UNIVERSIDAD NACIONAL DE CAJAMARCA

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"PROPIEDADES MECÁNICAS DEL CONCRETO LIGERO UTILIZANDO
ADITIVO INCORPORADOR DE AIRE SIKAAER Y SUSTITUYENDO
PARCIALMENTE AGREGADO GRUESO POR TRAQUITA"

TESIS PARA OPTAR EL TÍTULO PROFESIONAL DE INGENIERO CIVIL

AUTOR

Bach. VÍCTOR YIYE, GONZÁLEZ RAICO

ASESOR:
Dr. Ing. MAURO AUGUSTO CENTURIÓN VARGAS

Cajamarca - Perú, 2025

CONSTANCIA DE INFORME DE ORIGINALIDAD

- FACULTAD DE INGENIERÍA -

1.	DNI: 70006869		
	Escuela Profes	ional: INGENIERÍA CIVIL	
2.	Asesor: Dr. Ing. MAURO AUGUSTO CENTURIÓN VARGAS Facultad: DE INGENIERÍA		
3.	Grado académ	ico o título profesional	
	□Bachiller	Título profesional	□Segunda especialidad
	□Maestro	□Doctor	
4.	Tipo de Investi	gación:	
	Tesis	☐ Trabajo de investigación	☐ Trabajo de suficiencia profesional
	☐ Trabajo acad	démico	
5.	Título de Traba	jo de Investigación:	
			GERO UTILIZANDO ADITIVO INCORPORADOR DE E AGREGADO GRUESO POR TRAQUITA"
6.	Fecha de evalu	ación: 18/08/25	
7.	Software antip	lagio: TURNITIN	☐ URKUND (OURIGINAL) (*)
8.		nforme de Similitud: 19 %	
9. 10.		ento: Oide: 3117:484445609 a Evaluación de Similitud:	
	M APRORADO	TI PARA LEVANTAMIENTO DE	ORSERVACIONES O DESAPROBADO

Fecha Emisión: 22/08/2025

Dr. Ing. MAURO AUSUSTO CENTURIÓN VARGAS DU: 26604421

FIRMA DIGITAL

Firmado digitalmente por: BAZAN DIAZ Laura Sofia FAU 20148258601 soft Motivo: En señal de conformidad Fecha: 22/08/2025 15:26:33-0500

UNIDAD DE INVESTIGACIÓN FI

Universidad Nacional de Cajamarca

"Norte de la Universidad Peruana"

Fundada por Ley 14015 del 13 de Febrero de 1962

FACULTAD DE INGENIERIA

Teléf. N° 365976 Anexo N° 1129-1130

ACTA DE SUSTENTACIÓN PÚBLICA DE TESIS.

TITULO

: PROPIEDADES MECÁNICAS DEL CONCRETO LIGERO UTILIZANDO ADITIVO INCORPORADOR DE AIRE SIKAAER Y SUSTITUYENDO PARCIALMENTE AGREGADO GRUESO POR TRAQUITA.

ASESOR

: Dr. Ing. Mauro Augusto Centurión Vargas.

En la ciudad de Cajamarca, dando cumplimiento a lo dispuesto por el Oficio Múltiple Nº 0538-2025-PUB-SA-FI-UNC, de fecha 26 de agosto de 2025, de la Secretaría Académica de la Facultad de Ingeniería, a los tres dias del mes de setiembre de 2025, siendo las diez horas (10:00 a.m.) en la Sala de Audiovisuales (Edificio 1A - Segundo Piso), de la Facultad de Ingeniería se reunieron los Señores Miembros del Jurado Evaluador:

Presidenta

: Dra. Ing. Rosa Haydee Llique Mondragón.

Vocal

: Ing. Marco Wilder Hoyos Saucedo.

: M.Cs. Ing. Manuel Lincoln Minchán Pajares.

Para proceder a escuchar y evaluar la sustentación pública de la tesis titulada PROPIEDADES MECÁNICAS DEL CONCRETO LIGERO UTILIZANDO ADITIVO INCORPORADOR DE AIRE SIKAAER Y SUSTITUYENDO PARCIALMENTE AGREGADO GRUESO POR TRAQUITA, presentado por el Bachiller en Ingeniería Civil VÍCTOR YIYE GONZÁLEZ RAICO, asesorado por el Dr. Ing. Mauro Augusto Centurión Vargas, para la obtención del Título Profesional

Los Señores Miembros del Jurado replicaron al sustentante debatieron entre sí en forma libre y reservada y lo evaluaron de la siguiente manera:

DIECISIEPE (En letras) EVALUACIÓN FINAL En consecuencia, se lo declara ... APROBARO... con el calificativo de ... (DIECISIETE)

acto seguido, el presidente del jurado hizo saber el resultado de la sustentación, levantándose la constancia se firmó por quintuplicado.

Dra. Ing. Rosa Haydee Llique Mondragón.

Presidenta

Ing. Marco Wilder Hoyos Saucedo. Vocal

M.Cs. Ing. Manuel Lincoln Minchán Pajares.

Secretario

Dr. Ing. Mauro Augusto Centurión Vargas. Asesor

AGRADECIMIENTO

Ante todo, doy gracias a Dios por haberme dado la vida y por ser la luz que ha guiado mi camino; su poder y su amor han colmado todos mis deseos.

A mis padres, Víctor González de la Cruz y María Juana Raico Bueno, los llevo siempre presentes. Su esfuerzo, cariño y confianza moldearon mi camino profesional y personal; todo lo que soy se cimenta en su ejemplo.

Mi gratitud se extiende a los profesores de la Facultad de Ingeniería de la Universidad Nacional de Cajamarca, cuyos conocimientos y dedicación impulsaron esta tesis. De modo especial, al Dr. Ing. Mauro A. Centurión Vargas: sus consejos, su profesionalismo y su humildad enriquecieron cada etapa de la investigación.

Finalmente, gracias a mi querida Karina Soledad Celis Quiroz y a David y Leonardo González Celis. Su compañía y apoyo incondicional hicieron que cada desafío fuese más llevadero.

A todos, mi más profundo agradecimiento.

DEDICATORIA

Mi primera gratitud se dirige a la providencia divina, fuente de vida, salud y lucidez; también a mi familia que, con su apoyo incondicional de cada día, ha sido el pilar que sostiene este camino.

> A la memoria de mis padres, Víctor y Juana, hoy en la gracia de Dios: su sabiduría y ejemplo me guiaron, y su amor incondicional sigue sosteniéndome. Los abrazo con el corazón, hasta el cielo.

A Karina, mi compañera de vida, y mis amados hijos David y Leonardo, cuyas risas y abrazos son la chispa que enciende mi ánimo y el impulso que renueva mi fuerza para seguir construyendo sueños.

INDICE

AGRA	ADECIMIENTO	ii
DEDIC	CATORIA	. iii
ÍNDIC	E DE FIGURAS	xi
INDIC	E DE GRÁFICOS	xii
RESU	MEN	ΧV
ABST	RACT	٧i
CAPÍT	TULO I. INTRODUCCIÓN	. 1
1.1.	Planteamiento del problema	. 1
1.2.	Formulación del problema	. 2
1.3.	Hipótesis	. 2
1.4.	Justificación de la investigación	. 2
1.5.	Alcances y delimitación de la investigación	. 3
1.6.	Limitaciones	. 3
1.7.	Objetivos de la investigación:	. 3
1.7.1.	Objetivo general	. 3
	Objetivos específicos	
1.8.	Descripción de contenido de los capítulos	. 4
CAPÍT	TULO II. MARCO TEÓRICO	. 6
2.1.	Antecedentes de la investigación	. 6
2.1.1.	Internacionales	. 6
2.1.2.	Locales	. 6
2.2.	Bases legales	. 7
2.3.	Bases teóricas:	. 8
2.3.1.	Concreto	. 8
2.3.2.	Cemento:	. 9
2.3.3.	Agregados:	10
2.3.3.	1. Clasificación de los agregados:	10
2.3.4.	El agua	16

2.3.5. Aditivos	16
2.3.6. Concretos especiales: concreto ligero	18
2.3.7. Ventajas y desventajas del uso de concreto ligero	19
2.3.8. Agregados de peso ligero	20
2.3.9. Traquita	20
2.3.10. Propiedades mecánicas del concreto	21
CAPÍTULO III. MATERIALES Y MÉTODOS	22
3.1. Ubicación geográfica de la investigación	22
3.2. Ubicación de la cantera de estudio	22
3.3. Diseño de la investigación	23
3.3.1. Tipo	23
3.3.2. Nivel	24
3.3.3. Diseño	24
3.3.4. Variables	24
3.3.5. Población y muestra	24
3.4. Propiedades de los agregados para el concreto	25
3.4.1. Granulometría	25
3.4.1.1. Análisis granulométrico del agregado fino y grueso	25
3.4.1.2. Tamaño máximo nominal del agregado grueso	26
3.4.1.3. Materiales más finos que pasan por el tamiz N° 200:	26
3.4.2. Módulo de fineza	28
3.4.3. Peso específico y absorción	28
3.4.3.1. Determinación del peso específico y absorción del agregado grueso	28
3.4.3.2. Determinación del peso específico y absorción del agregado fino	30
3.4.4. Peso unitario	32
3.5. Dosificación de la mezcla y preparación de probetas	34
3.6. Selección del porcentaje óptimo de SikaAer	37
3.7. Sustitución del agregado grueso por traquita en la dosificación del concreto	38
3.8. Elaboración de especímenes de concreto	
3.9. Pruebas realizadas en los especímenes	
3.9.1. Evaluación del concreto en estado fresco	

3.9.1.1. Medición del asentamiento (slump).	40
3.9.1.2. Peso unitario del concreto fresco	41
3.9.2. Pruebas sobre el concreto endurecido	41
3.9.2.1. Determinación del peso unitario	41
3.9.2.2. Resistencia a compresión	41
CAPÍTULO IV. ANÁLISIS Y DISCUSIÓN DE RESULTADOS	46
4.1. Consistencia de la mezcla de concreto	46
4.2. Peso unitario del concreto endurecido	48
4.3. Resistencia a compresión	50
CAPÍTULO V. CONCLUSIONES Y RECOMENDACIONES	52
5.1. Conclusiones	52
5.2. Recomendaciones	52
REFERENCIAS BIBLIOGRÁFICAS	54
ANEXOS	56

INDICE DE TABLAS

Tabla 1: Tipos de cemento portland	10
Tabla 2: Requisitos de gradación para el agregado grueso	15
Tabla 3: Requisitos de gradación del agregado fino	16
Tabla 4: Número de especímenes de concreto	25
Tabla 5: Cantidad mínima de muestra para partículas menores al	
tamiz N° 200	27
Tabla 6: Dosificación de materiales por m³ de concreto	38
Tabla 7: Materiales de diseño por m³ de concreto	39
Tabla 8: Normas para el control de calidad del concreto	43
Tabla 9: Valores mínimos en pruebas de resistencia a compresión	43
Tabla 10: Coeficiente de variación y grado de uniformidad en el	
concreto.	44
Tabla 11: Asentamiento del concreto (método del cono de Abrams)	
para distintos niveles de sustitución con traquita	46
Tabla 12: Variación porcentual del asentamiento del concreto o	
slump	47
Tabla 13: Peso unitario del concreto endurecido a los 28 días para	
cada porcentaje de reemplazo de traquita	48
Tabla 14: Variación porcentual del peso unitario del concreto	
endurecido a los 28 días para cada porcentaje de	
reemplazo de traquita respecto al concreto de diseño	49
Tabla 15: Resistencia media a la compresión de los distintos	
cilindros evaluados	50
Tabla 16: Porcentaje de variación de la resistencia a compresión	
originado por el uso de SikaAer y los distintos niveles de	
sustitución con traquita, respecto del concreto diseño	51
Tabla 17: Ensayo de partículas menores al tamiz N° 200 del	
agregado grueso	56
Tabla 18: Ensayo de partículas menores al tamiz N° 200 del	
agregado fino	56
Tabla 19: Ensayo de partículas menores al tamiz N° 200 de la	
traquita	56

Tabla 20:	Ensayo N° 01 de granulometría del agregado grueso	57
Tabla 21:	Ensayo N° 02 de granulometría del agregado grueso	58
Tabla 22:	Ensayo N° 03 de granulometría del agregado grueso	59
Tabla 23:	Ensayo N° 01 de granulometría del agregado fino	60
Tabla 24:	Ensayo N° 02 de granulometría del agregado fino	61
Tabla 25:	Ensayo N° 03 de granulometría del agregado fino	62
Tabla 26:	Ensayo N° 01 de granulometría de la traquita	63
Tabla 27:	Ensayo N° 02 de granulometría de la traquita	64
Tabla 28:	Ensayo N° 03 de granulometría de la traquita	65
Tabla 29:	Contenido de humedad del agregado fino	66
Tabla 30:	Contenido de humedad del agregado grueso	66
Tabla 31:	Peso especifico del agregado grueso	66
Tabla 32:	Peso especifico del agregado fino	67
Tabla 33:	Peso especifico de la traquita	67
Tabla 34:	Peso específico del agua para ensayo de densidad de	
	masa de los agregados	67
Tabla 35:	Factor agua para ensayo de densidad de masa de los	
	agregados	68
Tabla 36:	Densidad de masa del agregado grueso en estado seco	
	suelto	68
Tabla 37:	Densidad de masa del agregado fino en estado seco	
	suelto	68
Tabla 38:	Densidad de masa de la traquita en estado seco suelto	68
Tabla 39:	Densidad de masa del agregado grueso en estado seco	
	compactado	69
Tabla 40:	Densidad de masa del agregado fino en estado seco	
	compactado	69
Tabla 41:	Densidad de masa de la traquita en estado seco	
	compactado	69
Tabla 42:	Resistencia promedio	70
Tabla 43:	Consistencia, asentamiento y trabajabilidad del concreto	70
Tabla 44:	Contenido de aire atrapado	70

Tabla 45:	Requerimientos de agua en L/m³ y contenido de aire del	
	concreto para los tamaños nominales máximos del	
	agregado grueso y consistencia indicada	71
Tabla 46:	Relación agua/cemento del concreto por resistencia	71
Tabla 47:	Módulo de finura de la combinación de agregados	71
Tabla 48:	Elección del porcentaje óptimo de SikaAer por resistencia	72
Tabla 49:	Diseño de mezcla del concreto	73
Tabla 50:	Corrección por humedad de los agregados	74
Tabla 51:	Especímenes cilíndricos de concreto con adición de	
	SikaAer ensayados a compresión a los 28 días de edad	76
Tabla 52:	Especímenes cilíndricos de concreto con adición de	
	SikaAer y reemplazo porcentual de traquita al 5%	
	ensayados a compresión a los 28 días de edad	77
Tabla 53:	Especímenes cilíndricos de concreto con adición de	
	SikaAer y reemplazo porcentual de traquita al 10%	
	ensayados a compresión a los 28 días de edad	78
Tabla 54:	Especímenes cilíndricos de concreto con adición de	
	SikaAer y reemplazo porcentual de traquita al 15%	
	ensayados a compresión a los 28 días de edad	79
Tabla 55:	Especímenes cilíndricos de concreto con adición de	
	SikaAer y reemplazo porcentual de traquita al 20%	
	ensayados a compresión a los 28 días de edad	80
Tabla 56:	Desviación estándar y coeficiente de variación de los	
	especímenes del concreto con adición de SikaAer	
	ensayados a compresión a los 28 días.	81
Tabla 57:	Desviación estándar y coeficiente de variación de los	
	especímenes del concreto con adición de SikaAer y	
	reemplazo porcentual de traquita al 5% ensayados a	
	compresión a los 28 días.	81
Tabla 58:	Desviación estándar y coeficiente de variación de los	
	especímenes del concreto con adición de SikaAer y	
	reemplazo porcentual de traquita al 10% ensayados a	
	compresión a los 28 días.	82

Tabla 59:	Desviación estándar y coeficiente de variación de los	
	especímenes del concreto con adición de SikaAer y	
	reemplazo porcentual de traquita al 15% ensayados a	
	compresión a los 28 días.	82
Tabla 60:	Desviación estándar y coeficiente de variación de los	
	especímenes del concreto con adición de SikaAer y	
	reemplazo porcentual de traquita al 20% ensayados a	
	compresión a los 28 días.	83

ÍNDICE DE FIGURAS

Figura 1:	Fotografía satelital de la ubicación del estudio	. 22
Figura 2:	Fotografía satelital de la ubicación de la cantera "La Banda"	. 23
Figura 3:	Tamizado del agregado tanto fino como grueso para la	
	obtención de su granulometría	107
Figura 4:	Ensayo de peso específico del agregado grueso	107
Figura 5:	Ensayo de peso específico del agregado fino	108
Figura 6:	Ensayo de lavado del agregado para determinar las partículas	
	que pasan el tamiz N° 200	108
Figura 7:	Ensayo de peso unitario suelto seco de los agregados fino y	
	grueso	108
Figura 8:	Ensayo de peso unitario seco compactado de los agregados fino	
	y grueso	109
Figura 9:	Medición del peso unitario y el slump (asentamiento) mediante el	
	cono de abrams, del concreto fresco de cada tanda de	
	mezclado	109
Figura 10): Ensayo a compresión de los especímenes cilíndricos en la	
	prensa universal	109

INDICE DE GRÁFICOS

Gráfico 1: V	ariación de la trabajabilidad del concreto fresco en	
fu	unción del porcentaje de traquita incorporada4	6
Gráfico 2: V	ariación porcentual del asentamiento del concreto o	
s	lump4	7
Gráfico 3: P	eso unitario del concreto endurecido a los 28 días	
р	ara cada porcentaje de reemplazo de traquita4	8
Gráfico 4: V	ariación porcentual del peso unitario del concreto	
е	ndurecido a los 28 días para cada porcentaje de	
re	eemplazo de traquita respecto al concreto de	
d	liseño4	9
Gráfico 5: R	Resistencia media a la compresión de los distintos	
С	ilindros de concreto evaluados 5	0
Gráfico 6: E	lección del porcenteje óptimo de SikaAer por	
re	esistencia7	2
Gráfico 7: M	lódulo de elasticidad y deformación de los	
е	specímenes del concreto con adición de SikaAer	
е	nsayados a los 28 días, muestra- 01-S8	4
Gráfico 8: M	lódulo de elasticidad y deformación de los	
е	specímenes del concreto con adición de SikaAer	
е	nsayados a los 28 días, muestra- 02-S8	5
Gráfico 9: M	lódulo de elasticidad y deformación de los	
е	specímenes del concreto con adición de SikaAer	
е	nsayados a los 28 días, muestra- 03-S 8	6
Gráfico 10:	Módulo de elasticidad y deformación de los	
	especímenes del concreto con adición de SikaAer	
	ensayados a los 28 días, muestra- 04-S 8	7
Gráfico 11:	Módulo de elasticidad y deformación de los	
	especímenes del concreto con adición de SikaAer y	
	reemplazo porcentual de traquita al 5% ensayados	
	a los 28 días, muestra- 01-5%T8	8

Grafico 12:	Modulo de elasticidad y deformación de los	
	especímenes del concreto con adición de SikaAer y	
	reemplazo porcentual de traquita al 5% ensayados	
	a los 28 días, muestra- 02-5%T	89
Gráfico 13:	Módulo de elasticidad y deformación de los	
	especímenes del concreto con adición de SikaAer y	
	reemplazo porcentual de traquita al 5% ensayados	
	a los 28 días, muestra- 03-5%T	90
Gráfico 14:	Módulo de elasticidad y deformación de los	
	especímenes del concreto con adición de SikaAer y	
	reemplazo porcentual de traquita al 5% ensayados	
	a los 28 días, muestra- 04-5%T	91
Gráfico 15:	Módulo de elasticidad y deformación de los	
	especímenes del concreto con adición de SikaAer y	
	reemplazo porcentual de traquita al 10% ensayados	
	a los 28 días, muestra- 01-10%T	92
Gráfico 16:	Módulo de elasticidad y deformación de los	
	especímenes del concreto con adición de SikaAer y	
	reemplazo porcentual de traquita al 10% ensayados	
	a los 28 días, muestra- 02-10%T	93
Gráfico 17:	Módulo de elasticidad y deformación de los	
	especímenes del concreto con adición de SikaAer y	
	reemplazo porcentual de traquita al 10% ensayados	
	a los 28 días, muestra- 03-10%T	94
Gráfico 18:	Módulo de elasticidad y deformación de los	
	especímenes del concreto con adición de SikaAer y	
	reemplazo porcentual de traquita al 10% ensayados	
	a los 28 días, muestra- 04-10%T	95
Gráfico 19:	Módulo de elasticidad y deformación de los	
	especímenes del concreto con adición de SikaAer y	
	reemplazo porcentual de traquita al 15% ensayados	
	a los 28 días, muestra- 01-15%T	96
Gráfico 20:	Módulo de elasticidad y deformación de los	
	especímenes del concreto con adición de SikaAer y	

	reemplazo porcentual de traquita al 15% ensayados	
	a los 28 días, muestra- 02-15%T	. 97
Gráfico 21:	Módulo de elasticidad y deformación de los	
	especímenes del concreto con adición de SikaAer y	
	reemplazo porcentual de traquita al 15% ensayados	
	a los 28 días, muestra- 03-15%T	. 98
Gráfico 22:	Módulo de elasticidad y deformación de los	
	especímenes del concreto con adición de SikaAer y	
	reemplazo porcentual de traquita al 15% ensayados	
	a los 28 días, muestra- 04-15%T	. 99
Gráfico 23:	Módulo de elasticidad y deformación de los	
	especímenes del concreto con adición de SikaAer y	
	reemplazo porcentual de traquita al 20% ensayados	
	a los 28 días, muestra- 01-20%T	100
Gráfico 24:	Módulo de elasticidad y deformación de los	
	especímenes del concreto con adición de SikaAer y	
	reemplazo porcentual de traquita al 20% ensayados	
	a los 28 días, muestra- 02-20%T	101
Gráfico 25:	Módulo de elasticidad y deformación de los	
	especímenes del concreto con adición de SikaAer y	
	reemplazo porcentual de traquita al 20% ensayados	
	a los 28 días, muestra- 03-20%T	102
Gráfico 26:	Módulo de elasticidad y deformación de los	
	especímenes del concreto con adición de SikaAer y	
	reemplazo porcentual de traquita al 20% ensayados	
	a los 28 días, muestra- 04-20%T	103

RESUMEN

En América Latina, la baja capacidad portante de ciertos suelos limita la construcción de edificaciones altas, lo que demanda materiales estructurales más livianos como el concreto ligero. Por lo que en el presente trabajo de investigación se determinaron las propiedades mecánicas del concreto ligero mediante el uso de un aditivo incorporador de aire SikaAer y la sustitución parcial del agregado grueso por traquita, con el objetivo de establecer si dichas propiedades experimentaban un incremento. Se elaboró una mezcla de diseño para un f'c=210 kg/cm2 utilizando cemento Portland Tipo I, agregados y aditivo incorporador de aire para optimizar la trabajabilidad de la mezcla. La sustitución parcial de agregado grueso por traquita se ha realizado en porcentajes de 5 %, 10 %, 15 % y 20 %. Los resultados experimentales evidenciaron una disminución progresiva en el peso unitario del concreto endurecido, con valores de 2.50 %, 5.17 %, 7.95 % y 11.36 % para los niveles de reemplazo evaluados. De manera similar, se determinó que la resistencia a la compresión a los 28 días disminuyó progresivamente con el incremento de la sustitución parcial del agregado grueso por traquita en proporciones de 5%, 10%, 15% y 20%, obteniéndose reducciones del 7,42 %, 12,63 %, 17,44 % y 25,24 %, respectivamente. De acuerdo con los resultados obtenidos, se concluyó que el uso de un 0,067% de aditivo incorporador de aire SikaAer, y la sustitución parcial del agregado grueso por traquita en proporciones de 5%, 10%, 15% y 20%, no aumenta la resistencia a la compresión del concreto ligero.

Palabras claves: Concreto ligero, traquita, SikaAer, resistencia a compresión, trabajabilidad, peso unitario.

ABSTRACT

In Latin America, the low bearing capacity of certain soils limits the construction of tall buildings, thereby requiring lighter structural materials such as lightweight concrete. Therefore, in the present research, the mechanical properties of lightweight concrete were determined through the use of an airentraining admixture (SikaAer) and the partial replacement of coarse aggregate with trachyte, with the aim of establishing whether these properties experienced an improvement. A mix design was prepared for a target strength of f'c = 210 kg/cm² using Type I Portland cement, aggregates, and the air-entraining admixture to optimize the workability of the mixture. The partial replacement of coarse aggregate with trachyte was carried out at replacement levels of 5%, 10%, 15%, and 20%. Experimental results showed a progressive decrease in the unit weight of the hardened concrete, with reductions of 2.50%, 5.17%, 7.95%, and 11.36% for the evaluated replacement levels. Similarly, it was determined that the compressive strength at 28 days decreased progressively with the increase in partial replacement of coarse aggregate with trachyte at levels of 5%, 10%, 15%, and 20%, with reductions of 7.42%, 12.63%, 17.44%, and 25.24%, respectively. Based on the results obtained, it was concluded that the use of 0.067% of the air-entraining admixture SikaAer, combined with the partial replacement of coarse aggregate with trachyte at proportions of 5%, 10%, 15%, and 20%, does not increase the compressive strength of lightweight concrete.

Key words: Lightweight concrete, trachyte, SikaAer, compressive strength, workability, unit weight.

CAPÍTULO I. INTRODUCCIÓN

1.1. Planteamiento del problema

En el ámbito de la construcción, lograr estructuras más ligeras sin sacrificar su resistencia se ha convertido en una prioridad técnica. El concreto ligero ha demostrado ser una solución eficaz para disminuir el peso propio de las edificaciones, mejorar la maniobrabilidad durante el vaciado y reducir la sobrecarga transmitida al terreno. Su aplicación ha ganado terreno en diversos países con desarrollos tecnológicos más avanzados, como Estados Unidos, Alemania e India, donde se utiliza en losas aligeradas, puentes y elementos prefabricados, debido a su eficiencia estructural y facilidad de manejo en obra (Luo, Hu & Xu, 2022).

Sin embargo, en América Latina, esta tecnología aún se encuentra en una etapa de consolidación. En México, por ejemplo, las condiciones geotécnicas de ciertas zonas, como la capital del país, dificultan la construcción de edificaciones elevadas debido a la baja resistencia del suelo, que no tolera cargas estructurales pesadas. Esta situación ha llevado a replantear el tipo de materiales utilizados, priorizando soluciones estructurales más livianas como el concreto de baja densidad (Santoyo & García, 2018). Este ejemplo pone en evidencia la necesidad regional de adoptar mezclas que contribuyan a reducir la carga muerta sin comprometer el comportamiento estructural.

El concreto ligero ha surgido como una solución viable para reducir el peso unitario de la mezcla sin afectar de forma sustancial sus propiedades estructurales básicas, facilitando la optimización del diseño estructural y el ahorro de recursos (Mau & Ayuta, 2021; Shafiq et al., 2021). Este tipo de concreto se obtiene comúnmente mediante el uso de agregados ligeros o la inclusión de aditivos que mejoran la cohesión y la trabajabilidad de la mezcla (Luo et al., 2022).

En el contexto peruano, materiales volcánicos como la traquita presentan características adecuadas para ser utilizados como agregado ligero en la

elaboración del concreto, sin embargo, su potencial sigue siendo poco explorado (Vásquez A, 2019). A su vez, el empleo de aditivos incorporadores de aire, como el SikaAer, contribuye a mejorar la trabajabilidad y homogeneidad del concreto ligero, reduciendo la segregación y facilitando la colocación (Acosta L, 2024).

No obstante, existen pocos estudios que evalúen de forma conjunta el efecto de la sustitución parcial del agregado grueso por traquita y la dosificación de un aditivo incorporador de aire en las propiedades mecánicas y la trabajabilidad del concreto ligero. Esta falta de información limita la adopción de mezclas optimizadas que puedan combinar reducción de peso unitario, adecuada resistencia a compresión y mejor desempeño en obra.

En ese marco, la presente investigación busca determinar las propiedades mecánicas del concreto ligero utilizando aditivo incorporador de aire SikaAer y sustituyendo parcialmente agregado grueso por traquita, en proporciones de 5 %, 10 %, 15 % y 20 %.

1.2. Formulación del problema

¿En cuánto se incrementa la resistencia a la compresión del concreto ligero utilizando aditivo incorporador de aire SikaAer y sustituyendo parcialmente agregado grueso por traquita?

1.3. Hipótesis

La resistencia a la compresión se incrementa en 5 % al emplear 0,067 % de aditivo incorporador de aire SikaAer y realizar la sustitución parcial del agregado grueso por traquita en proporciones de 5 %, 10 %, 15 % y 20 %, en comparación con el concreto de diseño.

1.4. Justificación de la investigación

El concreto convencional es el material más utilizado en la construcción de estructuras debido a su alta resistencia estructural. No obstante, su elevado peso específico representa una limitación importante en el diseño estructural, ya que obliga a dimensionar elementos de mayor tamaño para soportar las cargas gravitacionales, lo que incrementa significativamente el consumo de materiales.

En este contexto, el concreto ligero se plantea como una alternativa eficiente para reducir el peso estructural sin comprometer la resistencia requerida.

1.5. Alcances y delimitación de la investigación

- ✓ Se determina únicamente la resistencia a la compresión y peso unitario del concreto en estado endurecido.
- ✓ Los agregados usados para esta investigación son de la cantera "La Molina" y la cantera "La Banda"
- ✓ Se utiliza exclusivamente cemento Portland Tipo I marca Pacasmayo en todas las mezclas de concreto de acuerdo a la norma ASTM C150
- ✓ Se utiliza la traquita como sustituto parcial del agregado grueso en proporciones del 5%, 10%, 15% y 20%

1.6. Limitaciones

No se realizaron ensayos de resistencia a la tracción ni de resistencia a la flexión, el análisis de las propiedades mecánicas del concreto se centró exclusivamente en la resistencia a la compresión como principal indicador del comportamiento estructural.

No se realizó el análisis químico de los agregados

1.7. Objetivos de la investigación:

1.7.1. Objetivo general

Determinar la resistencia a la compresión y peso unitario del concreto ligero utilizando aditivo incorporador de aire SikaAer y sustituyendo parcialmente agregado grueso por traquita.

1.7.2. Objetivos específicos

- Determinar la resistencia a la compresión del concreto ligero utilizando aditivo incorporador de aire SikaAer y sustituyendo parcialmente agregado grueso por traquita
- Determinar el peso unitario del concreto ligero utilizando aditivo incorporador de aire SikaAer y sustituyendo parcialmente agregado grueso por traquita.

