UNIVERSIDAD NACIONAL DE CAJAMARCA FACULTAD DE INGENIERÍA

ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

TESIS:

"RESISTENCIA MECÁNICA DEL CONCRETO CON ADICIÓN DE FIBRAS DE AGAVE AMERICANA L"

AUTOR:

Bach. KELITA STEFANY MANTILLA CARRANZA

ASESOR:

Dr. Ing. MIGUEL ANGEL MOSQUEIRA MORENO

CAJAMARCA, PERÚ 2025

CONSTANCIA DE INFORME DE ORIGINALIDAD

- FACULTAD DE INGENIERÍA -

1.	Investigador: KELITA STEFANY MANTILLA CARRANZA DNI: 72228562			
	Escuela Profes	sional: INGENIERÍA CIVIL		
2.	Asesor: Dr. Ing Facultad: DE II	g. MIGUEL ANGEL MOSQUEIRA NGENIERÍA	MORENO	
3.	Grado acadén	nico o título profesional		
	□Bachiller	■Título profesional	□Segunda especialidad	
	□Maestro	□Doctor		
4.	Tipo de Invest	tigación:		
	Tesis	☐ Trabajo de investigación	\square Trabajo de suficiencia profesional	
	☐ Trabajo aca	adémico		
5.	Título de Trab	ajo de Investigación:		
	RESISTENCIA N	MECÁNICA DEL CONCRETO CO	n adición de fibras de agave americana l	
6.	Fecha de eval	uación: 23/09/2025		
7.	Software anti	plagio: TURNITIN	\Box URKUND (OURIGINAL) (*)	
8.	•	Informe de Similitud: 25%		
9. 10	•	nento: Oid: 3117: 3117:502708 la Evaluación de Similitud:	506	
10.			E OBSERVACIONES O DESAPROBADO	
	■ APROBADO	D PARA LEVANTAIVIIENTO D	E OBSERVACIONES O DESAPROBADO	
			/ 24/00/2005	

Fecha Emisión: 24/09/2025

FIRMA DEL ASESOR

Dr. Ing. MIGUEL ANGEL MOSQUEIRA MORENO
DNI: 26733060

FIRMA DIGITAL

Firmado digitalmente por: BAZAN DIAZ Laura Sofia FAU 20148258601 soft Motivo: En señal de

conformidad

Fecha: 24/09/2025 09:27:08-0500

UNIDAD DE INVESTIGACIÓN FI

Universidad Nacional de Cajamarca

"Norte de la Universidad Peruana

Fundada por Ley 14015 del 13 de Febrero de 1962

FACULTAD DE INGENIERÍA

<u>ACTA DE SUSTENTACIÓN PÚBLICA DE TESIS.</u>

TITULO

: RESISTENCIA MECÁNICA DEL CONCRETO CON ADICIÓN DE FIBRAS DE AGAVE AMERICANA L.

ASESOR

: Dr. Ing. Miguel Angel Mosqueira Moreno.

En la ciudad de Cajamarca, dando cumplimiento a lo dispuesto por el Oficio Múltiple Nº 0650-2025-PUB-SA-FI-UNC, de fecha 02 de octubre de 2025, de la Secretaría Académica de la Facultad de Ingeniería, a los **seis días del mes de octubre de 2025**, siendo las diez horas con treinta minutos (10:30 a.m.) en la Sala de Audiovisuales (Edificio 1A – Segundo Piso), de la Facultad de Ingeniería se reunieron los Señores Miembros del Jurado Evaluador:

Presidente

: Dr. Ing. Mauro Augusto Centurión Vargas.

Vocal

: Ing. Marco Wilder Hoyos Saucedo.

Secretario

: M.Cs. Ing. Manuel Lincoln Minchán Pajares.

Para proceder a escuchar y evaluar la sustentación pública de la tesis titulada RESISTENCIA MECÁNICA DEL CONCRETO CON ADICIÓN DE FIBRAS DE AGAVE AMERICANA L, presentado por la Bachiller en Ingeniería Civil KELITA STEFANY MANTILLA CARRANZA, asesorada por el Dr. Ing. Miguel Angel Mosqueira Moreno, para la obtención del Título Profesional

Los Señores Miembros del Jurado replicaron a la sustentante debatieron entre sí en forma libre y reservada y la evaluaron de la siguiente manera:

D/5CISE/15..... (En letras)

Dr. Ing. Mauro Augusto Centurión Vargas.

Presidente

Ing. Marco Wilder Hoyos Saucedo.

Vocal

M.Cs. Ing. Manuel Lincoln Minchán Pajares.

Secretario

Dr. (ng. Mighel Angel Mosqueira Moreno

Asesor'

'Universidad Nacional de Cajamarca

"Norte de la Universidad Peruana"

Fundada por Ley 14015 del 13 de Febrero de 1962

FACULTAD DE INGENIERÍA

EVALUACIÓN DE LA SUSTENTACIÓN PÚBLICA DE TESIS.

Bachiller en Ingeniería Civil: KELITA STEFANY MANTILLA CARRANZA.

RUBRO	PUNTAJE Máximo/Calificación	
2. DE LA SUSTENTACIÓN PÚBLICA		
2.1. Capacidad de síntesis	Z	
2.2. Dominio del tema	3	
2.3. Consistencia de las alternativas presentadas	2	
2.4. Precisión y seguridad en las respuestas	3	
PUNTAJE TOTAL (MÁXIMO 12 PUNTOS)	10	

Cajamarca, 06 de octubre de 2025

Dr. Ing. Mauro Augusto Centurión Vargas. Presidente

M.Cs. Ing. Manuel Lincoln Minchán Pajares. Secretario

Ing. Marco Wilder Hoyos Saucedo.

Vocal

Dr. Ing. Miguel Angel Mosqueira Moreno

Asesor

Universidad Nacional de Cajamarca

"Norte de la Universidad Peruana

Fundada por Ley 14015 del 13 de Febrero de 1962

FACULTAD DE INGENIERÍA

EVALUACIÓN FINAL DE LA SUSTENTACIÓN DE TESIS.

Bachiller en Ingeniería Civil: KELITA STEFANY MANTILLA CARRANZA.

RUBRO	PUNTAJE
A EVALUACIÓN DE LA SUSTENTACIÓN PRIVADA	6
B EVALUACIÓN DE LA SUSTENTACIÓN PÚBLICA	10
EVALUACIÓN FINAL	
EN NÚMEROS (A + B)	16
EN LETRAS (A + B)	DiEdsels
- Excelente 20 - 19	,
- Muy Bueno 18 - 17	BUEND
- Bueno 16 - 14	
- Regular 13 a 11	
- Desaprobado 10 a menos	

Cajamarca, 06 de octubre de 2025

Dr. Ing. Mauro Augusto Genturión Vargas. Presidente

M.Cs. Ing. Manuel Lincoln Minchán Pajares. Secretario Ing. Marco Wilder Hoyos Saucedo.

Vocal

Dr. Ing. Miguel Angel Mosqueira Moreno Asesor

DEDICATORIA

A mis padres, por enseñarme que sin importar lo difícil que sea, nunca rendirse.

A mi hermano por ser el mejor compañero de vida.

AGRADECIMIENTOS

A mi asesor el Dr. Ing. Miguel Ángel Mosqueira Moreno, por brindar su apoyo en la realización de esta investigación.

A mis padres y hermano por darme su apoyo incondicional, y ayudarme a salir adelante cada día.

Al laboratorio GUERSAN INGENIEROS S.R.L., en especial al Ing. Leiner Guerrero, por su ayuda para poder llevar a cabo esta investigación.

A mis amigos, en especial a Marlyn, Nixon y Aler, por todas las anécdotas compartidas y por ser a quienes recurro siempre en busca de apoyo y consejo.

CONTENIDO

DEDI	ICATORIA	ii
AGR	ADECIMIENTOS	iii
RESU	JMEN	ix
ABST	TRACT	x
CAPÍ	ÍTULO I: INTRODUCCIÓN	1
1.1	. Planteamiento del problema de investigación	1
1.2	. Formulación del problema	2
1.3	8. Hipótesis	2
1.4	Justificación de la investigación.	2
1.5	Alcances y delimitaciones.	2
1.6	5. Limitaciones	3
1.7	. Objetivos	3
1.8	B. Descripción de contenidos de los capítulos	4
CAPI	ITULO II: MARCO TEÓRICO	5
2.1	. Antecedentes teóricos de la investigación.	5
2.2	Bases teóricas.	7
2.3	B. Definiciones y términos básicos.	19
2.4	Abreviaturas	20
CAPI	TULO III: MATERIALES Y METODOS	21
3.1.	Ubicación geográfica.	21
3.2.	Metodología	21
3.3.	Cantera en estudio.	23
3.4.	Características físicas y mecánicas de los agregados.	24
3.5.	El cemento.	31
3.6.	El agua.	32
3.7.	Características de la fibra.	32
3.8.	Diseño de mezcla y elaboración de especímenes.	32
3.9.	Variables de evaluación del estudio.	35

3.10.	Técnicas, instrumentos de recopilación y procesamiento de información	36
CAPIT	ΓULO IV: ANÁLISIS Y DISCUSIÓN DE RESULTADOS	42
4.1.	Análisis y discusión de resultados de los agregados	42
4.2.	Concreto fresco.	43
4.3.	Concreto endurecido.	44
CAPI	ΓULO V: CONCLUSIONES Y RECOMENDACIONES	46
5.1.	Conclusiones.	46
5.2.	Recomendaciones.	47
REFE	RENCIAS BIBLIOGRAFICAS.	48
ANEX	XOS	51

ÍNDICE DE FIGURAS

Figura 1 Tipos de falla	16
Figura 2 Diagrama de un dispositivo adecuado para ensayar a flexión vigas con carga	as a los
tercios.	18
Figura 3 Ubicación de la cantera "Hermanos Alaya".	24
Figura 4 Resistencia a la compresión vs Edad del concreto.	41
Figura 5 Resistencia a la flexión vs Edad del concreto.	41
Figura 6 Curva de distribución granulométrica del agregado fino.	52
Figura 7 Curva de distribución granulométrica del agregado grueso.	57
Figura 8 Resistencia a la compresión a los 7 días.	87
Figura 9 Resistencia a la compresión a los 14 días	98
Figura 10 Resistencia a la compresión a los 28 días.	109
Figura 11 Resistencia a la flexión a los 14 días.	117
Figura 12 Resistencia a la flexión a los 28 días.	125
Figura 13 Extracción de agregados de la cantera "Hermanos Alaya"	126
Figura 14 Ensayo de revenimiento del concreto.	126
Figura 15 Supervisión del asesor durante la elaboración de probetas de concreto	127
Figura 16: Probetas de concreto listas para el curado.	127
Figura 17: Supervisión del asesor durante ensayo de resistencia a la compresión	128
Figura 18: Ensayo de resistencia a la flexión	128

ÍNDICE DE TABLAS

Tabla 1 Características botánicas del Agave Americana L	19
Tabla 2 Ubicación geográfica del laboratorio de ensayo de materiales "GUERSAN	
INGENIEROS S.R.L".	21
Tabla 3 Distribución de probetas.	22
Tabla 4 Ubicación geográfica de la cantera "Hermanos Alaya".	23
Tabla 5 Porción de la muestra de campo requerida para los ensayos de laboratorio	25
Tabla 6 Requisitos granulométricos del agregado grueso.	26
Tabla 7 Requisitos granulométricos del agregado fino.	27
Tabla 8 Dosificación del concreto	34
Tabla 9 Propiedades del agregado fino.	37
Tabla 10 Propiedades del agregado grueso.	38
Tabla 11 Propiedades de la fibra.	38
Tabla 12 Propiedades del concreto fresco.	39
Tabla 13 Peso unitario del concreto endurecido.	39
Tabla 14 Resistencia a la compresión promedio.	40
Tabla 15 Resistencia a la flexión promedio.	40
Tabla 16 Ensayo de análisis granulométrico del agregado fino	51
Tabla 17 Ensayo de peso específico y absorción para el agregado fino.	52
Tabla 18 Peso específico del agua.	53
Tabla 19 Factor "F" del recipiente para agregado fino	53
Tabla 20 Ensayo de peso unitario seco suelto del agregado fino	53
Tabla 21 Ensayo de peso unitario seco compactado del agregado fino	54
Tabla 22 Ensayo de contenido de humedad (%) del agregado fino.	54
Tabla 23 Ensayo de partículas < Tamiz N° 200 del agregado fino.	55
Tabla 24 Ensayo de análisis granulométrico del agregado grueso.	56
Tabla 25 Ensayo de peso específico y absorción para el agregado grueso	57
Tabla 26 Peso específico del agua.	58
Tabla 27 Factor "F" del recipiente para agregado grueso.	58
Tabla 28 Ensayo de peso unitario seco suelto del agregado grueso.	59
Tabla 29 Ensayo de peso unitario seco compactado del agregado grueso	59
Tabla 30 Ensayo de contenido de humedad (%) del agregado grueso	60
Tabla 31 Ensayo de partículas < Tamiz N° 200 del agregado grueso	60

Tabla 32 Ensayo de abrasión del agregado grueso.	61
Tabla 33 Peso específico y absorción de la fibra de Agave Americana L	62
Tabla 34 Peso unitario del concreto en estado fresco.	75
Tabla 35 Peso unitario del concreto en estado endurecido.	76

RESUMEN

Debido a la necesidad de concretos con mayor resistencia a la flexión demandados en proyectos de infraestructura; considerando los altos costos de las fibras existentes en el mercado y la abundante disponibilidad de Agave Americana L en Cajamarca. En esta tesis se investigó como influye la adición de fibra de Agave Americana L en la resistencia mecánica de un concreto de $f'c = 210kg/cm^2$. En el estudio se evaluaron probetas de concreto con diferentes porcentajes de fibra de Agave Americana L (0%, 0.5%, 0.75% y 1%), se realizaron pruebas de resistencia a compresión y flexión a los 7, 14 y 28 días. Los resultados mostraron un aumento de la resistencia mecánica del concreto con adición de fibra de Agave Americana L, respecto de la muestra patrón para las proporciones de 0.5% y 0.75% de fibra de Agave Americana L, concluyendo que la resistencia mecánica del concreto con adición de fibra de Agave Americana L, fue de hasta 266.62 kg/cm² (mayor en 9.02% respecto al patrón) en compresión y hasta 53.96 kg/cm² en flexión (mayor en 4.98% respecto al patrón).

Palabras clave: Resistencia mecánica, concreto, fibra de Agave Americana L, resistencia a la compresión, resistencia a la flexión.

ABSTRACT

Due to the need for concrete with higher flexural strength required in infrastructure projects, and considering the high cost of existing fibers on the market and the abundant availability of Agave Americana L in our region, this thesis investigated the influence of adding Agave Americana L fiber on the mechanical strength of concrete with a design strength of $f'c = 210kg/cm^2$. The study evaluated concrete specimens with different percentages of Agave Americana L fiber (0%, 0.5%, 0.75%, and 1%), and tests for compressive and flexural strength were carried out at 7, 14, and 28 days, following ASTM C39 and ASTM C78 standards. The results showed an increase in the mechanical strength of concrete with added Agave Americana L fiber compared to the control sample for the 0.5% and 0.75% fiber dosages, concluding that the mechanical strength of the concrete with Agave Americana L fiber reached up to 266.62 kg/cm² (9.02% higher than the standard) in compression and up to 53.96 kg/cm² (4.98% higher than the standard) in flexion.

Keywords: Mechanical strength, concrete, Agave Americana L fiber, compressive strength, flexural strength.

CAPÍTULO I: INTRODUCCIÓN

1.1. Planteamiento del problema.

El concreto convencional (cemento, agregados y agua) es el material de construcción de obras civiles más utilizado en el mundo; sin embargo, tiene varias limitaciones las cuales afectan la vida útil de las estructuras. Por lo tanto, para garantizar un mejor aprovechamiento del material en las obras es preferible trabajar con el concreto, incorporando fibras. Pues este tiene una mayor facilidad constructiva, reduce la fragilidad del material, mejora la durabilidad y la seguridad de las construcciones ante eventos sísmicos. El concreto con fibras se aplica desde hace décadas, pero en ese momento era usado de forma empírica; en cambio, en la actualidad ocupa un papel importante en las obras porque garantiza la calidad final de las estructuras. (Dominguez, 2019)

En la actualidad, el cemento con adición de fibras son usados en proyectos de infraestructura donde se requieren concretos de mayor resistencia, durabilidad y resistencia a la fisuración; para obras subterráneas como túneles el cemento reforzado con fibras de acero es requerido debido a su alta resistencia a la compresión y su capacidad para resistir cargas pesadas, en obras viales son requeridas las fibras de polipropileno, pues estás ayudan a controlar la fisuración en las carreteras y pavimentos, aumentando así su vida útil, sin embargo a pesar de las mejoras significativas de las propiedades del concreto con adición de fibras, se hace uso de este principalmente en obras especializadas debido a los altos costos de las fibras que hoy existen en el mercado que no permiten que su uso sea extendido. (Sika, 2021)

Debido a las diversas aplicaciones que se están dando al concreto reforzado con fibras en todo el mundo, el estudio de diferentes materiales fibroesforzados supone un amplio e interesante campo para la investigación, el estudio de fibras vegetales como refuerzo para el concreto, resulta atractivo, debido a la alta disponibilidad de estas en todo el país.

Por lo descrito anteriormente, se busca conocer si las fibras de Agave Americana L (fibra de origen vegetal), también llamado maguey o penca azul aumenta la resistencia mecánica para un concreto $f'c = 210kg/cm^2$, el cual se estudiará en la presente tesis. Se formula entonces el siguiente problema:

1.2. Formulación del problema.

¿En cuánto aumenta la resistencia mecánica del concreto con $f'c=210\ Kg/cm^2$ al adicionar fibras de Agave Americana L?

1.3. Hipótesis.

La resistencia mecánica del concreto al adicionar fibras de Agave Americana L aumenta 15% tanto a compresión como a flexión para un concreto $f'c = 210 \ Kg/cm^2$.

1.4. Justificación de la investigación.

En esta investigación, se determinó que al incluir de fibras de Agave Americana L en la mezcla de concreto aumenta la resistencia a la compresión y flexión, fuerzas a las que comúnmente son sometidos los elementos de concreto, se estudió las proporciones de fibra de 0.5%, 0.75% y 1.0% y se comparó los resultados con un concreto estándar de $f'c = 210kg/cm^2$.

Dada la accesibilidad al recurso (fibras de Agave Americana L) en nuestra región, la Facultad de Ingeniería de la Universidad Nacional de Cajamarca, contribuye con este estudio conocimientos útiles y aplicables en la sociedad, como lo es el mejoramiento de las propiedades mecánicas del concreto gracias a la adición de las fibras antes mencionadas.

1.5. Alcances y delimitaciones.

La norma E.060 (2019) nos dice que, para elementos resistentes a fuerzas inducidas por sismo la resistencia especificada a la compresión del concreto, f'c, no debe ser menor que 21 MPa, y dado que según la norma E.030 (2019), Cajamarca se encuentra entre la zonificación 2 y 3 de peligro sisimico, esta investigación estudió el comportamiento la resistencia a

compresión de un concreto con $f'c = 210 \ kg/cm^2$, y adición de fibra vegetal de **Agave Americana** L en proporciones de $0.50\% \ 0.75\% \ y \ 1.00\%$. Se valuó para ello testigos de concreto a diferentes edades, las cuales fueron 7, 14 y 28 días.

Esta investigación se realizó utilizando fibra vegetal de Agave Americana L (penca azul) extraída en Baños del Inca - Cajamarca, cemento Pacasmayo tipo I y agregados de la cantera "Hermanos Alaya", ubicada en el distrito de Llacanora – Cajamarca. Se realizó ensayos de propiedades de los agregados extraídos de la cantera antes mencionada, así como también ensayos para la obtención de las propiedades de la fibra de Agave Americana L.

Se realizó los ensayos de esta tesis en el año 2023, utilizando la normativa vigente, estas son las normas: NTP, normas ASTM y/o recomendaciones ACI.

1.6. Limitaciones.

El presente trabajo de investigación, únicamente se enfocó en el estudio de la resistencia mecánica del concreto con adición de fibra de Agave Americana L, mas no se evaluó la durabilidad de la fibra en el concreto luego de los 28 días de curado.

1.7. Objetivos.

1.7.1. Objetivo general.

- Determinar la resistencia mecánica del concreto con adición de fibras de Agave Americana L.

1.7.2. Objetivos específicos.

- Determinar la resistencia a la compresión del concreto con 0.50% de fibra de Agave Americana L.
- Determinar la resistencia a la compresión del concreto con 0.75% de fibra de Agave
 Americana L.
- Determinar la resistencia a la compresión del concreto con 1.00% de fibra de Agave Americana L.

- Determinar la resistencia a la flexión del concreto con 0.50% de fibra de Agave

 Americana L.
- Determinar la resistencia a la flexión del concreto con 0.75% de fibra de Agave Americana L.
- Determinar la resistencia a la flexión del concreto con 1.00% de fibra de Agave Americana L.

1.8. Descripción de contenidos de los capítulos.

CAPÍTULO I: INTRODUCCIÓN, comprende; planteamiento del problema, formulación de la hipótesis, justificación, alcances de la investigación, limitaciones, objetivos y descripción de contenidos.

CAPÍTULO II: MARCO TEÓRICO, comprende; antecedentes teóricos; donde se describe investigaciones similares a nivel internacional, nacional y local, bases teóricas; que sirven como base para el desarrollo de la investigación y definición de términos básicos y abreviaturas

CAPÍTULO III: MATERIALES Y MÉTODOS, se presenta la ubicación geográfica y temporal de la investigación, explicando la metodología empleada, el procedimiento, un análisis de datos y presentación de resultados.

CAPÍTULO IV: ANÁLISIS Y DISCUSIÓN DE RESULTADOS, se presenta la explicación y discusión de los resultados de la investigación, luego de aplicar la metodología propuesta.

CAPÍTULO V: CONCLUSIONES Y RECOMENDACIONES, se presentan las conclusiones obtenidas luego de analizar los resultados de la investigación en base a los objetivos planteados, se incluye también recomendaciones para próximas investigaciones.

BIBLIOGRAFIA.

ANEXOS.

CAPITULO II: MARCO TEÓRICO

2.1. Antecedentes teóricos de la investigación.

2.1.1. Antecedentes internacionales.

Shah, Li, Zhang, & Yang, (2021), en su estudio llamado "Experimental investigation on the mechanical properties of natural fiber reinforced concrete", realizado en la escuela de arquitectura e ingeniería civil de la Universidad Agrícola de Yunnan, Kunming, China. indican que el concreto reforzado con fibra hibrida de sisal y coco ha aumentado la resistencia a la compresión hasta un 35,98% para una concentración de fibra del 0,5%, mientras que el concreto reforzado con fibra de coco y el concreto reforzado con fibra de sisal en una concentración del 1% han aumentado la resistencia a la compresión un 33,94% y un 24,86%, respectivamente. por otro lado, la resistencia a la tracción por flexión se incrementó en el concreto reforzado con fibra hibrida de sisal y coco un 25,48%, mientras que el concreto reforzado con fibra de coco incremento en un 24,56%, y el concreto reforzado con fibra de sisal, en un 11,80%.

Hafsa, y otros, (2022), en su artículo "Natural cellulosic fiber reinforced concrete: influence of fiber type and loading percentage on mechanical and water absorption performance", realizado en el departamento de ciencia de los materiales y tecnología de fabricación de la facultad de ingeniería de la Universidad Checa de Ciencias de la Vida de Praga, concluyen que, al utilizar refuerzo de fibras de yute y sisal, se observó una mejora de aproximadamente el 11,6% al 20,2% en la resistencia a la tracción y a la compresión, respectivamente, en comparación con el concreto sin refuerzo, simplemente agregando un 2% de fibras a la mezcla de concreto. la resistencia a la flexión aumentó para el concreto a base de fibras naturales hasta una carga de fibras del 1,5%. sin embargo, se observó una disminución en la resistencia a la flexión más allá de una carga del 1,5% debido a grietas en la interfaz entre la fibra y el concreto.

2.1.2. Antecedentes nacionales.

Mallauppoma, (2017), señala en la tesis de grado: "Comportamiento del concreto con adición de fibras de agave americana L para la mejora de sus propiedades en estado fresco, San Carlos - Huancayo 2017" determinó que La fibra de Agave Americana L reduce proporcionalmente el peso unitario del concreto debido a que desplaza insumos del concreto con mayor peso específico, además de reducir el asentamiento de la mezcla ya que la fibra absorbe humedad.

Rodriguez, (2017) en la tesis de grado "Diseño de concreto $f'c = 250 \, kg/cm^2$ reforzado con cascarilla de café en la ciudad de jaén" concluye que la resistencia a la compresión, en el caso de la adición con cascarilla hace que la resistencia disminuya conforme aumenta el porcentaje de adición llegando hasta -7.90% con la mayor dosis, sin embargo la adición de ceniza hace que la resistencia aumente conforme aumenta la adición llegando hasta 8.65% a los 28 días en la más alta dosis, además se observa que el porcentaje de aumento a los 28 días es mayor que a los 7 días en todas las dosis.

2.1.3. Antecedentes locales.

Beraún, (2017), en la tesis de grado "Resistencia a la compresión de un concreto de $f'c = 280 \ kg/cm^2$ con adición de fibra vegetal (cocos conífera) con una proporción de 0.5%, 1.0% y 1.5%.", realizada en la ciudad de Cajamarca, se concluye que una de las soluciones más eficientes para la disminución de la contaminación del medio ambiente es el reciclaje, y comprobó que uno de estos es la utilización de la corteza de fibra de coco, esta fibra se la recicla y se le da uso en construcción mejorando las propiedades del concreto.

Pajares, (2015) en su tesis de grado "Análisis del incremento de la resistencia mecánica del concreto con la adición de fibra vegetal" indica que al adicionar fibra vegental (cabuya) a un concreto $f'c = 280 \, kg/cm^2$, este concreto incrementa su resistencia a los diferentes esfuerzos, sin embrago el mayor incremento de resistencia en compresión fue de 7.04% y se

obtuvo con una adición de 1.00% de fibra, en tracción se obtuvo un incremento de la resistencia del 16.01% correspondiente a una adición de 1.00% de fibra mientras que en flexión la resistencia se incrementó en 40.66% correspondiendo este incremento a una adición de 1.00% de fibra.

2.2. Bases teóricas.

2.2.1. Concreto.

El concreto es un producto artificial formado por cemento Portland u otro tipo de cemento hidráulico, agregado fino, agregado grueso y agua, a la que puede incorporarse aditivos según sea necesario. (E.060, 2019)

El concreto es el material de construcción más empleado a nivel mundial, debido a múltiples ventajas. Entre ellas, destaca su elevada resistencia frente a la acción del agua, sin presentar un deterioro significativo. Asimismo, su notable trabajabilidad permite moldearlo en una amplia gama de formas y dimensiones. Estas características, junto con su disponibilidad inmediata en proyectos de construcción y su bajo costo relativo, lo convierten en una opción preferente para los ingenieros civiles. (Ramos, 2019)

Las propiedades del concreto dependen, en esencia, de las características físicas y químicas de los materiales que lo constituyen. Una comprensión más profunda de estas propiedades se logra mediante el análisis de la estructura y composición del propio concreto. Los agregados representan la fase discontinua del concreto, ya que sus partículas no se encuentran cohesionadas entre sí, sino que están separadas por capas de pasta endurecida de espesor variable. Mientras que la pasta, por su parte, se genera a partir de la reacción química entre el material cementante y el agua, y constituye la fase continua del concreto, debido a que se encuentra interconectada en todo el volumen del material, proporcionando cohesión e integridad al sistema. (Rivva, 2015)

Requisitos de mezcla y composición. Las mezclas de concreto deberán cumplir con los siguientes requisitos básicos:

- La mezcla de concreto en estado fresco debe presentar niveles apropiados de trabajabilidad, consistencia y cohesión que aseguren su correcta colocación dentro de los moldes o encofrados. Asimismo, debe mantenerse homogénea, sin evidencias de segregación, y con un grado mínimo de exudación.
- El concreto en estado endurecido debe cumplir con las propiedades mecánicas y de durabilidad especificadas, en concordancia con las exigencias funcionales de la estructura para la cual ha sido diseñado.
- Además, el costo por unidad de volumen del concreto endurecido debe ser el más bajo posible, siempre que sea compatible con los requisitos de calidad establecidos. (Pajares, 2015)

La pasta. Es la parte del concreto endurecido conocida como pasta está compuesto por el gel que es nombre con el que se denomina al producto resultante de la reacción química e hidratación del cemento, los poros incluidos en ella, el cemento no hidratado, en caso exista y los cristales de hidróxido de calcio, o cal libre, que puedan haberse formado durante la hidratación del cemento. Estos cuatro elementos tienen un papel fundamental en el comportamiento del concreto. (Rivva, 2015)

Función de la pasta. La pasta tiene cuatro grandes funciones en el concreto:

- Contribuir a dar las propiedades requeridas al producto endurecido.
- Separar las partículas de agregado.
- Llenar los vacíos entre las partículas de agregado y adherirse fuertemente a ellas.
- Proporcionar lubricación a la masa cuando ésta aún no ha endurecido. (Maza, 2016)
 Propiedades de la pasta. Las propiedades de la pasta dependen de:
- Las propiedades físicas y químicas del cemento.

