UNIVERSIDAD NACIONAL DE CAJAMARCA FACULTAD DE INGENIERÍA ESCUELA PROFESIONAL DE INGENIERÍA DE MINAS

TESIS

EVALUACIÓN GEOMECÁNICA DE LOS TALUDES DE LA CONCESIÓN PEDREGAL EN EL DISTRITO Y PROVINCIA DE HUALGAYOC.

PARA OPTAR EL TÍTULO PROFESIONAL DE: INGENIERO DE MINAS

AUTOR: Bach. Ramos Vásquez Jorge Luis

ASESOR: M. Cs. Gonzales Yana Roberto Severino

> Cajamarca – Perú 2024

CONSTANCIA DE INFORME DE ORIGINALIDAD

FACULTAD DE INGENIERÍA –

- Investigador: RAMOS VÁSQUEZ JORGE LUIS DNI: 71650300
 Escuela Profesional: ESCUELA PROFESIONAL INGENIERÍA DE MINAS
- Asesor: M. Cs. Ing. Gonzales Yana Roberto Severino Facultad: Ingeniería
- 3. Grado académico o título profesional
 - □Bachiller ■Título profesional □Segunda especialidad
 - □Maestro □Doctor
- 4. Tipo de Investigación:
 - Tesis 🗆 Trabajo de investigación 🗆 Trabajo de suficiencia profesional
 - Trabajo académico
- 5. Título de Trabajo de Investigación:

EVALUACIÓN GEOMECÁNICA DE LOS TALUDES DE LA CONCESIÓN PEDREGAL EN EL DISTRITO Y PROVINCIA DE HUALGAYOC

Fecha de evaluación: 29/11/2024

- 6. Software antiplagio:
- TURNITIN 🗆 UR

URKUND (OURIGINAL) (*)

- 7. Porcentaje de Informe de Similitud: 17%
- 8. Código Documento: Oide:3117:410488683
- 9. Resultado de la Evaluación de Similitud:

APROBADO 🗆 PARA LEVANTAMIENTO DE OBSERVACIONES O DESAPROBADO

Pars	FIRMA DIGITAL	Firmado digitalmente por: BAZAN DIAZ Laura Sofia FAU 20148258601 soft Motivo: En señal de conformidad
FIRMA DEL ASESOR Roberto Severino Gonzales Yana	UNIDAD	DE INVESTIGACIÓN FI

* En caso se realizó la evaluación hasta setiembre de 2023

'Universidad Nacional de Cajamarca "Norte de la Universidad Peruana"

Fundada por Ley 14015 del 13 de Febrero de 1962 FACULTAD DE INGENIERÍA

Teléf. Nº 365976 Anexo Nº 1129-1130

ACTA DE SUSTENTACIÓN PÚBLICA DE TESIS.

TITULO : "EVALUACIÓN GEOMECÁNICA DE LOS TALUDES DE LA CONCESIÓN PEDREGAL EN EL DISTRITO Y PROVINCIA DE HUALGAYOC"

ASESOR : M.Cs. Ing. Roberto Severino Gonzales Yana.

En la ciudad de Cajamarca, dando cumplimiento a lo dispuesto por el Oficio Múltiple Nº 0788-2024-PUB-SA-FI-UNC, de fecha 12 de diciembre de 2024, de la Secretaría Académica de la Facultad de Ingeniería, a los **diez días del mes de enero de 2025**, siendo las nueve horas (09:00 a.m.) en el Auditorio de la Escuela Profesional de Ingeniería Geológica – Ambiente 4J - 210, de la Facultad de Ingeniería se reunieron los Señores Miembros del Jurado Evaluador:

Presidente	: Dr. Ing. Segundo Reinaldo Rodríguez Cruzado.
Vocal	: Dr. Ing. Crispin Zenón Quispe Mamani.
Secretario	: M.Cs. Ing. Victor Ausberto Arapa Vilca.

Para proceder a escuchar y evaluar la sustentación pública de la tesis titulada "EVALUACIÓN GEOMECÁNICA DE LOS TALUDES DE LA CONCESIÓN PEDREGAL EN EL DISTRITO Y PROVINCIA DE HUALGAYOC", presentado por el Bachiller en Ingeniería de Minas JORGE LUIS RAMOS VÁSQUEZ, asesorado por el M.Cs. Ing. Roberto Severino Gonzales Yana, para la obtención del Título Profesional

Los Señores Miembros del Jurado replicaron al sustentante debatieron entre sí en forma libre y reservada y lo evaluaron de la siguiente manera:

EVALUACIÓN PRIVAD	A :	3	PTS.
EVALUACIÓN PÚBLIC	: A		PTS.
EVALUACIÓN FINAL			PTS

CATORCE (En letras)

En consecuencia, se lo declara <u>APAOR</u> con el calificativo de <u>CACURCE</u> acto seguido, el presidente del jurado hizo saber el resultado de la sustentación, levantándose la presente a las <u>10,10,00,00</u>, horas del mismo día, con lo cual se dio por terminado el acto, para constancia se firmó por quintuplicado.

Dr. Ing. Segundo Reinaldo Rodríguez Cruzado. Presidente

M.Cs. Ing. Víctor Ausberto Arapa Vilca. Secretario

Dr. Ing. Crispla Zenón Quispe Mamani. Vocal

M.Cs. Ing. Roberto Severino Gonzales Yana. Asesor

Av. Atahualpa Nº 1050

Universidad Nacional de Cajamarca

"Morte de la Universidad Peruana" Fundada por Ley 14015 del 13 de Febrero de 1962 FACULTAD DE INGENIERÍA Teléf. N° 365976 Anexo N° 1129-1130

EVALUACIÓN DE LA SUSTENTACIÓN PÚBLICA DE TESIS.

Bachiller en Ingeniería de Minas: JORGE LUIS RAMOS VÁSQUEZ.

The baseline and the second	PUNTAJE
RUBRO	Máximo/Calificación
2. DE LA SUSTENTACIÓN PÚBLICA	
2.1. Capacidad de sintesis	3
2.2. Dominio del tema	3
2.3. Consistencia de las alternativas presentadas	3
2.4. Precisión y seguridad en las respuestas	S
PUNTAJE TOTAL (MÁXIMO 12 PUNTOS)	11

f=f=7:

Dr. Ing. Segundo Reinaldo Rodríguez Cruzado. Presidente

M.Cs. Ing. Victor Ausberto Arapa Vilca. Secretario

0

Cajamarca, 10 de enero de 2025

Dr. Ing. Crispin Zenon Quispe Mamani. Vocal

M.Cs. Ing. Roberto Severino Gonzales Yana. Asesor

Av. Atahualpa Nº 1050

Universidad Nacional de Cajamarca

"Norte de la Universidad Peruana" Fundada por Ley 14015 del 13 de Febrero de 1962 FACULTAD DE INGENIERÍA Teléf. N° 365976 Anexo N° 1129-1130

EVALUACIÓN FINAL DE LA SUSTENTACIÓN DE TESIS.

Bachiller en Ingeniería de Minas: JORGE LUIS RAMOS VÁSQUEZ.

	RUBRO	PUNTAJE
A EVALUACIÓN DE LA SUSTENTACIÓN PRIVADA B EVALUACIÓN DE LA SUSTENTACIÓN PÚBLICA		3
		1/
E	VALUACIÓN FINAL	
EN NÚMEROS (A + B)	14
EN LETRAS (A	+В)	CATEREE
- Excelente	20 - 19	
- Muy Bueno	18 - 17	
- Bueno	16 - 14	BVEND
- Regular	13 a 11	1
- Desaprobado	10 a menos	

Cajamarca, 10 de enero de 2025

Dr. Ing. Segundo Reinaldo Rodríguez Cruzado. Presidente

M.Cs. Ing. Victor Ausberto Arapa Vilca. Secretario

0

Dr. Ing. Crispin Zenón Quispe Mamani. Vocal

M.Cs. Ing. Roberto Severino Gonzales Yana. Asesor

Av. Atahualpa Nº 1050

AGRADECIMIENTO

A mi Alma Máter la Universidad Nacional de Cajamarca, a mi querida facultad de Ingeniería de Minas que me formo académicamente, fue y es mi segundo hogar, sumo mi actividad cognitiva para desarrollarme profesionalmente.

A los docentes de la Escuela Académico Profesional de ingeniería de Minas, por sus ideas y consejos recibidos.

A mi asesor el M.Cs. Roberto Severino Gonzales Yana, por su orientación, dedicación y apoyo incondicional durante el desarrollo de la presente investigación.

DEDICATORIA

A Dios, por escribir la novela de mi vida, y guiarme en cada uno de mis pasos y siempre estar a mi lado y nunca dejarme caer, siempre ayudarme a seguir adelante ante todo obstáculo.

Dedico está presente investigación a mis padres, Celso y Aurea que me apoyaron toda la vida a siempre seguir mis sueños y mis objetivos académicos y laborales de manera incondicional, fue muy elemental sus conocimientos profesionales que me ayudaron a desarrollar con menos trabas a mi destino laboral.

A la mujer más fuerte del mundo a la que le agradezco por ser todo lo que soy y seré, el ejemplo, mi amiga y confidente que siempre me impulso a ser mejor, a no rendirme y todo por verme feliz, porque sin ella yo simplemente sería nada, mi madre

A mis hermanos y familiares por su apoyo y consejos de aliento cuando pasaba por momentos difíciles

ÍNDICE

Pág.

AGRADECIMIENTO	iii
DEDICATORIA	iv
LISTA DE ABREVIATURAS	xi
RESUMEN	vii
ABSTRACT	xiii

CAPÍTULO I INTRODUCCIÓN

INTRODUCCIÓN	. 1
--------------	-----

CAPÍTULO II MARCO TEÓRICO

2.1.	ANTECEDENTES TEÓRICOS DE LA INVESTIGACIÓN	3
2.1.1.	INTERNACIONALES	3
2.1.2.	NACIONALES	3
2.1.3.	LOCALES	4
2.2.	BASES TEÓRICAS	5
2.2.1.	MACISO ROCOSO	5
2.2.2.	CLASIFICACIÓN DE MACIZOS ROCOSOS	5
2.2.3.	ESTABILIDAD DE TALUDES	12
2.2.4.	ESTABILIDAD DE TALUDES FINITOS	13
2.2.5.	ROTURA EN ROCAS	14
2.3. CAPÍ	DEFINICIÓN DE TÉRMINOS BÁSICOS TULO III	19

MATRIALES Y MÉTODOS

	Pág.
3.1. UBICACIÓN DE LA INVESTIGACIÓN	21
3.1.1. GEOGRÁFICA	21
3.1.2. POLÍTICA	21
3.1.3. ACCESIBILIDAD	23
3.2. PROCEDIMIENTOS	24
3.2.1. PRIMERA ETAPA DE GABINETE	24
3.2.2. ETAPA DE CAMPO	24
3.2.3. SEGUNDA ETAPA DE GABINETE	24

3.3.	METODOLOGÍA	. 26
3.3.1. 3.3.2.	POBLACIÓN DE ESTUDIO	27 27
3.3.3.	UNIDAD DE ANÁLISIS 2	27
3.4.	IDENTIFICACIÓN DE VARIABLES 2	27
3.5.	TÉCNICAS 2	7
3.6.	INSTRUMENTOS Y EQUIPOS 2	9
3.7.	TEMPERATURA 2	9
3.8.	PRECIPITACIONES	0
3.9.	HIDROLOGÍA 3	81
3.10.	GEOMORFOLOGÍA 3	2
3.11.	GEOLOGÍA LOCAL	4
3.11.1	. Depósitos cuaternarios	34
3.11.2	2. Formación Cajamarca (Ks-ca)	34
3.12.	GEOMECÁNICA	. 35
3.12.1	. Estación Geomecánica 01	35
	Pa	ág.
3.12.2	2. Estación Geomecánica 02	42
3.12.3	3. Estación Geomecánica 03	48
3.12.4	l. Estación Geomecánica 04	54
3.12.5	5. Estación Geomecánica 05	60
3.12.6	6. Estación Geomecánica 06	66

CAPÍTULO IV ANÁLISIS Y DISCUSIÓN DE RESULTADOS

4.1.	CARTOGRAFIADO GEOLÓGICO – GEOTÉCNICO	72
4.2.	INESTABILIDAD DE TALUDES	
4.3.	ANÁLISIS DE DATOS	72
4.4.	CONTRASTACIÓN DE LA HIPÓTESIS	

CAPÍTULO V CONCLUSIONES Y RECOMENDACIONES

5.1.	CONCLUSIONES	76
5.2.	RECOMENDACIONES	76
REFER	ENCIAS BIBLIOGRÁFICAS	77
ANEXO)S	80

ÍNDICE DE TABLAS

Pág. Tab	la 1. Calidad de roca, según RQD ¡Error! Marcador no defini	do.
Tabla 2.	Clasificación Geomecánica RMR	10
Tabla 3.	Calidad de roca	.11
Tabla 4.	Coordenadas UTM	21
Tabla 5.	Ubicación política	21
Tabla 6.	Accesibilidad	23
Tabla 7.	Tipos de investigación	27
Tabla 8.	Operacionalización de las variables	28
Tabla 9.	Resumen de datos obtenidos	84

ÍNDICE DE FIGURAS

Figura 1. i	índice de resistencia geológica para rocas metamórficas foliadas	8
Figura 2. I	Falla en un talud	12
Figura 3.	Análisis de un talud finito. Método de Culmann	14
Figura 4.	Perfiles normalizados para el índice de rugosidad de una junta	16
Figura 5.	Condiciones para la ruptura plana	18
Figura 6.	Condiciones para la ruptura en cuña	. 19
Figura 7.	Ubicación de la zona de investigación	22

Figura 8	. Accesibilidad al centro poblado Apan alto	23
Figura 9	. Procedimiento de la investigación.	25
Figura 1	0. Formato de datos de campo	28
Figura 1	1. T° máxima y mínima promedio	30
Figura 1	2. Porcentaje de precipitación	31
Figura 1	3. Red hidrológica	32
Figura 1	4. Geomorfología de la zona de investigación	33
Figura 1	5. Valoración GSI igual a 67 de la EG-01	37
Figura 1	6. Análisis en Rocdata de la EG-01 Pág.	. 38
Figura 1	7. Análisis de polos en software Dips de la EG-01	. 39
Figura 1	8. Análisis cinemático por rotura planar igual a 54.9% en EG-01	40
Figura 1	9. Análisis cinemático por rotura en cuña igual a 17.97% EG-01	. 41
Figura 2	0. Valoración GSI igual a 70 de la EG-02	43
Figura 2	1. Análisis en Rocdata de la EG-02	44
Figura 2	2. Análisis de polos en software Dips de la EG-02	. 45
Figura 2	3. Análisis cinemático por rotura planar igual a 1.96% en EG-02	46
Figura 2	4. Análisis cinemático por rotura en cuña igual a 2.28% de la EG-02.	47
Figura 2	5. Valoración GSI de la EG-03	49
Figura 2	6. Análisis en Rocdata de la EG-03	50
Figura 2	7. Análisis de polos en software Dips de la EG-03	. 51
Figura 2	8. Análisis cinemático por rotura planar igual a 0% en EG-03	52
Figura 2	9. Análisis cinemático por rotura en cuña igual a 0% de la EG-03	. 53
Figura 3	0. Valoración GSI de la EG-04	55
Figura 3	1. Análisis en Rocdata de la EG-04	56
Figura 3	2. Análisis en software Dips de la EG-4	57
Figura 3	3. Análisis cinemático por rotura planar igual a 22% en EG-04	58
Figura 3	4. Análisis cinemático por rotura en cuña igual a 21.59% EG-04	. 59
Figura 3	5. Valoración GSI de la EG-05	61
Figura 3	6. Análisis en Rocdata de la EG-05	62
Figura 3	7. Análisis de polos en software Dips de la EG-05	. 63
Figura 3	8. Análisis cinemático por rotura planar igual a 0% en EG-05	64
Figura 3	9. Análisis cinemático por rotura en cuña igual a 0% de la EG-05	. 65

Figura 40. Valoración GSI de la EG-06	67
Figura 41. Análisis en Rocdata de la EG-06	68
Figura 42. Análisis de polos en software Dips de la EG-06	. 69
Figura 43. Análisis cinemático por rotura planar igual a 0% en EG-06	. 70
Figura 44. Análisis cinemático por rotura en cuña igual a 0% de la EG-06	. 71
Figura 45. Valoración de RMR en las estaciones geomecánicas	. 73
Figura 46. Valoración GSI de las estaciones geomecánicas	73
Figura 47. Porcentaje de ocurrencia de rotura planar	. 74
Figura 48. Porcentaje de ocurrencia rotura en cuña	.74

ÍNDICE DE FOTOS

Foto	1. Dep	ósito	s coluvio-aluviales en la parte superior	34		
Foto	2. Estra	atos	de roca de caliza de la Formación Cajamarca	35		
Foto	3. Esta	ción	geomecánica 01, calizas de la Fm. Cajamarca	36		
Foto	4. Esta	ción	geomecánica 02, medición de la persistencia	42		
Foto	5. Esta	ción	geomecánica 03, estimación de la resistencia uniaxial	48		
Foto	o 6. Estación geomecánica 04, medición del espaciado					
Foto	oto 7. Estación geomecánica 05, midiendo dip y dip direction					
Foto	oto 8. Familia de discontinuidades en la estación geomecánica 06					
LIST	A DE AI	BRE	VIATURAS			
β		:	Ángulo de anisotropía			
С		:	Cohesión			
е		:	Relación de vacíos			
_						

- Ei : Módulo de deformación de la roca intacta
- Es : Esquistosidad
- φ : Ángulo de fricción
- FSi : Factor de seguridad
- g : Aceleración de la gravedad
- G : Gravedad específica
- Image: delta d
- □sat : Peso específico saturado

GM	:	<i>Silty gravel</i> (Grava limosa)
GSI	:	Geological strength index (Índice de resistencia geológica)
GW	:	Well-graded gravel (Grava bien graduada)
J1, J2, J3	:	Juntas principales
JCS	:	Resistencia a la compresión de la junta)
JRC	:	Coeficiente de rugosidad de la junta
Km	:	Kilómetro
М	:	metro
Мра	:	Megapascal
MR	:	Relación modular
PGA	:	Peak ground acceleration (Aceleración pico del terreno)
Prof.	:	Profundidad
RCS	:	Rock compressive strength (Resistencia a la compresión de la
roca)		
RQD	:	Rock quality designation (Designación de la calidad de la roca)
RMR	:	Rock mass rating
□c90	:	Resistencia a compresión uniaxial en $\beta = 90^{\circ}$
SMR	:	Slope mass rating
SUCS	:	Sistema Unificado de Clasificación de Suelos
SET	:	Conjunto o familia de juntas

RESUMEN

La concesión Pedregal se ubica en el centro poblado Apan Alto, distrito y provincia de Hualgayoc en el Departamento de Cajamarca, donde afloran rocas sedimentarias que pertenece a la formación Cajamarca. Considerando como objetivo principal evaluar la geomecánica de los taludes en la concesión Pedregal y como objetivos secundarios realizar el cartografiado geológicogeomecánico, calcular la inestabilidad de los taludes y elaborar los distintos mapas temáticos. El cartografiado geológico-geomecánico se realizó en seis estaciones (EG-01, EG-02, EG-03, EG-04, EG-05, EG-06), realizando el cálculo de RQD, GSI, RMR y probabilidad de rotura que están asociados al comportamiento del macizo rocoso. Los distintos parámetros geomecánicos del macizo rocoso resulta clave para un excelente estudio geomecánico. Donde se puede colegir que del cartografiado geológico geomecánico en la concesión Pedregal se obtuvo rocas de buena calidad con un valor RMR mayor a 70 en todas las estaciones geomecánicas, así mismo se calculó la inestabilidad de los taludes mediante análisis cinemático en el software Dips de las seis estaciones geomecánicas propuestas, donde se obtuvo dos estaciones geomecánicas (EG01 y EG-04) en estado crítico con probabilidad de falla para rotura planar y rotura en cuña, cuatro estaciones geomecánicas (EG-02, EG-03, EG-05 y EG-06) sin presencia de probabilidad de falla.

PALABRAS CLAVE: Análisis cinemático, discontinuidades, geomecánica, talud.

ABSTRACT

The Pedregal concession is located in the Apan Alto town center, district and province of Hualgayoc in the Department of Cajamarca, where sedimentary rocks that belong to the Cajamarca formation emerge. Considering as the main objective to evaluate the geomechanics of the slopes in the Pedregal concession and as secondary objectives to carry out the geological-geomechanical mapping, calculate the instability of the slopes and prepare the different thematic maps. The geological-geomechanical mapping was carried out at six stations (EG-01, EG-02, EG-03, EG-04, EG-05, EG-06), calculating RQD, GSI, RMR and probability of failure that They are associated with the behavior of the rock mass. The different geomechanical parameters of the rock mass are key to an excellent geomechanical study. Where it can be deduced that from the geomechanical geological mapping in the Pedregal concession, good quality rocks were obtained with an RMR value greater than 70 in all geomechanical stations, likewise the instability of the slopes was calculated through kinematic analysis in the Dips software of the six proposed geomechanical stations, where two geomechanical stations (EG-01 and EG-04) were obtained in critical state with probability of failure for planar breakage and wedge breakage, four stations geomechanical (EG-02, EG-03, EG-05 and EG-06) without the presence of probability of failure.

KEYWORDS: kinematic analysis, discontinuities, geomechanics, slope.

CAPÍTULO I INTRODUCCIÓN

La región Cajamarca es conocida por albergar yacimientos no metálicos, que contribuyen un representativo valor económico para su desarrollo; sin embargo, ha sido relevado a un segundo lugar debido a la producción y extracción de minerales metálicos como es el caso del oro, cobre, plata entre otros.

La provincia de Hualgayoc se la conoce por tener numerosos productores de cal, los cuales dinamizan la economía de la provincia, ya que son proveedores locales de la gran minería metálica que se realiza en la provincia de Hualgayoc. La Cantera Nube Blanca se encuentra en la concesión Pedregal se ubicada en el centro poblado de Apan Alto, distrito, provincia de Hualgayoc en la región de Cajamarca. Los taludes de la concesión Pedregal están emplazados en la Formación Cajamarca, los cuales se encuentran fracturados y meteorizados en bajo grado de intensidad, éstos están siendo afectados por precipitación, infiltración, sismicidad y discontinuidades quienes interactúan entre sí generando la inestabilidad de taludes. Por las razones mencionada nos realizamos la siguiente pregunta ¿Cuál es la evaluación geomecánica de taludes en la concesión Pedregal en el distrito y provincia de Hualgayoc?

El desarrollo de la tesis busca relacionar las variables litología, precipitaciones del mismo modo conocer la inestabilidad de los taludes, para obtener resultados a través del mapeo geológico - geomecánico que generen confiabilidad en la obtención de resultados. La información de la investigación será de gran importancia para la toma de decisiones del residente de la concesión Pedregal y un aporte a trabajos de ingeniería relacionados a las ciencias geológicas. Teniendo como limitación el presupuesto y uso de laboratorios de última generación.

La presente tesis tiene como objetivo general evaluar la geomecánica de los taludes en la concesión Pedregal y como objetivos específicos realizar el cartografiado geológico – geomecánico; Calcular la inestabilidad de los taludes y elaborar mapas temáticos.

1

El estudio se divide en cinco capítulos: En el capítulo I, se recrea el problema de investigación, relacionando con las variables a evaluar y los objetivos planteados. El capítulo II, se realiza la revisión bibliográfica comparando con diferentes estudios relacionado con la inestabilidad de taludes. En el capítulo III, se realiza la descripción del área de investigación aplicando: materiales y métodos a utilizar. El capítulo IV, se realiza la discusión y resultados obtenidos del mapeo geológico – geotécnico y aplicación de softwares geotécnicos y finalmente en el capítulo V se presenta las conclusiones y recomendaciones.

CAPÍTULO II MARCO TEÓRICO

2.1. ANTECEDENTES TEÓRICOS DE LA INVESTIGACIÓN 2.1.1. INTERNACIONALES

Gibson et al. (2020), analiza los efectos de diferentes configuraciones de taludes en el desempeño de los taludes en lo que se refiere a la estabilidad de las cuñas, el volumen de roca contenido de manera segura en las bermas y el desprendimiento de rocas en su estudio sobre Consideraciones en la optimización del banco geometrías de ángulo y ancho de berma para minas a tajo abierto.

Flores & Oporta (2019), en su tesis "Evaluación de estabilidad de talud en el Mirador de Catarina, Nicaragua" tiene como objetivo determinar la estabilidad de taludes naturales en el Mirador inducido por cargas estáticas y dinámicas, para ello utiliza el método de recolección de datos y posterior análisis de estabilidad mediante el Método de Equilibrio Límite. Concluye, el análisis estático y dinámico se plasman en los mapas elaborados, que muestran las zonas de amenazas: alta, media y baja.

2.1.2. NACIONALES

Sánchez (2021), presentó una Metodología para el cálculo de parámetros geométricos de diseño en el control de la estabilidad de taludes aplicando programación Visual Lisp y Visual Basic y logró realizar el cálculo del BFA, CBW e IRA mediante la aplicación de la nueva metodología utilizando lenguajes de programación, con lo cual se puede evaluar el grado final de los taludes y la aceptabilidad o confiabilidad del cumplimiento de los parámetros geométricos de diseño.

Cuyubamba (2019), en su tesis titulada Zonificación geomecánica para optimizar el diseño de malla de perforación y voladura - Unidad Minera Parcoy– Consorcio Minero Horizonte SA, llega a las siguientes conclusiones: 1). La zonificación geomecánica permite optimizar significativamente el diseño de la malla de perforación y voladura en la Unidad Minera Parcoy de Consorcio Minero Horizonte S.A. 2). En el trabajo de zonificación geomecánica, se determinó la clasificación de la calidad de la masa rocosa mediante el uso de la clasificación geomecánica de Bieniawski, del cual se obtuvo que la masa rocosa del Nivel 2265 tiene un índice RMR entre 31 a 40, esto significa que la roca es de calidad IV A, que se cataloga como roca mala.