1.8. Descripción de contenido de los capítulos

El desarrollo del presente estudio se ha estructurado en capítulos, cuyo contenido se detalla a continuación:

CAPÍTULO I: INTRODUCCIÓN

Este capítulo tiene como propósito fundamental ofrecer una visión general de la investigación. Incluye el planteamiento y formulación del problema, la hipótesis, la justificación, los alcances, los objetivos de la investigación, así como la descripción general de su contenido.

CAPÍTULO II: MARCO TEÓRICO

En este capítulo se presenta el fundamento conceptual y teórico que respalda la investigación. Se desarrollan y analizan las teorías pertinentes, los antecedentes teóricos, las bases conceptuales y la definición de los términos clave relacionados con el estudio.

CAPÍTULO III: MATERIALES Y MÉTODOS

Este capítulo Incluye la ubicación geográfica donde se desarrolló el estudio, periodo de la investigación, metodología utilizada en la investigación, los procedimientos realizados para la recopilación de datos en laboratorio y la forma en que estos fueron organizados para su presentación.

CAPÍTULO IV: ANÁLISIS Y DISCUSIÓN DE RESULTADOS

Se realizó un examen de los resultados de las pruebas de laboratorio y se incluyó un comentario basado en información procedente de la literatura científica pertinente.

CAPÍTULO V: CONCLUSIONES Y RECOMENDACIONES

Este capítulo resume los hallazgos más significativos del estudio, ofreciendo conclusiones específicas para cada objetivo planteado. Además, se formulan recomendaciones prácticas basadas en los resultados obtenidos, cerrando con una síntesis precisa de las implicaciones y aportes de la investigación.

REFERENCIAS BIBLIOGRÁFICAS

Incluye todas las fuentes bibliográficas utilizadas como apoyo durante el desarrollo del estudio.

ANEXOS

CAPÍTULO II. MARCO TEÓRICO

2.1. Antecedentes de la investigación

2.1.1. Internacionales

Shafiq et al. (2021), en su estudio titulado *Evaluación de las propiedades mecánicas del concreto ligero con agregado de piedra pómez*, analizaron el comportamiento mecánico de una mezcla en la que el árido grueso tradicional fue reemplazado en su totalidad por piedra pómez. Los resultados evidenciaron una disminución en la trabajabilidad y en la densidad seca del concreto, en comparación con las propiedades del concreto convencional. Además, se reportó una reducción significativa en la resistencia a la compresión, alcanzando un 49 % menos. Con base en estos hallazgos, los autores desaconsejaron el uso de este tipo de concreto en estructuras que estén sometidas a condiciones de carga elevadas. No obstante, su investigación respalda el uso de agregados volcánicos porosos en la producción de concretos ligeros, aunque no se haya considerado específicamente la traquita en su análisis.

2.1.2. Locales

En su investigación titulada *Influencia sobre la resistencia a compresión* de un concreto ligero estructural al reemplazar un porcentaje de traquita, saturada y seca, por el agregado grueso, Vásquez (2019) analizó el efecto del reemplazo parcial del agregado grueso por traquita en estado seco y saturado, sobre la resistencia a la compresión de un concreto estructural con una resistencia característica de 210 kg/cm². El estudio consideró sustituciones del 3 % y 5 % en volumen, y los resultados permitieron concluir que, al utilizar un 5 % de traquita, la resistencia a la compresión aumentó en un 6.2 % cuando se empleó en estado seco y en un 6.5 % con traquita saturada. En cuanto a la densidad del concreto, se observó un ligero incremento con el uso de traquita saturada, mientras que con traquita seca se registró una leve disminución, aproximadamente del 0.8 %. Estos resultados sugieren que la incorporación controlada de traquita puede mejorar las propiedades mecánicas del concreto sin comprometer significativamente su densidad.

2.2. Bases legales

- Agregados: [NTP 400.011-2008]
- Cemento Portland: [NTP 339.047-2014]
- Concreto de peso normal: [NTP 339.047-2014]
- Aditivo incorporador de aire: [NTP 339.047-2014]
- Densidad: [NTP 400.021-2013].
- Densidad de masa del agregado y vacíos: [NTP 400.017-2011]
- Gravedad específica: [NTP 400.021-2013], [NTP 400.022-2013]
- Granulometría: [NTP 400.012-2008]
- Módulo de finura (MF): [NTP 400.011-2008]
- Relación agua-cemento (a/c): [NTP 339.047-2014]
- Saturado superficialmente seco: [NTP 400.022-2013]
- Tamaño máximo del agregado: [NTP 400.011-2008]
- Tamaño nominal máximo del agregado: [NTP 400.011-2008]
- Elaboración de especímenes de concreto: [NTP 339.183-2013]
- Asentamiento o Slump: [NTP 339.035-2008]
- Peso Unitario del Concreto: [NTP 339.046-2008],
- Resistencia a la compresión: [NTP 339.034-2013]

2.3. Bases teóricas:

2.3.1. Concreto

El concreto es una mezcla de materiales que incluye cemento Portland, agregados, agua y una cantidad controlada de aire, cuya proporción debe ser cuidadosamente dosificada para asegurar que la mezcla resultante alcance niveles adecuados de resistencia mecánica y durabilidad. En determinadas aplicaciones, también puede incorporarse el uso de aditivos para mejorar o modificar sus propiedades (Abanto, 2017).

2.3.1.1. Importancia del concreto

El concreto continúa siendo el material de construcción más utilizado en el país, principalmente por su resistencia y adaptabilidad a diversos tipos de estructuras. No obstante, la calidad del concreto que se obtiene en obra está fuertemente influenciada por el grado de conocimiento técnico del profesional responsable y su experiencia en el diseño y aplicación del material. Aunque su uso es generalizado, aún persisten vacíos en la comprensión integral de aspectos clave como su composición, comportamiento físico y mecánico, la correcta dosificación de sus componentes, los métodos adecuados de colocación, los controles de calidad e inspección durante su ejecución, así como las tareas necesarias para su mantenimiento a lo largo del tiempo (Neville, 2016).

Un conocimiento deficiente en cualquiera de estos aspectos puede impactar negativamente el desempeño del concreto, lo que resalta la importancia de un manejo adecuado y profesional en todas las etapas de su producción y aplicación (Rivva, 2014).

2.3.1.2. Componentes del concreto

Dentro de la tecnología contemporánea del concreto, se identifican como componentes principales al cemento, el agua, los agregados y los aditivos químicos, los cuales desempeñan un rol activo en el comportamiento de la mezcla. Por su parte, el aire se considera un componente pasivo que, aunque no participa directamente en las reacciones químicas, influye en aspectos como la durabilidad y la facilidad de colocación del concreto. En el pasado, los aditivos

eran vistos como elementos secundarios, utilizados únicamente cuando se requería modificar propiedades específicas del material en situaciones puntuales (Mehta & Monteiro, 2014).

Sin embargo, en la actualidad, con los avances tecnológicos y el aumento de las demandas en la industria de la construcción, los aditivos han evolucionado hasta convertirse en un componente clave y habitual en la fabricación de concreto. Además, aunque inicialmente puede representar un costo adicional, su empleo resulta en una solución más económica a largo plazo, al optimizar recursos y reducir costos asociados al mantenimiento y reparación de estructuras (Neville & Brooks, 2019).

El concreto en estado fresco está compuesto por una mezcla de materiales cuyas proporciones influyen directamente en sus propiedades físicas y mecánicas. En un metro cúbico de mezcla, los agregados representan el mayor porcentaje, con una participación que oscila entre el 60 % y el 75 %, siendo fundamentales para su resistencia y durabilidad. El resto de la composición incluye agua (entre 15 % y 22 %), cemento (aproximadamente entre 7 % y 15 %), aire incorporado (1 % a 3 %) y aditivos químicos en proporciones menores, que usualmente no superan el 0.2 % del volumen total (Neville & Brooks, 2019).

2.3.2. Cemento:

El cemento Portland es un aglomerante hidráulico compuesto principalmente por clínker – obtenido del calentamiento de piedra caliza, arcilla y yeso, que al mezclarse con agua forma una pasta que fragua y endurece mediante reacciones de hidratación, actuando como el componente aglutinante principal en la fabricación de concreto (ASTM C150/C150M-20).

2.3.2.1. Tipos de cemento portland

Los tipos de cemento Portland se diferencian por sus propiedades de resistencia inicial, resistencia a agentes agresivos y calor de hidratación, lo que permite seleccionar el tipo más adecuado para cada condición de obra. Esta clasificación se encuentra regulada por la norma ASTM C150/C150M-20

Tabla 1 Tipos de cemento portland

Tipos	Definición / Característica principal
TIPO I	Cemento Portland de uso general, sin
	requisitos especiales.
TIPO II	Moderada resistencia a sulfatos y calor de
	hidratación controlado.
TIPO III	Alta resistencia inicial, útil para obras rápidas.
TIPO IV	Bajo calor de hidratación, para grandes
	masas de concreto.
TIPO V	Alta resistencia a sulfatos, para ambientes
	agresivos.

Fuente: ASTM C150/C150M-20

2.3.3. Agregados:

Los agregados se definen como un "material granular, de origen natural o artificial, que incluye arena, grava, piedra triturada y escoria de hierro de alto horno, utilizado junto con un medio cementante para producir concreto o mortero hidráulico" (RNE, 2019).

2.3.3.1. Clasificación de los agregados:

Dado que los áridos representan entre el 60% y el 75% del volumen del concreto, es crucial elegirlos y clasificarlos cuidadosamente para garantizar la calidad de la mezcla. (Neville & Brooks, 2021).

De acuerdo con la literatura técnica reciente, los agregados se clasifican considerando diversos criterios:

1. Según el tamaño de las partículas

Agregado fino: Está compuesto principalmente por partículas que pasan por el tamiz N° 4 (4.75 mm). Usualmente corresponde a arenas naturales o

manufacturadas. Su función principal es llenar los vacíos entre los granos de agregado grueso y aportar trabajabilidad a la mezcla (Neville & Brooks, 2019).

Agregado grueso: Incluye partículas retenidas en el tamiz N° 4, con tamaños máximos que pueden llegar hasta 76 mm, dependiendo de los requerimientos estructurales y el tipo de elemento a ejecutar (ASTM C33, 2022).

2. Según su origen

Naturales: Provienen de depósitos aluviales, ríos o canteras, siendo usados tal como se extraen o tras un proceso mínimo de cribado.

Artificiales: Son producidos mediante procesos industriales, como la trituración de roca o el reciclaje de concreto. El uso de agregados reciclados ha cobrado relevancia en la última década por su contribución a la sostenibilidad y la economía circular en la construcción (Mindess et al., 2022).

3. Según su peso volumétrico

Agregados normales o densos: Poseen una densidad aparente entre 2400 y 3000 kg/m³, siendo los más empleados en concreto convencional (Mehta & Monteiro, 2020).

Agregados livianos: Con densidad menor a 1920 kg/m³, se utilizan en concretos de baja densidad para aligerar estructuras y mejorar propiedades térmicas.

Agregados pesados: Superan los 3000 kg/m³ y se emplean en concretos de alta densidad para aplicaciones especiales, como protección contra radiación (Mehta & Monteiro, 2020).

4. Según su forma y textura superficial

Redondeados: Típicos de depósitos fluviales, ofrecen mayor trabajabilidad al concreto por su menor fricción interna.

Angulares: Obtenidos por trituración mecánica, proporcionan mejor adherencia pasta-agregado, mejorando la resistencia mecánica de la mezcla (ACI 221R-21).

2.3.3.2. Propiedades de los agregados.

√ Peso especifico

El peso específico permite cuantificar cuán denso es un material granular al comparar su peso con el volumen real que ocupa, omitiendo los espacios vacíos entre partículas. Este dato resulta clave para caracterizar agregados y otros materiales granulares en la formulación de mezclas. Los métodos normalizados que describen su medición en laboratorio se encuentran en las normas ASTM C127 y ASTM C128, las cuales garantizan procedimientos reproducibles y resultados fiables (ASTM International, 2021).

De acuerdo con ASTM C128, la gravedad específica puede expresarse de tres maneras:

- a. Peso específico de masa. Relaciona la masa de un volumen unitario de agregado—incluyendo los poros llenos y los impermeables—con la masa de un volumen igual de agua destilada a temperatura constante. Este valor refleja la densidad global del material y se utiliza para el diseño volumétrico de mezclas de concreto (ASTM International, 2021).
- b. Peso específico de masa saturada y superficie seca. Calcula la relación anterior cuando los poros permeables están saturados, pero la superficie de la partícula permanece seca. Representa la condición habitual de los agregados al mezclarse con cemento y agua (ASTM International, 2021).
- c. Peso específico aparente. Compara la masa de la parte sólida impermeable del agregado con la masa de un volumen equivalente de agua, excluyendo totalmente los poros accesibles. Este parámetro refleja la densidad del material "puro", útil cuando se requiere diferenciar porosidad interna y externa (ASTM International, 2021).

Estas distintas expresiones permiten analizar con mayor precisión el comportamiento del agregado en función de su porosidad y contenido de humedad, aspectos fundamentales para garantizar la calidad del concreto en obra (ASTM, 2021). Es importante considerar que las expresiones de peso específico proporcionadas por las normas técnicas son adimensionales y representan una relación de densidades. Para obtener el peso unitario real en unidades prácticas (por ejemplo, kg/m³), es necesario multiplicar este valor por la densidad del agua correspondiente a la temperatura de ensayo. En el caso de agregados naturales, la gravedad específica suele encontrarse en un rango de 2.50 a 2.75, lo que equivale a un peso unitario aproximado de 2500 a 2750 kg/m³ (Mindess, Young & Darwin, 2017)

✓ Peso unitario

El peso unitario de un agregado se expresa como el cociente entre su peso y el volumen total que ocupa, incluidos los vacíos entre partículas. Se trata de una magnitud relativa y cambiante, pues depende de la forma, la distribución de las partículas y el grado de compactación durante su acomodación. Conocerlo con precisión resulta indispensable para calcular correctamente las proporciones volumétricas en el diseño de mezclas de concreto y, así, asegurar uniformidad y calidad en la obra (Zegarra, 2021).

Según la norma ASTM C29, el peso unitario del agregado se determina llenando un molde metálico en tres capas sucesivas, cada una compactada con 25 golpes aplicados por un pisón cilíndrico de 5/8 pulgadas de diámetro. Este procedimiento estandarizado busca que los resultados obtenidos sean reproducibles y confiables al evaluar esta propiedad (ASTM International, 2021).

✓ Granulometría

Según Abanto (2022), la granulometría se define como la distribución de tamaños de las partículas que componen un agregado. Este análisis se lleva a cabo mediante la separación del material

utilizando un procedimiento mecánico que emplea tamices con aberturas cuadradas de dimensiones específicas.

El objetivo de este proceso es clasificar las partículas según su tamaño, lo que resulta fundamental para garantizar que el agregado cumpla con los requisitos técnicos necesarios para su aplicación en mezclas de concreto u otros materiales de construcción.

Tabla 2 Requisitos de gradación para el agregado grueso

	Tamaño máximo nominal	Porcentaje que pasa por los tamices normalizados													
Huso		100 mm (4 pulg)	90 mm (3 ½ pulg)	75 mm (3 pulg)	63 mm (2 ½ pulg)	50 mm (2 pulg)	37,5 mm (1 ½ pulg)	25,0 mm (1 pulg)	19,0 mm (3/4 pulg)	12,5 mm (1/2 pulg)	9,5 mm (3/8 pulg)	4,75 mm (No. 4)	2,36 mm (No. 8)	1,18 mm (No. 16)	300 μm (No. 50)
1	90 mm a 37,5mm (3 ½ pulg a 1 ½ pulg)	100	90 a 100		25 a 60		0 a 15		0 a 5						
2	63 mm a 37,5 mm (2 ½ pulg a 1 ½ pulg)			100	90 a 100	35 a 70	0 a 15		0 a 5						
3	50 mm a 25,0 mm (2 pulg a 1 pulg)				100	90 a 100	35 a 70	0 a 15		0 a 5					
357	50 mm a 4,75 mm (2 pulg a No. 4)				100	95 a 100		35 a 70		10 a 30		0 a 5			
4	37,5 mm a 19,0 mm (1 ½ pulg a ¾ pulg)					100	90 a 100	20 a 55	0 a 5		0 a 5				
467	37,5 mm a 4,75 mm (1 ½ pulg a No. 4)					100	95 a 100		35 a 70		10 a 30	0 a 5			
5	25,0 mm a 12,5mm (1 pulg a ½ pulg)						100	90 a 100	20 a 55	0 a 10	0 a 5				
56	25,0 mm a 9,5 mm (1 pulg a 3/8 pulg)						100	90 a 100	40 a 85	10 a 40	0 a 15	0 a 5			
57	25,0 mm a 4,75mm (1 pulg a No. 4)						100	95 a 100		25 a 60		0 a 10	0 a 5		
6	19,0 mm a 9,5 mm (3/4 pulg a 3/8 pulg)							100	90 a 100	20 a 55	0 a 15	0 a 5			
67	19,0 mm a 4 mm (3/4 pulg a No. 4)							100	90 a 100		20 a 55	0 a 10	0 a 5		
7	12,5 mm a 4,75 mm (1/2 pulg a No. 4)		***						100	90 a 100	40 a 70	0 a 15	0 a 5		
8	9,5 mm a 2,36 mm (3/8 pulg a No. 8)									100	85 a 100	10 a 30	0 a 10	0 a 5	
89	12,5 mm a 9,5 mm (1/2 pulg a 3/8 pulg)									100	90 a 100	20 a 55	5 a 30	0 a 10	0 a 5
9 ^A	4,75 mm a 1,18 mm (No. 4 a No. 16)										100	85 a 100	10 a 40	0 a 10	0 a 5

Fuente: NTP 400.037-2014

Tabla 3 Requisitos de gradación del agregado fino

Tamiz	Porcentaje que Pasa					
9.5 mm (3/8 pulg.)	100					
4.75 mm (N° 4)	95 a 100					
2.36 mm (N° 8)	80 a 100					
1.18 mm (N° 16)	50 a 85					
600 μm (N° 30)	25 a 60					
300 μm (N° 50)	05 a 30					
150 µm (N° 100)	0 a 10					

Fuente: NTP 400.037-2014

2.3.4. El agua

El agua, uno de los ingredientes básicos del concreto, es esencial para la trabajabilidad de la mezcla fresca, así como para la reacción química de hidratación del cemento. Su función principal es iniciar el proceso de hidratación de los compuestos de cemento, que produce productos de reacción que confieren a la pasta su resistencia mecánica y cohesividad. (Neville & Brooks, 2021)

2.3.5. Aditivos

Se considera aditivo a cualquier sustancia incorporada al concreto, ya sea antes o durante el mezclado, con la finalidad de alterar alguna de sus propiedades y así cumplir los requisitos de diseño o las condiciones de colocación; esta definición no abarca el agua de mezclado, los agregados ni el cemento hidráulico (RNE E.060, edición actualizada 2024).

2.3.5.1. Beneficios del uso de aditivos

La razón del uso cada vez mayor de aditivos es que pueden proporcionar considerables ventajas físicas y económicas para el concreto. Estos beneficios incluyen uso de concreto en situaciones donde anteriormente había dificultades considerables o incluso insuperables (Neville, 2016).

De acuerdo a Neville (2016) se puede señalar que, cuando se usan adecuadamente los aditivos son beneficiosos para el concreto. Sin embargo, no son una solución a la baja calidad de los componentes de la mezcla o para el uso de proporciones incorrectas, ni para una mano de obra pobre en transporte, lanzamiento y densificación.

2.3.5.2. Razones para el empleo de aditivos

Según Abanto (2017), los aditivos empleados en el concreto pueden cumplir múltiples funciones, entre las que destacan:

 Mejorar la trabajabilidad sin necesidad de modificar el contenido de agua.

2.3.5.3. Clasificación

Los aditivos para concreto se clasifican principalmente en función del efecto que producen en la mezcla: reductores de agua, retardantes, acelerantes, incorporadores de aire, controladores de fraguado y aditivos especiales como los impermeabilizantes o expansivos. Su empleo permite modificar la trabajabilidad, el tiempo de fraguado, la resistencia inicial o final y la durabilidad del concreto, contribuyendo así a optimizar el comportamiento de la mezcla frente a las exigencias de diseño y las condiciones ambientales (Neville & Brooks, 2021).

2.3.5.4. Aditivos incorporador de aire y sus efectos producidos

Los aditivos incorporadores de aire son productos químicos diseñados para introducir y estabilizar microburbujas de aire distribuidas de forma uniforme en la mezcla de concreto. Estas burbujas microscópicas, generalmente menores de 1 mm de diámetro, mejoran significativamente la resistencia del concreto endurecido frente a ciclos de congelamiento y descongelamiento, y reducen los daños por acción de sales descongelantes (Neville & Brooks, 2019).

Efecto frente a la manejabilidad o trabajabilidad

"Aunque los aditivos incorporadores de aire no se clasifican como plastificantes, su acción tiene un efecto indirecto que mejora la manejabilidad del concreto en estado plástico. Esta mejora es particularmente apreciable en

mezclas con bajo contenido de cemento, las cuales suelen ser ásperas y difíciles de moldear (Neville & Brooks, 2019).

2.3.5.5. Sikaaer

SikaAer es un aditivo incorporador de aire fabricado por la empresa Sika, diseñado para ser utilizado en mezclas de concreto con el objetivo de introducir microburbujas de aire de manera controlada y uniforme. Este tipo de aditivo mejora la trabajabilidad de la mezcla y aumenta la resistencia del concreto a ciclos de congelamiento y deshielo, así como a ciertos agentes agresivos, al reducir la permeabilidad del material endurecido (Sika, 2023).

2.3.6. Concretos especiales: concreto ligero

Existen varios tipos de concreto que pueden usarse cuando se requieren propiedades especiales. El término "especial" no significa que raro o innecesario, pero estas son propiedades específicas que son deseables en ciertas circunstancias. Uno de estos tipos de concreto es el concreto liviano o ligero, es decir, un concreto con una masa específica significativamente menor que la del concreto producido con agregados normales que van desde 2.200 a 2.600 kg / m3 (Neville & Brooks, 2019).

2.3.6.1. Composición del concreto ligero

Según el ACI 213R-14, el concreto liviano está compuesto de cemento, agregados, agua y aditivos químicos y minerales similares al concreto de peso normal.

2.3.6.2. Clasificación del concreto ligero

De acuerdo con el ACI 213R-14, el concreto ligero se clasifica en función de su densidad y sus aplicaciones específicas, como se detalla a continuación:

✓ Concreto de baja densidad: Este tipo de concreto ligero presenta una densidad que varía entre 300 kg/m³ y 1000 kg/m³. Es comúnmente utilizado en elementos no estructurales de edificios, como particiones o sistemas de aislamiento. Su resistencia es baja, inferior a 7 MPa, y los agregados más utilizados para su elaboración incluyen materiales

como vermiculita y perlita, los cuales son ligeros y proporcionan propiedades aislantes. (ACI 213R-14)

- ✓ Concreto de densidad media: Con una densidad comprendida entre 1000 kg/m³ y 1600 kg/m³, este tipo de concreto se elabora principalmente con agregados como piedra pómez y escoria. A diferencia del concreto de baja densidad, este tiene aplicaciones estructurales moderadas y puede ser utilizado en elementos de soporte de carga. Su resistencia mínima es de aproximadamente 17 MPa, lo que lo hace adecuado para proyectos que requieren un material de menor peso, pero con capacidad de carga (ACI 213R-14)
- ✓ Concreto de alta densidad: Este tipo de concreto ligero tiene una densidad que oscila entre 1600 kg/m³ y 2200 kg/m³. Está diseñado para aplicaciones estructurales, como elementos portantes en los que se requiere un material resistente y confiable. Los agregados utilizados en su producción suelen ser escoria expandida, ceniza volante y pizarra, que contribuyen a lograr una combinación de resistencia y ligereza (ACI 213R-14)

2.3.7. Ventajas y desventajas del uso de concreto ligero

"El principal objetivo del concreto de peso ligero es disminuir la carga muerta de las estructuras de concreto, lo que permite al diseñador estructural optimizar el diseño y reducir las dimensiones de elementos como columnas, zapatas y cimentaciones (ACI 213R-14, 2014; Neville & Brooks, 2029)

Esta eficiencia no solo se limita a la resistencia, sino que también se extiende a otros requisitos de desempeño mecánico y de durabilidad, cumpliendo con los estándares en la mayoría de los casos. Aunque el concreto de peso liviano puede tener un costo inicial más alto, este se compensa por los beneficios económicos derivados de la reducción del tamaño de los elementos estructurales, el menor uso de acero de refuerzo y la disminución en el volumen de concreto requerido. En conjunto, estos factores contribuyen a reducir el costo global del proyecto (NRMCA, 2018).

En la construcción de edificios, el concreto estructural liviano ofrece ventajas significativas, entre las que destaca una mayor resistencia al fuego de las estructuras de concreto. Esto lo convierte en una opción más segura frente a situaciones de altas temperaturas o incendios. (NRMCA, 2018)

De acuerdo a NRMCA (2018) indica que: "la porosidad del agregado liviano proporciona una fuente de agua para el curado interno del concreto que permite el aumento continuo de la resistencia del concreto y de su durabilidad, sin por ello excluir la necesidad del curado externo"

Sin embargo, Valdez; Suarez (2010), indican las desventajas frente al concreto convencional:

- Los agregados livianos podrían ser más caros que la grava común, pero esta diferencia podrá ser compensada con un menor costo en el transporte e incluso puede influir en el tipo de cimentación favorablemente.
- Debido a su bajo módulo de elasticidad, este tipo de concreto experimenta mayores deformaciones que el convencional.
- Además, su elevada absorción dificulta precisar el efecto real de la relación agua-cemento. Al dimensionar los elementos estructurales conviene considerar la retracción por secado, ya que supera la del concreto ordinario.
- La humedad retenida también favorece la corrosión del acero de refuerzo; si bien un mayor recubrimiento ayuda a mitigarla, no la elimina por completo.

2.3.8. Agregados de peso ligero

Según Neville (2016), la característica principal de los agregados ligeros es su alta porosidad, lo que resulta en Masa específica baja. Algunos agregados ligeros son de origen natural, mientras que otros se producen a partir de materiales naturales o residuos industriales.

2.3.9. Traquita

La traquita es una roca volcánica ígnea de textura afanítica o porfírica, rica en feldespatos alcalinos y pobre en minerales máficos. Se forma a partir de magmas ricos en sílice y se caracteriza por una estructura porosa y ligera. Su color varía del gris claro al rosado, y su baja densidad la hace apta para aplicaciones como agregado ligero en concretos de baja masa unitaria (García et al., 2021)

La traquita puede sustituir parcial o totalmente al agregado grueso convencional en mezclas de concreto ligero, reduciendo la carga muerta de elementos estructurales sin comprometer significativamente la resistencia a compresión, siempre que se diseñen mezclas con proporciones y aditivos adecuados (Neville & Brooks, 2019).

La traquita triturada cumple funciones similares a otros agregados ligeros naturales, como la piedra pómez o la escoria volcánica, siendo viable en zonas donde se dispone localmente de depósitos volcánicos, lo que también contribuye a la sostenibilidad de la construcción (Rojas & Chávez, 2022).

2.3.10. Propiedades mecánicas del concreto

Las propiedades mecánicas del concreto son fundamentales para el diseño y análisis de estructuras, ya que determinan su capacidad para resistir distintas solicitaciones. Entre estas propiedades, la más representativa es la resistencia a la compresión, que refleja la capacidad del concreto para soportar cargas axiales sin fallar. Esta propiedad es ampliamente utilizada como indicador de calidad y se evalúa mediante ensayos en probetas cilíndricas o cúbicas (Neville & Brooks, 2014)

CAPÍTULO III. MATERIALES Y MÉTODOS

3.1. Ubicación geográfica de la investigación

La investigación se llevó a cabo en el Laboratorio de Ensayo de Materiales "Carlos Esparza Díaz", ubicado en el edificio 1C de la Facultad de Ingeniería de la Universidad Nacional de Cajamarca. Esta institución está situada en la Av. Atahualpa N°1050. El trabajo experimental se desarrolló durante los meses de marzo a mayo del año 2024, abarcando todas las etapas necesarias para cumplir con los objetivos planteados en el estudio.

Geográficas Geográficas UTM (WGS84) (grados, min, seg) (grados decimales) latitud: 7º 10' 2.09" S latitud : -7.1672478 X: 776620.8 huso longitud: 78° 29' 43.48" W longitud -78.4954101 y: 9207007.7 hemisferio Sur Universidad Nacional de Cajamarca, Avenida Tarsicio Bazán Zegarra, Cajamarca, Pert Sexagesimales: 78º 29' 43.48" W Perú Peru

Figura 1: Fotografía satelital de la ubicación del estudio

Fuente: http://www.mundivideo.com/coordenadas.htm

3.2. Ubicación de la cantera de estudio

El agregado fino y grueso utilizado en esta investigación fue extraído de la cantera "La Banda", localizada en el distrito de Llacanora, perteneciente a la provincia y departamento de Cajamarca. Desde el punto de vista geográfico, las coordenadas UTM de la cantera, según el sistema de referencia Datum WGS-

84, se encuentran en la Franja 17M con las siguientes especificaciones: 0784271 Este y 9203152 Norte, a una altitud de 2601 metros sobre el nivel del mar (m.s.n.m.).

Figura 2: Fotografía satelital de la ubicación de la cantera "La Banda"

Fuente: Imagen capturada de Google Earth en el año 2024.

La traquita utilizada en esta investigación fue extraída de la cantera "La Molina", ubicada en el distrito de Baños del Inca, dentro de la provincia y departamento de Cajamarca. Geográficamente, esta cantera se encuentra posicionada en las coordenadas UTM, según el sistema de referencia Datum WGS-84, dentro de la Franja 17M, con las siguientes especificaciones: 774239 Este y 9211701 Norte, a una altitud de 2826 metros sobre el nivel del mar (m.s.n.m.). Estas condiciones geográficas resaltan la ubicación estratégica de la cantera para la obtención de este tipo de material volcánico.

3.3. Diseño de la investigación

3.3.1. Tipo

La investigación es de tipo aplicada, ya que tiene como finalidad brindar una solución a un problema práctico dentro del ámbito de la ingeniería civil, específicamente en la mejora del concreto ligero mediante el uso de un aditivo incorporador de aire (SikaAer) y la sustitución parcial del agregado grueso por traquita

3.3.2. Nivel

El nivel de la investigación es correlacional, dado que se pretende determinar el grado de relación entre las variables independientes (uso del aditivo SikaAer y porcentaje de sustitución del agregado grueso por traquita) y la variable dependiente (propiedades mecánicas del concreto ligero, principalmente resistencia a la compresión).

