positivamente la hipótesis.

CAPÍTULO V CONCLUSIONES Y RECOMENDACIONES

5.1. CONCLUSIONES

Se seleccionaron cuatro estaciones geomecánicas denominadas SA-01, SA-02, SA-03, SA-04 y SA- 05, a cada una de estas estaciones se realizó el análisis respectivo. El peso específico calculado para cada macizo rocoso por el laboratorio INGEOCONSULT & LAB SRL arroja un valor promedio de 2.59 TM/m³.

Los valores del RMR arrojan valores de 53 a 59 (TIPO III, regular calidad) y el GSI calculado insitu arrojan valores de 51 a 57 siendo una roca regular. La cohesión y el ángulo de fricción calculados con el software RocData 06 arrojan valores para la cohesión entre 4.273 MPa a 4.926 MPa y para el ángulo de fricción entre 22.496º a 24.991º.

El método de explotación idóneo elegido es el de explotación a cielo abierto en ladera con pendiente casi empinada, siendo la explotación por bancos de arriba hacia abajo. Esta caracterización geomecánica permitió aplicar la tabla de Protodyakonov tal como lo sugiere Montalar (2009). De dicha tabla, para un macizo rocoso de regular calidad, se obtuvo el coeficiente de 2, con este valor se realizaron los cálculos de los parámetros de diseño.

La profundidad de explotación calculado fue de 100m, el número de bancos 10, la altura de banco 10 m., el ángulo de talud de 63º, el ángulo de talud final de 39º y el ancho de plataforma de 7m.

3.2. RECOMENDACIONES

Las empresas mineras realizar estudios de geofísica con la finalidad de determinar la presencia de un posible yacimiento tipo skarn en profundidad.

Los interesados en la explotación de marmol en poner mayor énfasis en la búsqueda de marmol de color gris blanquecino porque son muy requeridos en el mercado. Estos tipos de marmol se les encuentra dentro de la Formación Cajamarca.

REFERENCIAS BIBLIOGRÁFICAS

- Aguilar, D. 2019. Optimización de los procesos de transformación productiva del marmol travertino mediante la filosofía Kaisen en el Instituto Regional del Marmol. Tesis para optar el título de Ingeniero Industrial. Universidad Continental. Huancayo - Perú.
- Braja, M. 2001. *Fundamentos de ingeniería geotécnica.* Thomson Editores S.A. de C.V.
- Baez, J. 2006. Estudio de Impacto Ambiental por la Explotación de Marmol en la Zona San José de Minas y su Plan de Manejo Ambiental. Quito- Ecuador.
 IHSN (International Household Survey Network)
- Barton, N., Lien, R. & Lunde, J. 1974. *Engineering classification of rock masses for the design of tunnel support.* Rock Mechanics, 6: 189 236.
- Berrocal, M. 2015. Estabilidad de Excavaciones Subterráneas. Lima Perú: Ventura Graf.
- Cartaya, M. 2021. Caracterización Geomecánica de macizos rocosos en obras subterráneas de la Región Oriental del país Cuba. Instituto Superior Minero Metalúrgico de Moa. Cuba.
- Cuyubamba, H. 2019. Zonificación geomecánica para optimizar el diseño de malla de perforación y voladura Unidad Minera Parcoy Consorcio Minero Horizonte S.A C. tesis para optar el título de Ingeniero de Minas. Universidad Nacional del Centro del Perú (UNCP). Facultad de Ingeniería de Minas La Libertad Perú.
- Dávila, J. 2011. *Diccionario Geológico*. Ingemmet. Lima, Perú. Euroecuatoriana Indgrafsa S.A.
- Diaz, A., Manrique, S., y Siancas, L. 2020. *Compendio de rocas ornamentales en el Perú.* INGEMMET, Boletín Serie B: Geología Económica.
- Diaz, J. 2022. Determinación de inestabilidad geotécnica de taludes entre el Km 34+700 y Km 42+200 de la carretera Ciudad de Dios- Cajamarca. Tesis para obtener el Título de Ingeniero Geólogo. Universidad Nacional de Cajamarca.