2.1.3. LOCALES

Terán (2022), el estudio "Evaluación Geotécnica y Diseño del Tajo Esmael de la Empresa Cal Plus, Concesión Colquirrumi 49-C Distrito, Provincia de Hualgayoc - Cajamarca" donde describe, analiza, calcula e interpreta el comportamiento geotécnico – estructural, realiza el diseño de explotación. Calificando rocas de buena a muy buena calidad, una estimación de reservas para 15.56 años, donde concluye que los parámetros geomecánicos del diseño del tajo son: altura de banco = 2.0 m.; quebradura = 0.35 m. ancho rampa = 4.50 m.; ancho berma = 2.40 m.; ángulo de banco = 80° y ángulo final de banco = 33°.

Montoya (2018), realizó el expediente técnico del proyecto minero No Metálico – Agustín De La Cruz Vásquez. El proyecto minero se ubica en la concesión minera no metálica "CARMENCITA 2006 I", ubicado en el departamento de Cajamarca, provincia de Hualgayoc, distrito de Bambamarca y caserío Frutillo Alto. Que está formada por calizas gris azuladas de la Formación Cajamarca con ley de pureza de CaCO₃ del 92% definiendo parámetros geomecánicos de roca con buena calidad obteniendo un RQD = 75%, RMR = 70 de calidad buena y clase II.

2.2. BASES TEÓRICAS

2.2.1. MACISO ROCOSO

Es el conjunto de los bloques de matriz rocosa y de las discontinuidades de diverso tipo que afectan al medio rocoso. Mecánicamente los macizos rocosos son medios discontinuos, anisótropos y heterogéneos. (González de Vallejo, 2004).

2.2.2. CLASIFICACIÓN DE MACIZOS ROCOSOS

2.2.2.1. Clasificación de la Masa de Roca (RMR)

El sistema Rock Mass Rating (RMR) fue desarrollada por Bieniawski durante 1972 – 1973. Fue modificada a lo largo de los años, a medida que más historias de casos se hicieron disponibles, para cumplir con las normas y procedimientos internacionales.

Obtención de la data de campo:

Para determinar la calidad del macizo rocoso, éste se divide en dominios estructurales, es decir, en zonas limitadas por discontinuidades geológicas, dentro de las cuales la estructura es más o menos homogénea. Después que las regiones estructurales han sido identificadas, los parámetros de clasificación para cada región son determinados de medidas en el campo y registrados en una hoja de datos (Bieniawski 1989).

Estimación del Rock Mass Rating (RMR):

Los siguientes seis parámetros son usados para clasificar el macizo rocoso usando el sistema RMR: resistencia a compresión simple del material rocoso, rock quality designation (RQD), espaciado de las juntas, condición de las juntas, condición del agua subterránea y orientación de las discontinuidades.

Las calificaciones de los cinco primeros parámetros se suman para obtener lo que se denomina RMR básico. El RMR final, se calcula con la siguiente expresión:

*RMR*_{final} = *RMR*_{básico} + [*Ajuste para la orientación de las juntas*]

2.2.2.2. Índice de Resistencia Geológica (Geological Strength Index GSI) El GSI es el primer punto de entrada dentro del sistema de Hoek - Brown para estimar las propiedades mecánicas del macizo rocoso. La clasificación GSI se estima a partir del examen visual de dos de las características físico - mecánicas de un macizo rocoso: la macroestructura y la condición de las superficies de las discontinuidades.

La tabla GSI original introducida por Hoek (1994) ha tenido varias modificaciones, siendo la última versión la de Hoek, Marinos y Benissi (1998). Según Truzman (2000), la tabla GSI no se adaptaba bien a las rocas metamórficas observadas en los túneles en varios proyectos ferroviarios en Venezuela; por esta razón, desarrolló una nueva tabla GSI con modificaciones menores (ver figura 2.1), que incluyen afloramientos con diferentes porcentajes de foliados y no foliados. En 2007, el autor realizó una modificación adicional para incluir a los macizos rocosos metamórficos no foliados.

2.2.2.3. Clasificación del Macizo en Taludes (Slope Mass Rating SMR)

Para evaluar la estabilidad de taludes en un macizo rocoso, Romana (1985, 1993, 1995) propuso un sistema de clasificación denominado Slope Mass Rating (SMR). El índice geomecánico SMR se calcula sumando cuatro factores de corrección al RMR básico (ver Tabla 2.3). Se obtiene a través de la siguiente expresión:

 $SMR = RMR_{basico} + (F_1 x F_2 x F_3) + F_4$

Donde:

 $RMR_{básico}$ = es evaluado de acuerdo con Bieniawski (1989) mediante la suma de la calificación de cinco parámetros (Ver Sección 2.2.2.1).

 F_1 , F_2 y F_3 = son factores de ajuste relacionados a la orientación de las juntas con respecto a la orientación del talud.

 F_4 = es el factor de corrección por el método de excavación.

Factores de ajuste del SMR

El cálculo de los factores de ajuste del SMR se presentan en la Tabla 2.2. Para facilitar el cómputo de estos factores, Riquelme *et al.* (2014) desarrollaron la herramienta SMRTool para la aplicación de la clasificación geomecánica Slope Mass Rating. Ésta permite calcular los factores de ajuste F1, F2 y F3 de los vectores "dip" del talud y la discontinuidad (o la línea de intersección de planos, en el caso de la cuña). Además, calcula automáticamente los ángulos auxiliares A, B y C, así como el tipo de falla (cuña, planar o vuelco). Finalmente, presenta la clasificación SMR indicando su descripción, estabilidad, modos de falla y sistema de sostenimiento recomendado por Romana (1985).

Figura 1. índice de resistencia geológica para rocas metamórficas foliadas.

Fuente: Truzman (2000)

2.2.2.4. Índice de calidad de la roca (RQD)

El geólogo norteamericano D. Deere, que desarrollaba un trabajo profesional en el ámbito de la mecánica de rocas, postulo que la calidad estructural de un macizo rocoso puede ser estimada a partir de la información dada por la recuperación de testigos intactos.

Sobre esta base propone el índice cuantitativo RQD, el cual se define como el porcentaje de testigos recuperables con una longitud mayor o igual a 10cm (Gavilanes 2004).

 $RQD = \frac{\sum Longuitud \ total \ de \ testigos \geq 10 cm}{Longuitud \ Total} * 100$

RQD para recuperación de testigos.

El RQD, también puede ser calculado usando la siguiente expresión matemática: $RQD = 100e_{-(0.1\lambda)(0.1\lambda+1)}$ RQD para macizos rocosos.

Donde:

 λ° de discontinuidades $\lambda =$ ______ m Determinación Lamda.

Basándose en los rangos de los valores del RQD, el macizo rocoso puede ser caracterizado según la valoración siguiente:

i ue	Toca, segun rod	
	RQD (%)	Calidad de roca
	100 - 90	Muy buena
	90 - 75	Buena
	75 - 50	Mediana
	50 - 25	Mala
	25 - 0	Muy mala

Tabla 1	Calidad	do	roco	cogún	
	Calldad	ue	roca,	segun	RQD

2.2.2.5. Clasificación Geomecánica de Bieniawski (RMR 89)

Desarrollada por Bieniawski en 1973, con actualizaciones en 1979 y 1989, constituye un sistema en la clasificación de los macizos rocosos que permite a su vez relacionar los índices de calidad con parámetros geotécnicos del macizo, de excavación y de sostenimiento en túneles (González de Vallejos 2004).

El RMR se calcula a través de los siguientes parámetros, donde a cada uno se le da un respectiva una puntuación y luego se aplica la suma de valores.

- 1. Resistencia compresiva uniaxial del macizo rocoso (σc).
- Designación de calidad de roca (RQD) 3. Espaciamiento de las discontinuidades.
- 4. Condición de las discontinuidades.
- 5. Condición de agua subterránea.
- 6. Orientación de las discontinuidades.

Siendo así que el valor del RMR se calcula de siguiente manera, a través de esta fórmula:

$$RMR = 1 + 2 + 3 + 4 + 5 + 6$$

En la presente investigación se ha considerado los cinco primeros parámetros mencionados con anterioridad y calcularemos el RMR de la siguiente forma:

$$RMR = 1 + 2 + 3 + 4 + 5$$

El valor cuantitativo que se le dan a cada parámetro está expuesto en el cuadro siguiente:

Tabla 2 Clasificación Geomecánica RMR

	PARÁMET CLASIFICA	ROS DE ACIÓN			RANGO D	e valores					
	Resistencia	Ensayo de carga puntual	>10MPa	10 - 4MPa	4 - 2MPa	2 - 1MPa	Compre Simple(I	sión Mpa)			
1	de la roca intacta	Compresión simple	>250MPa	.50 - .00MP	100 - a 50MPa	50 - 25MPa	25 - 5MPa	5 - 1Mpa	<1MPa		
	Ρι	Intuación	15	12	7	4	2	1	0		
2	RQD		90 - 100%	75 - 90%	50 - 75%	25 - 50%		<25%			
	Ρι	Intuación	20	17	13	8		3			
3	Espaciado discontinu	de las idades	>2m	0.6 - 2m	0.2 - 0.6m	6 - 20cm		<6cm			
	Ρι	Intuación	20	15	10	8		5			
	Ides	Longuitud de la discontinuidad	< 1m	1 - 3m	3 - 10m	10 - 20m		>20m			
	nuida	Puntuación	6	4	2	1		0			
	disconti	Abertura	Nada	< 0.1mm	0.1 - 1.0mm	1 - 5mm		>5mm			
	e las	Puntuación	6	5	3	1		0			
4	Estado de	Rugosidad	Muy rugosa	Rugosa	Ligerame nte	Ondulada		Suave			
4	_	Puntuación	6	5	3	1		0			
		Relleno	Ninguno	Relleno Duro	Relleno Duro	Relleno Blando < 5mm	Relle	eno Blar >5mm	ndo		
		Puntuación	6	4	2	2		0			
				Alteración	Inalterada	L. Alterada	M. Alterada	Muy alterada	Des	conpue	sta
		Puntuación	6	5	3	1		0			
-	Flujo de	Relación: Presión de agua/Tensión principal mayor	0	0 - 0.1	0.1 - 0.2	0.2 - 0.5		> 0.5			
5	agua	Condiciones generales	Seco	L. Humedo	Húmedo	Goteando	Agu	a fluyer	ido		
	Ρι	Intuación	15	10	7	4		0			

Tabla 3. Calidad de roca.

RMR (%)	Calidad de roca
100 - 81	Muy buena
81 - 61	Buena
61 - 41	Mediana
40 - 20	Mala
19 - 0	Muy mala

2.2.3. ESTABILIDAD DE TALUDES

2.2.3.1. TALUD

A una superficie de suelo expuesto que se sitúa en un ángulo con la horizontal se le llama talud sin restricciones. La pendiente puede ser natural o construida. Si la superficie del suelo no es horizontal, un componente de la gravedad hará que el suelo se mueva hacia abajo, como se muestra en la figura siguiente. Si la pendiente es lo suficientemente grande, puede ocurrir falla de la pendiente, es decir, la masa de suelo en la zona *abcdea* puede deslizarse hacia abajo. La fuerza motriz supera la resistencia del suelo al corte a lo largo de la superficie de ruptura (Braja 2015).

Figura 2. Falla en un talud

En la figura 2, se define una superficie de falla curva, a lo largo de la cual ocurre el movimiento del talud. Esta superficie forma una traza con el plano del papel que puede asimilarse, por facilidad y sin mayor error a una circunferencia, aunque pueden existir formas algo diferentes, en la que por lo general influye la secuencia geológica local, el perfil estratigráfico y la naturaleza de los materiales. Estas fallas son llamadas de rotación.

2.2.3.2. Factor de Seguridad (FS)

Analizar la estabilidad de taludes es determinar el factor de seguridad. En general, el factor de seguridad se define como.

 $FSs = ___$ \Box_d Factor de seguridad.

Donde:

 FS_{s} = factor de seguridad con respecto a la resistencia \Box_{f} = resistencia media del suelo al corte \Box_{d} = esfuerzo cortante promedio a lolargo delasuperficie de falla

Cuando FS es igual a 1.0, el talud está en un estado de fallo inminente. En general, un valor de 1.5 para el factor de seguridad con respecto a la resistencia es aceptable para el diseño de un talud estable Braja (2015).

2.2.4. ESTABILIDAD DE TALUDES FINITOS

Cuando el valor de Hcr se aproxima a la altura del talud, éste generalmente se considerará finito. Cuando se analiza la estabilidad de un talud definido en un suelo homogéneo, por simplicidad, tenemos que hacer una suposición acerca de la forma general de la superficie de falla potencial. Aunque existe una considerable evidencia de que las fallas de los taludes suelen aparecer las superficies de falla curvas, Culmann (1875) aproxima la superficie de falla potencial como un avión. El factor de seguridad, el FS, calculado mediante la aproximación de Culmann da muy buenos resultados sólo para laderas casi verticales. Después de una extensa investigación de fallas de pendientes en la década de 1920, una comisión geotécnica sueca recomienda que la superficie real de deslizamiento se puede aproximar a ser circularmente cilíndrica (Braja 2015).

Figura 3: Análisis de un talud finito. Método de Culmann.

Donde el valor critico viene representado por la siguiente ecuación.

$$c_{d'} = \Box H \Box \Box 1 - \underline{sen} \cos \Box \Box (\cos \Box \Box - \underline{d'}_{d}) \Box \Box \Box$$

4 🛛

La altura máxima del talud para el que se produce el equilibrio crítico se puede obtener mediante la sustitución de $c_{d'} = c y \square \square c_d = c$, por lo tanto.

 $\frac{4c' \square sen \square \square cos' \square}{H_{cr} = \square \square \square \square - cos(\square \square - r) \square \square}$

2.2.5. ROTURA EN ROCAS

Los diferentes tipos de rupturas están condicionados por el grado de fracturación del macizo rocoso y por la orientación y distribución de las discontinuidades con respecto al talud, quedando la estabilidad definida por los parámetros resistentes de las discontinuidades y de la matriz rocosa. Como se presentan en los macizos duros o resistentes, las discontinuidades determinan la situación de los planos de ruptura.

Presentándose los modelos de ruptura más frecuentes son ruptura: plana y en cuña Pozo (2015).

2.2.5.1. Criterio de rotura de Juntas de Barton

La naturaleza las discontinuidades son comúnmente rugosas, siendo además su rugosidad muy irregular. Barton inicialmente en 1973 y sus colaboradores a lo largo de los años 1970 a 1990 analizaron en detalle el comportamiento resistente de pico de juntas rugosas naturales sin relleno y propusieron que la ecuación que describe dicho comportamiento se podía escribir de la forma:

 $\tau = \sigma n. tg \left[\phi b + JRC. log 10 (JCS\sigma n) \right]$

Donde:

JRC: Coeficiente de rugosidad de la junta.

JCS: Resistencia a la compresión simple de los labios de la discontinuidad.

El ángulo de fricción básico, $\emptyset b$, se utiliza en el caso de que la superficie no esté meteorizada ni húmeda: si esto no ocurre así, habrá que sustituir $\emptyset b$ por $\emptyset r$ que es el ángulo de fricción residual y que se puede calcular según proponen Barton y Choubey (1977) mediante la expresión:

 $\phi r = (\phi b - 20^\circ) + 20. (n/R)$

Donde r es el rebote del martillo de Schmidt o esclerómetro en superficies húmedas y meteorizadas, tal y como se suelen encontrar normalmente en campo, y R es el rebote del martillo de Schmidt en superficies lisas no alteradas de la misma roca. El ángulo básico de fricción está tabulado para distintos tipos de rocas y suele variar de entre 25° a 30° para rocas sedimentarias a entre 30 y 35° para rocas metamórficas e ígneas. También se puede obtener mediante ensayos de inclinación con testigos o "tilt tests", y con ensayos de corte directo en laboratorio sobre superficies de roca sanas, lisas y secas.

El índice de rugosidad de la junta o JRC se puede obtener de una serie de perfiles normalizados que propusieron Barton y Choubey (1977) y que se presentan en la Figura 4.

Fuente: Ramírez y Alejano (2004)

Más tarde Barton y Bandis (1982) publicó un método alternativo para estimar el índice de rugosidad de una junta, JRC, a partir de medidas de amplitud de las asperezas (para lo cual resulta adecuado utilizar el denominado peine de Barton) y de la longitud de la junta; con estos datos y entrando en el ábaco de la Figura 2.4. se obtendrá el valor de JRC. Este ábaco se puede utilizar en conjunto con el peine de Barton que permite ver la rugosidad para hasta 30 cm. de discontinuidad. Algún tiempo más tarde Barton (1987) publicó una tabla que relaciona el índice Jr, que como se verá más adelante se utiliza en su sistema de clasificación geomecánica de índice Q, con el valor de JRC.

Los ensayos de inclinación se toman dos bloques de roca asociados a los labios de una discontinuidad y se van inclinando lentamente hasta que el bloque superior desliza sobre el inferior. Esto ocurrirá para un determinado ángulo de inclinación al que denominaremos " \propto ". El valor del *JRC* se puede estimar a partir de este valor mediante la siguiente expresión:

$$JRC = (\propto -\phi) / log 10 (JCS/\sigma n)$$

Este último procedimiento suele dar lugar a valores de *JRC* diferentes de los obtenidos mediante los procedimientos indicados anteriormente, lo que pone de manifiesto que la definición de un índice de rugosidad para las discontinuidades es más difícil de lo que parece.

2.2.5.2. Rotura Planar

Se entiende por ruptura planar, como aquella en el que el deslizamiento se produce a través de una única superficie plana. Siendo la más sencilla de las formas de ruptura posibles se produce cuando existe una fracturación dominante en la roca y convenientemente orientada respecto al talud.

La representación semiesférica en la red de Schmidt de esta condición se observa en la Figura 2.5, se prevé el deslizamiento cuando el rumbo de la familia de discontinuidades es similar al del talud y su buzamiento menor que este.

Fuente: González de Vallejo (2002)

2.2.5.3. Rotura en Cuña

Corresponde al deslizamiento de un bloque en forma de cuña, formado por dos planos de discontinuidad, a favor de su línea de intersección. Para que se produzca este tipo de ruptura, los dos planos deben aflorar en la superficie del talud, y deben cumplir iguales condiciones que para la ruptura planar, siendo el buzamiento la línea de intersección; suele presentarse en macizos con varias familias de discontinuidades, cuya orientación, espaciado y continuidad determinan la forma y volumen de la cuña.

Figura 6 Condiciones para la ruptura en cuña Fuente: González de Vallejo (2002).

2.3. DEFINICIÓN DE TÉRMINOS BÁSICOS

Ángulo de fricción: es el ángulo en el que un cuerpo que descansa sobre una superficie inclinada superará la resistencia de fricción y comenzará a deslizarse (Kliche, 1999).

Anisotropía: significa tener diferentes propiedades en diferentes direcciones en un lugar determinado (Hudson y Harrison, 1997).

Cohesión: es la fuerza de unión (fuerza de atracción electroquímica) que existe en el punto de contacto entre las partículas minerales (IGME, 1987).

Comportamiento del macizo rocoso: forma de actuar de los materiales rocosos ante la actuación de fuerzas internas o externas que se ejercen sobre ellos (González de Vallejo, 2004).

Deslizamiento: los deslizamientos ("Landslides") consisten en "movimientos de masas de roca, residuos o tierra, hacia abajo de un talud". (Suarez, 2009).

Discontinuidad: una característica estructural que separa los bloques de roca intactos dentro de una masa rocosa. Convenientemente se empleará este

término para referirse indistintamente a diaclasas, fallas, foliaciones y estratificaciones (Kliche, 1999).

Estabilidad: la resistencia de una estructura o talud a la falla por deslizamiento o colapso en condiciones normales para las cuales fue diseñado (Kliche, 1999).

Factor de seguridad (FSi): es una medida determinística de la relación entre las fuerzas de resistencia (capacidad) y las fuerzas actuantes (demanda) del sistema en su entorno considerado (Read and Stacey, 2009). Donde las fuerzas de resistencia del talud son mayores que las fuerzas actuantes, el factor de seguridad es mayor que la unidad y el talud es estable; caso contrario, es inestable (Kliche, 1999).

Macizo rocoso: la roca in situ compuesta por la matriz rocosa y las discontinuidades estructurales (Kliche, 1999).

Talud: cualquier superficie inclinada cortada en material natural, o el grado de inclinación con respecto a la horizontal (Kliche, 1999).

CAPÍTULO III MATERIALES Y METODOS

3.1. UBICACIÓN DE LA INVESTIGACIÓN

3.1.1. GEOGRÁFICA

De acuerdo al sistema de coordenadas geográficas en el sistema UTM (Universal Transversal Mercator). DATUM WGS-84, Zona 17S, la ubicación de la zona de investigación está dada por las siguientes coordenadas UTM. Ver Tabla N° 4. Tabla 4. Coordenadas UTM

N°	Longitud	Latitud
1	769300	9255700
2	769300	9255300
3	768700	9255300
4	768700	9255700

3.1.2. POLÍTICA

Políticamente el área de investigación se ubica en la región de Cajamarca provincia, distrito de Hualgayoc y centro poblado de Apan Alto, ubicado al NE de la ciudad de Hualgayoc. Ver figura N° 7

Tabla 5. Ubicación política

REGIÓN	CAJAMARCA
PROVINCIA	HUALGAYOC
DISTRITO	HUALHGAYOC
CENTRO POBLADO	APAN ALTO

Figura 7. Ubicación de la zona de investigación. **3.1.3. ACCESIBILIDAD**

Para acceder a la zona de investigación se toma como punto de partida la Plaza de

Armas de Cajamarca, teniendo 1 vía de acceso. (ver figura N°8)

Figura 8 Accesibilidad al centro poblado Apan alto.

La única opción es ir por la carretera que va a Bambamarca, que tiene una distancia de 98.9 km tardando un tiempo de 2 horas 31 minutos. Ver Tabla N° 6

	o o o i o i i i i i i i i i i i i i i i			
RUTAS	TRAMO	DITANCIA (Km)	TIEMPO (h.)	TIPO DE VÍA
1	Cajamarca - Hualgayoc	87.9	2h 11m	Asfaltada
2	Hualgayoc – Apan Alto	11.7	0h 20m	Asfaltada

Tabla (6. Acces	ibilidad
---------	----------	----------

3.2. PROCEDIMIENTOS

Los procedimientos de adquisición, tratado e interpretación de la información hechas a partir de técnicas, herramientas y criterios se encuentran comprendido en tres etapas o fases de trabajo de campo y gabinete los cuales se detallan en los siguientes ítems.

3.2.1. PRIMERA ETAPA DE GABINETE

Se realizó la recopilación bibliográfica que consistió en la búsqueda inicial, revisión y análisis de estudios previamente hechos en la zona de tesis.

3.2.2. ETAPA DE CAMPO

Se realizará un reconocimiento general del área de investigación, para identificar la geología, estructuras geológicas como fallas y pliegues, análisis macroscópico de muestras de mano.

3.2.3. SEGUNDA ETAPA DE GABINETE

Para esta etapa se validará los datos obtenidos en la primera etapa de gabinete comprobados en la etapa de campo para la elaboración de planos temáticos, redacción de conclusiones, elaboración de tablas dinámicas y finalmente la redacción de la tesis.

Figura 9. Procedimiento de la investigación.

3.3. METODOLOGÍA

La presente investigación según él objetivo es aplicada porque el problema está establecido y es reconocido, es descriptiva ya que se basa en la interpretación de mapas temáticos, ya que no se realizarán pruebas de laboratorio es no experimental según su finalidad es aplicativa (tecnológica) ya que se hará uso de diversos softwares, es transversal en el tiempo porque se realizó el estudio en un único momento temporal, el cual se sintetiza en la siguiente Tabla 7.

Tabla 7. Tipos de inv	restigación
Según su tipo	Descriptiva – explicativa
	Descriptiva consideran al fenómeno estudiado
	y sus componentes.
	Explicativa determina las causas de los fenómenos
Según el nivel	No Experimental – correlacional
	No experimental, se realizan sin la manipulación deliberada de
	variables y en los que solo se observan los fenómenos en su
	ambiente natural para después analizarlos.
	Correlacional, es la que tiene como objetivo describir relaciones entre dos o más variables en un momento determinado.
Según el diseño	De campo, porque se realiza la recolección de datos directamente de los sujetos investigados.
Según su naturaleza	Cualitativa , debido a que describe sucesos complejos en su medio natural.
Según el periodo	Transversal en el tiempo, porque se estudiará en un determinado tiempo, la recolección de datos será en un solo momento y una sola vez.

Fuente. Hernández (2010)

3.3.1. POBLACIÓN DE ESTUDIO

Cantera Nube Blanca (3.54 Ha) aproximadamente.

3.3.2. MUESTRA

Estabilidad de taludes

3.3.3. UNIDAD DE ANÁLISIS

Litología, discontinuidades, precipitaciones (mm/año)

3.4. IDENTIFICACIÓN DE VARIABLES

Para la investigación se han identificado las variables dependientes e independientes, de acuerdo a causa efecto como variables independientes: Litología, precipitaciones y discontinuidades y como variable dependiente: inestabilidad de taludes. Ver Tabla N° 8.

Tabla 8. Operacionalización de las variables

 Variable Dependiente

 Litología

 Variable Independiente

 Precipitaciones
 Inestabilidad de taludes

 Discontinuidades
 Inestabilidad de taludes

3.5. TÉCNICAS

Las técnicas que se han empleado para la recolección de datos son directas en campo, a partir de la observación, descripción y medición en campo; mientras que los instrumentos estarán constituidos como: un formato de datos de campo para cartografiado geológico – geomecánico. Softwares Rocscience, ArcGIS v10.8, AutoCAD 2024, Ms Office. Ver figura 10.