3.3.3. Diseño

Debido a la naturaleza de las variables involucradas, esta investigación se enmarcó dentro de un diseño experimental. Se empleó un diseño experimental unifactorial, dado que únicamente se modificó un factor: el porcentaje de sustitución del agregado grueso por traquita, manteniendo constante la dosificación del aditivo incorporador de aire SikaAer en todas las mezclas.

3.3.4. Variables

Variable independiente

- Traquita

Variable dependiente

- Resistencia a compresión del concreto
- Peso unitario del concreto

3.3.5. Población y muestra.

3.3.5.1. Población.

Todos los especímenes de concreto cilíndricos de 15 cm de diámetro y 30 cm de alto.

3.3.5.2. Muestra.

Considerando un muestreo probabilístico, se justifica el tamaño de la muestra utilizando la fórmula estadística para estudios de proporciones:

$$n = (Z^2 * p * q) / e^2$$

Donde:

n: Tamaño de la muestra

Z: Valor crítico para un nivel de confianza del 95% (1.96)

p: Probabilidad de éxito (0.5)

q: Probabilidad de fracaso (0.5)

e: Margen de error máximo aceptado (0.09)

Reemplazando en la fórmula tenemos:

n= 6^2 * 0.5 * 0.5) / 0.09^2

n = (3.8416 * 0.25) / 0.0081

n = 0.9604 / 0.0081 aproximadamente 118.57

Teniendo en cuenta los cálculos estadísticos se prepararon un total de 120 especímenes cilíndricos de concreto. La distribución de estos especímenes se realizó de la siguiente manera:

Tabla 4 Número de especímenes de concreto

	Α	В	С	D	E	TOTAL
TIPO DE	0.067 %	0.067 %	0.067 %	0.067 %	0.067 %	
CONCRETO	SikaAer	SikaAer	SikaAer +	SikaAer +	SikaAer +	
	+ 0 % de	+ 5 % de	10 % de	15 % de	20 % de	120
	Traquita	Traquita	Traquita	Traquita	Traquita	_
CANTIDAD	24	24	24	24	24	

Los especímenes de concreto fueron probados, 8 a los 07 días, 8 a los 14 días y 8 a los 28 días.

3.4. Propiedades de los agregados para el concreto

3.4.1. Granulometría

3.4.1.1. Análisis granulométrico del agregado fino y grueso

- ❖ Procedimiento: Los procedimientos son descritos en la norma NTP. 400.012. también en la ASTM C 136.
 - Se acondicionó la muestra en estufa a 110 ± 5 °C hasta alcanzar masa constante.

- Una vez enfriada, se tomaron 8000 g de agregado grueso y 1500g de agregado fino para el análisis.
- A continuación, se efectuó el tamizado utilizando el conjunto de tamices correspondiente a cada tipo de agregado.
- En el caso del agregado grueso se emplearon los tamices de 1 ",
 3/4", 1/2 ", 3/8 " y N.º 4.
- Para el agregado fino se usaron los tamices N.º 4, 8, 16, 30, 50, 100 y 200.
- Cada fracción retenida se pesó después de comprobar, tras un minuto adicional de sacudida, que no pasaba material apreciable.
- Con los pesos obtenidos se determinaron el porcentaje retenido por tamiz, el retenido acumulado y el porcentaje que pasa.

3.4.1.2. Tamaño máximo nominal del agregado grueso

- Tras completar el tamizado y el análisis granulométrico, se identificó el tamaño máximo nominal del agregado grueso.
- Tomamos como tamaño máximo nominal al tamiz donde el primer porcentaje retenido es mayor al 10% del total del material analizado.

3.4.1.3. Materiales más finos que pasan por el tamiz N° 200:

- Procedimiento: La determinación se efectuó de acuerdo con lo establecido en la NTP 400.018.
 - Se seleccionó una porción representativa de 3000 g de agregado grueso y 500 g de agregado fino.
 - La muestra se llevó a estufa a 110 ± 5 °C hasta alcanzar masa constante y se registró su peso.
- Posteriormente, se vertió la muestra en un recipiente adecuado y se añadió el volumen de agua necesario para cubrirla por completo.
- Se agitó hasta desprender los finos adheridos y se decantó el agua turbia repetidas veces, retirando las partículas en suspensión hasta que el líquido de lavado se observó

- prácticamente claro; de esta forma se aseguró la remoción de todo material menor a 75 µm (tamiz N.° 200).
- Vierte cuidadosamente el agua con los finos a través del tamiz N°
 200.
- Se transfiere el material retenido en el tamiz a un recipiente
- Se enjuaga completamente el tamiz para que todo el material retenido pase al recipiente.
- Finalmente, el material retenido se secó en la estufa a 110 ± 5 °C
 y se registró su masa final.

Tabla 5 Cantidad mínima de muestra para partículas menores al tamiz N° 200

Tamaño máximo nominal del agregado	Cantidad mínima, gramos
4.75 mm (N° 4) o más pequeño	300
Mayor que 4.75 mm (N° 4) a 9.5 mm	1000
(3/8 pulg)	
Mayor que 9.5 mm (3/8 pulg) a 19 mm	2500
(3/4 pulg)	2000
Mayor a 19 mm (3/4 pulg)	5000

Fuente: NTP 400.018-2013

Cálculo: Se calculó la cantidad de material que pasa el tamiz normalizado de 75 µm (Nº 200) por vía húmeda tal como sigue:

$$A = \frac{(P_1 - P_2)}{P_1} \times 100$$

Dónde:

A = Porcentaje del material más fino que pasa por el tamiz normalizado de um (Nº 200) por vía húmeda.

P1 = Masa seca de la muestra original, g

P2 = Masa seca de la muestra luego del lavado, g

3.4.2. Módulo de fineza

Procedimiento:

El cálculo del módulo de fineza tanto para el agregado grueso y el agregado fino se realizó a partir de la granulometría, sumando los porcentajes acumulados que se retienen en los tamices de 3", 1 ½", ¾", 3/8", N°4, N°8, N°6, N°30, N°50 y N°100. Luego, este resultado se ha dividido entre 100.

$$MF = \frac{\% \text{Ret. acum. } (3, 1 \frac{1}{2}, 3/4^{\circ}, 3/8^{\circ}, N^{\circ}4, N^{\circ}8, N^{\circ}16, N^{\circ}30, N^{\circ}50, N^{\circ}100)}{100}$$

3.4.3. Peso específico y absorción

3.4.3.1. Determinación del peso específico y absorción del agregado grueso

- ❖ Procedimiento: según la NTP 400.021 o la ASTM C 127.
 - Se lavo la muestra para eliminar las impurezas de la superficie de las partículas.
 - Luego se procedió a secar en una estufa hasta alcanzar una masa constante a una temperatura de 110 °C ± 5 °C
 - La muestra se dejó enfriar hasta alcanzar la temperatura ambiente durante un periodo de 1 a 3 h.
 - Posteriormente, el agregado se mantuvo totalmente inmerso en agua a temperatura ambiente por 24 h ± 4 h.

- Transcurrido el tiempo de remojo, retiramos la muestra y rodamos sobre un paño absorbente para eliminar la película de agua visible.
- Anotamos la masa del agregado en condición saturada y superficie seca.
- Acto seguido, la muestra se colocó en una canastilla de alambre y se midió su peso en aire; inmediatamente después, se obtuvo su peso aparente sumergido en agua.
- Por último, el material se secó en estufa a 110 ± 5 °C hasta alcanzar masa constante, esperamos que descienda su temperatura de forma natural y se determinó su peso ya seco.

❖ Cálculos:

a) Peso especifico

• Peso específico en estado seco al horno

Peso especifico en Estado Seco al Horno
$$=\frac{A}{(B-C)}$$

Dónde:

A es la masa, en gramos, de la muestra secada en estufa y enfriada al aire.

B es la masa, en gramos, de la muestra en condición saturada-superficialmente-seca al aire.

C es la masa aparente en gramos de la muestra inmersa en agua.

Peso específico en estado saturado superficialmente seco

Peso Especifico en Estado SSS =
$$\frac{B}{(B-C)}$$

Peso específico aparente

Peso Especifico Aparente =
$$\frac{A}{(A-C)}$$

b) Absorción: Calcular el porcentaje de absorción, de la siguiente manera:

Absorción
$$\% = \left[\frac{(B-A)}{A}\right] \times 100$$

3.4.3.2. Determinación del peso específico y absorción del agregado fino

❖ Procedimiento:

El procedimiento fue realizado de acorde con la NTP 400.022 o la ASTM C 128.

- En la fiola se dispuso una cantidad de 500 g ± 10 g de agregado fino saturado y seco superficialmente, seguido de un llenado de agua casi hasta la marca de 500 cm³.
- Luego, se procedió a agitar el frasco para eliminar cualquier burbuja de aire.
- Transcurrida una hora, se completó el nivel de agua hasta alcanzar la marca de 500 cm³, y se determinó el peso total de la fiola, de la muestra y el agua.
- Posteriormente, se retiró el agregado fino de la fiola, se secó en el horno hasta alcanzar una masa constante a una temperatura de 110 °C ± 5 °C,
- Finalmente se enfrió a temperatura ambiente y se determinó su masa.

- Operaciones a seguir:
 - a) Peso especifico
 - · Peso específico en estado seco al horno

Peso especifico en Estado Seco al Horno $=\frac{A}{(B+S-C)}$

En dónde:

A = masa de la muestra secada al horno, g

B = masa del picnómetro llenado de agua hasta la marca de calibración, g, y

C = masa del picnómetro lleno de la muestra y el agua hasta la marca de calibración, g

S = masa de la muestra saturada superficialmente seca, g

• Peso específico en estado saturado superficialmente seco

Peso especifico en estado Sat. Superficialmente Seco = $\frac{S}{(B+S-C)}$

· Peso específico aparente:

Peso especifico Aparente =
$$\frac{A}{(B + A - C)}$$

31

b) Absorción: calcular el porcentaje de absorción, de la siguiente manera:

Absorción
$$\% = \left[\frac{(S - A)}{A} \right] \times 100$$

3.4.4. Peso unitario

❖ Procedimiento:

El procedimiento se desarrolló bajo las directrices indicadas en la NTP. 400.017 o la ASTM C29.

a) Procedimiento de apisonado

- Se vertió agregado hasta cubrir cerca de un tercio del volumen del recipiente y se igualó la parte superior manualmente.
- Esa primera capa se consolidó aplicando 25 golpes con la varilla de compactación, distribuidos de manera uniforme.
- Se continuó llenando el recipiente hasta alcanzar dos tercios de su altura, se alisó nuevamente la superficie y se repitió la compactación aplicando 25 golpes más.
- El molde se colmó ligeramente, se enrasó la superficie y se aplicó una tercera serie de 25 golpes.
- Finalmente, se anotó la masa del recipiente con su contenido y, por separado, la masa del recipiente vacío.

b) Procedimiento para peso suelto

- Se registró la masa del molde vacío.
- A continuación, el molde se llenó con agua hasta que la lámina de agua coincidió exactamente con el borde; para nivelar se utilizó una placa de vidrio.
- Se determinó el peso combinado del molde, la placa y el agua,
 valor necesario para calcular el factor de corrección f.
- Después se retiró el agua y se secó el interior del recipiente.
- Con ayuda de una pala o cucharón, se vertió el agregado en el molde hasta desbordar ligeramente el borde, dejándolo caer desde una altura máxima de 50 mm para evitar la segregación de tamaños.

- Finalmente, la superficie del agregado se rasó con los dedos,
 procurando que las partículas más prominentes compensaran los huecos mayores situados justo por debajo del borde del molde.
- Finalmente se determinó la masa del recipiente más el agregado.

Operaciones de cálculo:

a) Determinación de la densidad del agua. emplee la siguiente expresión:

$$D = \frac{P_1 - P_2}{V}$$

Donde:

D = Densidad del agua para la temperatura trabajada, kg/m³

P₁ = Masa del picnómetro y agua, kg

P₂ = Masa del picnómetro, kg

V = Volumen del picnómetro hasta la línea de calibración, m³

b) Volumen útil y coeficiente del recipiente:

 Para determinar el volumen interno (V) del recipiente se emplea la expresión:

$$V = \frac{(W - M)}{D}$$

 Mientras que el coeficiente de calibración del mismo (F) resulta de

$$F = \frac{D}{(W - M)}$$

Donde:

V = Volumen del recipiente, m³

F = Factor para el recipiente, l/m³

W = Masa del agua, placa de vidrio y recipiente, kg

M = Masa de placa de vidrio y recipiente, kg

D = Densidad del agua para la temperatura trabajada, kg/m³

c) Peso unitario: Se determina el peso unitario empleando, según corresponda, el método de compactación (apisonado) o el de vertido sin compactar (peso suelto) descrito a continuación.

$$PU = \frac{(G - T)}{V}$$

$$PU = (G - T) \times F$$

Donde:

PU = Densidad de masa del agregado, kg/m³

G = Masa del recipiente y agregado, kg

T = Masa del recipiente, kg

V = Volumen del recipiente, m³

F = Factor para el recipiente, l/m³

d) Contenido de vacíos:

% Vacíos =
$$\frac{\{(S \times W) - M\}}{(S \times V)} \times 100$$

Donde:

M = Densidad de masa del agregado, kg/m³

S = Peso específico de masa de conformidad con el método

NTP 400.021 o NTP 400.022 como corresponda

W = Densidad del agua, kg/m³

3.5. Dosificación de la mezcla y preparación de probetas

El diseño de la mezcla se realizó empleando el **Módulo de Fineza Combinado (MFC) de los agregados**. Este procedimiento, apoyado en las tablas del **ACI 211**, guía la selección de los materiales que conforman la matriz cementicia. Su rasgo distintivo es la utilización de un único parámetro combinado que facilita el ajuste de las proporciones óptimas de cada fracción de agregado.

Los pasos ejecutados para fijar la dosificación de los componentes del concreto fueron los siguientes:

1. Determinación de la resistencia media requerida (f'cr).

Se definió el valor de f'cr sobre el cual se basa el diseño, tomando como referencia la Tabla 42 reportada por *Lezama Leiva* (2013).

2. Elección del tamaño máximo nominal (TMN).

Con los resultados del análisis granulométrico se seleccionó un TMN de 19 mm (3/4"), considerado adecuado para la mezcla.

3. Elección de la consistencia de la mezcla.

Con el objetivo de obtener una buena trabajabilidad, se seleccionó una consistencia plástica (trabajable), siguiendo los parámetros de la Tabla 43.

4. Estimación del contenido de agua de mezclado.

La cantidad de agua requerida se calculó a partir de la Tabla 45, ajustándola a las condiciones de trabajabilidad y ambiente específicas de la mezcla

5. Determinación del aire atrapado.

Mediante la Tabla 44 se fijó el porcentaje de aire atrapado en el concreto, variable que incide tanto en la resistencia como en la facilidad de colocación.

6. Elección de la relación agua-cemento (a/c).

Con el fin de alcanzar la resistencia objetivo, se seleccionó la proporción agua/cemento adecuado empleando la Tabla 46.

7. Dosificación de cemento por metro cúbico.

El contenido de cemento (C) se obtuvo relacionando el volumen unitario de agua con la relación a/c seleccionada:

$$C = \frac{Vagua}{a/c}$$

8. Cálculo del volumen absoluto de cemento.

Dicho volumen se determinó dividiendo la dosificación de cemento por la densidad relativa del material.

9. Estimación del volumen de la pasta.

Este paso establece el volumen necesario para cubrir los vacíos entre los agregados y lograr una mezcla cohesionada.

10. Cálculo del volumen absoluto de agregados.

Este valor se obtuvo restando el volumen de la pasta de la unidad cúbica de concreto, representando el espacio que ocuparán los agregados.

11. Determinación de la participación del agregado fino y grueso en el total de agregados.

En la fase final se empleó el procedimiento del módulo de fineza combinado, aplicando la fórmula que ajusta las cantidades relativas de arena y grava a fin de equilibrarlas y alcanzar la dosificación óptima de la mezcla:

$$rf = \frac{mg - mc}{mg - mf} * 100$$

Donde:

mg : Módulo de finura del agregado grueso.

mf : Módulo de finura del agregado fino.

mc : Módulo de la combinación de agregados.

rf : Porcentaje de agregado fino con respecto al agregado global.

12. Estimación de las masas secas de los agregados

Para cada fracción (fina y gruesa) se calculó su masa seca multiplicando su volumen absoluto por la densidad relativa correspondiente. Con ello se logra que la dosificación refleje con precisión las propiedades intrínsecas de cada material.

13. Ajuste de la dosificación por humedad de los agregados.

A fin de compensar la humedad real presente en los agregados, se ejecutó la siguiente secuencia:

Cálculo de las masas húmedas.

Cada masa seca se corrigió aplicando el contenido de humedad medido en el laboratorio.

• Determinación de la humedad superficial.

Se sumaron, para cada fracción, el contenido de humedad y la absorción, obteniendo así el agua retenida en la superficie de las partículas.

Cuantificación del aporte de agua por agregado.

Con los valores anteriores se calculó el volumen de agua que cada material añade a la mezcla.

• Obtención del aporte total de humedad.

Se agregaron las contribuciones individuales para conocer la cantidad global de agua procedente de los agregados.

Cálculo del agua neta de mezclado.

Finalmente, se restó el aporte total de humedad al agua de diseño, garantizando que la relación agua-cemento efectiva cumpla la especificación prevista.

14. Dosificación en masa tras la corrección por humedad.

Una vez ajustados los agregados a su contenido real de humedad, se establecieron las cantidades en masa de todos los componentes del concreto. Para uniformar la referencia, se empleó como base el peso estándar de un saco de cemento de 42,5 kg, sobre el cual se calibraron proporcionalmente los demás materiales de la mezcla.

3.6. Selección del porcentaje óptimo de SikaAer.

Se elaboraron seis probetas de concreto incorporando el aditivo SikaAer en tres niveles —0,02 %, 0,06 % y 0,12 % respecto a la masa de cemento— con dos especímenes para cada dosificación. Durante el ensayo se evaluaron tanto la trabajabilidad como la resistencia a compresión de cada mezcla. Con los datos obtenidos se identificó la proporción de aditivo que ofreció el desempeño más favorable en laboratorio.

Los pesos de los materiales húmedos utilizados para la fabricación de cada unidad cúbica de concreto se determinaron de acuerdo con los ajustes realizados durante el diseño de la mezcla, asegurando la precisión en las proporciones y las condiciones experimentales:

Tabla 6: Dosificación de materiales por m³ de concreto.

MATERIALES DE DISEÑO (por m3)	PORCENTAJE DE ADICION DE SIKAAER (del peso de cemento)				
-	0.02%	0.06%	0.12%		
Cemento (kg)	282.93	282.93	282.93		
Agua Efectiva (lt)	163.00	163.00	163.00		
SikaAer (Kg)	0.06	0.17	0.34		
Agr. Fino (kg)	1037.10	1037.10	1037.10		
Agr. Grueso (kg)	866.80	866.80	866.0		

Los resultados obtenidos fueron los que se muestran a en la **Tabla 48**. Por lo que se determinó como porcentaje óptimo de SikaAer el 0.067 % del peso de cemento.

3.7. Sustitución del agregado grueso por traquita en la dosificación del concreto

Una vez fijadas las proporciones base de los materiales del concreto, se procedió a reemplazar parcialmente el agregado grueso natural por traquita en niveles del 5 %, 10 %, 15 % y 20 % en masa. Esta variación permitió analizar cómo cada porcentaje de sustitución afecta las propiedades mecánicas del material.

Las dosificaciones ajustadas y el procedimiento de mezclado se describen con detalle en el Anexo IV (Diseño de mezclas), donde se especifican los insumos empleados y las condiciones de preparación de cada lote experimental.

Para identificar las mezclas se adoptó la siguiente nomenclatura:

A → diseño original sin traquita

 $B \rightarrow 5 \%$ de traquita

 $C \rightarrow 10 \%$ de traquita

 $D \rightarrow 15 \%$ de traquita

 $E \rightarrow 20 \%$ de traquita

A continuación, se presentan los materiales finales empleados en el diseño de las mezclas, especificando las cantidades para cada caso.

Tabla 7: Materiales de diseño por m³ de concreto.

MEZCLA	DISEÑO DE MEZCLA	C° CON 5% REEMPLAZO DE TRAQUITA	C° CON 10% REEMPLAZO DE TRAQUITA	C° CON 15% REEMPLAZO DE TRAQUITA	C° CON 20% REEMPLAZO DE TRAQUITA
TIPO	A	В	С	D	Е
CEMENTO	282.93 Kg	282.93 Kg	282.93 Kg	282.93 Kg	282.93 Kg
AGUA	163.00 Lts	163.00 Lts	163.00 Lts	163.00 Lts	163.00 Lts
SIKAAER	0.19 Kg	0.19 Kg	0.19 Kg	0.19 Kg	0.19 Kg
TRAQUITA	0.00 Kg	43.34 Kg	86.68 Kg	130.02 Kg	173.36 Kg
A. FINO	1037.10 Kg	1037.10 Kg	1037.10 Kg	1037.10 Kg	1037.10 Kg
A. GRUESO	866.80 Kg	823.46 Kg	780.12 Kg	736.78 Kg	693.44 Kg

3.8. Elaboración de especímenes de concreto.

Los especímenes de concreto fueron elaborados siguiendo las directrices establecidas en la NTP 339.183. Para ello, se confeccionaron probetas de probetas cilíndricas de concreto (15 cm \emptyset × 30 cm H, destinadas a ensayos de compresión).

El equipo utilizado para la confección de los especímenes incluyó:

- Balanza. Instrumento de pesaje de precisión (capacidad ≈ 30 kg) para dosificar los insumos.
- Contenedores de medida. Baldes de 18 L para los materiales sólidos y un cubo graduado transparente para cuantificar el agua.
- Moldes metálicos. Cilindros de 15 cm de diámetro por 30 cm de altura, empleados en el conformado de las probetas.

- **Equipos manuales.** Palanas, badilejos, cucharones, reglas de enrase y una carretilla, imprescindibles para manejar y colocar la mezcla.
- Cono de Abrams. Dispositivo destinado a determinar el asentamiento (slump) del concreto fresco.
- Varilla semirredonda de acero. Barra de 60 cm de largo y 5/8" de diámetro, utilizada para compactar la mezcla dentro de los moldes.
- **Mezcladora.** Trompo de 11 ft³ de capacidad, responsable de lograr la homogeneidad del concreto.
- Mazo de goma. Herramienta para vibrar suavemente los moldes y expulsar burbujas de aire atrapadas.
- Recipiente volumétrico graduado. Medidor empleado en la determinación del peso unitario del concreto en estado fresco.
- 3.9. Pruebas realizadas en los especímenes.
- 3.9.1. Evaluación del concreto en estado fresco.

3.9.1.1. Medición del asentamiento (slump).

La determinación del asentamiento se efectuó conforme a la norma NTP 339.035 / ASTM C143.

Para determinar el asentamiento de las diferentes mezclas, se realizaron tandas experimentales de concreto fresco. En cada caso, el revenimiento se midió utilizando el aparato troncocónico de Abrams, asegurando un procedimiento estandarizado. Posteriormente, se calculó el valor medio de asentamiento obtenido para cada porcentaje de reemplazo, permitiendo una comparación clara entre las diferentes mezclas.

Se puede clasificar al concreto de acuerdo a su consistencia en tres grupos:

- Concretos consistentes o secos, con asentamiento de 0" a 2" (0 a 5 cm).
- Concretos plásticos, con asentamiento de 3" a 4" (7,5 a 10 cm).
- Concretos fluidos, con asentamientos con más de 5" (12,5 cm).

3.9.1.2. Peso unitario del concreto fresco.

La determinación se llevó a cabo conforme a la NTP 339.046 / ASTM C 138. Y se obtuvo mediante la expresión:

$$D = \frac{(M_c - M_m)}{V_m}$$

Dónde:

D = Densidad de masa (peso unitario) del concreto (kg/m³)

M_c = Masa del recipiente de medida lleno de concreto (kg)

 M_m = Masa del recipiente vacío (kg)

 V_m = Volumen del recipiente (m³).

3.9.2. Pruebas sobre el concreto endurecido

3.9.2.1. Determinación del peso unitario

La medición se efectuó conforme a los lineamientos de la NTP 339.034, norma que suministra la ecuación para estimar la densidad de bloques de concreto endurecido. El procedimiento considera una variación promedio de ± 10 kg/m³ en los resultados, tal como se detalla a continuación:

$$Densidad = \frac{w}{v}$$

Donde:

W = Masa del espécimen (Kg).

V = Volumen del espécimen determinado del diámetro promedio y longitud promedio o del peso del cilindro en el aire y sumergido en el agua (m³).

3.9.2.2. Resistencia a compresión.

El ensayo se llevó a cabo siguiendo las directrices de las normas NTP 339.034 - ASTM C 39. Esta norma define un método para calcular la resistencia del hormigón sometido a compresión.

3.9.2.2.1. Requisitos de aceptabilidad de la calidad del concreto

Según la normativa ACI 318, algunos ensayos pueden registrar valores de resistencia inferiores a los especificados; no obstante, el concreto se acepta siempre que satisfaga los criterios establecidos (Rivva Lopez, 2018).

- a) El promedio de cada grupo de tres ensayos consecutivos de resistencia a la compresión debe alcanzar, al menos, la resistencia especificada fc' (Rivva Lopez, 2018).
- b) Ningún ensayo individual de resistencia (promedio de dos cilindros o testigos) deberá estar por debajo de f'c en más de 3.4 MPa (35 kg/cm2).
- c) Usualmente, en el Perú, se recomienda seguir los procedimientos estándar de la American Society for Testing and Materials (ASTM), excepto cuando los cambios son dictados por las peculiaridades de los concretos de alta resistencia. (Rivva López, 2018)
- d) Para los ensayos de compresión en cilindros de concreto, la prensa debe ajustarse a las especificaciones establecidas en ASTM C39 (Rivva López, 2018).
- e) Se reconoce que la ruptura con forma de cono es la que refleja con mayor fidelidad la resistencia real del concreto; en cambio, los modos de falla por corte, tipo columna o combinaciones de ambos pueden no representar adecuadamente esa capacidad resistente (Rivva López, 2018).

Tabla 8: Normas para el control de calidad del concreto.

		Variación T	otal		
Clase de operación	Desviación kg/cm²	estándar par	a varias con	diciones de c	ontrol,
	Excelente	Muy buena	Buena	Regular	Mala
Construcción general	< 28.1	28.1 - 35.2	35.2 - 42.2	42.2 - 49.2	> 49.2
Ensayo en Laboratorio	< 14.1	14.1 - 17.6	17.6 - 21.1	21.1 - 24.6	> 24.6
	Varia	ción en Grupo	s de Prueba		
Clase de	Coeficiente	de variación	en Porcenta	ije	
operación	Excelente	Muy buena	Buena	Regular	Mala
Pruebas en Campo	< 3	3 - 4	4 - 5	5 - 6	> 6
Ensayo en Laboratorio	< 2	2 - 3	3 - 4	4 - 5	> 5

Fuente: American Concrete Institute (1980)

Tabla 9: Valores mínimos en pruebas de resistencia a compresión.

Número de pruebas consecutivas	Resistencia promedio para concreto de calidad A, kg/cm²	Resistencia promedio para concreto de calidad B, kg/cm²
1	f'c-50	f'c-35
2	f'c-28	f'c-13
3	f'c-17	f'c
4	f'c-11	-
5	f'c-7	-
6	f'c-4	-
7	f'c	-

Fuente: ACI Committee 214 (1977)

En la siguiente tabla se muestran valores típicos del coeficiente de variación (V) y grado de uniformidad que puede esperarse en el concreto, bajo diferentes condiciones de producción. (Rivva López, 2018).

Tabla 10: Coeficiente de variación y grado de uniformidad en el concreto.

V %	UNIFORMIDAD DEL CONCRETO	CONDICIONES FRECUENTES EN QUE SE OBTIENE
0 - 5	Excelente	Condiciones de laboratorio.
5 - 10	Muy bueno	Preciso control de materiales y dosif. por masa.
10 - 15	Bueno	Buen control de materiales y dosif. por masa.
15 - 20	Mediano	Algún control de materiales y dosif. por masa.
20 - 25	Malo	Algún control de materiales y dosif. por volumen.
> 25	Muy malo	Ningún control de materiales y dosif. por volumen.

Fuente: Rivva López, 2018.

3.9.2.3. Módulo de elasticidad del concreto

El módulo de elasticidad se estimó empleando tres enfoques independientes:

Norma Técnica Peruana E.060

De acuerdo con esta norma, el valor de E se calcula a partir de la expresión empírica:

$$E=15000*\sqrt{f'_c}$$

donde f'c se expresa en MPa y E se obtiene en la misma unidad.

Especificación ACI 318S

Para concretos cuyo peso volumétrico Wc oscila entre 1450 y 2500 kg/m³, la relación recomendada es:

$$E = w_c^{1.5} \ 0.136 \ \sqrt{f'_c}$$

Dónde:

E = Módulo de elasticidad, Kg/cm2.

 \mathbf{W}_{c} = Densidad del concreto, kg/m³.

f'c = Resistencia a la compresión del concreto, Kg/cm2

• Ensayo directo a compresión

Se registraron los valores obtenidos de la gráfica de esfuerzo versus deformación, generados a partir de las lecturas tomadas con el deformímetro. Estos datos fueron analizados en función del esfuerzo alcanzado por el espécimen de concreto. Particular atención se dio a la deformación máxima, que corresponde al momento en el que se produce el esfuerzo máximo en la probeta sometida al ensayo de compresión.

$$E = \frac{Esfuerzo}{Deformación}$$

CAPÍTULO IV. ANÁLISIS Y DISCUSIÓN DE RESULTADOS

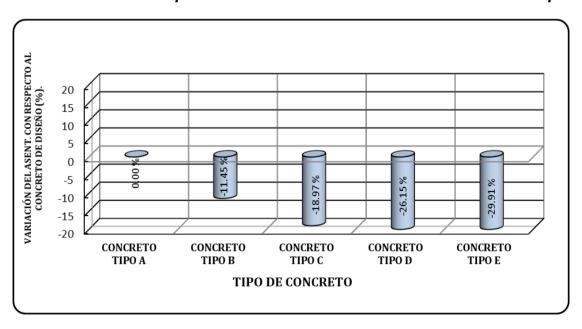
4.1. Consistencia de la mezcla de concreto

Según la Tabla 11 y Grafico 1 revela que, conforme aumenta la porción de traquita empleada en sustitución del agregado grueso, el asentamiento de la mezcla disminuye progresivamente. Esta tendencia pone de manifiesto que la adición progresiva de traquita afecta la plasticidad de la mezcla, posiblemente debido a sus características físicas y granulométricas. Por lo tanto, se evidencia una relación inversa entre el porcentaje de reemplazo con traquita y la trabajabilidad del concreto.