- Las proporciones relativas de cemento y agua en la mezcla.
- El grado de hidratación del cemento, dado por la efectividad de la combinación química entre éste y el agua. (Rivva, 2015)

Influencia de la pasta en el concreto. Si bien los agregados desempeñan un rol esencial en las propiedades finales del concreto, su comportamiento como material de construcción está fuertemente determinado por las características de la pasta cementante. Para un tipo de cemento específico, la porosidad y calidad de la pasta dependen principalmente de la relación agua-material cementante y del grado de hidratación alcanzado. Una menor relación agua-material cementante en mezclas con adecuada trabajabilidad, junto con un mayor grado de hidratación, conduce a una pasta de menor porosidad y, por ende, a un concreto con mejores propiedades mecánicas y de durabilidad. Dado que el grado de hidratación está vinculado a la reacción entre el cemento y el agua, todas las condiciones que favorezcan este proceso adquieren relevancia en la influencia que ejerce la pasta sobre el desempeño del concreto. (Maza, 2016)

El gel. El gel presenta una estructura porosa formada por una red interconectada de partículas sólidamente enlazadas, predominantemente con morfologías escamosas o fibrosas, que incluye también material con características amorfas. En cuanto a su composición, el gel está constituido por la masa cohesiva del cemento hidratado en su estado más compacto, cristales de hidróxido de calcio y poros a escala gel.

El gel es el componente principal que determina la resistencia y el comportamiento elástico del concreto, aunque los mecanismos exactos que explican su resistencia aún no se comprenden plenamente. Se reconocen dos tipos fundamentales de cohesión en el gel: la atracción física, basada en fuerzas de Van der Waals que actúan entre partículas separadas únicamente por poros gel microscópicos, y la adherencia química, originada por enlaces iónicos y covalentes en las zonas de contacto entre partículas. Si bien las fuerzas químicas son

predominantes, su efecto se limita a las áreas de contacto, mientras que la atracción física influye sobre una superficie mucho más extensa, dada la alta área superficial específica del gel, cercana a dos millones de centímetros cuadrados por gramo. Esta combinación de interacciones confiere a la pasta cementante una cohesión suficiente para resistir deformaciones tixotrópicas significativas, a pesar de su naturaleza de gel con expansión limitada. Aunque aún se investiga la influencia relativa de las adherencias física y química en el gel, no cabe duda de que ambas contribuyen significativamente a las propiedades finales de la pasta cementante endurecida, reafirmando su papel crucial en el desempeño estructural del concreto. (Maza, 2016)

Porosidad de la pasta. La pasta cementante contiene diversos espacios vacíos denominados poros, que generalmente no contienen materia sólida, aunque en ciertas condiciones pueden estar parcialmente llenos de agua. Estos poros se clasifican en cuatro categorías según su origen, tamaño y ubicación, sin una delimitación estricta entre ellas; están los poros por aire atrapado, que corresponden a pequeñas cantidades de aire incorporadas involuntariamente durante el mezclado y que varían en tamaño desde microscópicos hasta mayores de un centímetro; estos poros, aunque inevitables, reducen la resistencia y durabilidad del concreto, además de aumentar su permeabilidad, y pueden incluir fisuras o cavidades bajo el agregado grueso causadas por agua secada; los poros por aire incorporado, generados intencionalmente mediante aditivos que crean burbujas esféricas muy pequeñas (diámetro promedio de 0.08 a 0.10 mm), las cuales representan hasta un 5 % del volumen total y aumentan significativamente la durabilidad al proteger contra daños por congelación mediante la formación de cámaras de expansión para el agua helada; además, mejoran la trabajabilidad, reducen la segregación y exudación, y permiten disminuir la relación agua-cemento sin pérdida de consistencia, aunque incrementan la porosidad y reducen la resistencia mecánica en un 5 % por cada 1 % de aire incorporado, con un efecto más marcado en mezclas ricas; los poros capilares, que corresponden a los espacios originalmente ocupados por el agua en el concreto fresco y no rellenados por el gel durante la hidratación; estos poros son microscópicos, en muchos casos interconectados, y su presencia aumenta la porosidad, permeabilidad y vulnerabilidad al ataque por bajas temperaturas, dado que contienen agua que puede congelarse y expandirse, causando esfuerzos internos que deterioran el concreto; los poros gel, que son vacíos extremadamente pequeños (aproximadamente 0.0000010 mm) atrapados dentro de la estructura del gel, no interconectados y que no permiten la congelación del agua debido a su reducido tamaño, representando cerca del 28 % del volumen de la pasta y siendo independientes de la relación agua-cemento o grado de hidratación. (Rivva, 2015)

2.2.2. Cemento portland.

Composición. El cemento Portland, un producto comercial ampliamente disponible, reacciona lentamente con el agua, ya sea en forma pura o en combinación con arena, grava u otros agregados, para formar una masa endurecida. Este material se obtiene principalmente a partir del clinker, un producto finamente molido que resulta de la calcinación a altas temperaturas de mezclas controladas de piedra caliza y arcilla, las cuales contienen cal, alúmina, hierro y sílice en proporciones específicas. (Abanto, 2018)

Tipos. Para la elaboración de concreto se debe emplear cementos que cumplan con los requisitos de siguientes normas:

- Cementos portland normal tipo I, II, o V se rigen por las normas NTP (Norma Técnica Peruana) 334.009; 334.038; o 334.040; respectivamente; o la norma ASTM C 150.
- Cementos portland puzolánicos tipo IP y IPM se rigen por las normas NTP (Norma Técnica Peruana) 334.044; o la norma ASTM C 595.

Según la NTP 334.009 (2016), de acuerdo a sus propiedades especifican los cementos portland se clasifican en los siguientes tipos.

- TIPO I: para uso general que no requiera propiedades especiales de cualquier tipo;

- TIPO II: para uso general, y específicamente cuando se desea moderada resistencia a los sulfatos o moderado calor de hidratación;
- TIPO III: para ser utilizado cuando se requiere altas resistencias iniciales;
- TIPO IV: para emplearse cuando se desea bajo calor de hidratación;
- TIPO V: para emplearse cuando se desea alta resistencia a los sulfatos.

2.2.3. Agregados.

Los agregados, elementos inertes esenciales del concreto, son partículas minerales como arenisca, granito, basalto y cuarzo, que son aglomeradas por la pasta de cemento para conformar la estructura resistente del material. Estos ocupan aproximadamente tres cuartas partes del volumen total del concreto, y su calidad es fundamental para las propiedades finales del producto. La distribución volumétrica de sus partículas resulta clave para lograr una estructura compacta y eficiente, así como una adecuada trabajabilidad. Para ello, es necesario un ensamble casi completo, donde las partículas más pequeñas llenen los vacíos entre las mayores, garantizando una matriz continua unida por la pasta cementante. (Pasquel, 2016)

Funciones. El agregado cumple tres funciones principales en el concreto: primero, actúa como relleno de la pasta, disminuyendo su volumen y, por ende, el costo por unidad cúbica del material; segundo, forma una masa resistente que soporta las cargas mecánicas, el desgaste y las acciones climáticas a las que se expone el concreto; y tercero, contribuye a minimizar las variaciones volumétricas causadas por procesos de fraguado y endurecimiento, así como por cambios de humedad y temperatura en la pasta cementante. (Rivva, 2015)

Agregado fino. El agregado fino se define como el material resultante de la desintegración natural o artificial de rocas, cuyas partículas atraviesan el tamiz NTP de 9.4 mm (3/8") y cumplen con los criterios establecidos por las normas NTP 400.037 o ASTM C 33. Este tipo de agregado puede estar compuesto por arena natural, arena manufacturada, o una mezcla de ambas. Las partículas deben ser limpias, de forma preferentemente angular, duras,

densas y resistentes. Además, deben estar libres de impurezas como polvo, terrones, partículas deleznables, esquistos, pizarras, álcalis, materia orgánica, sales u otras sustancias que puedan comprometer la calidad y durabilidad del concreto. (Rivva, 2015)

Agregado grueso. El agregado grueso se define como aquel material que queda retenido en el tamiz NTP de 4.75 mm (N° 4) y que cumple con los requisitos establecidos en las normas ITINTEC 400.037 o ASTM C 33. Este tipo de agregado puede estar compuesto por piedra chancada, grava natural o triturada, agregados metálicos de origen natural o artificial, concreto reciclado triturado, o combinaciones de estos materiales. Las partículas deben ser preferentemente angulares o semiangulares, con una superficie rugosa, limpias, duras, densas y resistentes. Además, deben estar exentas de partículas escamosas o blandas. Químicamente, deben ser estables y libres de impurezas como polvo, tierra, limo, sales, humus, materia orgánica, incrustaciones superficiales u otras sustancias que puedan afectar negativamente el desempeño del concreto. (Rivva, 2015)

2.2.4. Fraguado, hidratación, y curado del concreto.

El tiempo de fraguado se refiere al intervalo necesario para que una mezcla de cemento y agua alcance una dureza determinada. Este proceso no debe ser ni demasiado rápido ni demasiado lento, ya que un fraguado acelerado impide colocar el concreto a tiempo, mientras que uno muy lento retrasa la ejecución y uso de la estructura. Cuatro factores influyen principalmente en este tiempo: el contenido de trióxido de azufre (SO₃), la cantidad de aluminato tricálcico (C₃A), la finura del cemento y la temperatura alcanzada durante la molienda. El fraguado del cemento inicia con un rápido incremento de la viscosidad y una elevación de temperatura en la pasta, fenómeno conocido como fraguado inicial. Con el paso de algunas horas, la mezcla se vuelve rígida e indeformable, marcando el fraguado final, el cual no responde a un evento físico específico, sino que se define de forma convencional. A partir de ese punto, la resistencia del material se incrementa de manera progresiva con el tiempo. Su

duración depende de varios factores: el tipo de cemento (más C₃A o mayor finura aceleran el fraguado), la cantidad y calidad del agua (menos agua o agua con impurezas orgánicas lo retardan), el contenido de sustancias químicas en los agregados, las condiciones climáticas (el calor lo acelera y el frío lo retrasa), y ciertos compuestos químicos solubles, que pueden actuar como retardantes o acelerantes según su naturaleza. (Maza, 2016)

Se define como hidratación al proceso de reacción química del cemento en presencia del agua. La hidratación requiere de presencia de humedad, condiciones de curado favorables, y tiempo. (Maza, 2016)

Se define como tiempo de curado al período durante el cual el concreto es mantenido en condiciones de humedad y temperatura tales como para lograr la hidratación del cemento en la magnitud que se desea para alcanzar la resistencia seleccionada. (Maza, 2016)

El agua. El agua de mezcla en el concreto cumple tres funciones clave: hidratar el cemento mediante reacciones químicas, actuar como lubricante para mejorar la trabajabilidad de la mezcla, y generar una estructura de vacíos que permita el desarrollo de los productos de hidratación. Por lo general, se utiliza más agua de la estrictamente necesaria para la hidratación, a fin de facilitar el manejo del concreto. Sin embargo, el principal problema radica en la presencia y cantidad de impurezas en el agua, ya que estas pueden generar reacciones químicas indeseadas que alteran el comportamiento normal de la pasta de cemento. (Rivva, 2015)

El agua empleada en la elaboración del concreto debe ser limpia y estar exenta de concentraciones perjudiciales de sustancias como ácidos, álcalis, aceites, sales, materia orgánica y otros compuestos que puedan comprometer la durabilidad del concreto o provocar la corrosión del refuerzo de acero. (Abanto, 2018)

2.2.5. Resistencia del concreto.

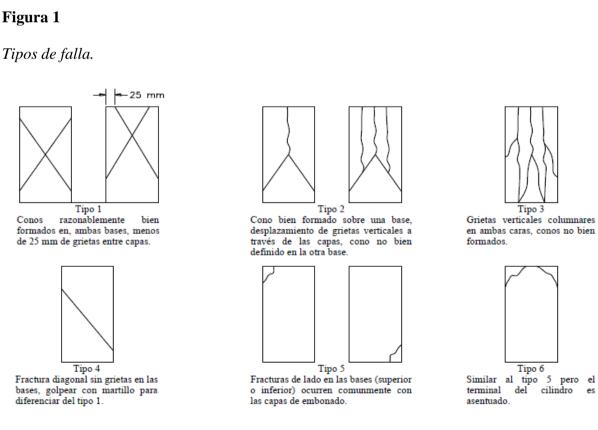
La resistencia del concreto es su capacidad para soportar esfuerzos sin fracturarse, siendo la resistencia a la compresión el principal indicador de su calidad debido a su comportamiento estructural. Esta propiedad es fundamental para aceptar o rechazar el concreto en obra, aunque otras características como durabilidad, permeabilidad o resistencia al desgaste también son relevantes según el tipo de proyecto. La resistencia influye directamente en la mayoría de las demás propiedades del concreto, pero en el diseño de mezclas es necesario considerar otros factores que también afectan el desempeño del material. Entre los aspectos más determinantes para la resistencia se encuentran la relación agua-cemento, la proporción entre cemento y agregado, las características físicas del agregado (como granulometría, forma, textura, resistencia y dureza) y el tamaño máximo del agregado. (Pasquel, 2016)

Compresión. Se refiere al esfuerzo que experimenta un material cuando está sometido a fuerzas que actúan en la misma dirección y sentido, provocando su acortamiento. Este fenómeno es opuesto a la tracción, ya que induce el acercamiento entre las partículas del material, generando reducciones de longitud o aplastamientos. En términos generales, la compresión es el resultado de tensiones o presiones internas dentro de un sólido deformable o medio continuo, caracterizándose por producir una disminución en el volumen o un acortamiento en una dirección específica. (Cervera, 2015)

La fórmula para calcular la tensión de trabajo es:

$$\sigma c = \frac{F}{A}$$

Donde:


 σc = Esfuerzo de trabajo. Expresado en kilogramo/centímetro cuadrado (kg/cm²)

F = Fuerza de compresión. Expresado en kilogramo fuerza (kgf)

A =Sección transversal. Expresado en centímetro cuadrado (cm²)

Al momento de realizar el ensayo a compresión se debe tener en cuenta que al aplicar la carga de compresión mientras el indicador muestra que la carga disminuye constantemente y el espécimen muestra un patrón de fractura bien definido (Tipos del 1 al 4 en la Figura 1) el cierre de la máquina de ensayo está prohibido hasta que la carga haya caído a un valor menor del 95 % de la carga máxima. Cuando se ensayan con almohadillas, una fractura en la esquina similar a los patrones tipos 5 o 6 mostrados en la Figura 1, puede ocurrir antes que la capacidad última del espécimen haya sido alcanzada. Registrar la carga máxima alcanzada por el espécimen durante el ensayo, y anotar el tipo de patrón de fractura de conformidad con la Figura 1. Si la resistencia medida es menor a lo esperado, examinar la fractura del concreto y notar la evidencia de segregación, y la presencia de grandes vacíos de aire; si las fracturas pasan predominantemente alrededor o a través de las partículas del agregado grueso, y verificar si el refrentado se realizó de conformidad con las NTP 339.037 o NTP 339.216. (NTP 339.034, 2021)

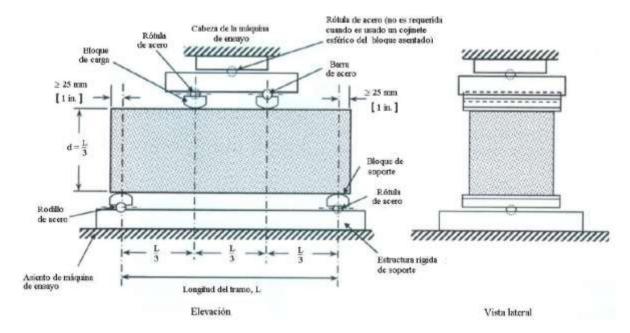
Figura 1

Fuente: NTP. 339.034.

Flexión. La flexión es un tipo de esfuerzo compuesto por la acción simultánea de compresión y tracción. En un elemento sometido a flexión, las fibras ubicadas en la parte superior de la sección transversal se alargan debido a la tracción, mientras que las fibras inferiores se acortan debido a la compresión, o viceversa. Esto genera una curvatura en la estructura. Un concepto clave en el análisis de flexión es la existencia de la fibra neutra, una superficie dentro del material cuya longitud no se altera antes ni después de la deformación. la resistencia a la tracción del concreto cuando está sometido a flexión, conocida como módulo de ruptura, presenta una mayor variabilidad en comparación con la resistencia a la compresión. generalmente, su valor equivale aproximadamente al 10-15% de la resistencia a compresión del material. (Cervera, 2015)

La norma (NTP 339.078, 2017) indica que: "Este método de ensayo consiste en aplicar una carga en los tercios de la luz de la viga hasta que ocurra la falla. El módulo de rotura se calculará, según la ubicación de la falla: dentro del tercio medio o a una distancia de este no mayor del 5 % de la luz libre".

El ensayo para la resistencia a la flexión se realiza de acuerdo a las normas NTP 339.078, NTC 2871 o ASTM C31 y ASTM C78. (Rivva, 2015)


La máquina de ensayo debe cumplir los requisitos descritos en la norma ASTM E 4.

No se permite el uso de máquinas de ensayo. (NTP 339.078, 2017)

A continuación se muestra la idealización del dispositivo adecuado para ensayar vigas a flexión.

Figura 2

Diagrama de un dispositivo adecuado para ensayar a flexión vigas con cargas a los tercios.

Fuente: (NTP 339.078, 2017)

Concreto reforzado con fibras vegetales. El concreto reforzado con fibras naturales es un material compuesto que incorpora fibras orgánicas (como cáñamo, yute, o bambú) a la mezcla de cemento, agua y agregados para mejorar su resistencia, tenacidad y control del agrietamiento. (Queralt, 2023)

Agave americana L. Es una planta perenne, robusta y rizomatosa, con un tronco muy corto o inexistente. Sus hojas, pueden llegar a medir 2 metros de largo y 25 cm de ancho; estas nacen desde la base formando grandes rosetas, son carnosas, lanceoladas, de color verde o gris azulado, con espinas finas de unos 2 cm en los bordes y una espina terminal de 5 cm. Sus flores aparecen a partir de los 10 años de vida, están situada en el extremo de un tallo de 5 a 8 metros de altura. Son de color amarillo pálido con tonos verdosos. Tras la floración, la planta muere, dejando brotes que nacen en su base. Su fruto es una cápsula alargada y de tres compartimentos, que cambia de verde a marrón oscuro o negruzco, y contiene muchas semillas negras, aplanadas y brillantes. (Sanz & Sánchez, 2018)

Localmente se utiliza como planta ornamental y para demarcación de lindes.

Tabla 1Características botánicas del Agave Americana L.

Hábitat	Hierba Terrestre			
Taxonomía	Phylum: Magnoliophyta. Clase: Liliopsida. Orden: Liliales.			
	Familia: Agavaceae			
Nombres Comunes	Mishki, Pita, Cabuya, Penca Azul.			

Fuente: Sanz & Sánchez (2018)

2.3. Definiciones y términos básicos.

- a) **Absorción:** Es el aumento de la masa del agregado debido al agua que penetra en los poros de las partículas, durante un periodo de tiempo prescrito, pero sin incluir el agua que se adhiere a la superficie exterior de las partículas de le expresa como porcentaje de la masa seca. (NTP 400.021, 2018)
- b) **Agregado:** Conjunto de partículas de origen natural o artificial, que pueden ser tratados o elaborados, y cuyas dimensiones están comprendidas entre los límites fijados por la NTP 400.011. Se les llama también áridos. (NTP 400.011, 2020)
- c) Cemento portland: Un cemento hidráulico producido mediante la pulverización del Clinker de portland compuesto esencialmente de silicatos de calcio hidráulicos y que contiene generalmente una o más de las formas de sulfato de calcio como una adición durante la molienda. (NTP 400.017, 2020)
- d) **Curado:** Proceso que consiste en controlar las condiciones ambientales (especialmente temperatura y humedad) durante el fraguado y/o endurecimiento del cemento, mortero u hormigón (concreto). (NTP 339.047, 2019)
- e) **Densidad:** Es la masa por unidad de volumen de un material, expresado como kilogramos por metro cúbico (libras por pie cúbico). (NTP 400.021., 2018)
- f) **Fibras:** Fibras delgadas que pueden originarse de procesos industriales como las de acero, vidrio, carbono o polímeros o ser de origen natural, como el asbesto o la celulosa,

se añaden a la pasta, el mortero o el concreto con el fin de reforzar la matriz cementicia, disminuir la aparición de grietas y mejorar la resistencia a la tracción.. (NTP 339.047-2006)

2.4. Abreviaturas.

Ft: Pies.

Ft²: Pies cuadrados.

In:Pulgadas.

In²: Pulgadas cuadradas.

TM: Tamaño máximo del agregado grueso.

TMN: Tamaño máximo nominal del agregado grueso.

CAPITULO III: MATERIALES Y METODOS

3.1. Ubicación geográfica.

Nombre del laboratorio: "GUERSAN INGENIEROS S.R.L."

Dirección: Pj. Diego ferre N°. 295 - Cajamarca

Tabla 2

Ubicación geográfica del laboratorio de ensayo de materiales "GUERSAN INGENIEROS S.R.L".

COORDENADAS UTM					
ESTE	775842.57				
NORTE	9206961.22				
ALTITUD	2703 M.S.N.M.				

3.2. Metodología.

3.2.1. Tipo de investigación.

Aplicada.

3.2.2. Nivel y diseño de la investigación.

La investigación corresponde a un nivel correlacional y un diseño experimental y unifactorial, con un único factor modificable que fue la fibra vegetal incorporada.

3.2.3. Método de investigación.

Experimental.

3.2.4. Población de estudio.

Se considerará como población de estudio a las probetas elaboradas de concreto f'c 210 kg/cm^2 , reforzado con fibras de Agave Americana L.

3.2.5. Muestra.

Para encontrar el tamaño de muestra mediante un muestreo aleatorio simple, se empleó la ecuación para población infinita: $n=\frac{Z_{\alpha}^2*p*q}{e^2}$, considerando un de nivel de confianza $\alpha=$

 $96\% \rightarrow Z_{\alpha} = 2.05374981$, de probabilidad a favor de que las curvas de correlación sean graficas de funciones polinómicas de p=95%, probabilidad en contra q=5%, y un error para el presente trabajo de investigación estimado de e=5%; se obtiene 80 probetas de concreto, distribuidas de la siguiente forma:

 Tabla 3

 Distribución de probetas.

Tipo de ensayo	% de fibra _	Edad del concreto (días)			N° de especímenes
Tipo de ensayo	% de libra _	7	14	28	_ iv de especimenes
	0	4	4	4	12
Compusión	0.5	4	4	4	12
Compresión	0.75	4	4	4	12
	1.0	4	4	4	12
	0	-	4	4	8
T1 4	0.5	-	4	4	8
Flexión	0.75	-	4	4	8
	1.0	-	4	4	8
	Tota	1			80

3.2.6. Unidad de análisis.

Especímenes cilíndricos de 6" de diámetro por 12" fabricados siguiendo la norma ASTM C31 para los ensayos de compresión.

Especímenes prismáticos de 6''x6''x20'' siguiendo la norma ASTM C 78 para los ensayos de flexión.

3.2.7. Técnicas e instrumentos de recolección de datos.

Técnicas. Los datos de este trabajo de investigación se obtuvieron, mediante la experimentación, que consistió en:

- Ensayo de las propiedades de los agregados.
- Ensayo de las propiedades mecánicas de los especímenes de concreto según la norma ASTM C 31.

Instrumentos de recolección de datos

- Se hará uso de fichas de recolección de datos.
- Hoja de cálculo Excel.

3.3. Cantera en estudio.

3.3.1. Ubicación geográfica de la cantera "Hermanos Ayala".

- Departamento: Cajamarca.

- Provincia: Cajamarca.

- Distrito: Llacanora.

Tabla 4

Ubicación geográfica de la cantera "Hermanos Alaya".

COORDENADAS UTM			
ESTE	779836		
NORTE	9205011		
ALTITUD	2638 M.S.N.M.		

Figura 3

Ubicación de la cantera "Hermanos Alaya".

Fuente: Google Earth.

3.4. Características físicas y mecánicas de los agregados.

Para conocer las características de los agregados siguiendo los procedimientos planteados en normas tales como las NTPs o sus equivalentes internacionales las ASTMs, donde se detallan los procedimientos que realizamos en el laboratorio, así como los parámetros establecidos que garantizan la calidad de los agregados. En primer lugar, seleccionaremos la muestra a con la que trabajaremos posteriormente en el laboratorio, la cantidad de muestra que utilizaremos será de acuerdo a lo indicado en la siguiente tabla:

Tabla 5

Porción de la muestra de campo requerida para los ensayos de laboratorio.

Tamaão del agrecado	Masa de la muestra de	Muestra de campo volumen
Tamaño del agregado	campo, min. Kg (lb)	min. L (gal)
	Agregado fino	
2.36 mm (n°8)	10 (22)	8 (2)
4.75 mm (n°4)	10 (22)	8 (2)
	Agregado grueso	
09.5 mm (3/8 in.)	10 (22)	8 (2)
15.5 mm (1/8 in.)	15 (35)	12 (3)
19.0 mm (3/4 in.)	25 (55)	20 (5)
25.0 mm (3/8 in.)	50 (110)	40 (10)
37.5 mm (1 ½ in.)	75 (165)	60 (15)
50.0 mm (2 in.)	110 (220)	80 (21)
63.0 mm (2 ½ in.)	125 (275)	100 (26)
75.0 mm (3 in.)	150 (330)	120 (32)
90.0 mm (3 ½ in.)	175 (385)	140 (37)

Fuente: NTP 400.010.

3.4.1. Granulometría.

Granulometría del agregado grueso.

Resultados: (Se muestran los resultados en el ANEXO N°1).

Se obtuvo la granulometría del agregado grueso siguiendo lo indicado en la norma NTP 400.037 en concordancia con la ASTM C 33, para comprobar que el agregado cumpla con los requisitos establecidos por dichas normas. Se comparó la curva granulométrica obtenida luego de realizar los ensayos de laboratorio con las curvas control del huso 67 de la siguiente tabla.

Tabla 6Requisitos granulométricos del agregado grueso.

Huso	Tamaño máximo	no Porcentaje que pasa los tamices normalizados													
	nominal	100 mm (4 in.)	90 mm (3 ½ in)	75 mm (3 in)	63 mm (2 ½ in)	50 mm (2 in)	37.5 mm (1 ½ in)	25 mm (1 in)	19 mm (3/4 in)	12.5 mm (1/2 in)	9.5 mm (3/8 in)	4.75 mm (n°4)	2.36 mm (n°8)	1.18 mm (n°16)	300 µm (n°50)
1	90 mm a 37.5 mm (3 ½ in a 1 ½ in)	100	90 a 100		25 a 60		0 a 15		0 a 15						
2	63 mm a 37.5 mm (2 ½ in a 1 ½ in)			100	90 a 100	35 a 70	0 a 15		0 a 5						
3	50 mm a 25 mm (2 in a 1 in)				100	90 a 100	35 a 70	0 a 15		0 a 5					
357	50 mm a 4.75 mm (1 ½ in a ¾ in)				100	90 a 100		35 a 70		10 a 30		0 a 5			
4	37.5 mm a 4.75 mm (1 ½ in a ¾ in)					100	90 a 100	20 a 55	0 a 5		0 a 5				
467	37.5 mm a 4.75 mm (1 ½ in a n°4)					100	95 a 100		35 a 70		10 a 30	0 a 5			
5	25 mm a 12.5 mm (1 in a ½ in)						100	90 a 100	20 a 55	0 a 30	0 a 5				
56	25 mm a 9.5 mm (1 in a 1 ½ in)						100	90 a 100	40 a 85	10 a 40	0 a 15	0 a 5			
57	25 mm a 4.75 mm (1 in a n°4)						100	90 a 100		25 a 60		0 a10	0 a 5		
6	19 mm a 9.5 mm (3/4 in a 3/8 in)							100	90 a 100	20 a 55	0 a 5	0 a 5			
67	19 mm a 4.75 mm (3/4 in a n°4)							100	90 a 100	45 a 70	20 a 55	0 a 10	0 a 5		
7	12.5 mm a 4.75 mm (½ in a n°4)								100	90 a 100	40 a 70	0 a 15	0 a 5		
8	9.5 mm a 2.36 mm (3/8 in a n°8)									100	85 a 100	10 a 30	0 a 10	0 a 5	
89	9.5 mm a 1.18 mm (3/8 in a n°16)									100	90 a 100	20 a 55	5 a 30	0 a 10	0 a 5
9	4.75 mm a 1.18 mm (n°4 a n°16)										100	85 a 100	10 a 40	0 a 10	0 a 5

Fuente: NTP 400.037.

Granulometría del agregado fino.

Resultados: (Se muestran los resultados en el ANEXO N°1).

Se obtuvo la granulometría del agregado grueso siguiendo lo indicado en la norma NTP 400.037 en concordancia con la ASTM C 33, para comprobar que el agregado cumpla con los requisitos establecidos por dichas normas se comparó la curva granulométrica obtenida con los límites propuestos en la siguiente tabla.

Tabla 7Requisitos granulométricos del agregado fino.

TAMIZ	PORCENTAJE QUE PASA
9.5 mm (3/8 in)	100
4.75 mm (n°4)	95 a 100
2.36 mm (n°8)	80 a 100
1.18 mm (n°16)	50 a 85
600 μm (n°30)	25 a 60
300 μm (n°50)	05 a 30
150 μm (n°100)	0 a 10

Fuente: NTP 400.037

Módulo de fineza.

Resultados. (Se muestran los resultados en el ANEXO N°1)

Para calcular el módulo de fineza del agregado fino, utilizaremos la siguiente formula:

$$Mf = \frac{\sum \% retenido \ Acumulado (3'' + 1\ 1/2'' + 3/4'' + 3/8'' + N^{\circ}4 + N^{\circ}8 + N^{\circ}16 + N^{\circ}30 + N^{\circ}50 + N^{\circ}100)}{100}$$

3.4.2. Tamaño máximo (TM) y tamaño máximo nominal del agregado grueso (TMN) del agregado grueso.

Resultados. (Se muestran los resultados en el ANEXO N°1)

Según la NTP 400.037, el tamaño máximo del agregado grueso se define como el menor tamiz a través del cual pasa la totalidad de la muestra.

Según la NTP 400.037, el tamaño máximo nominal del agregado corresponde al tamiz en el que se produce el primer retenido.