- GRAMAR. 2021. Producción del marmol: De la cantera a tus proyectos. Natural Stones SA de CV. Mexico.
- Garnica, R. 2015. Propuesta para cambiar el sistema de minado de una cantera de marmol en el municipio de Santiago Acatlán, Puebla. Tesis de Maestria.
 Universidad Nacional Autónoma de México, México.
- Gavilanes, J., y Andrade, H. 2004. Introducción a la Ingeniería de Túneles: Caracterización, clasificación y análisis geomecánico de macizo rocosos. Quito – Ecuador: Editorial: AIME.
- Gonzales de Vallejo, L. 2002. *Ingeniería Geológica.* Madrid, España. Prentice Hall. 715 p.
- Hoek, E., Carranza, T. y Corkum, B. 2000. "Hoek Brown failure criterion". 2002 edition: In R. Hammah, W. Bawden, J. Cur ran & M. Telesnicki (Eds). Processdings of NARMS TAC 2002; Mining Innovation and technology. Toronto 10 july 2002 pp 267 273. University of Toronto.
- Lagos, A., y Quispe Z. 2008. *Modelamiento estructural de los Cuadrángulos de Cajamarca, San Marcos y Bolívar.* PERUMIN. 29 convención Minera de Arequipa.
- Lozano, A. 2009. MATEST S. Geoinstruments. El-Martillo-de-Schmidt
- López, C. 2006. Manual de rocas ornamentales. Madrid, España: Arias Montano.
- López, E. 2020. Estudio Geotécnico y Diseño del Talud final de una mina a Cielo Abierto aplicando Modelos Numéricos. Tesis para optar el título profesional de Ingeniero de Minas. Universidad Nacional Mayor de San Marcos Facultad de Ingeniería Geológica, Minera, Metalúrgica y Geográfica E.A.P. de Ingeniería de Minas. Lima Perú.
- Maquera, D. 2018. Aplicación de la Geomecánica para el control de Dilución en la Implementación de la Explotación por Cámaras y Pilares en la Unidad Minera Cori Puno S.A.C. UNTACA. Tesis para obtener el título profesional de ingeniero de Minas. Facultad de Ingeniería, Escuela Profesional de Ingeniería de Minas. Universidad Nacional del Altiplano Perú.
- Miller, R. 1966. *Engineering of shear faiture in rock.* Ph. D. thesis Universidad de Illinois. EEUU
- Montalar, E. 2009. La Aplicación de la clasificación geomecánica de Protodyaconov
- Lisle. R., y Lesión, P. 2002. Técnicas de proyección estereográfica para geólogos e ingenieros civiles, 2da. edición.

- Parra, A. 2015. Planificación Minera a Cielo Abierto utilizando Fundamentos Geomecánicos. Para optar el Grado de Magister en Minería. Universidad de Chile Facultad de Ciencias Físicas y Matemáticas. Departamento de Ingeniería de Minas. Santiago de Chile.
- Pastor, V. 2013. *El increíble proceso de extracción del marmol.* En Blog: Todo sobre marmol.
- Santos, A. 2012. Residuo de Marmol como Insumo en la Construcción Civil -Diagnóstico de la Comarca Lagunera. Tesis profesional, 15-30. México.
- Qulispealaya, L. 2019. Estrategias ambientales en la explotación de canteras de marmol y su influencia en el desarrollo sostenible de comunidades de la Región Junín- Perú. Tesis para optar el grado de Doctor. Universidad Nacional Federico Villarreal.
- Quinto, J. y Huamanyalli, R. 2017. Análisis Geomecánico para la Selección Óptima del Método de Explotación de la veta Almiranta Zona profundización de la Mina Quiruvilca Sociedad Minera Quiruvilca Inversiones S.A. La Libertad.
 Facultad de Ingeniería de Minas Civil y Ambiental. Escuela profesional de Ingeniería de Minas. Universidad Nacional de Huancavelica. Perú.
- Tumialan, P., Ríos, E., Perez, E, Vélez. 1982. Mineralización del yacimiento Polimetálico de Algamarca (Cajamarca). XVI Convención de Ingeniero de Minas del Perú, p (1 4), 1 10, (Resumen).
- Tobón, J., Aristizábal E., y Arango, I. 2003. Geología de los mármoles de la concesión minera Rioclaro de Sumucil S.A. Boletín de ciencias de la tierra
 Numero 15, Medellín-España. ISSN 0120 3630.
- Reyes, L. 1980. Geología de los cuadrángulos de Cajamarca (15-f), San Marcos (15-g) y Cajabamba (16-g). Boletín N°31 INGEMMET. Perú.
- Ramírez, P., De La Cuadra, L., Laín, R., y Grijalbo, E. 2008. *Mecánica de rocas aplicada a la minería metálica subterránea.* Instituto geológico y minero de España.
- Rimarachin, R. 2017. Estimación de Reservas de Marmol para su explotación minera en la Concesión Santa Rita en el distrito Jorge Chávez, Provincia Celendín, Región Cajamarca, 2017. Perú. Universidad Alas Peruanas.
- Rodríguez, A. 2007. Ingeniería geológica: Caracterización de macizos rocosos. Facultad de geología (Petrología y geoquímica), vol. 1, págs. 1-14. Universidad de Oviedo. Recuperado de