Tabla 11: Asentamiento del concreto (método del cono de Abrams) para distintos niveles de sustitución con traquita.

TANDA	CONCRETO TIPO A	CONCRETO TIPO B	CONCRETO TIPO C	CONCRETO TIPO D	CONCRETO TIPO E
	ASENTA		CONCRETO - M ABRAMS "cm"		ONO DE
N° 01	9.60	9.30	8.20	7.60	7.00
N° 02	9.40	8.70	7.80	7.40	6.80
N° 03	9.80	9.00	7.90	69	7.20
N° 04	10.00	8.20	8.00	7.00	7.40
N° 05	10.20	8.50	7.80	6.90	6.00
N° 06	9.50	8.10	7.70	7.10	6.60
PROMEDIO	9.75	8.63	7.90	7.20	6.83

Gráfico 1: Variación de la trabajabilidad del concreto fresco en función del porcentaje de traquita incorporada.



Los resultados obtenidos en la Tabla 12 y Grafico 2 reflejan el cambio porcentual del revenimiento del concreto fresco en las distintas mezclas en comparación con el concreto de diseño. En los dos últimos casos de reemplazo (15% y 20%), la trabajabilidad desciende de forma marcada: la mezcla pierde consistencia de la misma disminuye ampliamente, lo que podría dificultar su manipulación y colocación en obra.

Tabla 12: Variación porcentual del asentamiento del concreto o slump.

TIPO DE CONCRETO ASENTAMIENTO (Cm.) VARIACIÓN DEL ASENT. CON RESPECTO AL CONCRETO DE DISEÑO. CONCRETO TIPO A 9.75			
CONCRETO TIPO B 8.63 -11.45 % CONCRETO TIPO C 7.90 -18.97 % CONCRETO TIPO D 7.20 -26.15 %			CON RESPECTO AL
CONCRETO TIPO C 7.90 -18.97 % CONCRETO TIPO D 7.20 -26.15 %	CONCRETO TIPO A	9.75	_
CONCRETO TIPO D 7.20 -26.15 %	CONCRETO TIPO B	8.63	-11.45 %
	CONCRETO TIPO C	7.90	-18.97 %
CONCRETO TIPO E 6.83 -29.91 %	CONCRETO TIPO D	7.20	-26.15 %
	CONCRETO TIPO E	6.83	-29.91 %

Gráfico 2: Variación porcentual del asentamiento del concreto o slump.

4.2. Peso unitario del concreto endurecido

Los valores consignados en la Tabla 13 y Grafico 3 muestran que, al aumentar la fracción de traquita en sustitución del agregado grueso, el peso unitario reduce de manera consistente. Esta reducción refleja la relación inversamente proporcional entre el reemplazo porcentual de traquita y el peso unitario del material ya endurecido, debido a que la traquita, por su menor densidad en comparación con el agregado grueso tradicional, hace que el concreto resultante sea más liviano.

Tabla 13: Peso unitario del concreto endurecido a los 28 días para cada porcentaje de reemplazo de traquita.

PESO UNI	PESO UNITARIO DEL CONCRETO ENDURECIDO A LOS 28 DÍAS en "Kg/m3"					
PROBETA	CONCRETO TIPO A	CONCRETO TIPO B	CONCRETO TIPO C	CONCRETO TIPO D	CONCRETO TIPO E	
N° 01	2225	2161	2101	2051	1969	
N° 02	2230	2172	2122	2061	1987	
N° 03	2221	2165	2131	2036	1972	
N° 04	2233	2173	2126	2055	1989	
N° 05	2231	2166	2118	2045	1981	
N° 06	2250	2181	2098	2082	1974	
N° 07	2232	2182	2114	2052	1960	
N° 08	2232	2206	2120	2052	1993	
PROMEDIO	2231.65	2175.78	2116.32	2054.22	1978.12	

Gráfico 3: Peso unitario del concreto endurecido a los 28 días para cada porcentaje de reemplazo de traquita.

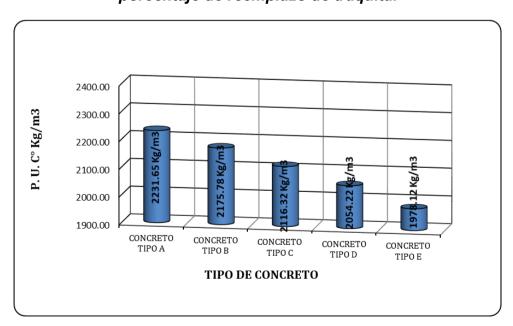
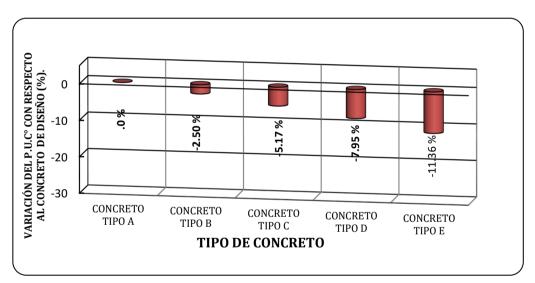
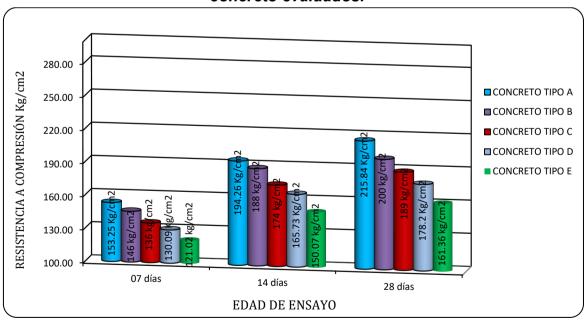



Tabla 14: Variación porcentual del peso unitario del concreto endurecido a los 28 días para cada porcentaje de reemplazo de traquita respecto al concreto de diseño.

TIPO DE CONCRETO	PESO UNITARIO DEL CONCRETO ENDU. A 28 DÍAS (Kg/ m³)	VARIACIÓN DEL P.U C° ENDU. CON RESPECTO AL CONCRETO PATRÓN
CONCRETO TIPO A	2231.65	0.00
CONCRETO TIPO B	2175.78	-2.50
CONCRETO TIPO C	2116.32	-5.17
CONCRETO TIPO D	2054.22	-7.95
CONCRETO TIPO E	1978.12	-11.36

Gráfico 4: Variación porcentual del peso unitario del concreto endurecido a los 28 días para cada porcentaje de reemplazo de traquita respecto al concreto de diseño.

De acuerdo con los resultados presentados en la Tabla 14 y el Gráfico 4, el concreto tipo E, en el cual se sustituyó el 20 % del agregado grueso convencional por traquita, evidenció una reducción del peso unitario de hasta un 11.36 % respecto al concreto de diseño. Esta disminución permite clasificarlo dentro de la categoría de concreto ligero.


4.3. Resistencia a compresión

Se efectuaron ensayos de compresión de concreto a los 7, 14 y 28 días, con el fin de caracterizar la evolución de su resistencia mecánica. Para cada dosificación se moldearon 24 cilindros y se ensayaron ocho unidades por edad.

Tabla 15: Resistencia media a la compresión de los distintos cilindros evaluados.

PROMEDIO DE ENSAYOS A COMPRESIÓN KG/CM2				
TIPO DE CONCRETO	EDAD DE ENSAYO			
	07 días	14 días	28 días	
CONCRETO TIPO A	153.25	194.26	215.84	
CONCRETO TIPO B	145.87	187.83	199.82	
CONCRETO TIPO C	135.78	173.50	188.59	
CONCRETO TIPO D	130.09	165.73	178.20	
CONCRETO TIPO E	121.02	150.07	161.36	

Gráfico 5: Resistencia media a la compresión de los distintos cilindros de concreto evaluados.

A partir de los datos consignados en la Tabla 15 y el Gráfico 5, se advierte que la resistencia a compresión disminuye de manera progresiva cuando la fracción de agregado grueso sustituida por traquita aumenta del 5 % al 20 %. Este comportamiento pone de manifiesto una correlación inversa entre el porcentaje de reemplazo con traquita y la capacidad resistente del concreto.

Tabla 16: Porcentaje de variación de la resistencia a compresión originado por el uso de SikaAer y los distintos niveles de sustitución con traquita, respecto del concreto diseño.

TIPO DE CONCRETO	EDAD DE ENSAYO		
	07 días	14 días	28 días
CONCRETO TIPO A	100.00 %	100.00 %	100.00 %
CONCRETO TIPO B	95.19 %	96.69 %	92.58 %
CONCRETO TIPO C	88.60 %	89.31 %	87.37 %
CONCRETO TIPO D	84.89 %	85.31 %	82.56 %
CONCRETO TIPO E	78.97 %	77.25 %	74.76 %

Como se observa en la Tabla 16, las resistencias a compresión obtenidas para sustituciones de traquita del 5 %, 10 %, 15 % y 20 % con respecto a la mezcla patrón, registran reducciones del 7.42%, 12.63%, 17.44% y 25.24% respectivamente.

CAPÍTULO V. CONCLUSIONES Y RECOMENDACIONES

5.1. Conclusiones

- ✓ La resistencia a la compresión no se incrementa en 5 % al emplear 0,067 % de aditivo incorporador de aire SikaAer y realizar la sustitución parcial del agregado grueso por traquita en proporciones de 5 %, 10 %, 15 % y 20 %, en comparación con el concreto de diseño.
- ✓ El peso unitario del concreto endurecido presentó una disminución progresiva en comparación con la mezcla patrón (f'c = 210 kg/cm²). Se obtuvieron valores de 2175.78 kg/m³, 2116.32 kg/m³, 2054.22 kg/m³ y 1978.12 kg/m³, correspondientes a las sustituciones parciales del agregado grueso por traquita en proporciones de 5%, 10%, 15% y 20%. Estas reducciones representan 2.50%, 5.17%, 7.95% y 11.36 %, respectivamente.
- ✓ La resistencia a la compresión a los 28 días mostró una disminución progresiva en comparación con la mezcla patrón (f'c = 210 kg/cm²). Los valores obtenidos fueron: 199.82 kg/cm² (5% de sustitución), 188.59 kg/cm² (10%), 178.20 kg/cm² (15%) y 161.36 kg/cm² (20%). Estas reducciones representan pérdidas del 7.42%, 12.63%, 17.44% y 25.24%, respectivamente.
- ✓ Se determinó que el asentamiento del concreto disminuye progresivamente al incrementar la sustitución parcial del agregado grueso por traquita. En comparación con la mezcla de diseño, la reducción del asentamiento fue de 11.45 %, 18.97 %, 26.15 % y 29.91 % para los porcentajes de reemplazo de 5 %, 10 %, 15 % y 20 %, respectivamente.

5.2. Recomendaciones

Al concluir esta investigación, se establecen las recomendaciones siguientes:

✓ Realizar investigaciones utilizando porcentajes de reemplazo de traquita menores a los considerados en este estudio, a fin de no generar una disminución significativa en su resistencia a la compresión.

- ✓ Llevar a cabo estudios de durabilidad frente a agentes químicos, para poder recomendar tratamientos adecuados que aseguren una mayor protección del concreto.
- ✓ Se recomienda que en estudios futuros se evalúen otras propiedades mecánicas del concreto ligero, como la resistencia a la tracción y a la flexión, con el fin de obtener una caracterización más completa de su comportamiento estructural.

REFERENCIAS BIBLIOGRÁFICAS

- Abanto, TF. 2017. Tecnología del concreto. 3 ed. Lima, Perú. San Marcos.
- ACI (American Concrete Institute). 2014. Guide for structural lightweight -Aggregrate concrete. Norma ACI 213R. 2014. Michigan, Estados Unidos.
- ACI (American Concrete Institute). 2014. Requisitos de Reglamento para Concreto Estructural. Norma ACI 318S-14. Michigan, Estados Unidos.
- ASTM International. (2021). ASTM C128-21: Standard Test Method for Density, Relative Density (Specific Gravity), and Absorption of Fine Aggregate.
 West Conshohocken, PA: ASTM International.
- Mindess, S., Young, J. F., & Darwin, D. (2017). Concrete (3rd ed.). Prentice Hall.
- Lezama, J. 2013. Tecnología de concreto. Cajamarca, UNC.
- Neville, A. 2016. Propriedades do concreto. 5 ed. Porto Alegre, Brasil. Bookman.
- Neville, A. M., & Brooks, J. J. (2019). Concrete Technology (2nd ed.). Pearson Education.
- Acosta Laymito, W. J. (2024). Influencia de aditivos incorporadores de aire en la trabajabilidad del concreto. UPLA.
- Santa Cruz Pesantes, F. G., & Adanaque Richarte, J. A. (2024). Análisis comparativo de concreto ligero elaborado con agente espumante y perlas de poliestireno. UPAO.
- NRMCA (National Ready Mixed Concrete Association). 2018. El concreto en la práctica. CIP -36 concreto estructural de peso liviano (en línea). Washington, USA. Consultado 21 oct. 2018.
- Rodríguez, H. 2017. Concreto liviano a base de poliestireno expandido para la prefabricación de unidades de albañilería no estructural – Cajamarca. Tesis lng. Civil. Cajamarca, Perú, UNC.
- Vásquez, A. 2019. Concreto autocurable f'c=210 kg/cm², reemplazando un porcentaje de agregado grueso con traquita. Tesis Ing. Civil. Cajamarca, Perú, UNC.

- Vásquez, A. 2023. influencia sobre la resistencia a compresión de un concreto ligero estructural, al reemplazar un porcentaje de traquita; saturada y seca por el agregado grueso. Tesis Ing. Civil. Cajamarca, Perú, UNC.
- NTP 400.017 (2020). AGREGADOS. Método de ensayo normalizado para determinar la Peso unitario o densidad ("Peso unitario") y los vacíos en los agregados.
- NTP 400.012 (2013). AGREGADOS. Análisis granulométrico del agregado fino, grueso y global.
- NTP 339.185 (2021). AGREGADOS. Método de ensayo normalizado para contenido de humedad total evaporable del agregado por secado.
- NTP 400.018 (2020). AGREGADOS. Método de ensayo normalizado para determinar materiales más finos que pasan por el tamiz normalizado 75μ (N° 200).
- NTP 400.021 (2020). AGREGADOS. Método de ensayo normalizado para la densidad, densidad relativa (peso específico) y absorción del agregado grueso.
- NTP 400.022 (2020). AGREGADOS. Método de ensayo normalizado para la densidad, densidad relativa (peso específico) y absorción del agregado fino.
- NTP 339.034 (2013). HORMIGÓN (CONCRETO). Método de ensayo normalizado para la determinación de la resistencia a la compresión del concreto, en muestras cilíndricas.
- NTP 339.046 (2013). HORMIGÓN (CONCRETO). Método de ensayo normalizado para determinar la densidad (peso unitario), rendimiento y contenido de aire (método gravimétrico) del hormigón (concreto).
- Reglamento Nacional de Edificaciones. 2024. Lima, Perú. Megabyte.

ANEXOS

Anexo I: Propiedades físicas y mecánicas de agregados

Tabla 17: Ensayo de partículas menores al tamiz N° 200 del agregado grueso

Descripción	Und.	M-1	M-2	M-3	Promedio
Peso de Muestra Original	g	3000.00	3000.00	3000.00	
Peso de la muestra Lavada	g	2989.00	2987.90	2988.00	
Peso del Material que pasa el Tamiz N° 200	g	11.00	12.10	12.00	
% de Material que Pasa el Tamiz N° 200	%	0.367%	0.403%	0.400%	0.390%

Tabla 18: Ensayo de partículas menores al tamiz N° 200 del agregado fino

Descripción	Und.	M-1	M-2	M-3	Promedio
Peso de Muestra Original	g	500.00	500.00	500.00	
Peso de la muestra Lavada	g	482.00	482.10	482.50	
Peso del Material que pasa el Tamiz N° 200	g	18.00	17.90	17.50	
% de Material que Pasa el Tamiz N° 200	%	3.600%	3.580%	3.500%	3.560%

Tabla 19: Ensayo de partículas menores al tamiz N° 200 de la traquita

Descripción	Und.	M-1	M-2	M-3	Promedio
Peso de Muestra Original	g	3000.00	3000.00	3000.00	
Peso de la muestra Lavada	g	2972.20	2972.00	2972.10	
Peso del Material que pasa el Tamiz N° 200	g	27.80	28.00	27.90	
% de Material que Pasa el Tamiz N° 200	%	0.927%	0.933%	0.930%	0.930%

Tabla 20: Ensayo N° 01 de granulometría del agregado grueso

PESO SECO INICIAL =		8000.00 gr.		MÓDULO DE FINURA	7.070
PESO SECO 0.075 mm. (M	MENOR QUE ALLA N° 200)	0.00 gr.		_	
TAMIZ N°	ABERTURA	PESO	PORCENTA	JE RETENIDO	PORCENTAJ
	TAMIZ (mm.)	RETENIDO PARCIAL	PARCIAL	ACUMULADO	E QUE PASA
3/4"	19.00	1530.00	19.13	19.13	80.88
1/2"	12.50	3459.00	43.24	62.36	37.64
3/8"	9.50	2043.00	25.54	87.90	12.10
N° 4	4.75	968.00	12.10	100.00	0.00
CAZOLETA		0.00	0.00	100.00	0.00
TOTAL		8000.00			

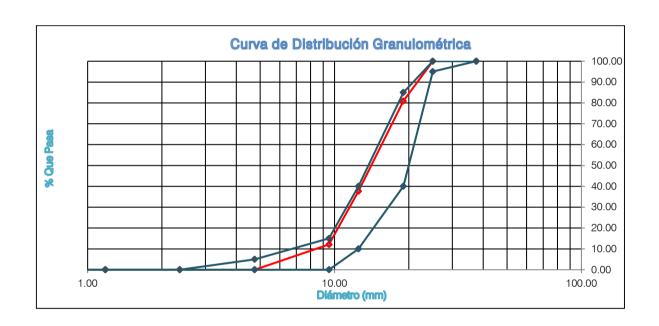


Tabla 21: Ensayo N° 02 de granulometría del agregado grueso

PESO SECO INICIAL = PESO SECO N 0.075 mm. (MA	•	8000.00 gr. 0.00 gr.		MÓDULO DE FINURA	7.100
TAMIZ N°	ABERTURA TAMIZ (mm.)	PESO RETENIDO PARCIAL	PORCENTA	JE RETENIDO	PORCENT AJE QUE PASA
			PARCIAL	ACUMULADO	
3/4"	19.00	1700.00	21.25	21.25	78.75
1/2"	12.50	3500.00	43.75	65.00	35.00
3/8"	9.50	1900.00	23.75	88.75	11.25
N° 4	4.75	900.00	11.25	100.00	0.00
CAZOLETA		0.00	0.00	100.00	0.00
TOTAL		8000.00			

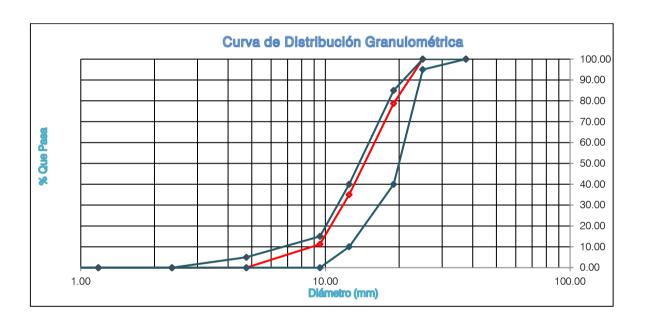
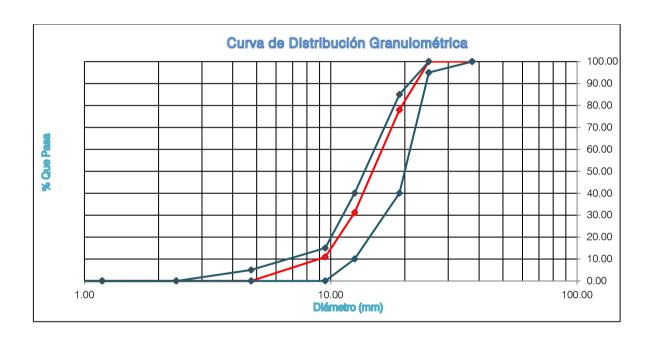



Tabla 22: Ensayo N° 03 de granulometría del agregado grueso

PESO SECO INICIAL =		8000.00 gr.		MÓDULO DE FINURA	7.110
PESO SECO M 0.075 mm. (MA		0.00 gr.			
TAMIZ N°	ABERTURA	PESO	PORCENTA	JE RETENIDO	PORCENT
	TAMIZ (mm.)	RETENIDO PARCIAL	PARCIAL	ACUMULADO	AJE QUE PASA
3/4"	19.00	1760.00	22.00	22.00	78.00
1/2"	12.50	3745.00	46.81	68.81	31.19
3/8"	9.50	1617.00	20.21	89.03	10.98
N° 4	4.75	878.00	10.98	100.00	0.00
CAZOLETA		0.00	0.00	100.00	0.00
TOTAL		00.008			

Módulo de fineza del agregado grueso, Mg prom.= 7.093

Tabla 23: Ensayo N° 01 de granulometría del agregado fino

PESO SECO INICIAL =	1500.00
PESO SECO MENOR QUE 0.075 mm. (MALLA N° 200) =	44.10

	Tamiz	Peso	Porcentaje	Porcentaje	Porcentaje
N°	Abertura	Retenido	Retenido	Retenido	Que Pasa
	(mm)	Parcial	Parcial	Acumulado	
3/8"	9.53	0.00	0.00	0.00	100.00
N°4	4.75	122.10	8.14	8.14	91.86
N°8	3.36	310.50	20.70	28.84	71.16
N 16	1.18	232.30	15.49	44.33	55.67
N 30	0.60	199.22	13.28	57.61	42.39
N 50	0.30	299.28	19.95	77.56	22.44
N 100	0.15	210.40	14.03	91.59	8.41
N 200	0.075	82.10	5.47	97.06	2.94
Cazoleta		44.1	2.94	100.00	0.00
TC	TOTAL 1500.00				
MÓDULO DE FINURA =				3.081	

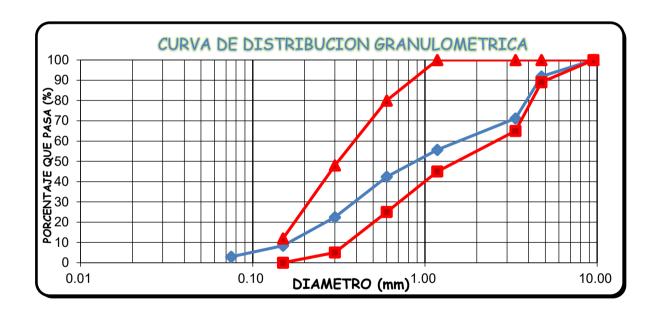


Tabla 24: Ensayo N° 02 de granulometría del agregado fino

PESO SECO INICIAL =	1500.00
PESO SECO MENOR QUE 0.075 mm. (MALLA N° 200) =	41.54

	Tamiz	Peso Retenido	Porcentaje	Porcentaje	Porcentaje	
N°	Abertura (mm)	Parcial	Retenido Parcial	Retenido Acumulado	Que Pasa	
3/8"	9.53	0.00	0.00	0.00	100.00	
N°4	4.75	120.89	8.06	8.06	91.94	
N°8	3.36	340.40	22.69	30.75	69.25	
N 16	1.18	229.76	15.32	46.07	53.93	
N 30	0.60	198.46	13.23	59.30	40.70	
N 50	0.30	252.85	16.86	76.16	23.84	
N 100	0.15	207.52	13.83	89.99	10.01	
N 200	0.075	108.58	7.24	97.23	2.77	
Cazoleta		41.54	2.77	100.00	0.00	
TO1	TOTAL 1500.00					
MÓDUL	MÓDULO DE FINURA =			3.103		

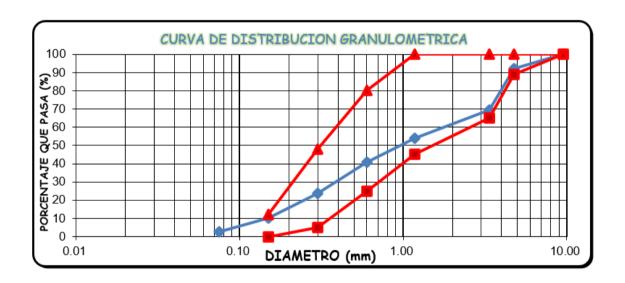
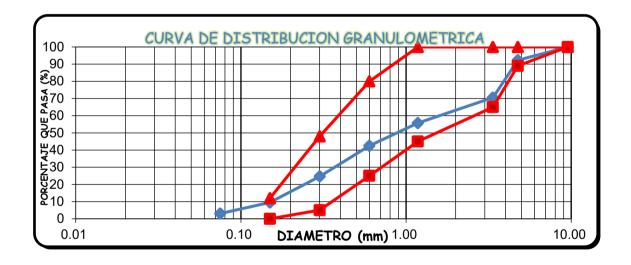



Tabla 25: Ensayo N° 03 de granulometría del agregado fino

PESO S	ECO INICIAL =	1500	.00		
PESO S	PESO SECO MENOR QUE 0.075 mm. (MALLA N° 200) =				7
N°	Tamiz Abertura (mm)	Peso Retenido Parcial	Porcentaje Retenido Parcial	Porcentaje Retenido Acumulado	Porcentaje Que Pasa
3/8"	9.53	0.00	0.00	0.00	100.00
N°4	4.75	115.69	7.71	7.71	92.29
N°8	3.36	326.13	21.74	29.45	70.55
N 16	1.18	222.41	14.83	44.28	55.72
N 30	0.60	198.47	13.23	57.51	42.49
N 50	0.30	267.50	17.83	75.35	24.65
N 100	0.15	227.39	15.16	90.51	9.49
N 200	0.075	96.74	6.45	96.96	3.04
Cazoleta		45.67	3.04	100.00	0.00
	TOTAL 1500.00				
MÓDULO DE FINURA =				3.048	

Mf prom= 3.077

Tabla 26: Ensayo N° 01 de granulometría de la traquita

PESO SECO INICIAL =		4000.00 gr.		MÓDULO DE FINURA	7.040
PESO SECO MEI	NOR QUE	20.00 gr.		_	
0.075 mm. (MALI	LA N° 200) =				
TAMIZ N°	ABERTUR	PESO	PORCENTA	JE RETENIDO	PORCENT
	A TAMIZ (mm.)	RETENIDO PARCIAL	PARCIAL	ACUMULADO	AJE QUE PASA
3/4"	19.00	650.00	16.25	16.25	83.75
1/2"	12.50	2130.00	53.25	69.50	30.50
3/8"	9.50	850.00	21.25	90.75	9.25
N° 4	4.75	350.00	8.75	99.50	0.50
N° 8	2.36	0.00	0.00	99.50	0.50
N° 16	1.18	0.00	0.00	99.50	0.50
N° 30	0.60	0.00	0.00	99.50	0.50
N° 50	0.30	0.00	0.00	99.50	0.50
N° 100	0.15	0.00	0.00	99.50	0.50
N° 200	0.075	0.00	0.00	99.50	0.50
CAZOLETA		20.00	0.50	100.00	0.00
TOTAL		4000.00			

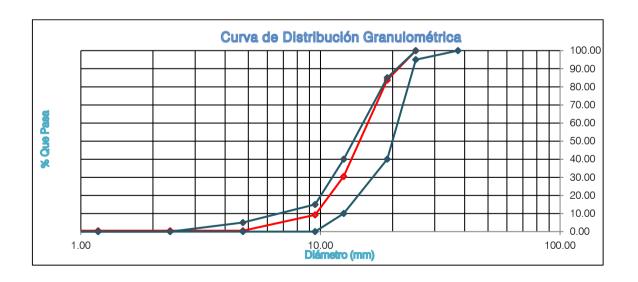


Tabla 27: Ensayo N° 02 de granulometría de la traquita

PESO SECO INICIAL =		4000.00 gr.		7.073	
PESO SECO ME 0.075 mm. (MAI		15.00 gr.		FINURA	
TAMIZ N°	ABERTURA	PESO	PORCENTA	JE RETENIDO	PORCENTAJE
	TAMIZ (mm.)	RETENIDO PARCIAL	PARCIAL	ACUMULADO	QUE PASA
3/4"	19.00	750.00	18.75	18.75	81.25
1/2"	12.50	2030.00	50.75	69.50	30.50
3/8"	9.50	850.00	21.25	90.75	9.25
N° 4	4.75	355.00	8.88	99.63	0.38
N° 8	2.36	0.00	0.00	99.63	0.38
N° 16	1.18	0.00	0.00	99.63	0.38
N° 30	0.60	0.00	0.00	99.63	0.38
N° 50	0.30	0.00	0.00	99.63	0.38
N° 100	0.15	0.00	0.00	99.63	0.38
N° 200	0.075	0.00	0.00	99.63	0.38
CAZOLETA		15.00	0.38	100.00	0.00
TOTAL		4000.00			

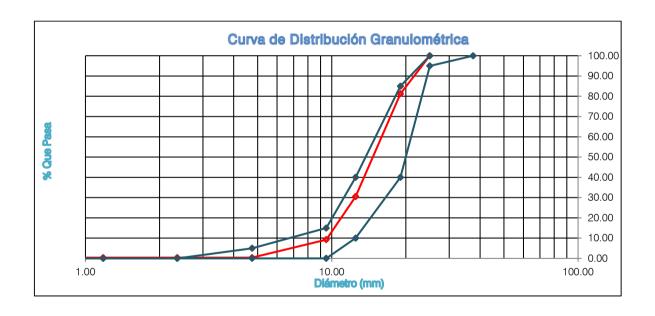
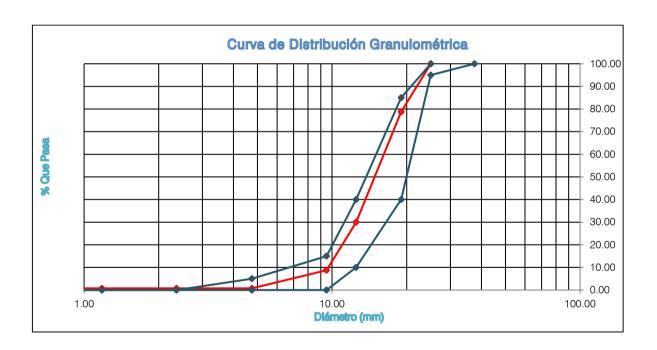