RE	GISTRO	GEOLÓGIO	CO-GEO	TECNICO	PROYECTO														10	В	IENIAWS	KI
00010					UBICACIÓN	1:	-												1	R	MR (1989	9)
CODIG)				TESISTA:																iperjicie	
SISTEM	A				FECHA:														_			
		DATA GPS			MACIZO I	ROCOSO			_	_	PROPI	EDAI	DES DE	LAS DISC	CONTIN	UIDADE	<mark>S CARTOG</mark>	RAFIADAS	IBNO		1	_
		bitilit of b			111101201			TIPOS	RESIST. COMP.	RQD	OR	IENTACI	ÓN	(m)	(m)	(mm)	RUGOS.	TIPO	DUREZA	METEOR	AGUA	CALIDAD DE INFORM.
		_	_	_	METEORIZ	GRADO	GSI	E=Estratif.	UNIAX	Trainio				1=>2	1=<1	1=Nada	1=Muy Rug	1= Arcilloso	1=Ninguna	1=Inalterada	1=Seco	1=Lec. Real
DIS.					#Fresco	1=Alto	#Blog-Regul	D=Diaciasa	σ.	ND:	D	RECCIO	N.	2=2-0,6	2 = 1-3	2=< 0.1	2=Rugosa 3=Lig. Rug	2 = QZ / Silic 3 = Calcita	2=Duro<5mm 3=Duro>5mm	2=Lig. Alt 3=Mod. Alt	2 = Humedo 3 = Mojado	2=Lect Apar 3=Lec Proy
Nro.	ESTE	NORTE	COTA	LITOLOG /	2=Lev Met	2=Med	2=Bloq-irregul	Fi=F. Inversa	CI	L:				4=0,2-0,06	4=10-20	4 = 1,0-5,0	4=Ondulad-lis	a 4 = Oxidos	4=Suave<5mm.	4=Muy Alt	4 = Goteo	
	LUIL	NORTE	COIA	FORMAC.	3=Mod	3 = Bajo	3=BlogyCapas	Fd=F. Direcc	Prom	λ=				5=<0,06	5=>20	9= >5	5=Suave	5 = Roca Tritur	5=Suave>5mm.	5=Descomp	5 = Flujo	-
					4=Ait Met 5=Compl		4=Fract-Intenso	SE=Sobrees.	3.4.0	-	Z/R	DIP	DD					6 = Bx 7 = Panizo		-	-	
					1		M, P, MP	C=Contacto		¥p=								8 = Veta				
1	_	_		_				_					_	_								
2	_	_		_							_		_		_	_						
3	_	-		_	-	_	-	_	_	-			_	_	_	_	_	_		_	_	
4	-		-	_	-	-	-	-	-	-	-		-	-	-	-	-	-			-	-
6	-			-	-		-		-	-			-	-		-		-			-	
7	-			-	-		-						-					-				
8																						
9																						
10	_	-		_																_		
11	_	-	_	_	-	-	-	-	_	-	_		_	_	-	-	-	-		_	-	-
12	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-
14	-	-	-	-	-		-	-	-	-	-		-	-	-	-		-		-	-	
15	-			-	-								-									
16																						
17																						
18				_	_			_					_				_	_		_	_	
19	_	-		_	-	_	-	-	_	-			_	_	-	-	_	_		_	_	_
20	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-		-			-	-
22				-	-		-		-	-			-			-		-				
23	-			-	-																	
24																						
25				_									_									
26	_			_	-	_	-	-	_	-			_	_	_	-	_	-			_	_
27	_	-	-	_	-	-	-	-	-	-	-		-	-	-	-	-	-			-	-
20	-	-	-	-	-	-	-	-	-	-	-		-		-	-	-	-		-	-	-
30	-	-		-	-	-	-			-			-	-		-	-	-		-		
31																						
32																						
33	_																					
34	-			_	-		-	-						_			-				-	
30	-								-	-		-	-			-		-		_		
37	-			-	-		-						-					-				
38	-																					
39																						
40																						
41																						
42	_			_									_									
43	-	-	-	_	-		-		-	-	-	-	-	-		-		-			-	-
44	-			-	-		-			-			-			-		-				
46	-																					
47																						
48																						
49																						
50	_			_																		
														Diseño O	riginal : M.	Sc. Victor To	lentino, 2008	Redise	ñado y adaptado	Dr. Rodrigue.	z, R v3 - 20	020

Figura 10. Formato de datos de campo.

Fuente: Rodríguez (2020). 3.6. INSTRUMENTOS Y EQUIPOS

Para el desarrollo de la presente investigación se ha creído conveniente utilizar las técnicas de observación, descripción e interpretación, los instrumentos y equipos utilizados para la realizar la investigación fueron los siguientes:

Instrumentos

Picota Estwing mago corto: Herramienta necesaria para extraer muestras de roca y probar la resistencia de las mismas en campo.

Lupa de 20X: Herramienta óptica utilizada para visualizar mejor el tamaño de grano y minerales de una muestra.

Lápices y lapiceros: Utilizados para anotaciones y cartografiado.

Brújula Brunton mod. 5006: Utilizado para la toma de datos como rumbo y buzamiento de los afloramientos.

Flexómetro 5 m: Para medir los espesores de los afloramientos.

Plano geológico: De guía para ubicarnos en la zona de investigación.

Imagen satelital: Para realizar la eta pre-campo.

Equipos

Laptop Dell Cori i7: Para la redacción de la tesis y elaboración de los diferentes mapas temáticos.

GPS Garmin eTrex 20: Instrumento utilizado para la obtención de las coordenadas para la ubicación de puntos.

Cámara digital Cannon 48 Mpx: Instrumento utilizado para el registro fotográfico.

3.7. TEMPERATURA

La temporada templada dura 3.1 meses, del 15 de diciembre al 19 de marzo, y la temperatura máxima promedio diaria es más de 13 °C. El mes más cálido del año en Hualgayoc es febrero, con una temperatura máxima promedio mensual es de 17,2 °C y temperatura mínima promedio mensual de 2 °C.

Figura 11. T° máxima y mínima promedio Fuente: SENHAMI

3.8. PRECIPITACIONES

La probabilidad de días mojados en Hualgayoc varía considerablemente durante el año. La temporada más mojada dura 6.7 meses, de 6 de octubre a 28 de abril, con una probabilidad de más del 16 % de que cierto día será un día mojado. El mes con más días mojados en Hualgayoc es marzo, con un promedio de 9.7 días con por lo menos 1 milímetro de precipitación.

La temporada más seca dura 5.3 meses, del 28 de abril al 6 de octubre. El mes con menos días mojados en Hualgayoc es Julio, con un promedio de 0.3 días con por lo menos 1 milímetro de precipitación.

La precipitación promedio anual se observa en la figura 12. Donde el promedio de precipitación anual máximo fue en el año 2001 y el promedio de precipitación anual mínimo fue en el año 2003.

Figura 12. Porcentaje de precipitación Fuente: SENHAMI

3.9. HIDROLOGÍA

La red hidrológica está controlada principalmente por el Río Arascorge el cual delimita la microcuenca que lleva como nombre a dicho rio. En esta área predomina el drenaje subdentrítico, especialmente en el material sedimentario y alteraciones hidrotermales. La mayoría de estos drenajes cuenta con cursos de agua estacionales (en época de lluvia) y quienes al final aportan sus aguas al Río Llaucano. Es común encontrar drenajes en formación de pequeña extensión ocasionados por la erosión de las partes altas de las geoformas (cárcavas). (Soberón, 2018).

En la figura 18, se presenta a nivel macro como está compuesta la red hidrográfica alrededor de la zona de tesis. Teniendo la presencia del río Arascorgue, río Hualgayoc, río Llaucan, río Nunnum, río La Quebrada, Quebrada quinuamayo. Los cuales se podrán apreciar mejor en el Mapa Hidrológico (M07).

Figura 13. Red hidrológica.

3.10. GEOMORFOLOGÍA

Respecto a unidades geomorfológicas, en el oeste del distrito se encuentran colinas andinas: superficies de topografía moderadamente accidentada; asimismo, una cadena montañosa que abarca el distrito y la mayor parte de la provincia. (Guillén, 2019)

Según INGEMMET, la zona de investigación se encuentra en el centro poblado de Apan Alto, se ubica en montañas y colinas estructurales en roca sedimentaria (RMCE-rs), el cual se puede observar en la figura 15.

Figura 14. Ubicación de las estaciones Geomecánicas.

3.11.1. Depósitos cuaternarios

Los depósitos cuaternarios los encontramos distribuidos sobre todas las formaciones presentes en el distrito, en su mayoría son depósitos ColuvioAluviales que están constituidos por una matriz arcillosa con fragmentos angulosos y mal clasificados de roca caliza y lutita como se puede visualizar en la Foto 1.

Foto 1. Depósitos coluvio-aluviales en la parte superior.

3.11.2. Formación Cajamarca (Ks-ca)

La Formación Cajamarca yace concordantemente sobre el Grupo Quilquiñán y con la misma relación subyace a la formación Celendín, corresponde a una de las secuencias calcáreas del cretáceo superior que más destaca topográficamente, por su homogeneidad litológica y ocurrencia en bancos gruesos y duros. El área de la Formación Cajamarca tiene aproximadamente un grosor de 600 m. y 700 m.

La Formación Cajamarca en la zona de estudio se caracteriza por presentar bancos extensos de calizas, así como también el fracturamiento moderado de los estratos. Poca o nula existencia de fósiles. Ver Foto 2. La ubicación de la estación geológica en la Formación Cajamarca se encuentra en las coordenadas:

E: 769080; N: 9255570; Cota: 3095 msnm.

Foto 2. Estratos de roca de caliza de la Formación Cajamarca.

Los estratos de roca caliza de la formación Cajamarca se pueden observar que están moderadamente fracturados, ese patrón va a ser repetitivo en las estaciones geomecánicas que se presentará a continuación.

3.12. GEOMECÁNICA

3.12.1. Estación Geomecánica 01

En la primera estación geomecánica, se ubica en las coordenadas E: 769010; N: 9255510; Cota: 3090 msnm. Se ha realizado la toma de datos geomecánicos en la cual se ha obtenido un RMR = 72 que se clasifica en un tipo de roca clase II, de calidad buena, y con una valoración de GSI = 67.

Foto 3. Estación geomecánica 01, calizas de la Fm. Cajamarca.

En la foto 3, Nos encontramos en la EG-01 donde se realizó el cálculo de RMR, GSI, se puede apreciar que se está estimando la resistencia uniaxial, al realizar tres golpes con la picota para recién poder romper el macizo rocoso.

El análisis cinemático en el Software Dips, se ha podido identificar 02 familias de discontinuidades, quienes serían las causantes de una posible rotura planar o rotura en cuña. El análisis cinemático nos arroja los siguientes valores: una probabilidad de 54.9% que exista una rotura planar, ver figura 19 y un 17.97% que ocurra una rotura en cuña, ver figura 20. Debido al grado de fracturamiento y las familias de discontinuidades.

ANÁLISIS DE ROCAS - ESTACIÓN GEOMECÁNICA 01

Pick GSI Value						×
Rock Type: General 💌			SURFA	CE CONE	ITIONS	
GSI Selection: 67 OK		VERY GOOD	GOOD	FAIR	POOR	VERY POOF
STRUCTURE		DECREA	ASING SU	RFACE Q	JALITY	Ì
INTACT OR MASSIVE - intact rock specimens or massive in situ rock with few widely spaced discontinuities	ICES	90			N/A	N/A
BLOCKY - well interlocked un- disturbed rock mass consisting of cubical blocks formed by three intersecting discontinuity sets	OF ROCK PIE		767			[]
VERY BLOCKY- interlocked, partially disturbed mass with multi-faceted angular blocks formed by 4 or more joint sets	ERLOCKING			j0		[]
BLOCKY/DISTURBED/SEAMY - folded with angular blocks formed by many intersecting discontinuity sets. Persistence of bedding planes or schistosity	REASING INTE			40	30	
DISINTEGRATED - poorly inter- locked, heavily broken rock mass with mixture of angular and rounded rock pieces	DEC		//		20	//
LAMINATED/SHEARED - Lack of blockiness due to close spacing of weak schistosity or shear planes		N/A	N/A			10

Figura 15. Valoración GSI igual a 67 de la EG-01

Figura 16. Análisis en Rocdata de la EG-01

(Color	Dens	ity Concent	rations
		0	.00 - 7	.00
		7	.00 - 1	4.00
		14	.00 - 2	1.00
		21	.00 - 2	8.00
		28	.00 - 3	5.00
		Contour Data	Pole Vector	s
	M	laximum Density	34.24%	
	Con	tour Distribution	Fisher	
	Cou	unting Circle Size	1.0%	
	Color	Dip Di	Direction	Label
		Mean Set P	lanes	
1m		83	15	Т
2m		22	206	D1
3m		69	315	D2
4m		58	26	E
		Plot Mode	Pole Vector	s
		Vector Count	51 (51 Entr	ries)
		Hemisphere	Lower	
		Projection	Equal Area	

Figura 17. Análisis de polos en software Dips de la EG-01.

Figura 18. Análisis cinemático por rotura planar igual a 54.9% en EG-01.

Figura 19. Análisis cinemático por rotura en cuña igual a 17.97% EG-01.

3.12.2. Estación Geomecánica 02

En la segunda estación geomecánica, se ubica en las coordenadas E: 769115; N: 9255565; Cota: 3057 msnm. Se ha realizado la toma de datos geomecánicos en la cual se ha obtenido un RMR = 75 que se clasifica en un tipo de roca clase II, de calidad buena, y con una valoración de GSI = 70.

Foto 4. Estación geomecánica 02, medición de la persistencia.

En la foto 4, se está midiendo el espaciado entre dos discontinuidades que tienen la misma orientación, la medida obtenida fue de 65 cm.

El análisis cinemático en el Software Dips en la segunda estación geomecánica nos ha podido ayudar a identificar 02 familias de discontinuidades, quienes serían las causantes de una posible rotura planar o rotura en cuña. El análisis cinemático nos arroja los siguientes valores: una probabilidad de 1.96% que exista una rotura planar y un 2.28% que ocurra una rotura en cuña. Debido al grado de fracturamiento y las familias de discontinuidades.

ANÁLISIS DE ROCAS - ESTACIÓN GEOMECÁNICA 02

Pick GSI Va	alue								Х
Rock Type	e:	General	•			SURFA	CE CONE	DITIONS	
GSI Select	tion:	, 70	OK		VERY GOOD	GOOD	FAIR	POOR	VERY POOR
	STRUC	TURE			DECRE	ASING SU	RFACE Q	UALITY	ĥ
	INTACT rock spe situ rock disconti	OR MASSIV ecimens or ma with few wid nuities	E - intact assive in ely spaced	CES	90			N/A	N/A
	BLOCK disturber of cubica intersect	Y - well interlo d rock mass o al blocks form ting discontine	ocked un- consisting led by three uity sets	OF ROCK PIE		70 60			
	VERY B partially multi-fac formed t	LOCKY- inter disturbed ma æted angular by 4 or more j	locked, ss with blocks oint sets	ERLOCKING			50		
	BLOCKY - folded formed to discontin of beddin	Y/DISTURBE with angular by many inter- nuity sets. Per ng planes or	D/SEAMY blocks secting rsistence schistosity	REASING INTE			40	30	
	DISINTE locked, h with mix rounded	EGRATED - p heavily broken ture of angula rock pieces	oorly inter- n rock mass ar and	DEC		//		20	//
	LAMINA of blocki of weak	TED/SHEARI ness due to c schistosity or	ED - Lack lose spacing shear planes	, v.	N/A	N/A			10

Figura 20. Valoración GSI igual a 70 de la EG-02.

ANÁLISIS DE ROCAS - ESTACIÓN GEOMECÁNICA 02

Figura 21. Análisis en Rocdata de la EG-02.

Symb	ol F	Feature							
\$	P	ole Vectors							
C	olor	D	ensi	sity Concentrations					
			0	.00 - 7	.00				
			7	.00 - 1	4.00				
			14	.00 - 2	1.00				
			21	00 - 2	5.00				
		Contour Da	ta a	Pole Vector	s.00				
		Maximum Done	itu	24.26%	5				
		Maximum Dens	ity	34.2070					
	Co	ntour Distributi	on	Fisher					
	C	ounting Circle S	ize	1.0%					
	Color	Dip	Di	Direction	Label				
		Mean S	et P	lanes					
1m		35		228	D1				
2m		70		15	D2				
3m		86		306	E				
4m		58		295	T				
		Plot Mo	de	Pole Vector	s				
		Vector Cou	Int	51 (51 Entr	ies)				
		Hemisphe	ere	Lower					
		Projecti	on	Equal Area					

Figura 22. Análisis de polos en software Dips de la EG-02

Symbo	ol Fea	ature					
\$	Pol	e Vectors					
Co	olor		De	ensi	ty Concer	trations	
				0.	- 00	7.00	
				7.	- 00	14.00	
				14.	- 00	21.00	
				21.	- 00	28.00	
				28	- 00	35.00	
	23	Conto	our Da	ta	Pole Vect	ors	
	1	laximum	Densi	ty	34.26%		
	Cor	tour Dist	ributio	on	Fisher		
	Co	unting Cir	rcle Siz	ze	1.0%		
Kine	ematic	Analysis	Plana	r Sli	ding		
	S	lope Dip	58				
Slop	e Dip D	irection	295				
	Frictio	on Angle	56°				
				1	Critical	Total	%
		Planar S	liding (All)	1	51	1.96%
	Plar	nar Sliding	(Set 4:	T)	1	1	100.00%
	Color	Dip		Dip	Direction	1 Label	
		M	ean Se	et P	lanes		
1m		35			228	D1	
2m		70			15	D2	
3m		86			306	Е	
4m		58			295	Т	
		Pl	ot Mod	de	Pole Vect	ors	
		Vecto	or Cou	nt	51 (51 Er	ntries)	
		Hem	isphe	re	Lower		
		Pr	ojectio	on	Equal Are	a	

Figura 23. Análisis cinemático por rotura planar igual a 1.96% en EG-02.

Symbol	Feat	ure				
0	Pole	Vectors				
8	Critic	al Inters	ection			
Colo	or		Densi	ity Concen	trations	
			0 7	.00 - .00 -	7.00 14.00	
			14	.00 - :	21.00	
			21	.00	28.00	
		Conto	our Data	Pole Vecto	ors	
	Ma	vinum	Density	34 26%		
	Contr	our Dist	ribution	Fisher		
	Court	ting Ci		1 00/		
	Cour		cie Size	1.0%		
Kinen	natic Ai	nalysis	Wedge S	liding		
	Slo	pe Dip	58			
Slope	Dip Dir	rection	295			
1	riction	Angle	56°			
				Critical	Total	%
		Wed	lge Sliding	29	1273	2.28%
C	olor	Dip	Dij	p Direction	Label	
		м	ean Set P	lanes		
1m		35		228	D1	
2m		70		15	D2	
3m		86		306	E	
4m		58		295	Т	
		Pl	ot Mode	Pole Vecto	ors	
		Vecto	or Count	51 (51 En	tries)	
	Int	ersectio	on Mode	Grid Data	Planes	
	Inte	rsectior	ns Count	1273		
		2018	A sector second	Leuren		
		Hen	nispnere	Lower		

Figura 24. Análisis cinemático por rotura en cuña igual a 2.28% de la EG-02.

3.12.3. Estación Geomecánica 03

En la tercera estación geomecánica, se ubica en las coordenadas E: 769085; N: 9255546; Cota: 3085 msnm. Se ha realizado la toma de datos geomecánicos en la cual se ha obtenido un RMR = 78 que se clasifica en un tipo de roca clase II, de calidad buena, y con una valoración de GSI = 73.

En la foto 5, se presenta la EG-03, donde se han obtenido datos estimado de la resistencia a la compresión uniaxial de 70 MPa. Con dip: 77 y dip direction: 13 del estrato.

Foto 5. Estación geomecánica 03, estimación de la resistencia uniaxial.

El análisis cinemático en el Software Dips en la tercera estación geomecánica nos ha podido ayudar a identificar 02 familias de discontinuidades, quienes serían las causantes de una posible rotura planar o rotura en cuña. El análisis cinemático nos arroja los siguientes valores: una probabilidad de 0.0% que exista una rotura planar y un 0.0% que ocurra una rotura en cuña.

ANÁLISIS DE ROCAS - ESTACIÓN GEOMECÁNICA 03

Pick GSI Valu	ue								X
Rock Type:		General	•			SURFA	CE CONE	ITIONS	IV S
GSI Selection	on:	73	OK		VERY GOOD	GOOD	FAIR	POOR	VERY POOR
S	STRUCT	URE			DECRE	ASING SU	RFACE Q	JALITY 4	Î
	INTACT (rock spec situ rock discontin	OR MASSIV cimens or ma with few wid uities	E - intact assive in ely spaced	ECES	90			N/A	N/A
B d o ir	BLOCKY disturbed of cubical ntersection	- well interlo rock mass c blocks form ng discontinu	cked un- consisting ed by three uity sets	OF ROCK PIE		73 70 60			
V po m ft	/ERY BL partially d nulti-face formed by	OCKY- inter listurbed ma- ted angular 4 or more j	locked, ss with blocks pint sets	ERLOCKING		5	j0		
B fc d o	BLOCKY - folded v ormed by discontinu of beddin	/DISTURBEI with angular y many inters uity sets. Per g planes or s	D/SEAMY blocks secting sistence schistosity	REASING INTE			40	30	
D lo w rr	DISINTE ocked, he with mixtu ounded r	GRATED - po eavily broker ure of angula rock pieces	oorly inter- n rock mass r and					20	//
	AMINAT of blockin of weak s	ED/SHEARI ess due to c chistosity or	ED - Lack lose spacing shear planes	V	N/A	N/A			10

Figura 25. Valoración GSI de la EG-03.

49

ANÁLISIS DE ROCAS - ESTACIÓN GEOMECÁNICA 03

Figura 26. Análisis en Rocdata de la EG-03.

	Color	De	Density Concentrations						
			0.0	00 - 7	7.20				
			7.	20 - 1	14.40				
			14.4	10 - 2	21.60				
			21.6	50 - 2	28.80				
		1200000000	28.8	30 - 3	36.00				
		Contour Da	ta	Pole Vecto	Irs				
	Ma	ximum Densi	ty	35.15%					
	Cont	our Distributio	on	Fisher					
	Cou	nting Circle Siz	ze	1.0%					
	Color	Dip	Dip	Direction	Label				
	. · .	Mean Se	t Pla	anes					
1m		28		271	D2				
Źm		64		357	D1				
3m		76		13	E				
4m		46		13	Т				
		Plot Mod	ie	Pole Vecto	rs				
		Vector Cou	nt	51 (51 Ent	tries)				
		Hemisphe	re	Lower					
				Equal Area					

Figura 27. Análisis de polos en software Dips de la EG-03.

Color			Density Concentrations				
		0	- 00.	7.20			
			7	.20 -	14.40		
		14	.40 -	21.60			
			21	.60 -	28.80		
-		Conto	ur Data	Pole Vecto	30.00 ors		
Maximum			Density	35.15%			
Contour Dist			ribution	Fisher			
Counting Ci			rcle Size	1.0%			
Kinematic Analysis Plan				idina			
Slope Dip			46				
Slope Dip Direction			13				
Friction Angle			56°				
				Critical	Total	%	
Planar S			liding (All)	0	51	0.00%	
	Color	Dip	Dij	Direction	Label		
		M	ean Set P	lanes			
1m	28		271	D2			
2m		64		357	D1		
3m		76		13	Е		
4m		46		13	Т		
		PI	ot Mode	Pole Vecto	ors		
Vector Count				51 (51 Entries)			
Hemisphere				Lower			
Projection				Equal Area			

Figura 28. Análisis cinemático por rotura planar igual a 0% en EG-03.

Symbol	Featu	re					
8	Critica	l Inters	ection				
Color Densi					ty Concer	trations	
		0 7 14 21 28			.00 - .20 - .40 - .60 - .80 -	7.20 14.40 21.60 28.80 36.00	
Contour Data					Pole Vect	ors	
	Max	dimum	Dens	ity	35.15%		
	Conto	ur Dist	ributi	on	Fisher		
	Count	ing Ci	rcle Si	ze	1.0%		
Kinematic Analysis Wedge					iding		
Slope Dip 46							
Slope Dip Direction 13							
Friction Angle 56°							
					Critical	Total	%
		Wec	lge Slid	ding	0	1271	0.00%
C	olor	Dip		Dip	Direction	Label	
		м	ean S	et P	lanes		
1m		28			271	D2	
2m		64			357	D1	
3m		76			13	E	
4m		46		_	13	T	
Plot Mode				Pole Vect	ors		
Vector Count					51 (51 Er	tries)	
Intersection Mode				Grid Data	Planes		
	Inters	section	is Cou	Int	1271		
		Hem	nisphe	ere	Lower		
	Projection					а	

Figura 29. Análisis cinemático por rotura en cuña igual a 0% de la EG-03.

3.12.4. Estación Geomecánica 04

En la cuarta estación geomecánica, se ubica en las coordenadas E: 769081; N: 9255470; Cota: 3058 msnm. Se ha realizado la toma de datos geomecánicos en la cual se ha obtenido un RMR = 69 que se clasifica en un tipo de roca clase II, de calidad buena, y con una valoración de GSI = 64.

Foto 6. Estación geomecánica 04, medición del espaciado.

En la foto 6, se puede observar la medición que se está realizando del espaciado obteniendo 14 cm.