- https://www.academia.edu/7560586/CARACTERIZACI%C3%93N_DE_MACIZOS _ROCOSOS
- Solís, E. 2013. *Plantas de industrialización de marmol y travertino.* Simposio Internacional Rocas y Minerales Industriales. Trujillo.
- Trigueros, E. 2013. Parámetros de viabilidad para la explotación de marmol y calizas marmóreas mediante métodos de explotación subterráneos. Universidad de Vigo. España.
- Valera, J. 1987. Geología de los depósitos de Minerales metálicos. Impreso in Perú.
- Zegarra, A. 2015. Estudio de Factibilidad de un Proyecto de Explotación y Transformación de Marmol. Tesis profesional, 42-55. Lima, Perú: Universidad Nacional de Ingeniería. Perú.

ANEXOS

ANEXO A: PLANOS

ANEXO B: PANEL FOTOGRÁFICO

ANEXO C: CÁLCULO DEL PESO ESPECÍFICO EN LABORATORIO

ANEXO D: ANÁLISIS QUÍMICO

ANEXO A PLANOS

ANEXO B PANEL FOTOGRÁFICO

Figura 5.1. Midiendo el espaciamiento de las discontinuidades.

Figura 5.2. Midiendo el espaciamiento de las discontinuidades.

Figura 5.3. Midiendo la apertura de las discontinuidades.

Figura 5.4. Midiendo la apertura de las discontinuidades.

Figura 5.5. Midiendo el rumbo y buzamiento de las discontinuidades.

Figura 5.6. Utilización del marmol en las escaleras del parque de Jorge Chávez.

ANEXO C CÁLCULO DE PESO ESPECÍFICO

DETERMINACIÓN DEL PESO ESPECÍFICO DE LA CALIZA MARMOLIZADA

SOLICITA TESIS	:	SALDAÑA ABANTO LUIS RODRIGO CARACTERIZACIÓN GEOMECÁNICA DEL MACIZOS ROCOSO PARA LA DETERMINACIÓN DEL METODO DE EXPLOTACIÓN DE MARMOL
		EN EL DISTRITO DE JORGE CHAVEZ. CELENDIN.
PROCEDENCIA	:	DISTRITO DE JORGE CHAVEZ
UNIDAD	:	FORMACIÓN CAJAMARCA
EDAD	2	CRETÁCICO SUPERIOR
FECHA	-	10/07/2024

I. PROCEDIMIENTOS

A solicitud del Sr. Saldaña Abanto Luis Rodríguez, se realizaron las pruebas de laboratorio de 05 muestras de calizas marmolizadas con la finalidad de conocer su peso específico. La determinación del PE de cada una de las muestras de roca se realizó mediante el siguiente procedimiento:

- Se prepara un trozo de roca caliza con la ayuda del martillo del geólogo, teniendo en cuenta que los fragmentos así obtenidos puedan entrar en el vaso de prueba.
- 2 Se procede a pesar la muestra de caliza en la balanza.
- 3 Se llena el vaso de vidrio con agua hasta la mitad aproximadamente.
- 4 Se mide y se registra el volumen del agua en el vaso.
- 5 Luego se introduce el fragmento de roca dentro del vaso con agua.
- Se mide y se registra el volumen del agua.

Todos estos procedimientos se realizaron para las 05 muestras de calizas.