Tabla 28: Ensayo N° 03 de granulometría de la traquita

PESO SECO INICIAL =		4000.00 gr.		7.080	
PESO SECO M 0.075 mm. (MA		30.00 gr.		-	
TAMIZ N°	ABERTURA	PESO	PORCENT	AJE RETENIDO	PORCENTAJE
	TAMIZ (mm.)	RETENIDO PARCIAL	PARCIAL	ACUMULADO	QUE PASA
3/4"	19.00	850.00	21.25	21.25	78.75
1/2"	12.50	1950.00	48.75	70.00	30.00
3/8"	9.50	850.00	21.25	91.25	8.75
N° 4	4.75	320.00	8.00	99.25	0.75
N° 8	2.36	0.00	0.00	99.25	0.75
N° 16	1.18	0.00	0.00	99.25	0.75
N° 30	0.60	0.00	0.00	99.25	0.75
N° 50	0.30	0.00	0.00	99.25	0.75
N° 100	0.15	0.00	0.00	99.25	0.75
N° 200	0.075	0.00	0.00	99.25	0.75
CAZOLETA		30.00	0.75	100.00	0.00
TOTAL		4000.00			

Módulo de fineza de la traquita, Mg prom.= 7.06

Tabla 29: Contenido de humedad del agregado fino

Descripción	Und.	M-1	M-2	M-3	Promedio
Peso del Recipiente	g	93.50	95.40	89.90	
Peso del Recipiente + muestra Humeda	g	1542.00	1652.00	1477.00	
Peso del Recipiente + muestra seca	g	1447.00	1561.00	1395.00	
Contenido de Humedad	W %	7.02	6.21	6.28	6.50

Tabla 30: Contenido de humedad del agregado grueso

Und.	M-1	M-2	M-3	Promedio
g	100.00	95.00	98.00	
g	2111.00	2421.00	2511.00	
g	2088.00	2394.00	2482.00	
W %	1.16	1.17	1.22	1.18
	g g g	g 100.00 g 2111.00 g 2088.00	g 100.00 95.00 g 2111.00 2421.00 g 2088.00 2394.00	g 100.00 95.00 98.00 g 2111.00 2421.00 2511.00 g 2088.00 2394.00 2482.00

Tabla 31: Peso especifico del agregado grueso

Descripción	Und.	M-1	M-2	M-3	Promedio
Peso de muestra SSS + canastilla	g	4685.00	4691.00	4641.00	
sumergida					
Peso de canastilla sumergida	g	2022.00	2022.00	2022.00	
Peso de la muestra	g	4288.00	4304.00	4225.00	
superficialmente Seca					
Peso de la muestra secada al	g	4241.00	4256.00	4180.00	
horno					
Peso de la muestra sumergida en	g	2663.00	2669.00	2619.00	
el agua					
Peso Específico de Masa	g/cm ³	2.610	2.603	2.603	2.605
Peso Específico de Masa Saturado	g/cm ³	2.639	2.632	2.631	2.634
Superficialmente Seco					
Peso Específico de Aparente	g/cm ³	2.688	2.682	2.678	2.682

Tabla 32: Peso especifico del agregado fino

Descripción	Und.	M-1	M-2	M-3	Promedio
Peso de fiola	g	167.0	167.0	167.0	
Peso de la fola +agua hasta menizco	g	665.0	665.0	665.0	
peso de la fiola +agua + muestra	g	977.0	977.3	977.7	
Peso de la muestra superficialmente	g	500.00	500.00	500.00	
Seca					
Peso de la muestra secada al horno	g	493.90	493.70	493.80	
volumen de agua añadida al frasco (g)	g	310.00	310.30	310.70	
Peso Específico de Masa	g/m3	2.599	2.603	2.609	2.604
Peso Específico de Masa Saturado	g/m3	2.632	2.636	2.641	2.636
Superficialmente Seco					
Peso Específico de Aparente	g/m3	2.686	2.692	2.697	2.692

Tabla 33: Peso especifico de la traquita

Descripción	Und.	M-1	M-2	M-3	Promedio
Peso de muestra SSS + canastilla	g	4895.00	4782.00	4876.00	
sumergida					
Peso de canastilla sumergida	g	2022.00	2022.00	2022.00	
Peso de la muestra superficialmente Seca	g	5664.00	5500.00	5637.00	
Peso de la muestra secada al horno	g	4913.00	4767.00	4889.00	
Peso de la muestra sumergida en el agua	g	2873.00	2760.00	2854.00	
Peso Específico de Masa	g/cm³	1.760	1.740	1.757	1.752
Peso Específico de Masa Saturado	g/cm³	2.029	2.007	2.026	2.021
Superficialmente Seco					
Peso Específico de Aparente	g/cm³	2.408	2.375	2.402	2.395

Tabla 34: Peso específico del agua para ensayo de densidad de masa de los agregados

Peso de la fiola en (g) =	167
Peso de la fiola + agua en (g) =	665
Volumen de la fiola (cm3) =	500.00
Peso especifico (g/cm3) =	0.99600
P.e en (Kg/m3) =	996.00

Tabla 35: Factor agua para ensayo de densidad de masa de los agregados

Peso del Molde (g) =	3879.00
Peso del Molde +Agua (g) =	6889.00
Peso Agua (Kg) =	3.0100
f (1/m3) =	330.897

Tabla 36: Densidad de masa del agregado grueso en estado seco suelto

		Cacito	•		
Descripción	Und.	M-1	M-2	M-3	Promedio
Peso del recipiente	g	4196.00	4196.00	4196.00	
Peso de muestra suelta + recipiente	g	18520.00	18512.00	18505.00	
Peso de la muestra suelta	g	14324.00	14316.00	14309.00	
Factor (f)		101.788	101.788	101.788	
Peso Unitario Suelto	g/cm ³	1.458	1.457	1.456	
Peso Unitario Suelto	Kg/m³	1458	1457	1456	1457

Tabla 37: Densidad de masa del agregado fino en estado seco suelto

Descripción	Und.	M-1	M-2	M-3	Promedio
Peso del recipiente	g	3879.00	3879.00	3879.00	
Peso de muestra suelta + recipiente	g	8732.00	8729.00	8727.00	
Peso de la muestra suelta	g	4853.00	4850.00	4848.00	
Factor (f)		330.897	330.897	330.897	
Peso Unitario Suelto	g/cm ³	1.606	1.605	1.604	1.605
Peso Unitario Suelto	Kg/m³	1606	1605	1604	1605

Tabla 38: Densidad de masa de la traquita en estado seco suelto

Descripción	Und.	M-1	M-2	M-3	Promedio
Peso del recipiente	g	4196.00	4196.00	4196.00	
Peso de muestra suelta + recipiente	g	13435.00	13389.00	13412.00	
Peso de la muestra suelta	g	9239.00	9193.00	9216.00	
Factor (f)		101.788	101.788	101.788	
Peso Unitario Suelto	g/cm ³	0.940	0.936	0.938	
Peso Unitario Suelto	Kg/m³	940	936	938	938

Tabla 39: Densidad de masa del agregado grueso en estado seco compactado

Descripción	Und.	M-1	M-2	M-3	Promedio
Peso del recipiente	g	4196.00	4196.00	4196.00	
Peso de muestra Compactada + recipiente	g	19583.00	19568.00	19579.00	
Peso de la muestra suelta	g	15387.00	15372.00	15383.00	
Factor (f)		101.788	101.788	101.788	
Peso Unitario Compactado	g/cm ³	1.566	1.565	1.566	1.566
Peso Unitario Compactado	Kg/m³	1566	1565	1566	1566

Tabla 40: Densidad de masa del agregado fino en estado seco compactado

Descripción	Und.	M-1	M-2	M-3	Prom
Peso del recipiente	g	3879.00	3879.00	3879.00	
Peso de muestra Compactada + recipiente	g	9155.00	9142.00	9139.00	
Peso de la muestra compactada	g	5276.00	5263.00	5260.00	
Factor (f)		330.897	330.897	330.897	
Peso Unitario Compactado	g/cm ³	1.746	1.742	1.741	1.743
Peso Unitario Compactado	Kg/m³	1746	1742	1741	1743

Tabla 41: Densidad de masa de la traquita en estado seco compactado

Descripción	Und.	M-1	M-2	M-3	Promedio
Peso del recipiente	g	4196.00	4196.00	4196.00	
Peso de muestra Compactada + recipiente	g	14289.0 0	14235.00	14223.00	
Peso de la muestra suelta	g	10093.0 0	10039.00	10027.00	
Factor (f)		101.788	101.788	101.788	
Peso Unitario Compactado	g/cm ³	1.027	1.022	1.021	1.023
Peso Unitario Compactado	Kg/m³	1027	1022	1021	1023

Anexo II: Tablas para el diseño de mezclas

Tabla 42: Resistencia promedio

CONDICIONES DE LA EJECUCIÓN DE LA OBRA	RELACIÓN APROXIMADA f'cr/f'c				
Excelentes	1.15				
Intermedias	1.20 a 1.25				
Corrientes	1.35 a 1.60				
F1- 1	1 ' (0040)				

Fuente: Lezama Leiva (2013)

Tabla 43: Consistencia, asentamiento y trabajabilidad del concreto.

CONSISTENCIA	ASENTAMIENTO	TRABAJABILIDAD
Seca	0" a 2"	Poco Trabajable
Plástica	3" a 4"	Trabajable
Húmeda	≥ 5"	Muy Trabajable

Fuente: Diseño de mezclas – Rivva Lopez.

Tabla 44: Contenido de aire atrapado.

Tamaño Máximo Nominal	Aire Atrapado
3/8"	3.0%
1/2"	2.5%
3/4"	2.0%
1"	1.5%
1 1/2"	1.0%
2"	0.5%
3"	0.3%
6"	0.2%

Fuente: Diseño de mezclas – Rivva Lopez.

Tabla 45: Requerimientos de agua en L/m³ y contenido de aire del concreto para los tamaños nominales máximos del agregado grueso y consistencia indicada

Tipo de	Asentamiento			-	TMN de	el agrega	do gru	eso	
concreto		3/8"	1/2"	3/4"	1"	1 1/2"	2"	3"	6"
Sin aire	0" - 2"	207	199	190	179	166	154	130	113
incorporado	3" - 4"	228	216	205	193	181	169	145	124
	> 5"	243	228	216	202	190	178	160	-
	Contenido de aire atrapado	3	2.5	2	1.5	1	0.5	0.3	0.2
Con aire	0" - 2"	181	175	168	160	150	142	122	107
incorporado	3" - 4"	202	193	184	175	165	157	133	119
	> 5"	216	205	197	184	174	166	154	
	Contenido de aire total	8	7	6	5	4.5	4	3.5	3

Fuente: Diseño de mezclas - Rivva Lopez.

Tabla 46: Relación agua/cemento del concreto por resistencia

Resistencia a la compresión a los	RELACIÓN AGUA / CEMENTO DE DISEÑO EN PESO				
28 dias (CONCRETO	CONCRETO			
kg / cm2)	SIN AIRE	CON AIRE			
f´cr	INCORPORADO	INCORPORADO			
450	0.38	-			
400	0.43	-			
350	0.48	0.40			
300	0.55	0.46			
250	0.62	0.53			
200	0.70	0.61			
150	0.80	0.71			

Fuente: Diseño de mezclas – Rivva Lopez.

Tabla 47: Módulo de finura de la combinación de agregados
Tamaño Módulo de finura de la combinación de los
máximo nominal del agregados para los contenidos de cemento en
agregado grueso saco / m3 indicados.

agregado grueso	•		iicauos.	
	6.00	7.00	8.00	9.00
3 / 8 "	3.96	4.04	4.11	4.19
1 / 2 "	4.46	4.54	4.61	4.89
3 / 4 "	4.96	5.04	5.11	5.19
1 "	5.26	5.34	5.41	5.49
1 1/2 "	5.56	5.64	5.71	5.79
2 "	5.86	5.94	6.01	6.09
3 "	6.16	6.24	6.31	6.38

Estos valores están referidos al agregado grueso, adecuadamente graduado con un contenido de vacíos del orden del 35%. Los valores deben incrementarse o disminuirse en porcentaje de vacíos. 0.1 por cada 5% de disminución o incremento en el porcentaje de vacíos.

Anexo III: Elección del porcentaje de aditivo SikaAer

Tabla 48: Elección del porcentaje óptimo de SikaAer por resistencia

SIKAAER (%Del Peso de Cemento)	RESISTEN COMPRES	PROMEDIO	
0.02 %	225.9	225.9 222.2	
	kg/cm2	kg/cm2	kg/cm2
0.06 %	213.1	213.1 211.9	
	kg/cm2	kg/cm2	kg/cm2
0.12 %	194.4 190.2		192.30
	kg/cm2	kg/cm2	kg/cm2

Gráfico 6: Elección del porcenteje óptimo de SikaAer por resistencia.

Anexo IV: Diseño de mezclas

Tabla 49: Diseño de mezcla del concreto

	CARACTERÍS	TICAS DE	L CONCRETO			
Resistencia a la compresión especificada de	l Concreto (f'c)	=	210	kg/cm2		
Grado de control		=	Bueno	kg/cm2		
Incremento		=	(f'c*1.20)	kg/cm2		
Resistencia promedio a la compresión del C	Concreto (f'cr)	=	252	kg/cm2		
	CARACTERÍST	ICAS DE L	OS MATERIALES			
AGREGADO FINO)		AGRI	EGADO GRUESO)	
Peso unitario suelto seco (kg/m3)	: 1605.0	00	Peso unitario suelto seco (kg/m3)	:	1457.00
Peso unitario seco compactado (kg/m3)	: 1743.0	00	Peso unitario seco compac	tado (kg/m3)	:	1566.00
Peso específico de masa (gr/cm3)	: 2.604	4	Peso específico de masa (g	r/cm3)	:	2.605
Peso específico de masa S.S.S. (gr/cm3)	2.630	6	Peso específico de masa S.	S.S. (gr/cm3)	:	2.634
Peso específico Aparente (gr/cm3)	2.692	2	Peso específico Aparente (gr/cm3)	:	2.682
Absorción (%)	: 1.524	4	Absorción (%)		:	1.104
Contenido de Humedad (%)	: 6.50)	Contenido de Humedad (%	(o)	:	1.18
Módulo de Finura	: 3.07	7	Módulo de Finura		:	7.093
Particulas Menores del Tamiz Nº 200	3.600	0	Tamaño máximo Nominal	(Pulg.)	:	3/4"
CEMENTO			Perfil del Agregado		:	Angular
Norma : NTP 334.009-201	13		Abrasion (%)		:	28.05
Tipo de Cemento : Pacasmayo Tipo I						
Peso Específico (gr/cm3: 3.11						
SIKAAER						
Norma : ASTM C 260				AGUA		
Peso Específico (gr/cm3: 1.02			Norma		: N	ГР 334.009-2013
Aplicación (SikaAer.) : 0.0675 % del pes	o del Cemento		Peso específico (gr/cm3)		:	1.00
	DISI	EÑO DE M	IEZCLA			
			Agua de diseño	: 212.20	lt/m	3
			Cemento	: 282.93	Kg/r	n3
Materiales de diseño con 0.00% de adición	do Silza Aor		SikaAer		lt/m	
iviacerrares de diseno con 0.00 % de adicion	uc sikaaci		Agregado grueso seco	: 856.95	Kg/r	n3
			Agregado fino seco	: 974.09	Kg/r	n3
			Aire atrapado	: 2.00) %	
			Agua de diseño	: 0.212	2 m3	
			Cemento	: 0.091	m3	-
Volúmenes absolutos de materiales de disef	io con 0.00% de adio	ción de	SikaAer	: 0.000	m3	
SikaAer			Agregado grueso seco	: 0.329	m3	
			Agregado fino seco	: 0.348	3 m3	
			Aire atrapado	: 0.020) m3	

	Agua de diseño	1.	212.20 lt/m3
			212.20 lt/m3
Reduccion del 0 % del Agua de mezcla por el uso del SikaAer	Nueva agua de diseño	-:	
	Relacion A/C de ajuste	:	0.75 lt/m3
	Nuevo Peso del cemento	:	282.93 Kg/m3
	Nueva agua de diseño	:	0.212 m3
Volúmenes absolutos de materiales de diseño con 0.0675 % de SikaAer	Nuevo Cemento	:	0.091 m3
volumenes absorteos de materrales de disens con 0.0075 /o de Sira-Aci	SikaAer	:	0.00019 m3
	Aire atrapado	:	0.020 m3
Porcentaje de Agregados de diseño	Agregado grueso seco	:	48.600 %
Porcentaje de Agregados de diseno	Agregado fino seco	:	51.400 %
	Nueva agua de diseño	:	0.212 m3
	Nuevo Cemento	:	0.091 m3
V. I.	SikaAer	:	0.00019 m3
Volúmenes absolutos de materiales de diseño con 0.0675 % de SikaAer	Aire atrapado	:	0.020 m3
	Agregado grueso seco	:	0.329 m3
	Agregado fino seco	:	0.348 m3
	Agua de diseño	:	212.20 lt/m3
	Cemento	:	282.93 Kg/m3
	SikaAer	:	0.19 Kg/m3
Proporción en peso de los materiales de diseño	Agregado grueso seco	:	856.71 Kg/m3
	Agregado fino seco	:	973.82 Kg/m3
	Aire atrapado	:	2.00 %

Tabla 50: Corrección por humedad de los agregados

	"PROPIEDADES MECÁNICAS DEL CONCRETO LIGERO UTILIZANDO ADITIVO INCORPORADOR DE AIRE SIKAAER Y SUSTITUYENDO PARCIALMENTE AGREGADO GRUESO POR TRAQUITA"						
TESISTA: Bach. Ing. Víctor Yiye González	Raico						
CORRECCIÓN DEL D	ISEÑO POR HUMEDAD DE LOS AGF	REGADOS					
Fecha de Corrección :	22 de febrero de 2	2024					
Revisado por :	Dr. Ing. MAURO A. CENTU	RION VARG	AS				
Cantera de donde se extraen los materiales :	RIO CHONTA						
	Cemento	:	282.93	Kg/m3			
	Agua de diseño	:	212.20	lt/m3			
Materiales de Diseño	SikaAer	:	0.19	lt/m3			
	Agregado Fino seco	:	973.82	Kg/m3			
	Agregado Grueso seco	:	856.71	Kg/m3			
Contonido do Humadad da las Componentes	Agregado Fino	:	6.50	%			
Contenido de Humedad de los Componentes	Agregado Grueso	:	1.18	%			
Absoration de les Componentes	Agregado Fino	:	1.52	%			
Absorción de los Componentes	Agregado Grueso	:	1.10	%			
D H. /	Agregado Fino	:	1037.10	Kg/m3			
Peso Húmedo de los Componentes	Agregado Grueso	:	866.80	Kg/m3			
Humadad Sunauf sial da las Componentos	Agregado Fino	:	4.98	%			
Humedad Superficial de los Componentes	Agregado Grueso	<u>: </u>	0.08	%			
	Agregado Fino		48.50	lt/m3			
Aporte de Humedad de los Componentes	Agregado Grueso		0.70	lt/m3			
	Aporte Total	:	49.20	lt/m3			
Agua Efectiva	Agua Efectiva	:	163.00	lt/m3			

	Cemento	:	282.93 Kg/m3	
Dose de les metavieles equiverides nou humaded e seu	Agua Efectiva	:	163.00 lt/m3	
Peso de los materiales corregidos por humedad a ser empleados en las mezclas de prueba por m3	SikaAer	:	0.19 Kg/m3	
cimpicados en las inezeras de prueba por mo	Agregado Fino Húmedo	:	1037.10 Kg/m3	
	Agregado Grueso Húmedo	:	866.80 Kg/m3	
Relación Agua / Cemento Efectiva		:	0.58	
	Cemento	:	42.5 Kg/bls	
	Agua Efectiva	:	24.5 lt/bls	
Cantidad de materiales corregidos por humedad que se necesitan en una tanda de un saco de Cemento.	SikaAer	:	0.03 lt/bls	
necesitan en una tanua de un saco de cemento.	Agregado fino húmedo	:	155.8 Kg/bls	
	Agregado grueso húmedo		130.2 Kg/bls	
	Cemento	:	1	
Duomonaión on moso do los motorioles convenidos non	SikaAer	:	0.03 lt / saco	
Proporción en peso de los materiales corregidos por Humedad del Agregado.	Agregado fino húmedo	:	3.67	
Traineana acraigregado.	Agregado grueso húmedo	1:	3.06	
	Agua Efectiva	:	24.5 lt / saco	

Anexo V: Resultados de los ensayos en laboratorio

Tabla 51: Especímenes cilíndricos de concreto con adición de SikaAer ensayados a compresión a los 28 días de edad.

DATOS ESPECI				ESPECI	MEN N°					PROMEDIO
TIPO DE	_	Α	Α	Α	Α	Α	Α	Α	Α	
TIPO DE ESPECIME		CILÍNDRICO								
ESPECIME		01-S	02-S	03-S	04-S	05-S	06-S	07-S	08-S	
EDAD DE ENSAYO		28 DÍAS								
MODO DE	FALLA	FRAGIL	FRAGIL	DUCTIL	DUCTIL	FRAGIL	DUCTIL	FRAGIL	DUCTIL	
FALLA DE ROTURA		TIPO-5	TIPO-5	TIPO-3	TIPO-3	TIPO-5	TIPO-6	TIPO-5	TIPO-3	
ALTURA PROMEDIO)	305.00 mm	304.00 mm	304.00 mm	302.00 mm	303.00 mm	303.00 mm	305.00 mm	304.00 mm	
DIAMETRO		15.21 cm	15.20 cm	15.23 cm	15.30 cm	15.27 cm	15.25 cm	15.21 cm	15.20 cm	
PESO		12.33 kg	12.30 kg	12.30 kg	12.40 kg	12.38 kg	12.45 kg	12.37 kg	12.31 kg	
F'c DE DIS	EÑO	210 kg/cm ²								
PESO UNIT C° END.	ΓARIO	2225 Kg/m ³	2230 Kg/m ³	2221 Kg/m ³	2233 Kg/m ³	2231 Kg/m ³	2250 Kg/m ³	2232 Kg/m ³	2232 Kg/m ³	2231.65 Kg/m³
CARGA MA	AX. DE	42.00 Tn	40.00 Tn	42.50 Tn	43.50 Tn	43.00 Tn	42.50 Tn	43.00 Tn	42.00 Tn	42.31 Tn
ESFUERZO ROTURA		212.04 kg/cm ²	210.67 kg/cm ²	214.12 kg/cm ²	219.89 kg/cm ²	217.12 kg/cm ²	221.35 kg/cm ²	214.13 kg/cm ²	217.41 kg/cm ²	215.84 kg/cm ²
MODULO DE ELASTICI	NORM A E.060	218422.47 kg/cm ²	217716.67 kg/cm ²	219494.37 kg/cm ²	222431.87 kg/cm ²	221024.89 kg/cm ²	223167.54 kg/cm ²	219497.72 kg/cm ²	221172.44 kg/cm ²	220366.00 kg/cm ²
DAD "Ec" (Kg/cm2)	ACI 318S	207834.36 kg/cm ²	207836.13 kg/cm ²	208297.37 kg/cm ²	212842.16 kg/cm ²	211180.55 kg/cm ²	215885.96 kg/cm ²	209874.65 kg/cm ²	211392.60 kg/cm ²	210642.97 kg/cm ²
(ING/CIIIZ)	GRÁFI CA	146980.34 kg/cm ²	135685.19 kg/cm ²	150679.47 kg/cm ²	155886.62 kg/cm ²	160829.63 kg/cm ²	163962.96 kg/cm ²	158614.81 kg/cm ²	161044.44 kg/cm ²	154210.43 kg/cm ²

Tabla 52: Especímenes cilíndricos de concreto con adición de SikaAer y reemplazo porcentual de traquita al 5% ensayados a compresión a los 28 días de edad.

DATOS ESPECI				ESPEC	IMEN N°					PROMEDIO
TIPO DE		В	В	В	В	В	В	В	В	
CONCRET	0									
TIPO DE		CILÍNDRICO								
ESPECIME										
ESPECIME	N N°	01-5% T	02-5% T	03-5% T	04-5% T	05-5% T	06-5% T	07-5% T	08-5% T	
EDAD DE ENSAYO		28 DÍAS								
MODO DE	FALLA	DUCTIL	FRAGIL	DUCTIL	DUCTIL	FRAGIL	DUCTIL	FRAGIL	DUCTIL	
FALLA DE ROTURA		TIPO-5	TIPO-5	TIPO-2	TIPO-5	TIPO-5	TIPO-6	TIPO-2	TIPO-5	
ALTURA PROMEDIO)	302.00 mm	304.00 mm	305.00 mm	305.00 mm	302.00 mm	303.00 mm	304.00 mm	302.00 mm	
DIAMETRO		15.30 cm	15.20 cm	15.35 cm	15.22 cm	15.25 cm	15.27 cm	15.27 cm	15.29 cm	
PESO		12.00 kg	11.98 kg	12.22 kg	12.06 kg	11.95 kg	12.10 kg	12.15 kg	12.23 kg	
F'c DE DIS	EÑO	210 kg/cm ²								
PESO UNIT C° END.	ΓARIO	2161 Kg/m ³	2172 Kg/m ³	2165 Kg/m ³	2173 Kg/m ³	2166 Kg/m ³	2181 Kg/m ³	2182 Kg/m ³	2206 Kg/m ³	2175.78 Kg/m³
CARGA MA	AX. DE	39.00 Tn	40.00 Tn	37.00 Tn	39.50 Tn	38.00 Tn	37.50 Tn	39.00 Tn	38.50 Tn	38.56 Tn
ESFUERZO) DE	201.39	200.63	198.31	196.77	199.69	203.12	200.17	198.49	199.82
ROTURA		kg/cm ²	kg/cm ²							
MODULO	NORM	212867.21	212464.44	211234.80	210409.53	211967.57	213780.26	212222.17	211329.72	212034.46
DE	A E.060	kg/cm ²	kg/cm ²							
ELASTICI DAD "Ec"	ACI	193913.82	194958.95	192934.64	193288.26	193782.32	197368.31	196173.58	198463.30	195110.40
(Kg/cm2)	318S	kg/cm ²	kg/cm ²							
(itg/ciliz)	GRÁFI	170840.94	141182.16	183288.12	136394.06	153607.69	156246.15	153976.92	152684.62	156027.58
	CA	kg/cm ²	kg/cm ²							

Tabla 53: Especímenes cilíndricos de concreto con adición de SikaAer y reemplazo porcentual de traquita al 10% ensayados a compresión a los 28 días de edad

DATOS ESPECI				ESPECI	IMEN N°					PROMEDIO
TIPO DE CONCRET	0	С	С	С	С	С	С	С	С	
TIPO DE ESPECIME	:N	CILÍNDRICO								
ESPECIME	N N°	01-10% T	02-10% T	03-10 % T	04-10% T	05-10% T	06-10% T	07-10% T	08-10% T	
EDAD DE ENSAYO		28 DÍAS								
MODO DE	FALLA	DUCTIL								
FALLA DE ROTURA		TIPO-5	TIPO-3	TIPO-2	TIPO-5	TIPO-5	TIPO-4	TIPO-3	TIPO-5	
ALTURA PROMEDIO)	302.00 mm	302.00 mm	303.00 mm	305.00 mm	303.00 mm	302.00 mm	303.00 mm	303.00 mm	
DIAMETRO PROMEDIO		15.23 cm	15.20 cm	15.28 cm	15.28 cm	15.27 cm	15.24 cm	15.25 cm	15.26 cm	
PESO		11.56 kg	11.63 kg	11.84 kg	11.89 kg	11.75 kg	11.56 kg	11.70 kg	11.75 kg	
F'c DE DIS	EÑO	210 kg/cm ²	210 kg/cm^2	210 kg/cm^2	210 kg/cm^2	210 kg/cm ²	210 kg/cm^2	210 kg/cm^2	210 kg/cm^2	
PESO UNIA C° END.	ATRIO	2101 Kg/m ³	2122 Kg/m ³	2131 Kg/m ³	2126 Kg/m ³	2118 Kg/m ³	2098 Kg/m ³	2114 Kg/m ³	2120 Kg/m ³	2116.32 Kg/m³
CARGA MA	AX. DE	36.50 Tn	36.00 Tn	37.00 Tn	35.00 Tn	35.50 Tn	34.70 Tn	36.00 Tn	36.50 Tn	35.90 Tn
ESFUERZO ROTURA) DE	187.39 kg/cm ²	191.35 kg/cm ²	189.16 kg/cm ²	185.58 kg/cm ²	188.75 kg/cm ²	187.01 kg/cm ²	189.14 kg/cm ²	190.32 kg/cm ²	188.59 kg/cm²
MODULO DE	NORM A E.060	205333.04 kg/cm ²	207495.80 kg/cm ²	206304.70 kg/cm ²	204342.90 kg/cm ²	206079.47 kg/cm ²	205127.40 kg/cm ²	206292.27 kg/cm ²	206934.77 kg/cm ²	205988.79 kg/cm ²
ELASTICI DAD "Ec" (Kg/cm2)	ACI 318S	179307.43 kg/cm ²	183929.14 kg/cm ²	183999.01 kg/cm ²	181603.97 kg/cm ²	182063.68 kg/cm ²	178775.47 kg/cm ²	181803.02 kg/cm ²	183178.95 kg/cm ²	181832.58 kg/cm ²
	GRÁFI CA	173589.91 kg/cm ²	162327.86 kg/cm ²	153252.21 kg/cm ²	157229.46 kg/cm ²	153455.28 kg/cm ²	152040.65 kg/cm ²	153772.36 kg/cm ²	154731.71 kg/cm ²	157549.93 kg/cm²

Tabla 54: Especímenes cilíndricos de concreto con adición de SikaAer y reemplazo porcentual de traquita al 15% ensayados a compresión a los 28 días de edad.