Pick GSI Va	alue								X	
Rock Type		General	•		SURFACE CONDITIONS					
GSI Select	ion:	64	OK		VERY GOOD	GOOD	FAIR	POOR	VERY POOR	
	STRUCT	TURE			DECRE	ASING SU	RFACE Q	JALITY 4	ĥ	
//	INTACT rock spe situ rock discontir	OR MASSIVE cimens or ma with few wide nuities	E - intact issive in aly spaced	CES	90			N/A	N/A	
	BLOCKY disturbed of cubica intersecti	' - well interloo I rock mass ci I blocks forme ing discontinu	cked un- onsisting ad by three ity sets	OF ROCK PIE		70 <u>64</u> 60				
	VERY BL partially of multi-face formed b	OCKY- interled disturbed mas eted angular t y 4 or more jo	ocked, is with blocks bint sets	ERLOCKING			50			
	BLOCKY - folded formed b discontin of beddir	//DISTURBED with angular t y many inters uity sets. Per ng planes or s	D/SEAMY blocks ecting sistence chistosity	REASING INTE			40	30		
	DISINTE locked, h with mixt rounded	GRATED - po eavily broken ure of angular rock pieces	oorly inter- rock mass r and	DEC				20		
	LAMINAT of blockir of weak s	ED/SHEARE ness due to cl schistosity or	D - Lack ose spacing shear planes	V	N/A	N/A			10	

ANÁLISIS DE ROCAS - ESTACIÓN GEOMECÁNICA 04

Figura 30. Valoración GSI de la EG-04.

El análisis cinemático en el Software Dips en la cuarta estación geomecánica nos ha podido ayudar a identificar 02 familias de discontinuidades, quienes serían las causantes de una posible rotura planar o rotura en cuña. El análisis cinemático nos arroja los siguientes valores: una probabilidad de 22% que exista una rotura planar y un 21.59% que ocurra una rotura en cuña. Debido al grado de fracturamiento y las familias de discontinuidades.

ANÁLISIS DE ROCAS - ESTACIÓN GEOMECÁNICA 04

Figura 31. Análisis en Rocdata de la EG-04.

(Color	Dens	Density Concentrations					
		(0.00 - 7	.00				
			7.00 - 1	4.00				
		14	1.00 - 2	1.00				
		2:	1.00 - 2	8.00				
		21	3.00 - 3	5.00				
		Contour Data	Pole Vector	s				
	Ma	ximum Density	34.26%					
	Conto	our Distribution	Fisher					
	Cour	ting Circle Size	1.0%					
	Color	Dip Di	p Direction	Label				
		User Pla	nes					
1		65	60	Т				
	N 1987 - 199	Mean Set F	Planes					
1m		32	231	E				
2m		84	323	D1				
3m		55	51	D2				
Plot Mode		Pole Vector	s					
Vector Count			50 (50 Entries)					
		Hemisphere	Lower					
		Projection	Equal Area					

Figura 32. Análisis en software Dips de la EG-4.

	Color		Dens	ity Concen	trations			
			0	.00 -	7.00			
			7	- 00.	14.00			
			14	- 00.	21.00			
			21	- 00.	28.00			
			28	.00 -	35.00			
		Conto	Pole Vecto	ors				
	м	laximum	Density	34.26%				
	Con	tour Dist	ribution	Fisher				
	Cou	unting Ci	rcle Size	1.0%				
Ki	nematic /	Analysis	Planar Sli	ding				
	SI	ope Dip	65					
Slo	pe Dip D	irection	60					
	Frictio	n Angle	55°					
				Critical	Total	%		
		Planar S	liding (All)	11	50	22.00%		
	Plana	r Sliding (Set 3: D2)	11	20	55.00%		
	Color	Dip	Dij	p Direction Label		D. K		
			User Plan	nes				
1		65		60	Т			
		м	ean Set P	lanes				
1m		32		231	E			
2m		84		323	D1			
3m		55		51	D2			
		PI	ot Mode	Pole Vecto	ors			
	Vector Count				50 (50 Entries)			
		Hen	nisphere	Lower				
Projection				Equal Area				

Figura 33. Análisis cinemático por rotura planar igual a 22% en EG-04.

Symbo	ol Feat	ure						
	Critic	ritical Intersection						
Ca	olor		ity Concer	trations	1			
			0	.00 -	7.00			
			7	- 00.	14.00			
			14	- 00.	21.00			
			21	- 00.	28.00			
		Conto	Pole Vect	35.00				
	Ma	ximum	Density	34.26%				
	Conte	our Dist	ribution	Fisher				
	Cour	nting Ci	rcle Size	1.0%				
Kine	ematic A	nalysis	Wedge S	liding				
	Slo	pe Dip	65					
Slop	e Dip Dir	ection						
	Friction	Angle	55°					
				Critical	Total	%		
		Wed	lge Sliding	264	1223	21.59%		
	Color	Dip	Dij	Direction	n Label	Ç.		
			User Plai	nes				
1		65		60	Т			
		м	ean Set P	lanes				
1m		32		231	E			
2m		84		323	D1			
3m		55		51	D2			
		PI	ot Mode	Pole Vect	ors			
		Vecto	50 (50 Er	ntries)				
	Int	ersectio	on Mode	Grid Data	Planes			
	Inte	rsectior	is Count	1223				
		Hen	nisphere	Lower				
		Pr	ojection	Equal Are	ea			

Figura 34. Análisis cinemático por rotura en cuña igual a 21.59% EG-04.

3.12.5. Estación Geomecánica 05

En la quinta estación geomecánica, se ubica en las coordenadas E: 769101; N: 9255521; Cota: 3058 msnm. Se ha realizado la toma de datos geomecánicos en la cual se ha obtenido un RMR = 74 que se clasifica en un tipo de roca clase II, de calidad buena, y con una valoración de GSI = 69.

Foto 7. Estación geomecánica 05, midiendo dip y dip direction

En la foto 7, se midió datos del estrato como dip: 35, dip direction: 221; datos del talud fueron: dip 72, dip direction: 320

El análisis cinemático en el Software Dips en la quinta estación geomecánica nos ha podido ayudar a identificar 02 familias de discontinuidades, quienes serían las causantes de una posible rotura planar o rotura en cuña. El análisis cinemático nos arroja los siguientes valores: una probabilidad de 0.0 % que exista una rotura planar y un 0.0% que ocurra una rotura en cuña.

ANÁLISIS DE ROCAS - ESTACIÓN GEOMECÁNICA 05

Figura 35. Valoración GSI de la EG-05.

61

ANÁLISIS DE ROCAS - ESTACIÓN GEOMECÁNICA 05

Figura 36. Análisis en Rocdata de la EG-05.

C	olor	D	ensi	ty Co	ncent	ations	
			0.00 -			.20	
			7.	.20	- 1	4.40	
			14	.40	- 2	1.60	
			21	.60	- 2	8.80	
			28	.80	- 3	5.00	
		Contour Da	ta	Pole	Vector	s	
Maximum Density				35.3	3%		
Contour Distribution				Fish	er		
	nting Circle Si	ze	1.09	6			
	Color	Dip	Dip	Dire	ction	Label	
		User	Plan	es			
1		72		320)	т	
		Mean S	et P	lanes			
1m		33		222	2	E	
2m		73		137	1	D2	
3m		58		42		D1	
		Plot Mo	de	Pole	Vector	s	
		Vector Cou	Int	50 (50 Entr	ies)	
		Hemisphe	re	Low	er		
		Projecti	on	Equi	al Area		

Figura 37. Análisis de polos en software Dips de la EG-05.

Figura 38. Análisis cinemático por rotura planar igual a 0% en EG-05.

Figura 39. Análisis cinemático por rotura en cuña igual a 0% de la EG-05.

3.12.6. Estación Geomecánica 06

En la sexta estación geomecánica, se ubica en las coordenadas E: 769115; N: 9255565; Cota: 3057 msnm. Se ha realizado la toma de datos geomecánicos en la cual se ha obtenido un RMR = 74 que se clasifica en un tipo de roca clase II, de calidad buena, y con una valoración de GSI = 69.

Foto 8. Familia de discontinuidades en la estación geomecánica 06

En la foto 8, se aprecia en líneas de color rojo la familia de discontinuidades D1 y en color azul la familia de discontinuidades D2, las cuales afectan al macizo rocoso. El análisis cinemático en el Software Dips de la sexta y última estación geomecánica nos ha podido ayudar a identificar 02 familias de discontinuidades, quienes serían las causantes de una posible rotura planar o rotura en cuña. El análisis cinemático nos arroja los siguientes valores: una probabilidad de 0.0% que exista una rotura planar y un 0.0% que ocurra una rotura en cuña.

ANÁLISIS DE ROCAS - ESTACIÓN GEOMECÁNICA 06

Pick GSI Va	alue								X
Rock Type	8:	General	SURFACE CONDITIONS						
GSI Select	tion:	69	OK		VERY GOOD	GOOD	FAIR	POOR	VERY POOR
0	STRUC	TURE			DECREA	ASING SU	RFACE Q	UALITY	Ì
	INTACT rock spe situ rock discontir	OR MASSIV crimens or m with few wid nuities	E - intact assive in lely spaced	ECES	90			N/A	N/A
	BLOCKY disturbed of cubica intersect	 well interlo d rock mass o al blocks form ing disconting 	ocked un- consisting led by three uity sets	OF ROCK PIE		70 ⁶⁹ 60			
	VERY BI partially multi-fac formed b	LOCKY- inter disturbed ma eted angular by 4 or more j	locked, ss with blocks oint sets	ERLOCKING			50		$\left \right $
	BLOCKY - folded formed b discontin of beddir	//DISTURBE with angular by many inter- nuity sets. Pe ng planes or	D/SEAMY blocks secting rsistence schistosity	REASING INTE			40	30	//
	DISINTE locked, h with mixt rounded	GRATED - p heavily broken ture of angula rock pieces	oorly inter- n rock mass ar and			//		20	//
	LAMINA of blockin of weak	TED/SHEARI ness due to o schistosity or	ED - Lack lose spacing shear planes	Y	N/A	N/A			10

Figura 40. Valoración GSI de la EG-06.

Figura 41. Análisis en Rocdata de la EG-06.

(Color	D	ensi	ity Co	oncen	trations	
			0	.00	-	7.00	
			7	.00	-	14.00	
			14	.00	-	21.00	
			21	.00	-	28.00	
			28	.00		35.00	
		Contour Da	ita	Pole	e Vecto	ors	
	Maximum Density						
	Contour Distribution						
	Cou	nting Circle Si	1.0	%			
	Color	Dip	Dip	Dir	ection	Label	
		User	Plar	nes			
1		55		35	5	Т	
		Mean S	et P	lane	5		
1m		35		21	9	E	
2m		51		25	i	D1	
3m		84		14	1	D2	
		Plot Mo	de	Pole	e Vecto	ors	
		Vector Cou	Int	50	(50 En	tries)	
		Hemisphe	ere	Low	ver		
		Projecti	on	Equ	al Are	а	

Figura 42. Análisis de polos en software Dips de la EG-06.

(Color		Dens	ity Concent	trations	
			0	.00 - 0	7.00	
			7	.00 - 1	14.00	
			14	.00 - 2	21.00	
			21	.00 - 2	28.00	
		Conto	28 Dur Data	Pole Vecto	55.00 ars	
	Ma	ximum	34.72%			
	Conte			1 00/		
	Coul	nting Cl	rcie Size	1.0%		
Kinematic Analysis Plan				iding		
Slope Dip			55			
Slope Dip Direction 35						
	Friction	Angle	56°			
				Critical	Total	%
		Planar S	liding (All)	0	50	0.00%
	Color	Dip	Di	p Direction	Label	
	an 63		User Pla	nes	10.	
1		55		35	Т	
		м	ean Set P	lanes		
1m		35		219	E	
2m		51		25	D1	
3m		84		141	D2	
		Pl	ot Mode	Pole Vecto	rs	
Vector Count				50 (50 Ent	ries)	
Hemisphere				Lower		

Figura 43. Análisis cinemático por rotura planar igual a 0% en EG-06.

Symbol Fe	ature							
Cr	Critical Intersection							
Color		Densi	ity Concen	trations				
		0	.00 -	7.00				
		7	- 00.	14.00				
		14	- 00.	21.00				
		21	.00 -	28.00				
	Contr	.00 - Pole Vectr	35.00					
	Mavimum	34 72%	515					
Co	ntour Dist	ribution	Fisher					
Co	untina Ci	rcle Size	1.0%					
Vinamakia	Australia	Madaa C	tulture.					
Kinematic	Analysis	wedge S	liaing					
CL D' 1	siope Dip	55						
Slope Dip I	Direction	35						
Fricti	on Angle	56°						
			Critical	Total	%			
	Wed	lge Sliding	0	1223	0.00%			
Color	Dip	Dip	Direction	Label				
		User Plan	nes					
1	55		35	Т				
	м	ean Set P	lanes					
1m	35		219	E				
2m	51		25	D1				
3m 📃	84		141	D2				
	PI	ot Mode	Pole Vecto	ors				
	Vecto	50 (50 En	tries)					
1	Intersectio	on Mode	Grid Data	Planes				
In	tersectior	is Count	1223					
	Hen	nisphere	Lower					
	Pr	ojection	Equal Are	а				

Figura 44. Análisis cinemático por rotura en cuña igual a 0% de la EG-06.

CAPÍTULO IV ANÁLISIS Y DISCUSIÓN DE RESULTADOS

4.1. CARTOGRAFIADO GEOLÓGICO – GEOTÉCNICO

Se realizó el cartografiado geológico – geotécnico, donde se identificó que la concesión Pedregal se encuentra ubicada en rocas sedimentarias de tipo caliza que pertenecen a la Formación Cajamarca. Las cuales se encuentran estructuralmente plegadas y falladas, ocupan un gran porcentaje del área de la concesión Pedregal. Sus valores de resistencia a la compresión uniaxial para este tipo de caliza varían entre 65 – 75 Mpa. Ver mapa M – 04.

4.2. INESTABILIDAD DE TALUDES

Trabajando con la data obtenida en campo y realizando el análisis dinámico en el software Rocdata y Dips se obtiene que existe inestabilidad de taludes en dos estaciones geomecánicas (EG-01 y EG-04), donde la EG-01 tiene una probabilidad de rotura planar e 54.9% y una probabilidad de rotura en cuña de 17.97% en cuanto a la EG-04 tiene una probabilidad de rotura planar e 22% y una probabilidad de rotura en cuña de 21.59%. Ver anexo D y anexo E.

4.3. ANÁLISIS DE DATOS

Los datos de las 6 estaciones geomecánicas se presenta en un resumen en la siguiente tabla. Agrupando los valores de RMR, GSI, ángulo de fricción, rotura planar y rotura en cuña.

N°	ITEM	RMR	GSI	ANGULO DE FRICCIÓN	ROTURA PLANAR %	ROTURA EN CUÑA %
1	EG-01	72	67	56,4	54,9	17,97
2	EG-02	75	70	56,64	1,96	2,28
3	EG-03	78	73	59,96	0	0
4	EG-04	69	64	55,92	22	21,59
5	EG-05	74	69	56,71	0	0
6	EG-06	74	69	56,89	0	0

Tabla 9. Resumen de datos obtenidos

Donde se observa que la estación geomecánica más crítica sería la EG-01, debido a que los taludes tienen una mayor probabilidad de sufrir rotura planar con un 54.9% y rotura en cuña con 17.97%. Seguidamente la EG-04 con valores de 22% para rotura planar y 21.59% para rotura en cuña y finalmente las estaciones geomecánicas EG-02, EG-03, EG-05, EG-06 tienen poca o nula probabilidad de rotura planar o rotura en cuña.

Figura 45. Valoración de RMR en las estaciones geomecánicas.

Figura 46. Valoración GSI de las estaciones geomecánicas.

Figura 47. Porcentaje de ocurrencia de rotura planar.

Figura 48. Porcentaje de ocurrencia rotura en cuña.

4.4. CONTRASTACIÓN DE LA HIPÓTESIS

Los taludes de la Cantera Nube Blanca se encuentran emplazados en la Formación Cajamarca que se conforman por rocas calcáreas color gris parduzcas de buena calidad. El cartografiado geológico geotécnico nos dio detalles de la presencia de 02 familias de diaclasas quienes podrían ser las causantes de dos tipos de rotura: planar y en cuña; sin embargo, los datos obtenidos nos indican una nula o baja probabilidad de ocurrencia. Es preciso mencionar que la estación geomecánica EG-01 es la única que tiene una valoración de 54.9% de probabilidad para rotura planar y 17.97% de probabilidad para rotura en cuña, seguido de la estación geomecánica EG-04 que presenta

22% de probabilidad para rotura planar y 21.59% de probabilidad para rotura en cuña, estos datos fueron obtenidos cuando las variables detonantes tales como: precipitación, litología y discontinuidades se trabajaron entre sí.

Finalmente se puede observar de la presente tesis que se ha encontrado dos estaciones geomecánicas: EG-01 Y EG-04 críticas y cuatro estaciones geomecánicas: EG-02, EG-03, EG-05 Y EG-06 estables.

CAPÍTULO V CONCLUSIONES Y RECOMENDACIONES

5.1. CONCLUSIONES

Se evaluó la geomecánica de los taludes de la concesión Pedregal, están definidas por la resistencia de la roca intacta, discontinuidades y tipo de roca en este caso caliza de la Formación Cajamarca. Se realizó el cartografiado geológico geomecánico en los taludes, obteniendo rocas de buena calidad con un valor RMR mayor a 70 en todas las estaciones geomecánicas.

Se calculó la inestabilidad de los taludes mediante análisis cinemático en el software Dips de las seis estaciones geomecánicas propuestas, donde se obtuvo dos estaciones geomecánicas (EG-01 y EG-04) en estado crítico con probabilidad de rotura planar y rotura en cuña.

Se realizó los distintos mapas temáticos de la zona de investigación. El mapa geológico donde se identificó rocas sedimentarias de la Formación Cajamarca y el mapa de unidades morfogenéticas donde se evaluó que las estaciones geomecánicas con inestabilidad de taludes se ubican en planicie que tiene una pendiente de 0° a 8°.

5.2. RECOMENDACIONES

La empresa calera Nube Blanca debe realizar ensayos triaxiales en laboratorios certificados, para obtener data real de los parámetros de los macizos rocosos y complementar el estudio realizado.

La empresa debe realizar trabajos con seguridad y cautela al momento de explotación y extracción en los taludes de las estaciones geomecánicas EG-01 y EG-04.

REFERENCIAS BIBLIOGRÁFICAS

- Aguilar, A. 2008. Caracterización geotécnica y estructural de la rampa de exploración y del túnel de drenaje, Mina Chuquicamata. Tesis Ing. de Minas, Santiago de Chile, Chile, Universidad de Chile. 91 p.
- Albarracín O. Gómez D. (2000). "Caracterización y clasificación geomecánica del macizo rocoso del sector la sierra" Sogamoso, Boyacá, Colombia.
- Andrade, B. 2004. Introducción a la ingeniería de túneles: caracterización, clasificación y análisis geomecánico de macizos rocosos. 3 ed. Quito, Ecuador, AIME. 349 p.

Antenor, G. 1996. Boletín Nº 31 INGEMMET

- Arlandi, R; Bernardo, S; Jordá, B. 2013. Predicción empírica del Strainburst y Squeuzing en galerías profundas - Mina El Teniente (Chile). Ingeopres: Actualidad técnica de ingeniería civil, minería, geología y medio ambiente, ISSN 1136-4785, Nº. 224, 2013: 28-33. Consultado 2 ago. 2022. Disponible en https://dialnet.unirioja.es/servlet/articulo?codigo=4248210
- Basurto, J. 2014. Validación del muestreo de blastholes por canales en zonas de mineralización de sulfuros, Proyecto Yanacocha Verde – Cajamarca: informe de suficiencia. Tesis Ing. Lima, Perú, UNI. 82 p.
- Barton, N; Lien, R; Lunde, J. 1974. Clasificación ingenieril de la masa rocosa para el diseño del sostenimiento de túneles. Mecánica de rocas 6: 189–236. Consultado 2 ago. 2022. Disponible en https://www.researchgate.net/publication/226039636_Engineering_Classi fication_of_Rock_Masses_for_the_Design_of_Tunnel_Support
- Benel, R. 2019. Comportamiento geomecánico según los métodos RMR y Q de Barton del Nivel 3 de la Mina Paredones San Pablo – Cajamarca. Tesis Ing. Cajamarca, Perú, UNC. 140 p.
- Bernal, C; Cevallos, J; Celada, B; Tardáguila, I. 2013. Inspección y rehabilitación del Túnel Hidráulico de Cerro Azul (Ecuador). Ingeopres: Actualidad técnica de ingeniería civil, minería, geología y medio ambiente, ISSN 1136-4785, Nº. 230, 2013: 20-25. Consultado 2 ago. 2022. Disponible en https://dialnet.unirioja.es/servlet/articulo?codigo=4787816

Berrocal, M. 2015. Estabilidad de Excavaciones Subterráneas. Lima - Perú:

Ventura Graf.

Bieniawski, Z. 1989. Engineering Rock Mass Classifications. New York, Estados Unidos. 251 p. Gavilanes, H;

- Bieniawski, Z. 1976. Rock mass classification in rock engineering. In Exploration for rock engineering, proc. of the symp., (ed. Z.T. Bieniawski) 1, 97-106. Cape Town: Balkema.
- Blanco, R. 2005. "Características físico y mecánico estructural del macizo rocoso" Proyecto CYTED XIII, Córdoba, Argentina.
- Cartaya, M. 2001. Tesis. Caracterización Geomecánica de macizos rocosos en obra subterráneas de la región oriental del país Cuba. Instituto Superior Minero Metalúrgico de Moa, Cuba.
- Cordova. M. 2013. "Códigos internacionales de declaración de proyectos minerales de stockexchange". *Disponible online: http://es.scribd.com/doc/92871454/codigos- Internacionales. Fuentes Pacheco, Eder
- Celada, T. 2011. Manual de túneles y obras subterráneas tomo 1: Concepto y diseño del sostenimiento de túneles: 815 854. Móstoles Madrid: Graficas arias montano, S.A.
- Cartaya, M. (2001). Tesis. Caracterización Geomecánica de macizos rocosos en obra subterráneas de la región oriental del país Cuba. Instituto Superior Minero Metalúrgico de Moa, Cuba.
- Cuyubamba, J. (2019). Zonificación geomecánica para optimizar el diseño de malla de perforacion y voladura - Unidad Minera Parcoy - Consorcio Minero Horizonte S.A. Junin: UNCP - Institucional.
- González de Vallejo, I. (2004). Ingeniería geológica. Madrid: Pearson educación, S.A.
- Goodman, R. (1987). Estabilidad de taludes en macizos rocosos con criterios de rotura no lineales. Madrid.
- Hoek y Brown. (1986). Excavaciones Subterraneas en Rocas. Mexico: Calypso S.A.
- Jiménez del Valle, B. (2014). Criterios de definición de fases y diseño en minería a cielo abierto. Santiago de Chile, Chile: Universidad de Chile.

Jiménez, A. (2006). Caracterización geomecánica de macizos rocosos en obras subterráneas de Cuba: Instituto Superior Minero Metalúrgico de Moa.

Obtenido de Geomechanical Consulting.

Lopez, E. (2016). Estudio geotécnico y diseño del talud final de una mina a cielo abierto aplicando modelos numéricos. Lima: UNMSM-Tesis.

Oyarzún, J. (2009). Léxico de geología económica. chile.

- PALMSTRÖM, A. (2003). Recientes desarrollos en la estimación en roca mediante del rmi. Colombia: DYNA.
- Parra, A. (2015). Planificación minera a cielo abierto utilizando fundamentos geomecánicos. Santiago: Repositorio Universidad de Chile.
- Ramírez, P. (2004). Mecánica de Rocas: Fundamentos e Ingeniería de Taludes. Madrid.