3.4.3. Material más fino que pasa el tamiz N°200.

Resultados. (Se muestran los resultados en el ANEXO N°1)

Se obtuvieron los resultados siguiendo lo establecido en las normas NTP 400.037 o la ASTM e33, y NTP 400.018 y la siguiente formula:

$$a = \frac{(P_1 - P_2)}{P_1} 100$$

Donde:

A= Porcentaje del material más fino que pasa por el tamiz normalizado de μ m (N°200) por vía húmeda.

 P_1 = Masa seca de la muestra original, g.

 P_2 = Masa seca de la muestra luego del lavado, g.

3.4.4. Peso específico y absorción

Peso específico y absorción del agregado grueso.

Resultados: (Se muestran los resultados en el ANEXO N°1).

Se realizaron los procedimientos descritos en la norma NTP 400.021, en concordancia con la ASTM c127, y las siguientes fórmulas para el cálculo de resultados:

Peso Específico De Masa (P.E.).

$$P.e. = \frac{A}{B - C}$$

Peso específico de masa saturada superficialmente seca (P.e.S.S.S.).

$$P.e.S.S.S. = \frac{B}{(B-C)}$$

Peso específico nominal o aparente (P.e.a.).

$$P. e. a. = \frac{A}{(A-C)}$$

Porcentaje de absorción (abs%).

$$abs\% = \left[\frac{(B-A)}{A} \right] 100$$

En dónde:

A= Masa de la muestra secada al horno en el aire, g

B= Masa de la muestra de ensayo de superficie saturada seca al aire, g, y

C= Masa aparente de la muestra de ensayo saturada en agua, g

Peso específico y absorción del agregado fino.

Resultados: (Se muestran los resultados en el ANEXO N°1).

Se realizaron los procedimientos descritos en las normas NTP 400.022 y MTC E 205 en concordancia con la ASTM c128, y las siguientes fórmulas para el cálculo de resultados:

Cálculos:

Peso específico de masa (P.e.).

$$P. e. = \frac{W}{V - V_a}$$

Peso específico de masa saturada superficialmente seca (P.e.s.s.s.)

$$P.e.s.s.s. = \frac{500}{V - V_a}$$

Peso específico nominal o aparente (P.e.a.).

$$P.e.a. = \frac{W}{(V - V_a) - (500 - W)}$$

Porcentaje de absorción (abs%).

$$abs\% = \left(\frac{500 - W}{W}\right) 100$$

En dónde:

W: Peso en el aire de la muestra secada al horno, (g).

V: Volumen de la fiola, (cm^3) .

Va: Volumen del agua añadida a la fiola, (cm^3) .

3.4.5. Contenido de humedad.

Resultados: Se muestran los resultados en el ANEXO N°1.

Se realizaron los procedimientos descritos en las normas NTP 339.127 y MTC E 108 en concordancia con la ASTM d2216, y la siguiente fórmula para el cálculo de resultados:

$$\%W = \frac{H}{MS} 100$$

Donde:

H peso del agua evaporada.

MS: peso de muestra seca.

%W: porcentaje de humedad

3.4.6. Peso unitario.

Resultados: (Se muestran los resultados en el ANEXO N°1).

Se realizaron los procedimientos descritos en las normas NTP 400.017 y MTC E 203 en concordancia con la ASTM c29, y la siguiente fórmula para el cálculo de resultados:

$$PU = f(W_S)$$

Donde:

PU = Peso unitario del agregado, kg/m

 W_S = Peso neto del agregado, kg

f =factor que se obtiene al dividir el peso unitario del agua (1000 kg/m³) entre el peso neto del agua obtenido en laboratorio.

3.4.7. Desgaste o abrasión del agregado grueso.

Resultados: (Se muestran los resultados en el ANEXO N°1).

Se empleará el método descrito en la NTP 400.019 en concordancia con la ASTM c131, y la siguiente fórmula para el cálculo de resultados:

% Abrasión =
$$\frac{(P_1 - P_2)}{P_1} 100$$

Donde:

 P_1 = Masa de la muestra antes del ensayo, kg

P₂= Masa de la muestra después del ensayo, kg

3.5. El cemento.

Se eligió utilizar cemento portland tipo I de cementos Pacasmayo S.A.A. destinado par para emplearse en obras que no requieran propiedades especiales. Este cemento cumple con los parámetros establecidos en la norma NTP 334.009 en concordancia con la ASTM c150.

Se tomará como referencia un peso específico de 3,10 g/cm³, valor que, según diversas investigaciones, resulta adecuado para el diseño de mezclas en nuestra ciudad.

3.6. El agua.

El agua fue obtenida del suministro de agua potable de la ciudad de cajamarca, y cumple con los límites permisibles según el reglamento de la calidad del agua para consumo humano; garantizándose así los requisitos de calidad para la preparación y curado del concreto.

3.7. Características de la fibra.

3.7.1. Determinación de la densidad relativa y absorción.

Resultados. (Se muestran los resultados en el ANEXO N°1).

No existen normativas para el uso de fibras vegetales en conjunto con el concreto, sin embargo, se adaptaron los procedimientos descritos por la NTP 400.021 y NTP 400.022 para el cálculo de la densidad relativa y la absorción de la fibra.

3.8. Diseño de mezcla y elaboración de especímenes.

3.8.1. Características del concreto considerados para el diseño de mezclas.

Las características del concreto deben estar determinadas por el propósito específico para el cual se va a utilizar, por lo tanto, la selección de las proporciones en la unidad cúbica de concreto debe garantizar que se logre un material con las propiedades necesarias, tales como facilidad de colocación, densidad, resistencia, durabilidad, entre otras que sean requeridas para el proyecto en cuestión. (Rivva, 2014)

En el diseño de mezclas para los especímenes cilíndricos de concreto, se deben considerar los siguientes requisitos tanto en el estado endurecido como no endurecido:

Apariencia. Para asegurarse de la mezcla de concreto no sea ni excesivamente gravoso ni arenoso y además tenga una apariencia fresca, en el concreto para la preparación de los especímenes se corroboró que tengan un correcto ajuste de sus proporciones en estado fresco.

Consistencia. Al momento de realizar el ajuste de mezclas se tuvo en consideración la consistencia plástica requerida en el concreto fresco permita una adecuada trabajabilidad, es decir que su revenimiento se encuentre entre tres y cuatro pulgadas.

Resistencia requerida. Se realizó el diseño de mezclas considerando una resistencia de 210 kg/cm2, ya que esta resistencia ayudó a verificar las diferencias entre los especímenes sin adición de fibra (especímenes base) y concretos adicionados.

3.8.2. Diseño de mezcla según método de módulo de fineza de la combinación de los agregados.

Para diseñar la mezcla con este método, es necesario considerar la información brindada por las tablas del comité 211 del ACI, para calcular las proporciones de los agregados se empleará el módulo de combinación de los agregados el cual es un índice de la superficie especifica del agregado, este método considera que a mayor superficie especifica existe una mayor demanda de pasta, de tal manera que si aumentamos la finura del agregado manteniendo el volumen de pasta constante, el concreto disminuirá su resistencia.

Módulo de finura. El módulo de finura de la combinación de agregados se determinará a partir de tablas, es necesario para ello conocer el contenido total de cemento por metro cúbico de concreto y el tamaño máximo nominal del agregado grueso. Una vez obtenido dicho módulo de finura, es posible estimar el porcentaje de agregado fino mediante la aplicación de la siguiente.

$$rf = \frac{m_g - m}{m_g - m_f}$$

Donde:

rf: Porcentaje de agregado fino.

 m_q : Módulo de finura del agregado grueso.

m: Módulo de finesa de la combinación de agregados.

 m_f : Módulo de finura del agregado fino.

El tamaño máximo nominal (TMN) del agregado utilizado es:

$$TMN = \frac{1}{2}$$
"

Resultados. Se muestra a continuación la dosificación de materiales para el concreto patrón y para los concretos con diferentes porcentajes de fibra. Revisar el ANEXO N°2.

 Tabla 8

 Dosificación del concreto

Disaffa (nama 1 m·2)	Compueto motorio	Concreto con	Concreto con	Concreto con
Diseño (para 1 m3)	Concreto patrón	0.5% de fibra	0.75% de fibra	1.0% de fibra
Cemento (kg)	375.00	375.00	375.00	375.00
Agua (lt.)	192.47	192.96	193.44	193.69
A. Fino (kg)	1051.00	1051.00	1051.00	1051.00
A. Grueso (kg)	668.00	668.00	668.00	668.00
Fibra A. A. L. (kg)	0.00	1.50	3.00	3.76

3.8.3. Elaboración de los especímenes de concreto.

Se tendrá en consideración lo descrito por las normas ASTM c192 y NTP 339.183, haciendo uso de moldes cilindros metálicos de 6" de diámetro y 12" de altura y prismáticos de 4" x 4" x 10".

3.8.4. Curado de especímenes de concreto.

Se tendrá en consideración lo descrito por las normas ASTM c192 y NTP 339.183, y se tendrá especial cuidado en desmoldar las probetas a las 24 horas de su elaboración para luego mantenerlas sumergidas en agua por 7 días.

3.9. Variables de evaluación del estudio.

3.9.1. Asentamiento en el concreto en estado fresco (slump).

Normas. Se tendrá en consideración lo descrito por las normas ASTM c143 y NTP 339.035.

3.9.2. Peso unitario del concreto en estado fresco.

Normas. Se tendrá en consideración lo descrito por las normas NTP 339.046.

Calculo.

Peso unitario del concreto fresco =
$$\frac{\text{Peso del total} - \text{Peso del molde}}{\text{Volumen del molde}}$$

3.9.3. Peso unitario del concreto en estado endurecido.

Peso unitario del concreto endurecido
$$=$$
 $\frac{\text{Peso del especimen}}{\text{Volumen del molde}}$

3.9.4. Resistencia a compresión en especímenes cilíndricos de concreto.

Normas. Se tendrá en consideración lo descrito por las normas NTP 339.034 y MTC E 704, en concordancia con la ASTM c39.

Calculo.

$$f'c = \frac{p}{A};$$

Siendo:

$$A = \frac{\pi \emptyset^2}{4}$$

Donde:

f'c: Resistencia de rotura a la compresión del concreto (kg/ cm^2)

P: Carga de rotura (kg.)

φ: Diámetro de la probeta cilíndrica (cm.)

3.9.5. Resistencia a la flexión en especímenes prismáticos de concreto.

Normas. Se tendrá en consideración lo descrito por las normas NTP 339.078.

Calculo. La norma NTP 339.078 nos indica que, si la falla ocurre dentro del tercio de la luz de la viga, se puede determinar el módulo de rotura del espécimen a flexión con la siguiente formula:

$$Mr = \frac{PL}{bh^2}$$

Donde:

P: Carga máxima (kg.)

L: Luz libre entre apoyos (cm.)

b: Distancia entre la línea de falla y el apoyo más cercano en (cm.)

h: Altura promedio del espécimen en el lugar de la fractura en (cm.)

Mr: módulo de rotura (kg/cm²).

3.10. Técnicas, instrumentos de recopilación y procesamiento de información.

3.10.1. Técnicas de procesamiento y análisis de la información.

La presente investigación utilizo los métodos cualitativos y cuantitativo. Se utilizó el método cualitativo, mediante observación directa para describir propiedades como la trabajabilidad del concreto, su apariencia, tipo de fractura y modo de falla. Se empleó el método

cuantitativo para medir las propiedades mecánicas del concreto, con ayuda de balanzas, y máquina de compresión y siguiendo las normas NTP, ASTM o MTC.

Una vez realizados los ensayos en el laboratorio, los resultados obtenidos se procesaron en Microsoft Excel, utilizando para organizar mejor la información, tablas y gráficos. De esta manera logramos comparar el concreto patrón con una resistencia de $f'c=210\,kg/cm^2$ frente al concreto con adición de fibras de Agave Americana L.

3.10.2. Resultados.

Propiedades de los agregados. Se muestra a continuación las propiedades del agregado fino y el agregado grueso, los cuales fueron extraídos de la cantera "Hermanos Alaya".

Tabla 9Propiedades del agregado fino.

AGREGADO FINO				
Peso específico de masa	2.630	g/cm3		
Peso específico saturado superficialmente seco	2.660	g/cm3		
Peso específico aparente	2.720	g/cm3		
Peso unitario suelto	1768.733	Kg/m3		
Peso unitario compactado	1877.625	Kg/m3		
Contenido de humedad (%)	4.261			
Absorción (%)	1.300			
Módulo de finura	3.092			
% QUE PASA MALLA N.º 200	2.200			

Tabla 10Propiedades del agregado grueso.

AGREGADO GRUESO				
Tamaño máximo nominal	1/2"			
Peso específico de masa	2.610	g/cm3		
Peso específico saturado superficialmente seco	2.650	g/cm3		
Peso específico aparente	2.700	g/cm3		
Peso unitario suelto	1420.765	Kg/m3		
Peso unitario compactado	1538.267	Kg/m3		
Contenido de humedad (%)	0.252			
Absorción (%)	1.200			
Módulo de finura	6.750			
Abrasión (%)	25			
% que pasa malla N° 200	0.800			

Propiedades de la fibra. Se muestran a continuación:

Tabla 11Propiedades de la fibra.

FIBRA		
Peso específico de masa	0.751	g/cm3
Peso específico saturado superficialmente seco	1.312	g/cm3
Peso específico aparente	0.991	g/cm3
Absorción (%)	32.408	

Propiedades del concreto fresco. A continuación, se muestra el peso unitario promedio del concreto fresco y el Slump.

Tabla 12

Propiedades del concreto fresco.

% DE FIBRA	PESO UNITARIO	SLUMP PROMEDIO (in)
	PROMEDIO (kg/m3)	
0%	2380.91	3.75
0.50%	2369.45	3.25
0.75%	2354.09	3.25
1.00%	2347.45	3.38

Propiedades del concreto endurecido. A continuación, se muestra el peso unitario promedio del concreto endurecido y su resistencia promedio a la flexión y compresión a los 28 días.

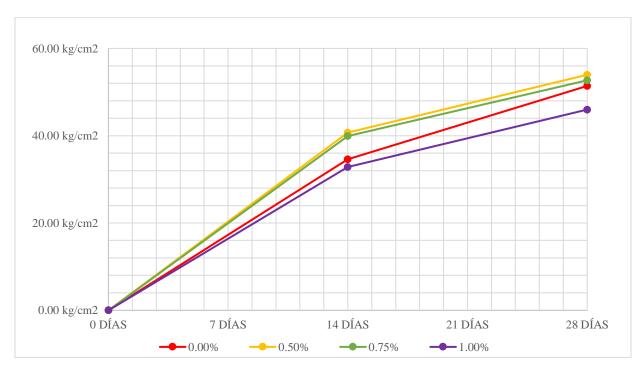
Tabla 13

Peso unitario del concreto endurecido.

% DE FIBRA	PESO UNITARIO PROMEDIO (kg/m3)
0.00%	2350.557
0.05%	2345.441
0.75%	2329.983
1.00%	2313.890

Tabla 14Resistencia a la compresión promedio.

% DE FIBRA	RESISTENCIA A LA COMPRESIÓN A LOS 7 DÍAS (kg/cm2)	RESISTENCIA A LA COMPRESIÓN A LOS 14 DÍAS (kg/cm2)	RESISTENCIA A LA COMPRESIÓN A LOS 28 DÍAS (kg/cm2)
0.00%	143.98	179.25	244.57
0.50%	146.47	181.28	248.46
0.75%	156.73	194.76	266.62
1.00%	123.68	153.18	209.60


Tabla 15Resistencia a la flexión promedio.

% DE	RESISTENCIA A LA		RESISTENCIA A LA		
FIBRA	FLEXIÓN	A LOS 14 DÍAS	FLEXIÓN	A LOS 28 DÍAS	
	(kg/cm2)		(kg/cm2)		
0.00%	34.63		51.41		
0.50%	40.73		53.96		
0.75%	39.90		52.70		
1.00%		32.82	45.99		

Figura 4Resistencia a la compresión vs Edad del concreto.

Figura 5Resistencia a la flexión vs Edad del concreto.

CAPITULO IV: ANÁLISIS Y DISCUSIÓN DE RESULTADOS.

4.1. Análisis y discusión de resultados de los agregados.

4.1.1. Granulometría.

La granulometría de los agregados, tanto agregado fino como agregado grueso, nos presentan curvas granulométricas que cumplen con los valores limites permisibles por las normas ASTM c33 Y NTP 400.037. Entonces podemos afirmar que los agregados utilizados, son agregados bien gradados.

De acuerdo con la bibliografía revisada (NTP 400.012) el valor del módulo de finura se encuentra en el rango de 2.3 – 3.1, el valor de módulo de finura obtenido luego de los ensayos es de 3.092. Tomando en cuenta que este valor está muy cerca del límite superior del rango establecido en la norma NTP 400.012, este agregado se clasificará como arena gruesa.

4.1.2. Peso específico

Los resultados obtenidos cumplen con lo indicado por la norma ASTM c128 donde queda indicado que, para agregados naturales, el peso específico de los agregados se encuentra en el rango de 2.4 y 2.9 g/cm3.

4.1.3. Peso unitario.

De acuerdo a los pesos unitarios obtenidos podemos afirmar que los pesos unitarios del agregado fino son mayores que los pesos unitarios del agregado grueso, esto tanto para el peso unitario suelto, como el peso unitario compactado, esto debido a que el agregado fino al tener partículas de menor diámetro, tienen una mayor tendencia a reacomodarse.

4.1.4. Contenido de humedad.

En los resultados del contenido de humedad, notamos que el contenido de humedad del agregado fino es mayor que el contenido de humedad del agregado grueso. Se asume entonces que el agregado fino tiene mayor capacidad de absorción que el agregado grueso.

4.1.5. Materiales finos que pasan el tamiz $N^{\circ}200$ (75µm).

Para el agregado fino, la cantidad de materiales finos que pasan por el tamiz 75μm (N° 200) es de 2.2%, siendo menor al máximo admisible establecido por la norma en 5%.

Para el agregado grueso, la cantidad de materiales finos que pasan por el tamiz $75\mu m$ (N° 200) es de 0.80% estos valores se encuentran dentro de los límites establecidos por la norma que establece que no debe exceder el 1%.

4.1.6. Abrasión del agregado grueso.

Se determinó que la abrasión del agregado grueso es de 25%, dado que la NTP 400.037 donde indica que el valor máximo para el desgate para el agregado grueso mediante el método de los Ángeles debe ser 50%.

4.2. Concreto fresco.

4.2.1. Asentamiento del concreto en estado fresco.

El slump promedio para los diferentes diseños de mezcla, fueron de 3.75" para la muestra patrón, 3.25" para las dosificaciones de 0.50% y 0.75% de fibra, y 3.38" para la dosificación de 1.00% de fibra. Notamos que el mayor asentamiento se presentó en la muestra patrón.

4.2.2. Peso unitario del concreto fresco.

El peso unitario del concreto en estado fresco, fue de 2380.91 kg/m³ para la muestra patrón, 2369.45 kg/m³ para la dosificación de 0.50% de fibra, 2354.09 kg/m³ para la dosificación de 0.75% de fibra y 2347.45 kg/m³ para la dosificación de 1.00% de fibra.

Notamos que a mayor contenido de fibra menor es el peso unitario del concreto fresco, además clasificaremos al concreto como "concreto convencional o normal", dado que se encuentran dentro del límite de 2200 kg/m³ y 2400 kg/m³.

4.3. Concreto endurecido.

4.3.1. Peso unitario del concreto en estado endurecido.

Los resultados obtenidos del peso unitario del concreto endurecido, fueron de 2350.56 kg/m³ para la muestra patrón, 2345.44 kg/m³ para la dosificación de 0.50% de fibra, 2329.98 kg/m³ para la dosificación de 0.75% de fibra y 2313.89 kg/m³ para la dosificación de 1.00% de fibra.

Notamos que a mayor contenido de fibra menor es el peso unitario del concreto endurecido.

4.3.2. Resistencia a compresión del concreto.

La resistencia a la compresión promedio a los 7 días es mayor en un 1.73% y 8.86% para las dosificaciones de 0.50% y 0.75% de fibra respectivamente, con respecto a la muestra patrón; mientras que para la dosificación de 1.00% de fibra la resistencia a la compresión es menor en un 14.10% respecto de la muestra patrón.

Esta tendencia se repite, aumentando un 1.13% y 1.59%, para la dosificación de 0.50% de fibra a los 14 y 28 días respectivamente, aumentando un 8.65% y 9.02% para la dosificación de 0.75% de fibra a los 14 y 28 días respectivamente y disminuyendo un 14.54% y 14.30% para la dosificación de 1.00% de fibra a los 14 y 28 días respectivamente.

Entonces vemos que la resistencia a la compresión mejora para dosificaciones de 0.5% y 0.75% de fibra, pero al aumentar la dosificación de fibra a 1.00% la resistencia a la compresión disminuye.

4.3.3. Resistencia a la flexión del concreto.

A los 14 días la resistencia a la flexión promedio es mayor en un 17.62% y 15.21% para las dosificaciones de 0.50% y 0.75% de fibra respectivamente, con respecto a la muestra patrón; mientras que para la dosificación de 1.00% de fibra la resistencia a la flexión es menor en un 5.23% respecto de la muestra patrón; a los 28 días la resistencia a la flexión en mayor en un 4.98% y 2.51% para las dosificaciones de 0.50% y 0.75% de fibra respectivamente, con respecto a la muestra patrón; mientras que para la dosificación de 1.00% de fibra la resistencia a la flexión es menor en un 10.54% respecto de la muestra patrón.

Entonces vemos que la resistencia a la flexión mejora para dosificaciones de 0.5% y 0.75% de fibra, pero al aumentar la dosificación de fibra a 1.00% la resistencia a la flexión disminuye.

4.3.4. Contrastación de la hipótesis

La adición de fibra de Agave Americana L aumenta en menos del 15% la resistencia mecánica del concreto $f'c=210\,kg/cm^2$, para dosificaciones de 0.5% y 0.75% de fibra de Agave Americana L, sin embargo, al aumentar la dosificación hasta el 1.00% de fibra de Agave Americana L, disminuye la resistencia mecánica del concreto $f'c=210\,kg/cm^2$, en la ciudad de Cajamarca.

Por lo que se niega la hipótesis pues la resistencia mecánica del concreto al adicionar fibras de Agave Americana L no aumenta en 15% tanto a compresión como a flexión para un concreto $f'c = 210 \ Kg/cm^2$.

CAPITULO V: CONCLUSIONES Y RECOMENDACIONES.

5.1. Conclusiones.

Se determinó que la resistencia mecánica del concreto con adición de fibra de Agave Americana L, fue de hasta 266.62 kg/cm² (mayor en 9.02% respecto al patrón) en compresión y hasta 53.96 kg/cm² (mayor en 4.98% respecto al patrón) en flexión.

Se determinó que la resistencia a la compresión del concreto con 0.50% de fibra de Agave Americana L fue de 146.47 kg/cm² a los 7 días, y es mayor en 1.73% respecto de la mezcla patrón, a los 14 días alcanzo una resistencia promedio de 181.28 kg/cm², siendo mayor en 1.13% respecto de la mezcla patrón, y a los 28 días alcanzo una resistencia promedio de 248.46 kg/cm², siendo mayor en 1.59% respecto de la mezcla patrón.

Se determinó que la resistencia a la compresión del concreto con 0.75% de fibra de Agave Americana L fue de 156.73 kg/cm² a los 7 días, y es mayor en 8.86% respecto de la mezcla patrón, a los 14 días alcanzo una resistencia promedio de 194.76 kg/cm², siendo mayor en 8.65% respecto de la mezcla patrón, y a los 28 días alcanzo una resistencia promedio de 266.62 kg/cm², siendo mayor en 9.02% respecto de la mezcla patrón.

Se determinó que la resistencia a la compresión del concreto con 1.00% de fibra de Agave Americana L fue de 123.68 kg/cm² a los 7 días, y es menor en 14.10% respecto de la mezcla patrón, a los 14 días alcanzo una resistencia promedio de 153.18 kg/cm², siendo menor en 14.54% respecto de la mezcla patrón, y a los 28 días alcanzo una resistencia promedio de 209.60 kg/cm², siendo menor en 14.30% respecto de la mezcla patrón.

Se determinó que la resistencia a la flexión del concreto con 0.50% de fibra de Agave Americana L a los 14 días alcanzo una resistencia promedio de 40.73 kg/cm², siendo mayor en

17.62% respecto de la mezcla patrón, y a los 28 días alcanzo una resistencia promedio de 53.96 kg/cm², siendo mayor en 4.98% respecto de la mezcla patrón.

Se determinó que la resistencia a la flexión del concreto con 0.75% de fibra de Agave Americana L a los 14 días alcanzo una resistencia promedio de 39.90 kg/cm², siendo mayor en 15.21% respecto de la mezcla patrón, y a los 28 días alcanzo una resistencia promedio de 52.70 kg/cm², siendo mayor en 2.51% respecto de la mezcla patrón.

Se determinó que la resistencia a la flexión del concreto con 1.00% de fibra de Agave Americana L a los 14 días alcanzo una resistencia promedio de 32.82 kg/cm², siendo menor en 5.23% respecto de la mezcla patrón, y a los 28 días alcanzo una resistencia promedio de 32.82 kg/cm², siendo mayor en 5.23% respecto de la mezcla patrón.

5.2. Recomendaciones.

Se recomienda realizar los estudios para la resistencia mecánica del concreto con adición de fibra de Agave Americana L con dosificaciones mayores al 1% de fibra.

REFERENCIAS BIBLIOGRAFICAS.

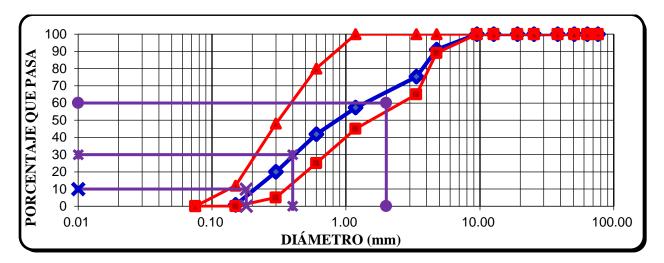
- Abanto, F. (2018). Tecnología del concreto. Lima: San Marcos.
- Beraún, E. (2017). Resistencia a la compresión de un concreto de f'c=280 kg/cm2 con adición de fibra vegetal (cocos conífera) con una proporción de 0.5%, 1.0% y 1.5%. Cajamarca, Perú: Universidad Nacional de Cajamarca.
- Cervera, M. (2015). *Resistencia de materiales*. Barcelona, España: Federación de Enseñanza de CC.OO. de Andalucía.
- Chiguay, M. (2007). *Propiedades mecánicas de losetas de hormigón con refuerzo de Colihue*. Valdivia, Chile: Universidad Austral de Chile.
- Dominguez, F. (2019). El concreto con fibras da más seguridad y durabilidad a las obras de construcción. Piura: Universidad de Piura.
- E.030, N. T. (2019). Diseño Sismoresistente. Reglamento Nacional de Edificaciones.
- E.060, N. T. (2019). Concreto Armado. Reglamento Nacional de Edificaciones.
- Edgar, M. (2012). Análisis comparativo de la resistencia a la compresión de bloques de concreto tipo I con y sin la adición de fibra sintética. Maracaibo, Venezuela: Universidad Católica San Andrés Bello.
- Hafsa, J., Rajesh, K., Ali, R., Uzair, H., Lutfor, R., Shabnam, N., . . . Rostislav, C. (2022). Natural cellulosic fiber reinforced concrete: influence of fiber type and loading percentage on mechanical and water absorption performance. Dhaka, Bangladesh.
- INACAL. (2016). AGREGADOS. Extracción y preparación de las muestras (NTP 400.010.).
- INACAL. (2018). AGREGADOS. Agregados para el Concreto. Requisitos (NTP 400.037.).
- INACAL. (2018). AGREGADOS. Método de ensayo normalizado para la densidad, la densidad relativa (peso específico) y absorción del agregado grueso (NTP 400.021.).
- INACAL. (2019). CONCRETO. Agua de Mezcla utilizada en la produccion de concreto de cemento pórtland. requisitos (NTP 339.088.).
- INACAL. (2019). CONCRETO. Definiciones y Terminología relativas al concreto y agregados (NTP 339.047.).
- INACAL. (2021). CONCRETO. Método de ensayo normalizado para la determinación de la resistencia a la compresión del concreto en muestras cilíndricas (NTP 339.034).
- INDECOPI. (2017). CONCRETO. Metodo de ensayo para determinar la resistencia a flexión del concreto en vigas simplemente apoyadas con cargas en el centro del tramo (NTP 339.079.).

- INDECOPI. (2017). CONCRETO. Metodo de ensayo para determinar la resistencia a la flexión del concreto en vigas simplemente apoyadas con cargas a los tercios del tramo (NTP 339.078.).
- INDECOPI. (2018). AGREGADOS. Método de ensayo normalizado para contenido de humedad total evaporable de agregados por secado (NTP 339.185).
- INDECOPI. (2018). CONCRETO. Método de ensayo para determinar el peso unitario, rendimiento y contenido de aire (método gravimétrico) del hormigón (NTP 339.046.).
- INDECOPI. (2019). AGREGADOS. Método de ensayo normalizado para la densidad, la densidad relativa (peso específico) y absorción del agregado fino (NTP 400.022.).
- INDECOPI. (2019). Análisis Granulométrico del Agregado Fino, Agregado Grueso y Global (NTP 400.012.).
- INDECOPI. (2019). CEMENTOS. Definiciones y nomenclatura (NTP 334.001).
- INDECOPI. (2020). AGREGADOS. Definición y clasificación de agregados para uso en morteros y hormigones (concretos) (NTP 400.011.).
- INDECOPI. (2020). AGREGADOS. Método de ensayo normalizado para determinar la masa por unidad de volumen o densidad ("Peso Unitario") y los vacíos en los agregados (NTP 400.017.).
- Juarez, C. (2002). Concretos base cemento portland reforzados con fibras naturales (agave lechuguilla), como materiales para construcción en México. Mexico: Universidad Autonoma de Nuevo Leon.
- Juaréz, C. (2002). Concretos base cemento portland reforzados con fibras naturales como materiales para construcción en México. Nuevo León, México: Universidad Autonoma de Nuevo León.
- Mallaupoma, G. J. (2017). Comportamiento del concreto con adición de fibras de agave americana L para la mejora de sus propiedades en estado fresco, San Carlos Huancayo. Huancayo.
- Mallauppoma, G. (2017). Comportamiento del concreto con adición de fibras de Agave Americana L. para la mejora de sus propiedades en estado fresco. Huancayo, Perú.: Universidad Continental.
- Mather, B. (2000). *Terminología del cemento y el hormigón*. ACI 116. American Concrete Institute.
- Maza, B. (2016). *Análisis de la resistencia de mezclas de concreto fresco y endurecido unidos con SIKADUR 32 Y CHEMA EPOX ADHESIVO 32*. Cajamarca: Universidad Nacional de Cajamarca.