Mosqueira Estro ABORATORIO

II. DATOS OBTENIDOS

Peso de la masa de roca caliza = 225.02gr

Volumen de H2O sin muestra de roca= 250.00 cm3

Volumen de H2O con muestra de roca= 336.04cm3

III. APLICACIÓN DE LAS FÓRMULAS

VH20desp = (VolH20 + Frag.Roca) - (VolH20 sin Frag.Roca)

VH20 desp. = Volumen de agua desplazado

Vol H20= Volumen de H2O

Frag. Roca= Fragmento de roca

IV. REEMPLAZANDO DATOS

Vf = 336.04cm³ - 225.00cm³ = 80.04cm³ (diferencia de volúmenes)

V. DETERMINACIÓN DEL PESO ESPECÍFICO DE LABORATORIO

 $PE = rac{Peso \ de \ la \ masa \ de \ roca \ (gr)}{Diferencia \ de \ volumenes \ (cm3)}$

 $PE=\frac{225.02gr}{80.04cm3}$

PE = 2.62 gr/cm3

In Reland osqueira Estrave ABORATORIO CIP 27664

VI. CALCULO REALIZADOS DE LAS 05 MUESTRAS

Muestra SA- 01		
Peso de la masa de roca arenisca (gr)	225.02	
Volumen de H2O sin muestra de roca (cm3)	250.00	
Volumen de H2O con muestra de roca (cm3)	336.04	
Diferencia de volúmenes (cm3)	86.04	
Peso específico (gr/cm3)	2.62	

Muestra SA- 02		
Peso de la masa de roca arenisca (gr)	221.33	
Volumen de H2O sin muestra de roca (cm3)	250.00	
Volumen de H2O con muestra de roca (cm3)	335.39	
Diferencia de volúmenes (cm3)	85.39	
Peso específico (gr/cm3)	2.59	

Muestra SA- 03		
Peso de la masa de roca arenisca (gr)	219.55	
Volumen de H2O sin muestra de roca (cm3)	250.00	
Volumen de H2O con muestra de roca (cm3)	334.49	
Diferencia de volúmenes (cm3)	84.49	
Peso específico (gr/cm3)	2.60	

Muestra SA- 04		
Peso de la masa de roca arenisca (gr)	211.98	
Volumen de H2O sin muestra de roca (cm3)	250.00	
Volumen de H2O con muestra de roca (cm3)	332.39	
Diferencia de volúmenes (cm3)	82.39	
Peso específico (gr/cm3)	2.57	

Muestra SA- 05		
Peso de la masa de roca arenisca (gr)	218.12	
Volumen de H2O sin muestra de roca (cm3)	250.00	
Volumen de H2O con muestra de roca (cm3)	334.12	
Diferencia de volúmenes (cm3)	84.12	
Peso específico (gr/cm3)	2.59	

RESULTADO DEL PESO ESPECÍFICO DE LAS 05 MUESTRAS

MUESTRA	PESO ESPECIFICO (gr/cm3)
SA- 01	2.62
SA- 02	2.59
SA- 03	260
SA-04	2.57
SA- 05	2.59

NOMAS UTILIZADAS: ASTM C25-96 NTP 334.131- 2008

URRenard. Hugo Mosqueira Estravei DE CABORATORIO CIP 27664

ANEXO D ANÁLISIS QUÍMICO

ANÁLISIS FISICOQUÍMICO DE MARMOL

SOLICITA	:	SALDAÑA ABANTO LUIS RODRIGO
TESIS	:	CARACTERIZACIÓN GEOMECÁNICA DEL MACIZOS ROCOSO PARA LA
		DETERMINACIÓN DEL METODO DE EXPLOTACIÓN DE MARMOL EN EL
		DISTRITO DE JORGE CHAVEZ. CELENDÍN
PROCEDENCIA	:	NE DEL DISTRITO JORGE CHAVEZ
COORDENADAS	:	E822300, N9232000
MUESTRA	:	SA-02
UNIDAD	:	FORMACIÓN CAJAMARCA
EDAD	-	CRETÁCICO SUPERIOR
FECHA	-	10/06/2024

III. PORCENTAJE (%) DE CO₃ Ca

MUESTRA	% de CO _s Ca
SA- 02	94.45

IV. ANÁLISIS QUÍMICO

DETERMINACIÓN QUÍMICA	RESULTADOS (%)
%CaO	53.33
%Fe ₂ O ₈	0.046
%MgO	1.29
%SiO ₂	0.70
%Al ₂ O ₈	0.25
% K ₂ O	0.01
Na ₂ O	0.01
% (CO ₂ +H ₂ O) Perdidas	44.34