ANEXOS

- A. DATOS ESTACIONES GEOMECÁNICAS
- B. DATOS RMR ESTACIONES GEOMECÁNICAS
- C. DATOS DIPS
- D. ANÁLISIS CINEMÁTICO DIPS ROTURA PLANAR
- E. ANÁLISIS CINEMÁTICO DIPS ROTURA EN CUÑA
- F. MAPAS TEMÁTICOS

A. DATOS ESTACIONES GEOMECÁNICAS
-		тно снил		aconos	-				revealed and			11.00		etanitus en o, best	NUMBER OF STREET	lal secondaries			(2)		and the second s	antini,
		1	with	-	(example)						-	6.701 146	-	-								
III TUNKA			junea.	171	-						Bach	-		OS VARDURT								
these	-	-	10-		PECKA	-							100 JA									
	1000	CR R LOUIS			in the second	alestand .	State States		PROPER	DADES DE LAS C	SCINT!	S.E.A.	RIS CARD	OCEMENTATIAN	10-22	1						
		BRUE BAN			MARCESS 1	NOCTOR OF		NPOS	RESIST COMP	800 Team	0	NUMPER OF	ode	ESPACIACO Lej	PERSON LINE.		1000	100	attenda attenda	ALTERNO MOTION		CALEND IT
						EMINO .	The second second	Externet.	CHEAN					1++1	1++1	3-Hate	Internet Prog	1 - Accillant	3 = Ninguna	3 m d'arata	1 + Seco	1 - Lati Resil
					METEORIZACION	PERCY.	Alexandra Contest	2-States			1			2+3-0,4	1+1-5	2mr ft.1	2-84004	3 + Car / 389e	Jullacerteen	Josig AR	2 + Humadia	7-Leet Asar
IR.)-freeze	1+800	Liftice-finged	Fairf, Barret		45.71		MUCC	KINI.	3+0.64.2	3 = 3-30	8-03-1.8	Billig Rid	3 + Catilita	8-Dyna-lines	Building all	3 + Magarity	bilar Prov
Ne	2.2.1			1.200	Diam Mark	2 v Mad	2-Ring tragsl	Fluff, Invention		L 4.10	1			4-0.3-0.06	4+125-315	4-12.0-5.0	a-Consid-for	4 v Oxidae	Arlane (See	Active At	4 = Gittee	
	8933	NONTE	COTA	LITOLING (PORMAC.	1 Mart	l - her	Suffring of Comm	rdid Direct	1.1.1	72.95	1			3+<0.08	3 = >20	Br = 1	Selices	5 - Rosa Tritlar	Setema-Sem,	Submanny	7 + Mult	
					Auth Meet		Bufract Internal	-Addinated	Prove pripes	3.4,65			1	-				E = 94				
				10.00	b-Compt		A REAL PROPERTY AND A REAL	W-totrees.	1000000	-	2/8	-	DD					7 - Partics				
							Agingar Mill, B, M, P, MP	CiGardatta	8 Gatpes	¥.*								8 - Veta				
1	1444010	42553510	3090	Pro. Cajamenca	3	2		8	75 Mps	92.2	300	38	30	2	2	4	3	1	1	3	1	1
2	Tewar	9255510	3090	Pro. Cajernarca	3	2	4	E	75 MPa	92.2	295	60	25	2	1	1	3	1	4	1	-1	1
3	368010	1255510	3290	Fin. Cajamana	3	1	4	I	75 MPa	92.2	287	61	17	1	2	4	3	1	1	2	1	1
4	768010	9255510	3050	Frs. Cajamarca	3	2	4	t	75 1071	92.2	296	59	26	2	2	4	1	1		.1	1	1
8	31990E	\$255510	3090	Frs. Capartarca	3	1	4	E	75 MPa	92.2	292	59	22	2	2	4	,	1		3	1	1
6	368610	4213310	30900	Pm. Cajamarca	1	2	4	I	75 MPa	92.2	303	61	33	2	1	1	3	1	4	1	1	1
7	769010	4255510	3090	Fes. Cajamanca	3	2	4	E	75 MPs	97.2	298	54	28	2	1	4	3	1	4	3	.1	1.
	348010	\$255510	3090	Fm. Cajamarca	1	2	4	E	75 MPa	92.2	294	55	24	2	2	4	3	Ĩ	1	2	1	1
9	268010	4255510	3090	Per, Cajamarca	3	2	4	1	75 MPa	92.2	301	я	31	2	2	4	3	1	4	2	1	. I
10	769010	1255510	3099	Fm. Calamarca	3	2	4	τ	15 MPa	92.2	295	60	25	2	2	4	3	1	14	1	1	1
11	764010	<u>9255510</u>	3090	Fm. Cajamarca	3	2	4	E	75 MPa	92.2	297	53	27	2	2	4	3	1	4	1	1	1
12	76000	0255510	3(990)	Fm Cajamarca	3	2	4	E	75 MPa	92.2	297	54	27	2	1	4	3	1	4	2	1	1
13	769010	.9253510	3090	Per, Cajamerca	3	2	4	DI	75 MPa	91.2	115	22	205	3	2	,	2	1	4	2	1	1
54	769010	4255510	3090	Ри, Сајалинск	- 1	2	4	DI	75 MPs	92.2	118	17	208	3	2	5	2	1	4	2	T.	1
15	769010	9235510	3090	Pin. Cajamarca	3	2	4	DI	75 MPs	92.2	119	19	209	3	2	5	2	t	4	2	I.	1
16	799010	9211110	3090	Tes, Cajamarca	3	2	4	DI	75 MPa	92.3	118	21	208	3	2	5	2	1	4	1	1	1
17	769030	9215510	3090	Fm. Cajamana	3	2		DI	15 MPa	92.2	116	24	206	3	1	5	2	t	4	2	1	1
18	769010	1215510	3090	Fish Cajamarca	3	2	4	DI	75 MPa	92.2	119	IJ	209	3	2	5	2	1		2	1	1
19	799610	9255510	3090	Fits Cajamerca	3	2	4	DI	75 MPa	92.2	119	18	209	3	1	3	2	1	4	2	1	1
20	769010	#235510	3090	Pas Cajemerca	3	2		Di	T5 MPa	92.2	109	28	199	3	2	3	2	1	4	3	1	1
21	769510	\$253510	3090	Pm. Cajamarca	3	2	4	DI	75 MPs	92.2	112	27	202	1	2	5	2	1	4	2	1	8
22	749010	\$215510	30%	Prs. Cajamerca	3	2	•	DI	75 MPa	92.2	121	16	211	3	3	,	2	1	.4	2	1	T.
23	769010	9255510	3890	Fes. Cejamenta	3	2	4	DI	75 MPa	92.2	109	22	199	3	2	5	2	1.	4	2	1	12
24	769018	9255510	3090	Fig. Calomarca	3	2		DI	75 MPa	97.2	120	28	210	3	2	5	2	1	£	2	i.	1
25	769010	9255510	3090	For, Cajamenta	3	2	4	DI	75 MPs	92.2	115	24	208	3	2	3	2	1	4	1	1	1
							10	Talat		- A)	285	Ð	15								RMR	•1

	RECEN	TRO GEOLÓ	GICO-GZI	DTECNICO	PROVECTO	TRUE		EVALUA	NCIÓN GEOMECAN	CA DE LOS TAL	o zadu	E LA 000	ACTION	PEDREGAL EN EL DI	STRITO Y PROVID	ICIA DE HUALSAYOK					International Sector	eer (Linna)
0.0.000	1.2	1	WE	5-M	UBICACIÓN		Constant Design	and the second			APAN A	4.TO - HI	IALIGATO	DC - HUALGAYOC	CONTRACTOR OF STREET				_			
INTER	IA.	-	2010	173	TESISTA						Bach	KORGE	LUIS RAP	MOS VÁSQUEZ	_				-			
-	2		10-	01	FLDIA:								Jun-24						-			
		- No. By	-truit	1 march 1 march 1	L'ENTRY	and the	Provinsi and		PROM	EDADES DE	LAS DE	SCONT	INUIDA	DES CARTOGRA	FIADAS	1 martine and	line states	- Landard R	FLICNO	ALTERAC -	E Control	CALIDAD D
		DATA GPS		The start of the	MAC	120 800050		TIPOS	RESIST. COMP.		0	DIVENTA	CIÓN	ESPACIADO (m)	PERSIST (m)	ABERTURA (mm)	RUGOS	11/0	DUREZA	METEDA	AGUA	INFORM.
			1000	The state of the state	1	1		E. External	UNIAX	lefth tramo	-			1=>2	1=<1	1-Neda	Johny Rag	1 = Arcilloso	1 = Ninguna	1-inalterada	1 = Seco	1 = Lec. Real
		1			CION	GRADO		Definition						2+206	2=1-3	2-(01	2-8-00	2 = Qz / 58k	2+Duro-Smm	2=Ug. Alt	2 = Humedo	2=Lect Aper
DIS				1	1.fmm	1 = Abe	Jullian Regul	East Norm		ND: 21	1	DIRECC	ION	1=06-02	3 = 3-10	1-0,1-1,0	Jalig Rug	3 = Calcita	3+Duro>Smm.	3=Mod. Alt	3 = Mojado	Jatec Prov
Nm.		0.78035-1	- eta la la	LING AG /	Juley Met	2 = Med	2-Blog-Imend	Firf. Inversa		L:4.50				4=0,2-0,06	4=10-20	4=1,0-5,0	4-Ondulad-lis	a 4 = Oxidos	ArSurverSmm.	6=Moy Alt	4 = Goteo	
	ESTE	NORTE	COTA	FORMAC	3 =Mod	3 = 840	3-Blog y Capes	Fd=F. Direce			1			5= < 0,05	5 = >20	9= >5	5×Sueve	5 + Roca Tritur	5=Suave>5mm.	5-Descomp	5 = Flujo	
					4-Alt Met		4+Fract-Intenso	mt-Microfalla	- Prom golpes	A= 4,66		1		1.7.75		1000	1.000	6 + 8x				
					5+Conol	1		SE-Sobrees	101	1.00	ZIR	DIP	DD	22.1	-		in the second	7 = Panizo	1.1010.	040	-	
				A AND AND A			Agregar M8, 8, M, P, MP	C=Contecto	3 Golpes	r, ···	1.000	1000						# + Veta	1000	1220		
26	769010	9255510	3090	Fm, Cajamarca	3	2	4	DI	75 MPa	92.2	118	22	208	3	2	5	2	1	4	2	1	1
27	769010	9255510	3090	Fm. Cajamarca	3	2	4	DI	75 MPa	92.2	117	16	207	3	2	5	2	1	4	2	1	1
28	769010	9255510	30/90	Fm. Cajamarca	3	2	4	DI	75 MPa	92.2	117	26	207	3	2	5	2	1	4	2	1	T
29	769010	9255510	3090	Pm. Cajamarca	3	2	4	DI	75 MPa	92.2	117	27	207	3	2	5	2	1	4	2	1	1
30	769010	9255510	3090	Fm. Cajamarca	3	2	4	DI	75 MPa	92.2	114	23	204	3	2	5	2	1	4	2	1	1
31	769010	9255510	3090	Fm. Cajamarca)	2	4	DI	75 MPa	92.2	121	21	211	3	2	5	2	1	4	2	1	1
32	769010	9255510	3090	Fm. Cajamarca	3	2	4	D2	75 MPa	92.2	225	67	315	2	2	5	3	1	4	2	1	1
33	769010	9255510	3090	Fm. Cajamarca	3	2	4	D2	75 MPa	92.2	230	74	320	2	2	5	3	1	4	2	1	1
34	769010	9255510	3090	Fm. Cajamarca	3	2	4	D2	75 MPa	92.2	222	69	312	2	2	5	3	1	4	2	1	1
35	769010	9255510	3090	Fm, Cajamarca	3	2	4	D2	75 MPa	92.2	220	64	310	2	2	5	3	1	4	2	1	I
36	769010	9255510	3090	Fm. Cajamarca	3	2	4	D2	75 MPa	92.2	219	69	309	2	2	5	3	1	4	2	1	I
37	769010	9255510	3090	Fm, Cajamarca	3	2	4	D2	75 MPa	92.2	222	73	312	2	2	5	3	1	4	2	1	1
38	769010	9255510	3090	Fm. Cajamarca	3	2	4	D2	75 MPa	92.2	222	68	312	2	2	5	3	1	4	2	.1	1
39	769010	9255510	3090	Fm. Cajamarca	3	2	4	D2	75 MPa	92.2	225	66	315	2	2	5	3	1	4	2	1	4
40	769010	9255510	3090	Fin. Cajamarca	3	2	4	D2	75 MPa	92.2	231	68	321	2	2	5	3	1	4	2	T	1
11	769010	9255510	3090	Fm. Cajamarca	3	2	4	D2	75 MPa	92.2	224	72	314	2	2	5	3	1	4	2	1	1
12	769010	9255510	3090	Fm, Cajamarca	3	2	4	D2	75 MPa	92.2	224	67	314	2	2	5	3	1	4	2	1	1
43	769010	9255510	3090	Fm. Cajamarca	3	2	4	D2	75 MPa	92.2	225	72	315	2	2	5	3	1	4	2	1	1
44	769010	9255510	3090	Fm. Cajamarca	3	2	4	D2	75 MPa	92.2	222	63	312	2	2	5	3	1	4	2	1	1
0	769010	9255510	3090	Fin. Cajamarca	3	2	4	D2	75 MPa	92.2	229	67	319	2	2	5	3	J.	4	2	t	1
-0-	769010	9255510	3090	Fm. Cajamarca	3	2	4	D2	75 MPa	92.2	226	67	316	2	2	5	3	1	4	2	- f	1
/	769010	9255510	3090	Fm. Cajamarca	3	2	4	D2	75 MPa	92.2	221	63	311	2	2	5	3	1	4	2	1	1
8	769010	9255510	3090	Fm. Cajamarca	3	2	4	02	75 MPa	92,2	224	74	314	2	2	5	3	I	4	2	1	1
49	769010	9255510	3090	Fm. Cajamarca	3	2	4	D2	75 MPa	92.2	228	72	318	2	2	5	3	i.	4	2	i	1
50	769010	9255510	3090	Fm. Cajamarca	3	2	4	D2	75 MPa	92.2	230	70	320	2	2	5	3	1	4	2		1
								Talud			285	83	15				1		0.000		RMP	

Rediseñado y adaptada. Dr. Rodriguez, R. - v3 - 2020

也	RECENTS	ID GEOLÁCIK	0-68011	ичко	-	al-15	North State	fviles	ACIÓN OLOMICAN	KA PE LOS TAL	NUMB THE L	A CONC	tante e	IDROMA FIN D. DIST	RITO Y PROVINCI	A DE HUMUDAHOC		Treases -		1	Management and	A closerer
2.95		and and a second	W05-34		URICADON)	-	for the second	L. and			-	D- 16.14	LIGANOR	PRALORYDC	144		Sec. Sec.	SALE VER	1.1.1.1.1			1
N'TEMA	T		JONA 17	5	TENSTA						Bach 20	and u		a váxanz								
dowee	-		10-01		TIONA					-		1	Jun-24									
	1000	1.8776			1005	20	the second		PROPER	ADES DE LAS	DISCON	TINU	DADES (ARTOCRAFIADA	\$							
		DATA GPS			MAC	UID NOCOSO		TIPOS	RESIST COMP.	ROD Trams	04	ANTAC	NCM	(SPACIADO (m)	P(8067 im)	ABERTURA (mm)	NUGOS	er Tiro	DUREZA	ALTERAC- METEOR	AGUA	CALIDAD DE INFORM
1	I				METEORIZ	GRADO	Contraction of the	C-Extract.	060	-				1-+2	1++1	1-Nade	1-May Rog	1 + Arcillenn	1 - Ninguna	leinaitarada	1 = Secu	1 + Lee. Real
1		1			ACION	FRACT.	SM.	0-Olaciasa		U.U.S.				2 = 2-0,6	2+1-3	2=0.1	2+Ragma	2 = Cz / 5/8x	1-Dero-Serm	2-tig. Alt	2 v Rumede	2-Lect Apar
DIS.	-				1-fresco	L + Alto	1-Blog Regul	Fault, Norm		ND: 24	DI	RICO	NON.	1-0.502	3 = 3-20	1-0.1-1.0	Solie. Rig	5 = Caletta	I-Dars-See.	2-Mod. All	3 = Meyada	John Pray
Per.				10000001	2-Lev Met	2 - Mod	2-tiop irregul	Fi-F. Inversa	1.60	L 4,20				4-0,2-0,06	4-10-70	4-10-10	4-Ond-fad-line	4 - Oxidos	Adamentaria.	4-May At	4 - Gates	
1	ESTE	NORTE	COTA	POISAC.	3-Mod	3 - Bain	Judice y Caper	Id-F. Direct						3++0.06	1=>20	9+ 55	Setane	5 = Roca Trittar	S-Same-Smm.	S-Centomp	5 + Perps	
	1.5				A-AR MAR		4-fract-bitemaa	ad-Morafalia	Prom golpes	lo 5,71				1.4-			3 2	6 - Bx		10000000		1
	1.5	10.5			S-Consi		17.00 S.M.M.	SI-Setrees			Z/R	DIP	DO	Sugar o		6.14		7 - Paniga		1		-
		1.1					Agreese MS, B, M, P, MP	C+Cantacta	3 Golges	Te*			1	1.	Sec.			E = Veta			-	
1	769094	9255436	3075	Fm. Cajamarca	2	2	2	E	70 MPa	88.76	215	85	305	3	2	3	2	1	2	2	1	1
2	769094	9255436	3075	Fm. Cajamarca	2	2	2	E	70 MPa	88.76	217	87	307	3	2	3	2	1	2	2	1	t
3	769094	9255436	3075	Fm. Cajamarca	2	2	2	E	70 MPa	88.76	214	81	304	3	2	3	2	1	2	2	1	1
4	769094	9255436	3075	Fm. Cajamerca	2	2	2	E	70 MPa	88.76	219	85	309	3	2	3	2	1	2	2	1	1
5	769094	9235436	3075	Fm. Cejamarca	2	2	2	E	70 MPa	88.76	218	89	308	3	2	1	2	1	2	2	1	t
6	769094	9235436	3075	Fm. Cajamarca	2	2	2	E	70 MPa	58.76	211	88	301	3	2	3	2	1	2	2	1	t
7	769094	9255436	3075	Fm. Cajamarca	2	2	2	E	70 MPa	88,76	221	81	311	3	2	3	2	1	2	2	1	1
8	769094	9255436	3075	Fm. Cajamarca	2	2	2	E	70 MPa	88.76	215	84	305	3	2)	2	1	2	2	ĩ	3
9	769094	9255436	3075	Fm. Cajamarca	2	2	2	E	70 MPa	\$8,76	217	86	307	1	2	3	2	1	2	2	1	1
10	769094	9255436	3075	Fm. Cajamarca	2	2	2	E	70 MPa	88.76	213	90	303	3	2	3	2	1	2	2	1	1
11	769094	9255436	3075	Fen, Cajamarca	2	2	2	E	70 MPa	85.76	216	87	306	3	2	3	2	1	2	2	1	I
12	764094	9215436	3075	Fm. Cajamarca	2	2	2	DI	70 MPa	88,76	219	32	309	2	2	3	3	1	1	2	1	1
13	369094	4255436	3075	Fm. Cajamarca	2	2	2	DI	70 MPa	88.76	140	31	230	2	2	3	3	1	2	2	1	1
14	769094	9255436	3075	Fm. Cajamarca	2		2	DI	70 MPa	88.70	140	14	230		2	3	,	1	2	2	1	1
15	769394	9255436	3913	Em Calamana	3	1	,	DI	70 MP+	85.76	116	117	394		-	,	1		1	2	1	1
16	769394	9,059,00	3015	For Comment	1	2	,	DI	10 MP+	18.76	138	17	210		*	3	3	1	2	2	1	1
17	769094	9255436	3075	Fill Cajamarca		-	2	DI	TO MPs	11.76	130	10	350		1	,	3	1	2	2	1	1
18	769094	9255406	3075	Fill Columnica		-	,	DI	70 MP+	69.76	139	39	467			3	3	1	2	2	1	1
19	769094	9255436	3075	Fm. Cajamarca	-				20 MP-	55.76	140	34	220	2		3	3	1	2	3	1	t
20	789094	9255436	3075	Fm. Capamarca			-	01	70 MTA	88,79	140	30	2.90	4	2	3	,	1	2	2	1	
21	759054	9255436	3075	Fin. Cajamarca	1	1	4	DI	20 MPz	85.70	142	11	232	2	2	3	3	1	2	2	1	1
22	769094	9255436	3075	Fin. Cajamarca	2	1		01	70 5476	68.76	140	37	230	2	2	3)	1	2	2	1	1
23	769094	9255436	3075	Fm. Cajamarca	1	2	2	DI	70 MPa	\$8.76	134	37	224	2	2	3)	1	2	2	1	1
24	769094	.9255436	3075	Fin. Cajamarca	2	2	2	DI	70 MPa	85.76	138	31	228	2	2	3	3	1	2	2	1	1
2	769094	9255436	3075	Fm. Cajamarca	1 2	2	2	DI	70 MPa	88,76	136	41	226	2	2	3	3	1	2	12	1	
-				1000	10.0		1.1.1	Talud			205	58	295	0					-	-	0310	1 11

Reditertada y adaptada. Dr. Rodrigues, R. - v3 - 2020

105	RECEITRO	CEDLÒCIC	o-ceor	ECNICO	NOVECTO			FVALLE	ACIÓN GEOMREAN	ICA BELOS TALAS	DES DE LA C	-	IN FEDE	SAL ON IL DISTN	TO 1 PROVINCIA	DR MUNICIPALITY		1	1980	1.5.101.13	-	
-	1	111	WG5-B	4	INKADON I					AJ	FAIN ALTO-	HE SALES	POC-140	ALCAVOC		597092.0 MIL			102		-	
			20%4 1	15	TESTA:						Bach. KORG	A LUIS P	AMOS VI	ASCINEZ					1.2.2.4			
iðenso			10-02		HOM							Jun-	34									
				THE TYPE	and the second second		A STATE	1	PROPE	DADES DE LAS	DISCONT	DVUTENA	DES CA	RTOGRAFIADA	5							
	D	ATA GPS			MACES	0 100050		TIPOS	RESIST COMP.	RCD Trama	ORI	NTACIÓ	•	LIPACIADO (mi	PERSET (m)	M(DURA ()	M,ASCHS	TIPO	GUREZA	ALTERAC-	ADA	CALIDAD DE
					METRORIZA	GPADO	Martin Restored	L-Estrat.	UPEAX	1.5250.000		-	-	1+>2	1++1	1-Nada	J-May Ray	1 - Arethest	3 = Ningune	1-inaturada] = Sece.	1 = Lec. Real
					CION	PLACE.	and the second s	D-Duclasa		1400				1 = 2-0,6	2=1-3	2=01	Zoffagresa	2 = Qa / Sile	1=DuresSmm	J-Lig Alt	2 = Harmedia	2-Lent Apar
Nm.					1-fresca	1 = Alto	1-Biog Regul	Frief, Norm	8.0	NO: 24	DIP	ecco	N.	3=0.6-0.2	3 = 3-10	1-0,1-1.0	J-Lie Rug	3 + Caletta	J-Durastown,	3-Mod. AR	3 - Mojado	3-Lec Prov
	ESTE	NUMTE	CULL	LITOLOG/	2×Lev Met	2 = Med	2+Biop-bregal	FireF. Inversa	1	L 4.20				4=0,2-0,96	4=10-20	4=1,0-5,0	4-Ondulad-hus	4 = Christen	ArSuper-Smen.	dehtury Alt	4 + Gettere	
	Carle	THE PARTY OF	cuin	FORMAE	3 +Mod	3 = Bajm	3-Bing y Capus	Fd+F. Direcc	Anna and ann	Control of	1			5= × 0,06	5 =>20	3= >5	S-Sorre	5 + Roce Tritter	S-SuperSon.	S<0mcomp	5 + Phyje	
					E-Mt Met		4-fract-Intenso	mf-Microlata	From Earbes	Nº 3,13				1000				15 = Ba				
		-			S-Campi		Anner MR. R. M. P. MP	M-Sobrees.	100		Z/R	DIP	DD					7 + Panizu				
							Called and an unit time.	C=Centacta	2 Juniper	10-				6				8 v Veta				
26	769094	9235436	3075	Fm. Cajamarca	2	2	2	DI	70 MPa	88.76	138	41	228	2	2	3	3	1	2	2	1	t
27	769094	9255436	3075	Fm, Cajamarca	2	2	2	DI	70 MPa	88.76	136	33	226	2	2	3	1	1	2	2	I	1
28	769094	9255436	3075	Fm. Cajamarca	2	2	2	DI	70 MPa	88.76	135	34	225	2	2	3	3	1	2	2	T	1
29	769094	9255436	3075	Fin. Cajamarca	2	2	2	DI	70 MPa	88.76	140	34	230	2	2	3	3	1	2	2	1	1
30	769094	9255436	3075	Fm Cajamarca	2	2	2	DI	70 MPa	88.76	134	30	224	2	2	3	3	1	2	2	1	1
31	769094	9255436	3075	Pen. Cojamorea	2	2	2	DI	70 MPa	88.76	132	41	222	2	2	3	3	1	2	2	1	
32	769094	9255436	3075	Fm. Cajamarca	2	2	2	D2	70 MPa	#8.76	286	70	16	2	2	5	3	1	2	3	1	
33	769094	9255436	3075	Fm. Cajamarca	2	2	2	D2	70 MPa	88.76	282	71	12	2	2	5	3	1	2	2	1	
34	769094	9255436	3075	Fm. Cajamarca	2	2	2	D2	70 MPa	88.76	281	67	11	2	2	5	3	1	2	2	T	1
35	769094	9255436	3075	Fm. Cajamarca	2	2	2	D2	70 MPa	88.76	281	64	11	2	2	5	3	1	2	1	I	
36	769094	9255436	3075	Fm. Cajamarca	2	2	2	D2	70 MPa	88.76	292	76	22	2	2	5	3	1	2	1	T	-
37	769094	9255436	3075	Fm. Cajamarca	2	2	2	D2	70 MPa	88.76	280	72	10	2	2	5	3	1	2	2		-
38	769094	9255436	3075	Pin. Cajamarca	2	2	2	D2	70 MPa	88.76	290	72	20	2	2	5	3	1	2	2	1	
39	769094	9255436	3075	Fm. Cajamarca	2	2	2	D2	70 MPa	88.76	285	76	15	2	2	5	3	1	2		1	
40	769094	9255436	3075	Frs. Cajamarca	2	2	2	D2	70 MPa	\$8.76	287	72	17	2	2	5	3	1	2	2	1	-
41	769094	9255436	3075	Fm. Cajamarea	2	2	2	D2	70 MPa	\$8.76	283	70	1)	2	2	5	3	1	2	3	-	
42	769094	9255436	3075	Fm. Cajamarca	2	2	2	D2	70 MPa	88.76	285	74	15	2	2	5	3	1	2	-	-	-
43	769094	9255436	3075	Fm. Cajamarc	a 2	2	2	D2	70 MPa	\$8.76	285	66	15	2	2	5	3	1	2	2	-	
44	769094	9255436	3075	Fm. Cajamarc	a 2	2	2	D2	70 MPa	88.76	290	68	20	2	2	5	3	1	2	- 4	1	-
45	769094	9255436	3075	Fm. Cajamarc	a 2	2	2	D2	70 MPa	88.76	291	66	21	2	2	5	3	1	3	-		-
46	769094	9255436	3075	Fm. Cajamarc	a 2	2	2	D2	70 MPa	\$8.76	280	69	10	2	2	5	1	1	-	1	-	-
47	769094	9255436	3075	Fm. Cajamarc	a 2	2	2	D2	70 MPa	88.76	286	64	1 16	2	2	5	3		2	,		
48	769094	9255436	3075	Fm. Cajamare	# 2	2	2	D2	70 MPa	\$8,76	287	70	17	2	2	5	3	-	2			
49	769094	9255430	3075	Fin Cajamaro	a 2	2	2	D2	70 MP	88.76	284	1 70	6 14	2	2	5	3	1	2	3	-	1
50	769094	9255436	3075	Fm. Cajamaro	a 2	2	2	D2	70 MP	88.76	283	6	7 11	2	2	5	1	1	1		1	1
								Talud			205	5 5	8 29	5	-						0.000	