- Osorio, J., Varón, F., & Herrera, J. (2007). *Comportamiento mecánico del concreto reforzado con fibras de bagazo de caña de azúcar*. Medellín, Colombia: Universidad Nacional de Colombia.
- Pajares, E. (2015). Análisis del incremento de la resistencia mecánica del concreto con la adición de fibra vegetal. Cajamarca: Universidad Nacional de Cajamarca.
- Pasquel, E. (2016). Control de calidad del concreto. Lima Perú : Capitulo peruano ACI.
- Queralt, J. (2023). Estudio de materiales compuestos de fibras vegetales para el refuerzo de estructuras de bajo coste en Brasil. Catalunya: Universidad Politecnica de Catalunya.
- Ramos, N. (2019). Análisis Comparativo del Comportamiento Mecánico del concreto reforzado con fibra de polipropilenoy acero. Cajamarca: Universidad Nacional de Cajamarca.
- Rivera, M., & Saldaña, R. (2019). Concreto con refuerzo de fibra de betarraga para mejorar la resistencia del concreto. Lima, Perú.
- Rivva, E. (2014). *Diseño de mezclas* (2da ed.). Lima, Perú: Instituto de la Construcción y Gerencia.
- Rivva, E. (2015). Materiales para el concreto (3ra ed.). Instituto de la Construcción y Gerencia.
- Rodríguez, A. (2000). *Las fibras clasificación y definición*. México.: Seminario de Investigación. Universidad Autónoma Metropolitana.
- Rodriguez, N. (2017). Diseño de concreto F´C= 250 kg/cm2 reforzado con cascarilla de café en la ciudad de Jaén. Jaén, Cajamarca, Perú.
- Sanz, E., & Sánchez, D. (2018). *Atlas de las plantas alóctonas invasoras de España*. Madrid: Dirección General para la Biodiversidad.
- Shah, I., Li, J., Zhang, Y., & Yang, S. (2021). Experimental investigation on the mechanical properties of natural fiber reinforced concrete. Kunming, China.
- SIKA. (s.f.). *SIKA Perú*. Obtenido de https://per.sika.com/es/construccion/aditivos-concreto/aditivos-concreto-premezclado/fibras-concreto/sikafiber-force-48.html
- Sika, P. S. (2021). Concreto reforzado con fibras. *Sika Informaciones Técnicas*. Obtenido de https://per.sika.com/es/construccion/aditivos-concreto/aditivos-concreto-premezclado/fibras-concreto/sikafiber-cho-6535nb.html
- Vidal, G. (2016). Las fibras vegetales y sus aplicaciones. Chile: Universidad de Concepción.

ANEXOS.

Anexo N°1: Propiedades físicas de los agregados extraídos de la cantera "Hermanos Alaya"


1. Agregado fino.

1.1. Análisis granulométrico.

Tabla 16Ensayo de análisis granulométrico del agregado fino.

Peso Seco I	nicial =				1100.00 g.
PESO SEC	O MENOR Q	UE 0.075 mm. (M	(ALLA N° 200) =	=	11.30 g.
Tamiz Abertura (mm)		- Peso Retenido	Porcentaje	Porcentaje	Porcentaje
		Parcial	Retenido Parcial	Retenido Acumulado	Que Pasa
3/8"	9.525	0.00	0.00	0.00	100.00
N°4	4.75	98.24	8.93	8.93	91.07
N°8	3.36	173.19	15.74	24.68	75.32
N 16	1.18	197.49	17.95	42.63	57.37
N 30	0.6	171.24	15.57	58.20	41.80
N 50	0.3	240.12	21.83	80.03	19.97
N 100	0.15	200.40	14.76	94.79	5.21
N 200	0.075	17.32	4.37	99.15	0.85
Cazoleta		9.30	0.85	100.00	0.00
TOTAL		1100			
MÓDULO	DE FINURA	=		3.092	

Figura 6Curva de distribución granulométrica del agregado fino.

1.2. Peso específico y absorción.

Tabla 17Ensayo de peso específico y absorción para el agregado fino

Descripción	Und.	M-1	M-2	M-3	Promedio
Peso de fiola	g	191.98	191.98	191.98	
Peso de la fiola +agua hasta menisco	g	689.50	689.50	689.50	
peso de la fiola +agua + muestra	g	1004.20	1003.90	1003.70	
Peso de la muestra superficialmente	g	500.00	500.00	500.00	
Seca					
Peso de la muestra secada al horno	g	493.71	493.55	493.68	
volumen de agua añadida al frasco	g	312.22	311.92	311.72	
(g)					
Peso Específico de Masa	g/m3	2.629	2.624	2.622	2.630
Peso Específico de Masa Saturado	g/m3	2.663	2.658	2.656	2.660
Superficialmente Seco					
Peso Específico de Aparente	g/m3	2.720	2.717	2.713	2.720
Absorción (%)	%	1.274	1.307	1.280	1.300

1.3. Peso unitario.

1.3.1. Peso específico del agua.

Tabla 18

Peso específico del agua.

Peso de la fiola en (g) =	191.98
Peso de la fiola en (g) =	689.50
Volumen de la fiola (cm3) =	500.00
Peso específico (g/cm3) =	0.995
P.e en (Kg/m3) =	995.04

1.3.2. Factor "F" del recipiente.

Tabla 19

Factor "F" del recipiente para agregado fino

Peso del Molde (g) =	1995.45
Peso del Molde +Agua (g) =	4816.00
Peso Agua (Kg) =	2.82
f (1/m3) =	352.78

1.3.3. Peso unitario seco suelto.

Tabla 20

Ensayo de peso unitario seco suelto del agregado fino.

Descripción	Und.	M-1	M-2	M-3	Promedio
Peso del recipiente	g	1997.00	1997.00	1997.00	
Peso de muestra suelta + recipiente	g	7001.00	7011.00	7020.00	
Peso de la muestra suelta	g	5004.00	5014.00	5023.00	
Factor (f)		352.78	352.78	352.78	
Peso Unitario Suelto	g/cm3	1.77	1.77	1.77	1.77
Peso Unitario Suelto	Kg/m3	1765.32	1768.85	1772.03	1768.73

1.3.4. Peso unitario seco compactado.

Tabla 21

Ensayo de peso unitario seco compactado del agregado fino.

Descripción	Und.	M-1	M-2	M-3	Promedio
Peso del recipiente	g	1997.00	1997.00	1997.00	
Peso de muestra compactada +	g	7332.00	7314.00	7312.00	
recipiente					
Peso de la muestra suelta	g	5335.00	5317.00	5315.00	
Factor (f)	1/m3	352.78	352.78	352.78	
Peso Unitario Compactado	g/cm3	1.88	1.88	1.88	1.88
Peso Unitario Compactado	Kg/m3	1882.09	1875.74	1875.04	1877.62

1.4. Contenido de humedad (%).

Tabla 22

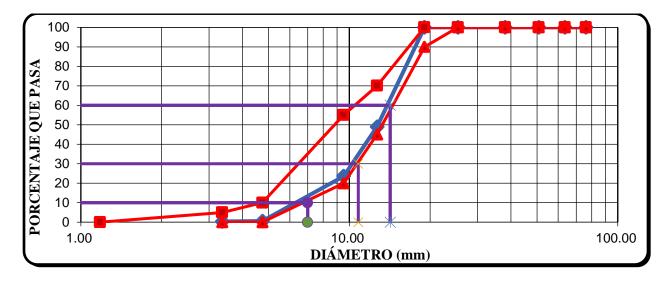
Ensayo de contenido de humedad (%) del agregado fino.

Descripción	Und.	M-1	M-2	M-3	Promedio
Peso del Recipiente	g	362.00	359.00	355.00	
Peso del Recipiente + muestra	g	6539.00	5753.00	5898.00	
húmeda					
Peso del Recipiente + muestra seca	g	6289.00	5528.00	5674.00	
Contenido de Humedad	W %	4.22	4.35	4.21	4.26

1.5. Material más fino que pasa el tamiz N° 200.

Tabla 23 $Ensayo \ de \ partículas < Tamiz \ N^{\circ} \ 200 \ del \ agregado \ fino.$

Descripción	Und.	M-1	M-2	M-3	Promedio
Peso de Muestra Original	g	500	500	500	
Peso de la muestra Lavada	g	489.83	487.95	488.78	
Peso del Material < Tamiz N° 200	g	10.17	12.05	11.22	
Material que Pasa el Tamiz N° 200	%	2.034	2.41	2.244	2.20


2. Agregado grueso.

2.1. Análisis granulométrico.

Tabla 24Ensayo de análisis granulométrico del agregado grueso.

Peso Seco	Inicial =				8189.00 g.
PESO SEC	9.00 g.				
Tamiz		Dana Datawida	Porcentaje	Porcentaje	
 N°	Abertura	Peso RetenidoParcial	Retenido	Retenido	Porcentaje Que Pasa
11	(mm)	Turoidi	Parcial	Acumulado	Tusu
3/4"	19.05	0.00	0.00	0.00	100.00
1/2**	12.7	4176.00	51.00	51.00	49.00
3/8"	9.525	2078.00	25.38	76.37	23.63
N°4	4.75	1893.00	23.12	99.49	0.51
N°8	3.36	13.00	0.16	99.65	0.35
N 16	1.18	13.00	0.16	99.80	0.20
N 30	0.6	1.00	0.01	99.82	0.18
N 50	0.3	0.00	0.00	99.82	0.18
N 100	0.15	2.00	0.02	99.84	0.16
N 200	0.075	4.00	0.05	99.89	0.11
Cazoleta		9.00	0.11	100.00	0.00
TOTAL		8189.00			
MÓDULO	DE FINURA	\ =		6.748	

Figura 7Curva de distribución granulométrica del agregado grueso.

2.2. Peso específico y absorción.

Tabla 25Ensayo de peso específico y absorción para el agregado grueso.

Descripción	Und.	M-1	M-2	M-3	Promedio
Peso de muestra SSS + canastilla	g	2643.00	2644.00	2646.00	
sumergida					
Peso de canastilla sumergida	g	778.00	778.00	778.00	
Peso de la muestra superficialmente	g	3000.00	3000.00	3000.00	
seca					
Peso de la muestra secada al horno	g	2964.00	2962.00	2965.00	
Peso de la muestra sumergida en el	g	1865.00	1866.00	1868.00	
agua					
Peso Específico de Masa	g/cm3	2.611	2.612	2.619	2.610
Peso Específico de Masa Saturado	g/cm3	2.643	2.646	2.650	2.65
Superficialmente Seco					
Peso Específico de Aparente	g/m3	2.697	2.703	2.703	2.700
Absorción (%)	%	1.215	1.283	1.180	1.200

2.3. Peso unitario.

2.3.1. Peso específico del agua.

Tabla 26

Peso específico del agua.

Peso de la fiola en (g) =	191.98
Peso de la fiola en (g) =	689.50
Volumen de la fiola (cm3) =	500.00
Peso específico (g/cm3) =	0.995
P.e en (Kg/m3) =	995.04

2.3.2. Factor "F" del recipiente.

Tabla 27

Factor "F" del recipiente para agregado grueso.

Peso del Molde (g) =	4226.00			
Peso del Molde +Agua (g) =	13558.00			
Peso Agua (Kg) =	9.33			
f(1/m3) =	106.63			

2.3.3. Peso unitario seco suelto.

Tabla 28

Ensayo de peso unitario seco suelto del agregado grueso.

Descripción	Und.	M-1	M-2	M-3	Promedio
Peso del recipiente	g	4228.00	4228.00	4228.00	
Peso de muestra suelta + recipiente	g	17562.00	17537.00	17559.00	
Peso de la muestra suelta	g	13334.00	13309.00	13331.00	
Factor (f)		106.63	106.63	106.63	
Peso Unitario Suelto	g/cm3	1.42	1.42	1.42	1.42
Peso Unitario Suelto	Kg/m3	1421.76	1419.09	1421.44	1420.76

2.3.4. Peso unitario seco suelto compactado.

Tabla 29Ensayo de peso unitario seco compactado del agregado grueso.

Descripción	Und.	M-1	M-2	M-3	Promedio
Peso del recipiente	g	4228.00	4228.00	4228.00	
Peso de muestra compactada +	g	18542.00	18675.00	18747.00	
recipiente					
Peso de la muestra suelta	g	14314.00	14447.00	14519.00	
Factor (f)	1/m3	106.63	106.63	106.63	
Peso Unitario Compactado	g/cm3	1.53	1.54	1.55	1.54
Peso Unitario Compactado	Kg/m3	1526.25	1540.44	1548.11	1538.27

2.4. Peso unitario.

Tabla 30

Ensayo de contenido de humedad (%) del agregado grueso.

Descripción	Und.	M-1	M-2	M-3	Promedio
Peso del Recipiente	g	133.00	112.00	112.00	
Peso del Recipiente + muestra	g	3250.00	2757.00	3077.00	
húmeda					
Peso del Recipiente + muestra seca	g	3242.00	2751.00	3069.00	
Contenido de Humedad	W %	0.26	0.23	0.27	0.25

2.5. Material más fino que pasa el tamiz N° 200.

Tabla 31 Ensayo de partículas < Tamiz N° 200 del agregado grueso.

Descripción	Und.	M-1	M-2	M-3	Promedio
Peso de Muestra Original	g	3000.00	3000.00	3000.00	
Peso de la muestra Lavada	g	2971.00	2983.00	2973.00	
Peso del Material < Tamiz N° 200	g	29.00	17.00	27.00	
Material que Pasa el Tamiz N° 200	%	0.97	0.57	0.90	0.80

2.6. Abrasión.

Tabla 32 *Ensayo de abrasión del agregado grueso.*

Gradación	Equipo	Nº de	Velocidad	Nº de	Tamaño Máx.	Peso de la
	Mecánico	Esferas	(rev./mim)	Revoluciones	Nominal	Muestra en (g.)
В	Máquina de los	11	30 - 33	500.00	1/2"	5000.00
	Ángeles					
Nº DE ENSAY	OS.			1º	2 º	3°
Peso Inicial	de la muestra sei	ca al horno ((g.)	5000	5000	5000
Peso retenio	lo en la malla Nº 1	2 Lavado y s	secado al	3733	3744	3758
horno (g)						
% Desg. =((Pi -Pf) / Pi) x 10	10		25.34	25.12	24.84
Abrasión %	Desgaste Promed	lio			25.00	

3. Propiedades de la Fibra.

Tabla 33Peso específico y absorción de la fibra de Agave Americana L.

Descripción	Und.	M-1	M-2	M-3	Promedio
Peso del picnómetro +agua hasta	g	639.00	639.00	639.00	
menisco					
peso del picnómetro +agua +	g	638.94	638.60	638.58	
muestra					
Peso de la muestra	g	29.51	39.58	49.51	
superficialmente Seca					
Peso de la muestra seca	g	22.10	31.40	35.97	
Peso Específico de Masa	g/m3	0.747	0.785	0.720	0.751
Peso Específico de Masa Saturado	g/m3	1.332	1.245	1.361	1.312
Superficialmente Seco					
Peso Específico de Aparente	g/m3	0.997	0.987	0.988	0.991
Absorción (%)	%	33.529	26.051	37.642	32.408

Anexo N°2: Diseño de mezcla.

1. Diseño de mezcla patrón.

DISEÑO DE MEZCLA

TESIS: "RESISTENCIA MECÁNICA DEL CONCRETO CON ADICIÓN DE FIBRAS DE AGAVE AMERICANA L"

TESISTA:Bach. Ing. Kelita Stefany Mantilla CarranzaASESOR:Dr. en Ing. Miguel Angel Mosqueira MorenoDISEÑO:0.00% DE FIBRA DE AGAVE AMERICANA L.

1. MATERIAL CEMENTANTE

2. PROCEDENCIA DE LOS AGREGADOS

CEMENTO: PACASMAYO TIPO I - A.S.T.M.C -150

AGREGADO FINO: HERMANOS ALAYA AGREGADO GRUESO: HERMANOS ALAYA

PESO ESPECÍFICO: 3.110 g/cm³

3. CARACTERISTICAS DE LOS AGREGADOS						
	AGREGADO) FINO	AGREGADO G	RUESO	FIBRA	1
TAMAÑO MAXIMO NOMINAL	•••		1/2**		•••	•
PESO ESPECIFICO DE MASA	2.630	g/cm3	2.610	g/cm3	0.751	g/cm3
PESO ESPECIFICO SATURADO SUPERFICIALMENTE SECO	2.660	g/cm3	2.650	g/cm3	1.312	g/cm3
PESO ESPECIFICO APARENTE	2.720	g/cm3	2.700	g/cm3	0.991	g/cm3
PESO UNITARIO SUELTO	1768.733	Kg/m3	1420.765	Kg/m3		-
PESO UNITARIO COMPACTADO	1877.625	Kg/m3	1538.267	Kg/m3		
CONTENIDO DE HUMEDAD (%)	4.261	•	0.252			•
ABSORCION (%)	1.300	•	1.200		32.408	•
MODULO DE FINURA	3.092		6.750			
ABRASION (%)			25.000			
% QUE PASA MALLA Nº 200	2.200		0.800			

4. ADICIÓN DE FIBRA

8. VOLUMENES ABSOLUTOS

NOMBRE DE LA FIBRA AGAVE AMERICANA L.	% 0.00	P.E. g/cm3 0.751	CEMENTO = AGUA DE MEZCLADO =	0.1206 m3 0.2160 m3
			AIRE (%) =	0.0250 m3
5. RESISTENCIA			SUMA =	0.3616 m3
F'c =	210.00 H	_	VOLUMEN DE AGREGADOS =	0.6384 m3
F'cr =	281.40 H	Kg/cm2		
6. RELACIÓN AGUA/CEMENT			9. PORCENTAJE DE AGREGADOS	
ASENTAMIENTO =	3" - 4"		% AGREGADO FINO =	60.02
AGUA DE MEZCLADO =	216.00 I	Lt/m3	% AGREGADO GRUESO =	39.98
AIRE TOTAL (%) =	2.50			
RELACION A/Mc =	0.58		10. VOLUMEN DE AGREGADOS	
CEMENTO =	375.00 H	Kg/m3	AGREGADO FINO SECO =	1008 Kg/m3
	8.82 H	Bolsas/m3	AGREGADO GRUESO SECO =	666 Kg/m3
7. MODULO DE COMBINACIÓ	N DE LOS A	GREGADOS	11. APORTE DE HUMEDAD DE LOS AGREGA	ADOS
7. MODULO DE COMBINACIÓ VACIOS=	ON DE LOS A 41.063 9		11. APORTE DE HUMEDAD DE LOS AGREGAPORTE AF =	ADOS 29.844
		%		
VACIOS=	41.063 %	%	APORTE AF =	29.844
VACIOS= VACIOS POR CORREGIR=	41.063 9 6.063 9	%	APORTE AF = APORTE AG =	29.844 -6.315
VACIOS= VACIOS POR CORREGIR= FCORR. MC=	41.063 9 6.063 9 0.121	%	APORTE AF = APORTE AG = APORTE FIBRA	29.844 -6.315 0.000
VACIOS= VACIOS POR CORREGIR= FCORR. MC= MC tabla=	41.063 9 6.063 9 0.121 4.676	%	APORTE AF = APORTE AG = APORTE FIBRA	29.844 -6.315 0.000
VACIOS= VACIOS POR CORREGIR= FCORR. MC= MC tabla= MC corregido=	41.063 9 6.063 9 0.121 4.676	%	APORTE AF = APORTE AG = APORTE FIBRA	29.844 -6.315 0.000
VACIOS= VACIOS POR CORREGIR= FCORR. MC= MC tabla= MC corregido= 12. MATERIALES	41.063 9 6.063 9 0.121 4.676	% %	APORTE AF = APORTE AG = APORTE FIBRA TOTAL =	29.844 -6.315 0.000
VACIOS= VACIOS POR CORREGIR= FCORR. MC= MC tabla= MC corregido= 12. MATERIALES MATERIALES DE DISEÑO	41.063 9 6.063 9 0.121 4.676 4.554	% % Kg	APORTE AF = APORTE AG = APORTE FIBRA TOTAL = MATERIALES CORREGIDOS POR HUMEDAD	29.844 -6.315 0.000 23.529
VACIOS= VACIOS POR CORREGIR= FCORR. MC= MC tabla= MC corregido= 12. MATERIALES MATERIALES DE DISEÑO CEMENTO	41.063 9 6.063 9 0.121 4.676 4.554	% % % Σg Lt	APORTE AF = APORTE AG = APORTE FIBRA TOTAL = MATERIALES CORREGIDOS POR HUMEDAD CEMENTO	29.844 -6.315 0.000 23.529
VACIOS= VACIOS POR CORREGIR= FCORR. MC= MC tabla= MC corregido= 12. MATERIALES MATERIALES DE DISEÑO CEMENTO AGUA DE DISEÑO	41.063 9 6.063 9 0.121 4.676 4.554 375.00 F 216.00 I	Kg Lt Kg	APORTE AF = APORTE AG = APORTE FIBRA TOTAL = MATERIALES CORREGIDOS POR HUMEDAD CEMENTO AGUA EFECTIVA	29.844 -6.315 0.000 23.529 375.00 Kg 192.47 Lt
VACIOS= VACIOS POR CORREGIR= FCORR. MC= MC tabla= MC corregido= 12. MATERIALES MATERIALES DE DISEÑO CEMENTO AGUA DE DISEÑO AGREGADO FINO SECO	41.063 9 6.063 9 0.121 4.676 4.554 375.00 F 216.00 I 1008 F	Kg Lt Kg	APORTE AF = APORTE AG = APORTE FIBRA TOTAL = MATERIALES CORREGIDOS POR HUMEDAD CEMENTO AGUA EFECTIVA AGREGADO FINO HUMEDO	29.844 -6.315 0.000 23.529 375.00 Kg 192.47 Lt 1051.00 Kg

13. PROPORCIONAMIENTO			
PROPORCION EN PESO		PROPORCION EN VOLUMEN	
CEMENTO =	1	CEMENTO =	1
A. FINO =	2.8	A. FINO =	2.280
A. GRUESO =	1.78	A. GRUESO =	1.880
AGUA =	21.8 (Lt / Bolsa)	AGUA =	21.8 (Lt / Bolsa)
A. AMERICANA L.=	0 %	A. AMERICANA L.=	0 %

14. TANDA PARA ENSAYOS

TANDA 210	0.04 m3
CEMENTO	15000 g
AGUA EFECTIVA	7699 g
AGREGADO FINO HUMEDO	42040 g
AGREGADO GRUESO	
HUMEDO	26720 g
ADITIVO	0 g

2. Diseño de mezcla con 0.50% de fibra de Agave Americana L.

DISEÑO DE MEZCLA

2. PROCEDENCIA DE LOS AGREGADOS

TESIS: "RESISTENCIA MECÁNICA DEL CONCRETO CON ADICIÓN DE FIBRAS DE AGAVE AMERICANA L"

TESISTA:Bach. Ing. Kelita Stefany Mantilla CarranzaASESOR:Dr. en Ing. Miguel Angel Mosqueira MorenoDISEÑO:0.50% DE FIBRA DE AGAVE AMERICANA L.

1. MATERIAL CEMENTANTE

CEMENTO: PACASMAYO TIPO I - A.S.T.M.C -150 AGREGADO FINO: HERMANOS ALAYA PESO ESPECÍFICO: 3.110 g/cm3 AGREGADO GRUESO: HERMANOS ALAYA

3. CARACTERISTICAS DE LOS AGREGADOS						
	AGREGADO	FINO	AGREGADO G	RUESO	FIBI	RA
TAMAÑO MAXIMO NOMINAL	•••		1/2"		•••	
PESO ESPECIFICO DE MASA	2.630	g/cm3	2.610	g/cm3	0.751	g/cm3
PESO ESPECIFICO SATURADO SUPERFICIALMENTE SECO	2.660	g/cm3	2.650	g/cm3	1.312	g/cm3
PESO ESPECIFICO APARENTE	2.720	g/cm3	2.700	g/cm3	0.991	g/cm3
PESO UNITARIO SUELTO	1768.733	Kg/m3	1420.765	Kg/m3	•••	
PESO UNITARIO COMPACTADO	1877.625	Kg/m3	1538.267	Kg/m3	•••	
CONTENIDO DE HUMEDAD (%)	4.261		0.252		•••	
ABSORCION (%)	1.300		1.200		32.408	
MODULO DE FINURA	3.092		6.750		•••	
ABRASION (%)	•••		25.000		•••	
% QUE PASA MALLA Nº 200	2.200		0.800		•••	

4. ADICIÓN DE FIBRA		
NOMBRE DE LA FIBRA	%	P.E. g/cm3
AGAVE AMERICANA L.	0.50	0.751

5. RESISTENCIA	
F'c =	210.00 Kg/cm2
F'cr =	281.40 Kg/cm2

6. RELACIÓN AGUA/CEMENTO		
ASENTAMIENTO =	3" - 4"	
AGUA DE MEZCLADO =	216.00 Lt/m3	
AIRE TOTAL (%) =	2.50	
RELACION A/Mc =	0.58	
CEMENTO =	375.00 Kg/m3	
	8.82 Bolsas/m3	

7. MODULO DE COMBINACIÓN DE LOS AGREGADOS			
VACIOS=	41.063 %		
VACIOS POR CORREGIR=	6.063 %		
FCORR. MC=	0.121		
MC tabla=	4.676		
MC corregido=	4.554		

8. VOLUMENES ABSOLUTOS	
CEMENTO =	0.1206 m3
AGUA DE MEZCLADO =	0.2160 m3
AIRE (%) =	0.0250 m3
SUMA =	0.3616 m3
VOLUMEN DE AGREGADOS =	0.6384 m3

9. PORCENTAJE DE AGREGADOS		
% AGREGADO FINO =	60.02	
% AGREGADO GRUESO =	39.98	
10. VOLUMEN DE AGREGADOS		
AGREGADO FINO SECO =	1008	Kg/m3
AGREGADO GRUESO SECO =	666	Kg/m3

11. APORTE DE HUMEDAD DE LOS AGREGADOS			
APORTE AF =	29.844		
APORTE AG =	-6.315		
APORTE FIBRA	-0.487		
TOTAL =	23.042		

12. MATERIALES					
MATERIALES DE DISEÑO MATERIALES CORREGIDOS POR HUMEDAD					
CEMENTO	375.00 Kg		CEMENTO	375.00	Kg
AGUA DE DISEÑO	216.00 Lt		AGUA EFECTIVA	192.96	•
AGREGADO FINO SECO	1008 Kg		AGREGADO FINO HUMEDO	1051.00	Kg
AGREGADO GRUESO SECO	666 Kg		AGREGADO GRUESO HUMEDO	668.00	Kg
AIRE TOTAL	2.50 %		AIRE TOTAL	2.50	%
A. AMERICANA L.	1.50 Kg		A. AMERICANA L.	1.50	Kg
13. PROPORCIONAMIENTO					
PROPORCION EN PESO			PROPORCION EN VOLUMEN		
CEMENTO =	1		CEMENTO =	1	
A. FINO =	2.8		A. FINO =	2.280	
A. GRUESO =	1.78		A. GRUESO =	1.880	
AGUA =	21.9 (Lt / Bo	olsa)	AGUA =	21.9	(Lt / Bolsa)
A. AMERICANA L.=	0.5 %		A. AMERICANA L.=	0.5	%
14. TANDA PARA ENSAYOS					
TANDA 210	0.04 m3				
CEMENTO	15000 g				
AGUA EFECTIVA	7718 g				
AGREGADO FINO HUMEDO AGREGADO GRUESO	42040 g				
HUMEDO	26720 g				
A. AMERICANA L.	60 g				

3. Diseño de mezcla con 0.75% de fibra de Agave Americana L.

DISEÑO DE MEZCLA

"RESISTENCIA MECÁNICA DEL CONCRETO CON ADICIÓN DE FIBRAS DE AGAVE AMERICANA L" **TESIS:**

TESISTA: Bach. Ing. Kelita Stefany Mantilla Carranza Dr. en Ing. Miguel Angel Mosqueira Moreno **ASESOR:** 0.75% DE FIBRA DE AGAVE AMERICANA L. **DISEÑO:**

1. MATERIAL CEMENTANTE

2. PROCEDENCIA DE LOS AGREGADOS

CEMENTO: PACASMAYO TIPO I - A.S.T.M.C -150 AGREGADO FINO: HERMANOS ALAYA PESO ESPECÍFICO: 3.110 g/cm3 AGREGADO GRUESO: HERMANOS ALAYA