NOMAS UTILIZADAS: ASTM C25-96 NTP 334.131- 2008

NSA Hugo Mosqueira Estrave JEFE DE LABORATORIO CIP 27664

ANÁLISIS FISICOQUÍMICO DE MARMOL

SOLICITA	:	SALDAÑA ABANTO LUIS RODRIGO
TESIS	:	CARACTERIZACIÓN GEOMECÁNICA DEL MACIZOS ROCOSO PARA LA
		DETERMINACIÓN DEL METODO DE EXPLOTACIÓN DE MARMOL EN EL
		DISTRITO DE JORGE CHAVEZ. CELENDIN
PROCEDENCIA	:	NE DEL DISTRITO JORGE CHAVEZ
COORDENADAS	:	E822700, N9231750
MUESTRA	:	SA-05
UNIDAD	:	FORMACIÓN CAJAMARCA
EDAD	-	CRETÁCICO SUPERIOR
FECHA	:	10/06/2024

I. PORCENTAJE (%) DE CO3 Ca

MUESTRA	% de CO _s Ca
SA- 05	96.33
II. ANÁLISIS QUÍMICO	
DETERMINACIÓN QUÍMICA	RESULTADOS (%)
%CaO	53.73
%Fe ₂ O ₈	0.065
%MgO	1.29
%SiO ₂	0.67
%Al ₂ O ₃	0.23
% K ₂ O	0.08
Na₂O	0.015
% (CO ₂ +H ₂ O) Perdidas	43.96

NOMAS UTILIZADAS: ASTM C25-96 NTP 334.131- 2008

OSCILLABORATORIO CIP 27564

KPINI: 050826 CELULAK576026550 TELEFUNU:554755

ANÁLISIS FISICOQUÍMICO DE MARMOL SOLICITA : SALDAÑA ABANTO LUIS RODRIGO : CARACTERIZACIÓN GEOMECÁNICA DEL MACIZOS ROCOSO PARA LA TESIS DETERMINACIÓN DEL METODO DE EXPLOTACIÓN DE MARMOL EN EL DISTRITO DE JORGE CHAVEZ. CELENDÍN PROCEDENCIA : NE DEL DISTRITO JORGE CHAVEZ COORDENADAS : E822750, N9231900 MUESTRA SA-03 . FORMACIÓN CAJAMARCA UNIDAD : EDAD CRETÁCICO SUPERIOR FECHA 10/06/2024

V. PORCENTAJE (%) DE CO₈Ca

MUESTRA	% de CO _s Ca
SA- 03	94.97

VI. ANÁLISIS QUÍMICO

	•
DETERMINACIÓN QUÍMICA	RESULTADOS (%)
%CaO	53.80
%Fe ₂ O ₈	0.050
%MgO	1.33
%SiO ₂	0.68
%Al ₂ O ₈	0.29
% K₂O	0.06
Na ₂ O	0.05
%(CO ₂ +H ₂ O)Perdidas	43.79

NOMAS UTILIZADAS: ASTM C25-96 NTP 334.131- 2008

(UNRELEVAL) MSC Hugo Mosqueira Estra CIP 27664

ANÁLISIS FISICOQUÍMICO DE MARMOL

SOLICITA :	SALDAÑA ABANTO LUIS RODRIGO
TESIS :	CARACTERIZACIÓN GEOMECÁNICA DEL MACIZOS ROCOSO PARA LA
	DETERMINACIÓN DEL METODO DE EXPLOTACIÓN DE MARMOL EN EL
	DISTRITO DE JORGE CHAVEZ. CELENDÍN
PROCEDENCIA	NE DEL DISTRITO JORGE CHAVEZ
COORDENADAS :	E822450, N9231800
MUESTRA :	SA-04
UNIDAD :	FORMACIÓN CAJAMARCA
EDAD :	CRETÁCICO SUPERIOR
FECHA	10/06/2024

VII. PORCENTAJE (%) DE CO₃ Ca

MUESTRA	% de CO _s Ca
SA- 04	94.88

VIII. ANÁLISIS QUÍMICO	
DETERMINACIÓN QUÍMICA	RESULTADOS (%)
%CaO	52.99
%Fe ₂ O ₈	0.060
%MgO	1.36
%SiO ₂	0.68
%AI ₂ O ₈	0.26
% K ₂ O	0.07
Na ₂ O	0.03
%(CO2+H2O)Perdidas	44.66

NOMAS UTILIZADAS: ASTM C25-96 NTP 334.131- 2008