Redseñado y adaptado. Dr. Rodrigues, R. - v3 - 2020

Γ	-	TO CEOL	GICO C	EDTELNED		1	Prosent Pro-	IVALU	NORM DEDMIC/N	NICA DE XOU TA	ALVORS DI	LA COM	CUIDN P	EDMOGAL EN EL GHUPSPI	TO Y PROVINCIA D	E HEALDARDC	1177		1	199	Saling Average) and Salest Sectors	AL (1990)
			. 101	15- 84	URICACIÓN			-	Salta Car	-	APAN N	TO HU	REGATION	RUALISAVOC	1			1	1			
action of			304	4 17 5	TESSTA				100000		Back.	ICONCE U	UPS RAME	IN VÁSOLIEZ		Martin Real Property						
cdeve	8		20	-69	FEOIA:		124-13-121			2410			Jun-14	ALL PLUS	See and	State of the state						
		EATS OF			MAC	SED BOCOSO		TIPOS	RESIST. COMP.	RCD Trame		RENTA	DON	EPACADO (m)	PERSIET Int	ARCETURA (russ)	RUSOS.	TIPO	DUREZA	ALTERNE -	ATLA	CALIDAD DE INFORM
					METEORIZA	68400	and set of the set of	E-Estimate	UNIX	- starter			-	1+>1	1++1	1-Nada	1-May Rug	1 · Artilliser	1 = Minguna	1-builterada	1 = 5emp	1+Loc. Real
		1			CION	RACT.		O-Okaciana		and a				1+24.6	1+14	2== 0.1	Interna	1 = Qz / Sile	2=Duro-Seven	2-Lig. Alt	2 = Hamada	2-Lect Agar
DES.					1-freezo	1 = Alty	1-Blog Regul	Fault, Norm		ND: 20		DIRECC	ION.	3+05-02	1 = 3-10	1-03-10	F-Lie Fire	3 + Celtita	3-OurorSeas.	I-Med AR	3 - Magade	Bolat Proy
	-			LITOLOG/	2-Lev Met	7 = Meel	2-Blag-bregd	Rof. Inventa		1.3.8				4-0,2-0,06	4-10-20	4-1.05.0	a-O-dated	A - Daidos	A-Sume-Sime	4-May Alt	4 - Geter	
	ESTE	NORTE	COTA	FORMAC.	3 +Mod	3 - Rajn	S-Blog y Capus	Fd-F. Direct	1.5					5+ (0.06	5++30	91 15	Setune	S = Rece Tither	Selumo See	S-Descoreg	5 = fkas	
					8-cAit Mast		4-fract-intense	mis Microfela	Prom polyms	k= 5,26	-		-	1.0.000	1.1.1.1	1 CA.	a strange	6 - 8a	- Commencer and	(Contractor	a strate	
					S=Compl			Sfalabrees.	Incident		2/8	117	DD				(I I 3	T + Parties				
		_			-		Agregar MB, B, M, P, MP	C-Contacto) Galpes	Υ _e π	C. Contraction	i anci			-			T - Vera				
1	769085	9255546	3085	Fm. Cajamarca	2	2	1	E	70 Mea	90.1	281	77	13	1	2	1	,	1	,	1	1	I.
2	769085	9255546	3085	Fm. Cajamarca	2	2	1	E	70 MPa	90.1	786	71	16	1	3	1	,				1	
3	769085	9255546	3085	Pm. Cajamarca	2	2	1	E	70 MPa	90.1	280	74	10	1	2	1	3	1		7	1	
4	769085	9255546	3085	Fm. Cajamarca	2	2	1	E	70 MPa	90.3	281	80	11	1	2	1	,	1	,	3	1	
5	769085	9255546	3085	Fm Cajamarca	2	2	T	E	70 MPa	90.3	287	78	17	3	2	1	2	1	2	2	1	1
6	769085	9255546	3085	Fm. Cajamarca	2	2	1	E	70 MPa	90_1	282	79	12	3	2	3	2	1	2	2	1	1
7	769085	0255546	3085	Pm. Cajamarca	2	2	1	E	70 MPa	90.3	284	77	14	3	2	3	2	1	2	2	1	. 1
8	769085	9255546	3085	Fin. Cajamarca	2	2	1	E	70 MPa	90.3	278	74	8	3	2	3	2	1	2	2	1	t
9	769085	9255546	3085	Fm. Cajamarca	2	2	1	E	70 MPa	90,3	287	73	17	3	2	3	2	1	3	2	1.	1
10	769015	9253546	3085	Fm. Cajamarca	2	2	1	E	70 MPa	90.3	283	76	13	3	2	3	2	1	2	2	1	1
11	769085	0255546	3085	Fm. Cajamarca	2	2	1	E	70 MPa	90,3	278	75	8	3	2	3	2	1	2	2	1	1
12	769085	9255546	3085	Fm. Cajamarca	2	2	1	DI	70 MPa	90.3	281	66	н	2	2	3	3	3	3	2	1	1
13	769085	9255546	3085	Fm. Cajamarca	2	2	1	DI	70 MPa	90.3	274	63	4	2	2	3	3	1	3	2	1	1
14	769085	9255546	3085	Fin. Cajamarca	2	2	1	DI	70 MPa	90.3	266	65	356	2	2)	3	3	3	2	1	1
15	769085	9255546	3085	Fm. Cajamarca	2	2	1	DI	70 MPa	90,3	268	67	358	2	2	3	3	3	3	2	1	11
16	769085	9255546	3085	Fin. Cajamarca	2	2	1	DI	70 MPa	90.3	260	68	350	2	2	3	3	3	3	1	1	
17	169085	9255546	3085	Fm. Cajamarca	2	2	1	DI	70 MPa	90.3	266	68	356	2	2	3	3	3	3	2	1	1
18	769083	9255546	3085	Fm. Cajamarca	2	2	1	DI	70 MPa	90.3	250	65	340	2	2	3	3	3	1	3	1	1
19	769085	9255546	3085	Fm. Cajamarca	2	2	1	DI	70 MPa	90.3	271	65	1	2	2	3	3	3	1	2	1.	1
20	769085	9255546	3085	Fm. Cajamarca	2	2	1	DI	70 MPa	90.3	265	68	355	2	2	3	3	3	3	2	18-14-1 1	1
21	769083	9255546	3085	Fm. Cajamarca	2	2	1	DI	70 MPa	90.3	263	67	353	2	2	3	3	3	1	2	1.	1
22	769085	9255546	3085	Fm. Cajamarca	2	2	1	DI	70 MPa	90,3	266	60	356	2	2)	3]	3	3	1	
23	7690K5	9255546	3085	Fin Cajamarca	2	2	1	DI	70 MPa	90.3	270	66	0	2	2	3	1)	3	2	1	1
24	769085	9255546	3085	Pm. Cajamarca	1	2	1	DI	70 MPa	90,3	265	66	355	2	2	3	3	1	3	2	See Lines	1
25	769085	9255546	3085	Fm. Cajamarca	2	2	1	DI	70 MPa	90.3	269	62	359	2	2	3	3	3	1	2	1000	1
								TALUD	J		283	46	13		20 - 2				te name		RMR	-1

Rediseñado y adaptado, Dr. Rodriguez, R. - v3 - 2020

1	-	IO CROLÒGI	ICO-GEO	PTECHICO	PROVECTO			EVALU	ACIÓN GEOMEC	ANICA DE LOS 1	ALLIDES	DE LA C	ONCESS	SN PEOREGIAL EN EL	DISTRICTO Y PROVI	PRETA DE INUALDAVOR			Re	1.11	Execution and	e craese
32.7			WHEN		URICACIÓN I	-					AFAN	ALTO -	REALEA	TOC - HUALGATOC					100			
SALTEN	IA.		ZONA	173	TENETA	1000	and the second			1885.25	Bar	da. jong	E LUIS P	AMOS VÁSQUEZ		1200			1 mil			
cócna	0		60-	0.3	FEOIA:	States and the second	A DECISION	-			-	Jun 1	14									
				12:00111			apartice and	T. REAL	STEPERS	(others)	141			V25-WV	Strath.	Color State	State The					
		CIATA GPS			460	CI20 W0C050		TIPOS	RESIST. COMP	ROD Trame	0	UENTAC	ιóΝ	ESPACIADO (m)	PERSET (=)	ABERTURA (mm)	RUGOS.	TIPO	TUESO TUBELA	ALTERAC - METEOR	AGOA	CALIDAD DE DIFORM
			1		METEORIZAC		The second	E-Extract.	LOILAX	1550 Const				1=>2	1=<1	1-Neda	1-May Reg	1 = Arcillous	1 - Negura	1-maiterada	1 = Seco	1 + Lee: Road
					ION	GRADO PRACI.	The second	D-Disclass						2+2-0,6	2=13	2== 0.1	2+Rugota	2 + Q2 / Sille	1-Dep-dam	3-tig Alt	2 × Humedie	J-Led Ager
DES.					1-Fresce	1 = Año	1=Elog-Regul	Feel, Norm		NO. 20	D	(RECCI	ON.	3=0.6-0.2	3 = 3-10	1=0,1-1,0	3-tig. Rag	8 + Caleita	1-Durpidanes	Jukled All	3 = Minjadio	Salar Prov
		Autor PR	000	LITOLOGI	2×Les Met	2 = Med	2=Blog-trregal	FireF. Inventor		1:34				4-020.06	4-10-20	41050	Artestated has	L + Oxidea	I fame loss	Automa Alt	A = Cotm	
	ESTE	NORTE	COTA	FORMAC.	3 =Mod	3 = Bajo	Builling of Canasi	Idel Direr	2 1940 - 040					5-20.06	5= 20	0- 15	Raferana	E - Rece Talker	K-Repaired and	A - Press and	A - Brie	
					4-A1 Met		4-fract-intenso	whitheratalla	Prom golpes	λ= 5,26	-	11	-	2- 1 0,00		100,000	3-straint	S - NOCE TRUE	3*54442734548.	bu Castriburdt	s = ridje	
					S=Compi			SZ-Sohrees			7/8	DIP	00		1		1	T - Beatra				
						-	Agregar M8, 8, M, P, MP	C-Contacto	3 Golpes	Ye"		100	1.00		100			r - ramus			-	
26	769085	9255546	3085	Fm. Cajamarca	2	2	1	DI	70 MPa	00.1	277	60	,	,	2	1	1	1				
27	769085	9255546	3085	Fm. Cajamarca	2	2	1	DI	70 MPa	90.3	368	63	168	-		1	1	1	3	2	1	1
28	769085	9255546	3085	Fm. Cajamarca	2	2	1	DI	70 MPa	90.1	604 AFC	60	338		2	1	3	3	,	2		1
29	769085	9255546	3085	Fm. Cammarca	2	2	1	DI	70 MPa	90.3	266	40	356	2	2	1	1	3	3	2	1	
30	769085	9255546	3085	Fm Cajamarca	2	2	1	DI	70 MPa	90.1	274	65	4	1	2	5	1	1	3	4.	1	1
31	769085	9255546	3085	Fm Cajamarca	2	2	1	D2	70 MPa	90.3	182	28	272	3	2	5	i	1	1	1		1
32	769085	9255546	3085	Fm. Cajamarca	2	2	1	D2	70 MPa	90.3	170	32	260	3	2	5	1	3	1	1	1 .	1
33	769085	9255546	3085	Fm. Cajamarca	2	2	1	D2	70 MPa	90.3	184	24	274	3	2	5	1	3	3	1	1	1
34	769085	9255546	3085	Fm. Cajamarca	2	2	1.	D2	70 MPa	90.3	176	28	266	3	2	5	1	3	3	1	T T	1
35	769085	9255546	3085	Fm. Cajamarca	2	2	1	D2	70 MPa	90.3	179	33	269	3	2	5	1	1	1	1	1	1
36	769085	9255546	3065	Fm. Cajamarca	2	2	1	D2	70 MPa	90.3	184	23	274	1	2	5	1	1	3	1	1	
37	769085	9255546	3085	Fm. Cajamarca	2	2	1	D2	70 MPa	90.3	176	28	266	1	2	5	1	1	3	,	1	1
38	769085	9255546	3085	Fin. Cajamarca	2	2	1	D2	70 MPa	90.3	177	32	267	3	2	5	1	1	1	3	1	-
39	76/9085	9255546	3085	Fm. Cajamarca	2	2	1	D2	70 MPa	90.3	186	23	276	3	2	5	1	1	1	1 i		
40	769085	9255546	3085	Fm. Cajamarca	2	2	1	D2	70 MPa	90.3	183	28	273	3	2	5	1	3	3	1	1	
41	769085	9255546	3085	Fm. Cajamarca	2	2	1	D2	70 MPa	90.3	185	29	275	3	2	5	1	3	1	3	1	1
42	769085	9255546	3085	Fm. Cajamarca	2	2	1	D2	70 MPa	90.3	186	31	276	3	2	5	1	3	1	1	1	
43	769085	9255546	3085	Fm. Cajamarca	2	2	1	D2	70 MPa	90.3	179	27	269	3	2	5	1	1	1	1		
44	769085	9255546	3085	Fm. Cajamarca	2	2	1	D2	70 MPa	90.3	181	23	271	3	2	5	1	1	1	1	1	
45	760085	9255546	3085	Fm. Cajamarca	2	2	1	D2	70 MPa	90.3	177	32	267	3	2	5	1	1	1			1
AF	769085	9255546	3085	Fm. Cajamarca	2	2	1	D2	70 MPa	90.3	184	24	274	3	2	5	1	1	1			
47	769083	9255546	3085	Fm. Cajamarca	2	2	1	D2	70 MPa	.90.3	180	32	270	3	2	5	1	3	1	1		
48	769085	9255546	3085	Fm. Cajamarca	2	2	1	D2	70 MPa	90.3	184	22	274	3	2	5	1	1	2.3	1		
49	769085	9255546	3085	Fm. Cajamarca	2	2	1	D2	70 MPa	90.3	178	30	268	3	2	5	1	T	-1	1		
50	260085	9255546	3085	Fm. Caiamarca	2	2	1	D2	70 MPa	90.3	186	31	276	3	2	5		t	1	1		
-00	101/062	101142						TALUD			283	46	13			100		4	3	*	Pro m	

	RECEPT	NO GROLÓGIE	0-68011	009000	PROVECTO (EVALUAT	ION BOOMECKN	CA DE LOS E	unces i	DE LA C	OWNER	ON PERSON EN E	L DRITETIO Y PROV	THEN BE PERALEMENT			100		-	(Lines)
-	1		1003-0		NERCECTION							ALTO-	HUNG	NOC - HUALGAYDO	8				193			
	-		204A-17	1	TESHTA						Ind	A HORE	DE LUNS R	NAMES WEIGHT								
alanao	-		ED-IM		PEDHA		-						her.	34					1			
			-	0-11.55	To Shak	to and the second			-													
	1 Sec	and and	199	a late	MIC	RIO BOCOSO		TIPOS	RESIST. COMP.	800	0	EMA	pós.	ESPACIADO (m)	PERSIST (m)	ABERTURA (mm)	MUSICI,		DULENO	ALTERAC-	AUDA	CALIDAD D
						1	Contract Contract		UNAL	frame	-	_	-		D. PRE		The solid	7140	DIVEZA	METEOR		DORONA
				2	ON	SALCO FILCT.		CHENDRAM						1**7	1++1	3=Hada	Johny Rog	1 + Arctilant	I + Norgana	Drimatioeradu	1 + Secul	3 = Lec. Real
DIS.							Support Name and	D-Diecleta		ND: 17	1.			2+3-0,8	2=1-5	2== 0.1	7×Pagna	2 + Car / Siller	2-Daro-Sene	2×Lig. Att) = Mumada	2-Lett Apur
Mm.	1. 1.				1-fresce	1 = A/70	I-Bing-Regul	Fa-f, Boon		-	D	(MUCC	30%	1+0.6-0.2	3 + 3-50	3-0.3-10	Solig. Pag	3 + Califita	3-bure-tena.	3-Med. Alt	3 = Mrijada	Joint Prog
	ESTE	NORTE	COTA	FORMAC.	Distance Mat	2 + Mind	2-Biog Bringul	Ref. Inversa		L 4,30				4-0.3-0.04	4-10-20	4+1,01,0	A-Crokeland-Bras	4 - Oxides	AdapterSteel.	A-May NR	4 = Getterp	
	1000				3 -Mind	3 = Baja	3-Biog y Capas	Raid Direct	from prillers	1-1.75				5= < 0.06	5++30	9+ >S	5-Soave	S = Raca Tritur	S-SurveySeye.	S- Broomp	3 + Pluja	
	1	1		1.1.1.1	Buddt blief		Anfract-Interna	mh-Microlada			07					1000	1000	S = Re				
					SeCompl	1.11	Agringer MA. B. M. F. MP	12-Sahrees.	1 Gelees	10	2/8	DIP	DD	1 85		10.0		7 - Panios				1
-				-			And the second second	C+Caritante		1					1000			# = Vieta	1			
1	769011	9255470	3051	Fm. Cajamarca	2	2	1	E	77 MPa	93,71	142	31	232	2	3)	2	I	2	2	2	1
2	769081	9255478	3058	Fer. Cipamorca	2	2	1	E	77 MPa	93.71	145	34	235	2	3	3	2	1	2	2	2	1
3	769081	9255470	3058	Fin. Cajamarca	2	2	1	E	77 MPa	93.71	141	35	231	2	1	1	2	1	3	1		
4	769083	9255470	3058	Fm. Cajamerca	2	2	1	E	77 MPa	93.71	137	32	227	2	3	3	2	1	,		*	1
5	769961	9255470	3058	Fm. Cajamarca	2	2	1	E	77 MPa	93.71	135	29	225	2	1	1	,			-	4	1
6	769081	9255470	3058	Pm. Cajamarca	2	2	1	E	77 MPa	93.71	145	34	236	2	1	1	3	1		2	2	1
7	769061	9255470	3058	Fm. Cajamarca	2	2	1	E	27 MPa	93.71	144	32	214	2	1	1			1	2	2	1
8	769081	9255470	3058	Fm. Cajamarca	2	2	1	E	77 MPa	93.71	138	34	228	2	1	1					2	1
9	769081	9255470	3058	Fm. Cajamarca	2	2	1	I	77 MPa	93.71	141	29	231	2	1	1	2			2	2	1
10	769081	9255470	3058	Fm. Cajamarca	2	2	1	E	77 MPa	93.71	143	32	233	2	1	1		-		4	2	1
11	769061	9253470	3056	Fin. Cajamarca	2	2	1	E	77 MPa	91.71	110	78	229	,	1	1		-	-	2	2	1
12	769051	9255470	3058	Fm. Cajamarca	2	2	1	DI	77 MPa	93.71	711	14	111			,		1	2	2	2	1
13	769081	9255470	3051	Fm. Cajamarca	2	2	1	Di	77 MPa	93.71	710	14	110					1	2	2	2	1
14	769051	9255470	3058	Fm. Cajamarca	2	2	1	DI	77 MPa	01.71	220	12	110		2	3	2		2	2	2	1
15	769001	9255470	3058	Fm. Cejamarca	2	2	1	Di	77 MPa	93.71	236	85	126	2	2	1			2	2	2	1
16	769081	9255470	3058	Fm. Cajamarca	2	2	1	DI	77 MPa	93.71	213	15	323	2	;	1	1		2	2	2	1
17	769081	9255470	3058	Fo. Cajassarca	2	2	1	DI	77 MPa	93.71	228	15	318	2	2	1	,	1	2	2	2	1
18	769081	9255470	3058	Fm. Cajamarca	2	2	1	DI	77 MPa	93.71	236	80	326	2	2	1	,	1	2	1	2	1
10	769081	9255470	3058	Fm. Сајаланса	2	2	1	DI	77 MPa	93.71	232	15	322	2	2	1	1	1	1	2	2	1
20	769081	9255470	3058	Fm. Cajamarca	2	2	1	DI	77 MPa	93.71	237	17	327	2	,	1			2	2	2	1
21	769081	9255470	3058	Fm Cajamarca	2	2	1	DI	77 MPa	91.71	230	79	320	3		1	1		2	2	2	1
22	769081	9255470	3058	Fm. Cajamarca	2	2	1	DI	77 MPz	93.71	222	-	112			,			2	2	2	1
23	769051	9255470	3058	Fin. Calamarca	2	2	1	Di	77 MB	10.14	333	100	347			1	2	1	1	2	2	1
24	769081	9255470	3058	Fin. Criamana	2	2		DI	77 3478	73.74	434	89	344	2	2	3	2	1	2	2	2	1
25	76/9081	9253470	3058	En Crimera	1	1			TIMPS	73.71	230	86	320	2	2	3	2	1	-2	2	2	1
	area a	J. Mar. J. Mar.	1000	sue columnes			1 1	101	77 MPa	93.71	238	1 84	328	2	2	3	2	1 3	2	3		V

Rediseñado y adaptado. Dr. Rodriguer 8 - - 1, 2020

	-	CROLÈCH	11-00011	trace	-	12.00	1000000	-	Constant of Constant	Rect IN LINE TH		-	-	-					1			
	T		WOL &		(Incacidie)					1000											foreita.	·
C. Same			2000 J7	1	TENETA;						area ar	G - weine	Earrier,	HORIGANCE								
(como			12-94		MONA:						-	and the	m.78	4 weeks								
					-0.85-2	11.51.62	United States	-				-		1								
		DATA GPG			MACE	0.4000360		193	NESST. COMP.	-		nerxoð		Emclosed	Manager and	ABERT 1988. (main)	NUMER		1.2947	ajmise :		CALIDAD DR
					METEORIZACI	66600	and the second second	1.4mati	UNKAY				-		1.000	100000000000000000000000000000000000000		641	SUME26	ANETEOM	In The L	INFORM
					678	PEACT.		D-Olefera		-					1++1	1-Made	Dought and	t = tooffinal	1 - Mirgona	1-materials	1 × Seco	Entre Real
1963.					1-France	1 = 40Hz	1-Ring-Regul	Food, Stern		100 17				5-554	1-14	5	2-Region	2 + 126 / 1284	D-Durry-Sound	D-EM YM	2 = Hismunite	2-keet Apor
	-	1000	1	100000	2 leville	2 + Mat	2-Bus inegal	Ford Images		1.00		or Co		1-0-01	1-1-10	10 DM	peak pre-	1 × Cult Ma	3-Barc-Isea	tukhuk At	3 - Mugadia	Indust Prove
- 1	en	NORTH	CIPTA	FORMAC.	3 -Blad	F-Sain	billion o Canan	144 5000		2.00				*+1,2-0,78	8-9-3	1-13-15	8-Confulad Ing	8 = (hidden	differentieren,	Arithtig Alt	A + Gotes	
1					A-Alt Mar		Auf rart Interna	address of the	Print gelgen	3-6/5	-		-	3128	\$+588	5- >1	Schaper	5 + Roca Tritur	Schumen Seale,	1-Decomp	X = Phase	
					5-Const	-				-								6.+ Px	-			
							Agregian \$45, 5, 50, 9, 507	C. CORPORT	1 Solpes	v	2.1	07	80					7 = Panica				1
54	100001	0164,870	1000	-		-		Creates		-		_	_		-			# + Vera				
27	Public I	3422410	3456	Pm. Cajamanta	2	2	1	DI	77 MPs	93.78	235	12	325	2	2	3	2	1	2	1	2	1
21	7674081	9235479	3056	Pm. Cajamanta	2	2	1	DI	77 MPa	\$3.71	236	83	326	2	1	3	2	1	1	2	2	1
21	76/0(81	5235470	3058	Fm. Cajamarca	2	2	1	DI	77 MPa	93.71	233	10	325	2	2	3	1	1	1	2	2	1
29	369061	9254470	3058	Fm. Cajamanta	2	2	1	DI	77 MPa	99.71	232	\$1	322	1	2	1	2	1	2	1	2	1
30	769081	9255470	3058	Fm. Cajamanta	1	2	1	চা	77 MPa	93.71	228	55	318	1	2	1	1	1	2	2	1	1
31	769061	<u>921M70</u>	3058	Fm. Cajamarca	1	2	1	02	77 MPa	93,71	322	35	52	2	2	3	1	1	2	2	3	1
32	76/9081	9235426	3058	Fm. Cajamarca	2	2	1	D2	77 MPa	93.71	327	60	57	2	2	3	1	1	1	1	1	1
33	769051	9255470	3058	Fm Cajamarca	3	2	I.	02	77 MPa	93.71	316	54	45	2	2	3	3	1	2	1		1
34	769051	9255470	3058	Fm. Cajamarca	2	2	1	02	77 MPs	93.71	327	49	57	2	2	3	1	1	1	1	1 3	
35	769981	9255470	3058	Fm. Cajamarca	2	2	1	02	77 MPa	93.71	316	60	45	2	2	3	2	1	,	,	1	1
36	764081	9255470	3058	Fm. Cajamarca	2	2	1	02	77 MPa	93.71	311	52	-41	2	2	3	2	1	1	2	2	1
37	769081	9255470	3058	Fm Cajamarca	2	2	1	02	77 MPa	93.71	323	58	.53	2	2	1	2	1	2	1	2	1
38	769081	9255470	3058	Fm. Cajamarea	1 2	2	1	D2	77 MPa	93.71	318	- 59	41	2	1	3	2	1	1	1	3	1
39	769081	9255470	3058	Fm. Cajamarca	2	2	1	D2	77 MPa	93.71	320	54	.50	2	2	3	2	1	1	1	1	1
40	769081	9255470	3051	Fm. Cajamarca	2	2	1	D2	77 MPa	93.71	327	12	57	2	2	1	2	.1	2	2	2	
41	769061	9255670	3058	Fm. Cajamarci	2	2	1	D2	77 MPa	91.71	317	57	47	1	2	3	1	1	2	1	1	1
43	366091	0255470	3058	Fm. Cajamano	2	2	1	D2	77 MPa	93.71	315	51	45	1	1	1	1	1	1	1	1	1
4	760051	0355439	3036	Fin. Cajamano	7	1	1	D2	77 MPs	93,71	327	55	11	1	1	3	1	1	1	1	1	
45	760001		1040	Fm. Calamarc	1	2	1	D2	77 MPa	93.71	310	51	40	1	2	3	2	1	2	1	3	1
40	709061	945594.0	1 3058	Pm. Cajamaru	a 2	2	1	02	77 MPs	93,71	315	55	45	2	2	3	2	1	2	3	- 2	1
40	104091	9735478	3058	Fm. Cajamarc	a 2	2	1	D2	TT MPa	93.71	321	60	51	1	2	,	2	1	2	1	1	1
41	769081	9/55470	3051	Fm. Cajamarc	a 2	2	1	D2	77 MPa	93.71	325	52	55	2	2	1	1	1	2	1	- 2	1
48	76/9081	9255470	1 3058	Fm. Cajamaro	a 2	2	1	D2	77 MPa	93.71	327	55	57	1	2	3	3	1	1	2	1	1.
49	.769081	9255478	3058	Fm. Cajamare	a 2	2	1	D2	77 MPa	93.71	322	.50	2	1	1	3	2	1	1	1	2	1
50	769061	925547	3058	Fm. Cajamaro	a 2	2	1	02	77 MPa	93.71	325	2	55	2	1)	2		1	1	- 2	1-1-
								TALUD			330	65	60								HMH	619