3. CARACTERISTICAS DE LOS AGREGA	ADOS					
	AGREGADO) FINO	AGREGADO (GRUESO	FIBRA	A
TAMAÑO MAXIMO NOMINAL	•••		1/2"		•••	
PESO ESPECIFICO DE MASA	2.630	g/cm3	2.610	g/cm3	0.751	g/cm3
PESO ESPECIFICO SATURADO SUPERFICIALMENTE SECO	2.660	g/cm3	2.650	g/cm3	1.312	g/cm3
PESO ESPECIFICO APARENTE	2.720	g/cm3	2.700	g/cm3	0.991	g/cm3
PESO UNITARIO SUELTO	1768.733	Kg/m3	1420.765	Kg/m3	•••	
PESO UNITARIO COMPACTADO	1877.625	Kg/m3	1538.267	Kg/m3	•••	
CONTENIDO DE HUMEDAD (%)	4.261		0.252			
ABSORCION (%)	1.300		1.200		32.408	
MODULO DE FINURA	3.092		6.750			
ABRASION (%)	•••		25.000		•••	
% QUE PASA MALLA Nº 200	2.200		0.800		•••	

4. ADICIÓN DE FIBRA		
NOMBRE DE LA FIBRA	%	P.E. g/cm3
AGAVE AMERICANA L.	0.75	0.751

5. RESISTENCIA	
F'c =	210.00 Kg/cm2
F'cr =	281.40 Kg/cm2

6. RELACIÓN AGUA/CEMENTO		
ASENTAMIENTO =	3" - 4"	
AGUA DE MEZCLADO =	216.00 Lt/m3	
AIRE TOTAL (%) =	2.50	
RELACION A/Mc =	0.58	
CEMENTO =	375.00 Kg/m3	
	8.82 Bolsas/m3	

7. MODULO DE COMBINA	CION DE LOS AGREGADOS	
VACIOS=	41.063 %	
VACIOS POR CORREGIR=	6.063 %	
FCORR. MC=	0.121	
MC tabla=	4.676	
MC corregido=	4.554	

8. VOLUMENES ABSOLUTOS	
CEMENTO =	0.1206 m3
AGUA DE MEZCLADO =	0.2160 m3
AIRE (%) =	0.0250 m3
SUMA =	0.3616 m3
VOLUMEN DE AGREGADOS =	0.6384 m3

9. PORCENTAJE DE AGREGADOS	
% AGREGADO FINO =	60.02
% AGREGADO GRUESO =	39.98
10. VOLUMEN DE AGREGADOS	

AGREGADO FINO SECO =	1008 Kg/m3
AGREGADO GRUESO SECO =	666 Kg/m3

11. APORTE DE HUMEDAD DE LOS AGREGADOS					
APORTE AF =	29.844				
APORTE AG =	-6.315				
APORTE FIBRA	-0.974				
TOTAL =	22.555				

12. MATERIALES				
MATERIALES DE DISEÑO			MATERIALES CORREGIDOS POR HU	MEDAD
CEMENTO	375.00 K	ζg	CEMENTO	375.00 Kg
AGUA DE DISEÑO	216.00 L	t	AGUA EFECTIVA	193.44 Lt
AGREGADO FINO SECO	1008 K	$\zeta_{\mathbf{g}}$	AGREGADO FINO HUMEDO	1051.00 Kg
AGREGADO GRUESO SECO	666 K	<u>Cg</u>	AGREGADO GRUESO HUMEDO	668.00 Kg
AIRE TOTAL	2.50 %	,)	AIRE TOTAL	2.50 %
A. AMERICANA L.=	3.00 K	ζg	A. AMERICANA L.=	3.00 Kg
13. PROPORCIONAMIENTO				
PROPORCION EN PESO			PROPORCION EN VOLUMEN	
CEMENTO =	1		CEMENTO =	1
A. FINO =	2.8		A. FINO =	2.280
A. GRUESO =	1.78		A. GRUESO =	1.880
AGUA =	21.9 (I	Lt / Bolsa)	AGUA =	21.9 (Lt / Bolsa)
A. AMERICANA L.=	0.9 %	Ď	A. AMERICANA L.=	0.9 %
14. TANDA PARA ENSAYOS				
TANDA 210	0.04 m	13		
CEMENTO	15000 g			
AGUA EFECTIVA	7738 g			
AGREGADO FINO HUMEDO	42040 g			
AGREGADO GRUESO				
HUMEDO	26720 g			
A. AMERICANA L.	120 g			

4. Diseño de mezcla con 1.00% de fibra de Agave Americana L.

DISEÑO DE MEZCLA

TESIS: "RESISTENCIA MECÁNICA DEL CONCRETO CON ADICIÓN DE FIBRAS DE AGAVE AMERICANA L"

TESISTA: Bach. Ing. Kelita Stefany Mantilla Carranza

ASESOR: DISEÑO: DISEÑO: Bach. Ing. Kelita Stefany Mantilla Carranza

Dr. en Ing. Miguel Angel Mosqueira Moreno

1.00% DE FIBRA DE AGAVE AMERICANA L.

1. MATERIAL CEMENTANTE

2. PROCEDENCIA DE LOS AGREGADOS

CEMENTO: PACASMAYO TIPO I - A.S.T.M.C -150 AGREGADO FINO: HI

HERMANOS ALAYA

PESO ESPECÍFICO: 3.110 g/cm3 AGREGADO GRUESO: HERMANOS ALAYA

3. CARACTERISTICAS DE LOS AGREGADOS								
	AGREGADO) FINO	AGREGADO	GRUESO	FIBR	RA		
TAMAÑO MAXIMO NOMINAL	•••		1/2"		•••			
PESO ESPECIFICO DE MASA	2.630	g/cm3	2.610	g/cm3	0.751	g/cm3		
PESO ESPECIFICO SATURADO SUPERFICIALMENTE SECO	2.660	g/cm3	2.650	g/cm3	1.312	g/cm3		
PESO ESPECIFICO APARENTE	2.720	g/cm3	2.700	g/cm3	0.991	g/cm3		
PESO UNITARIO SUELTO	1768.733	Kg/m3	1420.765	Kg/m3	•••			
PESO UNITARIO COMPACTADO	1877.625	Kg/m3	1538.267	Kg/m3	•••			
CONTENIDO DE HUMEDAD (%)	4.261		0.252		•••			
ABSORCION (%)	1.300		1.200		32.408			
MODULO DE FINURA	3.092		6.750		•••	•		
ABRASION (%)	•••		25.000		•••			
% QUE PASA MALLA Nº 200	2.200		0.800		•••			

NOMBRE DE LA FIBRA	4. ADICIÓN DE FIBRA		8. VOLUMENES ABSOLUTOS	
AGAVE AMERICANA L. 1.00 0.751 AGUA DE MEZCLADO = 0.2160 m3 AIRE (%) = 0.0250 m3 5. RESISTENCIA SUMA = 0.3616 m3 F°C = 210.00 Kg/cm2 281.40 Kg/cm2 6. RELACIÓN AGUA/CEMENTO ASENTAMIENTO = 3° - 4° AGREGADO FINO = 60.02 AGUA DE MEZCLADO = 216.00 Lt/m3 AGREGADO FINO = 60.02 AGREGADO GRUESO = 39.98 AGREGADO FINO SECO = 1008 Kg/m3 AGREGADO FINO SECO = 1008 Kg/m AGREGADO GRUESO SECO = 666 Kg/m 7. MODULO DE COMBINACIÓN DE LOS AGREGADOS VACIOS = 41.063 % APORTE AF = 29.844 VACIOS POR CORREGIR = 6.063 % APORTE AF = 29.844 VACIOS POR CORREGIR = 4.676 TOTAL = 22.312 MC tabla = 4.676 MATERIALES MATERIALES MATERIALES MATERIALES MATERIALES DE DISEÑO CEMENTO = 375.00 Kg MATERIALES CORREGIDOS POR HUMEDAD CEMENTO = 375.00 Kg		% P.E. g/cm3		0.1206 m3
AIRE (%) = 0.0250 m3		_		
SUMA = 0.3616 m3			AIRE (%) =	
F'c = 210.00 Kg/cm2 VOLUMEN DE AGREGADOS = 0.6384 m3 F'cr = 281.40 Kg/cm2 VOLUMEN DE AGREGADOS = 0.6384 m3 F'cr = 281.40 Kg/cm2 VOLUMEN DE AGREGADOS = 0.6384 m3 6. RELACIÓN AGUA/CEMENTO 9. PORCENTAJE DE AGREGADOS AGUA DE MEZCLADO = 216.00 Lt/m3 % AGREGADO FINO = 60.02 AGRE TOTAL (%) = 2.50 ** ** RELACION A/Mc = 0.58 ** ** CEMENTO = 375.00 Kg/m3 AGREGADO FINO SECO = 1008 Kg/m AGREGADO GRUESO SECO = 666 Kg/m 666 Kg/m 7. MODULO DE COMBINACIÓN DE LOS AGREGADOS ** APORTE AF = 29.844 VACIOS = 41.063 % APORTE AF = 29.844 VACIOS POR CORREGIR = 6.063 % APORTE AG = -6.315 FCORR. MC = 0.121 APORTE FIBRA -1.217 MC tabla = 4.676 TOTAL = 22.312 MC corregido = 4.554 MATERIALES CORREGIDOS POR HUMEDAD CEMENTO 375.00 Kg CEMENTO	5. RESISTENCIA		· /	0.3616 m3
F'cr = 281.40 Kg/cm2 6. RELACIÓN AGUA/CEMENTO ASENTAMIENTO = 3" - 4" % AGREGADO FINO = 60.02 AGUA DE MEZCLADO = 216.00 Lt/m3 % AGREGADO GRUESO = 39.98 AIRE TOTAL (%) = 2.50 RELACION A/Mc = 0.58 CEMENTO = 375.00 Kg/m3 AGREGADO FINO SECO = 1008 Kg/m 8.82 Bolsas/m3 AGREGADO GRUESO SECO = 666 Kg/m 7. MODULO DE COMBINACIÓN DE LOS AGREGADOS VACIOS = 41.063 % AGREGADO GRUESO SECO = 666 Kg/m VACIOS POR CORREGIR = 6.063 % APORTE AF = 29.844 VACIOS POR CORREGIR = 6.063 % APORTE AG = -6.315 FCORR. MC = 0.121 APORTE FIBRA -1.217 MC tabla = 4.676 TOTAL = 22.312 MC corregido = 4.554 12. MATERIALES MATERIALES MATERIALES DE DISEÑO CEMENTO 375.00 Kg MATERIALES CORREGIDOS POR HUMEDAD CEMENTO 375.00 Kg	F'c =	210.00 Kg/cm2	VOLUMEN DE AGREGADOS =	0.6384 m3
ASENTAMIENTO = 3" - 4" % AGREGADO FINO = 60.02 AGUA DE MEZCLADO = 216.00 Lt/m3 % AGREGADO GRUESO = 39.98 AIRE TOTAL (%) = 2.50 RELACION A/Mc = 0.58	F'cr =	_		
ASENTAMIENTO = 3" - 4" % AGREGADO FINO = 60.02 AGUA DE MEZCLADO = 216.00 Lt/m3 % AGREGADO GRUESO = 39.98 AIRE TOTAL (%) = 2.50 RELACION A/Mc = 0.58	6. RELACIÓN AGUA/CEMENT	ΓΟ	9. PORCENTAJE DE AGREGADOS	
AIRE TOTAL (%) = 2.50 RELACION A/Mc = 0.58 CEMENTO = 375.00 Kg/m3 AGREGADO FINO SECO = 1008 Kg/m 8.82 Bolsas/m3 AGREGADO GRUESO SECO = 666 Kg/m 7. MODULO DE COMBINACIÓN DE LOS AGREGADOS VACIOS = 41.063 % APORTE AF = 29.844 VACIOS POR CORREGIR = 6.063 % APORTE AG = -6.315 FCORR. MC = 0.121 APORTE FIBRA -1.217 MC tabla = 4.676 TOTAL = 22.312 MC corregido = 4.554 MATERIALES MATERIALES MATERIALES DE DISEÑO CEMENTO 375.00 Kg MATERIALES CORREGIDOS POR HUMEDAD CEMENTO 375.00 Kg	ASENTAMIENTO =			60.02
RELACION A/Mc = 0.58 10. VOLUMEN DE AGREGADOS CEMENTO = 375.00 Kg/m3 AGREGADO FINO SECO = 1008 Kg/m 8.82 Bolsas/m3 AGREGADO GRUESO SECO = 666 Kg/m 7. MODULO DE COMBINACIÓN DE LOS AGREGADOS 11. APORTE DE HUMEDAD DE LOS AGREGADOS VACIOS = 41.063 % APORTE AF = 29.844 VACIOS POR CORREGIR = 6.063 % APORTE AG = -6.315 FCORR. MC = 0.121 APORTE FIBRA -1.217 MC tabla = 4.676 TOTAL = 22.312 MC corregido = 4.554 MATERIALES MATERIALES CORREGIDOS POR HUMEDAD CEMENTO 375.00 Kg CEMENTO 375.00 Kg	AGUA DE MEZCLADO =	216.00 Lt/m3	% AGREGADO GRUESO =	39.98
CEMENTO = 375.00 Kg/m3	AIRE TOTAL (%) =	2.50		
8.82 Bolsas/m3 AGREGADO GRUESO SECO = 666 Kg/m 7. MODULO DE COMBINACIÓN DE LOS AGREGADOS VACIOS = 41.063 % APORTE AF = 29.844 VACIOS POR CORREGIR= 6.063 % APORTE AG = -6.315 FCORR. MC= 0.121 APORTE FIBRA -1.217 MC tabla= 4.676 TOTAL = 22.312 MC corregido= 4.554 MATERIALES MATERIALES DE DISEÑO CEMENTO 375.00 Kg CEMENTO 375.00 Kg	RELACION A/Mc =	0.58	10. VOLUMEN DE AGREGADOS	
7. MODULO DE COMBINACIÓN DE LOS AGREGADOS VACIOS= 41.063 % APORTE AF = 29.844 VACIOS POR CORREGIR= 6.063 % APORTE AG = -6.315 FCORR. MC= 0.121 APORTE FIBRA -1.217 MC tabla= 4.676 TOTAL = 22.312 MC corregido= 4.554 12. MATERIALES MATERIALES DE DISEÑO CEMENTO 375.00 Kg CEMENTO 375.00 Kg	CEMENTO =	375.00 Kg/m3	AGREGADO FINO SECO =	1008 Kg/m
VACIOS= 41.063 % APORTE AF = 29.844 VACIOS POR CORREGIR= 6.063 % APORTE AG = -6.315 FCORR. MC= 0.121 APORTE FIBRA -1.217 MC tabla= 4.676 TOTAL = 22.312 MC corregido= 4.554 MATERIALES CORREGIDOS POR HUMEDAD CEMENTO 375.00 Kg CEMENTO 375.00 Kg		8.82 Bolsas/m3	AGREGADO GRUESO SECO =	666 Kg/m
VACIOS POR CORREGIR= 6.063 % APORTE AG = -6.315 FCORR. MC= 0.121 APORTE FIBRA -1.217 MC tabla= 4.676 TOTAL = 22.312 MC corregido= 4.554 MATERIALES MATERIALES DE DISEÑO MATERIALES CORREGIDOS POR HUMEDAD CEMENTO 375.00 Kg	7. MODULO DE COMBINACIO	ÓN DE LOS AGREGADOS	11. APORTE DE HUMEDAD DE LOS	AGREGADOS
FCORR. MC= 0.121 APORTE FIBRA -1.217 MC tabla= 4.676 TOTAL = 22.312 MC corregido= 4.554 TOTAL = 22.312 I2. MATERIALES MATERIALES DE DISEÑO MATERIALES CORREGIDOS POR HUMEDAD CEMENTO 375.00 Kg CEMENTO 375.00 Kg	VACIOS=	41.063 %	APORTE AF =	29.844
MC tabla= 4.676 TOTAL = 22.312 MC corregido= 4.554 TOTAL = 22.312 12. MATERIALES MATERIALES DE DISEÑO MATERIALES CORREGIDOS POR HUMEDAD CEMENTO 375.00 Kg CEMENTO 375.00 Kg	VACIOS POR CORREGIR=	6.063 %	APORTE $AG =$	-6.315
MC corregido= 4.554 12. MATERIALES MATERIALES DE DISEÑO CEMENTO 375.00 Kg MATERIALES CORREGIDOS POR HUMEDAD CEMENTO 375.00 Kg	FCORR. MC=	0.121	APORTE FIBRA	-1.217
12. MATERIALES MATERIALES DE DISEÑO CEMENTO 375.00 Kg MATERIALES CORREGIDOS POR HUMEDAD CEMENTO 375.00 Kg	MC tabla=	4.676	TOTAL =	22.312
MATERIALES DE DISEÑO CEMENTO 375.00 Kg MATERIALES CORREGIDOS POR HUMEDAD CEMENTO 375.00 Kg	MC corregido=	4.554		
MATERIALES DE DISEÑO CEMENTO 375.00 Kg MATERIALES CORREGIDOS POR HUMEDAD CEMENTO 375.00 Kg	12. MATERIALES			
	MATERIALES DE DISEÑO		MATERIALES CORREGIDOS POR HU	MEDAD
AGUA DE DISEÑO 216.00 Lt AGUA EFECTIVA 193.69 Lt	CEMENTO	375.00 Kg	CEMENTO	375.00 Kg
	AGUA DE DISEÑO	216.00 Lt	AGUA EFECTIVA	193.69 Lt

AGREGADO FINO SECO	1008 Kg	AGREGADO FINO HUMEDO	1051.00 Kg
AGREGADO GRUESO SECO	666 Kg	AGREGADO GRUESO HUMEDO	668.00 Kg
AIRE TOTAL	2.50 %	AIRE TOTAL	2.50 %
A. AMERICANA L.=	3.76 Kg	A. AMERICANA L.=	3.76 Kg

13. PROPORCIONAMIENTO			
PROPORCION EN PESO		PROPORCION EN VOLUMEN	
CEMENTO =	1	CEMENTO =	1
A. FINO =	2.8	A. FINO =	2.280
A. GRUESO =	1.78	A. GRUESO =	1.880
AGUA =	22 (Lt / Bolsa)	AGUA =	22 (Lt / Bolsa)
A. AMERICANA L.=	1.1 %	A. AMERICANA L.=	1.1 %

14. TANDA PARA ENSAYOS		
TANDA 210	0.04	m3
CEMENTO	15000	g
AGUA EFECTIVA	7748	g
AGREGADO FINO HUMEDO	42040	g
AGREGADO GRUESO		
HUMEDO	26720	g
A. AMERICANA L.	150	g

Anexo $N^{\circ}3$: Resultados de ensayos de peso unitario.

Tabla 34

Peso unitario del concreto en estado fresco.

% DE FIBRA	MUESTRA	VOLUME N (m3)	PESO DEL MOLDE (kg)	PESO DEL MOLDE + CONCRET O (kg)	PESO DEL CONCRET O (kg)	PESO UNITARIO (kg/m3)	PESO UNITARIO PROMEDIO (kg/m3)	SLUMP (in)	SLUMP PROMEDIO (in)
0%	M1	0.0055	6.47	6.47	13.11	2383.82	2380.91	3.50	3.75
	M2	0.0055	6.47	6.47	13.08	2378.00		4.00	_
0.50%	M3	0.0055	6.47	6.47	13.08	2378.55	2369.45	3.50	3.25
	M4	0.0055	6.47	6.47	12.98	2360.36		3.00	_
0.75%	M5	0.0055	6.47	6.47	12.97	2357.64	2354.09	3.25	3.25
	M6	0.0055	6.47	6.47	12.93	2350.55		3.25	_
1.00%	M7	0.0055	6.47	6.47	12.95	2354.18	2347.45	3.00	3.38
	M8	0.0055	6.47	6.47	12.87	2340.73	-	3.75	_

 Tabla 35

 Peso unitario del concreto en estado endurecido.

% DE FIBRA	MUESTRA	Ø PROMEDIO (cm)	AREA (m2)	ALTURA (cm)	VOLUMEN (m3)	PESO DEL CONCRETO (kg)	PESO UNITARIO (kg/m3)	PESO UNITARIO PROMEDIO (kg/m3)
0%	M1	15.05	0.0178	30.05	0.0053	12.46	2331.20	2350.56
	M2	15.06	0.0178	30.05	0.0054	12.53	2340.81	_
	M3	14.94	0.0175	29.97	0.0053	12.50	2379.79	_
	M4	15.01	0.0177	30.05	0.0053	12.50	2350.42	_
0.05%	M5	15.07	0.0178	30.20	0.0054	12.38	2298.44	2345.44
	M6	15.04	0.0178	30.05	0.0053	12.54	2349.48	_
	M7	15.02	0.0177	30.00	0.0053	12.59	2367.75	_
	M8	14.91	0.0175	29.80	0.0052	12.31	2366.09	_
0.75%	M9	15.03	0.0177	30.03	0.0053	12.33	2313.82	2329.98
	M10	15.01	0.0177	30.00	0.0053	12.49	2352.26	_
	M11	14.99	0.0176	30.01	0.0053	12.31	2323.58	_
	M12	15.02	0.0177	30.02	0.0053	12.40	2330.27	_
1.00%	M13	14.94	0.0175	30.03	0.0053	12.32	2339.88	2313.89
	M14	14.97	0.0176	30.03	0.0053	12.13	2295.70	_
	M15	15.04	0.0178	30.03	0.0053	12.11	2270.26	_
	M16	14.98	0.0176	30.02	0.0053	12.43	2349.72	_

•

Anexo N°4: Resultados de ensayos de resistencia a la compresión.

1. Resultados de resistencia a la compresión a los 7 días.

RESULTADOS DE ENSAYOS A LA COMPRESIÓN UNIAXIAL DE ESPECÍMENES CILÍNDRICOS DE CONCRETO (NTP 339.034 2021)

Fecha: 8/09/2023 % de fibra: 0.00% Edad de especímenes: 7 días

"RESISTENCIA MECÁNICA DEL CONCRETO CON ADICIÓN DE FIBRAS DE AGAVE

TESIS: AMERICANA L"

TESISTA: Bach. Ing. Kelita Stefany Mantilla Carranza ASESOR: Dr. en Ing. Miguel Angel Mosqueira Moreno

DETERMINACIÓN DE LA RESISTENCIA A LA COMPRESIÓN DEL CONCRETO EN MUESTRAS CILÍNDRICAS

DATOS DE LA MUESTRA					
N° DE MUESTRA	1	2	3	4	
CÓDIGO	0% 7 Días MC 01	0% 7 Días MC 02	0% 7 Días MC 03	0% 7 Días MC 04	
FECHA DE ELABORACIÓN	1/09/2023	1/09/2023	1/09/2023	1/09/2023	
RESISTENCIA DE DISEÑO (kg/cm²)	210	210	210	210	

	DATOS D	EL ENSAYO		
FECHA DE ENSAYO	8/09/2023	8/09/2023	8/09/2023	8/09/2023
PESO (g)	12518	12475	12485	12539
DIÁMETRO (cm)	15.05	15.01	15.00	15.03
ALTURA (cm)	30.13	30.17	30	30.07
TIPO DE FRACTURA	3	3	2	3

RESULTADOS					
EDAD DEL TESTIGO (días)	7	7	7	7	
SECCIÓN TRANSVERSAL (cm²)	177.89	176.95	176.71	177.42	
VOLUMEN (cm³)	5359.97	5338.59	5301.44	53 35.08	
ESBELTEZ	2.002	2.010	2.000	2.001	

PATRONES DE TIPOS DE FRACTURA

Tipo 1:

Conos razonables bien formados, en ambas bases, menos de 25 mm de grietas entre capas.

Tipo 2:

Cono bien formado, sobre una base, desplazamiento de grietas verticales a través de las capas, cono no bien definido en las otras partes.

Tipo 3:

Grietas verticales columnares er ambas bases, conos no bien formados.

Tipo 4:

Fractura diagonal sin grietas en las bases, golpear con martillo para diferenciar del tipo 1.

FACTOR DE CORRECCIÓN	1	1	2	1
PESO ESPECÍFICO (g/cm³)	2.34	2.34	2.36	2.35
CARGA MÁXIMA (kN)	235.82	249.36	254.22	261.6
CARGA MÁXIMA (kg)	24047.04	25427.74	25923.32	26675.88
RESISTENCIA OBTENIDA (kg/cm²)	135.18	143.70	146.70	150.35
PORCENTAJE OBTENIDO (%)	64.37%	68.43%	69.86%	71.60%

Ī	<u>Tipo 5:</u>
	Fracturas de lado en las bases (superior o inferior) ocurren comúnmente con las capas de embonado.
	Similar al tipo 5 pero el terminal del cilindro es

Resistencia promedio del concreto en función del día (Valores referenciales)						
EDAD EN	AD EN RESISTENCIA (%)					
DÍAS	MINIMO	IDEAL				
7.00	55.00	70.00				
14.00	70.00	85.00				
21.00	80.00	95.00				
28.00	100.00	115.00				

$$f_{cmt} = \left[\frac{t}{a+bt}\right] * f_{cm28}$$

Donde:
$$a = 0.40$$

$$b = 0.85$$

$$t = \frac{Edad}{(días)}$$

Fecha:9/09/2023% de fibra:0.50%Edad de especímenes:7 días**RESISTENCIA MECÁNICA DEL CONCRETO CON ADICIÓN DE FIBRAS DE AGAVE

TESIS:

AMERICANA L"

TESISTA: Bach. Ing. Kelita Stefany Mantilla Carranza **ASESOR:** Dr. en Ing. Miguel Angel Mosqueira Moreno

DETERMINACIÓN DE LA RESISTENCIA A LA COMPRESIÓN DEL CONCRETO EN MUESTRAS CILÍNDRICAS

DATOS DE LA MUESTRA					
N° DE MUESTRA	5	6	7	8	
CÓDIGO	0.5% 7 Días MC 01	0.5% 7 Días MC 02	0.5% 7 Días MC 03	0.5% 7 Días MC 04	
FECHA DE ELABORACIÓN	2/09/2023	2/09/2023	2/09/2023	2/09/2023	
RESISTENCIA DE DISEÑO (kg/cm²)	210	210	210	210	

DATOS DEL ENSAYO					
FECHA DE ENSAYO	9/09/2023	9/09/2023	9/09/2023	9/09/2023	
PESO (g)	12456	12515	12435	12498	
DIÁMETRO (cm)	15.05	14.98	15.08	15.07	
ALTURA (cm)	30.09	30.05	30.1	30.09	
TIPO DE FRACTURA	4	3	3	3	

RESULTADOS					
EDAD DEL TESTIGO (días)	7	7	7	7	
SECCIÓN TRANSVERSAL (cm²)	177.89	176.24	178.60	178.37	
VOLUMEN (cm³)	5352.85	5296.12	5376.00	5367.09	
ESBELTEZ	1.999	2.006	1.996	1.997	
FACTOR DE CORRECCIÓN	1	1	2	1	
PESO ESPECÍFICO (g/cm³)	2.33	2.36	2.31	2.33	

PATRONES DE TIPOS DE FRACTURA

Tipo 1:

Conos razonables bien formados, en ambas bases, menos de 25 mm de grietas entre capas.

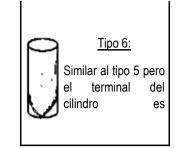
Tipo 2:

Cono bien formado, sobre una base, desplazamiento de grietas verticales a través de las capas, cono no bien definido en las otras partes.

Tipo 3:

Grietas verticales columnares en ambas bases, conos no bien formados.

Tipo 4:


Fractura diagonal sin grietas en las bases, golpear con martillo para diferenciar del tipo 1.

Tipo 5:

Fracturas de lado en las bases (superior o inferior) ocurren comúnmente con las capas de embonado.

CARGA MÁXIMA (kN)	253.74	254.12	252.8	260.78
CARGA MÁXIMA (kg)	25874.38	25913.12	25778.52	26592.26
RESISTENCIA	145.45	147.03	144.33	149.09
OBTENIDA (kg/cm²)	140.40	21,,00	11	11000

Resistencia promedio del concreto en función del día (Valores referenciales)						
EDAD EN	EN RESISTENCIA (%)					
DÍAS	MINIMO	IDEAL				
7.00	55.00	70.00				
14.00	70.00	85.00				
21.00	80.00	95.00				
28.00	100.00	115.00				

$$f_{cmt} = \left[\frac{t}{a+bt}\right] * f_{cm28}$$

Donde:
$$a = 0.40$$

$$b = 0.85$$

$$t = \frac{Edad}{(días)}$$

Fecha: 10/09/2023 % de fibra: 0.75% Edad de especímenes: 7 días

"RESISTENCIA MECÁNICA DEL CONCRETO CON ADICIÓN DE FIBRAS DE AGAVE

TESIS:

AMERICANA L"

TESISTA: Bach. Ing. Kelita Stefany Mantilla Carranza

ASESOR: Dr. en Ing. Miguel Angel Mosqueira Moreno

DETERMINACIÓN DE LA RESISTENCIA A LA COMPRESIÓN DEL CONCRETO EN MUESTRAS CILÍNDRICAS

DATOS DE LA MUESTRA					
N° DE MUESTRA	9	10	11	12	
CÓDIGO	0.75% 7 Días MC 01	0.75% 7 Días MC 02	0.75% 7 Días MC 03	0.75% 7 Días MC 04	
FECHA DE ELABORACIÓN	3/09/2023	3/09/2023	3/09/2023	3/09/2023	
RESISTENCIA DE DISEÑO (kg/cm²)	210	210	210	210	

DATOS DEL ENSAYO						
FECHA DE ENSAYO	10/09/2023	10/09/2023	10/09/2023	10/09/2023		
PESO (g)	12409	12387	12438	12342		
DIÁMETRO (cm)	15.06	15.00	15.05	15.01		
ALTURA (cm)	30.15	30.02	30.12	30.11		
TIPO DE FRACTURA	3	3	4	4		

RESULTADOS							
EDAD DEL TESTIGO (días)	7	7	7	7			
SECCIÓN TRANSVERSAL (cm²)	178.13	176.71	177.89	176.95			
VOLUMEN (cm³)	5370.65	5304.97	5358.19	5327.97			
ESBELTEZ	2.00199203	2.00133333	2.00132890	2.005996			
FACTOR DE CORRECCIÓN	1	1	2	1			
PESO ESPECÍFICO (g/cm³)	2.31	2.33	2.32	2.32			

PATRONES DE TIPOS DE FRACTURA

Tipo 1:

Conos razonables bien formados, en ambas bases, menos de 25 mm de grietas entre capas.