DATOS ESPECI				ESPEC	IMEN N°					PROMEDIO
TIPO DE CONCRET	0	D	D	D	D	D	D	D	D	
TIPO DE ESPECIME	:N	CILÍNDRICO								
ESPECIME	N N°	01-15% T	02-15% T	03-15% T	04-15% T	05-15% T	06-15% T	07-15% T	08-15% T	
EDAD DE ENSAYO		28 DÍAS								
MODO DE	FALLA	DUCTIL								
FALLA DE ROTURA		TIPO-5	TIPO-2	TIPO-3	TIPO-5	TIPO-5	TIPO-5	TIPO-3	TIPO-5	
ALTURA PROMEDIO)	303.00 mm	302.00 mm	304.00 mm	305.00 mm	304.00 mm	302.00 mm	303.00 mm	304.00 mm	
DIAMETRO PROMEDIO		15.19 cm	15.33 cm	15.28 cm	15.21 cm	15.30 cm	15.26 cm	15.20 cm	15.22 cm	
PESO		11.26 kg	$11.49~\mathrm{kg}$	11.35 kg	11.39 kg	11.43 kg	$11.50~\mathrm{kg}$	$11.28~\mathrm{kg}$	11.35 kg	
F'c DE DIS	EÑO	210 kg/cm ²								
PESO UNIA C° END.	ATRIO	2051 Kg/m ³	2061 Kg/m ³	2036 Kg/m ³	2055 Kg/m ³	2045 Kg/m ³	2082 Kg/m ³	2052 Kg/m ³	2052 Kg/m ³	2054.22 Kg/m³
CARGA MA	AX. DE	36.50 Tn	36.00 Tn	34.00 Tn	35.40 Tn	35.00 Tn	36.00 Tn	36.50 Tn	35.50 Tn	35.61 Tn
ESFUERZO ROTURA) DE	178.42 kg/cm ²	176.54 kg/cm ²	171.48 kg/cm ²	182.57 kg/cm ²	179.52 kg/cm ²	184.23 kg/cm ²	178.56 kg/cm ²	174.32 kg/cm ²	178.20 kg/cm ²
MODULO DE	NORM A E.060	200359.52 kg/cm ²	199301.01 kg/cm ²	196427.13 kg/cm ²	202678.34 kg/cm ²	200977.61 kg/cm ²	203597.03 kg/cm ²	200439.52 kg/cm ²	198045.45 kg/cm ²	201828.20 kg/cm ²
ELASTICI DAD "Ec" (Kg/cm2)	ACI 318S	168691.47 kg/cm ²	169108.52 kg/cm ²	163584.59 kg/cm ²	171225.47 kg/cm ²	168517.57 kg/cm ²	175370.69 kg/cm ²	168874.91 kg/cm ²	166923.37 kg/cm ²	169037.07 kg/cm ²
	GRÁFI CA	152713.28 kg/cm²	154087.47 kg/cm²	136467.94 kg/cm²	154678.34 kg/cm²	144774.19 kg/cm²	148572.58 kg/cm²	144000.00 kg/cm²	140580.65 kg/cm²	146984.31 kg/cm ²

Tabla 55: Especímenes cilíndricos de concreto con adición de SikaAer y reemplazo porcentual de traquita al 20% ensayados a compresión a los 28 días de edad.

DATOS ESPECI				ESPECI	MEN N°					PROMEDIO
TIPO DE CONCRET	0	Е	Е	Е	E	Е	E	E	E	
TIPO DE ESPECIME	:N	CILÍNDRICO								
ESPECIME	N N°	01-20% T	02-20% T	03-20% T	04-20% T	05-20% T	06-20% T	07-20% T	08-20% T	
EDAD DE ENSAYO		28 DÍAS								
MODO DE	FALLA	DUCTIL								
FALLA DE ROTURA		TIPO-5	TIPO-2	TIPO-3	TIPO-5	TIPO-5	TIPO-5	TIPO-5	TIPO-5	
ALTURA PROMEDIO)	304.00 mm	302.00 mm	306.00 mm	304.00 mm	305.00 mm	303.00 mm	304.00 mm	302.00 mm	
DIAMETRO PROMEDIO		15.22 cm	15.22 cm	15.25 cm	15.24 cm	15.23 cm	15.26 cm	15.24 cm	15.22 cm	
PESO		10.89 kg	10.92 kg	11.02 kg	11.03 kg	11.01 kg	10.94 kg	10.87 kg	10.95 kg	
F'c DE DIS	EÑO	210 kg/cm ²								
PESO UNIA C° END.	ATRIO	1969 Kg/m³	1987 Kg/m ³	1972 Kg/m ³	1989 Kg/m³	1981 Kg/m ³	1974 Kg/m ³	1960 Kg/m ³	1993 Kg/m ³	1978.12 Kg/m³
CARGA MA	AX. DE	30.80 Tn	35.00 Tn	32.00 Tn	33.00 Tn	31.50 Tn	32.50 Tn	33.00 Tn	34.50 Tn	32.79 Tn
ESFUERZO ROTURA) DE	163.31 kg/cm ²	165.85 kg/cm²	155.35 kg/cm ²	158.07 kg/cm ²	160.32 kg/cm ²	164.14 kg/cm ²	158.89 kg/cm ²	164.96 kg/cm ²	161.36 kg/cm ²
MODULO DE	NORM A E.060	191687.48 kg/cm²	193176.92 kg/cm²	186959.08 kg/cm²	188590.61 kg/cm²	189926.30 kg/cm ²	192175.70 kg/cm²	189077.37 kg/cm ²	192655.13 kg/cm²	190531.07 kg/cm²
ELASTICI DAD "Ec" (Kg/cm2)	ACI 318S	151842.75 kg/cm ²	155184.25 kg/cm ²	148402.12 kg/cm ²	151680.90 kg/cm ²	151786.64 kg/cm ²	152830.40 kg/cm ²	148775.50 kg/cm ²	155403.29 kg/cm ²	151988.23 kg/cm ²
(* 2 3 . 02)	GRÁFI CA	120498.42 kg/cm ²	133213.14 kg/cm ²	125759.34 kg/cm ²	108719.87 kg/cm ²	128256.00 kg/cm ²	131312.00 kg/cm ²	127112.00 kg/cm ²	131968.00 kg/cm ²	125854.85 kg/cm²

Anexo VI: Desviación estándar y coeficiente de variación

Tabla 56: Desviación estándar y coeficiente de variación de los especímenes del concreto con adición de SikaAer ensayados a compresión a los 28 días.

CONCRETO TIPO A	RESISTENCIA PROMEDIO 28 días	215.84 kg/cm ²	
PROBETA N°	RESISTENCIA	X-	(X-Xprom) ²
	Kg/cm2	Xprom	
01-S	212.04	-3.80	14.47
02-S	210.67	-5.17	26.75
03-S	214.12	-1.72	2.95
04-S	219.89	4.05	16.41
05-S	217.12	1.28	1.63
06-S	221.35	5.51	30.34
07-S	214.13	-1.71	2.93
08-S	217.41	1.57	2.46
		Ss =	3.74 kg/cm ²
		Cv =	1.73%

Tabla 57: Desviación estándar y coeficiente de variación de los especímenes del concreto con adición de SikaAer y reemplazo porcentual de traquita al 5% ensayados a compresión a los 28 días.

CONCRETO TIPO B	RESISTENCIA PROMEDIO 28 días	199.82 kg/cm ²		
PROBETA N°	RESISTENCIA	Х-	(X-Xprom) ²	
	Kg/cm2	Xprom		
01-5% T	201.39	1.57	2.46	
02-5% T	200.63	0.81	0.65	
03-5% T	198.31	-1.51	2.28	
04-5% T	196.77	-3.06	9.33	
05-5% T	199.69	-0.13	0.02	
06-5% T	203.12	3.30	10.89	
07-5% T	200.17	0.35	0.12	
08-5% T	198.49	-1.33	1.77	
		Ss =	1.98 kg/cm ²	
		Cv =	0.99%	

Tabla 58: Desviación estándar y coeficiente de variación de los especímenes del concreto con adición de SikaAer y reemplazo porcentual de traquita al 10% ensayados a compresión a los 28 días.

CONCRETO TIPO C	RESISTENCIA PROMEDIO 28 días	188.59 kg/cm²	
PROBETA N°	RESISTENCIA	X-	(X-Xprom) ²
	Kg/cm2	Xprom	
01-10% T	187.39	-1.20	1.45
02-10% T	191.35	2.77	7.65
03-10 T%	189.16	0.57	0.33
04-10% T	185.58	-3.01	9.03
05-10% T	188.75	0.16	0.03
06-10% T	187.01	-1.58	2.49
07-10% T	189.14	0.55	0.30
08-10% T	190.32	1.73	3.00
		Ss =	1.86 kg/cm ²
		Cv =	0.99%

Tabla 59: Desviación estándar y coeficiente de variación de los especímenes del concreto con adición de SikaAer y reemplazo porcentual de traquita al 15% ensayados a compresión a los 28 días.

CONCRETO TIPO D	RESISTENCIA PROMEDIO	178.20 kg/cm ²	
	28 días		
PROBETA N°	RESISTENCIA	X-	(X-Xprom) ²
	Kg/cm2	Xprom	
01-15% T	178.42	0.21	0.05
02-15% T	176.54	-1.67	2.78
03-15% T	171.48	-6.72	45.19
04-15% T	182.57	4.37	19.06
05-15% T	179.52	1.32	1.73
06-15% T	184.23	6.03	36.30
07-15% T	178.56	0.36	0.13
07-15% T	174.32	-3.88	15.09
		Ss =	4.15 kg/cm ²
		Cv =	2.33%

Tabla 60: Desviación estándar y coeficiente de variación de los especímenes del concreto con adición de SikaAer y reemplazo porcentual de traquita al 20% ensayados a compresión a los 28 días.

CONCRETO TIPO E	RESISTENCIA PROMEDIO 28 días	161.36 kg/cm ²	
PROBETA N°	RESISTENCIA	X-	(X-Xprom) ²
	Kg/cm2	Xprom	
01-20% T	163.31	1.95	3.78
02-20% T	165.85	4.49	20.19
03-20% T	155.35	-6.01	36.14
04-20% T	158.07	-3.29	10.82
05-20% T	160.32	-1.04	1.09
06-20% T	164.14	2.78	7.72
07-20% T	158.89	-2.47	6.11
08-20% T	164.96	3.60	12.95
		Ss =	3.76 kg/cm ²
		Cv =	2.33%

Anexo VII: Gráficos de esfuerzo vs deformación de los especímenes ensayados

Gráfico 7: Módulo de elasticidad y deformación de los especímenes del concreto con adición de SikaAer ensayados a los 28 días, muestra- 01-S

		DETERMIN	ACIÓN I	DEL MÓDULO	O DE ELASTICIDAD DEL CONCRETO			
				ACI 318 (NTP 1	E-060) / ASTM C469			
		ENCIA A: COMI	PRESIÓN		TIPO DE CEMENTO: PACASMAYO TIPO I (ASTM C150)			
TIPO DE C					CARGA ULTIMA: 42.00 Tn			
ESPECÍME		01-S	(2024		f c DE DISEÑO: 210 kg/cm² DIÁMETRO (cm): 15.210			
FECHA DE					- (-)-			
FECHA DE	ENSAYO:	29/03			ALT. PROM. ESPEC (mm): 305.0			
EDAD:		28 DÍ.			PESO DEL ESPECÍMEN: 12.33 kg			
MODO DE		FRAG	1		PESO UNITARIO Cº END: 2225 Kg/m³			
CARGA (Tn)	DEF. (mm)	DEF. UNIT. (×1000)	ESF. (kg/cm ²)	ESF. CORREG. (kg/cm ²)	GRÁFICO ESFUERZO - DEFORMACIÓN (CORREGIDO)			
0.0	0.00	0.00	0.00	0.00	250.00			
1.0	0.00	0.10	5.50	10.03	-			
2.0	0.03	0.10	11.01	13.33	4			
3.0	0.04	0.13	16.51	23.05	4			
4.0	0.07	0.30	22.01	29.40				
5.0	0.10	0.33	27.52	32.54	1			
6.0	0.12	0.39	33.02	38.74	1			
7.0	0.14	0.46	38.53	44.83	200.00			
8.0	0.17	0.56	44.03	53.77	1 / /			
9.0	0.20	0.66	49.53	62.48	1 / / /			
10.0	0.23	0.75	55.04	70.96				
12.0	0.25	0.82	66.04	76.48] 50			
14.0	0.28	0.92	77.05	84.56				
16.0	0.32	1.05	88.06	94.98	CORREGIDO (kg/cm²)			
18.0	0.35	1.15	99.07	102.52				
20.0	0.40	1.31	110.07	114.56	<u> </u> Š			
22.0	0.47	1.54	121.08	130.34	4 ž			
24.0	0.53	1.74	132.09	142.84				
26.0	0.58	1.90	143.10	152.55	- ¥4			
28.0	0.64	2.10 2.26	154.10 165.11	163.34 171.62	COMPRESS ION			
30.0 32.0	0.69	2.26	176.12	182.12				
34.0	0.76	2.49	187.12	191.34	ES FUERZO			
36.0	0.89	2.92	198.13	198.23				
38.0	0.89	3.11	209.14	204.19	- 5			
40.0	0.99	3.25	220.15	207.64	1 / / / / / / / / / / / / / / / / / / /			
42.0	1.05	3.44	231.15	212.04	1			
40.0	1.25	4.10	220.15	219.94	50.00			
36.5	1.36	4.46	200.88	219.85	$y = -12.089x^2 + 103.21x$ $R^2 = 1$			
]			
					<u> </u>			
					4			
					0.00			
					0.00 1.00 2.00 3.00 4.00 5.			
10 DE E	E 60225	<u> </u>		000 0 100 0	DEFORMACIÓN UNITARIA (× 1000)			
	F. CORREG		-12	.089x2 + 103.21x				
	UNIT. (×10	100):			TIEMPO DE ENSAYO (minutos):			
ESF. ROT (-				$M\acute{O}D$. ELAST. POR GRÁFICO - E2 (kg/cm ²): 14698			
IÓD. ELAS	ST. POR FÓ) RM E1 (kg/cm	²):	218422.47	M \acute{O} D. ELAST. POR GRÁFICO - E3 (kg/cm ²): 2078.			

Gráfico 8: Módulo de elasticidad y deformación de los especímenes del concreto con adición de SikaAer ensayados a los 28 días, muestra- 02-S

DETERMINACIÓN DEL MÓDULO DE ELASTICIDAD DEL CONCRETO ACI 318 (NTP E-060) / ASTM C469									
ENSAYO D	E RESISTE	ENCIA A: COM		1010 (1111)	TIPO DE CEMENTO: PACASMAYO TIPO I (ASTM C150))			
	ONCRETO				CARGA ULTIMA: 40.00 Tn	•			
ESPECÍMI	EN N°	02-S			f c DE DISEÑO: 210 kg/cm ²	210 kg/cm ²			
ECHA DE	ELABOR	ACIÓN: 29/02	/2024		DIÁMETRO (cm): 15.200				
ECHA DE	ENSAYO:	29/03	/2024		ALT. PROM. ESPEC (mm): 304.0				
EDAD:		28 DÍ	AS		PESO DEL ESPECÍMEN: 12.30 kg				
10DO DE	FALLA:	FRAG	IL		PESO UNITARIO C° END: 2230 Kg/m³				
CARGA	DEF.	DEF. UNIT.	ESF.	ESF. CORREG.					
(Tn)	(mm)	(×1000)	(kg/cm ²)	(kg/cm ²)	GRÁFICO ESFUERZO - DEFORMACIÓN (CORREGIDO)				
0.0	0.00	0.00	0.00	0.00	250.00				
1.0	0.03	0.10	5.51	8.94					
2.0	0.05	0.16	11.02	14.81					
3.0	0.07	0.23	16.53	20.59					
4.0	0.08	0.26	22.04	23.46					
5.0	0.10	0.33	27.55	29.12					
6.0	0.11	0.36	33.07	31.93	200.00				
7.0	0.15	0.49	38.58	42.95	200.00				
8.0	0.19	0.63	44.09	53.66					
9.0	0.21	0.69	49.60	58.89					
10.0	0.22	0.72	55.11	61.48					
12.0	0.25	0.82	66.13	69.13) j				
14.0	0.29	0.95	77.15	79.05					
16.0	0.33	1.09	88.17	88.66	150.00				
18.0	0.38	1.25	99.20	100.23	Ŭ Š				
20.0	0.46	1.51	110.22	117.72	CORREGIOO (kg/cm²)				
22.0	0.52	1.71	121.24	130.01					
24.0	0.56	1.84	132.26	137.81					
26.0	0.61	2.01	143.28	147.12	BR				
28.0	0.66	2.17	154.31	155.95	A COMPRES IÓN O				
30.0	0.73	2.40	165.33	167.47	₹ 100.00				
32.0	0.81	2.66 2.86	176.35 187.37	179.46 187.64					
34.0	0.87	3.09	198.39	196.27					
36.0 38.0	0.94	3.19	209.41	190.27	SS FUERZO				
40.0	1.08	3.55	220.44	210.67					
37.5	1.24	4.08	206.66	222.41					
31.3	1.27	4.00	200.00	222.71	0.0602-2+01.510-				
					$y = -9.0693x^2 + 91.519x$ $R^2 = 1$				
					1				
					1				
					1				
					0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00	4.50			
					DEFORMACIÓN UNITARIA (× 1000)				
	F. CORREG		-	9.069x2 + 91.52x					
	UNIT. (×10	000):			TIEMPO DE ENSAYO (minutos):	1			
SF. ROT (kg/cm²):			210.67	MÓD. ELAST. POR GRÁFICO - E2 (kg/cm²):	5685			
ÓD. ELA	ST. POR FÓ	DRM E1 (kg/cm	ı²):	217716.67	MÓD. ELAST. POR GRÁFICO - E3 (kg/cm²):	7836			

Gráfico 9: Módulo de elasticidad y deformación de los especímenes del concreto con adición de SikaAer ensayados a los 28 días, muestra- 03-S

					O DE ELASTICIDAD DEL CONCRETO E-060) / ASTM C469
ENSAYO D	E RESISTE	ENCIA A: COMI		`	TIPO DE CEMENTO: PACASMAYO TIPO I (ASTM C150)
	ONCRETO): A			CARGA ULTIMA: 42.50 Tn
ESPECÍME	EN N°	03-S			f'c DE DISEÑO: 210 kg/cm ²
ECHA DE	ELABOR	ACIÓN: 29/02	/2024		DIÁMETRO (cm): 15.230
FECHA DE	ENSAYO:				ALT. PROM. ESPEC (mm): 304.0
EDAD:		28 DÍ.	AS		PESO DEL ESPECÍMEN: 12.30 kg
MODO DE	FALLA:	DUCT	TL.		PESO UNITARIO C° END: 2221 Kg/m ³
CARGA	DEF.	DEF. UNIT.	ESF.	ESF. CORREG.	GRÁFICO ESFUERZO - DEFORMACIÓN (CORREGIDO)
(Tn)	(mm)	(×1000)	(kg/cm ²)	(kg/cm ²)	
0.0	0.00	0.00	0.00	0.00	250.00
1.0	0.03	0.10	5.49	10.17	
2.0	0.05	0.16	10.98	16.81	
3.0	0.09	0.30	16.47	29.79	
4.0	0.13	0.43	21.96	42.35	
5.0	0.15	0.49	27.45	48.46	
6.0	0.16	0.53	32.94	51.49	200.00
7.0	0.18	0.59	38.42	57.45	
8.0	0.21	0.69	43.91	66.19	」
9.0	0.24	0.79	49.40	74.70	
10.0	0.26	0.86	54.89	80.24	
12.0	0.28	0.92	65.87	85.67	_ Kg/K
14.0	0.30	0.99	76.85	91.00	4 0 1
16.0	0.36	1.18	87.83	106.36	COMPRES IÓN CORREGIDO (kg/cm²)
18.0	0.40	1.32	98.81	116.07	- K.
20.0	0.42	1.38	109.78	120.77	- 8
22.0	0.49	1.61	120.76	136.38	- z
24.0	0.55	1.81	131.74	148.73	- I I I I I I I I I I I I I I I I I I I
26.0	0.62	2.04	142.72 153.70	161.94 172.24	
28.0	0.68	2.24			- NO
30.0	0.72	2.37 2.43	164.68 175.65	178.58 181.59	100.00
32.0 34.0	0.74	2.43	186.63	183.06	SFUERZO
36.0	0.73	2.73	197.61	193.84	
38.0	0.83	2.99	208.59	202.94	
40.0	0.91	3.22	219.57	209.51	┨
42.5	1.04	3.42	233.29	214.12	1 /
40.0	1.30	4.28	219.57	223.14	1 1 1 1 1 1 1 1 1 1
37.0	1.45	4.77	203.10	220.24	$y = -12.171x^2 + 104.23x$
				-	$R^2 = 1$
					1 1 - - - - - - - -
					1
					1 <i>i</i>
]
					0.00
					0.00 1.00 2.00 3.00 4.00 5.00 6.
					DEFORMACIÓN UNITARIA (× 1000)
C. DE ESI	. CORREG	FIDA:	-12	171x2 + 104.23x	х
EF. ROT.	UNIT. (×16	000):		3.42	TIEMPO DE ENSAYO (minutos):
SF. ROT (214.12	2 MÓD. ELAST. POR GRÁFICO - E2 (kg/cm ²): 1506
	_	DRM E1 (kg/cm	2).		7 MÓD. ELAST. POR GRÁFICO - E3 (kg/cm²): 20829

Gráfico 10: Módulo de elasticidad y deformación de los especímenes del concreto con adición de SikaAer ensayados a los 28 días, muestra- 04-S

		DETERMIN		DEL MÓDULO				ONCRE	ТО	
				ACI 318 (NTP)						
		ENCIA A: COMI	PRESION		TIPO DE CE				TIPO I (ASTN	M C150)
TIPO DE C ESPECÍMI					CARGA UL			50 Tn		
ESPECIMI FECHA DE		04-S ACIÓN: 29/02	/2024		f'c DE DISE		210 15.3	kg/cm ²		
FECHA DE					DIÁMETRO ALT. PROM					
	LENSAYU:	29/03 28 DÍ				,				
EDAD:					PESO DEL I			0		
MODO DE		DUCT	1	I	PESO UNITA	ARIO C° E	IND: 223	3 Kg/m³		
CARGA	DEF.	DEF. UNIT.	ESF.	ESF. CORREG.	G	RÁFICO ES	FUERZO - E	DEFORMACI	ÓN (CORREGII	00)
(Tn)	(mm)	(×1000)	(kg/cm ²)		250.00					
0.0	0.00	0.00	0.00	0.00						
1.0	0.04	0.13	5.44	13.34						
2.0	0.08	0.26	10.88	26.30						•••
3.0	0.11	0.36	16.32	35.76					and the second	
4.0	0.13	0.43	21.76	41.94						
5.0	0.15	0.50	27.20	48.03					J.**	
6.0	0.16	0.53	32.63	51.04	200.00				1	
7.0	0.19	0.63	38.07	59.92				1		
8.0	0.22	0.73	43.51	68.58				/		
9.0	0.25	0.83	48.95	77.02				1		
10.0	0.28	0.93	54.39	85.25	cm²)			1		
12.0	0.29	0.96	65.27	87.94	kg/e			1		
14.0	0.32	1.06	76.15	95.87	A COMPRESIÓN CORREGIDO (kg/cm²)			Á		
16.0	0.36	1.19	87.03	106.11	₿ 150.00		/			
18.0	0.37	1.23	97.90	108.61	KE					
20.0	0.43	1.42	108.78	123.09	100		/			
22.0	0.51	1.69	119.66	141.04	Z					
24.0	0.57	1.89	130.54	153.49	SSIC		*			
26.0	0.60	1.99 2.12	141.42 152.29	159.39	PRI					
28.0	0.64	2.12	163.17	166.91 175.76	OW		<i>‡</i>			
30.0	0.69	2.42	174.05	182.41			1			
34.0	0.73	2.42	184.93	188.67	0Z					
36.0	0.77	2.72	195.81	195.95) DER					
38.0	0.82	2.72	206.69	203.88	ESFUERZO	•				
40.0	0.88	3.15	217.56	212.03	1			44.0	1.1022	
43.5	1.03	3.41	236.60	219.89	1	!			$2x^2 + 102.2x$	
39.5	1.40	4.64	214.84	236.06				K.	- 1	
57.5	2.10				50.00	1				
					1					
					1					
					1	,				
					1					
						!				
					0.00					
					0.00	00 1.	.00 2	2.00	3.00 4.0	0 5.00
					1	-			ARIA (× 1000)	
C. DE ESI	F. CORREG	IDA:	-1	1.062x2 + 102.2x						
DEF. ROT.	UNIT. (×10	000):			TIEMPO DE	ENSAYO	(minutos):			1.5
SF. ROT (,			MÓD. ELAS				?):	155886.6
	-	ÖRM E1 (kg/cm	2).		MÓD. ELAS				*	212842.1
IUD, ELA	or, PUK FU	KIVI EI (Kg/cm	<i>)</i> :	222431.0/	MUD. ELAS	i. PUK GK	AFICU - E	is (kg/cm	<i>J</i> :	Z1Z0 4 Z.1

Gráfico 11: Módulo de elasticidad y deformación de los especímenes del concreto con adición de SikaAer y reemplazo porcentual de traquita al 5% ensayados a los 28 días, muestra- 01-5%T

		DETERMIN			O DE ELASTICIDAD DEL CONCRETO
ENCAVO D	E DECICEE	NCIA A: COMI		ACI 318 (NIP)	E-060) / ASTM C469 TIPO DE CEMENTO: PACASMAYO TIPO I (ASTM C150)
TIPO DE C			RESION		CARGA ULTIMA: 39.00 Tn
ESPECÍMI		и: В 01-5%	: т		f'c DE DISEÑO: 210 kg/cm ²
FECHA DE					DIÁMETRO (cm): 15.300
FECHA DE		29/02/ 29/03/			ALT. PROM. ESPEC (mm): 302.0
	ENSATU.	29/03. 28 DÍ			· · ·
EDAD:					PESO DEL ESPECÍMEN: 12.00 kg
MODO DE		DUCT		EGE GODDEG	PESO UNITARIO C° END: 2161 Kg/m³
CARGA	DEF.	DEF. UNIT.	I	ESF. CORREG.	GRÁFICO ESFUERZO - DEFORMACIÓN (CORREGIDO)
(Tn)	(mm)	(×1000)	(kg/cm ²)		250.00
0.0	0.00	0.00	0.00	0.00	
1.0	0.02	0.07	5.44	7.26	
2.0	0.04	0.13	10.88	14.40	
3.0	0.06	0.20	16.32	21.40	
4.0	0.08	0.26	21.76	28.27 35.02	
5.0	0.10	0.33	27.20 32.63	48.11	
7.0	0.14	0.46	38.07	54.46	200.00
8.0	0.16	0.53	43.51	63.74	
9.0	0.19	0.66	48.95	66.77	
10.0	0.20	0.76	54.39	75.66	
12.0	0.25	0.83	65.27	81.42	, cm,
14.0	0.27	0.89	76.15	87.05	(kg
16.0	0.27	1.03	87.03	97.92	Og
18.0	0.36	1.19	97.90	110.78	<u> </u>
20.0	0.40	1.32	108.78	120.48	A COMPRES IÓN CORREGIDO (kg/cm²)
22.0	0.43	1.42	119.66	127.41	8
24.0	0.46	1.52	130.54	134.04	NO /
26.0	0.52	1.72	141.42	146.43	<u> </u>
28.0	0.56	1.85	152.29	154.04	Modern Market Ma
30.0	0.63	2.09	163.17	166.10	0 100,00
32.0	0.69	2.28	174.05	175.16	
34.0	0.74	2.45	184.93	181.81	ESFUERZO
36.0	0.79	2.62	195.81	187.65	10.5
38.0	0.86	2.85	206.69	194.45	
39.0	0.96	3.18	212.13	201.39	
32.0	1.06	3.51	174.05	205.06	
					50.00
					$y = -14.888x^2 + 110.68x$
					$R^2 = 1$
			-		
			1		
			1		0.00
			+		0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 DEFORMACIÓN UNITARIA (× 1000)
EC. DE EST	F. CORREG	IDA:	_14	.888x2 + 110.68x	DEFORMACION UNITARIA (* 1000)
DEF. ROT.			-14		TIEMPO DE ENSAYO (minutos): 1.57
		00).			
ESF. ROT (_		2		MÓD. ELAST. POR GRÁFICO - E2 (kg/cm²): 170840.94
MOD. ELA	ST. POR FÓ	RM E1 (kg/cm	·*):	212867.21	MÓD. ELAST. POR GRÁFICO - E3 (kg/cm²): 193913.82

Gráfico 12: Módulo de elasticidad y deformación de los especímenes del concreto con adición de SikaAer y reemplazo porcentual de traquita al 5% ensayados a los 28 días, muestra- 02-5%T

FNSAVO DE				DEE MODUE.	O DE ELASTIC			
ENGAVO DE				ACI 318 (NTP 1	·			
		NCIA A: COMI	PRESIÓN		TIPO DE CEMI		ACASMAYO TIPO I (ASTM	I C150)
TIPO DE CO			/ m		CARGA ULTIM		0.00 Tn	
ESPECÍMEN		02-5%			f'c DE DISEÑO		10 kg/cm ²	
FECHA DE I					DIÁMETRO (cr	*	5.200	
FECHA DE I	ENSAYO:	29/03/			ALT. PROM. ES	. ,		
EDAD:		28 DÍ			PESO DEL ESP		1.98 kg	
MODO DE F		FRAG			PESO UNITARI	O C° END: 2	172 Kg/m³	
CARGA (Tn)	DEF.	DEF. UNIT. (×1000)	ESF. (kg/cm ²)	ESF. CORREG.	GRÁF	ICO ESFUERZO	- DEFORMACIÓN (CORREGID	0)
` '	(mm)	0.00	0.00	(kg/cm ²) 0.00	250.00			
0.0 1.0	0.00	0.00	5.51	8.08				
2.0	0.03	0.10	11.02	18.65				
	0.07	0.23	16.53	23.84				
3.0 4.0	0.09	0.30	22.04	34.04				•
5.0	0.15	0.49	27.55	39.05	1			
6.0	0.19	0.63	33.07	48.89	1			
7.0	0.13	0.76	38.58	58.48	200.00			
8.0	0.27	0.89	44.09	67.84	1			
9.0	0.30	0.99	49.60	74.69				
10.0	0.33	1.09	55.11	81.41	n²)			
12.0	0.38	1.25	66.13	92.31	g/cn			
14.0	0.42	1.38	77.15	100.75	<u> </u>			
16.0	0.46	1.51	88.17	108.95	150.00		, **	
18.0	0.54	1.78	99.20	124.63	150.00		1	
20.0	0.61	2.01	110.22	137.55	A COMPRES IÓN CORREGIDO (kg/cm²)			
22.0	0.66	2.17	121.24	146.32	z			
24.0	0.69	2.27	132.26	151.41	(ji)		/	
26.0	0.72	2.37	143.28	156.35	RE			
28.0	0.76	2.50	154.31	162.74	OM	/		
30.0	0.79	2.60	165.33	167.36	100.00			
32.0	0.80	2.63	176.35	168.88	O ₂			
34.0	0.84	2.76	187.37	174.77	ERZ	/		
36.0	0.88	2.89	198.39	180.43	ESFUERZO	/		
38.0 40.0	0.97 1.04	3.19 3.42	209.41 220.44	192.27 200.63		1		
34.5	1.04	4.54	190.13	230.67			$y = -7.002x^2 + 82.599x$	
ט.ד.ט	1.50	1.57	170.13	230.07	1	!	$R^2 = 1$	
					50.00	<i>i</i>	1	
					1	1		
					1	/		
]			
					0.00			
					0.00	1.00	2.00 3.00 4.00	5.00
						DEFORM	MACIÓN UNITARIA (× 1000)	
EC. DE ESF.				-7.002x2 + 82.6x				
DEF. ROT. U	UNIT. (×10	100):		3.42	TIEMPO DE EN	SAYO (minutos	s):	1.57
ESF. ROT (kg	g/cm ²):			200.63	MÓD. ELAST. P	OR GRÁFICO -	- E2 (kg/cm ²):	141182.16
		RM E1 (kg/cm	²):		MÓD. ELAST. P		, ,	194958.95