1	REGIST		CO-GROTE	ENICO	PROVECTO			EVALU	ACIÓN GEOMECANIC	A DE LOS TALUE	IES DE LA	CONCEN	ION PED	ALOAL ON EL DISTRI	NO T PROVINCIA	DE HUALGATOR					lunder	
-		i de la compañía de V	WES MA	14073-0	UNICADÓN					AF	AN ALTO	- HUALC	SAYOC - I	RIALGAYOC					- ALLER			
STEMA	t		20NA 17	5	TENSTA						Rach. JO	NOE LINS	RAMOS	vksquitt					-			
00160			16-05		PLONA:						-	As	n-24							27. H. W. T.		
	131	6.00	-						_		1.1.1			and the second second		Internet a second	1		LENO	417774		CHIDADI
		DATA GPS		E mark	MAC	120 1100050		TIPOS	PESIST. COMP.	ROD Trame	0	RIENTAC	ión -	ESPACIADO (m)	PERSIST (m)	ABERTURA (mm)	RUGOS	TIPO	DUREZA	METEOR	AGUA	INFORM
					METROPITIC	CT400	The second second	L-Lanett.	UNIX	Contraction of	-	-	-	1+>2	1++1	1-Neda	LoMay Nag	1 = Arcilloso	1 + Ninguna	Intrafferada	1 = Seco	1 = Lec. Real
					ION	FRACT.		D-Diaciosa	100000	The second				2=240,6	2 = 1-3	2== 0.1	2-Rugosa	2 + Qz / Silic	2-Duro-Smm	2+Cig. Alt	2 = Humedo	2×Lect Apar
8,					1-frence	1 = Alto	1-Blog-Regul	Fa=F, Norm	•	MD: 10	D	IRECCI	ON.	3=0,6-0,2	3 = 3-10	3-0.1-1.0	3-Lig. Rug	3 = Caleita	J-Dura>Smm.	3+Msd. Alt	3 = Mojado	Julec Proy
•		i		100000/	2-Lev Met	2 = Med	2-Blog-Irregul	FivF. Inversa	10.0	1:2.3	1			4-0,2-0,06	4=10-20	4=1,0-5,0	4-Ondulad-lise	4 = Oxides	4-Surve-Smm.	4-Muy Alt	4 = Goten	-
	ESTE	NORTE	COTA	FORMAC.	3-Mod	3 = Bajo	3-Blog y Capas	Fé+F. Direcc		1.00	1			5= < 0,06	5 = >20	91 25	SaSurre	5 = Roca Tritur	5-Surve>Smm.	S=Descomp	5 = Flujo	-
		s			4-Alt Met		A-Fract-Intenso	mt-Microtella	Prom golpes	2-43				1000				6 = 8x	10000			
				1.1.1	S-Compl	1000		SE«Sobrees.	1	1977	Z/R	DIP	DD					7 - Panizo				
	-						Agregar MB, B, M, P, MP	C=Contacto	Joolpes	P.,							16.15	# = Veta				
1	769101	9255521	3058	Fm. Cajamarca	2	3	1	E	75 Mpa	93	132	33	222	3	3	3	2	1	4	2	1	1
2	769101	9255521	3058	Fm. Cajamarca	2	3	1	E	75 Mpa	93	131	35	221	3	3	3	2	1	4	2	1	I
3	769101	9255521	3058	Fm. Cajamarca	2	3	1	E	75 Mpa	93	136	27	226	3	3	3	2	1	4	2	L.	T
4	769101	9255521	3058	Fm. Cajamarca	2	3	1	E	75 Mpa	93	131	33	221	3	3	3	2	1	4	2	I.	I
5	769101	9255521	3058	Fm. Cajamarca	2	3	1	E	75 Mpa	93	127	27	217	3	3	3	2	1	4	2	1	1
6	769101	9255521	3058	Fm. Cajamarca	2	3	1	E	75 Mpa	93	138	34	228	3	3	3	2	1	4	2	1	1
7	769101	9255521	3058	Fm. Cajamarca	2	3	1	E	75 Mpa	93	125	34	215	3	3	3	2	1	4	2	1	1
8	769101	9255521	3058	Fm. Cajamarca	2	,	1	E	75 Mpa	93	135	30	225	3	3	3	2	1	4	2	1	1
9	769101	9255521	3058	Fm. Cajamarca	2	3	1	E	75 Mpa	93	128	36	218	3	3	3	2	1	4	2	1	1
10	769101	9255521	3058	Fm. Cajamarca	2	3	1	E	75 Mpa	93	132	37	222	3	3	3	2	1	4	2	1	1
11	769101	9255521	3058	Fm. Cajamarca	2	3	1	E	75 Mpa	93	136	35	226	3	3	3	2	1	4	2	1	1
12	769101	9255521	3058	Fm. Cajamarca	a 2	3	1	E	75 Mpa	93	129	33	219	3	3	3	2	1	4	2	1	1
13	769101	9255521	3058	Fm. Cajamarca	* 2	3	1	DI	75 Mpa	93	313	57	43	3	2	3	2	-1	4	2	1	1
14	769101	9255521	3058	Fm. Cajamarc	a 2	3	1	DI	75 Mpa	93	307	56	37	3	2	3	2	1	4	2	1	1
15	769101	9255521	3058	Fm. Cajamarc	a 2	3	1	DI	75 Mpa	93	311	62	41	3	2	3	2	1	4	2	1	1
16	769101	9255521	3058	Fm. Cajamare	a 2	3	1	DI	75 Mpa	93	309	56	39	3	2	3	2	1	4	2	1	1
17	769101	9255521	3058	Fm. Cajamare	a 2	3	1	DI	75 Mpa	93	315	59	45	3	2	3	2	1	4	2	1	1
10	769101	9255521	3058	Fm. Cajamarc	a 2	3	1	DI	75 Mpa	93	315	58	45	3	2	3	2	1	4	2	1	1
50	760101	9235521	3058	Fm. Cajamare	a 2	3		DI	75 Mpa	93	316	59	46	3	2	3	2	1	4	2	1	I.
20	769101	0346651	3038	Fm. Cajamare	2	3	1	DI	75 Mpa	93	308	61	38	3	2	3	2	1	4	2	1	I
22	769101	0266531	3058	Fm. Cajamare	2	3		DI	75 Mpa	93	307	61	37	3	2	3	2	1	- 4	2	1	1
23	769101	9255571	3058	Em Caisman				DI	75 Mpa	93	312	57	42	3	2	3	2	1	4	2	1	1
24	769101	9255521	1058	Em. Caiamarc		1		DI	75 Mpa	93	315	60	45	3	2	3	2	1	4	2	1	1
25	769101	9255521	3058	Fm Caisman		1	1	01	75 Mpa	93	314	59	44	3	2	3	2	1	4	2	1	1
-			1.00	1 your callednard	-	1	1	U	75 MP8	93	316	37	46	3	2	3	2	1	4	2	1	1

Diseño Original : M.Sc. Victor Talentina, 2008

Rediseñado y adoptado. Dr. Rodriguez, R. - v3 - 2020

	RECENT	NO GROUÃO	acto-carott	LCNICO	PROVECTO :			Pencili	NOON GROWELAW	CA ER LIDE TALLA	DES DE	LA CON	cnide.	PEOPEGAL EN EL DIS	terms y Peovee	CM DE HUMLISHHOC					turilin	and Disease
			WED #	H.	URICACIÓN					A	NUM AND	о на	RISAYO	C HEMALGANGC					-			
STEND .			PORts 1	7.6	TENETA:						Bach, H	ORGE L	CHER, BLANN	es vásovez								
0060			10-65		TECHA			_			_		3cm-74						-			
		In the second						1.00														
		DATA OPS			MACON	D NOCESO		7905	RESIST. COMP.	ROD Tramo	0	RENTA	cón	(SPACADO)m)	PERSET (w)	ARENTURA (mm)	#1905	tax3	DUREZA	ALTERAC- METEOR	AULIA	CALIDAD (BIFORM
				1	METEORIZAC	68420	A CONTRACTOR	t-torent.	- ceu					1+>2	1+<1	1-Mada	1-May Pag	1 = Arctiosa	1 = Minguma	1-Inglinearita	t = Sacci	1 + Ler. Real
_					ION	FRACT.	Contraction of the	D-Okaciana			1			2 - 2-0,8	2+1-1	2-0.1	2-Rogens	2 = Oz / Sille	2-DamicSener	2+Lig Alt) - monado	2-Last Apar
10. 10.			1		Infresis	1 = Alto	1-Bine Regul	/n-f. Norm		MD: 10	0	RECO	NOR	1+0.6-0.2	3 + 3-10	3-0,3-1,0	3-Up Rog	3 - Calena	J-Durphisees	3-Mod Alt	3 = Mogado	3-Lec Pres
	1571	NORTE	CUTA	LITOLOG/	John Mat	2 + Mut	2-Sop-treps	flief, trustige		1.2.1	1			4-0.2 0.06	8-10-20	4-1.83.8	a-Ondulad Itua	4 = Oustes	E-Super-Seen	6-Shry Alt	4 × Elates	
		100.00	COTH	FORMAC.	1 +Mod	1 - Rejo	2-Bing y Capes	Fd-F. Direct		-	1			5+ (0.06	5 =>20	5= > S	3-Surve	5 = Roca Trittar	S-Super-Smm.	3-Descenge	5 × Phys	
					5-Alt Met		Andract-Internat	est-Merofalla	Proin golpes	3-4,3		1						E = Bu				
					SiCompl			SZ-Sobrem.			Z/R	DIP	80					7 + Panico				
_							- stude no. e. o. r. ur	C+Centerta	1 Golpen	P.,								8 = Veta				1
26	769101	9255521	3058	Fin. Cajamarca	2	3	1	DI	75 Mpa	93	315	55	45	3	2	3	2	1	4	2	1	1
27	769101	9255521	3058	Fm. Cajamarca	2	3	1	DI	75 Mpa	93	311	52	41	3	2	3	2	1	4	2	1	1
28	769101	3255521	3058	Fm. Cajamarca	2	3	1	DI	75 Mpa	93	312	55	42	1	2	1	2	1	4	2	1	1
29	769101	9255521	3051	Fm. Cajamarca	2	3	1	DI	75 Mpa	93	307	\$7	37	3	2	3	2	1	4	2	1	1
30	769101	9255531	3058	Fm. Cajamarca	2	3	1	DI	75 Mpa	93	313	53	43	3	2	3	2	1	4	2	1	1
31	769101	9255521	3051	Fm. Cajamarca	2	3	1	D2	75 Mpa	93	314	60	44	1	1	3	2	1	4	2	1	1
32	769101	9255521	3058	Fes. Cajamarca	2	1	1	D2	75 Mpa	93	47	75	137	3	1	3	2	1	4	2	1	1
33	769101	9255521	3055	Fm. Cajornerca	2	3	1	D?	75 Mpe	93	46	71	136	3	1	3	2	1	4	2	1	1
34	769101	9255521	3051	Fm. Cajamarca	2	3	1	D2	75 Mpa	93	44	73	134	3	1	3	2	1	4	2	1	t
35	769101	9255521	3051	Fm. Cajamarca	2	3	1	D2	75 Mpa	93	45	76	135	3	1	3	2	1	4	2	1	1
36	769101	9255521	3051	Fm. Cajamarca	2	1	1	D2	75 Mpa	93	45	75	135	3	1	3	2	1	4	2	1	1
37	769101	9255521	3058	Fm. Cajemarca	2	3	1	D2	75 Mpa	93	42	72	132	3	1	3	2	1	4	2	1	1
38	769101	9255521	3058	Fts. Cajamarca	2	3	1	D2	75 Mpa	\$3	51	71	141	3	1	3	2	1	4	2	1	1
39	769101	9255521	3058	Fm. Cajamarca	2)	1	D2	75 Mpa	93	44	70	134	3	1)	2	1	4	2	1	1
40	769101	9255521	3058	Fm. Cajamarca	2	3	1	D2	75 Mpa	93	51	72	141	3	1	3	2	1	4	2	1	i.
41	769101	9255521	3058	Pm. Cajamarca	2	3	1	D2	75 Mpa	93	50	69	140	3	1	3	2	1	4	2	1 I	1
42	769101	9255521	3058	Fm, Cajamarca	2	3	1	D2	75 Mps	93	48	72	138	3	1	- 3	2	1	4	2	1	1
43	769101	9255521	3058	Fm. Cajamarca	2	3	1	D2	75 Mpa	93	46	72	136	3	1	3	2	1	4	2	1	1
44	769101	9255521	3058	Fin. Cajamarca	2	1	1	D2	75 Mpa	93	48	70	138	3	1	3	2	1	4	2	1	1
45	769101	9255521	3058	Fm. Cajamarca	2	3	1	D2	75 Mpa	93	53	78	143	3	1	3	2	1	4	2	I	1
46	769101	9255521	3058	Fm. Cajamarca	2	3	1	D2	75 Mpa	93	54	72	144	3	1	3	2	1	4	2	1	1
47	769101	9255521	3058	Fm, Cajamarca	2	3	1	D2	75 Mpa	93	48	71	138	3	1	3	2	1	4	2	1	1
48	769101	9255521	3058	Fm. Cajamarca	2	3	1	D2	75 Mpa	93	48	78	138	3	1	3	2	1	4	2	1	1
49	769101	9255521	3058	Fm. Cajamarca	2	3	1	D2	75 Mpa	93	49	71	139	3	1	3	2	1	4	2	1	1
50	769101	9255521	3058	Fm. Cajamarca	2	3	1	D2	75 Mpa	93	42	78	132	3	1	3	2	1	4	2	1	1
				11 - N				TALLES														

S.C.C.	REGIST	RO GEOLÓG	co-czon	ICNICO	montore			EVALU	ACIÓN GEONIFCĂ	NICA DE LOS TA	wroes o	DE LA C	CONCESS	IN PEDREGAL EN EL	DISTRITO Y PROV	INCIA DE HUALGAVOC			(45)		81238.458781 84 (13889)	-
			WI[]]-8		UNICACIÓN						-	M. TO -	HUNDA	VOC - HUALGAVOC					1000			
ISTEMA			2084 1	75	TENSTA:						Bach	. 1040	GE LUIS R	AMOS VÁSQUEZ								
00400			16-04		PECHA:								Jun-J	14								_
			331																	-		200
		DATA OFS	19.19		MACEO	100050		TIPOS	HISET COMP.	California	0	HENTA	NOON	ESPACIADO (m)	PERSIST (m)	ARENTURA (mm)	RUGOS	M	111965	ALTERAC.	ASUA	CALIDAD DE
				19	and an and a second				UNIAX	ROD Tramo	-	1.5	1000	Contraction of the	Pardison Para	A second second	a second second	TIPO	DUREZA	married	1.100.10	in the second
					CION	FRACT.	-	E-Estratit,			1			1+>2	1+41	1-Nada	1-May Rog	I * Artifiese	1 = Minguna	Jeinafterada	I = Seco	1 = Lec. Real
DIS.					tuforeco.	1+400	Jullion Based	D-Discisse		ND: 10		mere		2 * 2 0,6	2+1-3	2=<0.1	2=Pegosa	1+OX/SHE	1-0-0-544	Zving Alt	2 = Humedo	Inter Part
N/IL				LITTOL OCI	Teles Mar	1 - Mad	T-Red weight	FRAF, North	•		0	entro	CION,	3 = 0,6-0,2	3 = 3-10	3=0,1-1,0	I-Lig. Rig	3 + Caleita	3+Oursysmin,	J=Mod. Alt	3 = Majada	3+LEC Proy
	ESTE	NORTE	COTA	FORMAC.	Tulkal	2 + King	Zvillion in France	Fort, Inventa		1.2				4-0,2-0,06	4=10-20	4+1,03,0	4-Ondulad-lisa	4 = Calidos	4-Sume-Smm	4=Muy Alt	4 = Goten	
					de Alt Mart	2 . edla	Andrast Johnson	michtiondalla	Prum gnipes	λ= 5	-	-	1	5+ < 0,06	\$ =>20	9- >5	3-5684	5 = Roca Tritur	S=Surve>Smm.	S+Descomp	5 = Flajo	
		24			3-Compl			tt-Cabrage		-	910	-	-					G + Br				
	1.50	n	and a				Agregar MB, B, M, P, MP	CrCentarta	3 Golpes	Y,*	6JK	Der	00		1.56	-		7 + Panize				
1	769115	9255565	3057	Fm. Cajamarca	2	2	1	E	S0 Mpa	90.9	130	ч	220	2	1	1	,	1	1	,	1	1
2	769115	9255565	3057	Fm. Cajamarca	2	2	1	E	80 MPa	90.9	131	18	221		1				+			
3	769115	9255565	3057	Fm. Cajamarca	2	2	1	E	S0 MPa	90.9	131	18	221		,							
4	769115	9255565	3057	Pm. Cajamarca	2	2	1	E	S0 MPa	00.9	130	15	220									
5	769115	9255565	3057	Fm. Cajamarca	2	2	1	F	S0 MPa	0.00	137	14	212						-		1	
6	769115	9255565	3057	Fm. Cajamarca	2	2	1	F	30 MPa	00.9	125	10	217						4	- 1		
7	769115	9255565	3057	Fm. Cajamarca	2	2	1	F	R0 MPa	00.0	120	17	210									
8	769115	9255565	3057	Fm. Cajamarca	2	2	1	F	\$0 MPa	00.0	127	177	217				1		4	2	1	
9	769115	9255565	3057	Fm. Cajamarca	2	1	1	E	SO MPa	90.0	124	32	222	2	3	4	2		4	2	1	1
10	769115	9255565	3057	Fm. Cajamarca	2	2	1	F	SO MPa	90.9	124	20	219		3	4	2	1	4	2	1	1
11	769115	9255565	3057	Fm. Cajamarca	2	2		E	S0 MPa	90.9	135	12	225			-	2		4	2	1	1
12	769115	9255565	3057	Fm. Cajamarca	2	2	1	E	SO MPa	00.0	177	11	317	2	,		2		4	2	1	1
13	769115	9255565	3057	Fm. Cajamarca	2	2	1	DI	S0 MPa	0.0	705	1	217				1		4	2	1	
14	769115	9255565	3057	Fm. Cajamarca	2	2	1	DI	S0 MPa	90.9	201	10	21	1			2		4	2	1	1
15	769115	9255565	3057	Fm. Cajamarca	2	2	1	DI	SO MPA	00.0	304	0	21				1	1	4	2	1	
16	769115	9255565	3057	Fm. Cajamarca	2	2	1	DI	80 MPa	00.0	204	46	24				2		4	2	1	1
17	769115	9255565	3057	Fm. Cajamarca	2	2	1	DI	80 MPa	00.0	200	10	- 24	4			2	1	4	2	1	1
18	769115	9255565	3057	Fm. Cajamarca	2	2	1	DI	SO MP-	00.0	300	10	10		2	4	2	1	4	2	1	1
19	769115	9255565	3057	Fm. Cajamarca	2	2	1	DI	80 MPa	90.9	207	50	19	2	2	4	1	1	4	2	1	1
20	769115	9255565	3057	Fm. Cajamarca	2	2	1	DI	80 MPa	90.9	290	50	20	1			2		4	2	1	
21	769115	9255565	3057	Fm. Cajamarca	2	2	1	DI	80 MPa	90.9	296	56	26	,	2		2	1	4	2		1
22	769115	9255565	3057	Fm. Cajamarca	2	2	1	DI	80 MPa	90.9	301	47	11	2	,				4	2	1	1
23	769115	9255565	3057	Fm. Cajamarca	2	2	1	DI	80 MPa	90.9	299	54	29	2	;		*		-	1		
24	769115	9255565	3057	Fm. Cajamarca	2	2	1	DI	S0 MPa	90.9	298	55	28	2	2		2			2	1	
25	769115	9255565	3057	Fm. Cajamarca	2	2	1	DI	80 MPa	90.9	291	53	21	2	,				4	2		1
				11. V = 1 = 1				TALUD		-	305	55	15	-			.4	1	4	2	1	1

	REGIST	no crotos	ко-скот	0000	MOTO			PVALU	ACIÓN GEONIECĂ	NICA DE LOS TA	wees e	W LA C	ONCES	H PERKOAL IN TL	DISTRITO Y PROV	INCIA DE INUALGAVOC					800348,545341 (15 (15989)	
-			WOL-8		URICACIÓN						-	4.10-	HUNGA	VOC - HUALGAVOC					VSE/		Loger Blor	
ISTEMA			2084 1	75	ATSETS:						hack		E LOS R	AMOS VÁSQUEZ								
cóexso			to-or		PTONA								Jun-7	u								
		3	33	N. C. S. S. S. S.	ALCON NO.		State of the state												16-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-		100	
		DATA OPS	3.4		MACEO	NOCOSO		TIPOS	RESET. COMP.	BOD Trama	OF	HENTA	cón	ESPACIADO (m)	PERSIST (m)	AMENTURA (mm)	RUGOS	H	00000	ALTERAC- METEOR	AGUA	CALIDAD DE
					METRONIA	-		f-f-tratt.	UNDAX	indo marito	-	-		1	1.41	1-Nada	Tables Bar	1 + Accillana	1 - Nineura	Internet	t - tern	Luler Real
					CION	FRACT.		D-Dieciene		0.0				2=206	2+1-1	2=<0.1	2-Puppas) = Or / Sile	2+DurorSeve	2-tig Alt	2 - Humeda	Z=Leet Ager
DIS. Nm.					1-fresco	1 + Alto	1-Biog-Regul	Fn=F. Norm	4,	ND: 10	D	RECO	CION.	3+0.6-0.2	1+3-10	1=01-1.0	I-Lie Rog	1 + Caleita	3=OuroiSmm	3-Mod. Alt	1 - Mojado	3+Let Prov
	ESTE	NORTE	COTA	LITOLOG /	2-Les Met	2 = Med	2+Rioq-irregul	Fiel, Inversa		1.2				4+0,2-0,06	4=10-20	4+1.050	4-Osdulad-lika	4 = Childos	4-SurverSmm.	d+Muy Alt	4 = Gotes	
		(nonte	10/14	FORMAC.	3 =Mod	3 - Bajo	3-Blog y Capes	1d-F. Direct	Contraction of	100				5++0.05	5+>20	9= >5	S-Same	5 = Roca Tritor	Sesamestern.	S-Descand	5 = Flain	
		1.1			d=Alt hAst		4-fract-letenso	ml-Micrefalla	Prum golpes	1= 5			1					6 - Br				1
					5-Compl		Arriver ML B. M. P. MP	SE-Sobrees.	1 Golgen		2/R	DIP	DO					7 + Panizo				
_			_				a de la de la de la de	C=Centacto		10-					1	100.00	-	8 - Veta				
1	789115	9255563	3057	Fm. Cajamarca	2	2	1	E	80 Mpa	90.9	130	н	220	2	3	4	2	1	4	2	1	1
2	769115	9255565	3057	Fm. Cajamarca	2	2	1	E	80 MPa	90.9	131	38	221	2	3	4	2	1	4	2	1	1
3	769115	9255565	3057	Fin. Cajamarca	2	2	1	E	80 MPa	90.9	133	38	223	2	3	4	2	1	4	2	1	1
4	769115	9255563	3057	Fm. Cajamarca	2	2	1	E	80 MPa	90.9	130	35	220	2	3	4	2	1	4	2	1	1
5	769115	9255565	3057	Fm. Cajamarca	2	2	1	E	80 MPa	90.9	127	34	217	2	3	4	2	1	4	2	1	1
6	769115	9255365	3057	Fm. Cajamarca	2	2	1	E	80 MPa	90.9	125	38	215	2	3	4	2	1	4	2	1	1
7	769115	9255565	3057	Fm. Cajamarca	2	2	1	E	80 MPa	90.9	129	37	219	2	3	4	2	1	4	2	1	1
8	769115	9255565	3057	Fm. Cajamarca	2	2	1	E	80 MPa	90.9	132	32	222	2	3	4	2	1	4	2	1	1
9	769115	9255565	3057	Fm. Cajamarca	2	2	1	E	80 MPa	90,9	124	38	214	2	3	4	2	1	4	2	1	t
10	769115	9255565	3057	Fm. Cajamarca	2	2	1	E	80 MPa	90.9	133	32	223	2	3	4	2	1	4	2	1	1
11	769115	9253563	3057	Fm Cajamarca	2	2	1	E	80 MPa	90.9	131	32	221	2	3	4	2	1	4	2	1	1
12	769115	9255565	3057	Fm. Cajamarca	2	2	1	E	80 MPa	90.9	127	31	217	2	2	4	2	120 1000	4	2	1	1
13	709115	9235365	3057	Fm. Cajamarca	2	2	1	DI	\$0 MPa	90.9	295	51	25	2	2	4	2	1	4	2	1	1
14	709115	9255565	3057	Pm. Cajamarca	2	2	1	DI	80 MPa	90.9	291	53	21	2	2	4	2	1	4	2	1	1
10	769115	9233365	3057	Fm. Cajamarca	2	2	1	DI	\$0 MPa	90.9	294	51	24	2	2	4	2	1	4	2	1	1
10	709115	9235565	3057	Fm. Cajamarca	2	2	1	DI	80 MPa	90.9	294	46	24	2	2	4	2	1	4	2	1	1
1/	769115	9255565	3057	Fm. Cajamarca	2	2	1	DI	80 MPa	90.9	290	55	20	2	2	4	2	1	4	2	1	1
10	769115	9233363	3057	Fm. Cajamarca	2	2	1	DI	80 MPa	90.9	289	51	19	2	2	4	2	1	4	2	1	1
20	769115	9233365	3057	Fm. Cajamarca	2	2	1	DI	80 MPa	90.9	298	50	28	2	2	4	2	1	4	2	1	1
21	769115	0566644	3057	Fm. Cajamarca	2	2	1	DI	80 MPa	90.9	290	50	20	2	2	4	2	1	4	2	1	1
22	769115	03455445	3027	Fm. Cajamarca	2	2	1	DI	80 MPa	90.9	296	56	26	2	2	4	2	1	4	2	1	1
23	769115	0255565	3057	Fin Cajanarca	2	2		DI	80 MPa	90,9	301	47	31	2	2	4	2	1	4	2	1	1
24	769115	0266664	3057	Fm Countries		2	1	DI	80 MPa	90.9	299	54	29	2	2	4	2	1	4	2	1	T
25	769115	0755565	1057	Fin. Cajamarca	-	2		DI	80 MPa	90.9	298	55	28	2	2	4	2	1	4	2	1	t
		Andread	1 3007	The Calumpton	4	1		DI	80 MPa	90.9	291	53	21	2	2	4	2	1	4	2	1	1