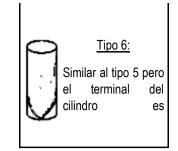
Tipo 2:

Cono bien formado, sobre una base, desplazamiento de grietas verticales a través de las capas, cono no bien definido en las otras partes.

Tipo 3:

Grietas verticales columnares en ambas bases, conos no bien formados.

Tipo 4:


Fractura diagonal sin grietas en las bases, golpear con martillo para diferenciar del tipo 1.

Tipo 5:

Fracturas de lado en las bases (superior o inferior) ocurren comúnmente con las capas de embonado.

CARGA MÁXIMA (kN)	256.91	273.02	283.26	277.54
CARGA MÁXIMA (kg)	26197.63	27840.40	28884.59	28301.31
RESISTENCIA	1 45 05	15554	162.25	150.04
OBTENIDA (kg/cm²)	147.07	157.54	162.37	159.94

Resistencia promedio del concreto en función del día (Valores referenciales)					
EDAD EN	RESISTE	NCIA (%)			
DÍAS	MINIMO	IDEAL			
7.00	55.00	70.00			
14.00	70.00	85.00			
21.00	80.00	95.00			
28.00	100.00	115.00			

$$f_{cmt} = \left[\frac{t}{a+bt}\right] * f_{cm28}$$

Donde:
$$a = 0.40$$

$$b = 0.85$$

$$t = \frac{Edad}{(días)}$$

Fecha: 10/09/2023 % de fibra: 1.00% Edad de especímenes: 7 días

"RESISTENCIA MECÁNICA DEL CONCRETO CON ADICIÓN DE FIBRAS DE AGAVE

TESIS:

AMERICANA L"

TESISTA: Bach. Ing. Kelita Stefany Mantilla Carranza **ASESOR:** Dr. en Ing. Miguel Angel Mosqueira Moreno

DETERMINACIÓN DE LA RESISTENCIA A LA COMPRESIÓN DEL CONCRETO EN MUESTRAS CILÍNDRICAS

DATOS DE LA MUESTRA						
N° DE MUESTRA	13 14		15	16		
CÓDIGO	CÓDIGO 1% 7 Días 1% 7 Días MC 01 MC 02		1% 7 Días MC 03	1% 7 Días MC 04		
FECHA DE ELABORACIÓN	3/09/2023	3/09/2023	3/09/2023	3/09/2023		
RESISTENCIA DE DISEÑO (kg/cm²)	210	210	210	210		

DATOS DEL ENSAYO						
FECHA DE ENSAYO	10/09/2023	10/09/2023	10/09/2023	10/09/2023		
PESO (g)	12396	12398	12416	12390		
DIÁMETRO (cm)	15.02	14.92	15.03	15.01		
ALTURA (cm)	30.02	30.15	30.01	30.01		
TIPO DE FRACTURA	3	4	3	3		

RESULTADOS						
EDAD DEL TESTIGO (días)	7	7	7	7		
SECCIÓN TRANSVERSAL (cm²)	177.19	174.83	177.42	176.95		
VOLUMEN (cm³)	5319.13	5271.26	5324.44	5310.28		
ESBELTEZ	1.9987	2.0208	1.9967	1.9993		
FACTOR DE CORRECCIÓN	1	1	2	1		
PESO ESPECÍFICO (g/cm³)	2.33	2.35	2.33	2.33		

PATRONES DE TIPOS DE FRACTURA

<u>Tipo 1:</u>

Conos razonables bien formados, en ambas bases, menos de 25 mm de grietas entre capas.

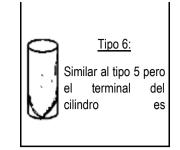
Tipo 2:

Cono bien formado, sobre una base, desplazamiento de grietas verticales a través de las capas, cono no bien definido en las otras partes.

Tipo 3:

Grietas verticales columnares en ambas bases, conos no bien formados.

Tipo 4:


Fractura diagonal sin grietas en las bases, golpear con martillo para diferenciar del tipo 1.

Tipo 5:

Fracturas de lado en las bases (superior o inferior) ocurren comúnmente con las capas de embonado.

CARGA MÁXIMA (kN)	209.25	214.02	212.93	220.57
CARGA MÁXIMA (kg)	21337.64	21824.05	21712.90	22491.96
RESISTENCIA			•	
OBTENIDA (kg/cm²)	120.43	124.83	122.38	127.11

Resistencia promedio del concreto en función del día (Valores referenciales)					
EDAD EN	RESISTE	NCIA (%)			
DÍAS	MINIMO	IDEAL			
7.00	55.00	70.00			
14.00	70.00	85.00			
21.00	80.00	95.00			
28.00	100.00	115.00			

$$f_{cmt} = \left[\frac{t}{a+bt}\right] * f_{cm28}$$

Donde:
$$a = 0.40$$

$$b = 0.85$$

$$t = \frac{Edad}{(días)}$$

RESISTENCIA A COMPRESIÓN DEL CONCRETO ASTM C 39

TESIS: "RESISTENCIA MECÁNICA DEL CONCRETO CON ADICIÓN DE FIBRAS DE

AGAVE AMERICANA L"

TESISTA: Bach. Ing. Kelita Stefany Mantilla Carranza **ASESOR** Dr. en Ing. Miguel Angel Mosqueira Moreno

MUESTRA: Especímenes de Concreto Procesados por el Tesista a beneficio de la investigación

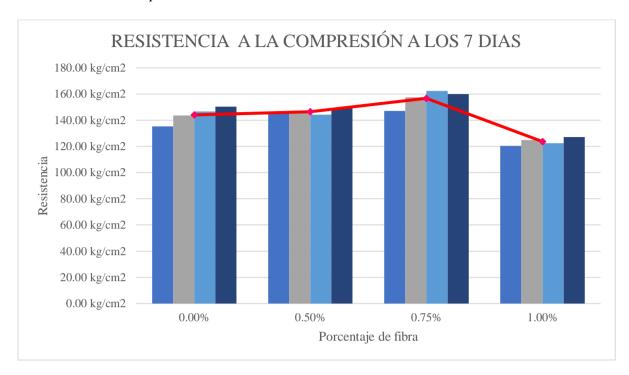
EDAD: 7 días

CONDICIONES DE DISEÑO CON 0.00% DE FIBRA F'C DISEÑO 210 KG/cm2

N° DE MUESTRA	CÓDIGO	DIAMETRO	AREA	CARGA DE ROTURA	F´C OBTENIDO	% DEL F´C
1	0% 7 Días MC 01	15.05 cm	177.89 cm2	24046.95 kg	135.18 kg/cm2	64.37%
2	0% 7 Días MC 02	15.01 cm	176.95 cm2	25427.64 kg	143.70 kg/cm2	68.43%
3	0% 7 Días MC 03	15.00 cm	176.71 cm2	25923.23 kg	146.70 kg/cm2	69.85%
4	0% 7 Días MC 04	15.03 cm	177.42 cm2	26675.78 kg	150.35 kg/cm2	71.60%
F'C P	ROMEDIO		1	43.98 kg/cm2		
DESVIACI	ON ESTANDAR	5.60				
COEFICIENT	TE DE VARIACION	3.89%				

CONDICIONES DE DISEÑO CON 0.50% DE FIBRA F'C DISEÑO 210 KG/cm2

N° DE MUESTRA	CÓDIGO	DIAMETRO	AREA	CARGA DE ROTURA	F´C OBTENIDO	% DEL F´C
	0.5% 7 Días MC					
5	01	15.05 cm	177.89 cm2	25874.28 kg	145.45 kg/cm2	69.26%
	0.5% 7 Días MC					
6	02	14.98 cm	176.24 cm2	25913.03 kg	147.03 kg/cm2	70.01%
	0.5% 7 Días MC					
7	03	15.08 cm	178.60 cm2	25778.43 kg	144.33 kg/cm2	68.73%
	0.5% 7 Días MC					
8	04	15.07 cm	178.37 cm2	26592.16 kg	149.09 kg/cm2	70.99%
F'C P	ROMEDIO	146.47 kg/cm2				
DESVIACI	ON ESTANDAR	1.79				
COEFICIENT	TE DE VARIACION			1.22%		


CONDICIONES DE DISEÑO CON 0.75% DE FIBRA F'C DISEÑO 210 KG/cm2

N° DE MUESTRA	CÓDIGO	DIAMETRO	AREA	CARGA DE ROTURA	F´C OBTENIDO	% DEL F´C
,	0.75% 7 Días MC					
9	01	15.06 cm	178.13 cm2	26197.53 kg	147.07 kg/cm2	70.03%
	0.75% 7 Días MC					
10	02	15.00 cm	176.71 cm2	27840.29 kg	157.54 kg/cm2	75.02%
	0.75% 7 Días MC					
11	03	15.05 cm	177.89 cm2	28884.48 kg	162.37 kg/cm2	77.32%
	0.75% 7 Días MC					
12	04	15.01 cm	176.95 cm2	28301.20 kg	159.94 kg/cm2	76.16%
F'C P	ROMEDIO	156.73 kg/cm2				
DESVIACI	ON ESTANDAR	R 5.83				
COEFICIENT	TE DE VARIACION			3.72%		

CONDICIONES DE DISEÑO CON 1.00% DE FIBRA F'C DISEÑO 210 KG/cm2

N° DE MUESTRA	CÓDIGO	DIAMETRO	AREA	CARGA DE ROTURA	F´C OBTENIDO	% DEL F´C
13	1% 7 Días MC 01	15.02 cm	177.19 cm2	21337.56 kg	120.42 kg/cm2	57.35%
14	1% 7 Días MC 02	14.92 cm	174.83 cm2	21823.97 kg	124.83 kg/cm2	59.44%
15	1% 7 Días MC 03	15.03 cm	177.42 cm2	21712.82 kg	122.38 kg/cm2	58.28%
16	1% 7 Días MC 04	15.01 cm	176.95 cm2	22491.88 kg	127.11 kg/cm2	60.53%
F'C P	ROMEDIO			123.68 kg/cm2		
DESVIACI	ON ESTANDAR	2.52				
COEFICIENT	TE DE VARIACION	2.04%				

Figura 8Resistencia a la compresión a los 7 días.

2. Resultados de resistencia a la a los 14 días.

RESULTADOS DE ENSAYOS A LA COMPRESIÓN UNIAXIAL DE ESPECÍMENES CILÍNDRICOS DE CONCRETO (NTP 339.034 2021)

Fecha: 15/09/2023 % de fibra: 0.00% Edad de especímenes: 14 días

"RESISTENCIA MECÁNICA DEL CONCRETO CON ADICIÓN DE FIBRAS DE AGAVE

TESIS:

AMERICANA L"

TESISTA: Bach. Ing. Kelita Stefany Mantilla Carranza ASESOR: Dr. en Ing. Miguel Angel Mosqueira Moreno

DETERMINACIÓN DE LA RESISTENCIA A LA COMPRESIÓN DEL CONCRETO EN MUESTRAS CILÍNDRICAS

DATOS DE LA MUESTRA					
N° DE MUESTRA	1	2	3	4	
CÓDIGO	0% 14 Días MC 05	0% 14 Días MC 06	0% 14 Días MC 07	0% 14 Días MC 08	
FECHA DE ELABORACIÓN	1/09/2023	1/09/2023	1/09/2023	1/09/2023	
RESISTENCIA DE DISEÑO (kg/cm²)	210	210	210	210	

DATOS DEL ENSAYO					
FECHA DE ENSAYO	15/09/2023	15/09/2023	15/09/2023	15/09/2023	
PESO (g)	12496	12485	12487	12524	
DIÁMETRO (cm)	15.02	15.04	15.06	15.07	
ALTURA (cm)	30.13	30.17	30.05	30.07	
TIPO DE FRACTURA	3	3	1	3	

RESULTADOS					
EDAD DEL TESTIGO (días)	14	14	14	14	
SECCIÓN TRANSVERSAL (cm²)	177.19	177.66	178.13	178.37	
VOLUMEN (cm³)	5338.62	5359.95	5352.84	5363.52	
ESBELTEZ	2.006	2.006	1.995	1.995	
FACTOR DE CORRECCIÓN	1	1	2	1	

PATRONES DE TIPOS DE FRACTURA

Tipo 1:

Conos razonables bien formados, en ambas bases, menos de 25 mm de grietas entre capas.

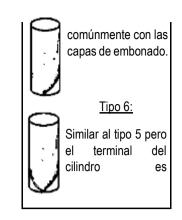
<u>Tipo 2:</u>

Cono bien formado, sobre una base, desplazamiento de grietas verticales a través de las capas, cono no bien definido en las otras partes.

<u>Tipo 3:</u>

Grietas verticales columnares en ambas bases, conos no bien formados.

<u>Tipo 4:</u>



Fractura diagonal sin grietas en las bases, golpear con martillo para diferenciar del tipo 1.

Tipo 5:

Fracturas de lado en las bases (superior o inferior) ocurren

PESO ESPECÍFICO (g/cm³)	2.34	2.33	2.33	2.34
CARGA MÁXIMA (kN)	319.1802	302.6961	313.3773	315.1713
CARGA MÁXIMA (kg)	32547.44	30866.53	31955.71	32138.65
RESISTENCIA OBTENIDA (kg/cm²)	183.69	173.74	179.39	180.18
PORCENTAJE OBTENIDO (%)	87.47%	82.73%	85.43%	85.80%

Resistencia promedio del concreto en función del día (Valores referenciales)				
EDAD EN	RESISTE	NCIA (%)		
DÍAS	MINIMO	IDEAL		
7.00	55.00	70.00		
14.00	70.00	85.00		
21.00	80.00	95.00		
28.00	100.00	115.00		

$$f_{cmt} = \left[\frac{t}{a+bt}\right] * f_{cm28}$$

Donde:
$$a = 0.40$$

$$b = 0.85$$

$$t = \frac{Edad}{(días)}$$

Fecha: 16/09/2023 % de fibra: 0.50% Edad de especímenes: 14 días

TESIS: "RESISTENCIA MECÁNICA DEL CONCRETO CON ADICIÓN DE FIBRAS DE AGAVE

AMERICANA L"

TESISTA: Bach. Ing. Kelita Stefany Mantilla Carranza

ASESOR: Dr. en Ing. Miguel Angel Mosqueira Moreno

DETERMINACIÓN DE LA RESISTENCIA A LA COMPRESIÓN DEL CONCRETO EN MUESTRAS CILÍNDRICAS

DATOS DE LA MUESTRA					
N° DE MUESTRA	5	6	7	8	
CÓDIGO	0.5% 14 Días MC 05	0.5% 14 Días MC 06	0.5% 14 Días MC 07	0.5% 14 Días MC 08	
FECHA DE ELABORACIÓN	2/09/2023	2/09/2023	2/09/2023	2/09/2023	
RESISTENCIA DE DISEÑO (kg/cm²)	210	210	210	210	

DATOS DEL ENSAYO					
FECHA DE ENSAYO	16/09/2023	16/09/2023	16/09/2023	16/09/2023	
PESO (g)	12398	12443	12546	12461	
DIÁMETRO (cm)	15.12	15.13	15.01	15.15	
ALTURA (cm)	30.1	30.12	30.1	30.15	
TIPO DE FRACTURA	4	3	2	3	

RESULTADOS					
EDAD DEL TESTIGO (días)	14	14	14	14	
SECCIÓN TRANSVERSAL (cm²)	179.55	179.79	176.95	180.27	
VOLUMEN (cm³)	5404.56	5415.30	5326.20	5435.04	
ESBELTEZ	1.991	1.991	2.005	1.990	
FACTOR DE CORRECCIÓN	1	1	2	1	
PESO ESPECÍFICO (g/cm³)	2.29	2.30	2.36	2.29	

PATRONES DE TIPOS DE FRACTURA

<u>Tipo 1:</u>

Conos razonables bien formados, en ambas bases, menos de 25 mm de grietas entre capas.

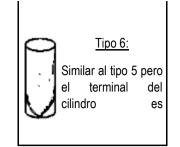
Tipo 2:

Cono bien formado, sobre una base, desplazamiento de grietas verticales a través de las capas, cono no bien definido en las otras partes.

Tipo 3:

Grietas verticales columnares en ambas bases, conos no bien formados.

Tipo 4:


Fractura diagonal sin grietas en las bases, golpear con martillo para diferenciar del tipo 1.

Tipo 5:

Fracturas de lado en las bases (superior o inferior) ocurren comúnmente con las capas de embonado.

CARGA MÁXIMA (kN)	308.2575	329.9442	318.6903	316.9377
CARGA MÁXIMA (kg)	31433.63	33645.07	32497.49	32318.77
RESISTENCIA	175.07	187.13	183.65	179.28
OBTENIDA (kg/cm²)		20.020		

Resistencia promedio del concreto en función del día (Valores referenciales)				
EDAD EN	RESISTE	NCIA (%)		
DÍAS	MINIMO	IDEAL		
7.00	55.00	70.00		
14.00	70.00	85.00		
21.00	80.00	95.00		
28.00	100.00	115.00		

$$f_{cmt} = \left[\frac{t}{a+bt}\right] * f_{cm28}$$

Donde:
$$a = 0.40$$

$$b = 0.85$$

$$t = \frac{Edad}{(días)}$$

Fecha: 17/09/2023 % de fibra: 0.75% Edad de especímenes: 14 días

TESIS: "RESISTENCIA MECÁNICA DEL CONCRETO CON ADICIÓN DE FIBRAS DE AGAVE

AMERICANA L"

TESISTA: Bach. Ing. Kelita Stefany Mantilla Carranza **ASESOR:** Dr. en Ing. Miguel Angel Mosqueira Moreno

DETERMINACIÓN DE LA RESISTENCIA A LA COMPRESIÓN DEL CONCRETO EN MUESTRAS CILÍNDRICAS

DATOS DE LA MUESTRA					
N° DE MUESTRA	9	10	11	12	
CÓDIGO	0.75% 14 Días MC 05	0.75% 14 Días MC 06	0.75% 14 Días MC 07	0.75% 14 Días MC 08	
FECHA DE ELABORACIÓN	3/09/2023	3/09/2023	3/09/2023	3/09/2023	
RESISTENCIA DE DISEÑO (kg/cm²)	210	210	210	210	

DATOS DEL ENSAYO					
FECHA DE ENSAYO	17/09/2023	17/09/2023	17/09/2023	17/09/2023	
PESO (g)	12329	12487	12306	12394	
DIÁMETRO (cm)	15.07	15.05	15.07	15.09	
ALTURA (cm)	30.14	30.1	30.05	30.1	
TIPO DE FRACTURA	3	1	3	4	

RESULTADOS					
EDAD DEL TESTIGO (días)	14	14	14	14	
SECCIÓN TRANSVERSAL (cm²)	178.37	177.89	178.37	178.84	
VOLUMEN (cm³)	5376.00	5354.63	5359.95	5383.13	
ESBELTEZ	2.000	2.000	1.994	1.995	
FACTOR DE CORRECCIÓN	1	1	2	1	
PESO ESPECÍFICO (g/cm³)	2.29	2.33	2.30	2.30	

PATRONES DE TIPOS DE FRACTURA

<u>Tipo 1:</u>

Conos razonables bien formados, en ambas bases, menos de 25 mm de grietas entre capas.

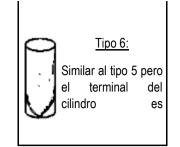
Tipo 2:

Cono bien formado, sobre una base, desplazamiento de grietas verticales a través de las capas, cono no bien definido en las otras partes.

Tipo 3:

Grietas verticales columnares en ambas bases, conos no bien formados.

Tipo 4:


Fractura diagonal sin grietas en las bases, golpear con martillo para diferenciar del tipo 1.

Tipo 5:

Fracturas de lado en las bases (superior o inferior) ocurren comúnmente con las capas de embonado.

CARGA MÁXIMA (kN)	346.932	338.5692	342.93	334.236
CARGA MÁXIMA (kg)	35377.35	34524.58	34969.26	34082.71
RESISTENCIA	400.44			
OBTENIDA (kg/cm²)	198.34	194.07	196.05	190.57

Resistencia promedio del concreto en función del día (Valores referenciales)						
EDAD EN	EDAD EN RESISTENCIA (%)					
DÍAS	MINIMO	IDEAL				
7.00	55.00	70.00				
14.00	70.00	85.00				
21.00	80.00	95.00				
28.00	100.00	115.00				

$$f_{cmt} = \left[\frac{t}{a+bt}\right] * f_{cm28}$$

Donde:
$$a = 0.40$$

$$b = 0.85$$

$$t = \frac{Edad}{(días)}$$

Fecha: 17/09/2023 % de fibra: 1.00% Edad de especímenes: 14 días

TESIS: "RESISTENCIA MECÁNICA DEL CONCRETO CON ADICIÓN DE FIBRAS DE AGAVE

AMERICANA L"

TESISTA: Bach. Ing. Kelita Stefany Mantilla Carranza ASESOR: Dr. en Ing. Miguel Angel Mosqueira Moreno

DETERMINACIÓN DE LA RESISTENCIA A LA COMPRESIÓN DEL CONCRETO EN MUESTRAS CILÍNDRICAS

DATOS DE LA MUESTRA					
N° DE MUESTRA	13	14	15	16	
CÓDIGO	1% 14 Días MC 05	1% 14 Días MC 06	1% 14 Días MC 07	1% 14 Días MC 08	
FECHA DE ELABORACIÓN	3/09/2023	3/09/2023	3/09/2023	3/09/2023	
RESISTENCIA DE DISEÑO (kg/cm²)	210	210	210	210	

DATOS DEL ENSAYO					
FECHA DE ENSAYO	17/09/2023	17/09/2023	17/09/2023	17/09/2023	
PESO (g)	12385	12415	12359	12413	
DIÁMETRO (cm)	15.05	15.09	15.01	15.06	
ALTURA (cm)	30.01	30.01	30.1	30.03	
TIPO DE FRACTURA	3	3	2	3	

RESULTADOS					
EDAD DEL TESTIGO (días)	14	14	14	14	
SECCIÓN TRANSVERSAL (cm²)	177.89	178.84	176.95	178.13	
VOLUMEN (cm³)	5338.62	5367.03	5326.20	5349.28	
ESBELTEZ	1.994	1.989	2.005	1.994	
FACTOR DE CORRECCIÓN	1	1	2	1	
PESO ESPECÍFICO (g/cm³)	2.32	2.31	2.32	2.32	

PATRONES DE TIPOS DE FRACTURA

<u>Tipo 1:</u>

Conos razonables bien formados, en ambas bases, menos de 25 mm de grietas entre capas.

Tipo 2:

Cono bien formado, sobre una base, desplazamiento de grietas verticales a través de las capas, cono no bien definido en las otras partes.

Tipo 3:

Grietas verticales columnares en ambas bases, conos no bien formados.

Tipo 4:

Fractura diagonal sin grietas en las bases, golpear con martillo para diferenciar del tipo 1.

Tipo 5:

Fracturas de lado en las bases (superior o inferior) ocurren comúnmente con las capas de embonado.

CARGA MÁXIMA (kN)	258.1428	264.3183	277.5387	269.1759
CARGA MÁXIMA (kg)	26323.34	26953.07	28301.18	27448.40
RESISTENCIA				
OBTENIDA (kg/cm²)	147.97	150.71	159.94	154.09

Resistencia promedio del concreto en función del día (Valores referenciales)					
EDAD EN	RESISTE	NCIA (%)			
DÍAS	MINIMO	IDEAL			
7.00	55.00	70.00			
14.00	70.00	85.00			
21.00	80.00	95.00			
28.00	100.00	115.00			

Valor Ideal con formula del ACI -209 (A-17)

$$f_{cmt} = \left[\frac{t}{a+bt}\right] * f_{cm28}$$

Donde:
$$a = 0.40$$

$$b = 0.85$$

$$t = \frac{Edad}{(días)}$$

RESISTENCIA A COMPRESIÓN DEL CONCRETO ASTM C 39

TESIS: "RESISTENCIA MECÁNICA DEL CONCRETO CON ADICIÓN DE FIBRAS DE

AGAVE AMERICANA L"

TESISTA: Bach. Ing. Kelita Stefany Mantilla Carranza **ASESOR** Dr. en Ing. Miguel Angel Mosqueira Moreno

MUESTRA

Especímenes de Concreto Procesados por el Tesista a beneficio de la investigación

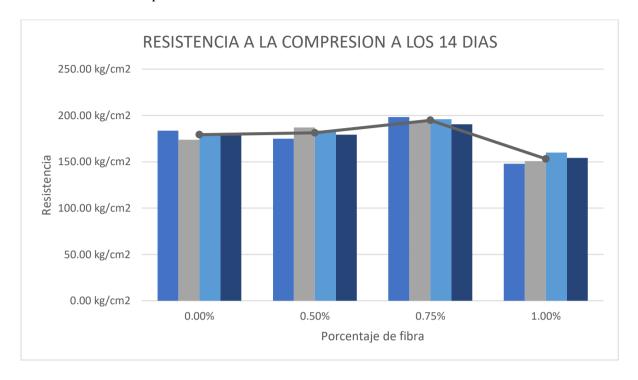
EDAD: 14 días

CONDICIONES DE DISEÑO CON 0.00% DE FIBRA F'C DISEÑO 210 KG/cm2

N° DE MUESTRA	CÓDIGO	DIAMETR O	AREA	CARGA DE ROTURA	F´C OBTENIDO	% DEL F´C
1	0% 14 Días MC 05	15.02 cm	177.19 cm2	32547.32 kg	183.69 kg/cm2	87.47%
2	0% 14 Días MC 06	15.04 cm	177.66 cm2	30866.41 kg	173.74 kg/cm2	82.73%
3	0% 14 Días MC 07	15.06 cm	178.13 cm2	31955.59 kg	179.39 kg/cm2	85.43%
4	0% 14 Días MC 08	15.07 cm	178.37 cm2	32138.53 kg	180.18 kg/cm2	85.80%
F'C	PROMEDIO	179.25 kg/cm2				
DESVIA	CION ESTANDAR	3.57				
COEFICIE	NTE DE VARIACION	1.99%				

CONDICIONES DE DISEÑO CON 0.50% DE FIBRA F'C DISEÑO 210 KG/cm2

N° DE MUESTRA	CÓDIGO	DIAMETR O	AREA	CARGA DE ROTURA	F´C OBTENIDO	% DEL F´C
5	0.5% 14 Días MC 05	15.12 cm	179.55 cm2	31433.52 kg	175.07 kg/cm2	83.36%
6	0.5% 14 Días MC 06	15.13 cm	179.79 cm2	33644.94 kg	187.13 kg/cm2	89.11%
7	0.5% 14 Días MC 07	15.01 cm	176.95 cm2	32497.37 kg	183.65 kg/cm2	87.45%
8	0.5% 14 Días MC 08	15.15 cm	180.27 cm2	32318.65 kg	179.28 kg/cm2	85.37%
F'C	PROMEDIO	181.28 kg/cm2				
DESVIA	CION ESTANDAR	4.54				
COEFICIEN	NTE DE VARIACION	2.51%				


CONDICIONES DE DISEÑO CON 0.75% DE FIBRA F'C DISEÑO 210 KG/cm2

N° DE MUESTRA	CÓDIGO	DIAMETR O	AREA	CARGA DE ROTURA	F´C OBTENIDO	% DEL F´C
9	0.75% 14 Días MC 05	15.07 cm	178.37 cm2	35377.22 kg	198.34 kg/cm2	94.45%
10	0.75% 14 Días MC 06	15.05 cm	177.89 cm2	34524.45 kg	194.07 kg/cm2	92.42%
11	0.75% 14 Días MC 07	15.07 cm	178.37 cm2	34969.13 kg	196.05 kg/cm2	93.36%
12	0.75% 14 Días MC 08	15.09 cm	178.84 cm2	34082.59 kg	190.57 kg/cm2	90.75%
F'C	PROMEDIO	194.76 kg/cm2				
DESVIA	CION ESTANDAR	2.85				
COEFICIE	NTE DE VARIACION	1.46%				

CONDICIONES DE DISEÑO CON 1.00% DE FIBRA F´C DISEÑO 210 KG/cm2

N° DE MUESTRA	CÓDIGO	DIAMETR O	AREA	CARGA DE ROTURA	F´C OBTENIDO	% DEL F´C
13	1% 14 Días MC 05	15.05 cm	177.89 cm2	26323.24 kg	147.97 kg/cm2	70.46%
14	1% 14 Días MC 06	15.09 cm	178.84 cm2	26952.97 kg	150.71 kg/cm2	71.77%
15	1% 14 Días MC 07	15.01 cm	176.95 cm2	28301.07 kg	159.94 kg/cm2	76.16%
16	1% 14 Días MC 08	15.06 cm	178.13 cm2	27448.30 kg	154.09 kg/cm2	73.38%
F'C	PROMEDIO	153.18 kg/cm2				
DESVIA	CION ESTANDAR	4.46				
COEFICIE	NTE DE VARIACION	2.91%				

Figura 9Resistencia a la compresión a los 14 días.