Gráfico 13: Módulo de elasticidad y deformación de los especímenes del concreto con adición de SikaAer y reemplazo porcentual de traquita al 5% ensayados a los 28 días, muestra- 03-5%T

		DETERMIN	ACIÓN I	DEL MÓDULO	O DE ELASTICIDAD DEL CONCRETO
				ACI 318 (NTP 1	E-060) / ASTM C469
		CNCIA A: COME	PRESIÓN		TIPO DE CEMENTO: PACASMAYO TIPO I (ASTM C150)
TIPO DE C					CARGA ULTIMA: 37.00 Tn
ESPECÍME		03-5%			f'c DE DISEÑO: 210 kg/cm ²
FECHA DE					DIÁMETRO (cm): 15.350
FECHA DE	ENSAYO:	29/03/			ALT. PROM. ESPEC (mm): 305.0
EDAD:		28 DÍ			PESO DEL ESPECÍMEN: 12.22 kg
MODO DE	FALLA:	DUCT		1	PESO UNITARIO Cº END: 2165 Kg/m³
CARGA (Tn)	DEF.	DEF. UNIT. (×1000)	ESF.	ESF. CORREG.	GRÁFICO ESFUERZO - DEFORMACIÓN (CORREGIDO)
` ′	(mm)	` /	(kg/cm ²)	(kg/cm ²)	250.00
0.0	0.00	0.00	0.00	0.00	4
1.0	0.02		5.40	6.77	4
2.0	0.05	0.16	10.81	16.73	4
3.0	0.09	0.30	16.21	29.61	-
4.0	0.10	0.33 0.46	21.61 27.02	32.76 45.09	-
5.0	0.14	0.46	32.42	51.08	-
6.0 7.0	0.16	0.52	37.83	56.97	200.00
8.0	0.18	0.59	43.23	65.59	-
9.0	0.21	0.69	48.63	65.59	┨
10.0	0.21	0.89	54.04	82.08	
12.0	0.27	0.89	64.84	82.08	–
14.0	0.29	0.95	75.65	87.36	(kg
16.0	0.33	1.08	86.46	97.57	- 8
18.0	0.40	1.31	97.27	114.38	<u> </u>
20.0	0.44	1.44	108.07	123.37	A COMPRESIÓN CORREGIDO (kg/cm²)
22.0	0.45	1.48	118.88	125.55	
24.0	0.47	1.54	129.69	129.83	
26.0	0.55	1.80	140.50	145.82	
28.0	0.58	1.90	151.30	151.36	
30.0	0.64	2.10	162.11	161.68	7 8
32.0	0.73	2.39	172.92	175.29	
34.0	0.78	2.56	183.73	181.89	ES FUERZO
36.0	0.83	2.72	194.53	187.78	
37.0	0.94	3.08	199.94	198.31	
34.5	1.09	3.57	186.43	207.25	
					50.00
					$y = -12.917x^2 + 104.16x$
					$R^2 = 1$
			ļ		
					_
					0.00
					0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00
EC DE EC	E CORREC	<u> </u>	1.0	017 2 104 16	DEFORMACIÓN UNITARIA (× 1000)
EC. DE ESI			-12	.917x2 + 104.16x	
DEF. ROT.		vv):			8 TIEMPO DE ENSAYO (minutos): 1.57
ESF. ROT (2		1 MÓD. ELAST. POR GRÁFICO - E2 (kg/cm²): 183288.12
MOD. ELAS	ST. POR FÓ) RM E1 (kg/cm	<i>*)</i> :	211234.80	0 MÓD. ELAST. POR GRÁFICO - E3 (kg/cm²): 192934.64

Gráfico 14: Módulo de elasticidad y deformación de los especímenes del concreto con adición de SikaAer y reemplazo porcentual de traquita al 5% ensayados a los 28 días, muestra- 04-5%T

		DETERMIN	ACIÓN	DEL MÓDULO	DE ELASTICIDAD DEL CONC	CRETO
				ACI 318 (NTP 1	-060) / ASTM C469	
		ENCIA A: COM	PRESIÓN			AYO TIPO I (ASTM C150)
TIPO DE C					CARGA ULTIMA: 39.50 Tn	
ESPECÍMI		04-5%			'c DE DISEÑO: 210 kg/cm	n²
FECHA DE					DIÁMETRO (cm): 15.220	
FECHA DE	E ENSAYO:				ALT. PROM. ESPEC (mm): 305.0	
EDAD:		28 DÍ	AS		PESO DEL ESPECÍMEN: 12.06 kg	
MODO DE	FALLA:	DUCT	TL .		PESO UNITARIO C° END: 2173 Kg/s	m³
CARGA	DEF.	DEF. UNIT.	ESF.	ESF. CORREG.	GRÁFICO ESFUERZO - DEFOR	MACIÓN (CORREGIDO)
(Tn)	(mm)	(×1000)	(kg/cm ²)		250.00	
0.0	0.00	0.00	0.00	0.00	250.00	
1.0	0.02	0.07	5.50	5.19		
2.0	0.07	0.23	10.99	17.91		
3.0	0.09	0.30	16.49	22.90		
4.0	0.12	0.39	21.99	30.28		J. de de la constant
5.0	0.15	0.49	27.48	37.54		
6.0	0.22	0.72	32.98	53.98	200.00	, , , , , , , , , , , , , , , , , , ,
7.0	0.25	0.82	38.48	60.82	250.00	<i>/</i>
8.0	0.28	0.92	43.97	67.53		
9.0	0.30	0.98	49.47	71.93		,
10.0	0.36	1.18	54.96	84.81	m ₂)	/
12.0	0.41	1.34	65.96	95.16	o/83	
14.0	0.44	1.44	76.95	101.20	9	/
16.0	0.48	1.57	87.94	109.06	COMPRESIÓN CORREGIDO (kg/cm²)	*
18.0	0.55	1.80	98.94	122.27	S 130.00	
20.0	0.59	1.93	109.93	129.52	OS /	
22.0	0.67	2.20	120.92	143.34	N N	
24.0	0.70	2.30	131.91	148.29	(Ó)	
26.0	0.73	2.39	142.91	153.11	RES	
28.0	0.75	2.46	153.90	156.26	AIM	
30.0	0.81	2.66	164.89	165.37	¥ 100.00	
32.0	0.85	2.79	175.89	171.16	7	
34.0	0.89	2.92	186.88	176.73	ES FUERZO	
36.0	0.95	3.11	197.87	184.66		
38.0	1.00	3.28	208.86	190.89	8	
39.5	1.05	3.44	217.11	196.77	<i>f</i>	
33.5	1.40	4.59	184.13	228.13	v = -6.49	$973x^2 + 79.523x$
					50.00	$R^2 = 1$
					<i>f</i>	
					<i> </i>	
					<i> </i>	
					0.00	
					0.00 1.00 2.00	3.00 4.00 5.00
EC DE EC	E CORREC	[(407, 2) 72, 52	DEFORMACIÓN	UNITARIA (× 1000)
EC. DE EST			-	6.497x2 + 79.52x	FIEMBO DE ENGLUO ()	
DEF. ROT.	•	100):			TIEMPO DE ENSAYO (minutos):	1.57
ESF. ROT (kg/cm²):			196.77	MÓD. ELAST. POR GRÁFICO - E2 (kg	(cm^2) : 136394.06
MÓD. ELA	ST. POR FÓ	DRM E1 (kg/cm	ı²):	210409.53	MÓD. ELAST. POR GRÁFICO - E3 (kg.	(cm^2) : 193288.26

Gráfico 15: Módulo de elasticidad y deformación de los especímenes del concreto con adición de SikaAer y reemplazo porcentual de traquita al 10% ensayados a los 28 días, muestra- 01-10%T

		DETERMIN	ACIÓN I	DEL MÓDULO	O DE ELASTICIDAD DEL CONCRETO
				ACI 318 (NTP 1	E-060) / ASTM C469
		ENCIA A: COME	PRESIÓN		TIPO DE CEMENTO: PACASMAYO TIPO I (ASTM C150)
TIPO DE C					CARGA ULTIMA: 36.50 Tn
ESPECÍME		01-10			f'c DE DISEÑO: 210 kg/cm ²
FECHA DE					DIÁMETRO (cm): 15.230
FECHA DE	ENSAYO:				ALT. PROM. ESPEC (mm): 302.0
EDAD:		28 DÍ			PESO DEL ESPECÍMEN: 11.56 kg
MODO DE	FALLA:	DUCT	TL .	ī	PESO UNITARIO C° END: 2101 Kg/m ³
CARGA	DEF.	DEF. UNIT.	ESF.	ESF. CORREG.	GRÁFICO ESFUERZO - DEFORMACIÓN (CORREGIDO)
(Tn)	(mm)	(×1000)	(kg/cm ²)		250.00
0.0	0.00	0.00	0.00	0.00	_
1.0	0.02	0.07	5.49	6.57	_
2.0	0.07	0.23	10.98	22.50	4
3.0	0.11	0.36	16.47	34.74	4
4.0	0.12	0.40	21.96 27.45	37.73 40.69	-
5.0	0.13	0.43	32.94	55.09	-
7.0	0.18	0.60	38.42	66.10	200.00
8.0	0.22	0.73	43.91	66.10	
9.0	0.26	0.86	49.40	76.67	
10.0	0.26	0.86	54.89	76.67	
12.0	0.28	0.93	65.87	81.79	T 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
14.0	0.32	1.06	76.85	91.69	
16.0	0.40	1.32	87.83	110.15	
18.0	0.44	1.46	98.81	118.71	
20.0	0.44	1.46	109.78	118.71	A COMPRESIÓN CORREGIDO (Rg/cm²)
22.0	0.49	1.62	120.76	128.79	7 5 /
24.0	0.52	1.72	131.74	134.50	<u> </u>
26.0	0.59	1.95	142.72	146.84	
28.0	0.64	2.12	153.70	154.83	Ŭ MMC
30.0	0.71	2.35	164.68	164.83	100.00
32.0	0.79	2.62	175.65	174.60	
34.0	0.86	2.85	186.63	181.67	ESFUERZO
36.5	0.93	3.08	200.36	187.39	
34.0	1.04	3.44	186.63	193.60	
32.5	1.19	3.94	178.40	196.64	_
					-
					50.00
					-
			 		-
			 		$y = -12.715x^2 + 100.01x$
					$\mathbb{R}^2 = 1$
					1
			İ		0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50
			İ		DEFORMACIÓN UNITARIA (× 1000)
EC. DE ESI	F. CORREG	TIDA:	-12	.715x2 + 100.01x	x
DEF. ROT.					8 TIEMPO DE ENSAYO (minutos):
ESF. ROT (•	<i>,</i> ·			9 MÓD. ELAST. POR GRÁFICO - E2 (kg/cm²): 173589.9
	_	DM E1/4-/	2).		(0 /
MUD. ELAS	SI. PUK FU)RM E1 (kg/cm):	203333.04	4 MÓD. ELAST. POR GRÁFICO - E3 (kg/cm²): 179307.4

Gráfico 16: Módulo de elasticidad y deformación de los especímenes del concreto con adición de SikaAer y reemplazo porcentual de traquita al 10% ensayados a los 28 días, muestra- 02-10%T

		DETERMIN	ACIÓN I	DEL MÓDULO	O DE ELASTICIDAD DEL CONCRETO
				ACI 318 (NTP)	E-060) / ASTM C469
		ENCIA A: COME	PRESIÓN		TIPO DE CEMENTO: PACASMAYO TIPO I (ASTM C150)
TIPO DE C					CARGA ULTIMA: 36.00 Tn
ESPECÍME		02-10			f'c DE DISEÑO: 210 kg/cm ²
FECHA DE					DIÁMETRO (cm): 15.200
FECHA DE	ENSAYO:				ALT. PROM. ESPEC (mm): 302.0
EDAD:		28 DÍ			PESO DEL ESPECÍMEN: 11.63 kg
MODO DE	FALLA:	DUCT		T	PESO UNITARIO C° END: 2122 Kg/m³
CARGA (Tn)	DEF. (mm)	DEF. UNIT. (×1000)	ESF. (kg/cm ²)	ESF. CORREG.	GRÁFICO ESFUERZO - DEFORMACIÓN (CORREGIDO)
` ′	` ′	` ,			250.00
0.0	0.00	0.00	0.00	0.00	-
1.0	0.02	0.07	5.51 11.02	6.66	-
2.0 3.0	0.04	0.13	16.53	32.17	-
4.0	0.10	0.33	22.04	32.17	
5.0	0.10	0.33	27.55	32.17	-
6.0	0.10	0.56	33.07	53.00	1
7.0	0.21	0.70	38.58	64.27	200.00
8.0	0.19	0.63	44.09	58.69	1
9.0	0.25	0.83	49.60	75.09	1
10.0	0.25	0.83	55.11	75.09	7 2
12.0	0.27	0.89	66.13	80.33	7 cu
14.0	0.31	1.03	77.15	90.47	
16.0	0.39	1.29	88.17	109.37	A COMPRESIÓN CORREGIDO (kg/cm²)
18.0	0.41	1.36	99.20	113.81	130.00
20.0	0.43	1.42	110.22	118.14	
22.0	0.46	1.52	121.24	124.42	
24.0	0.50	1.66	132.26	132.39	J OIS
26.0	0.56	1.85	143.28	143.50	-
28.0	0.61	2.02	154.31	151.97	- Wo
30.0	0.68	2.25	165.33	162.64	100.00
32.0	0.77	2.55 2.78	176.35 187.37	174.30 181.78	- 8 /
34.0 36.0	0.84	3.18	198.39	191.35	- Fig. Fig.
	1.03	3.16	198.39	191.33	ES FUERZO
34.0 33.5	1.18	3.91	184.62	198.26	
55.5	1.10	3.71	104.02	170.20	
					1
					50.00
					1 /
					1 / /
					$y = -12.979x^2 + 101.45x$ $R^2 = 1$
					-
					0.00
					0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50
					DEFORMACIÓN UNITARIA (× 1000)
EC. DE ESI			-12	.979x2 + 101.45x	x
DEF. ROT.	UNIT. (×16	000):		3.18	8 TIEMPO DE ENSAYO (minutos): 1.57
ESF. ROT (kg/cm²):			191.35	5 MÓD. ELAST. POR GRÁFICO - E2 (kg/cm²): 162327.86
) PRM E1 (kg/cm	²):		MÓD. ELAST. POR GRÁFICO - E3 (kg/cm²): 183929.14
OD, DD/I		LLIA LI (Ng/CHI	<i>,</i> ·	3, 1, 2, 700	problem in the desired by the first in the second s

Gráfico 17: Módulo de elasticidad y deformación de los especímenes del concreto con adición de SikaAer y reemplazo porcentual de traquita al 10% ensayados a los 28 días, muestra- 03-10%T

		DETERMIN			LO DE ELASTICIDAD DEL CONCRETO
				ACI 318 (NTP 1	P E-060) / ASTM C469
		NCIA A: COMI	PRESION		TIPO DE CEMENTO: PACASMAYO TIPO I (ASTM C150)
TIPO DE C			0.4 5		CARGA ULTIMA: 37.00 Tn
ESPECÍMI		03-10			f'c DE DISEÑO: 210 kg/cm ²
FECHA DE					DIÁMETRO (cm): 15.280
FECHA DE	ENSAYO:	29/03			ALT. PROM. ESPEC (mm): 303.0
EDAD:		28 DÍ.			PESO DEL ESPECÍMEN: 11.84 kg
MODO DE	FALLA:	DUCT	1	T	PESO UNITARIO C° END: 2131 Kg/m ³
CARGA	DEF.	DEF. UNIT.	ESF.	ESF. CORREG.	GRÁFICO ESFUERZO - DEFORMACIÓN (CORREGIDO)
(Tn)	(mm)	(×1000)	(kg/cm ²)	(kg/cm ²)	250.00
0.0	0.00	0.00	0.00	0.00	_
1.0	0.03	0.10	5.45	9.38	4
2.0	0.09	0.30	10.91	27.46	4
3.0	0.14	0.46	16.36	41.83	_
4.0	0.16	0.53	21.81	47.41	
5.0	0.17	0.56 0.76	27.27 32.72	50.16 66.12	
6.0 7.0	0.23 0.25	0.76	38.17	71.24	200.00
8.0	0.25	0.89	43.63	76.26	
9.0	0.27	0.92	49.08	78.73	┨
10.0	0.28	1.02	54.53	86.00	│
12.0	0.33	1.09	65.44	90.71	
14.0	0.36	1.19	76.35	97.60	- *
16.0	0.42	1.39	87.25	110.69	ORAGE DO (Age of the control of the
18.0	0.46	1.52	98.16	118.92	5 150.00
20.0	0.48	1.58	109.07	122.88	T
22.0	0.50	1.65	119.97	126.74	7 0
24.0	0.54	1.78	130.88	134.16	OMPRESIÓN O O O O O O O O O O O O O O O O O O O
26.0	0.62	2.05	141.79	147.79	
28.0	0.67	2.21	152.69	155.48	
30.0	0.74	2.44	163.60	165.21	5 100.00 /
32.0	0.83	2.74	174.51	175.89	
34.0	0.89	2.94	185.41	181.88	ESHUERZO
37.0	0.98	3.23	201.77	189.16	
34.0	1.05	3.47	185.41	193.42	
32.0	1.23	4.06	174.51	198.69	
					-
					50.00
					┨
			<u> </u>		┨
					$y = -11.563x^2 + 95.885x$
					$\begin{array}{c c} & & & \\ \hline & & & \\ \hline \end{array}$
			1		1
					0.00
					0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50
					DEFORMACIÓN UNITARIA (× 1000)
EC. DE ESI	F. CORREG	IDA:	-1	1.563x2 + 95.88x	3x
DEF. ROT.	UNIT. (×10	00):		3.23	73 TIEMPO DE ENSAYO (minutos):
ESF. ROT (•			6 MÓD. ELAST. POR GRÁFICO - E2 (kg/cm²): 153252.2
		DM E1 (1-~/	2).		, 9 ,
MUD, ELA	SI. PUK FU	RM E1 (kg/cm):	200304./0	70 MÓD. ELAST. POR GRÁFICO - E3 (kg/cm²): 183999.0

Gráfico 18: Módulo de elasticidad y deformación de los especímenes del concreto con adición de SikaAer y reemplazo porcentual de traquita al 10% ensayados a los 28 días, muestra- 04-10%T

		DETERMIN	ACIÓN I	DEL MÓDULO	O DE ELASTICIDAD DEL CONCRETO
				ACI 318 (NTP)	E-060) / ASTM C469
		NCIA A: COMI	PRESIÓN		TIPO DE CEMENTO: PACASMAYO TIPO I (ASTM C150)
TIPO DE C					CARGA ULTIMA: 35.00 Tn
ESPECÍME		04-10			f'c DE DISEÑO: 210 kg/cm ²
FECHA DE					DIÁMETRO (cm): 15.280
FECHA DE	ENSAYO:	29/03/			ALT. PROM. ESPEC (mm): 305.0
EDAD:		28 DÍ	AS		PESO DEL ESPECÍMEN: 11.89 kg
MODO DE	FALLA:	DUCT	IL		PESO UNITARIO C° END: 2126 Kg/m³
CARGA	DEF.	DEF. UNIT.	ESF.	ESF. CORREG.	GRÁFICO ESFUERZO - DEFORMACIÓN (CORREGIDO)
(Tn)	(mm)	(×1000)	(kg/cm ²)	(kg/cm ²)	, , , , , , , , , , , , , , , , , , ,
0.0	0.00	0.00	0.00	0.00	200.00
1.0	0.04	0.13	5.45	13.05	1
2.0	0.07	0.23	10.91	22.53	
3.0	0.12	0.39	16.36	37.76	180.00
4.0	0.15	0.49	21.81	46.54	1 /
5.0	0.17	0.56	27.27	52.25	1
6.0	0.20	0.66	32.72	60.60	
7.0	0.22	0.72	38.17	66.03	160.00
8.0	0.24	0.79	43.63	71.33	
9.0	0.27	0.89	49.08	79.07	
10.0	0.30	0.98	54.53	86.56	140.00
12.0	0.32	1.05	65.44	91.40	50 \$
14.0	0.34	1.11	76.35	96.12	
16.0	0.38	1.25	87.25	105.23	140.00 (King) 140.00 (Right) 120.00
18.0	0.43	1.41	98.16	115.95	1 20.00
20.0	0.48	1.57	109.07	125.95	
22.0	0.53	1.74	119.97	135.23	
24.0	0.58	1.90	130.88	143.78	OO 100.00 V 80.00
26.0	0.63	2.07	141.79	151.61	
28.0	0.66	2.16	152.69	155.95	
30.0	0.69	2.26	163.60	160.04	80.00
32.0	0.75	2.46	174.51	167.43	- 9 /
34.0	0.86	2.82 3.18	185.41	178.26	CS LIERZO
35.0	0.97	3.18	190.87 185.41	185.58 188.41	- S 60.00
34.0 31.5	1.04	4.30	171.78	186.02	- 00.00
31.3	1.31	4.50	1/1./6	180.02	$y = -13.495x^2 + 101.27x$
					$R^2 = 1$
					40.00
					1
					20.00
					1
					1
			1		
			1		0.00 1.00 2.00 3.00 4.00 5.00
					DEFORMACIÓN UNITARIA (×1000)
EC. DE ESF	. CORREG	IDA:	-13	.495x2 + 101.27x	τ
DEF. ROT.					TIEMPO DE ENSAYO (minutos): 1.57
	,	· · /·			MÓD. ELAST. POR GRÁFICO - E2 (kg/cm²): 157229.46
ESF. ROT (_	inse === :	2,		
MOD. ELAS	ST. POR FO	RM E1 (kg/cm	~):	204342.90	MÓD. ELAST. POR GRÁFICO - E3 (kg/cm²): 181603.97

Gráfico 19: Módulo de elasticidad y deformación de los especímenes del concreto con adición de SikaAer y reemplazo porcentual de traquita al 15% ensayados a los 28 días, muestra- 01-15%T

		DETERMIN	ACIÓN	DEL MÓDULO	O DE ELAS	ΓICIDAD I	DEL CO	NCRETO		
				ACI 318 (NTP)						
		ENCIA A: COMI	PRESIÓN		TIPO DE CE			SMAYO TIPO	I (ASTM C	(150)
TIPO DE C					CARGA ULT		36.50			
ESPECÍMI		01-15			f'c DE DISEÑ		210 kg			
FECHA DE					DIÁMETRO		15.190			
FECHA DE	E ENSAYO:	29/03/			ALT. PROM.					
EDAD:		28 DÍ			PESO DEL E			U		
MODO DE	FALLA:	DUCT	TL .		PESO UNITA	RIO C° ENI	D: 2051 K	Kg/m³		
CARGA	DEF.	DEF. UNIT.	ESF.	ESF. CORREG.	GI	RÁFICO ESFUE	RZO - DEFO	ORMACIÓN (CO	ORREGIDO)	
(Tn)	(mm)	(×1000)	(kg/cm ²)		250.00					
0.0	0.00	0.00	0.00	0.00						
1.0	0.03	0.10	5.52	8.22						
2.0	0.06	0.20	11.04	16.28						
3.0 4.0	0.07	0.23	16.55 22.07	18.92 24.16						
5.0	0.09	0.30	27.59	30.60						
6.0	0.12	0.50	33.11	39.41						
7.0	0.13	0.63	38.63	49.20	200.00					-
8.0	0.23	0.76	44.15	58.68						
9.0	0.28	0.92	49.66	70.11				· ·	•••	
10.0	0.33	1.09	55.18	81.06	r ²)			80		
12.0	0.37	1.22	66.22	89.48	g/cn			.,**		
14.0	0.39	1.29	77.25	93.58	Ä			1		
16.0	0.44	1.45	88.29	103.49	A COMPRESIÓN CORREGIDO (kg/cm²) 000001			<i>*</i>		
18.0	0.49	1.62	99.33	112.93	150.00			/		
20.0	0.54	1.78	110.36	121.89	OR		1	•		
22.0	0.58	1.91	121.40	128.71	Z					
24.0	0.62	2.05	132.44	135.24	ŠIÓ		/			
26.0	0.68	2.24	143.47	144.45	PRE					
28.0	0.76	2.51	154.51	155.67	IWO OWI					
30.0	0.81	2.67	165.54	162.07	V 100.00		1			
32.0	0.87	2.87	176.58	169.12	02		/			
34.0	0.93	3.07 3.17	187.62 201.41	175.49 178.42	ER	/	·			
36.5 31.5	0.96 1.32	4.36	173.82	200.22	ESFUERZO					
31.3	1.32	4.30	1/3.62	200.22	-	1				
			 			//				
						<i>!</i>				
					50.00	*				
					1	<i>i</i>				
			1			<i>i</i>	v - 0	$7136x^2 + 83.9$) v	
						1	y0.	$R^2 = 1$	LA .	
						<i>‡</i>		-		
						<i>i</i>				
					0.00					
					0.0		2.00	3.00	4.00	5.00
EG BE E	E COPPES	IID 4		0.514.0		DF	FORMACIÓ	N UNITARIA (× 1000)	
EC. DE ESI			-	8.714x2 + 83.92x	TIEMPO DE	ENCAVO (inutac).			1.7
DEF. ROT.	,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				,		2.		1.5
ESF. ROT (2		MÓD. ELAST					152713.2
MÓD. ELA	ST. POR FÓ) RM E1 (kg/cm	²):	200359.52	MÓD. ELAST	. POR GRÁF	ICO - E3 ((kg/cm²):		168691.4

Gráfico 20: Módulo de elasticidad y deformación de los especímenes del concreto con adición de SikaAer y reemplazo porcentual de traquita al 15% ensayados a los 28 días, muestra- 02-15%T

		DETERM	INACIÓ	N DEL MÓDU	LO DE EL	ASTICIDAD	DEL CONCRETO)		
				ACI 318 (NT						
ENSAYO D	E RESISTE	NCIA A: COMI	PRESIÓN		TIPO DE CI	EMENTO:	PACASMAYO 7	ΠΡΟ I (ASTM C150)		
					CARGA UL		36.00 Tn			
	ODE RESISTENCIA A: COMPRESIÓN DE CONCRETO: D ÚMEN N° 02-15% T ADE ELABORACIÓN: 29/02/2024 28 DÍAS ODE FALLA: DUCTIL GA DEF. (mm) (x1000) (kg/cm²) (kg/cm²) 0.00 0.00 0.00 0.00 0.00 0.02 0.07 5.42 0.05 0.17 10.84 10.00 0.07 0.23 16.25 10.00				f'c DE DISE		210 kg/cm ²			
					DIÁMETRO	` '	15.330			
ECHA DE	ENSAYO:					I. ESPEC (mm):				
EDAD:		28 DĹ	AS		PESO DEL	ESPECÍMEN:	11.49 kg			
10DO DE	FALLA:	DUCT	IL		PESO UNIT	ARIO C° END:	2061 Kg/m ³			
CARGA	DEF.	DEF. UNIT.	ESF.	ESF. CORREG.		CDÁFICO ESEUE	RZO - DEFORMACIÓN	(CORRECIDO)		
(Tn)	(mm)	(×1000)	(kg/cm ²)	(kg/cm ²)		GRAFICO ESFUE	RZU - DEFORMACION	(CORREGIDO)		
0.0	0.00	0.00		0.00	250.00					
1.0	0.02	0.07	5.42	5.48						
2.0	0.05	0.17	10.84	13.56						
3.0	0.07	0.23	16.25	18.85	1					
4.0		0.33	21.67	26.64	1					
5.0		0.38	27.09	30.47	1					
6.0		0.46	32.51	36.76	1					
7.0				48.99	200.00					
8.0		0.79	43.34	60.75	1			. *******		
9.0	0.29	0.96	48.76	72.03						
10.0	0.31	1.03	54.18	76.41	n²)			•••		
12.0	0.35	1.16	65.01	84.94	A COMPRESIÓN CORREGIDO (kg/cm²)					
14.0	0.39	1.29	75.85	93.17	Š					
16.0	0.43	1.42	86.69	101.10	00 150 00		.			
18.0	0.48	1.59	97.52	110.58	150.00					
20.0	0.52	1.72	108.36	117.82	ORE					
22.0	0.59	1.95	119.19	129.77	Ö					
24.0	0.63	2.09		136.18	IÓ					
26.0	0.68	2.25	140.86	143.77	RES		<i>f</i>			
28.0	0.74	2.45	151.70	152.24] W		∮			
30.0	0.79			158.79	100.00		/			
32.0	0.84	2.78	173.37	164.85		ļ ,	<i>i</i>			
34.0	0.88	2.91	184.21	169.37	ESFUERZO					
36.0	0.95	3.15	195.04	176.54	E	//				
34.0		3.48	184.21	185.17	<u>s</u>	ļ .				
32.6	1.35	4.47	176.62	199.69						
						/				
					50.00	/				
						*				
						/	$y = -8.6444x^2 + 3$	83.313x		
						/	$R^2 = 1$			
						!				
					0.00	<u> </u>				
						00 1.00	2.00 3.00			
						DE	FORMACIÓN UNITARL	A (× 1000)		
C. DE ESF	. CORREG	IDA:	-	8.644x2 + 83.31x						
EF. ROT.	UNIT. (×10	000):		3.15	TIEMPO DE	ENSAYO (mini	utos):			
SF. ROT (kg/cm²):			176.54	76.54 MÓD. ELAST. POR GRÁFICO - E2 (kg/cm²): 154087					
	,) PRM E1 (kg/cm	2.				$CO - E3 (kg/cm^2)$:	169108		

Gráfico 21: Módulo de elasticidad y deformación de los especímenes del concreto con adición de SikaAer y reemplazo porcentual de traquita al 15% ensayados a los 28 días, muestra- 03-15%T