Diseño Original : M.Sc. Victor Talentino, 2008

Rediseñado y adaptado. Dr. Rodriguez, R. - v3 - 2020

B. DATOS RMR ESTACIONES GEOMECÀNICAS

Γ			ESTACIÓ	N GEOMEC.	ÁNICA 01				
Г	PAR	ÁMETRO			RANGO DE	VALORES			
	Resistencia de la roc	Ensayo carga puntual	>10MPa	4 - 10 Mpa	2 - 4 Mpa	1-2 Mpa			
1	intacta	Compresión simple	> 250 MPa	100 - 250 Mpa	50 - 100 Mpa	25 - 50 Mpa	5 - 25 Mpa	1 - 5 Mpa	< 1MPa
		Valor	15	12	7	4	2	1	0
Γ,		RQD	90 - 100%	75 - 90%	50 - 75%	25 - 50%	< 50%		
-		Valor	20	17	13	8		3	
,	Espaciado	de las discontinuidades	> 2 m	0,6 - 2 m	0,2 - 0,6 m	6 - 20 cm	<	6 cm	
Ĵ		Valor	20	15	10	8		5	
П		Longitud de la discontinuidad	< 1 m	1 - 3 m	3 - 10 m	10 - 20 m	>	20 m	
		Valor	6	4	2	1	0		
		Abertura	Nada	< 0,1 mm	0,1 - 1,0 mm	1 - 5 mm	> 5 mm		
		Valor	6	5	3	1	0		
		Rugosidad	Muy rugosa	Rugosa	Ligeramente rugoso	ondulada	Suave		
4	Estado de las	Valor	6	5	3	1	0		
	discontinuidades	Relleno	Ninguno	Relleno duro < 5 mm	Relleno duro > 5 mm	Relleno blando < 5 mm	Relleno blando > 5 mm		
		Valor	6	4	2	2		0	
		Alteración	Inalterada	Ligeramente alterada	Moderadamente alterada	Muy alterada	Desce	ompuesta	
		Valor	6	5	3	1		0	
Г	Ebula da como on los	Relacion Pagua/ Pprinc	0	0 - 0,1	0,1 - 0,2	0,2 - 0,5	>	• 0,5	
5	discontinuidades	Condiciones generales	Completamente secas	ligeramente humedas	humedas	goteando	Agua	fluyendo	
		Valor	15	10	7	4		0	

Valoración RMR	100 a 81	80 a 61	60 a 41	40 a 21	Menor a 20
Clasificación Nº	I	П	Ш	IV	V
Descripcion	Roca muy buena	Roca buena	Roca regular	Roca mala	Roca muy mala

RMR =	72

1			ESTACIÓ	ON GEOMEC	ÁNICA 02					
	PAR	ÁMETRO			RANGO DE	VALORES				
	distances do to read	Ensayo carga puntual	> 10MPa	4 - 10 Mpa	2 - 4 Mpa	1 - 2 Mpa				
1	intacta	Compresión simple	>250 MPa	100 - 250 Mpa	50 - 100 Mpa	25 - 50 Mpa	5 - 25 Mpa	1 - 5 Mpa	< 1MPa	
		Valor	15	12	7	4	2	1	0	
		RQD	90 - 100%	75 - 90%	50 - 75%	25 - 50%	<	50%		
-		Valor	20	17	13	8		3		
,	Espaciado	de las discontinuidades	>2 m	0,6 - 2 m	0,2 - 0,6 m	6 - 20 cm	<	6 cm		
3		Valor	20	15	10	8		5		
Т		Longitud de la discontinuidad	<1 m	1 - 3 m	3 - 10 m	10 - 20 m		20 m		
L		Valor	6	4	2	1		0		
L	Estado de las discontinuidades		Abertura	Nada	< 0,1 mm	0,1 - 1,0 mm	1 - 5 mm	>	5 mm	
L		Valor	6	5	3	1	0			
Т		Rugosidad	Muy rugosa	Rugosa	Ligeramente rugoso	ondulada	Suave			
4		Valor	6	5	3	1	0			
		Relleno	Ninguno	Relleno duro < 5 mm	Relleno duro > 5 mm	Relleno blando < 5 mm	Relleno blando > 5 mm			
		Valor	6	4	2	2		0		
L		Alteración	Inalterada	Ligeramente alterada	Moderadamente alterada	Muy alterada	Desc	ompuesta		
		Valor	6	5	3	1		0		
1.		Relacion Pagua/ Pprinc	0	0 - 0,1	0,1 - 0,2	0,2 - 0,5		> 0,5		
5	ujo de agua en las discontinuidades	Condiciones generales	Completamente secas	ligeramente humedas	humedas	goteando	Agua	fluyendo		
		Valor	15	10	7	4		0		
1015		Valoración BMP	100 - 81	20 + 61	60 a 41	40 a 21	Manara 20	1		
		Clasificación M9	10/ 8 01	00 8 01	00 8 41	4V d 41	MEDDI # 20	•		
		Clasificación N	1	II.	ill.	IV D	V N	•		
		Descripcion	Roca muy buena	Roca buena	Koca regular	Roca mala	Koca muy mala	1		

RMR =	75

		ESTACI	ÓN GEOMC	ÁNICA 03				
PAR	RÁMETRO			RANGO DE	VALORES			
Paristansia da la ros	Ensayo carga puntual	> 10MPa	4 - 10 Mpa	2 - 4 Mpa	1 - 2 Mpa			
intacta	Compresión simple	> 250 MPa	100 - 250 Mpa	50 - 100 Mpa	25 - 50 Mpa	5 - 25 Mpa	1 - 5 Mpa	< 1 MP
	Valor	15	12	7	4	2	1	0
	RQD	90 - 100%	75 - 90%	50 - 75%	25 - 50%	<	50%	
	Valor	20	17	13	8		3	
Espaciado	de las discontinuidades	> 2 m	0,6 - 2 m	0,2 - 0,6 m	6 - 20 cm	<	6 cm	
	Valor	20	15	10	8		5	
	Longitud de la discontinuidad	<1 m	1 - 3 m	3 - 10 m	10 - 20 m	>	20 m	
	Valor	6	4	2	1	0		
	Abertura	Nada	< 0,1 mm	0,1 - 1,0 mm	1 - 5 mm	> 5 mm		
	Valor	6	5	3	1		0	
A STREET OF COMPANY	Rugosidad	Muy rugosa	Rugosa	Ligeramente rugoso	ondulada	Suave		
Estado de las	Valor	6	5	3	1	0		
discontinuidades	Relleno	Ninguno	Relleno duro < 5 mm	Relleno duro > 5 mm	Relleno blando < 5 mm	Relleno blando > 5 mm 0		
	Valor	6	4	2	2			
	Alteración	Inalterada	Ligeramente alterada	Moderadamente alterada	Muy alterada	Desco	ompuesta	
8	Valor	6	5	3	1		0	
	Relacion Pagua/ Pprinc	0	0 - 0,1	0,1 - 0,2	0,2 - 0,5		- 0,5	
5 discontinuidades	Condiciones generales	Completamente secas	ligeramente humedas	humedas	goteando	Agua	fluyendo	
	Valor	15	10	7	4		0	
	Valoración RMR	100 a 81	80 a 61	60 a 41	40 a 21	Menor a 20		
	Clasificación Nº	1	11	III	IV	v		
	Descripcion	Roca muy buena	Roca buena	Roca regular	Roca mala	Roca muy mala]	
			-					
			RMR =	78				

RMR =	78

		ESTACIÓ	N GEOMEC	ÁNICA 04				
PA	RÁMETRO			RANGO DE	VALORES			
Posistencia de la re	Ensayo carga puntual	>10MPa	4 - 10 Mpa	2 - 4 Mpa	1-2 Mpa			
1 intacta	Compresión simple	> 250 MPa	100 - 250 Mpa	50 - 100 Mpa	25 - 50 Mpa	5 - 25 Mpa	1 - 5 Mpa	< 1MP
	Valor	15	12	7	4	2	1	0
	RQD	90 - 100%	75 - 90%	50 - 75%	25 - 50%	3	< 50%	
4	Valor	20	17	13	8		3	
Espaciad	o de las discontinuidades	> 2 m	0,6 - 2 m	0,2 - 0,6 m	6 - 20 cm		< 6 cm	
,	Valor	20	15	10	8		5	
	Longitud de la discontinuidad	< 1 m	1 - 3 m	3 - 10 m	10 - 20 m	. 3	> 20 m	
	Valor	6	4	2	1	0		
1	Abertura	Nada	< 0,1 mm	0,1 - 1,0 mm	1 - 5 mm	> 5 mm		
1	Valor	6	5	3	1	0		
	Rugosidad	Muy rugosa	Rugosa	Ligeramente rugoso	ondulada	Suave		
4 Estado de las	Valor	6	5	3	1	0		
discontinuidades	Relleno	Ninguno	Relleno duro <5 mm	Relleno duro > 5 mm	Relleno blando < 5 mm	Relleno blando > 5 mm		
	Valor	6	4	2	2	0		
	Alteración	Inalterada	Ligeramente alterada	Moderadamente alterada	Muy alterada	Descompuesta		
	Valor	6	5	3	1		0	
	Relacion Pagua/ Pprinc	0	0 - 0,1	0,1 - 0,2	0,2 - 0,5	3	> 0,5	
5 discontinuidades	s Condiciones generales	Completamente secas	ligeramente humedas	humedas	goteando	Agu	a fluyendo	
	Valor	15	10	7	4		0	
	Valoración DMD	100 - 91	80 - 61	60 - 41	40 = 21	Manara 20	1	
	Classificación XI0	100 8 61	00 4 01	00 8 41	40 d 21	Menor a 20	•	
	Clasificación Nº	1	II.		IV	V	•	
	Descripcion	Roca muy buena	Roca buena	Roca regular	Roca mala	Roca muy mala	1	
				(0	1			

KMR -	69	RMR =
-------	----	-------

J

			ESTACI	ÓN GEOMEC	CÁNICA 05				
	PAR	ÁMETRO			RANGO DE	VALORES			
T.	Portetonolo do la roo	Ensayo carga puntual	>10MPa	4 - 10 Mpa	2 - 4 Mpa	1 - 2 Mpa			
1	intacta	Compresión simple	> 250 MPa	100 - 250 Mpa	50 - 100 Mpa	25 - 50 Mpa	5 - 25 Mpa	1 - 5 Mpa	< 1MPa
		Valor	15	12	7	4	2	1	0
		RQD	90 - 100%	75 - 90%	50 - 75%	25 - 50%	<	50%	
-		Valor	20	17	13	8		3	
,	Espaciado	de las discontinuidades	>2 m	0,6 - 2 m	0,2 - 0,6 m	6 - 20 cm	<	6 cm	
° I		Valor	20	15	10	8		5	
П		Longitud de la discontinuidad	< 1 m	1 - 3 m	3 - 10 m	10 - 20 m	>	20 m	
	Estado de las discontinuidades	Valor	6	4	2	1	0		
		Abertura	Nada	< 0,1 mm	0,1 - 1,0 mm	1 - 5 mm	> 5 mm		1
		Valor	6	5	3	1		0	
		Rugosidad	Muy rugosa	Rugosa	Ligeramente rugoso	ondulada	Suave		
4		Valor	6	5	3	1	0		
		Relleno	Ninguno	Relleno duro < 5 mm	Relleno duro > 5 mm	Relleno blando < 5 mm	Relleno blando > 5 mm		
		Valor	6	4	2	2		0	
		Alteración	Inalterada	Ligeramente alterada	oderadamente alterad	Muy alterada	Desco	ompuesta	
		Valor	6	5	3	1		0	
		Relacion Pagua/ Pprinc	0	0 - 0,1	0,1 - 0,2	0,2 - 0,5	3	0,5	
5	discontinuidades	Condiciones generales	Completamente secas	ligeramente humedas	humedas	goteando	Agua	fluyendo	
		Valor	15	10	7	4		0	
		Valoración DMD	100 - 91	80 - 61	60 a 41	40 = 21	Manara 20	1	
		Clasificación Nº	100 8 61	00 8 01	00 4 41	40 8 21	Menor a 20	•	
		Clasificación N°	1	11		IV I	V	4	
		Descripcion	Roca muy buena	Roca buena	Roca regular	Roca mala	Roca muy mala	1	

RMR =	74
	2/11/2

Γ			ESTACIO	ÓN GEOME(CÁNICA 06				
Г	PAR	ÁMETRO			RANGO DE	VALORES			
Г	Resistencia de la roc	Ensayo carga puntual	>10MPa	4 - 10 Mpa	2 - 4 Mpa	1 - 2 Mpa			
1	intacta	Compresión simple	> 250 MPa	100 - 250 Mpa	50 - 100 Mpa	25 - 50 Mpa	5 - 25 Mpa	1 - 5 Mpa	< 1MPa
L	Valor		15	12	7	4	2	1	0
Γ,	RQD		90 - 100%	75 - 90%	50 - 75%	25 - 50%	< 50%		
Ĺ		Valor	20	17	13	8		3	
Ę	Espaciado	de las discontinuidades	> 2 m	0,6 - 2 m	0,2 - 0,6 m	6 - 20 cm	<	6 cm	
Ľ		Valor	20	15	10	8		5	
Γ		Longitud de la discontinuidad	< 1 m	1 - 3 m	3 - 10 m	10 - 20 m	> 20 m		
		Valor	6	4	2	1	0		
L		Abertura	Nada	< 0,1 mm	0,1 - 1,0 mm	1 - 5 mm	> 5 mm		
L		Valor	6	5	3	1	0		
L		Rugosidad	Muy rugosa	Rugosa	Ligeramente rugoso	ondulada	Suave		
4	Estado de las	Valor	6	5	3	1	0		
L	discontinuidades	Relleno	Ninguno	Relleno duro < 5 mm	Relleno duro > 5 mm	Relleno blando < 5 mm	Relleno bla	ando > 5 mm	
L		Valor	6	4	2	2		0	
L		Alteración	Inalterada	Ligeramente alterada	oderadamente alterada	Muy alterada	Desco	mpuesta	
L		Valor	6	5	3	1		0	
Г	The last second second	Relacion Pagua/ Pprinc	0	0 - 0,1	0,1 - 0,2	0,2 - 0,5	>	0,5	
5	discontinuidades	Condiciones generales	Completamente secas	ligeramente humedas	humedas	goteando	Agua	fluyendo	
L		Valor	15	10	7	4		0	

Valoración RMR	100 a 81	80 a 61	60 a 41	40 a 21	Menor a 20
Clasificación Nº	1	П	III	IV	V
Decoringian	Doog must haven	Daga huana	Paga pagular	Daca mala	Paca muu mala
Descripcion	Roca muy buena	Koca oucha	Roca regular	Koca maia	Roca muy maia

	RMR =	74
--	-------	----

C. DATOS DIPS

W	
	EVALUACIÓN GEOMECÁNICA DE LOS TALUDES DE LA CONCESIÓN PEDREGAL EN EL DISTRITO Y PROVINCIA DE HUALGAYOC ESTACIÓN GEOMECÁNICA 05
	Bach. JORGE LUIS RAMOS VÁSQUEZ
DIPS 7,016	JULIO 2024

	EVALUACIÓN GEOMECÁNICA DE LOS TALUDES DE LA CONCESIÓN PEDREGAL EN EL DISTRITO Y PROVINCIA DE HUALGAYOC ESTACIÓN GEOMECÁNICA 06
040	TESISTA Bach. JORGE LUIS RAMOS VÁSQUEZ
DPS 7.016	JULIO 2024

D. ANÁLISIS CINEMÁTICO DISP ROTURA PLANAR

DIPS 7,016

(Color		Densi	ity Concer	trations	
			0	.00 -	7.20	
		7	.20 -	14.40		
		14	.40 -	21.60		
			21	.60 -	28.80	
			28	.80 -	36.00	
		Conto	ur Data	Pole Vect	ors	
	м	aximum	Density	35.15%		
Contour Distribution			Fisher			
Counting Circle Size			1.0%			
Kir	nematic A	natysis	Planar Sli	ding		
Slope Dip		46	46			
Slope Dip Direction			13			
Friction Angle 56*						
				Critical	Total	%
		Planar S	iding (AI)	0	51	0.00%
	Color	Dip	Dip	Direction	Label	-
	Notes and	м	ean Set P	lanes		
Im		28		271 02		
2m		64		357 D1		
3m		76		13	E	
4m		46		13	T	
		Pi	ot Mode	Pole Vect	ors	
		Vecto	or Count	51 (51 En	tries)	
		Неп	isphere	Lower		
Projection			Equal I.m.	-		

	TESIS: EVALUACIÓN GEOMEC	ÁNICA DE LOS TALUDES DE LA CONCESIÓN PEDREGAL EN EL DISTRITO Y PROVINCIA DE HUALGAYOC
	ΤΙΡΟ	ESTACIÓN GEOMECÁNICA 03
	TESISTA	Bach. JORGE LUIS RAMOS VÁSQUEZ
Surgenet	ANÁLISIS	ANÁLISIS POR ROTURA PLANAR

E. ANÁLISIS CINEMÁTICO DISP ROTURA EN CUÑA

DIPS 7.016

Symb	ol Feat	ure				
	Gritic	al Inters	ection			
0	olor	1	Dens	ity Concer	trations	
			0	- 00	7.20	
			7	.20 -	14.40	
			14	40 -	21.60	
			21	.60 -	28.80	
		Conto	ur Data	Pole Vect	.96.00 0/s	
	Ma	olimum	Density	35.15%		
	Conte	our Dist	ribution	Fisher		
	Cour	ting Ci	rcle Size	1.0%		
Kir	nematic Ar	alysis	Wedge S	iding		
	Slo	pe Dip	46			
Slo	pe Dip Dir	ection	13			
	Friction	Angle	56°	6		5
				Critical	Total	9%
		Web	lge Siding	0	1271	0.00%
	Color	Dip	Di	p Direction	Label	ĥ
		м	ean Set P	lanes		
Im		28		271	D2	
2m		64		357	D1	
3m		76		13	E	
4m		- 46		13	T	
		Pi	ot Mode	Pole Vect	ors	
		Vecto	or Count	51 (51 Er	tries)	
	Int	ersectio	on Mode	Grid Data	Planes	
	Inte	section	is Count	1271		
		Hen	nisphere	Lower		
		-	Sec. 21.			

Image: Preside the i

		acter annos a	US ANALI			
c	olor		Dens	ity Concer	trations	
			0	1.00 -	7.00	
			7	- 00.1	14.00	
			14	1.00 -	21.00	
			21	.00 -	28.00	
			21	1.00 -	35.00	
		Conto	iur Data	Pole Vect	ors	
		faximum	Density	34.72%		
	Con	tour Dist	ribution	Fisher		
	Col	unting Cir	cle Size	1.0%		
Kin	ematic A	Analysis	Wedge S	äiding		
	S	lope Dip	55			
Slo	pe Dip D	irection	35			
	Frictio	n Angle	56°			
				Critical	Total	%
		Wed	lge Silding	0	1223	0.00%
	Color	Dip	Di	p Directio	n Label	
			User Pla	nes		
1		55		35	T	
		M	ean Set P	lanes		
1m		35		219	E	
2m		51		25	D1	
3m		84		141	D2	
		Pi	ot Mode	Pole Vect	ors	
		Vecto	r Count	50 (50 E	tries)	
	D	ntersectio	n Mode	Grid Data	Planes	
	Int	ersection	is Count	1223		
		Hem	isphere	Lower		
		Pn	ojection	Equal Are	sa	

EVALUACIÓN GEOMECÁNICA DE LOS TALUDES DE LA CONCESIÓN PEDREGAL EN EL DISTRITO Y PROVINCIA DE HUALGAYOC ESTACIÓN GEOMECÁNICA 06 Bach. JORGE LUIS RAMOS VÁSQUEZ ANÁLISIS ANÁLISIS POR ROTURA EN CUÑA

DIPS 7.016

N° I	E	N
1	769300	9255700
2	769300	9255300
3	768700	9255300
4	768700	9255700

1:30,000

Sistema de Coordenadas: WGS 1964 UTM Zona 17S Proyección: Transversa de Mercator Datum: WGS 1984

DE LA	ZONA DE INV	OS VÉRTICES
N°	E	N
1	769300	9255700
2	769300	9255300
3	768700	9255300
4	768700	9255700

1:2,500

Sistema de Coordenadas: WGS 1984 UTM Zona 175 Proyección: Transversa de Mercator Datum: WGS 1984

DE LA	ZONA DE INV	ESTIGACIÓN
Nº	E	N
1	769300	9255700
2	769300	9255300
3	768700	9255300
4	768700	9255700

Sistema de Coordenadas: WGS 1984 UTM Zona 175 Proyección: Transversa de Mercator Datum: WGS 1984

DELA	ZONA DE INV	ESTIGACIÓN
Nº	E	N
1	769300	9255700
2	769300	9255300
3	768700	9255300
4	768700	9255700

Sistema de Coordenadas: WGS 1984 UTM Zona 17S Proyección: Transversa de Mercator Datum: WGS 1984

FS	UNIVERSI F	DAD NACIONAL DE CAJ ACULTAD DE INGENIERV NCO PROFESIONAL DE INSE	AMARCA A	1949
EVALUACI	ON GEOMECANE DIST	TESIS PROFESIONAL CADE LOS TALADES OF LA COM RED Y PROVINCIA DE HUNLON	ions án Peor	IGGAL EN EL
мана:	ZONA DE	NVERTIGACIÓN V AREA DE EXPLOTACIÓN		index.
TESERIA:	But DROFT	RS RANCES WASCHEZ	M - 05	
AGESOR:	MCs. ROBERTS	SEVERINO GONDALES WAVA		
EXPLANAL AL	125000	Colorano, Para	1	

COORE DE LA	ZONA DE INV	OS VÉRTICES
Nº	E	N
1	769300	9255700
2	769300	9255300
3	768700	9255300
4	768700	9255700

Sistema de Coordenadas: WGS 1984 UTM Zona 175 Proyección: Transversa de Mercator Datum: WGS 1984

DE LA	ZONA DE INV	OS VERTICES
Nº	E	N
1	769300	9255700
2	769300	9255300
3	768700	9255300
4	768700	9255700

Sistema de Coordenadas: WGS 1984 UTM Zona 17S Proyección: Transversa de Mercator Datum: WGS 1984

UNIVERSIDAD NACIONAL DE C/ PACULTAD DE INGENIER ESCUELA ACADÉNICO PROFESIONAL DE IN	4JAMARCA UA Genieria de V	9145
TESS PROFESIONAL EVALUACIÓN GEOMEGÁNICA DE LOS TALUDES DE LA C	UNDESIÓN PEO	REGALEN EL
DISTINITO * PROVINCIA DE HMAD	GARON	
MARA: DRENALES	GA-UC	20805
INARA: DRENALES TREBUDI RAM JORDF LUB RAMOS WARDER	M . 07	
DESTRITO F PROVINCE DE HURZ NARA: DRENA ES TREBUN: Rue 10000 F LUS RAMOS WARDE? ABERDE: NOL ROBERTO SEVERINO SOUZA ES 19 M	M - 07	

766000

700000

770000