3. Resultados de resistencia a la compresión a los 28 días.

RESULTADOS DE ENSAYOS A LA COMPRESIÓN UNIAXIAL DE ESPECÍMENES CILÍNDRICOS DE CONCRETO (NTP 339.034 2021)

Fecha: 29/09/2023 % de fibra: 0.00% Edad de especímenes: 28 días

"RESISTENCIA MECÁNICA DEL CONCRETO CON ADICIÓN DE FIBRAS DE AGAVE

TESIS:

AMERICANA L"

TESISTA: Bach. Ing. Kelita Stefany Mantilla Carranza ASESOR: Dr. en Ing. Miguel Angel Mosqueira Moreno

DETERMINACIÓN DE LA RESISTENCIA A LA COMPRESIÓN DEL CONCRETO EN MUESTRAS CILÍNDRICAS

DATOS DE LA MUESTRA						
N° DE MUESTRA	1	2	3	4		
CÓDIGO	0% 28 Días MC 09	0% 28 Días MC 10	0% 28 Días MC 11	0% 28 Días MC 12		
FECHA DE ELABORACIÓN	1/09/2023	1/09/2023	1/09/2023	1/09/2023		
RESISTENCIA DE DISEÑO (kg/cm²)	210	210	210	210		

DATOS DEL ENSAYO						
FECHA DE ENSAYO	29/09/2023	29/09/2023	29/09/2023	29/09/2023		
PESO (g)	12462	12530	12501	12498		
DIÁMETRO (cm)	15.05	15.06	14.94	15.01		
ALTURA (cm)	30.05	30.05	29.965	30.05		
TIPO DE FRACTURA	2	3	3	3		

RESULTADOS						
EDAD DEL TESTIGO (días)	28	28	28	28		
SECCIÓN TRANSVERSAL (cm²)	177.89	178.13	175.30	176.95		
VOLUMEN (cm³)	5345.73	5352.84	5252.98	5317.36		
ESBELTEZ	1.997	1.995	2.006	2.002		
FACTOR DE CORECCIÓN	1	1	2	1		

PATRONES DE TIPOS DE FRACTURA

<u>Tipo 1:</u>

Conos razonables bien formados, en ambas bases, menos de 25 mm de grietas entre capas.

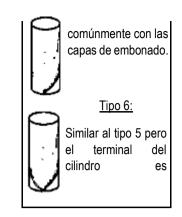
Tipo 2:

Cono bien formado, sobre una base, desplazamiento de grietas verticales a través de las capas, cono no bien definido en las otras partes.

<u>Tipo 3:</u>

Grietas verticales columnares en ambas bases, conos no bien formados.

Tipo 4:



Fractura diagonal sin grietas en las bases, golpear con martillo para diferenciar del tipo 1.

Tipo 5:

Fracturas de lado en las bases (superior o inferior) ocurren

PESO ESPECÍFICO (g/cm³)	2.33	2.34	2.38	2.35
CARGA MÁXIMA (kN)	436.1037	429.3808	422.6974	410.5867
CARGA MÁXIMA (kg)	44470.37	43784.82	43103.30	41868.35
RESISTENCIA OBTENIDA (kg/cm²)	249.98	245.80	245.88	236.61
PORCENTAJE OBTENIDO (%)	119.04%	117.05%	117.08%	112.67%

Resistencia promedio del concreto en función del día (Valores referenciales)					
EDAD EN	RESISTE	NCIA (%)			
DÍAS	MINIMO	IDEAL			
7.00	55.00	70.00			
14.00	70.00	85.00			
21.00	80.00	95.00			
28.00	100.00	115.00			

Valor Ideal con formula del ACI -209 (A-17)

$$f_{cmt} = \left[\frac{t}{a+bt}\right] * f_{cm28}$$

Donde:
$$a = 0.40$$

$$b = 0.85$$

$$t = \frac{Edad}{(días)}$$

RESULTADOS DE ENSAYOS A LA COMPRESIÓN UNIAXIAL DE ESPECÍMENES CILÍNDRICOS DE CONCRETO (NTP 339.034 2021)

Fecha: 30/09/2023 % de fibra: 0.50% Edad de especímenes: 28 días

TESIS: "RESISTENCIA MECÁNICA DEL CONCRETO CON ADICIÓN DE FIBRAS DE AGAVE

AMERICANA L"

TESISTA: Bach. Ing. Kelita Stefany Mantilla Carranza

ASESOR: Dr. en Ing. Miguel Angel Mosqueira Moreno

DETERMINACIÓN DE LA RESISTENCIA A LA COMPRESIÓN DEL CONCRETO EN MUESTRAS CILÍNDRICAS

DATOS DE LA MUESTRA							
N° DE MUESTRA	5	6	7	8			
CÓDIGO	0.5% 28 Días MC 09	0.5% 28 Días MC 10	0.5% 28 Días MC 11	0.5% 28 Días MC 12			
FECHA DE ELABORACIÓN	2/09/2023	2/09/2023	2/09/2023	2/09/2023			
RESISTENCIA DE DISEÑO (kg/cm²)	210	210	210	210			

DATOS DEL ENSAYO				
FECHA DE ENSAYO	30/09/2023	30/09/2023	30/09/2023	30/09/2023
PESO (g)	12381	12543	12586	12311
DIÁMETRO (cm)	15.07	15.04	15.02	14.91
ALTURA (cm)	30.2	30.05	30	29.8
TIPO DE FRACTURA	2	3	3	2

	RESU	LTADOS		
EDAD DEL TESTIGO (días)	28	28	28	28
SECCIÓN TRANSVERSAL (cm²)	178.37	177.66	177.19	174.60
VOLUMEN (cm³)	5386.71	5338.63	5315.58	5203.09
ESBELTEZ	2.004	1.998	1.997	1.999
FACTOR DE CORECCIÓN	1	1	2	1
PESO ESPECÍFICO (g/cm³)	2.30	2.35	2.37	2.37

PATRONES DE TIPOS DE FRACTURA

<u>Tipo 1:</u>

Conos razonables bien formados, en ambas bases, menos de 25 mm de grietas entre capas.

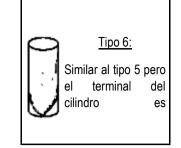
Tipo 2:

Cono bien formado, sobre una base, desplazamiento de grietas verticales a través de las capas, cono no bien definido en las otras partes.

Tipo 3:

Grietas verticales columnares en ambas bases, conos no bien formados.

Tipo 4:


Fractura diagonal sin grietas en las bases, golpear con martillo para diferenciar del tipo 1.

Tipo 5:

Fracturas de lado en las bases (superior o inferior) ocurren comúnmente con las capas de embonado.

CARGA MÁXIMA (kN)	423.44	419.964	437.1307	443.7114
CARGA MÁXIMA (kg)	43179.02	42824.57	44575.09	45246.14
RESISTENCIA	242.08	241.05	251.57	259.14
OBTENIDA (kg/cm²)	242.00	241.05	231.37	259.14

Resistencia promedio del concreto en función del día (Valores referenciales)					
EDAD EN	RESISTENCIA (%)				
DÍAS	MINIMO IDEAL				
7.00	55.00	70.00			
14.00	70.00	85.00			
21.00	80.00	95.00			
28.00	100.00	115.00			

Valor Ideal con formula del ACI -209 (A-17)

$$f_{cmt} = \left[\frac{t}{a+bt}\right] * f_{cm28}$$

Donde:
$$a = 0.40$$

$$b = 0.85$$

$$t = \frac{Edad}{(días)}$$

RESULTADOS DE ENSAYOS A LA COMPRESIÓN UNIAXIAL DE ESPECÍMENES CILÍNDRICOS DE CONCRETO (NTP 339,034 2021)

Fecha: 01/10/2023 : % de fibra 0.75% Edad de especímenes: 28 días

TESIS: "RESISTENCIA MECÁNICA DEL CONCRETO CON ADICIÓN DE FIBRAS DE AGAVE

AMERICANA L"

TESISTA: Bach. Ing. Kelita Stefany Mantilla Carranza

ASESOR: Dr. en Ing. Miguel Angel Mosqueira Moreno

DETERMINACIÓN DE LA RESISTENCIA A LA COMPRESIÓN DEL CONCRETO EN MUESTRAS CILÍNDRICAS

DATOS DE LA MUESTRA					
N° DE MUESTRA	9	10	11	12	
CÓDIGO	0.75% 28 Días MC 09	0.75% 28 Días MC 10	0.75% 28 Días MC 11	0.75% 28 Días MC 12	
FECHA DE ELABORACIÓN	3/09/2023	3/09/2023	3/09/2023	3/09/2023	
RESISTENCIA DE DISEÑO (kg/cm²)	210	210	210	210	

	DATOS D	EL ENSAYO		
FECHA DE ENSAYO	1/10/2023	1/10/2023	1/10/2023	1/10/2023
PESO (g)	12328	12487	12306	12395
DIÁMETRO (cm)	15.03	15.01	14.99	15.02
ALTURA (cm)	30.03	30	30.01	30.02
TIPO DE FRACTURA	3	3	1	3

RESULTADOS					
EDAD DEL TESTIGO (días)	28	28	28	28	
SECCIÓN TRANSVERSAL (cm²)	177.42	176.95	176.48	177.19	
VOLUMEN (cm³)	5327.99	5308.51	5296.14	5319.13	
ESBELTEZ	1.998	1.999	2.002	1.999	
FACTOR DE CORRECCIÓN	1	1	2	1	
PESO ESPECÍFICO (g/cm³)	2.31	2.35	2.32	2.33	

PATRONES DE TIPOS DE FRACTURA

<u>Tipo 1:</u>

Conos razonables bien formados, en ambas bases, menos de 25 mm de grietas entre capas.

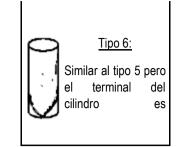
Tipo 2:

Cono bien formado, sobre una base, desplazamiento de grietas verticales a través de las capas, cono no bien definido en las otras partes.

Tipo 3:

Grietas verticales columnares en ambas bases, conos no bien formados.

Tipo 4:


Fractura diagonal sin grietas en las bases, golpear con martillo para diferenciar del tipo 1.

Tipo 5:

Fracturas de lado en las bases (superior o inferior) ocurren comúnmente con las capas de embonado.

CARGA MÁXIMA (kN)	453.5627	460.9887	481.189	455.4508
CARGA MÁXIMA (kg)	46250.70	47007.94	49067.80	46443.23
RESISTENCIA				
OBTENIDA (kg/cm²)	260.68	265.66	278.04	262.12

Resistencia promedio del concreto en función del día (Valores referenciales)					
EDAD EN	RESISTENCIA (%)				
DÍAS	MINIMO IDEAL				
7.00	55.00	70.00			
14.00	70.00	85.00			
21.00	80.00	95.00			
28.00	100.00	115.00			

Valor Ideal con formula del ACI -209 (A-17)

$$f_{cmt} = \left[\frac{t}{a+bt}\right] * f_{cm28}$$

Donde:
$$a = 0.40$$

$$b = 0.85$$

$$t = \frac{Edad}{(días)}$$

RESULTADOS DE ENSAYOS A LA COMPRESIÓN UNIAXIAL DE ESPECÍMENES CILÍNDRICOS DE CONCRETO (NTP 339.034 2021)

Fecha: 1/10/2023 % de fibra: 1.00% Edad de especímenes: 28 días

TESIS: "RESISTENCIA MECÁNICA DEL CONCRETO CON ADICIÓN DE FIBRAS DE AGAVE

AMERICANA L"

TESISTA: Bach. Ing. Kelita Stefany Mantilla Carranza ASESOR: Dr. en Ing. Miguel Angel Mosqueira Moreno

DETERMINACIÓN DE LA RESISTENCIA A LA COMPRESIÓN DEL CONCRETO EN MUESTRAS CILÍNDRICAS

DATOS DE LA MUESTRA					
N° DE MUESTRA	13	14	15	16	
CÓDIGO	1% 28 Días MC 09	1% 28 Días MC 10	1% 28 Días MC 11	1% 28 Días MC 12	
FECHA DE ELABORACIÓN	3/09/2023	3/09/2023	3/09/2023	3/09/2023	
RESISTENCIA DE DISEÑO (kg/cm²)	210	210	210	210	

	DATOS D	EL ENSAYO		
FECHA DE ENSAYO	1/10/2023	1/10/2023	1/10/2023	1/10/2023
PESO (g)	12318	12134	12112	12432
DIÁMETRO (cm)	14.94	14.97	15.04	14.98
ALTURA (cm)	30.03	30.03	30.03	30.02
TIPO DE FRACTURA	3	3	3	3

RESULTADOS					
EDAD DEL TESTIGO (días)	28	28	28	28	
SECCIÓN TRANSVERSAL (cm²)	175.30	176.01	177.66	176.24	
VOLUMEN (cm³)	5264.37	5285.53	5335.08	5290.83	
ESBELTEZ	2.010	2.006	1.997	2.004	
FACTOR DE CORRECCIÓN	1	1	2	1	
PESO ESPECÍFICO (g/cm³)	2.34	2.30	2.27	2.35	

PATRONES DE TIPOS DE FRACTURA

<u>Tipo 1:</u>

Conos razonables bien formados, en ambas bases, menos de 25 mm de grietas entre capas.

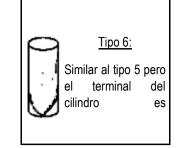
Tipo 2:

Cono bien formado, sobre una base, desplazamiento de grietas verticales a través de las capas, cono no bien definido en las otras partes.

Tipo 3:

Grietas verticales columnares en ambas bases, conos no bien formados.

Tipo 4:


Fractura diagonal sin grietas en las bases, golpear con martillo para diferenciar del tipo 1.

Tipo 5:

Fracturas de lado en las bases (superior o inferior) ocurren comúnmente con las capas de embonado.

CARGA MÁXIMA (kN)	356.6139	377.5568	349.3538	365.8806
CARGA MÁXIMA (kg)	36364.63	38500.22	35624.31	37309.58
RESISTENCIA				
OBTENIDA (kg/cm²)	207.44	218.74	200.52	211.69

Resistencia promedio del concreto en función del día (Valores referenciales)			
EDAD EN	RESISTE	NCIA (%)	
DÍAS	MINIMO	IDEAL	
7.00	55.00	70.00	
14.00	70.00	85.00	
21.00	80.00	95.00	
28.00	100.00	115.00	

Valor Ideal con formula del ACI -209 (A-17)

$$f_{cmt} = \left[\frac{t}{a+bt}\right] * f_{cm28}$$

Donde:
$$a = 0.40$$

$$b = 0.85$$

$$t = \frac{Edad}{(días)}$$

RESISTENCIA A COMPRESIÓN DEL CONCRETO ASTM C 39

TESIS: "RESISTENCIA MECÁNICA DEL CONCRETO CON ADICIÓN DE FIBRAS DE AGAVE

AMERICANA L"

TESISTA: Bach. Ing. Kelita Stefany Mantilla Carranza **ASESOR** Dr. en Ing. Miguel Angel Mosqueira Moreno

MUESTRA: Especímenes de Concreto Procesados por el Tesista a beneficio de la investigación

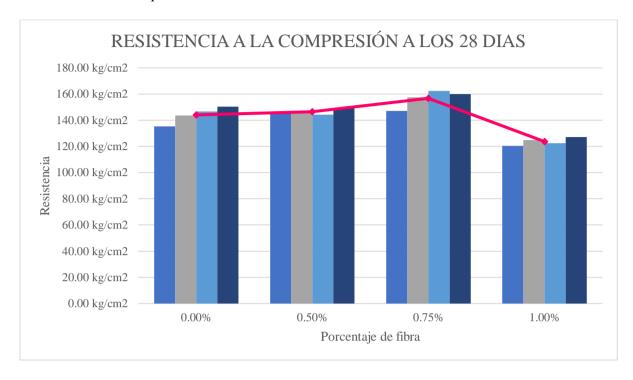
EDAD: 28 días

CONDICIONES DE DISEÑO CON 0.00% DE FIBRA F'C DISEÑO 210 KG/cm2

N° DE MUESTRA	CÓDIGO	DIAMETRO	AREA	CARGA DE ROTURA	F´C OBTENIDO	% DEL F´C
1	0% 28 Días MC 09	15.05 cm	177.89 cm2	44470.20 kg	249.98 kg/cm2	119.04%
2	0% 28 Días MC 10	15.06 cm	178.13 cm2	43784.66 kg	245.80 kg/cm2	117.05%
3	0% 28 Días MC 11	14.94 cm	175.30 cm2	43103.14 kg	245.88 kg/cm2	117.08%
4	0% 28 Días MC 12	15.01 cm	176.95 cm2	41868.19 kg	236.61 kg/cm2	112.67%
F'C	PROMEDIO	244.57 kg/cn		244.57 kg/cm ²	2	
DESVIA	CION ESTANDAR	4.90				
COEFICIE	NTE DE VARIACION	2.00%				

CONDICIONES DE DISEÑO CON 0.50% DE FIBRA F'C DISEÑO 210 KG/cm2

N° DE MUESTRA	CÓDIGO	DIAMETRO	AREA	CARGA DE ROTURA	F´C OBTENIDO	% DEL F´C
5	0.5% 28 Días MC 09	15.07 cm	178.37 cm2	43178.86 kg	242.08 kg/cm2	115.28%
6	0.5% 28 Días MC 10	15.04 cm	177.66 cm2	42824.41 kg	241.05 kg/cm2	114.79%
7	0.5% 28 Días MC 11	15.02 cm	177.19 cm2	44574.93 kg	251.57 kg/cm2	119.80%
8	0.5% 28 Días MC 12	14.91 cm	174.60 cm2	45245.97 kg	259.14 kg/cm2	123.40%
F'C	PROMEDIO		248.46 kg/cm ²	2		
DESVIA	CION ESTANDAR	7.41				
COEFICIEN	NTE DE VARIACION	2.98%				


CONDICIONES DE DISEÑO CON 0.75% DE FIBRA F'C DISEÑO 210 KG/cm2

N° DE MUESTRA	CÓDIGO	DIAMETRO	AREA	CARGA DE ROTURA	F´C OBTENIDO	% DEL F´C
9	0.75% 28 Días MC 09	15.03 cm	177.42 cm2	46250.52 kg	260.68 kg/cm2	124.13%
10	0.75% 28 Días MC 10	15.01 cm	176.95 cm2	47007.76 kg	265.66 kg/cm2	126.50%
11	0.75% 28 Días MC 11	14.99 cm	176.48 cm2	49067.62 kg	278.04 kg/cm2	132.40%
12	0.75% 28 Días MC 12	15.02 cm	177.19 cm2	46443.06 kg	262.11 kg/cm2	124.82%
F'C	F'C PROMEDIO			266.62 kg/cm ²	2	
DESVIA	CION ESTANDAR	6.83				
COEFICIE	NTE DE VARIACION	2.56%				

CONDICIONES DE DISEÑO CON 1.00% DE FIBRA F'C DISEÑO 210 KG/cm2

N° DE MUESTRA	CÓDIGO	DIAMETRO	AREA	CARGA DE ROTURA	F´C OBTENIDO	% DEL F´C
13	1% 28 Días MC 09	14.94 cm	175.30 cm2	36364.50 kg	207.44 kg/cm2	98.78%
14	1% 28 Días MC 10	14.97 cm	176.01 cm2	38500.08 kg	218.74 kg/cm2	104.16%
15	1% 28 Días MC 11	15.04 cm	177.66 cm2	35624.17 kg	200.52 kg/cm2	95.49%
16	1% 28 Días MC 12	14.98 cm	176.24 cm2	37309.44 kg	211.69 kg/cm2	100.81%
F'C PROMEDIO			209.60 kg/cm ²	2		
DESVIA	CION ESTANDAR	6.61				
COEFICIEN	OEFICIENTE DE VARIACION			3.16%		

Figura 10Resistencia a la compresión a los 28 días.

Anexo N°3: Resultados de ensayos de resistencia a la flexión.

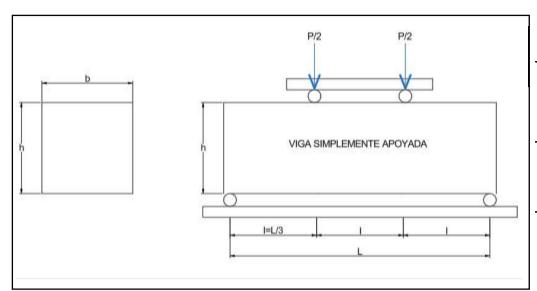
1. Resultados de resistencia a la flexión a los 14 días.

ENSAYO PARA DETERMINAR LA RESISTENCIA A LA FLEXIÓN DEL CONCRETO EN VIGAS **SIMPLEMENTE APOYADAS (NTP 339.078)**

Fecha: 15/09/2023 % de fibra: 0.00% Edad de especímenes: 14 días

"RESISTENCIA MECÁNICA DEL CONCRETO CON ADICIÓN DE FIBRAS DE AGAVE **TESIS:**

AMERICANA L"


TESISTA: Bach. Ing. Kelita Stefany Mantilla Carranza Dr. en Ing. Miguel Angel Mosqueira Moreno **ASESOR:**

DETERMINACIÓN DE LA RESISTENCIA A LA FLEXIÓN DEL CONCRETO EN MUESTRAS PRISMATICAS

PROPIEDADES Y ESTADO DE TESTIGOS					
N° DE TESTIGO	1	2	3	4	
ESTADO DE HUMEDAD ANTES DEL ENSAYO	HUMEDO	HUMEDO	HUMEDO	HUMEDO	
MODIFICACIONES EN EL TESTIGO	NINGUNA	NINGUNA	NINGUNA	NINGUNA	
DEFECTOS VISIBLES EN EL TESTIGO	NINGUNO	NINGUNO	NINGUNO	NINGUNO	

REGISTRO DE DATOS, PROC	CESAMIENTO	Y RESULTA	DOS	
N° DE TESTIGO	0% 14 Días MP 01	0% 14 Días MP 02	0% 14 Días MP 03	0% 14 Días MP 04
% DE FIBRA	0.00%	0.00%	0.00%	0.00%
FECHA DE VACIADO	1/09/2023	1/09/2023	1/09/2023	1/09/2023
FECHA DE ENSAYO	15/09/2023	15/09/2023	15/09/2023	15/09/2023
EDAD (DIAS)	14	14	14	14
ANCHO PROMEDIO (b) (mm)	151.2	150.4	149.8	150.7
PERALTE PROMEDIO (h) (mm)	151.3	151.7	150.5	150.7
LONGITUD DE VIGA (mm)	500	500	500	500
LUZ LIBRE ENTRE APOYOS (L) (mm)	450	450	450	450
CARGA MAXIMA (P) (kN)	28.45	25.68	23.4	26.18
CARGA MAXIMA (P) (kg)	2901.09	2618.63	2386.14	2669.62
TIPO DE FALLA	CENTRAL	CENTRAL	CENTRAL	CENTRAL
EXCENTRICIDAD DE LINEA DE FALLA (a) (mm)	0	0	0	0
MODULO DE ROTURA (MR) (kg/cm2)	37.718	34.046	31.646	35.101
MODULO DE ROTURA (MR) (MPa)	3.699	3.339	3.103	3.442

IDEALIZACIÓN DEL ENSAYO Y FÓRMULAS EMPLEADAS

Módulo de rotura (Falla dentro del tercio medio de luz)

$$M_r = \left[\frac{PL}{bh^2}\right]$$

Módulo de rotura (Falla dentro del tercio medio de luz)

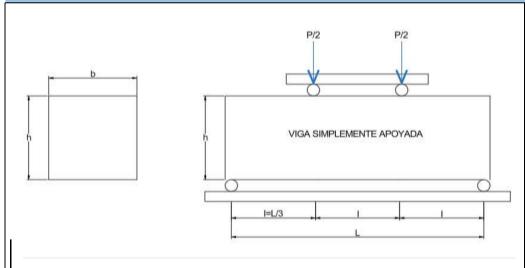
$$M_r = \left[\frac{3Pa}{bh^2}\right]$$

Donde:

Mr	Módulo de rotura	b	Ancho promedio de la sección de falla
P	Carga máxima de rotura	h	Peralte promedio de la sección de falla
			Distancia entre la línea de falla y el
L	Luz libre entre apoyos	a	apoyo

Fecha: 16/09/2023 % de fibra: 0.50% Edad de especímenes: 14 días

TESIS: RESISTENCIA MECÁNICA DEL CONCRETO CON ADICIÓN DE FIBRAS DE AGAVE AMERICANA L


TESISTA: Bach. Ing. Kelita Stefany Mantilla Carranza **ASESOR:** Dr. en Ing. Miguel Angel Mosqueira Moreno

DETERMINACIÓN DE LA RESISTENCIA A LA FLEXIÓN DEL CONCRETO EN MUESTRAS PRISMATICAS

PROPIEDADES Y ESTADO DE TESTIGOS					
N° DE TESTIGO	5	6	7	8	
ESTADO DE HUMEDAD ANTES DEL ENSAYO	HUMEDO	HUMEDO	HUMEDO	HUMEDO	
MODIFICACIONES EN EL TESTIGO	NINGUNA	NINGUNA	NINGUNA	NINGUNA	
DEFECTOS VISIBLES EN EL TESTIGO	NINGUNO	NINGUNO	NINGUNO	NINGUNO	

REGISTRO DE DATOS, PROCESAMIENTO Y RESULTADOS						
N° DE TESTIGO	0.5% 14 Días	0.5% 14 Días	0.5% 14 Días	0.5% 14		
N DE LESTIGO	MP 01	MP 02	MP 03	Días MP 04		
% DE FIBRA	0.50%	0.50%	0.50%	0.50%		
FECHA DE VACIADO	2/09/2023	2/09/2023	2/09/2023	2/09/2023		
FECHA DE ENSAYO	16/09/2023	16/09/2023	16/09/2023	16/09/2023		
EDAD (DIAS)	14	14	14	14		
ANCHO PROMEDIO (b) (mm)	151	147	151.5	150.8		
PERALTE PROMEDIO (h) (mm)	151.9	151.2	152	151.8		
LONGITUD DE VIGA (mm)	500	500	500	500		
LUZ LIBRE ENTRE APOYOS (L) (mm)	450	450	450	450		
CARGA MAXIMA (P) (kN)	29.25	31.21	29.42	32.33		
CARGA MAXIMA (P) (kg)	2982.67	3182.53	3000.00	3296.74		
TIPO DE FALLA	EXCÉNTRICA	CENTRAL	CENTRAL	CENTRAL		
EXCENTRICIDAD DE LINEA DE FALLA (a) (mm)	152	0	0	0		
MODULO DE ROTURA (MR) (kg/cm2)	39.037092	42.615207	38.568665	42.692597		
MODULO DE ROTURA (MR) (MPa)	3.8282505	4.1791455	3.7823133	4.1867349		

IDEALIZACIÓN DEL ENSAYO Y FÓRMULAS EMPLEADAS

Módulo de rotura (Falla dentro del tercio medio de luz)

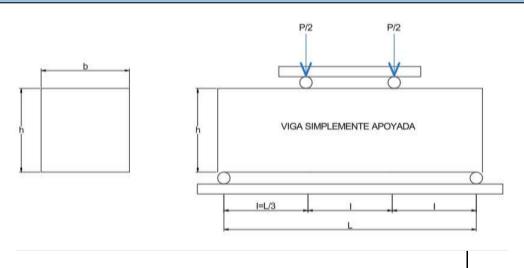
$$M_r = \left[\frac{PL}{bh^2}\right]$$

$$M_r = \left[\frac{3Pa}{bh^2}\right]$$

Donde:			
Mr	Módulo de rotura	b	Ancho promedio de la sección de falla
P	Carga máxima de rotura	h	Peralte promedio de la sección de falla
L	Luz libre entre apoyos	a	Distancia entre la línea de falla y el apoyo

Fecha: 17/09/2023 % de fibra: 0.75% Edad de especímenes: 14 días

TESIS: RESISTENCIA MECÁNICA DEL CONCRETO CON ADICIÓN DE FIBRAS DE AGAVE AMERICANA L


TESISTA: Bach. Ing. Kelita Stefany Mantilla Carranza ASESOR: Dr. en Ing. Miguel Angel Mosqueira Moreno

DETERMINACIÓN DE LA RESISTENCIA A LA FLEXIÓN DEL CONCRETO EN MUESTRAS PRISMATICAS

PROPIEDADES Y ESTADO DE TESTIGOS							
N° DE TESTIGO	9	10	11	12			
ESTADO DE HUMEDAD ANTES DEL ENSAYO	HUMEDO	HUMEDO	HUMEDO	HUMEDO			
MODIFICACIONES EN EL TESTIGO	NINGUNA	NINGUNA	NINGUNA	NINGUNA			
DEFECTOS VISIBLES EN EL TESTIGO	NINGUNO	NINGUNO	NINGUNO	NINGUNO			

REGISTRO DE DATOS, PROCESAMIENTO Y RESULTADOS							
N° DE TESTIGO	0.75% 14 Días	0.75% 14 Días	0.75% 14	0.75% 14			
N DE LESTICO	MP 01	MP 02	Días MP 03	Días MP 04			
% DE FIBRA	0.75%	0.75%	0.75%	0.75%			
FECHA DE VACIADO	3/09/2023	3/09/2023	3/09/2023	3/09/2023			
FECHA DE ENSAYO	17/09/2023	17/09/2023	17/09/2023	17/09/2023			
EDAD (DIAS)	14	14	14	14			
ANCHO PROMEDIO (b) (mm)	150	151	151.6	150.5			
PERALTE PROMEDIO (h) (mm)	150	158.8	152.2	151.2			
LONGITUD DE VIGA (mm)	500	500	500	500			
LUZ LIBRE ENTRE APOYOS (L) (mm)	450	450	450	450			
CARGA MAXIMA (P) (kN)	28.45	29.66	30.22	27.31			
CARGA MAXIMA (P) (kg)	2901.09	3024.48	3081.58	2784.84			
TIPO DE FALLA	EXCÉNTRICA	EXCÉNTRICA	CENTRAL	CENTRAL			
EXCENTRICIDAD DE LINEA DE FALLA (a) (mm)	160	178	0	0			
MODULO DE ROTURA (MR) (kg/cm2)	41.2599756	42.41443597	39.48732402	36.42280322			
MODULO DE ROTURA (MR) (MPa)	4.046242027	4.159456492	3.872403405	3.571875043			