		DETERMIN	ACIÓN I	DEL MÓDULO	DE ELAS	TICIDAI	DEL C	ONCRE	ГО	
				ACI 318 (NTP 1						
		ENCIA A: COMI	PRESIÓN		TIPO DE CE		PAC	CASMAYO	TIPO I (ASTI	M C150)
	CONCRETO				CARGA UL			00 Tn		
ESPECÍMI		03-15			f c DE DISE			kg/cm ²		
	E ELABOR				DIÁMETRO	· /	15.2			
	E ENSAYO:				ALT. PROM	,				
EDAD:		28 DĹ			PESO DEL 1			U		
MODO DE	FALLA:	DUCT	IL		PESO UNIT	ARIO C° E	ND: 203	6 Kg/m³		
CARGA	DEF.	DEF. UNIT.	ESF.	ESF. CORREG.	6	RÁFICO ESI	UERZO - D	FFORMACIO	ON (CORREGII	DO)
(Tn)	(mm)	(×1000)	(kg/cm ²)		250.00				(0011111011	
0.0	0.00	0.00	0.00	0.00	230.00					
1.0	0.05	0.16	5.45	12.52						
2.0	0.07	0.23	10.91	17.42						
3.0	0.08	0.26	16.36	19.84						
4.0	0.13	0.43	21.81	31.71						
5.0	0.15	0.49	27.26	36.34						
6.0	0.18	0.59	32.72	43.16	200.00					
7.0	0.20	0.66	38.17	47.63						
8.0	0.30	0.99	43.62	68.98 68.98						••
9.0	0.30	1.12	54.53	77.06	_					
12.0	0.34	1.12	65.43	90.56	/cm ²				, e	
14.0	0.41	1.41	76.34	94.27	(kg				.,*	
16.0	0.43	1.55	87.24	101.50	COMPRESIÓN CORREGIDO (kg/cm²) 00 00					
18.0	0.54	1.78	98.15	113.51	를 150.00			1		
20.0	0.60	1.97	109.05	123.16	JERR			1		
22.0	0.65	2.14	119.96	130.75	55			1		
24.0	0.69	2.27	130.86	136.53	IÓN					
26.0	0.71	2.34	141.77	139.32	SES		/	1		
28.0	0.77	2.53	152.67	147.30	[MIP]		/			
30.0	0.82	2.70	163.58	153.49	S 100.00		/			
32.0	0.92	3.03	174.48	164.65	7		1			
34.0	0.99	3.26	185.39	171.48	SRZ		1			
31.5	1.36	4.47	171.76	194.22	ESFUERZO		/			
					SE		<i>.</i>			
						/				
						/				
					50.00	/				
						1				
			1			1				
						1		= =0= 1	EE 201	
							y =	$-7.595x^2 - R^2 =$		
								Κ -	1	
			 			/				
					0.00	00 1.0	10 2	.00	3.00 4.0	0 5.00
					0.0	JU 1.0			RIA (× 1000)	3.00
EC. DE ES	F. CORREG	IDA:	_	7.595x2 + 77.39x					- ()	
	UNIT. (×10				TIEMPO DE	ENSAYO	minutos):			1.5
		/-			MÓD. ELAS			2 (1-2/ 2	١.	136467.9
ESF. ROT) RM E1 (kg/cm	2 \		MÓD. ELAS MÓD. ELAS					163584.5
	CT DOD FO	IRM - Fl (ka/cm	-).	196427.13	IMOD FLAS	r POR GR.	4 H H M _ F	3 (ba/om2	1 •	163584.5

Gráfico 22: Módulo de elasticidad y deformación de los especímenes del concreto con adición de SikaAer y reemplazo porcentual de traquita al 15% ensayados a los 28 días, muestra- 04-15%T

		DETERM	INACIÓ	N DEL MÓDU	LO DE EL	ASTICIDAD DE	L CONCRETO	
				ACI 318 (NT	P E-060) / A	ASTM C469		
		ENCIA A: COME	PRESIÓN		TIPO DE CI		PACASMAYO TIPO I (ASTM C150))
					CARGA UL		35.40 Tn	
					f'c DE DISE		210 kg/cm ²	
	E CONCRETO: D MEN N° 04-15% T DE ELABORACIÓN: 29/02/2024 28 DÍAS DE FALLA: DUCTIL A DEF. (mm) (×1000) (kg/cm²) (kg/cm²) 0.00 0.00 0.00 0.00 0.04 0.13 5.50 0.07 0.23 11.01 0.11 0.36 16.51 0.14 0.46 22.01 0.16 0.51 27.52 0.18 0.59 33.02 0.22 0.72 38.53 0.28 0.92 44.03 0.30 0.98 49.53 0.33 1.08 55.04 0.35 1.15 66.04 0.37 1.21 77.05 0.43 1.41 88.06 0.49 1.61 99.07 0.52 1.70 110.07 0.56 1.84 121.08 0.66 2.16 143.10 0.76 2.49 154.10 0.78 2.56 165.11				DIÁMETRO	` '	15.210	
	E ENSAYO:					I. ESPEC (mm):	305.0	
DAD:		28 DÍ	AS		PESO DEL 1	ESPECÍMEN:	11.39 kg	
10DO DE	FALLA:	DUCT	IL .		PESO UNIT	ARIO C° END:	2055 Kg/m³	
CARGA	DEF.			ESF. CORREG.		GRÁFICO ESFUERZO	- DEFORMACIÓN (CORREGIDO)	
(Tn)	(mm)	(×1000)	(kg/cm ²)	(kg/cm ²)	250.00			
0.0	0.00			0.00	230.00			
1.0	0.04		5.50	11.40				
2.0	0.07	0.23	11.01	19.72				
3.0		0.36	16.51	30.54				
4.0	0.14			38.43				
5.0				42.31				
6.0				48.66	200.00			
7.0				58.56				
8.0				72.79				
9.0				77.36				
10.0				84.07	:m²)			
12.0				88.44	kg/e			
14.0				92.72	Q			
16.0				105.07	COMPRESIÓN CORREGIDO (kg/cm²)			
18.0			_	116.68	KRE			
20.0				122.20 129.27	COI			
22.0				142.42	Z O		<u>*</u>	
24.0				142.42	ES IC			
28.0				159.64	IP.R.		/	
30.0				162.22	· los			
32.0				172.79	₹ 100.00			
34.0	0.89	2.92	187.12	174.92	ESFUERZO			
35.4	0.97	3.18	194.83	182.57	UER			
31.0	1.25	4.10	170.61	198.89	ESF			
51.0	1.20		170.01	1,0.0,				
					50.00	/		
					1	/		
					1		v = 0.6700w2 + 00.162=	
							$y = -9.6709 x^2 + 88.163x$ $R^2 = 1$	
							1 - 1	
]	<i> </i>		
	-				0.00			
						00 0.50 1.00 1.		4.50
						DEFOR	MACIÓN UNITARIA (× 1000)	
C. DE EST	F. CORREG	IDA:	-	9.671x2 + 88.16x				
EF. ROT.	UNIT. (×10	000):		3.18	TIEMPO DE	ENSAYO (minutos)) :	1.
SF. ROT ((kg/cm²):			182.57	MÓD. ELAS	T. POR GRÁFICO -	$E2 (kg/cm^2)$:	154678.
) PRM E1 (kg/cm	2).			T. POR GRÁFICO -		171225.

Gráfico 23: Módulo de elasticidad y deformación de los especímenes del concreto con adición de SikaAer y reemplazo porcentual de traquita al 20% ensayados a los 28 días, muestra- 01-20%T

		22111111		ACI 318 (NT			DEL CONCRET	~
ENSAYO D	E RESISTE	ENCIA A: COME	PRESIÓN	1101010 (111	TIPO DE CI		PACASMAYO	TIPO I (ASTM C150)
TIPO DE C	ONCRETO): E			CARGA UL	TIMA:	30.80 Tn	,
ESPECÍMI	EN N°	01-20	% T		f'c DE DISE	ÑO:	210 kg/cm ²	
FECHA DI	E ELABOR	ACIÓN: 29/02/	2024		DIÁMETRO	(cm):	15.220	
FECHA DI	ENSAYO:	29/03/	2024		ALT. PROM	I. ESPEC (mm):	304.0	
EDAD:		28 DÍA	AS		PESO DEL	ESPECÍMEN:	10.89 kg	
MODO DE	FALLA:	DUCT	TL		PESO UNIT	ARIO C° END:	1969 Kg/m ³	
CARGA	DEF.	DEF. UNIT.	ESF.	ESF. CORREG.		,		
(Tn)	(mm)	(×1000)	(kg/cm ²)	(kg/cm ²)		GRAFICO ESFUEI	RZO - DEFORMACIÓN	(CORREGIDO)
0.0	0.00	0.00	0.00	0.00	180.00			
1.0	0.02	0.07	5.50	4.82	•			
2.0	0.02	0.26	10.99	18.88				
3.0	0.09	0.30	16.49	21.16	1			.,***
4.0	0.10	0.33	21.99	23.44	160.00			
5.0	0.13	0.41	27.48	29.04	1			
6.0	0.15	0.49	32.98	34.55	1			
7.0	0.20	0.66	38.48	45.26	140.00			/
8.0	0.26	0.86	43.97	57.57	140.00			<i>:</i>
9.0	0.29	0.95	49.47	63.52	1			
10.0	0.30	0.99	54.96	65.46	n²)			
12.0	0.37	1.22	65.96	78.65	(kg/cm²)			
14.0	0.43	1.41	76.95	89.32	¥			
16.0	0.47	1.55	87.94	96.11	CORREGIDO			
18.0	0.53	1.74	98.94	105.81	REG		/	
20.0	0.56	1.84	109.93	110.45	100.00			
22.0	0.62	2.04	120.92	119.28			<i>j</i>	
24.0	0.66	2.17	131.91	124.84	IÓ		<i>i</i>	
26.0	0.73	2.40	142.91	133.96	A COMPRES IÓN 00:08			
28.0	0.80	2.63	153.90	142.29	80.00		/	
30.8	1.02	3.36	169.29	163.31	00 1		/	
26.0	1.06	3.49	142.91	166.29		/		
					RZ	1		
					ES FUERZO	1		
					3			
					40.00		$y = -7.4585x^2 + 7$	3.697x
					40.00		$R^2 = 1$	
						/		
					20.00			
					20.00			
			ļ					
			ļ			<i> </i>		
			ļ		0.00	<u> </u>		
			ļ		0.	00 0.50 1.00		.50 3.00 3.50 4.00
						DE	FORMACIÓN UNITARI	(× 1000)
	F. CORREG			-7.459x2 + 73.7x				
	UNIT. (×10	000):				E ENSAYO (minu	<i>*</i>	
ESF. ROT (kg/cm ²):			163.31	MÓD. ELAS	T. POR GRÁFIC	$O-E2$ (kg/cm^2):	12049
		DRM E1 (kg/cm	2 \	101607 40	1.465 FF 40	T DOD OD (EIO	$O - E3 (kg/cm^2)$:	15184

Gráfico 24: Módulo de elasticidad y deformación de los especímenes del concreto con adición de SikaAer y reemplazo porcentual de traquita al 20% ensayados a los 28 días, muestra- 02-20%T

		DETERM	INACIÓ			ASTICIDAD DEI	L CONCRETO	
				ACI 318 (NT				
		ENCIA A: COMP	PRESIÓN		TIPO DE CE		PACASMAYO TIPO I (ASTM C15	0)
	ONCRETO				CARGA UL		35.00 Tn	
SPECÍME		02-20			f'c DE DISE		210 kg/cm ²	
		ACIÓN: 29/02/			DIÁMETRO	()	15.220	
ECHA DE	ENSAYO:					LESPEC (mm):	302.0	
DAD:		28 DÍA	AS		PESO DEL 1	ESPECÍMEN:	10.92 kg	
IODO DE	FALLA:	DUCT	ΤL		PESO UNIT	ARIO C° END:	1987 Kg/m³	
CARGA	DEF.	DEF. UNIT.	ESF.	ESF. CORREG.		GRÁFICO ESFUERZO	- DEFORMACIÓN (CORREGIDO)	
(Tn)	(mm)	(×1000)	(kg/cm ²)	(kg/cm ²)	250.00	GLITTOO ESTOLICO	Direction (continuos)	
0.0	0.00	0.00	0.00	0.00	250.00			
1.0	0.02	0.07	5.50	4.64				
2.0	0.06	0.20	10.99	13.76				
3.0	0.08	0.26	16.49	18.24				
4.0	0.13	0.43	21.99	29.21				
5.0	0.16	0.51	27.48	34.58				
6.0	0.18	0.60	32.98	39.86	200.00			
7.0	0.21	0.70	38.48	46.09	200.00			
8.0	0.25	0.83	43.97	54.22			مبل ا ا ا	*
9.0	0.29	0.96	49.47	62.13				
10.0	0.32	1.06	54.96	67.94	:m²)			
12.0	0.37	1.23	65.96	77.34	kg/c			
14.0	0.43	1.42	76.95	88.20	Q			
16.0	0.55	1.82	87.94	108.51	CORREGIDO (kg/cm²)		***	
18.0	0.61	2.02	98.94	117.96	RE		, servi	
20.0	0.65	2.15	109.93	124.00	9			
22.0	0.69	2.28	120.92 131.91	129.83 135.45	Z		/ / / / / / / / / / / / / / / / / / /	
26.0	0.73	2.42	142.91	142.18	ES IC			
28.0	0.78	2.75	153.90	148.59	A COMPRESIÓN 00.001		<u> </u>	
30.0	0.88	2.91	164.89	154.67	0		/	
32.0	0.92	3.05	175.89	159.30			/	
35.0	0.98	3.25	192.38	165.85	ES FUERZO			
29.5	1.29	4.27	162.14	192.23	CER			
27.5	1.27	1.27	102.11	1,2,23	38			
						/		
						,¢		
					50.00	/		
					30.00	1		
						/ /		
							$y = -5.9505x^2 + 70.42x$	
							$R^2 = 1$	
						/		
					0.00			
						00 0.50 1.00 1.5		4.50
						DEFOR	MACIÓN UNITARIA (× 1000)	
	F. CORREG		-	5.951x2 + 70.42x				
EF. ROT.	UNIT. (×10	000):		3.25	TIEMPO DE	ENSAYO (minutos)	:	1.
SF. ROT (kg/cm²):			165.85	MÓD. ELAS	T. POR GRÁFICO	E2 (kg/cm ²):	133213
) PRM E1 (kg/cm	2 \			T. POR GRÁFICO -	. •	155184.

Gráfico 25: Módulo de elasticidad y deformación de los especímenes del concreto con adición de SikaAer y reemplazo porcentual de traquita al 20% ensayados a los 28 días, muestra- 03-20%T

		DETERM	INACIÓ	N DEL MÓDU	LO DE EL	ASTIC	CIDA	D DE	L CO	NCR	ЕТО			
				ACI 318 (NT)						
		NCIA A: COMI	PRESIÓN		TIPO DE CI		Ю:				YO TIP	OI(AS	STM C1	50)
TIPO DE C					CARGA UL				32.00					
ESPECÍME		03-20		f'c DE DISE					kg/cm ²					
FECHA DE					DIÁMETRO				15.2					
FECHA DE	ENSAYO:				ALT. PROM		,	,	306.0					
EDAD:		28 DÍ		PESO DEL				11.02	_					
MODO DE	FALLA:	DUCT	IL		PESO UNIT	ARIO (C° ENI	D:	1972	Kg/m	3			
CARGA	DEF.	DEF. UNIT.	ESF.	ESF. CORREG.		GRÁFIC	O ESI	UERZO	- DEFO	DRMAC	IÓN (C	ORREGI	DO)	
(Tn)	(mm)	(×1000)	(kg/cm ²)	(kg/cm ²)	180.00								- /	
0.0	0.00	0.00	0.00	0.00	1 60.00									
1.0	0.04	0.13	5.47	10.01										
2.0	0.08	0.26	10.95	19.70										
3.0	0.13	0.42	16.42	31.37	160.00									•••
4.0	0.15	0.49	21.90	35.90	100.00									
5.0	0.16	0.51	27.37	37.02										
6.0	0.19	0.62	32.85	44.73							94.0			
7.0	0.24	0.78	38.32	55.32	140.00									
8.0	0.31	1.01	43.80	69.33										
9.0	0.32	1.05	49.27	71.25										
10.0	0.33	1.08	54.75	73.16	m²)					/				
12.0	0.40	1.31	65.70	85.93	(kg/cm²)					/				
14.0	0.46	1.50	76.65	96.11	<u>*</u>									
16.0	0.52	1.70	87.60	105.58	l oa				1					
18.0	0.55	1.80	98.55	110.05	REG.				1					
20.0	0.57	1.86	109.50	112.94	CORREGIDO				/					
22.0	0.64	2.09	120.45	122.41				1						
24.0	0.69	2.25	131.40	128.59	A COMPRESIÓN 00.08									
26.0	0.78	2.55	142.35	138.47	RES									
28.0	0.86	2.81	153.30	145.92	80.00									
32.0	0.99	3.24	175.19	155.35	00			<i>i</i>						
26.0	1.28	4.18	142.35	164.43	V 0									
					RZC									
					ES FUERZO		- /-							
					ES		1							
					1									
					1		<i>•</i>			0.100	27-2 1 5	77.745x		
					40.00				y =		$R^2 = 1$	7./45X		
					1					1	-1			
					1									
					1									
					20.00									
			t		1									
			t		1	1								
			t		1	<i>!</i>								
			<u> </u>		0.00	00 0.5	0 1.0	00 1.5	50 2	00 2.	.50 3.	00 3.5	50 4.0	0 4.50
			<u> </u>		0.	00 0.3	U 1.				.30 3. ΓARIA (7.0	v 4.30
EC DE ESI	. CORREG	IDA:	1	9.189x2 + 77.75x	1			Jan Off				1000)		
			-		TIEMBO DE	ENC 4	VO (***	inutos)						
	UNIT. (×10	(vv):			TIEMPO DE					•				
ESF. ROT (kg/cm²):				MÓD. ELAS									12575
MÓD FLAS	T. POR FÓ	PRM E1 (kg/cm	²):	186959.08	MÓD. ELAS	T. POR	GRÁF	TCO -	E3 (kg	r/cm^2				14840

Gráfico 26: Módulo de elasticidad y deformación de los especímenes del concreto con adición de SikaAer y reemplazo porcentual de traquita al 20% ensayados a los 28 días, muestra- 04-20%T

TNEAVOD				AC1310 (111	·	ASTM C					
ENSAYO DE RESISTENCIA A: COMPRESIÓN TIPO DE CONCRETO: E ESPECÍMEN Nº 04-20% T				TIPO DE CEMENTO: CARGA ULTIMA:				PACASMAYO TIPO I (ASTM C150)			
							33.00 Tn				
		_			f'c DE DISE			210 kg/	cm ²		
	ELABOR				DIÁMETRO ALT. PROM		()-	15.240			
	ENSAYO:	29/03/ 28 DÍ/						304.0			
EDAD:	D				PESO DEL I			11.03 k	_		
MODO DE		DUCT		ECE CORREC	PESO UNIT	ARIO C°	END:	1989 K	g/m³		
CARGA	DEF.	DEF. UNIT.	ESF. (kg/cm ²)	ESF. CORREG.		GRÁFICO	ESFUERZO	- DEFOR	MACIÓN (C	ORREGIDO))
(Tn)	(mm)	(×1000)	(0)	(kg/cm ²)	200.00						
0.0	0.00	0.00	0.00	0.00							
1.0	0.02	0.07	5.48	4.61							
2.0	0.06	0.20	10.96	13.64	400.00						
3.0	0.09	0.30	16.45	20.24	180.00						
4.0	0.15	0.49	21.93	33.04							
5.0	0.18	0.58	27.41	38.21							
6.0	0.21	0.69	32.89	45.28	160.00				100		
7.0	0.24	0.79	38.37	51.19					, e .		
8.0	0.29	0.95	43.86	60.74				,	1		
9.0	0.33	1.09	49.34	68.09	140.00						
10.0	0.36	1.18	54.82	73.44	CORREGIDO (kg/cm²)						
12.0	0.39	1.28	65.78	78.66	4) C						
14.0	0.47	1.55	76.75	91.88	120.00			/			
16.0	0.58	1.91	87.71	108.44	REC			/			
18.0	0.65	2.14	98.68	118.00	COR		<i>j</i>				
20.0	0.68	2.24	109.64 120.60	121.87 128.00			/				
22.0 24.0	0.73	2.40	131.57	130.34	2 100.00 2 100.00		1				
26.0	0.79	2.60	142.53	134.85	ÆR.		1				
28.0	0.87	2.86	153.50	143.11	O0.001 A COMPRES IÓN O0.008						
30.0	0.96	3.16	164.46	151.22			1				
33.0	1.05	3.45	180.91	158.07	RZC		1				
27.5	1.45	4.77	150.76	173.35	ES FUERZO		1				
					60.00						
						/					
						/					
					40.00						
					40.00		y = -		+70.498x		
						!		$\mathbb{R}^2 =$	l		
			1		20.00	:					
						<i>i</i>					
						<i>:</i>					
					0.00	7					
						00 1				.00 5.0	00 6.00
10 P= ==		(ID. 4	<u> </u>	- 4 C 4			DEFOR	MACIÓN	UNITARIA	(× 1000)	
	F. CORREG			-7.161x2 + 70.5x	TIEMBO PE	ENG 4V) (mi	١.			
	UNIT. (×10	100):			TIEMPO DE				2		
ESF. ROT (MÓD. ELAS	_			158.07 188590.61	MÓD. ELAS	T. POR G	RAFICO -	E2 (kg/c			10871

Anexo VIII: Hoja técnica del aditivo SikaAer

HOJA TÉCNICA

SikaAer®

Aditivo incorporador de aire.

DESCRIPCIÓN DEL PRODUCTO

SikaAer^e es un aditivo elaborado a base de agentes tensoactivos que adicionado al concreto genera microburbujas que se reparten uniformemente en la masa del concreto.

No contiene cloruros.

usos

- Concreto sometido a bajas temperaturas.
- Concreto de subterráneos, cimientos, sobrecimientos, obras hidráulicas en general (represas, canales, etc).
- Concreto en carreteras, aeropuertos, entre otros.
- Transporte del concreto en camión tolva.
- Concreto a la vista, concreto bombeado.

CARACTERÍSTICAS / VENTAJAS

En Concreto fresco:

- Permite un aumento en la trabajabilidad y/o una disminución en el agua de amasado.
- Reduce la segregación en el concreto, especialmente en las faenas de transporte.
- Reduce la exudación en el concreto.
- Incrementa la cohesión interna de la masa del concreto.
- Permite reducir el tiempo de vibración y colocación.
- Mejora el aspecto superficial del concreto.
- Incremento de la impermeabilidad.

En Concreto endurecido:

- Aumento de las resistencias a la acción de aguas agresivas.
- Incremento de las resistencias a ciclos de hielo y deshielo.
- Rompe la capilaridad.

NORMA Cumple con la Norma ASTM C 260.

DATOS BÁSICOS

FORMA ASPECTO
Líquido.

Ámbar Translucido PRESENTACIÓN

COLORES

- Paquete x 4 envases PET x 4 L.
- Balde x 20 L.
- Cilindro x 200 L.

Hoja Técnica SikaAer[®] 19.11.14, Edición 11

ALMACENAMIENTO	CONDICIONES DE ALMACENAMIENTO / VIDA ÚTIL
	SikaAer® se puede almacenar durante 1 año en su envase original
	cerrado, sin deterioro y en lugar fresco y bajo techo. A temperaturas bajo
	5 °C se puede producir turbidez en el aditivo, lo cual no altera su efectividad.
DATOS TÉCNICOS	erectividad.
DATOS IECNICOS	DENSIDAD
	1.01 - 1.02 kg/L
INFORMACIÓN DEL	
SISTEMA	
DETALLES DE APLICACIÓN	CONSUMO / DOSIS
	0.02% a 0.12% del peso del cemento.
MÉTODO DE APLICACIÓN	MODO DE APLICACIÓN
meropo de Areicación	Se utiliza diluido en el agua de amasado. Mayores dosis pueden ser utilizadas
	si así se determina en ensayos previos con los materiales a usar en la obra.
	La incorporación de aire en un concreto depende principalmente de:
	Los agregados pétreos (granulometría y forma de los granos).
	Razón a/c.
	Dosis de cemento por m³ de concreto elaborado.
	Finura del cemento.
	Relación áridos finos/gruesos.
	Tipo de mezcladora y tiempo de mezclado.
	Temperatura, etc.
	La plasticidad, a menor asentamiento se necesita mayor esfuerzo para lograr
	la cantidad de aire deseado.
INSTRUCCIONES DE	•
SEGURIDAD	
PRECAUCIONES DE MANIPULACIÓN	Durante la manipulación de cualquier producto químico, evite el contacto
	directo con los ojos, piel y vías respiratorias. Protéjase adecuadamente
	utilizando guantes de goma naturales o sintéticos y anteojos de seguridad.
	En caso de contacto con los ojos, lavar inmediatamente con abundante agua
	durante 15 minutos manteniendo los párpados abiertos y consultar a su
	médico.
OBSERVACIONES	La Hoja de Seguridad de este producto se encuentra a disposición del
	interesado. Agradeceremos solicitarla a nuestro Departamento Comercial,
	teléfono: 618-6060 o descargarla a través de Internet en nuestra página web:
	www.sika.com.pe
NOTAS LEGALES	La información y en particular las recomendaciones sobre la aplicación y el uso final de los
	productos Sika son proporcionadas de buena fe, en base al conocimiento y experiencia actuales
	en Sika respecto a sus productos, siempre y cuando éstos sean adecuadamente almacenados, manipulados y transportados; así como aplicados en condiciones normales. En la práctica, las
	diferencias en los materiales, sustratos y condiciones de la obra en donde se aplicarán los
	productos Sika son tan particulares que de esta información, de alguna recomendación escrita o
	de algún asesoramiento técnico, no se puede deducir ninguna garantía respecto a la comercialización o adaptabilidad del producto a una finalidad particular, así como ninguna
	responsabilidad contractual. Los derechos de propiedad de las terceras partes deben ser
	respetados. Todos los pedidos aceptados por Sika Perú S.A. están sujetos a Cláusulas Generales de
	Contratación para la Venta de Productos de Sika Perú S.A. Los usuarios siempre deben remitirse
	a la última edición de la Hojas Técnicas de los productos; cuyas copias se entregarán a solicitud
	del interesado o a las que pueden acceder en Internet a través de nuestra página web
	www.sika.com.pe.

Hoja Técnica SikaAer* 19.11.14, Edición 11

2/3

BUILDING TRUST

Anexo IX: Ficha técnica del cemento pacasmayo tipo I utilizado en los ensayos.

CEMENTOS PACASMAYO S.A.A.

Calik La Colonia Nro. 150 Ur la El Vivero de Monternos Santiago de Suros - Lima Carrektas Piuras Paula Kiro 3.5 - Piura - Piura Tekfono 31? - 6000

G-CC-F-0-Versión 0-

Planta: Piura

Cemento Tipo I

21 de agosto de 2023

Tipo I - Cemento Portland de uso general

Periodo de despacho 01 de julio de 2023 - 31 de julio de 2023

REQUISITOS NORMALIZADOS

NTP 334.009 Tablas 1 y 3

QUÍMICOS

FÍSICOS

Requisitos	Especificación	Resultado de ensayos	
MgO (%)	6.0 máx.	1.3	
SO3 (%)	3.00 máx.	2.68	
Pérdida por ignición (%)	3.5 máx.	2.1	
Residuo insoluble (%)	1.5 máx.	0.4	
Álcalis Equivalentes (%)		1.08	

Requisitos	Especificación	Resultado de ensayos	
Contenido de aire del mortero (volumen %)	l 2 máx.	6	
Superficie específica (cm2/g)	2600 min.	3620	
Expansión en autoclave (%)	0.80 máx.	0.01	
Densidad (g/cm3)		3.11	
Resistencia a la compresión (MPa)			
l día	A .	14.4	
3 días	12.0 min.	25.4	
7 días	19.0 min.	31.1	
28 días *	28.0 min.	37.2	
Tiempo de fraguado Vicat (minutos)			
Inicial	45 mín.	167	
Final	375 máx.	280	
Expansión de la barra de mortero 14 días (%)	0.020 máx.	0.006	

[→] No especifica

El (la) RC 28 días corresponde al mes de junio del 2023

Certificamos que el cemento descrito arriba, al tiempo de envío, cumple con los requisitos químicos y físicos de la NTP 334.009.2022.

Ing. Edward Diaz Soldevilla

Superintendente de Control de Calidad

Solicitado por:

Distribuidora Norte Pacasmayo S. R. L.

Está probibida la reproducción total o patrial de este documento sin la autorización de Cementes Pacastrasyo S 🔥 🗛

Requisito opcional

Anexo X: Panel fotográfico

Figura 3: Tamizado del agregado tanto fino como grueso para la obtención de su granulometría.

Figura 4: Ensayo de peso específico del agregado grueso.

Figura 5: Ensayo de peso específico del agregado fino.

Figura 6: Ensayo de lavado del agregado para determinar las partículas que pasan el tamiz N° 200.

Figura 7: Ensayo de peso unitario suelto seco de los agregados fino y grueso.

Figura 8: Ensayo de peso unitario seco compactado de los agregados fino y grueso.

Figura 9: Medición del peso unitario y el slump (asentamiento) mediante el cono de abrams, del concreto fresco de cada tanda de mezclado.

Figura 10: Ensayo a compresión de los especímenes cilíndricos en la prensa universal.

Anexo XI: Constancia de uso de laboratorio

Universidad Nacional de Cajamarca FACULTAD DE INGENIERÍA

Laboratorio de Ensayo de Materiales

El jefe del Laboratorio de Ensayo de Materiales de la Facultad de Ingeniería de la Universidad Nacional de Cajamarca expide, la siguiente:

CONSTANCIA

A nombre del Bach. VÍCTOR YIYE GONZÁLEZ RAICO, Exalumno de la Escuela Académico Profesional de Ingeniería Civil de la Universidad Nacional de Cajamarca, con la cual se da constancia que se han realizado las siguientes actividades:

ÍTEM	EM DETALLE	
01	Ensayo contenido de humedad	
02	Ensayo análisis granulométrico	
03	Ensayo peso unitario suelto y compactado	
04	Ensayo peso específico	
05	Ensayo de absorción	
06	Elaboración de especímenes cilíndricos de concreto	
07	Ensayo a compresión en muestras cilindricas	

Para la Tesis Titulada: "PROPIEDADES MECÁNICAS DEL CONCRETO LIGERO UTILIZANDO ADITIVO INCORPORADOR DE AIRE SIKAAER Y SUSTITUYENDO PARCIALMENTE AGREGADO GRUESO POR TRAQUITA". Las actividades se desarrollaron del 12 de febrero al 29 de marzo de 2024.

Se expide el presente, para fines que se estime conveniente.

Cajamarca, 30 de diciembre de 2024.

Atentamente:

UNIVERSIDAD HACIONAL DE CAJAMARO FACULTRO DE PROJECTIA

Ing. Maure Concurrent Vargas

c.c. a: _Archivo