IDEALIZACIÓN DEL ENSAYO Y FÓRMULAS EMPLEADAS

Módulo de rotura (Falla dentro del tercio medio de luz)

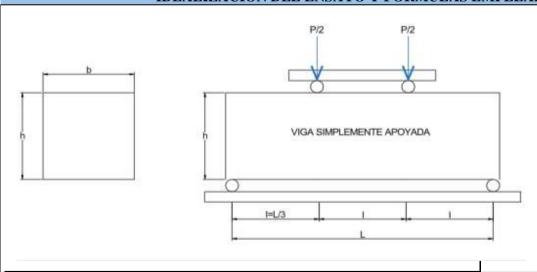
$$M_r = \left[\frac{PL}{bh^2}\right]$$

$$M_r = \left[\frac{3Pa}{bh^2}\right]$$

Donde:			
Mr	Módulo de rotura	b	Ancho promedio de la sección de falla
P	Carga máxima de rotura	h	Peralte promedio de la sección de falla
L	Luz libre entre apoyos	a	Distancia entre la línea de falla y el apoyo

Fecha: 17/09/2023 % de fibra: 1.00% Edad de especímenes: 14 días

TESIS: RESISTENCIA MECÁNICA DEL CONCRETO CON ADICIÓN DE FIBRAS DE AGAVE AMERICANA L


TESISTA: Bach. Ing. Kelita Stefany Mantilla Carranza ASESOR: Dr. en Ing. Miguel Angel Mosqueira Moreno

DETERMINACIÓN DE LA RESISTENCIA A LA FLEXIÓN DEL CONCRETO EN MUESTRAS PRISMATICAS

PROPIEDADES Y ESTADO DE TESTIGOS						
N° DE TESTIGO	13	14	15	16		
ESTADO DE HUMEDAD ANTES DEL ENSAYO	HUMEDO	HUMEDO	HUMEDO	HUMEDO		
MODIFICACIONES EN EL TESTIGO	NINGUNA	NINGUNA	NINGUNA	NINGUNA		
DEFECTOS VISIBLES EN EL TESTIGO	NINGUNO	NINGUNO	NINGUNO	NINGUNO		

REGISTRO DE DATOS, PROCESAMIENTO Y RESULTADOS							
N° DE TESTIGO	1% 14 Días	1% 14 Días	1% 14 Días	1% 14 Días			
N DE LESTIGO	MP 01	MP 02	MP 03	MP 04			
% DE FIBRA	1.00%	1.00%	1.00%	1.00%			
FECHA DE VACIADO	3/09/2023	3/09/2023	3/09/2023	3/09/2023			
FECHA DE ENSAYO	17/09/2023	17/09/2023	17/09/2023	17/09/2023			
EDAD (DIAS)	14	14	14	14			
ANCHO PROMEDIO (b) (mm)	151.9	152.8	149	150.8			
PERALTE PROMEDIO (h) (mm)	151.9	151.2	152	151.8			
LONGITUD DE VIGA (mm)	500	500	500	500			
LUZ LIBRE ENTRE APOYOS (L) (mm)	450	450	450	450			
CARGA MAXIMA (P) (kN)	26.61	20.32	25.51	25.85			
CARGA MAXIMA (P) (kg)	2713.46	2072.06	2601.30	2635.97			
TIPO DE FALLA	CENTRAL	EXCÉNTRICA	CENTRAL	CENTRAL			
EXCENTRICIDAD DE LINEA DE FALLA (a) (mm)	0	159	0	0			
MODULO DE ROTURA (MR) (kg/cm2)	34.839	28.294	34.004	34.136			
MODULO DE ROTURA (MR) (MPa)	3.417	2.775	3.335	3.348			

IDEALIZACIÓN DEL ENSAYO Y FÓRMULAS EMPLEADAS

Módulo de rotura (Falla dentro del tercio medio de luz)

$$M_r = \left[\frac{PL}{bh^2}\right]$$

$$M_r = \left[\frac{3Pa}{bh^2}\right]$$

Donde:			
Mr	Módulo de rotura	b	Ancho promedio de la sección de falla
P	Carga máxima de rotura	h	Peralte promedio de la sección de falla
L	Luz libre entre apoyos	a	Distancia entre la línea de falla y el apoyo

RESISTENCIA A FLEXIÓN DEL CONCRETO (NTP 339.078)

TESIS: "RESISTENCIA MECÁNICA DEL CONCRETO CON ADICIÓN DE FIBRAS

DE AGAVE AMERICANA L"

TESISTA: Bach. Ing. Kelita Stefany Mantilla Carranza **ASESOR** Dr. en Ing. Miguel Angel Mosqueira Moreno

MUESTRA: Especímenes de Concreto Procesados por el Tesista a beneficio de la

investigación

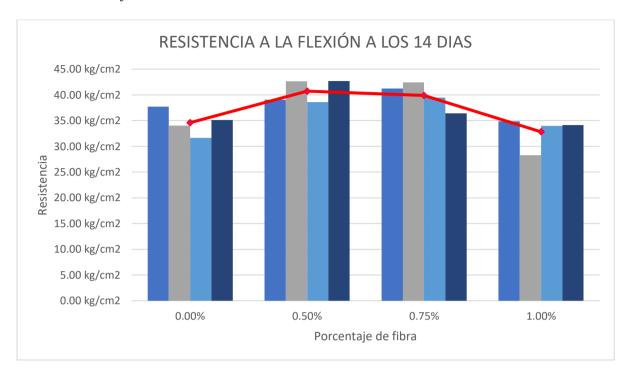
EDAD: 14 días

CONDICIONES DE DISEÑO CON 0.00% DE FIBRA F'C DISEÑO 210 KG/cm2

N° DE MUESTRA	CÓDIGO	ANCHO	PERALTE	LUZ LIBRE ENTRE APOYOS	CARGA DE ROTURA	Mr OBTENIDO	
1	0% 14 Días MP 01	15.12 cm	15.13 cm	45.00 cm	28.45 cm	37.72 kg/cm2	
2	0% 14 Días MP 02	15.04 cm	15.17 cm	45.00 cm	25.68 cm	34.05 kg/cm2	
3	0% 14 Días MP 03	14.98 cm	15.05 cm	45.00 cm	23.40 cm	31.65 kg/cm2	
4	0% 14 Días MP 04	15.07 cm	15.07 cm	45.00 cm	26.18 cm	35.10 kg/cm2	
F'C]	PROMEDIO	CDIO			34.63 kg/cm2		
DESVIAC	ION ESTANDAR	2.18					
COEFICIEN	TE DE VARIACION	N 6.29%					

CONDICIONES DE DISEÑO CON 0.50% DE FIBRA F'C DISEÑO 210 KG/cm2

N° DE MUESTRA	CÓDIGO	ANCHO	PERALTE	LUZ LIBRE ENTRE APOYOS	CARGA DE ROTURA	Mr OBTENIDO
5	0.5% 14 Días MP 01	15.10 cm	15.19 cm	45.00 cm	29.25 cm	39.04 kg/cm2
6	0.5% 14 Días MP 02	14.70 cm	15.12 cm	45.00 cm	31.21 cm	42.62 kg/cm2
7	0.5% 14 Días MP 03	15.15 cm	15.20 cm	45.00 cm	29.42 cm	38.57 kg/cm2
8	0.5% 14 Días MP 04	15.08 cm	15.18 cm	45.00 cm	32.33 cm	42.69 kg/cm2
F'C l	PROMEDIO			40.73 kg/c	em2	
DESVIAC	ION ESTANDAR			1.93		
COEFICIENTE DE VARIACION		4.75%				


CONDICIONES DE DISEÑO CON 0.75% DE FIBRA F'C DISEÑO 210 KG/cm2

N° DE MUESTRA	CÓDIGO	ANCHO	PERALTE	LUZ LIBRE ENTRE APOYOS	CARGA DE ROTURA	Mr OBTENIDO	
9	0.75% 14 Días MP 01	15.00 cm	15.00 cm	45.00 cm	28.45 cm	41.26 kg/cm2	
10	0.75% 14 Días MP 02	15.10 cm	15.88 cm	45.00 cm	29.66 cm	42.41 kg/cm2	
11	0.75% 14 Días MP 03	15.16 cm	15.22 cm	45.00 cm	30.22 cm	39.49 kg/cm2	
12	0.75% 14 Días MP 04	15.05 cm	15.12 cm	45.00 cm	27.31 cm	36.42 kg/cm2	
F'C PROMEDIO			39.90 kg/cm2				
DESVIACION ESTANDAR				2.26			
COEFICIEN	TE DE VARIACION	N 5.67%					

CONDICIONES DE DISEÑO CON 1.00% DE FIBRA F'C DISEÑO 210 KG/cm2

N° DE MUESTRA	CÓDIGO	ANCHO	PERALTE	LUZ LIBRE ENTRE APOYOS	CARGA DE ROTURA	Mr OBTENIDO
13	1% 14 Días MP 01	15.19 cm	15.19 cm	45.00 cm	26.61 cm	34.84 kg/cm2
14	1% 14 Días MP 02	15.28 cm	15.12 cm	45.00 cm	20.32 cm	28.29 kg/cm2
15	1% 14 Días MP 03	14.90 cm	15.20 cm	45.00 cm	25.51 cm	34.00 kg/cm2
16	1% 14 Días MP 04	15.08 cm	15.18 cm	45.00 cm	25.85 cm	34.14 kg/cm2
F'C PROMEDIO				32.82 kg/c	em2	
DESVIAC	ION ESTANDAR	2.63				
COEFICIEN'	TE DE VARIACION	8.02%				

Figura 11Resistencia a la flexión a los 14 días.

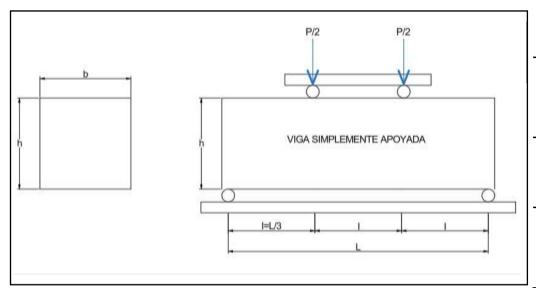
2. Resultados de resistencia a la flexión a los 28 días.

ENSAYO PARA DETERMINAR LA RESISTENCIA A LA FLEXIÓN DEL CONCRETO EN VIGAS SIMPLEMENTE APOYADAS (NTP 339.078)

Fecha: 29/09/2023 % de fibra: 0.00% Edad de especímenes: 28 días

"RESISTENCIA MECÁNICA DEL CONCRETO CON ADICIÓN DE FIBRAS DE AGAVE

TESIS: AMERICANA L"


TESISTA: Bach. Ing. Kelita Stefany Mantilla Carranza ASESOR: Dr. en Ing. Miguel Angel Mosqueira Moreno

DETERMINACIÓN DE LA RESISTENCIA A LA FLEXIÓN DEL CONCRETO EN MUESTRAS PRISMATICAS

PROPIEDADES Y ESTADO DE TESTIGOS							
N° DE TESTIGO	1	2	3	4			
ESTADO DE HUMEDAD ANTES DEL ENSAYO	HUMEDO	HUMEDO	HUMEDO	HUMEDO			
MODIFICACIONES EN EL TESTIGO	NINGUNA	NINGUNA	NINGUNA	NINGUNA			
DEFECTOS VISIBLES EN EL TESTIGO	NINGUNO	NINGUNO	NINGUNO	NINGUNO			

REGISTRO DE DATOS, PROCESAMIENTO Y RESULTADOS							
N° DE TESTIGO	0% 28 Días MP 05	0% 28 Días MP 06	0% 28 Días MP 07	0% 28 Días MP 08			
% DE FIBRA	0.00%	0.00%	0.00%	0.00%			
FECHA DE VACIADO	1/09/2023	1/09/2023	1/09/2023	1/09/2023			
FECHA DE ENSAYO	29/09/2023	29/09/2023	29/09/2023	29/09/2023			
EDAD (DIAS)	28	28	28	28			
ANCHO PROMEDIO (b) (mm)	151.1	152	152.9	153			
PERALTE PROMEDIO (h) (mm)	153.4	151.6	150.2	152.2			
LONGITUD DE VIGA (mm)	500	500	500	500			
LUZ LIBRE ENTRE APOYOS (L) (mm)	450	450	450	450			
CARGA MAXIMA (P) (kN)	37.91	39.1	41.43	38.79			
CARGA MAXIMA (P) (kg)	3865.74	3987.09	4224.68	3955.48			
TIPO DE FALLA	CENTRAL	CENTRAL	CENTRAL	CENTRAL			
EXCENTRICIDAD DE LINEA DE FALLA (a) (mm)	0	0	0	0			
MODULO DE ROTURA (MR) (kg/cm2)	48.925	51.360	55.114	50.222			
MODULO DE ROTURA (MR) (MPa)	4.798	5.037	5.405	4.925			

IDEALIZACIÓN DEL ENSAYO Y FÓRMULAS EMPLEADAS

Módulo de rotura (Falla dentro del tercio medio de luz)

$$M_r = \left[\frac{PL}{bh^2}\right]$$

Módulo de rotura (Falla dentro del tercio medio de luz)

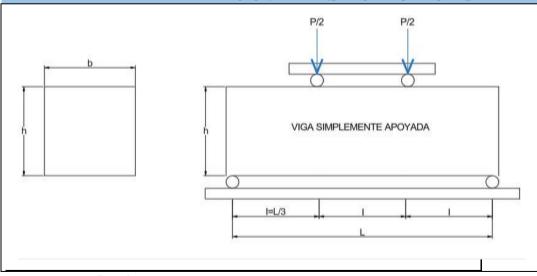
$$M_r = \left[\frac{3Pa}{bh^2}\right]$$

Donde:

Mr	Módulo de rotura	b	Ancho promedio de la sección de falla
P	Carga máxima de rotura	h	Peralte promedio de la sección de falla
			Distancia entre la línea de falla y el
L	Luz libre entre apoyos	a	apoyo

Fecha: 30/09/2023 % de fibra: 0.50% Edad de especímenes: 28 días

TESIS: RESISTENCIA MECÁNICA DEL CONCRETO CON ADICIÓN DE FIBRAS DE AGAVE AMERICANA L


TESISTA: Bach. Ing. Kelita Stefany Mantilla Carranza ASESOR: Dr. en Ing. Miguel Angel Mosqueira Moreno

DETERMINACIÓN DE LA RESISTENCIA A LA FLEXIÓN DEL CONCRETO EN MUESTRAS PRISMATICAS

PROPIEDADES Y ESTADO DE TESTIGOS						
N° DE TESTIGO	5	6	7	8		
ESTADO DE HUMEDAD ANTES DEL ENSAYO	HUMEDO	HUMEDO	HUMEDO	HUMEDO		
MODIFICACIONES EN EL TESTIGO	NINGUNA	NINGUNA	NINGUNA	NINGUNA		
DEFECTOS VISIBLES EN EL TESTIGO	NINGUNO	NINGUNO	NINGUNO	NINGUNO		

REGISTRO DE DATOS, PROCESAMIENTO Y RESULTADOS						
N° DE TESTIGO	0.5% 28 Días	0.5% 28 Días	0.5% 28 Días	0.5% 28		
N DE LESTIGO	MP 05	MP 06	MP 07	Días MP 08		
% DE FIBRA	0.50%	0.50%	0.50%	0.50%		
FECHA DE VACIADO	2/09/2023	2/09/2023	2/09/2023	2/09/2023		
FECHA DE ENSAYO	30/09/2023	30/09/2023	30/09/2023	30/09/2023		
EDAD (DIAS)	28	28	28	28		
ANCHO PROMEDIO (b) (mm)	150.8	151	152.5	151.9		
PERALTE PROMEDIO (h) (mm)	150.4	153.2	152.5	150.2		
LONGITUD DE VIGA (mm)	500	500	500	500		
LUZ LIBRE ENTRE APOYOS (L) (mm)	450	450	450	450		
CARGA MAXIMA (P) (kN)	41.77	41.22	40.88	39.35		
CARGA MAXIMA (P) (kg)	4259.35	4203.27	4168.60	4012.58		
TIPO DE FALLA	CENTRAL	EXCÉNTRICA	CENTRAL	CENTRAL		
EXCENTRICIDAD DE LINEA DE FALLA (a) (mm)	0	152	0	0		
MODULO DE ROTURA (MR) (kg/cm2)	56.190	54.083	52.892	52.691		
MODULO DE ROTURA (MR) (MPa)	5.510	5.304	5.187	5.167		

IDEALIZACIÓN DEL ENSAYO Y FÓRMULAS EMPLEADAS

Módulo de rotura (Falla dentro del tercio medio de luz)

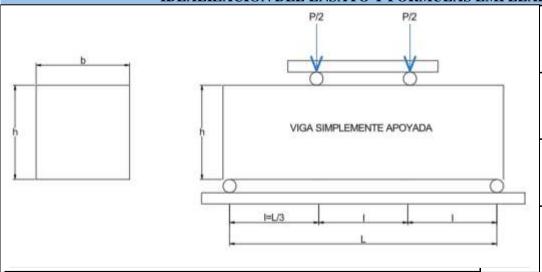
$$M_r = \left[\frac{PL}{hh^2}\right]$$

$$M_r = \left[\frac{3Pa}{bh^2}\right]$$

Donde:			
Mr	Módulo de rotura	b	Ancho promedio de la sección de falla
P	Carga máxima de rotura	h	Peralte promedio de la sección de falla
L	Luz libre entre apoyos	a	Distancia entre la línea de falla y el apoyo

Fecha: 1/10/2023 % de fibra: 0.75% Edad de especímenes: 28 días

TESIS: RESISTENCIA MECÁNICA DEL CONCRETO CON ADICIÓN DE FIBRAS DE AGAVE AMERICANA L


TESISTA: Bach. Ing. Kelita Stefany Mantilla Carranza ASESOR: Dr. en Ing. Miguel Angel Mosqueira Moreno

DETERMINACIÓN DE LA RESISTENCIA A LA FLEXIÓN DEL CONCRETO EN MUESTRAS PRISMATICAS

PROPIEDADES Y ESTADO DE TESTIGOS						
N° DE TESTIGO	9	10	11	12		
ESTADO DE HUMEDAD ANTES DEL ENSAYO	HUMEDO	HUMEDO	HUMEDO	HUMEDO		
MODIFICACIONES EN EL TESTIGO	NINGUNA	NINGUNA	NINGUNA	NINGUNA		
DEFECTOS VISIBLES EN EL TESTIGO	NINGUNO	NINGUNO	NINGUNO	NINGUNO		

REGISTRO DE DATOS, PROCESAMIENTO Y RESULTADOS							
N° DE TESTIGO	0.75% 28 Días	0.75% 28 Días	0.75% 28 Días	0.75% 28			
N DE LESTIGO	MP 05	MP 06	MP 07	Días MP 08			
% DE FIBRA	0.75%	0.75%	0.75%	0.75%			
FECHA DE VACIADO	3/09/2023	3/09/2023	3/09/2023	3/09/2023			
FECHA DE ENSAYO	1/10/2023	1/10/2023	1/10/2023	1/10/2023			
EDAD (DIAS)	28	28	28	28			
ANCHO PROMEDIO (b) (mm)	149.5	152.2	150.5	150.8			
PERALTE PROMEDIO (h) (mm)	156.4	150	151.6	150.5			
LONGITUD DE VIGA (mm)	500	500	500	500			
LUZ LIBRE ENTRE APOYOS (L) (mm)	450	450	450	450			
CARGA MAXIMA (P) (kN)	40.98	32.67	40.39	39.85			
CARGA MAXIMA (P) (kg)	4178.80	3331.41	4118.63	4063.57			
TIPO DE FALLA	CENTRAL	EXCÉNTRICA	CENTRAL	CENTRAL			
EXCENTRICIDAD DE LINEA DE FALLA (a) (mm)	0	179	0	0			
MODULO DE ROTURA (MR) (kg/cm2)	51.422	52.240	53.583	53.536			
MODULO DE ROTURA (MR) (MPa)	5.043	5.123	5.255	5.250			

IDEALIZACIÓN DEL ENSAYO Y FÓRMULAS EMPLEADAS

Módulo de rotura (Falla dentro del tercio medio de luz)

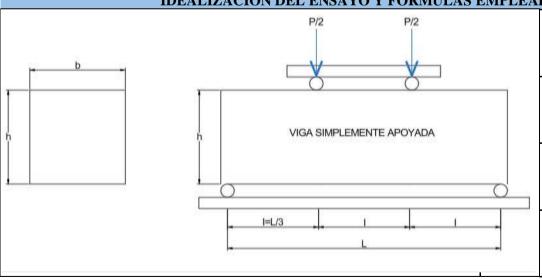
$$M_r = \left[\frac{PL}{bh^2}\right]$$

$$M_r = \left[\frac{3Pa}{bh^2}\right]$$

Donde:			
Mr	Módulo de rotura	b	Ancho promedio de la sección de falla
P	Carga máxima de rotura	h	Peralte promedio de la sección de falla
L	Luz libre entre apoyos	a	Distancia entre la línea de falla y el apoyo

Fecha: 1/10/2023 % de fibra: 1.00% Edad de especímenes: 28 días

TESIS: RESISTENCIA MECÁNICA DEL CONCRETO CON ADICIÓN DE FIBRAS DE AGAVE AMERICANA L


TESISTA: Bach. Ing. Kelita Stefany Mantilla Carranza ASESOR: Dr. en Ing. Miguel Angel Mosqueira Moreno

DETERMINACIÓN DE LA RESISTENCIA A LA FLEXIÓN DEL CONCRETO EN MUESTRAS PRISMATICAS

PROPIEDADES Y ESTADO DE TESTIGOS						
N° DE TESTIGO	13	14	15	16		
ESTADO DE HUMEDAD ANTES DEL ENSAYO	HUMEDO	HUMEDO	HUMEDO	HUMEDO		
MODIFICACIONES EN EL TESTIGO	NINGUNA	NINGUNA	NINGUNA	NINGUNA		
DEFECTOS VISIBLES EN EL TESTIGO	NINGUNO	NINGUNO	NINGUNO	NINGUNO		

REGISTRO DE DATOS, PROCESAMIENTO Y RESULTADOS						
N° DE TESTIGO	1% 28 Días	1% 28 Días	1% 28 Días	1% 28 Días		
TO DE TESTICO	MP05	MP 06	MP07	MP08		
% DE FIBRA	1.00%	1.00%	1.00%	1.00%		
FECHA DE VACIADO	3/09/2023	3/09/2023	3/09/2023	3/09/2023		
FECHA DE ENSAYO	1/10/2023	1/10/2023	1/10/2023	1/10/2023		
EDAD (DIAS)	28	28	28	28		
ANCHO PROMEDIO (b) (mm)	153.4	152.6	152.2	150.8		
PERALTE PROMEDIO (h) (mm)	151.2	152	151.8	151		
LONGITUD DE VIGA (mm)	500	500	500	500		
LUZ LIBRE ENTRE APOYOS (L) (mm)	450	450	450	450		
CARGA MAXIMA (P) (kN)	32.12	38.22	31.6	35.4		
CARGA MAXIMA (P) (kg)	3275.33	3897.35	3222.30	3609.79		
TIPO DE FALLA	CENTRAL	CENTRAL	EXCÉNTRICA	CENTRAL		
EXCENTRICIDAD DE LINEA DE FALLA (a) (mm)	0	0	163	0		
MODULO DE ROTURA (MR) (kg/cm2)	42.028	49.744	44.928	47.243		
MODULO DE ROTURA (MR) (MPa)	4.122	4.878	4.406	4.633		

IDEALIZACIÓN DEL ENSAYO Y FÓRMULAS EMPLEADAS

Módulo de rotura (Falla dentro del tercio medio de luz)

$$M_r = \left[\frac{PL}{bh^2}\right]$$

$$M_r = \left[\frac{3Pa}{bh^2}\right]$$

Donde:			
Mr	Módulo de rotura	b	Ancho promedio de la sección de falla
P	Carga máxima de rotura	h	Peralte promedio de la sección de falla
L	Luz libre entre apoyos	a	Distancia entre la línea de falla y el apoyo

RESISTENCIA A FLEXIÓN DEL CONCRETO (NTP 339.078)

TESIS: "RESISTENCIA MECÁNICA DEL CONCRETO CON ADICIÓN DE FIBRAS

DE AGAVE AMERICANA L"

TESISTA: Bach. Ing. Kelita Stefany Mantilla Carranza **ASESOR** Dr. en Ing. Miguel Angel Mosqueira Moreno

MUESTRA: Especímenes de Concreto Procesados por el Tesista a beneficio de la

investigación

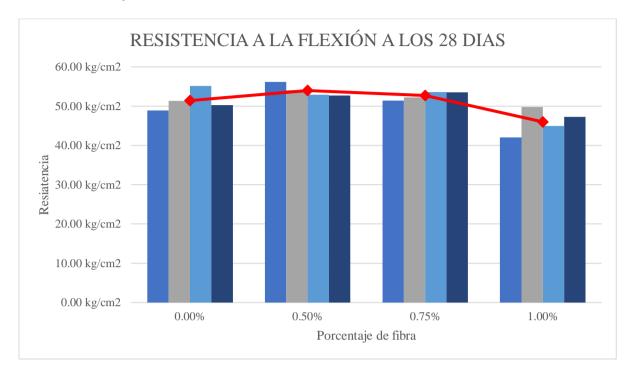
EDAD: 28 días

CONDICIONES DE DISEÑO CON 0.00% DE FIBRA F'C DISEÑO 210 KG/cm2

N° DE MUESTRA	CÓDIGO	ANCHO	PERALTE	LUZ LIBRE ENTRE APOYOS	CARGA DE ROTURA	Mr OBTENIDO
1	0% 28 Días MP 05	15.11 cm	15.34 cm	45.00 cm	37.91 cm	48.92 kg/cm2
2	0% 28 Días MP 06	15.20 cm	15.16 cm	45.00 cm	39.10 cm	51.36 kg/cm2
3	0% 28 Días MP 07	15.29 cm	15.02 cm	45.00 cm	41.43 cm	55.11 kg/cm2
4	0% 28 Días MP 08	15.30 cm	15.22 cm	45.00 cm	38.79 cm	50.22 kg/cm2
F 'C 1	PROMEDIO			51.41 kg/c	em2	
DESVIACION ESTANDAR		2.31				
COEFICIEN	TE DE VARIACION			4.49%		

CONDICIONES DE DISEÑO CON 0.50% DE FIBRA F'C DISEÑO 210 KG/cm2

N° DE MUESTRA	CÓDIGO	ANCHO	PERALTE	LUZ LIBRE ENTRE APOYOS	CARGA DE ROTURA	Mr OBTENIDO
5	0.5% 28 Días MP 05	15.08 cm	15.04 cm	45.00 cm	41.77 cm	56.19 kg/cm2
6	0.5% 28 Días MP 06	15.10 cm	15.32 cm	45.00 cm	41.22 cm	54.08 kg/cm2
7	0.5% 28 Días MP 07	15.25 cm	15.25 cm	45.00 cm	40.88 cm	52.89 kg/cm2
8	0.5% 28 Días MP 08	15.19 cm	15.02 cm	45.00 cm	39.35 cm	52.69 kg/cm2
F'C	PROMEDIO			53.96 kg/c	em2	
DESVIAC	CION ESTANDAR	1.39				
COEFICIEN	TE DE VARIACION	TE DE VARIACION 2.58%				
· ·	·	·		·		


CONDICIONES DE DISEÑO CON 0.75% DE FIBRA F'C DISEÑO 210 KG/cm2

N° DE MUESTRA	CÓDIGO	ANCHO	PERALTE	LUZ LIBRE ENTRE APOYOS	CARGA DE ROTURA	Mr OBTENIDO	
9	0.75% 28 Días MP 05	14.95 cm	15.64 cm	45.00 cm	40.98 cm	51.42 kg/cm2	
10	0.75% 28 Días MP 06	15.22 cm	15.00 cm	45.00 cm	32.67 cm	52.24 kg/cm2	
11	0.75% 28 Días MP 07	15.05 cm	15.16 cm	45.00 cm	40.39 cm	53.58 kg/cm2	
12	0.75% 28 Días MP 08	15.08 cm	15.05 cm	45.00 cm	39.85 cm	53.54 kg/cm2	
F'C PROMEDIO		52.70 kg/cm2					
DESVIACION ESTANDAR		0.91					
COEFICIENTE DE VARIACION		1.73%					

CONDICIONES DE DISEÑO CON 1.00% DE FIBRA F'C DISEÑO 210 KG/cm2

N° DE MUESTRA	CÓDIGO	ANCHO	PERALTE	LUZ LIBRE ENTRE APOYOS	CARGA DE ROTURA	Mr OBTENIDO		
13	1% 28 Días MP05	15.34 cm	15.12 cm	45.00 cm	32.12 cm	42.03 kg/cm2		
14	1% 28 Días MP 06	15.26 cm	15.20 cm	45.00 cm	38.22 cm	49.74 kg/cm2		
15	1% 28 Días MP07	15.22 cm	15.18 cm	45.00 cm	31.60 cm	44.93 kg/cm2		
16	1% 28 Días MP08	15.08 cm	15.10 cm	45.00 cm	35.40 cm	47.24 kg/cm2		
F'C PROMEDIO		45.99 kg/cm2						
DESVIACION ESTANDAR		2.85						
COEFICIENTE DE VARIACION		6.20%						

Figura 12Resistencia a la flexión a los 28 días.

ANEXO N°5: PANEL FOTOGRAFICO.

Figura 13Extracción de agregados de la cantera "Hermanos Alaya"

Figura 14

Ensayo de revenimiento del concreto.

Figura 15Supervisión del asesor durante la elaboración de probetas de concreto

Figura 16:

Probetas de concreto listas para el curado.

Figura 17:
Supervisión del asesor durante ensayo de resistencia a la compresión.

Figura 18: *Ensayo de resistencia a la flexión*

